Publikationsserver der Universitätsbibliothek Marburg

Titel:Raumkodierung während glatter Augenfolgebewegungen
Autor:Hüsers, Jan
Weitere Beteiligte: Bremmer, Frank (Prof. Dr.)
Veröffentlicht:2013
URI:https://archiv.ub.uni-marburg.de/diss/z2013/0388
DOI: https://doi.org/10.17192/z2013.0388
URN: urn:nbn:de:hebis:04-z2013-03881
DDC:530 Physik
Titel (trans.):Statial Coding During Smooth Pursuit Eye Movements
Publikationsdatum:2013-08-14
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Augenbewegung, Lokalisation, Spiketrain, Physik, Spiketrain,, Physiologie, Spatial perception, PSTH, Physiologie, Psychophysik, Neurophysik

Zusammenfassung:
Bei der Interaktion mit unserer Umwelt ist die Wahrnehmung von bewegten Objekten mit besonderen Aufgaben verbunden. Da nur in einem kleinen Bereich des visuellen Feldes Objekte mit höchster Auflösung wahrgenommen werden, stellen bewegte visuelle Ziele eine Herausforderung für die visuelle Wahrnehmung dar. Mit sogenannten glatten Augenfolgebewegungen werden bewegte Objekte im Bereich des schärfsten Sehens gehalten. Bei einem stationären Beobachter bleiben während dieser Augenbewegung die Raumkoordinaten der äußeren Welt relativ zum Beobachter konstant, während sie sich relativ zur Blickrichtung ständig verändern. Aus früheren Studien ist bekannt, dass die Ausführung von glatten Augenfolgebewegungen zu systematischen Verschiebungen bei der Lokalisation kurz präsentierter Reize führt. Kurz eingeblendete, visuelle Ziele werden während glatter Augenfolgebewegungen unter Laborbedingungen in Richtung der glatten Augenfolgebewegung verschoben wahrgenommen. Der Ort, relativ zur Blickrichtung an dem ein kurzer visueller Reiz präsentiert wird, hat ebenfalls einen großen Einfluss auf die Lokalisation. Bei Zielen, die in dem Halbfeld des visuellen Feldes in das sich das Auge bewegt präsentiert werden, zeigen Probanden deutlich größere Lokalisationsfehler als bei Zielen in dem anderen Halbfeld. Frühere Studien zeigten auch, dass die Augenbewegung auf die Lokalisation auditorischer Reize einen geringen Effekt hat. In dieser Dissertation habe ich drei Experimente zur Wahrnehmung und Kodierung des Raumes während glatter Augenfolgebewegungen durchgeführt. In der ersten Studie dieser Arbeit untersuchte ich, wie die Lokalisation und Integration von auditorischen und visuellen Reizen während glatter Augenfolgebewegungen erfolgt. Während periodischer glatter Augenfolgebewegungen wurden visuelle und auditorische Reize räumlich kongruent präsentiert und die Lokalisation von menschlichen Probanden untersucht. Dabei wurden sowohl unimodal auditorische oder visuelle Reize lokalisiert, als auch bimodale audiovisuelle Reize. Es zeigte sich dabei, dass die Lokalisation audiovisueller Reize während glatter Augenfolgebewegungen nach einer Maximum-Likelihood-Methode aus den unimodalen Antworten sehr gut vorhergesagt werden kann. Dieses Ergebnis bestätigt zum einen, dass während glatter Augenfolgebewegungen keine supramodale Repräsentation des Raumes existiert, weil die Informationen von unterschiedlichen Modalitäten zu deutlich unterschiedlichen Lokalisationsmustern führen. Die zur Verfügung stehenden Informationen von verschiedenen Modalitäten wurden allerdings nach einem einfachen Maximum-Likelihood-Modell optimal integriert. Physikalische Beschleunigungen werden im Alltag in einer dynamischen Umgebung ständig beobachtet. Es war bekannt, dass das visuelle System für die Diskriminierung unterschiedlicher Beschleunigungen weit weniger sensibel ist als beispielsweise für die Diskriminierung unterschiedlicher Geschwindigkeiten. Es war bislang unklar, ob die Beschleunigung des Auges während glatter Augenfolgebewegungen die Lokalisation beeinflusst. Im zweiten Experiment dieser Dissertation habe ich daher den Einfluss der Beschleunigung des Auges auf die Lokalisation während glatter Augenfolgebewegungen untersucht. Es zeigten sich hier messbare Einflüsse. Die Lokalisationsfehler während positiver Beschleunigungen waren betragsmäßig deutlich geringer als während negativer (abbremsendes Auge) oder nicht beschleunigter glatter Augenfolgebewegungen. Basierend auf physiologischen Daten vorhergehender Studien kann eine mögliche Erklärung für diesen Effekt darin begründet sein, dass positive Beschleunigung neuronal besser kodiert wird. Visuelle Ziele, die sich auf einen Beobachter hinzubewegen, erscheinen dem Betrachter beschleunigt. Sich nähernde Ziele erfordern im Alltag eher eine Reaktion als Ziele, die sich entfernen (Kampf oder Flucht). Ein Beobachter kann von einer besseren Einschätzung des Ortes sich nähernder visueller Objekte also profitieren. Psychophysikalische Studien haben kürzlich gezeigt, dass während glatter Augenfolgebewegung isoluminante, chromatische Reize besser detektiert und diskriminisiert werden können als während Fixation. In der dritten Studie dieser Arbeit wurde die Raum- und Farbkodierung während glatter Augenfolgebewegungen im Areal V4 des Rhesusaffens untersucht. Diese Experimentserie hatte zwei Ziele. Erstens sollte untersucht werden ob ein neuronales Korrelat für den Befund der verbesserten Kodierung chromatischer Reize gefunden werden kann. Die zweite Fragestellung betrifft die Raumkodierung und sollte überprüfen, ob sich die Lage der rezeptiven Felder während glatter Augenfolgebewegungen im Vergleich zur Fixation verschiebt. Dem Affen wurden während glatter Augenfolgebewegungen oder Fixation mit jeder Bildwiederholung an einer zufälligen Position im Raum isoluminante, chromatische Reize gezeigt. Die unterschiedlichen Fragestellungen in diesem Experiment führten zu zwei Ergebnissen. (i) Die neuronalen Antworten auf isoluminante, chromatische Reize waren während glatter Augenfolgebewegungen in der Populationsanalyse im Vergleich zur Fixation tatsächlich deutlich stärker. Diese Daten zeigen erstmals ein neuronales Korrelat für die psychophysikalischen Befunde einer erhöhten Sensitivität für chromatische Reize. Die Lage der rezeptiven Felder verändert sich während glatter Augenfolgebewegungen im Vergleich zur Fixation nicht signifikant im Areal V4. Ein ähnliches Ergebnis wurde bereits in einer früheren Studie im visuellen Areal MT gezeigt. Daraus lässt sich der Schluss ziehen, dass die Fehlwahrnehmungen, die während psychophysikalischen Lokalisationsexperimenten zu beobachten sind, vermutlich nicht auf eine veränderte oder verschobene Lage der rezeptiven Felder in visuellen Arealen zurückzuführen sind. Der Ursprung der Fehlwahrnehmungen bleibt damit weiter unklar. Basierend auf Studien zur Fehlwahrnehmungen während Sakkaden und Raumkodierung relativ zur Aufmerksamkeit, erscheint es zunehmend wahrscheinlicher, dass die Lokalisationsergebnisse während glatter Augenfolgebewegungen auf eine fehlerbehaftete Kodierung der Augenposition und räumlich inhomogene Aufmerksamkeitseffekte zurückgeführt werden können. Zusammenfassend zeigen die Ergebnisse dieser Dissertation, dass viele externe Faktoren, wie die Beschleunigung eines visuellen Ziels oder auditorische Reize die Raumwahrnehmung während glatter Augenfolgebewegungen modulieren können. Zusätzlich können interne Signale, die verantwortlich sind für die Kontrolle und Aufrechterhaltung glatter Augenfolgebewegungen, die Kodierung und Wahrnehmung von Farbe oder kurz präsentierten Objekten verändern.

Bibliographie / References

  1. Klingenhoefer, S. (2012). Perceptual stability during saccadic eye movements. PhD thesis, Philipps Universität Marburg.
  2. Goodwin, G. und Sin, K. (1984). Adaptive filtering and Prediction Control. Prentice Hall.
  3. Wachtler, T., Sejnowski, T. J., und Albright, T. D. (2003). Representation of color stimuli in awake macaque primary visual cortex. Neuron, 37(4):681–691.
  4. Brenner, E., Smeets, J. B., und van den Berg, A. V. (2001). Smooth eye movements and spatial localisation. Vision Res, 41(17):2253–2259.
  5. Alais, D. und Burr, D. (2004). The ventriloquist effect results from near-optimal bimodal integration. Curr Biol, 14(3):257–262.
  6. Lisberger, S. G. und Movshon, J. A. (1999). Visual motion analysis for pursuit eye movements in area mt of macaque monkeys. J Neurosci, 19(6):2224–2246.
  7. van Beers, R. J., Wolpert, D. M., und Haggard, P. (2001). Sensorimotor integration compen- sates for visual localization errors during smooth pursuit eye movements. J Neurophysiol, 85(5):1914–1922.
  8. Ilg, U. J., Schumann, S., und Thier, P. (2004). Posterior parietal cortex neurons encode target motion in world-centered coordinates. Neuron, 43(1):145–51.
  9. Schein, S. und Desimone, R. (1990). Spectral properties of v4 neurons in the macaque. J Neurosci, 10(10):3369–89.
  10. Connor, C. E., Gallant, J. L., Preddie, D. C., und Van Essen, D. C. (1996). Responses in area v4 depend on the spatial relationship between stimulus and attention. J Neurophysiol, 75(3):1306–1308.
  11. Livingstone, M. S. und Hubel, D. H. (1984). Anatomy and physiology of a color system in the primate visual cortex. J Neurosci, 4(1):309–356.
  12. Stockman, A. und Sharpe, L. T. (2006). Into the twilight zone: the complexities of mesopic vision and luminous efficiency. Ophthalmic Physiol Opt, 26(3):225–239.
  13. Burr, D. und Alais, D. (2006). Combining visual and auditory information. Prog Brain Res, 155:243–258.
  14. Jacobs, R. A. (1999). Optimal integration of texture and motion cues to depth. Vision Res, 39(21):3621–3629.
  15. Bremmer, F. (2000). Eye position effects in macaque area v4. Neuroreport, 11(6):1277–1283.
  16. Salinas, E. und Abbott, L. F. (1994). Vector reconstruction from firing rates. J Comput Neu- rosci, 1(1-2):89–107.
  17. Watamaniuk, S. N. J. und Heinen, S. J. (2003). Perceptual and oculomotor evidence of limi- tations on processing accelerating motion. J Vis, 3(11):698–709.
  18. Gu, Y., Deangelis, G. C., und Angelaki, D. E. (2012). Causal links between dorsal medial su- perior temporal area neurons and multisensory heading perception. J Neurosci, 32(7):2299– 2313.
  19. Kusunoki, M., Moutoussis, K., und Zeki, S. (2006). Effect of background colors on the tuning of color-selective cells in monkey area v4. J Neurophysiol, 95(5):3047–3059.
  20. Zeki, S. und Shipp, S. (1989). Modular connections between areas v2 and v4 of macaque monkey visual cortex. Eur J Neurosci, 1(5):494–506.
  21. Deneve, S., Latham, P., und Pouget, A. (2001). Efficient computation and cue integration with noisy population codes. Nat Neurosci, 4(8):826–31.
  22. Burr, D., Morrone, M., und Ross, J. (1994). Selective suppression of the magnocellular visual pathway during saccadic eye movements. Nature, 371(6497):511–3.
  23. Ross, J., Morrone, M., und Burr, D. (1997). Compression of visual space before saccades. Nature, 386(6625):598–601.
  24. Duhamel, J. R., Bremmer, F., BenHamed, S., und Graf, W. (1997). Spatial invariance of visual receptive fields in parietal cortex neurons. Nature, 389(6653):845–848.
  25. Knöll, J., Binda, P., Morrone, M. C., und Bremmer, F. (2011). Spatiotemporal profile of peri- saccadic contrast sensitivity. J Vis, 11(14).
  26. Honda, H. (1989). Perceptual localization of visual stimuli flashed during saccades. Percept Psychophys, 45(2):162–174.
  27. Clark, J. J. und Yuille, A. L. (1990). Data Fusion for Sensory Information Processing Systems. Springer US.
  28. Mateeff, S. und Gourevich, A. (1983). Peripheral vision and perceived visual direction. Biol Cybern, 49(2):111–118.
  29. Wallace, M. T., Roberson, G. E., Hairston, W. D., Stein, B. E., Vaughan, J. W., und Schi- rillo, J. A. (2004). Unifying multisensory signals across time and space. Exp Brain Res, 158(2):252–258.
  30. Raffi, M., Squatrito, S., und Maioli, M. G. (2007). Gaze and smooth pursuit signals interact in parietal area 7m of the behaving monkey. Exp Brain Res, 182(1):35–46.
  31. Lewis, R. F., Zee, D. S., Hayman, M. R., und Tamargo, R. J. (2001). Oculomotor functi- on in the rhesus monkey after deafferentation of the extraocular muscles. Exp Brain Res, 141(3):349–358.
  32. Zeki, S. M. (1969). Representation of central visual fields in prestriate cortex of monkey. Brain Res, 14(2):271–291.
  33. Mishkin, M. und Ungerleider, L. (1982). Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys. Behavioural Brain Research, 6 (1):57– 77.
  34. Perry, V. H. und Cowey, A. (1984). Retinal ganglion cells that project to the superior colliculus and pretectum in the macaque monkey. Neuroscience, 12(4):1125–1137.
  35. Ilg, U. J. und Thier, P. (2008). The neural basis of smooth pursuit eye movements in the rhesus monkey brain. Brain Cogn, 68(3):229–40.
  36. Roe, A. W., Chelazzi, L., Connor, C. E., Conway, B. R., Fujita, I., Gallant, J. L., Lu, H., und Vanduffel, W. (2012). Toward a unified theory of visual area v4. Neuron, 74(1):12–29.
  37. Sheth, B. R. und Shimojo, S. (2001). Compression of space in visual memory. Vision Res, 41(3):329–341.
  38. Walsh, V., Carden, D., Butler, S. R., und Kulikowski, J. J. (1993). The effects of v4 lesions on the visual abilities of macaques: hue discrimination and colour constancy. Behav Brain Res, 53(1-2):51–62.
  39. Maxwell, J. (1855). Experiments on colour as percieved by the eye with remarks on colour- blindness. Transactions of the Royal society of Edinburrgh, pages 274–299.
  40. Benardete, E. A. und Kaplan, E. (1999). The dynamics of primate m retinal ganglion cells. Vis Neurosci, 16(2):355–368.
  41. Bremmer, F., Duhamel, J.-R., Ben Hamed, S., und Graf, W. (2002). Heading encoding in the macaque ventral intraparietal area (vip). Eur J Neurosci, 16(8):1554–1568.
  42. Shapiro, S., Wilk, M., und Chen, M. (1968). A comparative study of various tests for norma- lity. Journal of the American Statistical Association, 63:1343–1372.
  43. Literaturverzeichnis Bremmer, F., Graf, W., Ben Hamed, S., und Duhamel, J. R. (1999). Eye position encoding in the macaque ventral intraparietal area (vip). Neuroreport, 10(4):873–878.
  44. Shams, L., Kamitani, Y., Thompson, S., und Shimojo, S. (2001). Sound alters visual evoked potentials in humans. Neuroreport, 12(17):3849–3852.
  45. Zeki, S. (1983b). The distribution of wavelength and orientation selective cells in different areas of monkey visual cortex. Proc R Soc Lond B Biol Sci, 217(1209):449–470.
  46. Newton, I. (1704). Opticks, or a treatise of the reflexions, refractions, inflexions and colours of light. Printers to the royal society at the Princes Arms in St. Pauls's Church-yard.
  47. Kandel, R., Schwartz, J., und Jessel, T. (2000). Principles of Neural Science. Mcgraw-Hill Professional.
  48. Ono, S. und Mustari, M. J. (2006). Extraretinal signals in mstd neurons related to volitional smooth pursuit. J Neurophysiol, 96(5):2819–2825.
  49. von Hopffgarten, A. und Bremmer, F. (2011). Self-motion reproduction can be affected by associated auditory cues. Seeing Perceiving, 24(3):203–222.
  50. Kaminiarz, A., Krekelberg, B., und Bremmer, F. (2007). Localization of visual targets during optokinetic eye movements. Vision Res, 47(6):869–878.
  51. Battaglia, P. W., Jacobs, R. A., und Aslin, R. N. (2003). Bayesian integration of visual and auditory signals for spatial localization. J Opt Soc Am A Opt Image Sci Vis, 20(7):1391– 1397.
  52. Schlack, A., Sterbing-D'Angelo, S. J., Hartung, K., Hoffmann, K.-P., und Bremmer, F. (2005). Multisensory space representations in the macaque ventral intraparietal area. J Neurosci, 25(18):4616–4625.
  53. Binda, P., Bruno, A., Burr, D. C., und Morrone, M. C. (2007). Fusion of visual and auditory stimuli during saccades: a bayesian explanation for perisaccadic distortions. J Neurosci, 27(32):8525–32.
  54. Bushnell, B. N., Harding, P. J., Kosai, Y., Bair, W., und Pasupathy, A. (2011). Equiluminance cells in visual cortical area v4. J Neurosci, 31(35):12398–12412.
  55. Mita, T., Hironaka, K., und Koike, I. (1950). The influence of retinal adaptation and location on the 'empfindungszeit'. The Tohoku Journal of Experimental Medicine, 52:397– 405.
  56. Gebhard, J. und Mowbray, G. (1959). On discriminating the rate of visual flicker and auditory flutter. American Journal of Psychology, 72:521–529.
  57. Warren, D. H., Welch, R. B., und McCarthy, T. J. (1981). The role of visual-auditory compel- lingnessïn the ventriloquism effect: implications for transitivity among the spatial senses. Percept Psychophys, 30(6):557–564.
  58. Pick, H., Warren, D., und Hay, J. (1969). Sensory conflict in judgements of spatial direction. Percept Ps, 6:203–205.
  59. Ernst, M. O. und Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415(6870):429–433.
  60. Tolias, A., Moore, T., Smirnakis, S., Tehovnik, E., Siapas, A., und Schiller, P. (2001). Eye movements modulate visual receptive fields of v4 neurons. Neuron, 29(3):757–67.
  61. Kerzel, D., Aivar, M. P., Ziegler, N. E., und Brenner, E. (2006). Mislocalization of flashes during smooth pursuit hardly depends on the lighting conditions. Vision Res, 46(6-7):1145– 1154.
  62. on Life Sciences, C., editor (1996). Guide for the Care and Use of Laboratory Animals. Institute of Laboratory Animal Resources, NATIONAL ACADEMY PRESS.
  63. Bennett, S. J., Orban de Xivry, J.-J., Barnes, G. R., und Lefèvre, P. (2007). Target acceleration can be extracted and represented within the predictive drive to ocular pursuit. J Neurophy- siol, 98(3):1405–1414.
  64. Avillac, M., Denève, S., Olivier, E., Pouget, A., und Duhamel, J.-R. (2005). Reference frames for representing visual and tactile locations in parietal cortex. Nat Neurosci, 8(7):941–9.
  65. Literaturverzeichnis Missal, M. und Heinen, S. J. (2004). Supplementary eye fields stimulation facilitates antici- patory pursuit. J Neurophysiol, 92(2):1257–1262.
  66. Dürsteler, M. und Wurtz, R. (1988). Pursuit and optokinetic deficits following chemical lesions of cortical areas mt and mst. J Neurophysiol, 60(3):940–65.
  67. Colby, C. L., Duhamel, J. R., und Goldberg, M. E. (1993). Ventral intraparietal area of the macaque: anatomic location and visual response properties. J Neurophysiol, 69(3):902–914.
  68. Lisberger, S. G. (1998). Postsaccadic enhancement of initiation of smooth pursuit eye move- ments in monkeys. J Neurophysiol, 79(4):1918–1930.
  69. Schütz, A. C., Braun, D. I., und Gegenfurtner, K. R. (2009). Improved visual sensitivity during smooth pursuit eye movements: temporal and spatial characteristics. Vis Neurosci, 26(3):329–340.
  70. Königs, K. und Bremmer, F. (2010). Localization of visual and auditory stimuli during smooth pursuit eye movements. J Vis, 10(8):8.
  71. Fukushima, K., Yamanobe, T., Shinmei, Y., und Fukushima, J. (2002). Predictive responses of periarcuate pursuit neurons to visual target motion. Exp Brain Res, 145(1):104–120.
  72. Burr, D., Banks, M. S., und Morrone, M. C. (2009). Auditory dominance over vision in the perception of interval duration. Exp Brain Res, 198(1):49–57.
  73. Seya, Y. und Mori, S. (2012). Spatial attention and reaction times during smooth pursuit eye movement. Atten Percept Psychophys, 74(3):493–509.
  74. Krauskopf, J., Williams, D. R., und Heeley, D. W. (1982). Cardinal directions of color space. Vision Res, 22(9):1123–1131.
  75. Literaturverzeichnis Heywood, C. A., Gaffan, D., und Cowey, A. (1995). Cerebral achromatopsia in monkeys. Eur J Neurosci, 7(5):1064–1073.
  76. Zeki, S. (1983a). Colour coding in the cerebral cortex: the reaction of cells in monkey visual cortex to wavelengths and colours. Neuroscience, 9(4):741–765.
  77. Price, N. S. C., Ono, S., Mustari, M. J., und Ibbotson, M. R. (2005). Comparing acceleration and speed tuning in macaque mt: physiology and modeling. J Neurophysiol, 94(5):3451– 3464.
  78. CGPM (1983). Definition of light in vacuum.
  79. Felleman, D. J. und Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex, 1(1):1–47.
  80. Woodworth, R. S. (1938). Experimental psychology. New York: Holt, Rinehart, Winston.
  81. Tootell, R. B. und Hamilton, S. L. (1989). Functional anatomy of the second visual area (v2) in the macaque. J Neurosci, 9(8):2620–2644.
  82. Schiller, P. H., Logothetis, N. K., und Charles, E. R. (1990). Functions of the colour-opponent and broad-band channels of the visual system. Nature, 343(6253):68–70.
  83. Welch, R. und Warren, D. (1986). Handbook of Perception and Human Performance. Chapter -Intersensory interactions. Wiley.
  84. Carpenter, R. H. S. (1988). Movements of the Eyes. Pion Ltd.
  85. Gu, Y., Angelaki, D. E., und Deangelis, G. C. (2008). Neural correlates of multisensory cue integration in macaque mstd. Nat Neurosci, 11(10):1201–1210.
  86. Gallant, J. L., Connor, C. E., Rakshit, S., Lewis, J. W., und Van Essen, D. C. (1996). Neural responses to polar, hyperbolic, and cartesian gratings in area v4 of the macaque monkey. J Neurophysiol, 76(4):2718–2739.
  87. Kalman, R. und Bucy, R. (1961). New results in linear filtering and prediction problems. Journal of Basic Engineering, 83:95–108.
  88. Rayleigh, L. (1907). On our perception of sound direction. Philos Mag, 13:214–232.
  89. Lynch, J. C., Mountcastle, V. B., Talbot, W. H., und Yin, T. C. (1977). Parietal lobe mecha- nisms for directed visual attention. J Neurophysiol, 40(2):362–389.
  90. Soechting, J. F. und Flanders, M. (1989). Sensorimotor representations for pointing to targets in three-dimensional space. J Neurophysiol, 62(2):582–594.
  91. Schmolesky, M. T., Wang, Y., Hanes, D. P., Thompson, K. G., Leutgeb, S., Schall, J. D., und Leventhal, A. G. (1998). Signal timing across the macaque visual system. J Neurophysiol, 79(6):3272–3278.
  92. Hartung, J., Elpelt, B., und Klösener, K.-H. (2005). Statistik -Lehr-und Handbuch der ange- wandten Statistik. Oldenbourg Verlag.
  93. Steffen Klingenhöfer gebührt besonderer Dank für viele interesante und hilfreiche Diskus- sionen.
  94. Caclin, A., Soto-Faraco, S., Kingstone, A., und Spence, C. (2002). Tactile captureöf audition. Percept Psychophys, 64(4):616–630.
  95. Merigan, W. H., Katz, L. M., und Maunsell, J. H. (1991b). The effects of parvocellular lateral geniculate lesions on the acuity and contrast sensitivity of macaque monkeys. J Neurosci, 11(4):994–1001.
  96. Wang, X., Zhang, M., Cohen, I. S., und Goldberg, M. E. (2007). The proprioceptive represen- tation of eye position in monkey primary somatosensory cortex. Nat Neurosci, 10(5):640– 646.
  97. Bremmer, F., Duhamel, J.-R., Ben Hamed, S., und W., G. (1997b). The representation of mo- vement in near extra-personal space in the macaque ventral intraparietal area (vip). Parietal Lobe Contributions to Orientation in 3D Space, ed.? Thier P & Karnath H-O. Springer Verlag, Heidelberg., page 619630.
  98. Stockman, A. und Sharpe, L. T. (2000). The spectral sensitivities of the middle-and long- wavelength-sensitive cones derived from measurements in observers of known genotype. Vision Res, 40(13):1711–1737.
  99. Honda, H. (1991). The time courses of visual mislocalization and of extraretinal eye position signals at the time of vertical saccades. Vision Res, 31(11):1915–21.
  100. Kim, Y.-G., Badler, J. B., und Heinen, S. J. (2005). Trajectory interpretation by supplementary eye field neurons during ocular baseball. J Neurophysiol, 94(2):1385–1391.
  101. Ilg, U. J. und Thier, P. (2003). Visual tracking neurons in primate area mst are activated by smooth-pursuit eye movements of an ïmaginaryttarget. J Neurophysiol, 90(3):1489–1502.
  102. Wyszecki, G. und Stiles, W. S. (1982). Color Science: Concepts and Methods, Quantitative Data and Formulae. Wiley-Interscience.
  103. Gegenfurtner, K. R. und Kiper, D. C. (2003). Color vision. Annu Rev Neurosci, 26:181–206.
  104. Yarrow, K., Haggard, P., Heal, R., Brown, P., und Rothwell, J. C. (2001). Illusory perceptions of space and time preserve cross-saccadic perceptual continuity. Nature, 414(6861):302– 305.
  105. Freeman, T. C. A. (2007). Extra-retinal vision: firing at will. Curr Biol, 17(3):R99–101.
  106. Mateeff, S., Hohnsbein, J., und Noack, T. (1985). Dynamic visual capture: apparent auditory motion induced by a moving visual target. Perception, 14(6):721–727.
  107. Young, T. (1802). The bakerian lecture: on the theory of light and colours. Phil. Trans. R. Soc. London, 92:12–48.
  108. Efron, B. (1979). Bootstrap methods: Another look at the jackknife. The Annals of Statistics., 7:1–26.
  109. Helmholtz, H. (1852). Über die theorie der zusammengesetzten farben. Annalen der Physik, Leipzig, 887:45–66.
  110. Rotman, G., Brenner, E., und Smeets, J. B. J. (2004). Mislocalization of targets flashed during smooth pursuit depends on the change in gaze direction after the flash. J Vis, 4(7):564–574.
  111. Shipley, T. (1964). Auditory flutter-driving of visual flicker. Science, 145:1328–1330.
  112. Literaturverzeichnis Smith, S. W. (1998). The Scientist and Engineer's Guide to Digital Signal Processing. Cali- fornia Technical Pub.
  113. Merigan, W. H., Byrne, C. E., und Maunsell, J. H. (1991a). Does primate motion perception depend on the magnocellular pathway? J Neurosci, 11(11):3422–3429.
  114. Derrington, A. M., Krauskopf, J., und Lennie, P. (1984). Chromatic mechanisms in lateral geniculate nucleus of macaque. J Physiol, 357:241–265.
  115. Hubel, D. H. und Wiesel, T. N. (1959). Receptive fields of single neurones in the cat's striate cortex. J Physiol, 148:574–591.
  116. Sherrington, C. S. (1906). Observations on the scratch-reflex in the spinal dog. Journal of Physiology, 34:1–50.
  117. Spitler, K. M. und Gothard, K. M. (2008). A removable silicone elastomer seal reduces gra- nulation tissue growth and maintains the sterility of recording chambers for primate neuro- physiology. J Neurosci Methods, 169(1):23–26.
  118. Schlack, A., Hoffmann, K.-P., und Bremmer, F. (2003). Selectivity of macaque ventral intra- parietal area (area vip) for smooth pursuit eye movements. J Physiol, 551(Pt 2):551–561.
  119. Schoppik, D., Nagel, K. I., und Lisberger, S. G. (2008). Cortical mechanisms of smooth eye movements revealed by dynamic covariations of neural and behavioral responses. Neuron, 58(2):248–260.
  120. Tanaka, M. und Lisberger, S. G. (2002). Role of arcuate frontal cortex of monkeys in smooth pursuit eye movements. ii. relation to vector averaging pursuit. J Neurophysiol, 87(6):2700– 2714.
  121. Lovejoy, L. P., Fowler, G. A., und Krauzlis, R. J. (2009). Spatial allocation of attention during smooth pursuit eye movements. Vision Res, 49(10):1275–1285.
  122. Lisberger, S. G. (2010). Visual guidance of smooth-pursuit eye movements: sensation, action, and what happens in between. Neuron, 66(4):477–491.
  123. Xu, Y., Wang, X., Peck, C., und Goldberg, M. E. (2011). The time course of the tonic oculomo- tor proprioceptive signal in area 3a of somatosensory cortex. J Neurophysiol, 106(1):71–77.
  124. Hartmann, T. S., Bremmer, F., Albright, T. D., und Krekelberg, B. (2011). Receptive field positions in area mt during slow eye movements. J Neurosci, 31(29):10437–10444.
  125. Morris, A. P., Kubischik, M., Hoffmann, K.-P., Krekelberg, B., und Bremmer, F. (2012). Dy- namics of eye-position signals in the dorsal visual system. Curr Biol, 22(3):173–179.
  126. Dacey, D. M. und Petersen, M. R. (1992). Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. Proceedings of the National Academy of Sciences of the United States of America, 89 (20):9666–70.
  127. Werkhoven, P., Snippe, H. P., und Toet, A. (1992). Visual processing of optic acceleration. Vision Res, 32(12):2313–2329.
  128. Blanke, M., Harsch, L., Knöll, J., und Bremmer, F. (2010). Spatial perception during pursuit initiation. Vision Res, 50(24):2714–2720.
  129. Blauert, J. und Allen, J. (1996). Spatial Hearing: The Psychophysics of Human Sound Loca- lization. MIT Press.
  130. Bremmer, F., Distler, C., und Hoffmann, K. P. (1997a). Eye position effects in monkey cortex. ii. pursuit-and fixation-related activity in posterior parietal areas lip and 7a. J Neurophysiol, 77(2):962–977.
  131. Orban, G. A. (2008). Higher order visual processing in macaque extrastriate cortex. Physiol Rev, 88(1):59–89.
  132. Schlack, A., Krekelberg, B., und Albright, T. D. (2007). Recent history of stimulus speeds affects the speed tuning of neurons in area mt. J Neurosci, 27(41):11009–11018.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten