Publikationsserver der Universitätsbibliothek Marburg

Titel:Mitose assoziierter Zelltod nach Chemotherapie vermittelter Durchbrechung des G2-Zellzyklus-Kontrollpunktes
Autor:Hager, Christian
Weitere Beteiligte: Bastians, Holger (Prof. Dr.)
Veröffentlicht:2013
URI:https://archiv.ub.uni-marburg.de/diss/z2013/0461
DOI: https://doi.org/10.17192/z2013.0461
URN: urn:nbn:de:hebis:04-z2013-04618
DDC: Medizin
Titel (trans.):mitosis associated cell death through chemotherapy induced G2 checkpoint abrogation
Publikationsdatum:2013-08-14
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Apoptosis, Zellzyklus, g2-abrogation, Mitose, DNS-Schädigung, g2-durchbrechung, Chemotherapie

Zusammenfassung:
Eine häufige Eigenschaft von Tumorzellen ist die Fehlfunktion von Signalwegen, die den Zellzyklus regulieren, wodurch eine erhöhte Proliferations- und Mutationsrate ermöglicht wird. Zellen mit einer gestörten Funktion des p53-abhängigen DNA-Schaden-Signalwegs in der G1-Phase besitzen einerseits diese Tumor-fördernden Eigenschaften und sind andererseits vollständig auf den DNA-Schaden-Signalweg der G2-Phase angewiesen, um schädlichen DNA-Schaden reparieren zu können. Ein neues Konzept einer kombinierten Chemotherapie besteht in der sequentiellen Gabe einer DNA-schädigenden Substanz und eines CHK1-Inhibitors, welcher den DNA-Schaden-Signalweg der G2-Phase hemmt. Zellen mit gestörter p53-Funktion können so weder in der G1- noch in der G2-Phase arretieren, um eine DNA-Reparatur zu ermöglichen, und versterben in großer Zahl nach Eintritt in die Mitose. Die hierbei eingeleiteten mitotischen und apoptotischen Signalwege sind bisher nicht im Detail bekannt und sollten in dieser Arbeit weiter untersucht werden. Ich konnte zeigen, dass in Zellen, die nach Behandlung mit Adriamycin (Topoisomerase-II-Hemmstoff) und UCN-01 (CHK1-Hemmstoff) mitotisch arretieren, neben der Einleitung einer mitochondrialen Apoptose auch antiapoptotische Signalwege aktiviert werden. So kommt es zu einer Abnahme der aktiven Form des proapoptotischen Proteins Bax und einer Hyperphosphorylierung des antiapoptotischen Proteins Bcl-2. Durch zusätzliche Gabe von Roscovitine (CDK1-Hemmstoff) kann der Zelltod deutlich verstärkt werden, was möglicherweise in einer direkten antiapoptotischen Funktion von CDK1 in der Mitose oder einer Entblockung apoptotischer Signale durch den mitotischen Austritt begründet ist. Eine ähnliche Therapieverstärkung zeigte sich nach einer Kombination mit dem Aurora-B-Inhibitor ZM447439. Diese Ergebnisse stützen den allgemeinen Ansatz, Tumorzellen mit DNA-Schaden in die Mitose zu treiben und einen hierdurch eingeleiteten Zelltod durch Interaktion mit mitotischen oder apoptotischen Proteinen zu verstärken. Ob eine kombinierte sequentielle Chemotherapie aus DNA-Schädigung, CHK1-Inhibierung und CDK1-Inhibierung eine Option zur Effizienzsteigerung und Resistenzumgehung einer antiproliferativen Therapie darstellen könnte, müssen weitere Untersuchungen zeigen. Niedermolekulare CHK1- und CDK1-Inhibitoren befinden sich als Einzelsubstanzen oder Kombinationstherapien in der klinischen Erprobung.

Bibliographie / References

  1. RUSSELL, K. J. et al.: Abrogation of the G2 checkpoint results in differential radiosensitization of G1 checkpoint-deficient and G1 checkpoint-competent cells. In: Cancer Res 55 (1995) Nr. 8, S. 1639-42
  2. HALDAR, S. ; CHINTAPALLI, J. ; CROCE, C. M.: Taxol induces bcl-2 phosphorylation and death of prostate cancer cells. In: Cancer Res 56 (1996) Nr. 6, S. 1253-5
  3. UPENDER, Madhvi B. et al.: Chromosome transfer induced aneuploidy results in complex dysregulation of the cellular transcriptome in immortalized and cancer cells. In: Cancer Res 64 (2004) Nr. 19, S. 6941-9
  4. RIEDER, C. L. et al.: The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. In: J Cell Biol 130 (1995) Nr. 4, S. 941-8
  5. HANAHAN, D. ; WEINBERG, R. A.: The hallmarks of cancer. 2000.
  6. SMITH, Eloise et al.: An ATM-and ATR-dependent checkpoint inactivates spindle assembly by targeting CEP63. In: Nat Cell Biol 11 (2009) Nr. 3, S. 278-85
  7. SMITS, V. A. et al.: Polo-like kinase-1 is a target of the DNA damage checkpoint. In: Nat Cell Biol 2 (2000) Nr. 9, S. 672-6
  8. VAN VUGT, Marcel A. T. M. ; BRAS, Alexandra ; MEDEMA, Rene H.: Polo-like kinase-1 controls recovery from a G2 DNA damage-induced arrest in mammalian cells. In: Mol Cell 15 (2004) Nr. 5, S. 799-811
  9. YAMAGUCHI, Hirohito et al.: Regulation of Bax activation and apoptotic response to microtubule- damaging agents by p53 transcription-dependent and -independent pathways. In: J Biol Chem 279 (2004) Nr. 38, S. 39431-7
  10. WEAVER, Beth A. A. ; CLEVELAND, Don W.: Does aneuploidy cause cancer? In: Curr Opin Cell Biol 18 (2006) Nr. 6, S. 658-67
  11. ROYOU, Anne ; MACIAS, Hector ; SULLIVAN, William: The Drosophila Grp/Chk1 DNA damage checkpoint controls entry into anaphase. In: Curr Biol 15 (2005) Nr. 4, S. 334-9
  12. SHTIVELMAN, Emma ; SUSSMAN, Joshua ; STOKOE, David: A role for PI 3-kinase and PKB activity in the G2/M phase of the cell cycle. In: Curr Biol 12 (2002) Nr. 11, S. 919-24
  13. MIKHAILOV, Alexei ; COLE, Richard W. ; RIEDER, Conly L.: DNA damage during mitosis in human cells delays the metaphase/anaphase transition via the spindle-assembly checkpoint. In: Curr Biol 12 (2002) Nr. 21, S. 1797-806
  14. RUCHAUD, Sandrine ; CARMENA, Mar ; EARNSHAW, William C.: Chromosomal passengers: conducting cell division. In: Nat Rev Mol Cell Biol 8 (2007) Nr. 10, S. 798-812
  15. YOULE, Richard J. ; STRASSER, Andreas: The BCL-2 protein family: opposing activities that mediate cell death. In: Nat Rev Mol Cell Biol 9 (2008) Nr. 1, S. 47-59
  16. FANG, Y. et al.: BubR1 is involved in regulation of DNA damage responses. In: Oncogene 25 (2006) Nr. 25, S. 3598-605
  17. ROGAKOU, E. P. et al.: Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. In: J Biol Chem 275 (2000) Nr. 13, S. 9390-5
  18. VOGEL, Celia et al.: The mitotic spindle checkpoint is a critical determinant for topoisomerase-based chemotherapy. In: J Biol Chem 280 (2005) Nr. 6, S. 4025-8
  19. FURUKAWA, Y. et al.: Phosphorylation of Bcl-2 protein by CDC2 kinase during G2/M phases and its role in cell cycle regulation. In: J Biol Chem 275 (2000) Nr. 28, S. 21661-7
  20. KINNER, Andrea et al.: Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. In: Nucleic Acids Res 36 (2008) Nr. 17, S. 5678-94
  21. DEVERAUX, Q. L. ; REED, J. C.: IAP family proteins--suppressors of apoptosis. In: Genes Dev 13 (1999) Nr. 3, S. 239-52
  22. MATSUOKA, Shuhei et al.: ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. In: Science 316 (2007) Nr. 5828, S. 1160-6
  23. MORGAN, Meredith A. et al.: Role of checkpoint kinase 1 in preventing premature mitosis in response to gemcitabine. In: Cancer Res 65 (2005) Nr. 15, S. 6835-42
  24. STOLZ, Ailine et al.: Pharmacologic abrogation of the mitotic spindle checkpoint by an indolocarbazole discovered by cellular screening efficiently kills cancer cells. In: Cancer Res 69 (2009) Nr. 9, S. 3874- 83
  25. MACUREK, Libor ; LINDQVIST, Arne ; MEDEMA, Rene H.: Aurora-A and hBora join the game of Polo.
  26. GASCOIGNE, Karen E. ; TAYLOR, Stephen S.: How do anti-mitotic drugs kill cancer cells? In: J Cell Sci 122 (2009) Nr. Pt 15, S. 2579-85
  27. GAUDIN, D. ; YIELDING, K. L.: Response of a 'resistant' plasmacytoma to alkylating agents and x-ray in combination with the 'excision' repair inhibitors caffeine and chloroquine. In: Proc Soc Exp Biol Med 131 (1969) Nr. 4, S. 1413-6
  28. LEE, Soyoung ; SCHMITT, Clemens A.: Chemotherapy response and resistance. In: Curr Opin Genet Dev 13 (2003) Nr. 1, S. 90-6
  29. ZACHOS, George ; GILLESPIE, David A. F.: Exercising restraints: role of Chk1 in regulating the onset and progression of unperturbed mitosis in vertebrate cells. In: Cell Cycle 6 (2007) Nr. 7, S. 810-3 Anhang 80
  30. KASTAN, Michael B. ; BARTEK, Jiri: Cell-cycle checkpoints and cancer. In: Nature 432 (2004) Nr. 7015, S. 316-23
  31. HO, Chui Chui et al.: The relative contribution of CHK1 and CHK2 to Adriamycin-induced checkpoint. In: Exp Cell Res 304 (2005) Nr. 1, S. 1-15
  32. O'CONNOR, Daniel S. et al.: A p34(cdc2) survival checkpoint in cancer. In: Cancer Cell 2 (2002) Nr. 1, S. 43-54
  33. VLAHOS, C. J. et al.: A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl- 4H-1-benzopyran-4-one (LY294002). In: J Biol Chem 269 (1994) Nr. 7, S. 5241-8
  34. ZABLUDOFF, Sonya D. et al.: AZD7762, a novel checkpoint kinase inhibitor, drives checkpoint abrogation and potentiates DNA-targeted therapies. In: Mol Cancer Ther 7 (2008) Nr. 9, S. 2955-66
  35. YAMAMOTO, K. ; ICHIJO, H. ; KORSMEYER, S. J.: BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. In: Mol Cell Biol 19 (1999) Nr. 12, S. 8469-78
  36. LANE, D. P.: Cancer. p53, guardian of the genome. In: Nature 358 (1992) Nr. 6381, S. 15-6
  37. DU, Lihua ; LYLE, Christopher S. ; CHAMBERS, Timothy C.: Characterization of vinblastine-induced Bcl-xL and Bcl-2 phosphorylation: evidence for a novel protein kinase and a coordinated phosphorylation/dephosphorylation cycle associated with apoptosis induction. In: Oncogene 24 (2005) Nr. 1, S. 107-17
  38. YU, Xiaochun et al.: Chfr is required for tumor suppression and Aurora A regulation. In: Nat Genet 37 (2005) Nr. 4, S. 401-6
  39. TSE, Archie N. et al.: CHIR-124, a novel potent inhibitor of Chk1, potentiates the cytotoxicity of topoisomerase I poisons in vitro and in vivo. In: Clin Cancer Res 13 (2007b) Nr. 2 Pt 1, S. 591-602
  40. POWELL, S. N. et al.: Differential sensitivity of p53(-) and p53(+) cells to caffeine-induced radiosensitization and override of G2 delay. In: Cancer Res 55 (1995) Nr. 8, S. 1643-8
  41. HURLEY, Laurence H.: DNA and its associated processes as targets for cancer therapy. In: Nat Rev Cancer 2 (2002) Nr. 3, S. 188-200
  42. KIM, Eun Mi ; BURKE, Daniel J.: DNA damage activates the SAC in an ATM/ATR-dependent manner, independently of the kinetochore. In: PLoS Genet 4 (2008) Nr. 2, S. e1000015 KIM, Hyungjin et al.: Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. In: Mol Cell 36 (2009) Nr. 3, S. 487-99
  43. ROGAKOU, E. P. et al.: DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. In: J Biol Chem 273 (1998) Nr. 10, S. 5858-68
  44. MASSAGUE, Joan: G1 cell-cycle control and cancer. In: Nature 432 (2004) Nr. 7015, S. 298-306
  45. NICHOLS, K. E. et al.: Germ-line p53 mutations predispose to a wide spectrum of early-onset cancers. In: Cancer Epidemiol Biomarkers Prev 10 (2001) Nr. 2, S. 83-7
  46. STRATE, Lisa L. ; SYNGAL, Sapna: Hereditary colorectal cancer syndromes. In: Cancer Causes Control 16 (2005) Nr. 3, S. 201-13
  47. VOGEL, Celia ; HAGER, Christian ; BASTIANS, Holger: Mechanisms of mitotic cell death induced by chemotherapy-mediated G2 checkpoint abrogation. 2007.
  48. RONINSON, I. B. ; BROUDE, E. V. ; CHANG, B. D.: If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. In: Drug Resist Updat 4 (2001) Nr. 5, S. 303-13
  49. DU, Lihua et al.: Inhibition of cell proliferation and cell cycle progression by specific inhibition of basal JNK activity: evidence that mitotic Bcl-2 phosphorylation is JNK-independent. In: J Biol Chem 279 (2004) Nr. 12, S. 11957-66
  50. SANCHEZ, Irma ; DYNLACHT, Brian David: New insights into cyclins, CDKs, and cell cycle control. In: Semin Cell Dev Biol 16 (2005) Nr. 3, S. 311-21
  51. WEINSTEIN, I. Bernard ; JOE, Andrew: Oncogene addiction. In: Cancer Res 68 (2008) Nr. 9, S. 3077- 80; discussion 3080
  52. KOPS, Geert J. P. L. ; WEAVER, Beth A. A. ; CLEVELAND, Don W.: On the road to cancer: aneuploidy and the mitotic checkpoint. In: Nat Rev Cancer 5 (2005) Nr. 10, S. 773-85
  53. LEVINE, A. J.: p53, the cellular gatekeeper for growth and division. In: Cell 88 (1997) Nr. 3, S. 323-31 LINDQVIST, Arne ; RODRIGUEZ-BRAVO, Veronica ; MEDEMA, Rene H.: The decision to enter mitosis: feedback and redundancy in the mitotic entry network. In: J Cell Biol 185 (2009) Nr. 2, S. 193-202
  54. LING, Y. H. ; TORNOS, C. ; PEREZ-SOLER, R.: Phosphorylation of Bcl-2 is a marker of M phase events and not a determinant of apoptosis. In: J Biol Chem 273 (1998) Nr. 30, S. 18984-91
  55. SHTIVELMAN, Emma: Promotion of mitosis by activated protein kinase B after DNA damage involves polo-like kinase 1 and checkpoint protein CHFR. In: Mol Cancer Res 1 (2003) Nr. 13, S. 959-69
  56. LU, Chengrong et al.: Serum starvation induces H2AX phosphorylation to regulate apoptosis via p38 MAPK pathway. In: FEBS Lett 582 (2008) Nr. 18, S. 2703-8
  57. NASMYTH, K. ; PETERS, J. M. ; UHLMANN, F.: Splitting the chromosome: cutting the ties that bind sister chromatids. In: Science 288 (2000) Nr. 5470, S. 1379-85
  58. DRUKER, Brian J.: STI571 (Gleevec) as a paradigm for cancer therapy. In: Trends Mol Med 8 (2002) Nr. 4 Suppl, S. S14-8
  59. GRAVES, P. R. et al.: The Chk1 protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-01. In: J Biol Chem 275 (2000) Nr. 8, S. 5600-5
  60. SCHEFFNER, M. et al.: The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. In: Cell 63 (1990) Nr. 6, S. 1129-36
  61. THORNBERRY, N. A. ; LAZEBNIK, Y.: Caspases: enemies within. In: Science 281 (1998) Nr. 5381, S. 1312-6
  62. TEWEY, K. M. et al.: Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. In: Science 226 (1984) Nr. 4673, S. 466-8
  63. TAMURA, Y. et al.: Polo-like kinase 1 phosphorylates and regulates Bcl-x(L) during pironetin-induced apoptosis. In: Oncogene 28 (2009) Nr. 1, S. 107-16
  64. KRYSTYNIAK, A. et al.: Inhibition of Aurora A in response to DNA damage. In: Oncogene 25 (2006) Nr. 3, S. 338-48
  65. SAUSVILLE, Edward A.: Cyclin-dependent kinase modulators studied at the NCI: pre-clinical and clinical studies. In: Curr Med Chem Anticancer Agents 3 (2003) Nr. 1, S. 47-56
  66. SCATENA, C. D. et al.: Mitotic phosphorylation of Bcl-2 during normal cell cycle progression and Taxol- induced growth arrest. In: J Biol Chem 273 (1998) Nr. 46, S. 30777-84
  67. MACUREK, Libor et al.: Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery. In: Nature 455 (2008) Nr. 7209, S. 119-23
  68. ENARI, M. et al.: A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. In: Nature 391 (1998) Nr. 6662, S. 43-50
  69. JACKSON, Jeffrey R. et al.: Targeted anti-mitotic therapies: can we improve on tubulin agents? In: Nat Rev Cancer 7 (2007) Nr. 2, S. 107-17
  70. SYLJUASEN, Randi G. et al.: Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage. In: Mol Cell Biol 25 (2005) Nr. 9, S. 3553-62
  71. SRIVASTAVA, R. K. et al.: Involvement of microtubules in the regulation of Bcl2 phosphorylation and apoptosis through cyclic AMP-dependent protein kinase. In: Mol Cell Biol 18 (1998) Nr. 6, S. 3509-17
  72. DONZELLI, Maddalena ; DRAETTA, Giulio F.: Regulating mammalian checkpoints through Cdc25 inactivation. In: EMBO Rep 4 (2003) Nr. 7, S. 671-7
  73. HABU, Toshiyuki et al.: Identification of a MAD2-binding protein, CMT2, and its role in mitosis. In: EMBO J 21 (2002) Nr. 23, S. 6419-28
  74. ROBERTS, Elisabeth C. et al.: Distinct cell cycle timing requirements for extracellular signal-regulated kinase and phosphoinositide 3-kinase signaling pathways in somatic cell mitosis. In: Mol Cell Biol 22 (2002) Nr. 20, S. 7226-41
  75. ECKELMAN, Brendan P. ; SALVESEN, Guy S. ; SCOTT, Fiona L.: Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. In: EMBO Rep 7 (2006) Nr. 10, S. 988-94
  76. KERR, J. F. ; WYLLIE, A. H. ; CURRIE, A. R.: Apoptosis: a basic biological phenomenon with wide- ranging implications in tissue kinetics. In: Br J Cancer 26 (1972) Nr. 4, S. 239-57
  77. MESRI, M. et al.: Cancer gene therapy using a survivin mutant adenovirus. In: J Clin Invest 108 (2001) Nr. 7, S. 981-90
  78. DITCHFIELD, Claire et al.: Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. In: J Cell Biol 161 (2003) Nr. 2, S. 267-80
  79. LU, Chengrong et al.: Cell apoptosis: requirement of H2AX in DNA ladder formation, but not for the activation of caspase-3. In: Mol Cell 23 (2006) Nr. 1, S. 121-32
  80. SRIVASTAVA, R. K. et al.: Deletion of the loop region of Bcl-2 completely blocks paclitaxel-induced apoptosis. In: Proc Natl Acad Sci U S A 96 (1999) Nr. 7, S. 3775-80
  81. DEY, A. ; VERMA, C. S. ; LANE, D. P.: Updates on p53: modulation of p53 degradation as a therapeutic approach. In: Br J Cancer 98 (2008) Nr. 1, S. 4-8
  82. KLEIN, C. ; VASSILEV, L. T.: Targeting the p53-MDM2 interaction to treat cancer. In: Br J Cancer 91 (2004) Nr. 8, S. 1415-9
  83. KUTUK, Ozgur ; LETAI, Anthony: Alteration of the mitochondrial apoptotic pathway is key to acquired paclitaxel resistance and can be reversed by ABT-737. In: Cancer Res 68 (2008) Nr. 19, S. 7985-94
  84. O'CONNOR, D. S. et al.: Regulation of apoptosis at cell division by p34cdc2 phosphorylation of survivin. In: Proc Natl Acad Sci U S A 97 (2000) Nr. 24, S. 13103-7
  85. STRACKER, Travis H. ; USUI, Takehiko ; PETRINI, John H. J.: Taking the time to make important decisions: the checkpoint effector kinases Chk1 and Chk2 and the DNA damage response. In: DNA Repair (Amst) 8 (2009) Nr. 9, S. 1047-54
  86. VARMARK, Hanne et al.: DNA damage-induced cell death is enhanced by progression through mitosis.
  87. DICKEY, Jennifer S. et al.: H2AX: functional roles and potential applications. In: Chromosoma 118 (2009) Nr. 6, S. 683-92
  88. HOLLAND, Andrew J. ; CLEVELAND, Don W.: Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. In: Nat Rev Mol Cell Biol 10 (2009) Nr. 7, S. 478-87
  89. KANG, Min H. ; REYNOLDS, C. Patrick: Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. In: Clin Cancer Res 15 (2009) Nr. 4, S. 1126-32
  90. GABRIELLI, Brian ; BROOKS, Kelly ; PAVEY, Sandra: Defective cell cycle checkpoints as targets for anti- cancer therapies. 2012.
  91. LAU, C. C. ; PARDEE, A. B.: Mechanism by which caffeine potentiates lethality of nitrogen mustard. In: Proc Natl Acad Sci U S A 79 (1982) Nr. 9, S. 2942-6
  92. DOHI, Takehiko et al.: Mitochondrial survivin inhibits apoptosis and promotes tumorigenesis. In: J Clin Invest 114 (2004) Nr. 8, S. 1117-27
  93. SCHMIDT, Mathias ; BASTIANS, Holger: Mitotic drug targets and the development of novel anti-mitotic anticancer drugs. In: Drug Resist Updat 10 (2007) Nr. 4-5, S. 162-81
  94. GREEN, Douglas R. ; KROEMER, Guido: The pathophysiology of mitochondrial cell death. In: Science 305 (2004) Nr. 5684, S. 626-9
  95. KIM, Ryungsa et al.: Current status of the molecular mechanisms of anticancer drug-induced apoptosis. The contribution of molecular-level analysis to cancer chemotherapy. In: Cancer Chemother Pharmacol 50 (2002) Nr. 5, S. 343-52
  96. SOLIER, Stephanie ; POMMIER, Yves: The apoptotic ring: a novel entity with phosphorylated histones H2AX and H2B and activated DNA damage response kinases. In: Cell Cycle 8 (2009) Nr. 12, S. 1853- 9
  97. TSE, Archie N. ; CARVAJAL, Richard ; SCHWARTZ, Gary K.: Targeting checkpoint kinase 1 in cancer therapeutics. In: Clin Cancer Res 13 (2007a) Nr. 7, S. 1955-60
  98. VADER, Gerben ; MAIA, Andre F. ; LENS, Susanne Ma: The chromosomal passenger complex and the spindle assembly checkpoint: kinetochore-microtubule error correction and beyond. In: Cell Div 3 (2008) S. 10
  99. LUO, Y. et al.: Blocking Chk1 expression induces apoptosis and abrogates the G2 checkpoint mechanism. In: Neoplasia 3 (2001) Nr. 5, S. 411-9
  100. PATHAN, N. et al.: Microtubule-targeting drugs induce bcl-2 phosphorylation and association with Pin1. In: Neoplasia 3 (2001) Nr. 6, S. 550-9
  101. LIU, Xuesong et al.: Akt inhibitor a-443654 interferes with mitotic progression by regulating aurora a kinase expression. In: Neoplasia 10 (2008) Nr. 8, S. 828-37
  102. SHAPIRO, Geoffrey I.: Cyclin-dependent kinase pathways as targets for cancer treatment. In: J Clin Oncol 24 (2006) Nr. 11, S. 1770-83


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten