Publikationsserver der Universitätsbibliothek Marburg

Titel:Laser-Directed Self-Organization and Reaction Control in Complex Systems
Autor:Reinhardt, Hendrik Martin
Weitere Beteiligte: Hampp, Norbert (Prof. Dr)
Veröffentlicht:2013
URI:https://archiv.ub.uni-marburg.de/diss/z2013/0490
URN: urn:nbn:de:hebis:04-z2013-04900
DOI: https://doi.org/10.17192/z2013.0490
DDC: Naturwissenschaften
Titel (trans.):Lasergesteuerte Selbstorganisation und Reaktionskontrolle in komplexen Systemen
Publikationsdatum:2014-10-29
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Selbstorganisation, pattern formation, Strukturbildung, Musterbildung, multifunktionale Materialien, Edelstahl, Funktionswerkstoff, Bionik, PLID, Werkstof, Laser, Nanotechnologie, multifunctional materials, self-organization, LIPSS, Reaktionsführung

Summary:
Pulsed lasers proved to be advantageous tools for the stimulation of pattern formation in complex systems. Their capability to support thermodynamic, kinetic and spatial control facilitates the direction of self-organization processes into selective channels. The short lifetime of laser-stimulated processes was identified to be the key aspect that enables for the synthesis of functional materials starting from complex systems. When self-organization is abruptly stopped after a few nanoseconds, this creates materials present in a non-equilibrium state, which are known to exhibit special properties. A prominent example is the distinctively different behavior of gold nanoparticles compared to bulk gold. Repeated laser stimulation was demonstrated to be a powerful method that enables selective adjustments of material properties emergent in the course of self-organized pattern formation in complex systems. This includes a broad spectrum of optical, electrical, magnetic and catalytic properties, which are not found in the starting materials prior to laser modification. The capability of lasers to trigger self-organization processes with spatial control was identified to be an interesting feature because it bears the potential to create materials with advanced functionality. In particular, the utilization of a phenomenon called laser-induced periodic surface structures (LIPSS) proved to be very efficient. LIPSS transformed the surface of stainless steel into hierarchical structures thus equipping this everyday material with a multifunctional surface. Considering the simplicity of the generation process this demonstrates the viability of nature’s low-effort-high-outcome-principle of order formation in complex systems. In addition to that, the application breath of laser-stimulated pattern formation was successfully expanded to temperature sensitive materials by including photochemistry into the concept. The large variety of reaction types accessible via photochemistry opens an even wider field of potential applications. In conclusion, it can be stated that the concept of nature to trigger selective reorganizations and pattern formation in complex systems can be imitated in its principles. The introduced concept of laser-directed self-organization and reaction control in complex systems prospects a large application potential. Presented insights into laser-stimulated reaction pathways and pattern formations processes provide a valuable basis for future studies in this field. Overall, the major challenge that must be met on the way to beneficial applications is the need for purposeful design of materials, which requires a thorough understanding of the fundamental principles behind self-organization.

Bibliographie / References

  1. O'Carroll DM, Hofmann CE, Atwater HA. Conjugated polymer/metal nanowire heterostructure plasmonic antennas. Adv Mater 2010;22:1223–7.
  2. Fan Z, Razavi H, Do J, Moriwaki A, Ergen O, Chueh Y, Leu PW, Ho JC, Takahashi T, Reichertz LA, Neale S, Yu K, Wu M, Ager JW, Javey A. Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat Mater 2009;8:648–53.
  3. Author's personal copy
  4. French RH, Müllejans H, Jones DJ. Optical properties of aluminum oxide: determined from vacuum ultraviolet and electron energy-loss spectrosco- pies. J Am Ceram Soc 1998;81:2549–57.
  5. Masuda H, Yamada M, Matsumoto F, Yokoyama S, Mashiko S, Nakao M, Nishio K. Lasing from two-dimensional photonic crystals using anodic porous alumina. Adv Mater 2006;18:213–6.
  6. Sirota NN, Shokhina GN. Kinetics of polymorphous transformation of anodic alumina. Krist Techn 1974;9:913–9.
  7. Matsui Y, Nishio K, Masuda H. Highly ordered anodic porous alumina with 13-nm hole intervals using a 2D array of monodisperse nanoparticles as a template. Small 2006;2:522–5.
  8. Chen W, Jin B, Hu Y, Lu Y, Xia X. Entrapment of protein in nanotubes formed by a nanochannel and ion-channel hybrid structure of anodic alu- mina. Small 2012;8:1001–5.
  9. Choudhari KS, Sudheendra P, Udayashankar NK. Fabrica- tion and high-temperature structural characterization study of porous anodic alumina membranes. J Porous Mater 2012, http://dx.doi.org/10.1007/s10934-012-9568-z.
  10. Maiman TH. Stimulated optical radiation in ruby. Nature 1960;187:493–4.
  11. Kirchner A, MacKenzie KJD, Brown IWM, Kemmitt T, Bowden ME. Struc- tural characterisation of heat-treated anodic alumina membranes prepared using a simplified fabrication process. J Membr Sci 2007;287:264–70.
  12. Marsal LF, Vojkuvka L, Formentin P, Pallarés J, Ferré-Borrull J. Fabrica- tion and optical characterization of nanoporous alumina films annealed at different temperatures. Opt Mater 2009;31:860–4.
  13. Cai A, Yang L, Chen J, Xi T, Xin S, Wu W. Thermal conductivity of anodic alumina film at (220 to 480) K by laser flash technique. J Chem Eng Data 2010;55:4840–3.
  14. Guo D, Fan L, Wang F, Huang S, Zou X. Porous anodic aluminum oxide Bragg stacks as chemical sensors. J Phys Chem C 2008;46:17952–6.
  15. Li T, Yang S, Huang L, Zhang J, Gu B, Du Y. Strong photoluminesce- nce from Cr 3+ doped porous anodic alumina. J Phys: Condens Matter 2004;16:2463–9.
  16. Banerjee P, Perez I, Henn-Lecordier L, Lee LB, Rubloff GW. Nanotubular metal–insulator–metal capacitor arrays for energy storage. Nat Nanotechnol 2009;4:292–6.
  17. Lee C, Kang H, Chang Y, Hahm Y. Thermotreatment and chemical resistance of porous alumina membrane prepared by anodic oxidation. Korean J Chem Eng 2000;17:266–72.
  18. Yang C, Chen C, Shieh J. Characterization and field-emission properties of carbon nanotube arrays in nanoporous alumina template and on blank Si substrate. J Appl Phys 2006;100:104302.
  19. Haberkorn N, Gutmann JS, Theato P. Template-assisted fabrication of free-standing nanorod arrays of a hole-conducting cross-linked tripheny- lamine derivative: toward ordered bulk-heterojunction solar cells. ACS Nano 2009;3:1415–22.
  20. Jha H, Kikuchi T, Sakairi M, Takahashi H. Micro-patterning in anodic oxide film on aluminium by laser irradiation. Electrochim Acta 2007;52: 4724–33.
  21. Jha H, Kikuchi T, Sakairi M, Takahashi H. Laser micromachining of porous anodic alumina film. Appl Phys A 2007;88:617–22.
  22. Liew KM, Wong CH, He XQ, Tan MJ. Thermal stability of single and multi-walled carbon nanotubes. Phys Rev B 2005;71:075424.
  23. McQuaig MK, Toro A, Van Geertruyden W, Misiolek WZ. The effect of high temperature heat treatment on the structure and properties of anodic aluminum oxide. J Mater Sci 2011;46:243–53.
  24. a) Y. Chen , K.-H. Chen , J. Polym. Sci. Part A: Polym. Chem. 1997 , 35 , 613 – 624 ; b) S. Härtner , H.-C. Kim , N. Hampp , J. Photochem. Photo- biol. A: Chemistry 2007 , 187 , 242 – 246 .
  25. head, Coherent, USA). After irradiation the samples were intensely rinsed with ethanol, water and acetone to remove residual agents from the sample surface.
  26. Borca-Tasciuc DA, Chen GJ. Anisotropic thermal properties of nanochan- neled alumina templates. Appl Phys 2005;97:084303.
  27. Chu S, Wada K, Inoue S, Isogai M, Yasumori A. Fabrication of ideally ordered nanoporous alumina films and integrated alumina nanotubule arrays by high-field anodization. Adv Mater 2005;17:2115–9.
  28. Masuda H, Yasui K, Nishio K. Fabrication of ordered arrays of multiple nanodots using anodic porous alumina as an evaporation mask. Adv Mater 2000;12:1031–3.
  29. Lee W, Ji R, Gösele U, Nielsch K. Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat Mater 2006;5:741–7.
  30. Kyotani T, Tsai L, Tomita A. Formation of ultrafine carbon tubes by using an anodic aluminum-oxide film as a template. Chem Mater 1995;7: 1427–8.
  31. Gao X, Liu L, Birajdar B, Ziese M, Lee W, Alexe M, Hesse D. High-density periodically ordered magnetic cobalt ferrite nanodot arrays by template- assisted pulsed laser deposition. Adv Funct Mater 2009;19:3450–5.
  32. Islam MF, Rojas E, Bergey DM, Johnson AT, Yodh AG. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett 2003;3:269–73.
  33. J. V. Obona , V. Ocelík , J. Z. P. Skolski , V. S. Mitko , G. R. B. E. Römer , A. J. Huis in't Veld , J. Th. M. De Hosson , Appl. Surf. Sci. 2012 , 258 , 1555 – 1560 .
  34. Krishnan R, Thompson CV. Monodomain high-aspect-ratio 2D and 3D ordered porous alumina structures with independently controlled pore spac- ing and diameter. Adv Mater 2007;19:988–92.
  35. Thostenson ET, Li C, Chou T. Nanocomposites in context. Compos Sci Technol 2005;65:491–516.
  36. Masuda H, Fukuda K. Ordered metal nanohole arrays made by a two- step replication of honeycomb structures of anodic alumina. Science 1995;268:1466–8.
  37. Chen W, Wu J, Xia X. Porous anodic alumina with continuously manipulated pore/cell size. ACS Nano 2008;2:959–65.
  38. Moulton PF. Spectroscopic and laser characteristics of Ti:Al 2 O 3 . Opt Soc Am B 1986;3:125–33.
  39. Stumpf HC, Russell AS, Newsome JW, Tucker CM. Thermal transforma- tions of aluminas and alumina hydrates – reaction with 44% technical acid. Ind Eng Chem 1950;42:1398–403.
  40. Kim P, Shi L, Majumdar A, Mc Euen PL. Thermal transport mea- surement of individual multiwalled nanotubes. Phys Rev Lett 2001;87: 215502.
  41. Moulton PF. Ti-doped sapphire: tunable solid-state laser. Opt News 1982;8:9–13.
  42. Wissenschaftlicher Werdegang Oktober 2002 Immatrikulation an der Philipps-Universität Marburg, Studiengang Chemie Oktober 2007
  43. Wu M, Wen L, Lei Y, Ostendorp S, Chen K, Wilde G. Ultrathin alumina membranes for surface nanopatterning in fabricating quantum-sized nan- odots. Small 2010;6:695–9.
  44. Moreno i Codinachs L, Birkenstock C, Garma T, Zierold R, Bachmann J, Nielsch K, Schöning MJ, Fontcuberta i Morral A. A micron-sized nanoporous multifunction sensing device. Phys Stat Sol 2009;206:435–41.
  45. Fernández-Romero L, Montero-Moreno JM, Pellicer E, Peiró F, Cornet A, Morante JR, Sarret M, Müller C. Assessment of the thermal stabil- ity of anodic alumina membranes at high temperatures. Mater Chem Phys 2008;111:542–7.
  46. Chang C, Tseng J, Horng J, Shu C. Thermal decomposition of car- bon nanotube/Al 2 O 3 powders by DSC testing. Compos Sci Technol 2008;68:2954–9.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten