Publikationsserver der Universitätsbibliothek Marburg

Titel:Mechanismen der Erkennung der kleinen GTPasen Cdc42 und Rac1durch Guanin-Nukleotid-Austausch-Faktoren in U. maydis
Autor:Tillmann, Britta Anna Maria
Weitere Beteiligte: Bölker, Michael (Prof. Dr.)
Veröffentlicht:2013
URI:https://archiv.ub.uni-marburg.de/diss/z2013/0478
DOI: https://doi.org/10.17192/z2013.0478
URN: urn:nbn:de:hebis:04-z2013-04781
DDC: Naturwissenschaften
Titel (trans.):Recognition of the small GTPases Cdc42 and Rac1 by guanine nucleotide exchange factors in Ustialgo maydis
Publikationsdatum:2014-04-10
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Rac1, GEFs, GEFs, Cdc42, Cdc42, Ustilago zeae, specific recognition, spezifische Erkennung, Kleine GTPasen, Rac1, Kleine GTPasen

Zusammenfassung:
Kleine GTPasen der Rho-Familie übernehmen die Funktion von molekularen Schaltern in komplexen Signal-Netzwerken, die eine Vielzahl unterschiedlicher Signalkaskaden miteinander verknüpfen und selektive Signalantworten erlauben. Gleichzeitig nehmen auch die Regulatoren der molekularen Schalter eine wichtige Rolle ein, da durch diese Proteine die spezifische Weiterleitung von Signalen sichergestellt wird. Weiterhin verhindern sie, dass es zu einer unspezifischen Aktivierung von multiplen Signalkaskaden kommt. In der vorliegenden Arbeit wurden mehrere Aspekte untersucht, wie in diesen komplexen Netzwerken sichergestellt wird, dass die richtige Signalantwort auf einen bestimmten Stimulus erfolgt. Während GTPasen in vielen unterschiedlichen Signalkaskaden aktiv sind, sind sowohl die regulatorischen Proteine - die GEFs und GAPs - als auch die Effektoren oftmals spezifisch für einzelne Signalwege. Es deutlich mehr GEFs und Effektoren, als das es kleine GTPasen gibt. Eine GTPase kann oftmals von mehr als einem GEF aktiviert werden und ihrerseits mehr als einen Effektor aktivieren. Diese Interaktion zwischen GTPase und Effektor ist nicht immer spezifisch. Viele Effektoren können mit mehr als einer GTPase interagieren. Es stellt sich also die Frage, wie sichergestellt wird, dass die richtige Signalantwort auf einen spezifischen Stimulus erfolgt. Während eine GTPase in einer Vielzahl unterschiedlicher Singalwegen aktiv ist, reguliert ein einzelner GEF oft nur eine spezifische Funktion der jeweiligen GTPase. Um die einzelnen Funktionen einer GTPase zu verstehen, ist es somit wichtig, die Komplexität zu verringern und auf einzelne Signalwege zu reduzieren. In der vorliegenden Arbeit wurde der RhoGEF Hot1 aus U. maydis näher charakterisiert. Hot1 ist ein untypischer RhoGEF, der anstelle des für RhoGEFs charakteristischen Domänen-Motivs eine DH-Domänen-assoziierte BAR-Domäne besitzt. Es konnte gezeigt werden, dass Hot1 als RhoGEF für Cdc42 wirken kann und an der Regulation der Zellmorphologie beteiligt ist. Hot1 hat damit eine komplementäre Funktion zum RhoGEF Don1, der die Cdc42-abhängige Zelltrennung reguliert. Die für einen RhoGEF ungewöhnliche BAR-Domäne von Hot1 erkennt spezifische Membrankrümmungen. Es konnte gezeigt werden, dass Hot1 an frühen endozytotischen Strukturen lokalisiert. Darüber hinaus bildet die BAR-Domäne von Hot1 Heterodimere mit dem BAR-Domänen Protein Hob3. Weiterhin wurde untersucht, wie Hot1 spezifisch sein Substrat, die GTPase Cdc42, erkennt. Die beiden GTPasen Cdc42 und Rac1 weisen einen hohen Grad an Sequenzähnlichkeit auf. Dennoch führt eine Deletion dieser Proteine in U. maydis zu unterschiedlichen Phänotypen. In früheren Arbeiten konnte gezeigt werden, dass einige RhoGEFs zwischen Cdc42 und Rac1 anhand einer einzigen konservierten Aminosäure an Position 56 unterscheiden. Ein Austausch dieser Aminosäure zwischen Cdc42 und Rac1 führt zu einer Änderung der Spezifität der Cdc42-spezifischen RhoGEFs Don1 und Its1 sowie des Rac1-spezifischen RhoGEFs Cdc24 in U. maydis. Auch aus anderen Organismen war bekannt, dass die Aminosäure an Position 56 eine wichtige Rolle für die spezifische Erkennung von Cdc42 und Rac1 durch RhoGEFs spielt. Überraschenderweise hat diese Aminosäure keinen Einfluss auf die Erkennung von Cdc42 durch Hot1. Vielmehr konnte im Rahmen der vorliegenden Arbeit gezeigt werden, dass Hot1, aber auch das humane Homolog TUBA, einen neuen Mechanismus benutzen, um zwischen Cdc42 und Rac1 zu unterscheiden. Anstatt der Aminosäure 56, erkennt Hot1 die GTPase Cdc42 anhand weniger unterschiedlicher Aminosäuren im N-Terminus von Cdc42. Als weiterer Punkt dieser Arbeit wurde untersucht, wie die spezifische Signalweiterleitung von kleinen GTPasen in komplexen Signalkaskaden funktioniert. Aufgrund der hohen Ähnlichkeit von Cdc42 und Rac1 und der teilweisen Redundanz ihrer Funktionen stellte sich die Frage, in wie weit diese GTPasen noch gemeinsame Funktionen übernehmen können und ob es zwangsläufig beide Proteine geben muss. Es konnte eine synthetische GTPase generiert werden, die zu großen Teilen die Funktionen von Cdc42 und Rac1 in einem Protein vereint. Diese GTPase kann von den meisten bekannten RhoGEFs von Cdc42 und Rac1 aktiviert werden und auch die meisten zellulären Funktionen übernehmen. Im Zuge dieser Untersuchungen konnte auch gezeigt werden, dass es einen spezifischen Effektor von Cdc42 geben muss, der auch anhand der Aminosäure an Position 56 zwischen Cdc42 und Rac1 unterscheidet. Schließlich konnte noch gezeigt werden, dass die C-terminale Region von Cdc42 und Rac1 einen wichtigen Einfluss auf die subzelluläre Lokalisation der GTPasen hat und dass diese Lokalisation kritisch für die korrekte Funktion dieser Proteine ist.

Bibliographie / References

  1. Hussain, N. K., Jenna, S., Glogauer, M., Quinn, C. C., Wasiak, S., Guipponi, M., Antonarakis, S. E., Kay, B. K., Stossel, T. P., Lamarche-Vane, N. and McPherson, P. S. (2001) Endocytic protein intersectin-l regulates actin assembly via Cdc42 and N-WASP. Nat Cell Biol, 3, 927– 932.
  2. Virag, A., Lee, M. P., Si, H. and Harris, S. D. (2007) Regulation of hyphal morphogenesis by cdc42 and rac1 homologues in Aspergillus nidulans. Mol Microbiol, 66, 1579–1596.
  3. Kukulski, W., Schorb, M., Kaksonen, M. and Briggs, J. A. G. (2012) Plasma membrane reshaping during endocytosis is revealed by time-resolved electron tomography. Cell, 150, 508–520.
  4. Banuett, F. and Herskowitz, I. (1996) Discrete developmental stages during teliospore formation in the corn smut fungus, Ustilago maydis. Development, 122, 2965–2976.
  5. Mott, H. R., Owen, D., Nietlispach, D., Lowe, P. N., Manser, E., Lim, L. and Laue, E. D. (1999) Structure of the small G protein Cdc42 bound to the GTPase-binding domain of ACK. Nature, 399, 384–8. 0028-0836 Journal Article.
  6. West, M. A., Prescott, A. R., Eskelinen, E. L., Ridley, A. J. and Watts, C. (2000) Rac is required for constitutive macropinocytosis by dendritic cells but does not control its downregulation. Curr Biol, 10, 839–48. 0960-9822 Journal Article.
  7. Pasteris, N. G., Buckler, J., Cadle, A. B. and Gorski, J. L. (1997) Genomic organization of the faciogenital dysplasia (FGD1; Aarskog syndrome) gene. Genomics, 43, 390–4. 0888-7543
  8. Brachmann, A., König, J., Julius, C. and Feldbrügge, M. (2004) A reverse genetic approach for generating gene replacement mutants in Ustilago maydis. Mol Genet Genomics, 272, 216–226.
  9. Kämper, J., Reichmann, M., Romeis, T., Bölker, M. and Kahmann, R. (1995) Multiallelic reco- gnition: nonself-dependent dimerization of the bE and bW homeodomain proteins in Ustilago maydis. Cell, 81, 73–83.
  10. Kaksonen, M., Toret, C. P. and Drubin, D. G. (2005) A modular design for the clathrin-and actin-mediated endocytosis machinery. Cell, 123, 305–320.
  11. Hwang, J.-U., Vernoud, V., Szumlanski, A., Nielsen, E. and Yang, Z. (2008) A tip-localized RhoGAP controls cell polarity by globally inhibiting Rho GTPase at the cell apex. Curr Biol, 18, 1907–1916.
  12. García-Pedrajas, M. D., Nadal, M., Bölker, M., Gold, S. E. and Perlin, M. H. (2008) Sending mixed signals: redundancy vs. uniqueness of signaling components in the plant pathogen, Ustilago maydis. Fungal Genet Biol, 45 Suppl 1, S22–S30.
  13. Cerione, R. A. (2004) Cdc42: new roads to travel. Trends Cell Biol, 14, 127–132.
  14. Garcia-Mata, R. and Burridge, K. (2007) Catching a GEF by its tail. Trends Cell Biol, 17, 36–43. 0962-8924 (Print) Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review.
  15. Steinberg, G. and Perez-Martin, J. (2008) Ustilago maydis, a new fungal model system for cell biology. Trends Cell Biol, 18, 61–67.
  16. Marinissen, M. J. and Gutkind, J. S. (2005) Scaffold proteins dictate Rho GTPase-signaling specificity. Trends Biochem Sci, 30, 423–6. 0968-0004 Journal Article.
  17. Hoffman, G. R. and Cerione, R. A. (2002) Signaling to the Rho GTPases: networking with the DH domain. FEBS Lett, 513, 85–91.
  18. Cestra, G., Kwiatkowski, A., Salazar, M., Gertler, F. and De Camilli, P. (2005) Tuba, a GEF for CDC42, links dynamin to actin regulatory proteins. Methods Enzymol, 404, 537–545.
  19. Williams, C. L. (2003) The polybasic region of Ras and Rho family small GTPases: a regulator of protein interactions and membrane association and a site of nuclear localization signal sequences. Cell Signal, 15, 1071–1080.
  20. Simonsen, A., Wurmser, A. E., Emr, S. D. and Stenmark, H. (2001) The role of phosphoinositides in membrane transport. Curr Opin Cell Biol, 13, 485–492.
  21. Schafer, D. A. (2002) Coupling actin dynamics and membrane dynamics during endocytosis. Curr Opin Cell Biol, 14, 76–81.
  22. Small, J. V., Stradal, T., Vignal, E. and Rottner, K. (2002) The lamellipodium: where motility begins. Trends Cell Biol, 12, 112–20. 0962-8924 Journal Article Review Review, Tutorial.
  23. Banuett, F. and Herskowitz, I. (2002) Bud morphogenesis and the actin and microtubule cy- toskeletons during budding in the corn smut fungus, Ustilago maydis. Fungal Genet Biol, 37, 149–170.
  24. Gladfelter, A. S., Pringle, J. R. and Lew, D. J. (2001) The septin cortex at the yeast mother-bud neck. Curr Opin Microbiol, 4, 681–689.
  25. Ghomashchi, F., Zhang, X., Liu, L. and Gelb, M. H. (1995) Binding of prenylated and polybasic peptides to membranes: affinities and intervesicle exchange. Biochemistry, 34, 11910–11918.
  26. Kreck, M. L., Freeman, J. L., Abo, A. and Lambeth, J. D. (1996) Membrane association of Rac is required for high activity of the respiratory burst oxidase. Biochemistry, 35, 15683–15692.
  27. Shimada, Y., Gulli, M. P. and Peter, M. (2000) Nuclear sequestration of the exchange factor Cdc24 by Far1 regulates cell polarity during yeast mating. Nat Cell Biol, 2, 117–124.
  28. Irazoqui, J. E., Gladfelter, A. S. and Lew, D. J. (2003) Scaffold-mediated symmetry breaking by Cdc42p. Nat Cell Biol, 5, 1062–1070.
  29. Rossman, K. L., Der, C. J. and Sondek, J. (2005) GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol, 6, 167–80. 1471-0072 (Print) Journal Article Review.
  30. Kaksonen, M., Toret, C. P. and Drubin, D. G. (2006) Harnessing actin dynamics for clathrin- mediated endocytosis. Nat Rev Mol Cell Biol, 7, 404–414.
  31. ten Klooster, J. P. and Hordijk, P. L. (2007) Targeting and localized signalling by small GTPases. Biol Cell, 99, 1–12.
  32. Wu, W. J., Leonard, D. A., A., C. R. and Manor, D. (1997) Interaction between Cdc42Hs and RhoGDI is mediated through the Rho insert region. J Biol Chem, 272, 26153–8. 0021-9258 Journal Article.
  33. Knaus, U. G., Wang, Y., Reilly, A. M., Warnock, D. and Jackson, J. H. (1998) Structural requirements for PAK activation by Rac GTPases. J Biol Chem, 273, 21512–21518.
  34. Bose, I., Irazoqui, J. E., Moskow, J. J., Bardes, E. S., Zyla, T. R. and Lew, D. J. (2001) Assembly of scaffold-mediated complexes containing Cdc42p, the exchange factor Cdc24p, and the effector Cla4p required for cell cycle-regulated phosphorylation of Cdc24p. J Biol Chem, 276, 7176–7186.
  35. Routhier, E. L., Burn, T. C., Abbaszade, I., Summers, M., Albright, C. F. and Prendergast, G. C. (2001) Human BIN3 complements the F-actin localization defects caused by loss of Hob3p, the fission yeast homolog of Rvs161p. J Biol Chem, 276, 21670–21677.
  36. Snyder, J. T., Rossman, K. L., Baumeister, M. A., Pruitt, W. M., Siderovski, D. P., Der, C. J., Lemmon, M. A. and Sondek, J. (2001) Quantitative analysis of the effect of phosphoinositide interactions on the function of Dbl family proteins. J Biol Chem, 276, 45868–75. 0021-9258 (Print) Journal Article.
  37. Rossman, K. L., Worthylake, D. K., Snyder, J. T., Cheng, L., Whitehead, I. P. and Sondek, J. (2002a) Functional analysis of cdc42 residues required for Guanine nucleotide exchange. J Biol Chem, 277, 50893–8. 0021-9258 (Print) Journal Article.
  38. Rossman, K. L., Cheng, L., Mahon, G. M., Rojas, R. J., Snyder, J. T., Whitehead, I. P. and Sondek, J. (2003) Multifunctional roles for the PH domain of Dbs in regulating Rho GTPase activation. J Biol Chem, 278, 18393–400. 0021-9258 (Print) Journal Article Research Support, U.S. Gov't, P.H.S.
  39. Prieto-Sanchez, R. M. and Bustelo, X. R. (2003) Structural basis for the signaling specificity of RhoG and Rac1 GTPases. J Biol Chem, 278, 37916–25. 0021-9258 (Print) Journal Article.
  40. Lanning, C. C., Daddona, J. L., Ruiz-Velasco, R., Shafer, S. H. and Williams, C. L. (2004) The Rac1 C-terminal polybasic region regulates the nuclear localization and protein degradation of Rac1. J Biol Chem, 279, 44197–44210.
  41. Schmidt, A. and Hall, A. (2002) Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev, 16, 1587–609. 0890-9369 (Print) Journal Article Research Support, Non-U.S. Gov't Review.
  42. Park, H. O., Sanson, A. and Herskowitz, I. (1999) Localization of bud2p, a GTPase-activating protein necessary for programming cell polarity in yeast to the presumptive bud site. Genes Dev, 13, 1912–7. 0890-9369 Journal Article.
  43. Leveleki, L., Mahlert, M., Sandrock, B. and Bölker, M. (2004) The PAK family kinase Cla4 is required for budding and morphogenesis in Ustilago maydis. Mol Microbiol, 54, 396–406.
  44. Mahlert, M., Leveleki, L., Hlubek, A., Sandrock, B. and Bolker, M. (2006) Rac1 and Cdc42 regu- late hyphal growth and cytokinesis in the dimorphic fungus Ustilago maydis. Mol Microbiol, 59, 567–78. 0950-382X (Print) Journal Article.
  45. Hlubek, A., Schink, K. O., Mahlert, M., Sandrock, B. and Bölker, M. (2008) Selective activation by the guanine nucleotide exchange factor Don1 is a main determinant of Cdc42 signalling specificity in Ustilago maydis. Mol Microbiol, 68, 615–623.
  46. Böhmer, C., Ripp, C. and Bölker, M. (2009) The germinal centre kinase Don3 triggers the dy- namic rearrangement of higher-order septin structures during cytokinesis in Ustilago maydis. Mol Microbiol, 74, 1484–1496.
  47. Kwon, M. J., Arentshorst, M., Roos, E. D., van den Hondel, C. A. M. J. J., Meyer, V. and Ram, A. F. J. (2011) Functional characterization of Rho GTPases in Aspergillus niger uncovers conserved and diverged roles of Rho proteins within filamentous fungi. Mol Microbiol, 79, 1151–1167.
  48. Peter, B. J., Kent, H. M., Mills, I. G., Vallis, Y., Butler, P. J. G., Evans, P. R. and McMa- hon, H. T. (2004) BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science, 303, 495–499.
  49. Wennerberg, K. and Der, C. J. (2004) Rho-family GTPases: it's not only Rac and Rho (and I like it). J Cell Sci, 117, 1301–12. 0021-9533 Journal Article Review Review, Tutorial. Literaturverzeichnis West, M., Kung, H. F. and Kamata, T. (1990) A novel membrane factor stimulates guanine nucleotide exchange reaction of ras proteins. FEBS Lett, 259, 245–8. 0014-5793 Journal Article.
  50. Huang, T. Y., Renaud-Young, M. and Young, D. (2005) Nak1 interacts with Hob1 and Wsp1 to regulate cell growth and polarity in Schizosaccharomyces pombe. J Cell Sci, 118, 199–210.
  51. Kovacs, E. M., Makar, R. S. and Gertler, F. B. (2006) Tuba stimulates intracellular N-WASP- dependent actin assembly. J Cell Sci, 119, 2715–2726.
  52. Stewart, A. and Deacon, J. W. (1995) Vital fluorochromes as tracers for fungal growth studies. Biotech Histochem, 70, 57–65.
  53. The structural basis of Arfaptin-mediated cross-talk between Rac and Arf signalling pathways. Nature, 411, 215–219.
  54. Cales, C., Hancock, J. F., Marshall, C. J. and Hall, A. (1988) The cytoplasmic protein GAP is implicated as the target for regulation by the ras gene product. Nature, 332, 548–51. 0028-0836 Journal Article.
  55. Banuett, F. and Herskowitz, I. (1994) Identification of fuz7, a Ustilago maydis MEK/MAPKK homolog required for a-locus-dependent and -independent steps in the fungal life cycle. Genes Dev, 8, 1367–1378.
  56. Rudolph, M. G., Bayer, P., Abo, A., Kuhlmann, J., Vetter, I. R. and Wittinghofer, A. (1998) The Cdc42/Rac interactive binding region motif of the Wiskott Aldrich syndrome protein (WASP) is necessary but not sufficient for tight binding to Cdc42 and structure formation. J Biol Chem, 273, 18067–18076.
  57. Palamidessi, A., Frittoli, E., Garré, M., Faretta, M., Mione, M., Testa, I., Diaspro, A., Lanzetti, L., Scita, G. and Di Fiore, P. P. (2008) Endocytic trafficking of Rac is required for the spatial restriction of signaling in cell migration. Cell, 134, 135–147.
  58. Lemmon, M. A., Ferguson, K. M. and Abrams, C. S. (2002) Pleckstrin homology domains and the cytoskeleton. FEBS Lett, 513, 71–6. 0014-5793 (Print) Journal Article Review.
  59. Pruyne, D. and Bretscher, A. (2000a) Polarization of cell growth in yeast. J Cell Sci, 113, 571–85. 0021-9533 Journal Article Review.
  60. Manser, E., Leung, T., Salihuddin, H., Zhao, Z. S. and Lim, L. (1994) A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature, 367, 40–46.
  61. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quan- tities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72, 248–254.
  62. Ron, D., Zannini, M., Lewis, M., Wickner, R. B., Hunt, L. T., Graziani, G., Tronick, S. R., Aaronson, S. A. and Eva, A. (1991) A region of proto-dbl essential for its transforming activity shows sequence similarity to a yeast cell cycle gene, CDC24, and the human breakpoint cluster gene, bcr. New Biol, 3, 372–379.
  63. Kim, A. S., Kakalis, L. T., Abdul-Manan, N., Liu, G. A. and Rosen, M. K. (2000) Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein. Nature, 404, 151–158.
  64. Maesaki, R., Shimizu, T., Ihara, K., Kuroda, S., Kaibuchi, K. and Hakoshima, T. (1999) Bio- chemical and crystallographic characterization of a Rho effector domain of the protein seri- ne/threonine kinase N in a complex with RhoA. J Struct Biol, 126, 166–170.
  65. Botelho, R. J. (2009) Changing phosphoinositides "on the fly": how trafficking vesicles avoid an identity crisis. Bioessays, 31, 1127–1136.
  66. Takai, S., Hasegawa, H., Kiyokawa, E., Yamada, K., Kurata, T. and Matsuda, M. (1996) Chro- mosomal mapping of the gene encoding DOCK180, a major Crk-binding protein, to 10q26.13- q26.3 by fluorescence in situ hybridization. Genomics, 35, 403–404.
  67. Southern, E. M. (1992) Detection of specific sequences among DNA fragments separated by gel electrophoresis. 1975. Biotechnology, 24, 122–139.
  68. Sharp, P. A., Sugden, B. and Sambrook, J. (1973) Detection of two restriction endonuclease activities in Haemophilus parainfluenzae using analytical agarose–ethidium bromide electro- phoresis. Biochemistry, 12, 3055–63. 0006-2960 Journal Article.
  69. Takahashi, K., Sasaki, T., Mammoto, A., Takaishi, K., Kameyama, T., Tsukita, S. and Takai, Y. (1997) Direct interaction of the Rho GDP dissociation inhibitor with ezrin/radixin/moesin initiates the activation of the Rho small G protein. J Biol Chem, 272, 23371–23375.
  70. Blood, P. D. and Voth, G. A. (2006) Direct observation of Bin/amphiphysin/Rvs (BAR) domain- induced membrane curvature by means of molecular dynamics simulations. Proc Natl Acad Sci U S A, 103, 15068–15072.
  71. Takei, K., Slepnev, V. I., Haucke, V. and Camilli, P. D. (1999) Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nat Cell Biol, 1, 33–39.
  72. Kozminski, K. G., Chen, A. J., Rodal, A. A. and Drubin, D. G. (2000) Functions and functional domains of the GTPase Cdc42p. Mol Biol Cell, 11, 339–54. 1059-1524 Journal Article. Literaturverzeichnis Kozubowski, L., Saito, K., Johnson, J. M., Howell, A. S., Zyla, T. R. and Lew, D. J. (2008) Symmetry-breaking polarization driven by a Cdc42p GEF-PAK complex. Curr Biol, 18, 1719–1726.
  73. Schink, K. O. (2010) Funktionelle Analyse von Rho-spezifischen Guanin-Nukleotid- Austauschfaktoren in Ustilago maydis. Ph.D. thesis.
  74. Gp (G25K): identification of this GTP-binding protein as the human homolog of the yeast cell-division-cycle protein CDC42. Proc Natl Acad Sci U S A, 87, 9853–9857.
  75. Spellig, T., Bottin, A. and Kahmann, R. (1996) Green fluorescent protein (GFP) as a new vital marker in the phytopathogenic fungus Ustilago maydis. Mol Gen Genet, 252, 503–509.
  76. Bourne, H. R. (1997) How receptors talk to trimeric G proteins. Curr Opin Cell Biol, 9, 134–42.
  77. Brown, J. L., Stowers, L., Baer, M., Trejo, J., Coughlin, S. and Chant, J. (1996) Human Ste20 homologue hPAK1 links GTPases to the JNK MAP kinase pathway. Curr Biol, 6, 598–605. 0960-9822 Journal Article.
  78. Brachmann, A., Weinzierl, G., Kämper, J. and Kahmann, R. (2001) Identification of genes in the bW/bE regulatory cascade in Ustilago maydis. Mol Microbiol, 42, 1047–1063.
  79. Welch, M. D., Rosenblatt, J., Skoble, J., Portnoy, D. A. and Mitchison, T. J. (1998) Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science, 281, 105–108.
  80. McMahon, H. T. and Gallop, J. L. (2005) Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature, 438, 590–596.
  81. Karnoub, A. E., Worthylake, D. K., Rossman, K. L., Pruitt, W. M., Campbell, S. L., Sondek, J. and Der, C. J. (2001) Molecular basis for Rac1 recognition by guanine nucleotide exchange factors. Nat Struct Biol, 8, 1037–1041.
  82. Karnoub, A. E., Symons, M., Campbell, S. L. and Der, C. J. (2004) Molecular basis for Rho GTPase signaling specificity. Breast Cancer Res Treat, 84, 61–71.
  83. Liu, X., Wang, H., Eberstadt, M., Schnuchel, A., Olejniczak, E. T., Meadows, R. P., Schkeryantz, J. M., Janowick, D. A., Harlan, J. E., Harris, E. A., Staunton, D. E. and Fesik, S. W. (1998) NMR structure and mutagenesis of the N-terminal Dbl homology domain of the nucleotide exchange factor Trio. Cell, 95, 269–277.
  84. Zhang, F. L. and Casey, P. J. (1996) Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem, 65, 241–269.
  85. Sasaki, T., Kikuchi, A., Araki, S., Hata, Y., Isomura, M., Kuroda, S. and Takai, Y. (1990) Purification and characterization from bovine brain cytosol of a protein that inhibits the dissociation of GDP from and the subsequent binding of GTP to smg p25A, a ras p21-like GTP-binding protein. J Biol Chem, 265, 2333–7. 0021-9258 Journal Article.
  86. Self, A. J. and Hall, A. (1995) Purification of recombinant Rho/Rac/G25K from Escherichia coli. Methods Enzymol, 256, 3–10. 0076-6879 (Print) Journal Article.
  87. Menard, L., Tomhave, E., Casey, P. J., Uhing, R. J., Snyderman, R. and Didsbury, J. R. (1992) Rac1, a low-molecular-mass GTP-binding-protein with high intrinsic GTPase activity and distinct biochemical properties. Eur J Biochem, 206, 537–46. 0014-2956 Journal Article.
  88. Schmitz, A. A., Govek, E. E., Bottner, B. and Van Aelst, L. (2000) Rho GTPases: signaling, migration, and invasion. Exp Cell Res, 261, 1–12. 0014-4827 Journal Article Review.
  89. Nobes, C. D. and Hall, A. (1995) Rho, rac, and cdc42 GTPases regulate the assembly of mul- timolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell, 81, 53–62. 0092-8674 Journal Article.
  90. Glomset, J. A. and Farnsworth, C. C. (1994) Role of protein modification reactions in program- ming interactions between ras-related GTPases and cell membranes. Annu Rev Cell Biol, 10, 181–205.
  91. Bud1/Rsr1 protein bind to different effectors to determine yeast cell polarity. Proc Natl Acad Sci U S A, 94, 4463–8. 0027-8424 Journal Article.
  92. Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G. and Erlich, H. (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol, 51, 263–73. 0091-7451 Journal Article.
  93. Wedlich-Soldner, R., Altschuler, S., Wu, L. and Li, R. (2003) Spontaneous cell polarization through actomyosin-based delivery of the Cdc42 GTPase. Science, 299, 1231–1235.
  94. Snyder, J. T., Worthylake, D. K., Rossman, K. L., Betts, L., Pruitt, W. M., Siderovski, D. P., Der, C. J. and Sondek, J. (2002) Structural basis for the selective activation of Rho GTPases by Dbl exchange factors. Nat Struct Biol, 9, 468–75. 1072-8368 (Print) Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.
  95. Rohatgi, R., Ma, L., Miki, H., Lopez, M., Kirchhausen, T., Takenawa, T. and Kirschner, M. W. (1999) The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell, 97, 221–231.
  96. Ron, D., Graziani, G., Aaronson, S. A. and Eva, A. (1989) The N-terminal region of proto-dbl down regulates its transforming activity. Oncogene, 4, 1067–1072.
  97. Valencia, A., Chardin, P., Wittinghofer, A. and Sander, C. (1991) The ras protein family: evo- lutionary tree and role of conserved amino acids. Biochemistry, 30, 4637–4648.
  98. Longtine, M. S., DeMarini, D. J., Valencik, M. L., Al-Awar, O. S., Fares, H., Virgilio, C. D. and Pringle, J. R. (1996) The septins: roles in cytokinesis and other processes. Curr Opin Cell Biol, 8, 106–119.
  99. Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D. and Hall, A. (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell, 70, 401–10.
  100. Ridley, A. J. and Hall, A. (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell, 70, 389–99. 0092-8674 Journal Article.
  101. Gao, Y., Xing, J., Streuli, M., Leto, T. L. and Zheng, Y. (2001) Trp(56) of rac1 specifies inter- action with a subset of guanine nucleotide exchange factors. J Biol Chem, 276, 47530–41. 0021-9258 Journal Article.
  102. Salazar, M. A., Kwiatkowski, A. V., Pellegrini, L., Cestra, G., Butler, M. H., Rossman, K. L., Serna, D. M., Sondek, J., Gertler, F. B. and De Camilli, P. (2003) Tuba, a novel protein con- taining bin/amphiphysin/Rvs and Dbl homology domains, links dynamin to regulation of the actin cytoskeleton. J Biol Chem, 278, 49031–43. 0021-9258 (Print) Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.
  103. Brugnera, E., Haney, L., Grimsley, C., Lu, M., Walk, S. F., Tosello-Trampont, A.-C., Macara, I. G., Madhani, H., Fink, G. R. and Ravichandran, K. S. (2002) Unconventional Rac-GEF activity is mediated through the Dock180-ELMO complex. Nat Cell Biol, 4, 574–582.
  104. Snetselaar, Bolker and Kahmann (1996) Ustilago maydis Mating Hyphae Orient Their Growth toward Pheromone Sources. Fungal Genet Biol, 20, 299–312.
  105. Birnboim, H. C. and Doly, J. (1979) A rapid alkaline extraction procedure for screening recom- binant plasmid DNA. Nucleic Acids Res, 7, 1513–1523.
  106. Weinzierl, G., Leveleki, L., Hassel, A., Kost, G., Wanner, G. and Bolker, M. (2002) Regulation of cell separation in the dimorphic fungus Ustilago maydis. Mol Microbiol, 45, 219–31. 0950-382x Journal Article.
  107. Takai, Y., Sasaki, T. and Matozaki, T. (2001) Small GTP-binding proteins. Physiol Rev, 81, 153–208. 0031-9333 Journal Article Review Review, Tutorial.
  108. Thompson, G., Owen, D., Chalk, P. A. and Lowe, P. N. (1998) Delineation of the Cdc42/Rac- binding domain of p21-activated kinase. Biochemistry, 37, 7885–7891.
  109. Owen, D., Mott, H. R., Laue, E. D. and Lowe, P. N. (2000) Residues in Cdc42 that specify binding to individual CRIB effector proteins. Biochemistry, 39, 1243–50. 0006-2960 Journal Article.
  110. Bell, J. (1989) The polymerase chain reaction. Immunol Today, 10, 351–5. 0167-5699 Journal Article Review Review, Tutorial.
  111. Jack, E. R., Madine, J., Lian, L.-Y. and Middleton, D. A. (2008) Membrane interactions of pep- tides representing the polybasic regions of three Rho GTPases are sensitive to the distribution of arginine and lysine residues. Mol Membr Biol, 25, 14–22.
  112. Kost, B. (2008) Spatial control of Rho (Rac-Rop) signaling in tip-growing plant cells. Trends Cell Biol, 18, 119–127.
  113. Gu, Y., Lin, Q., Childress, C. and Yang, W. (2004) Identification of the region in Cdc42 that confers the binding specificity to activated Cdc42-associated kinase. J Biol Chem, 279, 30507– 13. 0021-9258 Journal Article.
  114. Krueger, E. W., Orth, J. D., Cao, H. and McNiven, M. A. (2003) A dynamin-cortactin-Arp2/3 complex mediates actin reorganization in growth factor-stimulated cells. Mol Biol Cell, 14, 1085–1096.
  115. Worthylake, D. K., Rossman, K. L. and Sondek, J. (2000) Crystal structure of Rac1 in complex with the guanine nucleotide exchange region of Tiam1. Nature, 408, 682–8. 0028-0836 (Print) Journal Article.
  116. Miki, H., Yamaguchi, H., Suetsugu, S. and Takenawa, T. (2000) IRSp53 is an essential interme- diate between Rac and WAVE in the regulation of membrane ruffling. Nature, 408, 732–5. 0028-0836 Journal Article.
  117. Gasman, S., Kalaidzidis, Y. and Zerial, M. (2003a) RhoD regulates endosome dynamics through Diaphanous-related Formin and Src tyrosine kinase. Nature Cell Biology, 5, 195–204.
  118. Slepnev, V. I. and Camilli, P. D. (2000) Accessory factors in clathrin-dependent synaptic vesicle endocytosis. Nat Rev Neurosci, 1, 161–172.
  119. Miki, H., Suetsugu, S. and Takenawa, T. (1998) WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac. Embo J, 17, 6932–41. 0261-4189 Journal Article.
  120. Sikorski, R. S. and Hieter, P. (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics, 122, 19–27.
  121. Rossman, K. L., Worthylake, D. K., Snyder, J. T., Siderovski, D. P., Campbell, S. L. and Sondek, J. (2002b) A crystallographic view of interactions between Dbs and Cdc42: PH domain-assisted guanine nucleotide exchange. Embo J, 21, 1315–26. 0261-4189 (Print) Journal Article.
  122. Butty, A. C., Perrinjaquet, N., Petit, A., Jaquenoud, M., Segall, J. E., Hofmann, K., Zwahlen, C. and Peter, M. (2002) A positive feedback loop stabilizes the guanine-nucleotide exchange factor Cdc24 at sites of polarization. Embo J, 21, 1565–76. 0261-4189 (Print) Journal Article Research Support, Non-U.S. Gov't.
  123. Ren, G., Vajjhala, P., Lee, J. S., Winsor, B. and Munn, A. L. (2006) The BAR domain proteins: molding membranes in fission, fusion, and phagy. Microbiol Mol Biol Rev, 70, 37–120.
  124. Coll, P. M., Trillo, Y., Ametzazurra, A. and Perez, P. (2003) Gef1p, a new guanine nucleotide exchange factor for Cdc42p, regulates polarity in Schizosaccharomyces pombe. Mol Biol Cell, 14, 313–23. 1059-1524 (Print) Journal Article.
  125. Colot, H. V., Park, G., Turner, G. E., Ringelberg, C., Crew, C. M., Litvinkova, L., Weiss, R. L., Borkovich, K. A. and Dunlap, J. C. (2006) A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci U S A, 103, 10352–10357.
  126. Moseley, J. B. and Goode, B. L. (2006) The yeast actin cytoskeleton: from cellular function to biochemical mechanism. Microbiol Mol Biol Rev, 70, 605–645.
  127. Klahre, U. and Kost, B. (2006) Tobacco RhoGTPase ACTIVATING PROTEIN1 spatially re- stricts signaling of RAC/Rop to the apex of pollen tubes. Plant Cell, 18, 3033–3046.
  128. Park, H.-O. and Bi, E. (2007) Central roles of small GTPases in the development of cell polarity in yeast and beyond. Microbiol Mol Biol Rev, 71, 48–96.
  129. Coll, P. M., Rincon, S. A., Izquierdo, R. A. and Perez, P. (2007) Hob3p, the fission yeast ortholog of human BIN3, localizes Cdc42p to the division site and regulates cytokinesis. EMBO J, 26, 1865–1877.
  130. Park, H. O., Bi, E., Pringle, J. R. and Herskowitz, I. (1997) Two active states of the Ras-related
  131. Johnson, D. I. and Pringle, J. R. (1990) Molecular characterization of CDC42, a Saccharomyces cerevisiae gene involved in the development of cell polarity. J Cell Biol, 111, 143–52. 0021- 9525 Journal Article.
  132. Vida, T. A. and Emr, S. D. (1995) A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol, 128, 779–792.
  133. Brizzio, V., Gammie, A. E. and Rose, M. D. (1998) Rvs161p interacts with Fus2p to promote cell fusion in Saccharomyces cerevisiae. J Cell Biol, 141, 567–584.
  134. Li, R. (1997) Bee1, a yeast protein with homology to Wiscott-Aldrich syndrome protein, is critical for the assembly of cortical actin cytoskeleton. J Cell Biol, 136, 649–658.
  135. Nern, A. and Arkowitz, R. A. (2000) Nucleocytoplasmic shuttling of the Cdc42p exchange factor Cdc24p. J Cell Biol, 148, 1115–1122.
  136. Ochoa, G. C., Slepnev, V. I., Neff, L., Ringstad, N., Takei, K., Daniell, L., Kim, W., Cao, H., McNiven, M., Baron, R. and Camilli, P. D. (2000) A functional link between dynamin and the actin cytoskeleton at podosomes. J Cell Biol, 150, 377–389.
  137. Michaelson, D., Silletti, J., Murphy, G., D'Eustachio, P., Rush, M. and Philips, M. R. (2001) Differential localization of Rho GTPases in live cells: regulation by hypervariable regions and RhoGDI binding. J Cell Biol, 152, 111–126.
  138. Kozma, R., Ahmed, S., Best, A. and Lim, L. (1995) The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol Cell Biol, 15, 1942–52. 0270-7306 Journal Article.
  139. Tong, Z., Gao, X.-D., Howell, A. S., Bose, I., Lew, D. J. and Bi, E. (2007) Adjacent positioning of cellular structures enabled by a Cdc42 GTPase-activating protein-mediated zone of inhibition. J Cell Biol, 179, 1375–1384.
  140. Frost, A., Perera, R., Roux, A., Spasov, K., Destaing, O., Egelman, E. H., De Camilli, P. and Unger, V. M. (2008) Structural basis of membrane invagination by F-BAR domains. Cell, 132, 807–817.
  141. Huber, C., Mårtensson, A., Bokoch, G. M., Nemazee, D. and Gavin, A. L. (2008) FGD2, a CDC42-specific exchange factor expressed by antigen-presenting cells, localizes to early endo- somes and active membrane ruffles. J Biol Chem, 283, 34002–34012.
  142. Schink, K. O. and Bölker, M. (2009) Coordination of cytokinesis and cell separation by endosomal targeting of a Cdc42-specific guanine nucleotide exchange factor in Ustilago maydis. Mol Biol Cell, 20, 1081–1088.
  143. Ziman, M., Preuss, D., Mulholland, J., O'Brien, J. M., Botstein, D. and Johnson, D. I. (1993) Subcellular localization of Cdc42p, a Saccharomyces cerevisiae GTP-binding protein involved in the control of cell polarity. Mol Biol Cell, 4, 1307–16. 1059-1524 Journal Article.
  144. Wu, X., Ramachandran, S., Lin, M.-C. J., Cerione, R. A. and Erickson, J. W. (2011) A minimal Rac activation domain in the unconventional guanine nucleotide exchange factor Dock180. Biochemistry, 50, 1070–1080.
  145. Kulkarni, K., Yang, J., Zhang, Z. and Barford, D. (2011) Multiple factors confer specific Cdc42 and Rac protein activation by dedicator of cytokinesis (DOCK) nucleotide exchange factors. J Biol Chem, 286, 25341–25351.
  146. Frieser, S. H., Hlubek, A., Sandrock, B. and Bölker, M. (2011) Cla4 kinase triggers destruction of the Rac1-GEF Cdc24 during polarized growth in Ustilago maydis. Mol Biol Cell, 22, 3253–3262.
  147. Schultz, J., Milpetz, F., Bork, P. and Ponting, C. P. (1998) SMART, a simple modular archi- tecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A, 95, 5857–5864.
  148. Church, G. M. and Gilbert, W. (1984) Genomic sequencing. Proc Natl Acad Sci U S A, 81, 1991–1995.
  149. Gould, G. W. and Lippincott-Schwartz, J. (2009) New roles for endosomes: from vesicular carriers to multi-purpose platforms. Nat Rev Mol Cell Biol, 10, 287–292.
  150. Shimada, Y., Wiget, P., Gulli, M.-P., Bi, E. and Peter, M. (2004) The nucleotide exchange factor Cdc24p may be regulated by auto-inhibition. EMBO J, 23, 1051–1062.
  151. Gibbs, J. B., Sigal, I. S., Poe, M. and Scolnick, E. M. (1984) Intrinsic GTPase activity distin- guishes normal and oncogenic ras p21 molecules. Proc Natl Acad Sci U S A, 81, 5704–8. 0027-8424 Journal Article.
  152. Kolluri, R., Tolias, K. F., Carpenter, C. L., Rosen, F. S. and Kirchhausen, T. (1996) Direct interaction of the Wiskott-Aldrich syndrome protein with the GTPase Cdc42. Proc Natl Acad Sci U S A, 93, 5615–5618.
  153. Li, G., D'Souza-Schorey, C., Barbieri, M. A., Roberts, R. L., Klippel, A., Williams, L. T. and Stahl, P. D. (1995) Evidence for phosphatidylinositol 3-kinase as a regulator of endocytosis via activation of Rab5. Proc Natl Acad Sci U S A, 92, 10207–10211.
  154. Neal, S. E., Eccleston, J. F. and Webb, M. R. (1990) Hydrolysis of GTP by p21NRAS, the NRAS protooncogene product, is accompanied by a conformational change in the wild-type protein: use of a single fluorescent probe at the catalytic site. Proc Natl Acad Sci U S A, 87, 3562–5. 0027-8424 (Print) Journal Article.
  155. Shinjo, K., Koland, J. G., Hart, M. J., Narasimhan, V., Johnson, D. I., Evans, T. and Cerione, R. A. (1990) Molecular cloning of the gene for the human placental GTP-binding protein
  156. Bi, F., Debreceni, B., Zhu, K., Salani, B., Eva, A. and Zheng, Y. (2001) Autoinhibition mecha- nism of proto-Dbl. Mol Cell Biol, 21, 1463–74. 0270-7306 (Print) Journal Article.
  157. Rossman, K. L. and Campbell, S. L. (2000) Bacterial expressed DH and DH/PH domains. Methods Enzymol, 325, 25–38.
  158. Bourne, H. R., Sanders, D. A. and McCormick, F. (1990) The GTPase superfamily: a conserved switch for diverse cell functions. Nature, 348, 125–32. 0028-0836 Journal Article Review Review, Academic.
  159. Bourne, H. R., Sanders, D. A. and McCormick, F. (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature, 349, 117–27. 0028-0836 Journal Article Review Review, Academic.
  160. Sanger, F., Nicklen, S. and Coulson, A. R. (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A, 74, 5463–5467.
  161. Schulz, B., Banuett, F., Dahl, M., Schlesinger, R., Schäfer, W., Martin, T., Herskowitz, I. and Kahmann, R. (1990) The b alleles of U. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell, 60, 295– 306.
  162. Bölker, M., Urban, M. and Kahmann, R. (1992) The a mating type locus of U. maydis specifies cell signaling components. Cell, 68, 441–450.
  163. Suetsugu, S., Miki, H. and Takenawa, T. (1999) Identification of two human WAVE/SCAR homologues as general actin regulatory molecules which associate with the Arp2/3 complex. Biochem Biophys Res Commun, 260, 296–302. 0006-291x Journal Article.
  164. Stradal, T. E., Rottner, K., Disanza, A., Confalonieri, S., Innocenti, M. and Scita, G. (2004) Regulation of actin dynamics by WASP and WAVE family proteins. Trends Cell Biol, 14, 303–11. 0962-8924 Journal Article.
  165. Vetter, I. R. and Wittinghofer, A. (2001) The guanine nucleotide-binding switch in three dimen- sions. Science, 294, 1299–1304.
  166. Mionnet, C., Bogliolo, S. and Arkowitz, R. A. (2008) Oligomerization regulates the localization of Cdc24, the Cdc42 activator in Saccharomyces cerevisiae. J Biol Chem, 283, 17515–17530.
  167. Li, R., Debreceni, B., Jia, B., Gao, Y., Tigyi, G. and Zheng, Y. (1999) Localization of the PAK1-, WASP-, and IQGAP1-specifying regions of Cdc42. J Biol Chem, 274, 29648–54. 0021-9258 Journal Article.
  168. van Hennik, P. B., ten Klooster, J. P., Halstead, J. R., Voermans, C., Anthony, E. C., Divecha, N. and Hordijk, P. L. (2003) The C-terminal domain of Rac1 contains two motifs that control targeting and signaling specificity. J Biol Chem, 278, 39166–39175.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten