Publikationsserver der Universitätsbibliothek Marburg

Titel:Characterization of the role of MrpC in Myxococcus xanthus developmental cell fate determination
Autor:Bhardwaj, Vidhi
Weitere Beteiligte: Higgs, Penelope (Dr.)
Veröffentlicht:2013
URI:https://archiv.ub.uni-marburg.de/diss/z2013/0387
DOI: https://doi.org/10.17192/z2013.0387
URN: urn:nbn:de:hebis:04-z2013-03875
DDC:570 Biowissenschaften, Biologie
Titel (trans.):Die Charakterisierung der Rolle von MrpC im Entwicklungszyklus von Myxococcus xanthus
Publikationsdatum:2013-08-14
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
MrpC, Differenzierung, transcription regulator, MrpC, Regulation, Entwicklung, transkriptionregulator, cell fate, Transkription, heterogeneity, Myxococcus xanthus

Summary:
Myxococcus xanthus is an excellent model system for multicellular prokaryotic behaviour and Gram-negative differentiation. Under nutrient-limited conditions, the population enters a complex multicellular developmental program wherein cells undergo at least three distinct known cell fates: sporulation within multicellular fruiting bodies; differentiation into persister-like state termed peripheral rods and cell lysis. A fourth distinct, relatively less understood cell type, called the cell clusters is also thought to exist. This starvation-induced developmental program is tightly regulated by the temporal and spatial expression of specific genes. One of them is mrpC, which codes for an important developmental transcriptional regulator. We hypothesized that MrpC, which is necessary for inducing aggregation and sporulation and was implicated in mediating developmental cell lysis, may act as a master cell fate regulator in M. xanthus. MrpC has been shown to accumulate heterogeneously in developmental subpopulations and its misaccumulation results in perturbed cell fate segregation. MrpC is known to be highly regulated. It has previously been proposed that MrpC positively regulates its own expression. The transcriptional activity of MrpC is thought to be regulated- MrpC is inactivated by phosphorylation and activated by proteolytic processing to the shorter isoform MrpC2. In the presented thesis, using a combination of genetic and fluorescent techniques, I characterized the regulation of the transcription factor MrpC and my data suggests that MrpC negatively regulates its own expression. My analysis further revealed that the MrpC protein heterogeneity in developmental cell subpopulations is not due to transcriptional or translational differences but likely regulated by a protein turnover in the aggregated cell population. Using genetic and biochemical techniques, I addressed the two known activity states of MrpC. My detailed in vivo analysis revealed that the previously published in vitro data needs to be re-evaluated in order to assign a biological role to an isoform of MrpC. Using fluorescent reporters of promoter activity, I analyzed single-cell expression of various genes in developmental subpopulations. It was revealed that targets of MrpC do not follow the differential accumulation of MrpC. Moreover, cell subpopulations cannot be distinguished by means of cell-fate specific transcriptional markers or chromosome status. This study emphasizes on the implications of regulation of the key developmental regulator MrpC being different than previously proposed and provides the framework to re-investigate the proposed models of MrpC regulation in order to aid an appropriate understanding of how this complicated system functions to enable cells to adopt distinct cell fates.

Bibliographie / References

  1. Lee B, PhD Thesis (2009). The role of negative regulators in coordination of the Myxococcus xanthus developmental program.
  2. Schramm A, PhD thesis (2012). Characterization of the Esp signalosome: Two hybrid histidine kinases utilize a novel signaling mechanism to regulate developmental progression in Myxococcus xanthus.
  3. Laue BE & Gill RE (1995). Using a phase-locked mutant of Myxococcus xanthus to study the role of phase variation in development. J Bacteriol 177: 4089–4096. References 129
  4. Ding N, Zheng Y, Wu Q & Mao Xiaohua (2008). The 5 ′ untranslated region of fruA mRNA is required for translational enhancement of FruA synthesis during Myxococcus xanthus development. Arch Microbiol 189: 279–288.
  5. Nariya H & Inouye Masayori (2008). MazF, an mRNA interferase, mediates programmed cell death during multicellular Myxococcus development. Cell 132: 55–66.
  6. Hengge R (2009). Proteolysis of sigmaS (RpoS). and the general stress response in Escherichia coli. Res Microbiol 160: 667–676.
  7. Robert L, Paul G, Chen Y, Taddei F, Baigl D & Lindner AB (2010). Pre- dispositions and epigenetic inheritance in the Escherichia coli lactose operon bistable switch. Mol Sys Biol 6: 357.
  8. Ellehauge E, Nørregaard-Madsen M & Søgaard-Andersen L (1998). The FruA signal transduction protein provides a checkpoint for the temporal co-ordination of intercellular signals in Myxococcus xanthus development. Mol Microbiol 30: 807–817.
  9. Cho K & Zusman D R (1999). Sporulation timing in Myxococcus xanthus is controlled by the espAB locus. Mol Microbiol 34: 714–725.
  10. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W & Lipman DJ (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.
  11. Zhang D, Iyer LM & Aravind L (2011). A novel immunity system for bacterial nucleic acid degrading toxins and its recruitment in various eukaryotic and DNA viral systems. Nucleic Acids Res 39: 4532–4552.
  12. Søgaard-Andersen L, Slack FJ, Kimsey H & Kaiser D (1996). Intercellular C- signaling in Myxococcus xanthus involves a branched signal transduction pathway. Genes Dev 10: 740–754.
  13. Fujita M & Losick R (2003). The master regulator for entry into sporulation in Bacillus subtilis becomes a cell-specific transcription factor after asymmetric division. Genes Dev 17: 1166–1174.
  14. Harris BZ, Kaiser D & Singer M (1998). The guanosine nucleotide (p)ppGpp initiates development and A-factor production in Myxococcus xanthus . Genes Dev 12: 1022–1035.
  15. Fujita M & Losick R (2005). Evidence that entry into sporulation in Bacillus subtilis is governed by a gradual increase in the level and activity of the master regulator Spo0A. Genes Dev 19: 2236–2244.
  16. Kearns DB & Losick R (2005). Cell population heterogeneity during growth of Bacillus subtilis. Genes Dev 19: 3083–3094.
  17. Vlamakis H, Aguilar C, Losick R & Kolter R (2008). Control of cell fate by the formation of an architecturally complex bacterial community. Genes Dev 22: 945–953.
  18. Lobedanz S & Søgaard-Andersen Lotte (2003). Identification of the C-signal, a contact-dependent morphogen coordinating multiple developmental responses in Myxococcus xanthus. Genes Dev 17: 2151–2161.
  19. Li S, Lee BU & Shimkets L J (1992). csgA expression entrains Myxococcus xanthus development. Genes Dev 6: 401–410.
  20. Singer M & Kaiser D (1995). Ectopic production of guanosine penta-and tetraphosphate can initiate early developmental gene expression in Myxococcus xanthus. Genes Dev 9: 1633–1644. References 133
  21. Maamar H & Dubnau David (2005). Bistability in the Bacillus subtilis K-state (competence) system requires a positive feedback loop. Mol Microbiol 56: 615– 624.
  22. Nariya H & Inouye Sumiko (2005). Identification of a protein Ser/Thr kinase cascade that regulates essential transcriptional activators in Myxococcus xanthus development. Mol Microbiol 58: 367–379.
  23. Stein E a, Cho Kyungyun, Higgs PI & Zusman David R (2006). Two Ser/Thr protein kinases essential for efficient aggregation and spore morphogenesis in Myxococcus xanthus. Mol Microbiol 60: 1414–1431.
  24. Kaberdin VR & Bläsi U (2006). Translation initiation and the fate of bacterial mRNAs. FEMS Microbiol Rev 30: 967–979.
  25. Lopez D, Vlamakis H & Kolter R (2009). Generation of multiple cell types in Bacillus subtilis. FEMS Microbiol Rev 33: 152–163.
  26. González-Pastor JE (2011). Cannibalism: a social behavior in sporulating Bacillus subtilis. FEMS Microbiol Rev 35: 415–424.
  27. Tyagi S (2010). E. coli, what a noisy bug. Science 329: 518–519.
  28. Laub MT, Shapiro L & McAdams HH (2007). Systems biology of Caulobacter.
  29. Veening J-W, Smits WK & Kuipers OP (2008). Bistability, epigenetics, and bet- hedging in bacteria. Annu Review Microbiol 62: 193–210.
  30. Osterås M & Jenal U (2000) Regulatory circuits in Caulobacter. Curr Opin Microbiol 3: 171–176.
  31. Kaplan HB & Plamann L (1996). A Myxococcus xanthus cell density-sensing system required for multicellular development. FEMS Microbiol Lett 139: 89–95.
  32. Veening J, Hamoen LW & Kuipers OP (2005). Phosphatases modulate the bistable sporulation gene expression pattern in Bacillus subtilis. 56: 1481–1494.
  33. Smits WK, Kuipers OP & Veening J-W (2006). Phenotypic variation in bacteria: the role of feedback regulation. Nat Rev Microbiol 4: 259–271.
  34. Mensch B, Bachelor thesis (2009). Analysis of EspA dependent protein accumulation of MrpC, a developmental regulator in Myxococcus xanthus.
  35. Balaban NQ, Merrin J, Chait R, Kowalik L & Leibler S (2004). Bacterial persistence as a phenotypic switch. Science 305: 1622–1625.
  36. Reichenbach H (1993). Biology of the Myxobacteria: Ecology and Taxonomy.
  37. Dubnau David & Losick R (2006). Bistability in bacteria. Mol Microbiol 61: 564– 572.
  38. Letouvet-Pawlak B, Monnier C, Barray S, Hodgson DA & Guespin-Michel JF (1990). Comparison of beta-galactosidase production by two inducible promoters in Myxococcus xanthus. Res Microbiol 141: 425–435.
  39. O'Connor K A & Zusman D R (1991c). Development in Myxococcus xanthus involves differentiation into two cell types, peripheral rods and spores. J Bacteriol 173: 3318–3333.
  40. Novick A & Weiner M (1957). Enzyme induction as an all-or-none phenomenon.
  41. López D & Kolter R (2010). Extracellular signals that define distinct and coexisting cell fates in Bacillus subtilis. FEMS Microbiol Rev 34: 134–149.
  42. Blackhart BD & Zusman D R (1985). " Frizzy " genes of Myxococcus xanthus are involved in control of frequency of reversal of gliding motility. Proc Natl Acad Sci USA 82: 8767–8770.
  43. Ogawa M, Fujitani S, Mao X, Inouye S & Komano T (1996). FruA, a putative transcription factor essential for the development of Myxococcus xanthus. Mol Microbiol 22: 757–767.
  44. Davidson CJ & Surette MG (2008). Individuality in bacteria. Annu Rev Genet 42: 253–268.
  45. McBride MJ, Köhler T & Zusman D R (1992). Methylation of FrzCD, a methyl- accepting taxis protein of Myxococcus xanthus, is correlated with factors affecting cell behavior. J Bacteriol 174: 4246–4257.
  46. Pessi G, Blumer C & Haas D (2001). mRNA stabilizing or lacZ fusions report gene expression , don't they? Microbiol 147: 1993–1995.
  47. Dworkin, M. & D. Kaiser, (1993). Myxobacteria II. American Society for Microbiology, Washington, DC.
  48. Lewis K (2007). Persister cells, dormancy and infectious disease. Nat Rev. Microbiol 5: 48–56.
  49. Owen P, Meehan M, De Loughry-Doherty H & Henderson I (1996). Phase- variable outer membrane proteins in Escherichia coli. FEMS immunology and medical microbiology 16: 63–76.
  50. Stibitz S, Aaronson W, Monack D & Falkow S (1989). Phase variation in Bordetella pertussis by frameshift mutation in a gene for a novel two-component system. Nature 338: 266–269.
  51. Hanlon WA, Inouye M & Inouye S (1997). Pkn9, a Ser/Thr protein kinase involved in the development of Myxococcus xanthus. Mol Microbiol 23: 459– 471.
  52. Ueki T, Inouye S & Inouye M (1996). Positive-negative KG cassettes for construction of multi-gene deletions using a single drug marker. Gene 183: 153–157.
  53. Gottesman S (2003). Proteolysis in bacterial regulatory circuits. Annu Rev Cell Dev Biol 19: 565–587.
  54. Kaiser Dale (2004). Signaling in myxobacteria. Annu Rev of Microbiol 58: 75– 98.
  55. Reichenbach H (1999). The ecology of the myxobacteria. Environ Microbiol 1: 15–21.
  56. Gronewold TM & Kaiser D (2001). The act operon controls the level and time of C-signal production for Myxococcus xanthus development. Mol Microbiol 40: 744–756.
  57. Nariya H & Inouye Sumiko (2006). A protein Ser/Thr kinase cascade negatively regulates the DNA-binding activity of MrpC, a smaller form of which may be necessary for the Myxococcus xanthus development. Mol Microbiol 60: 1205– 1217.
  58. Graumann PL (2006). Different genetic programmes within identical bacteria under identical conditions: the phenomenon of bistability greatly modifies our view on bacterial populations. Mol Microbiol 61: 560–563.
  59. Odorico JS, Kaufman DS and Thomson JA (2001). Multilineage Differentiation from Human Embryonic Stem Cell Lines. Stem cells 19: 193–204.
  60. Kunst F et al. (1997). The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249–256.
  61. Broadly heterogeneous activation of the master regulator for sporulation in Bacillus subtilis. Proc Natl Acad Sci US 107: 8486–8491.
  62. Maamar H, Raj A & Dubnau David (2007). Noise in gene expression determines cell fate in Bacillus subtilis. Science 317: 526–529.
  63. Ubersax JA & Ferrell JE (2007). Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol 8: 530–541.
  64. Licking E, Gorski L & Kaiser D (2000). A common step for changing cell shape in fruiting body and starvation-independent sporulation of Myxococcus xanthus. J Bacteriol 182: 3553–3558. References 130
  65. Wall D, Kolenbrander PE & Kaiser D (1999). The Myxococcus xanthus pilQ (sglA) gene encodes a secretin homolog required for type IV pilus biogenesis, social motility, and development. J Bacteriol 181: 24–33.
  66. Jelsbak L & Kaiser Dale (2005). Regulating pilin expression reveals a threshold for S motility in Myxococcus xanthus. J Bacteriol 187: 2105–2112.
  67. Lee B, Higgs P, Zusman DR & Cho Kyungyun (2005). EspC is involved in controlling the timing of development in Myxococcus xanthus. J Bacteriol 187: 5029–5031.
  68. Turgay K, Hahn J, Burghoorn J & Dubnau D (1998). Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor. EMBO J 17: 6730–6738.
  69. Tzeng L & Singer Mitchell (2005). DNA replication during sporulation in Myxococcus xanthus fruiting bodies. Proc Natl Acad Sci USA 102: 14428– 14433. References 134
  70. Four unusual two-component signal transduction homologs, RedC to RedF, are necessary for timely development in Myxococcus xanthus. J Bacteriol 187: 8191–8195.
  71. Boysen A, Ellehauge E, Julien B & Søgaard-Andersen L (2002). The DevT protein stimulates synthesis of FruA, a signal transduction protein required for fruiting body morphogenesis in Myxococcus xanthus. J Bacteriol 184: 1540– 1546.
  72. Tzeng L, Ellis T & Singer Mitchell (2006). DNA replication during aggregation phase is essential for Myxococcus xanthus development. J Bacteriol 188: 2774–2779.
  73. Goldman BS et al. (2006). Evolution of sensory complexity recorded in a myxobacterial genome. Proc Natl Acad Sci USA 103: 15200–15205.
  74. Ueki Toshiyuki & Inouye Sumiko (2003). Identification of an activator protein required for the induction of fruA, a gene essential for fruiting body development in Myxococcus xanthus. Proc Natl Acad Sci USA 100: 8782–8787.
  75. Julien B, Kaiser a D & Garza a (2000). Spatial control of cell differentiation in Myxococcus xanthus. Proc Natl Acad Sci USA 97: 9098–9103.
  76. Wu SS & Kaiser D (1996). Markerless deletions of pil genes in Myxococcus xanthus generated by counterselection with the Bacillus subtilis sacB gene. J Bacteriol 178: 5817–5821.
  77. Wu SS & Kaiser D (1997). Regulation of expression of the pilA gene in Myxococcus xanthus. J Bacteriol 179: 7748–7758. References 135
  78. Regulation of dev, an operon that includes genes essential for Myxococcus xanthus development and CRISPR-associated genes and repeats. J Bacteriol 189: 3738–3750.
  79. Rasmussen AA & Søgaard-Andersen Lotte (2003). TodK, a putative histidine protein kinase, regulates timing of fruiting body morphogenesis in Myxococcus xanthus. J Bacteriol 185: 5452–5464.
  80. Leonardy S, Freymark G, Hebener S, Ellehauge Eva & Søgaard-Andersen Lotte (2007). Coupling of protein localization and cell movements by a dynamically localized response regulator in Myxococcus xanthus. EMBO J 26: 4433–4444.
  81. McBride MJ & Zusman D R (1993). FrzCD, a methyl-accepting taxis protein from Myxococcus xanthus, shows modulated methylation during fruiting body formation. J Bacteriol 175: 4936–4940.
  82. Kuspa A, Plamann L & Kaiser D (1992). Identification of heat-stable A-factor from Myxococcus xanthus. J Bacteriol 174: 3319–3326.
  83. O'Connor K A & Zusman D R (1991a). Analysis of Myxococcus xanthus cell types by two-dimensional polyacrylamide gel electrophoresis. J Bacteriol 173: 3334–3341.
  84. O'Connor K A & Zusman D R (1991b). Behavior of peripheral rods and their role in the life cycle of Myxococcus xanthus. J Bacteriol 173: 3342–3355.
  85. O'Connor K a & Zusman D R (1988). Reexamination of the role of autolysis in the development of Myxococcus xanthus. J Bacteriol 170: 4103–4112.
  86. Curtis PD, Taylor RG, Welch RD & Shimkets Lawrence J (2007). Spatial organization of Myxococcus xanthus during fruiting body formation. J Bacteriol 189: 9126–9130.
  87. Rosenberg E, Keller KH & Dworkin M (1977). Cell density-dependent growth of Myxococcus xanthus on casein. J Bacteriol 129: 770–777.
  88. Wireman JW & Dworkin M (1977). Developmentally induced autolysis during fruiting body formation by Myxococcus xanthus. J Bacteriol 129: 798–802.
  89. Chai Y, Chu F, Kolter R & Losick R (2008). Bistability and biofilm formation in Bacillus subtilis. Mol Microbiol 67: 254–263.
  90. Higgs PI, Jagadeesan S, Mann P & Zusman David R (2008). EspA, an orphan hybrid histidine protein kinase, regulates the timing of expression of key developmental proteins of Myxococcus xanthus. J Bacteriol 190: 4416–4426.
  91. Brenneis M & Soppa J (2009). Regulation of translation in haloarchaea: 5'-and 3'-UTRs are essential and have to functionally interact in vivo. PloS One 4: e4484.
  92. Mittal S & Kroos L (2009a). A combination of unusual transcription factors binds cooperatively to control Myxococcus xanthus developmental gene expression.
  93. Mittal S & Kroos L (2009b). Combinatorial regulation by a novel arrangement of FruA and MrpC2 transcription factors during Myxococcus xanthus development.
  94. García-Moreno D, Polanco MC, Navarro-Avilés G, Murillo FJ, Padmanabhan S & Elías-Arnanz M (2009). A Vitamin B12-Based System for Conditional Expression Reveals dksA To Be an Essential Gene in Myxococcus xanthus. J Bacteriol 191: 3108–3119.
  95. Kumar K, Mella-Herrera R a & Golden JW (2010). Cyanobacterial heterocysts. Cold Spring Harb Perspect Biol 2: a000315.
  96. Müller F-D, Treuner-Lange A, Heider J, Huntley SM & Higgs PI (2010). Global transcriptome analysis of spore formation in Myxococcus xanthus reveals a locus necessary for cell differentiation. BMC Genomics 11: 264.
  97. Hoiczyk E, Ring MW, McHugh CA, Schwär G, Bode E, Krug D, Altmeyer MO, Lu JZ & Bode HB (2009). Lipid body formation plays a central role in cell fate determination during developmental differentiation of Myxococcus xanthus. Mol Microbiol 74: 497–517.
  98. Kaiser Dale, Robinson M & Kroos L (2010). Myxobacteria, polarity, and multicellular morphogenesis. Cold Spring Harb Perspect Biol 2: a000380.
  99. Cozy LM & Kearns DB (2010). Gene position in a long operon governs motility development in Bacillus subtilis. Mol Microbiol 76: 273–285. References 126
  100. Lee J-S, Son B, Viswanathan P, Luethy PM & Kroos L (2011). Combinatorial regulation of fmgD by MrpC2 and FruA during Myxococcus xanthus development. J Bacteriol 193: 1681–1689.
  101. Monier J-M & Lindow SE (2003). Differential survival of solitary and aggregated bacterial cells promotes aggregate formation on leaf surfaces. Proc Natl Acad Sci USA 100: 15977–15982. References 131
  102. Xie C, Zhang H, Shimkets Lawrence J & Igoshin OA (2011). Statistical image analysis reveals features affecting fates of Myxococcus xanthus developmental aggregates. Proc Natl Acad Sci USA 108: 5915–5920.
  103. Koch MK, McHugh CA & Hoiczyk E (2011). BacM, an N-terminally processed bactofilin of Myxococcus xanthus, is crucial for proper cell shape. Mol Microbiol 80: 1031–1051.
  104. Waters LS & Storz G (2009). Regulatory RNAs in bacteria. Cell 136: 615–628.
  105. Son B, Liu Y & Kroos L (2011). Combinatorial regulation by MrpC2 and FruA involves three sites in the fmgE promoter region during Myxococcus xanthus development. J Bacteriol 193: 2756–2766.
  106. Lee B, Mann P, Grover V, Treuner-Lange A, Kahnt J & Higgs PI (2011). The Myxococcus xanthus spore cuticula protein C is a fragment of FibA, an extracellular metalloprotease produced exclusively in aggregated cells. PloS One 6: e28968.
  107. Gómez-Santos N, Treuner-Lange A, Moraleda-Muñoz A, García-Bravo E, García-Hernández R, Martínez-Cayuela M, Pérez J, Søgaard-Andersen Lotte & Muñoz-Dorado José (2012). Comprehensive set of integrative plasmid vectors for copper-inducible gene expression in Myxococcus xanthus. Appl Environ Microbiol 78: 2515–2521. References 127
  108. Lee B, Holkenbrink C, Treuner-Lange A & Higgs PI (2012). Myxococcus xanthus developmental cell fate production: heterogeneous accumulation of developmental regulatory proteins and reexamination of the role of MazF in developmental lysis. J Bacteriol 194: 3058–3068.
  109. Schramm A, Lee B & Higgs PI (2012). Intra-and Interprotein Phosphorylation between Two-hybrid Histidine Kinases Controls Myxococcus xanthus Developmental Progression. J Biol Chem 287: 25060–25072.
  110. Amon A (1998). Controlling cell cycle and cell fate: Common strategies in prokaryotes and eukaryotes. Proc Natl Acad Sci USA 95: 85–86.
  111. Iniesta A A, García-Heras F, Abellón-Ruiz J, Gallego-García A & Elías-Arnanz M (2012). Two systems for conditional gene expression in Myxococcus xanthus inducible by isopropyl-β-D-thiogalactopyranoside or vanillate. J Bacteriol 194: 5875–5885. References 128
  112. Willett JW & Kirby JR (2012). Genetic and biochemical dissection of a HisKA domain identifies residues required exclusively for kinase and phosphatase activities. PLoS Genetics 8: e1003084.
  113. Boynton TO, McMurry JL & Shimkets Lawrence J (2013). Characterization of Myxococcus xanthus MazF and implications for a new point of regulation. Mol Microbiol 87: 1267–1276.
  114. Yewdell JW, Lacsina JR, Rechsteiner MC & Nicchitta C V (2011). Out with the old, in with the new? Comparing methods for measuring protein degradation. Cell Biol Intl 35: 457–462.
  115. Shimkets L J (1990). Social and developmental biology of the myxobacteria. Microbiol Rev 54: 473–501.
  116. Shi W, Ngok FK & Zusman D R (1996). Cell density regulates cellular reversal frequency in Myxococcus xanthus. Proc Natl Acad Sci USA 93: 4142–4146.
  117. Søgaard-Andersen L & Kaiser D (1996). C factor, a cell-surface-associated intercellular signaling protein, stimulates the cytoplasmic Frz signal transduction system in Myxococcus xanthus. Proc Natl Acad Sci USA 93: 2675–2679.
  118. Sun H & Shi Wenyuan (2001b). Analyses of mrp genes during Myxococcus xanthus development. J Bacteriol 183: 6733–6739.
  119. Sun H & Shi Wenyuan (2001a). Genetic studies of mrp, a locus essential for cellular aggregation and sporulation of Myxococcus xanthus. J Bacteriol 183: 4786–4795.
  120. Janssen GR & Dworkin M (1985). Cell-cell interactions in developmental lysis of Myxococcus xanthus. Dev Biol 112: 194–202.
  121. Muñoz-Dorado J, Inouye S & Inouye M (1991). A gene encoding a protein serine/threonine kinase is required for normal development of M. xanthus, a gram-negative bacterium. Cell 67: 995–1006.
  122. Bignell C & Thomas CM (2001). The bacterial ParA-ParB partitioning proteins. J Biotech 91:1–34.
  123. Leisner M, Stingl K, Frey E & Maier B (2008). Stochastic switching to competence. Curr Opin Microbiol 11: 553–559.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten