Publikationsserver der Universitätsbibliothek Marburg

Titel:Regulation der zellulären Differenzierung und Ploidie von Saccharomyces cerevisiae durch das RNA-Bindeprotein Whi3
Autor:Schladebeck, Sarah
Weitere Beteiligte: Mösch, Hans-Ulrich (Prof. Dr. )
Veröffentlicht:2013
URI:https://archiv.ub.uni-marburg.de/diss/z2013/0382
DOI: https://doi.org/10.17192/z2013.0382
URN: urn:nbn:de:hebis:04-z2013-03825
DDC:570 Biowissenschaften, Biologie
Titel (trans.):Regulation of cellular differentiation and ploidy of Saccharomyces cerevisiae by the RNA-binding protein Whi3
Publikationsdatum:2013-08-14
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
RNA-Bindeprotein, zelluläre Signalweiterleitung, cellular signaling, Genetik, fungal development, posttranskriptionelle Kontrolle, Saccharomyces cerevisiae, Ploidie, posttranscriptional control, pilzliche Entwicklung, ploidy, RNA-binding protein

Zusammenfassung:
In der Bäckerhefe Saccharomyces cerevisiae ist das RNA-Bindeprotein (RBP) Whi3 an der Regulation diverser Prozesse des Zellwachstums und der Entwicklung beteiligt. Welche Signalwege und Effektoren Whi3 für diese Kontrolle beeinflusst, ist jedoch weitestgehend unverstanden und lediglich im Rahmen der Zellgrößenkontrolle näher untersucht, in der Whi3 den G1/S-Übergang durch cytoplasmatische Retention von Cdc28-Cln3 inhibiert. In dieser Studie konnten erstmals weitere Effektoren von Whi3 identifiziert werden, mit deren Hilfe das RBP die Zellzyklusprogression und Biofilmbildung steuern könnte. Unter diesen Faktoren befinden sich die G1-Zykline Cln1/2 sowie diverse Regulatoren der Biofilmbildung wie z. B. die PKA-Untereinheit Tpk1, die DYRK-Kinase Yak1 und der Transkriptionsaktivator Tec1. Dabei scheint Whi3 durch posttranskriptionelle Regulation adäquate Proteinmengen dieser Schlüsselfaktoren bereitzustellen und könnte zu diesem Zweck die Translationseffizienz beeinflussen. Interessanter Weise konnte Whi3 in dieser Arbeit erstmals mit der Kontrolle der Ploidiestabilität assoziiert werden, da WHI3-defiziente Stämme in Abhängigkeit der Wachstumsbedingungen eine erhöhte Rate von Genomduplikationen aufweisen. Die hier gewonnenen Daten deuten darauf hin, dass Whi3 die Genomintegrität durch Regulation der Chromosomensegregation gewährleisten könnte. So beeinflusst Whi3 sowohl die Expression diverser Kohäsionskomponenten als auch der Dynaktinuntereinheit NIP100. Abschließend bietet diese Studie außerdem neue Einblicke in die Whi3-vermittelte Stresskontrolle. Dabei wird Whi3 sowohl für die Stress-induzierte Expression des Oberflächenflokkulins FLO11 als auch die allgemeine Stressantwort benötigt und könnte dies einerseits über die DYRK-Kinase Yak1 und Msn2/4 erreichen. Ferner scheint die Deletion von Whi3 ein Yak1-unabhängiges, transkriptionelles Stresssignal zu generieren, das infolge der Genomduplikation aufgehoben wird. Zusammenfassend legt diese Studie den Schluss nahe, dass das RBP Whi3 ein zentraler Regulator des Zellwachstums und der Entwicklung ist, der in der Lage ist die Signalkapazität von Regulationsnetzwerke durch hinreichende Produktion diverser Schlüsselfaktoren zu gewährleisten.

Bibliographie / References

  1. Gimeno, C.J. and Fink, G.R. (1992). The logic of cell division in the life cycle of yeast. Science 257: 626.
  2. Goldstrohm, A.C., Seay, D.J., Hook, B.A., and Wickens, M. (2007). PUF protein-mediated deadenylation is catalyzed by Ccr4p. J Biol Chem 282: 109–14.
  3. Wells, S.E., Hillner, P.E., Vale, R.D., and Sachs, A.B. (1998). Circularization of mRNA by eukaryotic translation initiation factors. Mol Cell 2: 135–40.
  4. Gonsalvez, G.B., Urbinati, C.R., and Long, R.M. (2005). RNA localization in yeast: moving towards a mechanism. Biol Cell 97: 75–86.
  5. Ule, J., Jensen, K., Mele, A., and Darnell, R.B. (2005). CLIP: a method for identifying protein-RNA interaction sites in living cells. Methods 37: 376–86.
  6. Kobayashi, N., McClanahan, T., Simon, J.R., Treger, J.M., and McEntee, K. (1996). Structure and Functional Analysis of the Multistress Response Gene DDR2 from Saccharomyces cerevisiae. Biochem Biophys Res Commun 547: 540–7.
  7. Conlan, R.S. and Tzamarias, D. (2001). Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2. J Mol Biol 309: 1007–15.
  8. Kormanec, J., Schaaff-Gerstenschläger, I., Zimmermann, F.K., Perecko, D., and Küntzel, H. (1991). Nuclear migration in Saccharomyces cerevisiae is controlled by the highly repetitive 313 kDa Num1 protein. Mol Gen Genet 230: 277–87.
  9. Fiechter, A., Fuhrmann, G.F., and Käppeli, O. (1981). Regulation of glucose metabolism in growing yeast cells. Adv Microb Physiol 22: 123–83.
  10. Kang, S. and Choi, H. (2005). Effect of surface hydrophobicity on the adhesion of S. cerevisiae onto modified surfaces by poly(styrene-ran-sulfonic acid) random copolymers. Colloids Surf B Biointerfaces 46: 70–7.
  11. Cook, M. and Tyers, M. (2007). Size control goes global. Curr Opin Biotechnol 18: 341–50.
  12. Ruiz-Echevarría, M. and Peltz, S. (2000). The RNA binding protein Pub1 modulates the stability of transcripts containing upstream open reading frames. Cell 101: 741–51.
  13. Sil, A. and Herskowitz, I. (1996). Identification of asymmetrically localized determinant, Ash1p, required for lineage-specific transcription of the yeast HO gene. Cell 84: 711–22.
  14. Halme, A., Bumgarner, S., Styles, C., and Fink, G.R. (2004). Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell 116: 405–15.
  15. Rupes, I. (2002). Checking cell size in yeast. Trends Genet 18: 479–85.
  16. Iost, I., Dreyfus, M., and Linder, P. (1999). Ded1p, a DEAD-box protein required for translation initiation in Saccharomyces cerevisiae, is an RNA helicase. J Biol Chem 274: 17677–83.
  17. Valerius, O., Kleinschmidt, M., Rachfall, N., Schulze, F., López Marín, S., Hoppert, M., Streckfuss-Bömeke, K., Fischer, C., and Braus, G.H. (2007). The Saccharomyces homolog of mammalian RACK1, Cpc2/Asc1p, is required for FLO11-dependent adhesive growth and dimorphism. Mol Cell Proteomics 6: 1968–79.
  18. Pesole, G., Grillo, G., Larizza, A., and Liuni, S. (2000). The untranslated regions of eukaryotic mRNAs: structure, function, evolution and bioinformatic tools for their analysis. Brief Bioinform 1: 236–49.
  19. Morris, R.T., O'Connor, T.R., and Wyrick, J.J. (2010). Ceres: software for the integrated analysis of transcription factor binding sites and nucleosome positions in Saccharomyces cerevisiae. Bioinformatics 26: 168–74.
  20. Estruch, F. and Carlson, M. (1990). Increased dosage of the MSN1 gene restores invertase expression in yeast mutants defective in the SNF1 protein kinase. Nucleic Acids Res 18: 6959–64.
  21. Cridge, A.G., Castelli, L.M., Smirnova, J.B., Selley, J.N., Rowe, W., Hubbard, S.J., McCarthy, J.E.G., Ashe, M.P., Grant, C.M., and Pavitt, G.D. (2010). Identifying eIF4E-binding protein translationally-controlled transcripts reveals links to mRNAs bound by specific PUF proteins. Nucleic Acids Res 38: 8039–50.
  22. Riordan, D.P., Herschlag, D., and Brown, P.O. (2011). Identification of RNA recognition elements in the Saccharomyces cerevisiae transcriptome. Nucleic Acids Res 39: 1501–9.
  23. Jiang, R. and Carlson, M. (1996). Glucose regulates protein interactions within the yeast SNF1 protein kinase complex. Genes Dev 10: 3105–15.
  24. Gu, W., Deng, Y., Zenklusen, D., and Singer, R.H. (2004). A new yeast PUF family protein, Puf6p, represses ASH1 mRNA translation and is required for its localization. Genes Dev 18: 1452–65.
  25. Bardwell, L., Cook, J.G., Voora, D., Baggott, D.M., Martinez, A.R., and Thorner, J. (1998). Repression of yeast Ste12 transcription factor by direct binding of unphosphorylated Kss1 MAPK and its regulation by the Ste7 MEK. Genes Dev 12: 2887–98.
  26. Jorgensen, P., Rupes, I., Sharom, J.R., Schneper, L., Broach, J.R., and Tyers, M. (2004). A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes Dev 18: 2491–505.
  27. Deng, Y., Singer, R.H., and Gu, W. (2008). Translation of ASH1 mRNA is repressed by Puf6p-Fun12p/eIF5B interaction and released by CK2 phosphorylation. Genes Dev 22: 1037–50.
  28. Roberts, R.L. and Fink, G.R. (1994). Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev 8: 2974–85.
  29. Moriya, H. and Shimizu-Yoshida, Y. (2001). Yak1p, a DYRK family kinase, translocates to the nucleus and phosphorylates yeast Pop2p in response to a glucose signal. Genes Dev 15: 1217–28.
  30. Tarun, S.Z. and Sachs, A.B. (1995). A common function for mRNA 5' and 3' ends in translation initiation in yeast. Genes Dev 9: 2997–3007.
  31. Verstrepen, K.J. and Klis, F.M. (2006). Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60: 5–15.
  32. Weber, V., Wernitznig, A., Hager, G., Harata, M., Frank, P., and Wintersberger, U. (1997). Purification and nucleic-acid-binding properties of a Saccharomyces cerevisiae protein involved in the control of ploidy. FEBS 249: 309–17.
  33. Jorgensen, P., Nishikawa, J.L., Breitkreutz, B.-J., and Tyers, M. (2002). Systematic identification of pathways that couple cell growth and division in yeast. Science 297: 395–400.
  34. The TEA transcription factor Tec1 confers promoter-specific gene regulation by Ste12-dependent and -independent mechanisms. Eukaryot Cell 9: 514–31.
  35. Nasmyth, K. and Haering, C.H. (2009). Cohesin: its roles and mechanisms. Annu Rev Genet 43: 525–58.
  36. Grainger, R. and Beggs, J. (2005). Prp8 protein: at the heart of the spliceosome. RNA 11: 533–57.
  37. Barbero, J.L. (2011). Sister Chromatid Cohesion Control and Aneuploidy. Cytogenet Genome Res 133: 223–33.
  38. Hutvagner, G. and Simard, M.J. (2008). Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9: 22–32.
  39. Janke, C., Magiera, M.M., Rathfelder, N., Taxis, C., Reber, S., Maekawa, H., Moreno- Borchart, A., Doenges, G., Schwob, E., Schiebel, E., and Knop, M. (2004). A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21: 947–62.
  40. Taxis, C., Stier, G., Spadaccini, R., and Knop, M. (2009). Efficient protein depletion by genetically controlled deprotection of a dormant N-degron. Mol Syst Biol 5: 267.
  41. Gagiano, M., Bauer, F.F., and Pretorius, I.S. (2002). The sensing of nutritional status and the relationship to filamentous growth in Saccharomyces cerevisiae. FEMS Yeast Res 2: 433–70.
  42. Praekelt, U.M. and Meacock, P.A. (1990). HSP12, a new small heat shock gene of Saccharomyces cerevisiae: analysis of structure, regulation and function. Mol Gen Genet 223: 97–106.
  43. Ragni, E., Piberger, H., Neupert, C., García-Cantalejo, J., Popolo, L., Arroyo, J., Aebi, M., and Strahl, S. (2011). The genetic interaction network of CCW12, a Saccharomyces cerevisiae gene required for cell wall integrity during budding and formation of mating projections. BMC Genomics 12: 107.
  44. Strittmatter, A.W., Fischer, C., Kleinschmidt, M., and Braus, G.H. (2006). FLO11 mediated filamentous growth of the yeast Saccharomyces cerevisiae depends on the expression of the ribosomal RPS26 genes. Mol Genet Genomics 276: 113–25.
  45. Sterner, D. and Berger, S. (2000). Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64: 435–59.
  46. Schild, D., Ananthaswamy, H., and Mortimer, R. (1981). An endomitotic effect of a cell cycle mutation of Saccharomyces cerevisiae. Genetics 97: 551–62.
  47. Cross, F.R. and Tinkelenberg, A.H. (1991). A potential positive feedback loop controlling CLN1 and CLN2 gene expression at the start of the yeast cell cycle. Cell 65: 875–83.
  48. Gueldener, U., Heinisch, J., Koehler, G.J., Voss, D., and Hegemann, J.H. (2002). A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30: e23.
  49. Cullen, P., Sabbagh Jr, W., Graham, E., Irick, M.M., Van Olden, E.K., Neal, C., Delrow, J., Bardwell, L., and Sprague Jr, G.F. (2004). A signaling mucin at the head of the Cdc42-and MAPK-dependent filamentous growth pathway in yeast. Genes Dev 18: 1695–708.
  50. Tesfaigzi, J., Smith-Harrison, W., and Carlson, D.M. (1994). A simple method for reusing western blots on PVDF membranes. Biotechniques 17: 268–9.
  51. Bobola, N., Jansen, R.P., Shin, T.H., and Nasmyth, K. (1996). Asymmetric accumulation of Ash1p in postanaphase nuclei depends on a myosin and restricts yeast mating-type switching to mother cells. Cell 84: 699–709.
  52. Kaur, R., Domergue, R., Zupancic, M.L., and Cormack, B.P. (2005). A yeast by any other name: Candida glabrata and its interaction with the host. Curr Opin Microbiol 8: 378– 84.
  53. Reynolds, T.B. and Fink, G.R. (2001). Bakers' yeast, a model for fungal biofilm formation. Science 291: 878–81.
  54. Hulsen, T., De Vlieg, J., and Alkema, W. (2008). BioVenn -a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics 9: 488.
  55. Connelly, C. and Hieter, P. (1996). Budding yeast SKP1 encodes an evolutionarily conserved kinetochore protein required for cell cycle progression. Cell 86: 275–85.
  56. Mizunuma, M., Tsubakiyama, R., Ogawa, T., Shitamukai, A., Kobayashi, Y., Inai, T., Kume, K., and Hirata, D. (2013). cAMP/PKA Regulates Multiple Aspects of Cellular Events by Phosphorylating Whi3 Cell-Cycle Regulator in Budding Yeast. J Biol Chem Epub ahead.
  57. McCusker, D., Denison, C., Anderson, S., Egelhofer, T.A., Yates, J.R., Gygi, S.P., and Kellogg, D.R. (2007). Cdk1 coordinates cell-surface growth with the cell cycle. Nat Cell Biol 9: 506–15.
  58. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., and Futcher, B. (1998). Comprehensive identification of cell cycle- regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9: 3273–97.
  59. Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae. FEMS Yeast Res 9: 32–44.
  60. Ghisolfi, L., Kharrat, A., Joseph, G., Amalric, F., and Erard, M. (1992). Concerted activities of the RNA recognition and the glycine-rich C-terminal domains of nucleolin are required for efficient complex formation with pre-ribosomal RNA. FEBS 209: 541– 8.
  61. Rose, M. and Botstein, D. (1983). Construction and use of gene fusions to lacZ (beta- galactosidase) that are expressed in yeast. Methods Enzymol 101: 167–80.
  62. Southern, E. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503–17.
  63. Salmon, J.-M. (1997). Enological fermentation kinetics of an isogenic ploidy series derived from an industrial Saccharomyces cerevisiae strain. J Fermentat Bioeng 83: 253–60.
  64. Saiki, R.K., Scharf, S., Faloona, F., Mullis, K.B., Horn, G.T., Erlich, H.A., and Arnheim, N. (1992). Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Biotechnology 24: 476–80.
  65. Storchová, Z., Breneman, A., Cande, J., Dunn, J., Burbank, K., O'Toole, E., and Pellman, D. (2006). Genome-wide genetic analysis of polyploidy in yeast. Nature 443: 541–7.
  66. Ghaemmaghami, S., Huh, W.-K., Bower, K., Howson, R.W., Belle, A., Dephoure, N., O'Shea, E.K., and Weissman, J.S. (2003). Global analysis of protein expression in yeast. Nature 425: 737–41.
  67. Rolland, F., De Winde, J.H., Lemaire, K., Boles, E., Thevelein, J.M., and Winderickx, J. (2000). Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose. kinase- dependent sensing process. Mol Microbiol 38: 348–58.
  68. Zaman, S., Lippman, S.I., Zhao, X., and Broach, J.R. (2008). How Saccharomyces responds to nutrients. Annu Rev Genet 42: 27–81.
  69. Petko, L. and Lindquist, S. (1986). Hsp26 is not required for growth at high temperatures, nor for thermotolerance, spore development or germination. Cell 45: 885–94.
  70. Riezman, H., Hase, T., Van Loon, A.P., Grivell, L.A., Suda, K., and Schatz, G. (1983). Import of proteins into mitochondria: a 70 kilodalton outer membrane protein with a large carboxy-terminal deletion is still transported to the outer membrane. EMBO J 2: 2161–8.
  71. Nash, R.S., Volpe, T., and Futcher, B. (2001). Isolation and Characterization of WHI3, a Size-Control Gene of Saccharomyces cerevisiae. Cell 157: 1469–80.
  72. Schulze, J.M., Jackson, J., Nakanishi, S., Gardner, J.M., Hentrich, T., Haug, J., Johnston, M., Jaspersen, S.L., Kobor, M.S., and Shilatifard, A. (2009). Linking cell cycle to histone modifications: SBF and H2B monoubiquitination machinery and cell- cycle regulation of H3K79 dimethylation. Mol Cell 35: 626–41.
  73. Esposito, R. and Klapholz, S. (1982). Meiosis and ascospore development. In " The molecular biology of yeast Saccharomyces cerevisiae " ., pp. 211–87.
  74. Sherman, F., Fink, G.R., and Hicks, J.B. (1986). Methods in Yeast Genetics. In " Cold Spring Harbor Laboratory Press " , NY.
  75. Gebauer, F. and Hentze, M.W. (2004). Molecular mechanisms of translational control. Nat Rev Mol Cell Biol 5: 827–35.
  76. Gietz, R. and Sugino, A. (1988). New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 14: 527–34.
  77. Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9: 671–5.
  78. Phosphorylation of initiation factor 2α by protein kinase GCN2 mediates gene- specific translational control of GCN4 in yeast. Cell 68: 585–96.
  79. Galitski, T., Saldanha, A.J., Styles, C.A., Lander, E.S., and Fink, G.R. (1999). Ploidy Regulation of Gene Expression. Science 285: 251–4.
  80. McCarthy, J.E. (1998). Posttranscriptional control of gene expression in yeast. Microbiol Mol Biol Rev 62: 1492–553.
  81. Fischer, C., Valerius, O., Rupprecht, H., Dumkow, M., Krappmann, S., and Braus, G.H. (2008). Posttranscriptional regulation of FLO11 upon amino acid starvation in Saccharomyces cerevisiae. FEMS Yeast Res 8: 225–36.
  82. Peterson, C.L. and Workman, J.L. (2000). Promoter targeting and chromatin remodeling by the SWI/SNF complex. Curr Opin Genet Dev 10: 187–92.
  83. Matyakhina, L., Lenherr, S.M., and Stratakis, C.A. (2002). Protein kinase A and chromosomal stability. Ann NY Acad Sci 968: 148–57.
  84. Quenault, T., Lithgow, T., and Traven, A. (2011). PUF proteins: repression, activation and mRNA localization. Trends Cell Biol 21: 104–12.
  85. Groes, M., Teilum, K., Olesen, K., Poulsen, F.M., and Henriksen, A. (2002). Purification, crystallization and preliminary X-ray diffraction analysis of the carbohydrate-binding domain of flocculin, a cell-adhesion molecule from Saccharomyces carlsbergensis. Acta Crystallogr D Biol Crystallogr 58: 2135–7.
  86. Richter, J.D. and Sonenberg, N. (2005). Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 433: 477–80.
  87. Teunissen, A.W. and Steensma, H.Y. (1995). Review: the dominant flocculation genes of Saccharomyces cerevisiae constitute a new subtelomeric gene family. Yeast 11: 1001– 13.
  88. Estruch, F. (2000). Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol Rev 24: 469–86.
  89. Yan, K.S., Yan, S., Farooq, A., Han, A., Zeng, L., and Zhou, M.-M. (2003). Structure and conserved RNA binding of the PAZ domain. Nature 426: 468–74.
  90. Rowlands, A.G., Panniers, R., and Henshaw, E.C. (1988). The catalytic mechanism of guanine nucleotide exchange factor action and competitive inhibition by phosphorylated eukaryotic initiation factor 2. J Biol Chem 263: 5526–33.
  91. Harashima, T. and Heitman, J. (2002). The Galpha protein Gpa2 controls yeast differentiation by interacting with kelch repeat proteins that mimic Gbeta subunits. Mol Cell 10: 163–73.
  92. Dujon, B. (1996). The yeast genome project: what did we learn? Trends Genet 12: 263–70.
  93. Guo, M., Aston, C., Burchett, S., and Dyke, C. (2003). The yeast G protein alpha subunit Gpa1 transmits a signal through an RNA binding effector protein Scp160. Mol Cell 12: 517–24.
  94. Toda, T., Cameron, S., Sass, P., Zoller, M., and Wigler, M. (1987b). Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell 50: 277–87.
  95. Cook, J.G., Bardwell, L., Kron, S.J., and Thorner, J. (1996). Two novel targets of the MAP kinase Kss1 are negative regulators of invasive growth in the yeast Saccharomyces cerevisiae. Genes Dev 10: 2831–48.
  96. Garí, E., Volpe, T., Wang, H., Gallego, C., Futcher, B., and Aldea, M. (2001). Whi3 binds the mRNA of the G1 cyclin CLN3 to modulate cell fate in budding yeast. Genes Dev 15: 2803–8.
  97. Blum, S., Mueller, M., Schmidt, S.R., Lindert, P., and Trachsel, H. (1989). Translation in Saccharomyces cerevisiae: Initiation factor 4A-dependent cell-free systems. Proc Natl Acad Sci USA 86: 6043–6.
  98. Palecek, S.P., Parikh, A.S., and Kron, S.J. (2002). Sensing , signalling and integrating physical processes during Saccharomyces cerevisiae invasive and filamentous growth. Yeast 148: 893–907.
  99. Birnboim, H. and Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7: 1513–23.
  100. Jansen, G., Wu, C., Schade, B., Thomas, D.Y., and Whiteway, M. (2005). Drag&Drop cloning in yeast. Gene 344: 43–51.
  101. Stratford, M. and Assinder, S. (1991). Yeast flocculation: Flo1 and NewFlo phenotypes and receptor structure. Yeast 7: 559–74.
  102. Wintersberger, U., Kühne, C., and Karwan, A. (1995). Scp160p, a new yeast protein associated with the nuclear membrane and the endoplasmic reticulum, is necessary for maintenance of exact ploidy. Yeast 11: 929–44.
  103. Gavrias, V. and Andrianopoulos, A. (2006). Saccharomyces cerevisiae TEC1 is required for pseudohyphal growth. Mol Microbiol 19: 1255–63.
  104. Zipor, G., Haim-Vilmovsky, L., Gelin-Licht, R., Gadir, N., Brocard, C., and Gerst, J.E. (2009). Localization of mRNAs coding for peroxisomal proteins in the yeast, Saccharomyces cerevisiae. Proc Natl Acad Sci USA 106: 19848–53.
  105. Stefanini, I. and Dapporto, L. (2012). Role of social wasps in Saccharomyces cerevisiae ecology and evolution. Proc Natl Acad Sci USA 109: 13398–403.
  106. Müller, M., Heuck, A., and Niessing, D. (2007). Directional mRNA transport in eukaryotes: lessons from yeast. Cell Mol Life Sci 64: 171–80.
  107. Kataoka, T., Broek, D., and Wigler, M. (1985). DNA sequence and characterization of the S. cerevisiae gene encoding adenylate cyclase. Cell 43: 493–505.
  108. Hinnebusch, A.G. (2005). Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol 59: 407–50.
  109. Hood, H.M., Neafsey, D.E., Galagan, J., and Sachs, M.S. (2009). Evolutionary roles of upstream open reading frames in mediating gene regulation in fungi. Annu Rev Microbiol 63: 385–409.
  110. Enserink, J.M. and Kolodner, R.D. (2010). An overview of Cdk1-controlled targets and processes. Cell Div 5: 11.
  111. Sagliocco, F.A., Vega Laso, M.R., Zhu, D., Tuite, M.F., McCarthy, J.E., and Brown, A.J. (1993). The influence of 5'-secondary structures upon ribosome binding to mRNA during translation in yeast. J Biol Chem 268: 26522–30.
  112. Knop, M., Siegers, K., Pereira, G., Zachariae, W., Winsor, B., Nasmyth, K., and Schiebel, E. (1999). Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15: 963–72.
  113. Kaye, J.A., Rose, N.C., Goldsworthy, B., Goga, A., and L'Etoile, N.D. (2009). A 3'UTR pumilio-binding element directs translational activation in olfactory sensory neurons. Neuron 61: 57–70.
  114. Pan, X. and Heitman, J. (2000). Sok2 regulates yeast pseudohyphal differentiation via a transcription factor cascade that regulates cell-cell adhesion. Mol Cell Biol 20: 8364–72.
  115. Kobayashi, O., Hayashi, N., Kuroki, R., and Sone, H. (1998). Region of FLO1 proteins responsible for sugar recognition. J Bacteriol 180: 6503–10.
  116. Hall, D.D., Markwardt, D.D., Parviz, F., and Heideman, W. (1998). Regulation of the Cln3-Cdc28 kinase by cAMP in Saccharomyces cerevisiae. EMBO J 17: 4370–8.
  117. Rupp, S., Summers, E., Lo, H.-J., Madhani, H., and Fink, G. (1999). MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J 18: 1257–69.
  118. Sikorski, R.S. and Hieter, P. (1989). A System of Shuttle Vectors and Yeast Host Strains Designed for Efficient Manipulation of DNA in Saccharomyces cerevisiae. Mol Biol 122: 19–27.
  119. Mösch, H.-U. and Fink, G.R. (1997). Dissection of Filamentous Growth by Transposon Mutagenesis in Saccharomyces cerevisiae. Genetics 145: 671–84.
  120. Irie, K., Tadauchi, T., Takizawa, P.A., Vale, R.D., Matsumoto, K., and Herskowitz, I. (2002). The Khd1 protein, which has three KH RNA-binding motifs, is required for proper localization of ASH1 mRNA in yeast. EMBO J 21: 1158–67.
  121. Wang, H., Garí, E., Vergés, E., Gallego, C., and Aldea, M. (2004). Recruitment of Cdc28 by Whi3 restricts nuclear accumulation of the G1 cyclin-Cdk complex to late G1. EMBO J 23: 180–90.
  122. Santangelo, G. (2006). Glucose signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70: 253–82.
  123. Vyas, V. and Kuchin, S. (2003). Snf1 kinases with different β-subunit isoforms play distinct roles in regulating haploid invasive growth. Mol Cell Biol 23: 1341–8.
  124. Queralt, E. and Igual, J.C. (2004). Functional distinction between Cln1p and Cln2p cyclins in the control of the Saccharomyces cerevisiae mitotic cycle. Genetics 168: 129–40.
  125. Van Dyk, D., Pretorius, I.S., and Bauer, F.F. (2005). Mss11p is a central element of the regulatory network that controls FLO11 expression and invasive growth in Saccharomyces cerevisiae. Genetics 169: 91–106.
  126. Mohr, S., Matsuura, M., Perlman, P.S., and Lambowitz, A.M. (2006). A DEAD-box protein alone promotes group II intron splicing and reverse splicing by acting as an RNA chaperone. Proc Natl Acad Sci USA 103: 3569–74.
  127. Sidorova, J. and Breeden, L. (1999). The MSN1 and NHP6A genes suppress SWI6 defects in Saccharomyces cerevisiae. Genetics 151: 45–55.
  128. Van Dyk, D., Hansson, G., Pretorius, I.S., and Bauer, F.F. (2003). Cellular differentiation in response to nutrient availability: The repressor of meiosis, Rme1p, positively regulates invasive growth in Saccharomyces cerevisiae. Genetics 165: 1045–58.
  129. Hong, S.-P., Leiper, F.C., Woods, A., Carling, D., and Carlson, M. (2003). Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc Natl Acad Sci USA 100: 8839–43.
  130. Miura, F., Kawaguchi, N., Sese, J., Toyoda, A., Hattori, M., Morishita, S., and Ito, T. (2006). A large-scale full-length cDNA analysis to explore the budding yeast transcriptome. Proc Natl Acad Sci USA 103: 17846–51.
  131. Guo, B., Styles, C.A., Feng, Q., and Fink, G.R. (2000). A Saccharomyces gene family involved in invasive growth, cell-cell adhesion, and mating. Proc Natl Acad Sci USA 97: 12158–63.
  132. Cullen, P.J. and Sprague, G.F. (2000). Glucose depletion causes haploid invasive growth in yeast. Proc Natl Acad Sci USA 97: 13619–24.
  133. Prinz, S., Aldridge, C., Ramsey, S.A., Taylor, R.J., and Galitski, T. (2007). Control of signaling in a MAP-kinase pathway by an RNA-binding protein. PloS One 2: e249.
  134. Shepard, K.A., Gerber, A.P., Jambhekar, A., Takizawa, P.A., Brown, P.O., Herschlag, D., DeRisi, J.L., and Vale, R.D. (2003). Widespread cytoplasmic mRNA transport in yeast: identification of 22 bud-localized transcripts using DNA microarray analysis. Proc Natl Acad Sci USA 100: 11429–34.
  135. Barrales, R.R., Jimenez, J., and Ibeas, J.I. (2008). Identification of novel activation mechanisms for FLO11 regulation in Saccharomyces cerevisiae. Genetics 178: 145–56.
  136. Van de Velde, S. and Thevelein, J.M. (2008). Cyclic AMP-protein kinase A and Snf1 signaling mechanisms underlie the superior potency of sucrose for induction of filamentation in Saccharomyces cerevisiae. Eukaryot Cell 7: 286–93.
  137. Winey, M., Goetsch, L., Baum, P., and Byers, B. (1991). MPS1 and MPS2: novel yeast genes defining distinct steps of spindle pole body duplication. J Cell Biol 114: 745–54.
  138. Ward, M.P., Gimeno, C.J., Fink, G.R., and Garrett, S. (1995). SOK2 may regulate cyclic AMP-dependent protein kinase-stimulated growth and pseudohyphal development by repressing transcription. Mol Cell Biol 15: 6854–63.
  139. Jiang, R. and Carlson, M. (1997). The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex. Mol Cell Biol 17: 2099–106.
  140. Saint-Georges, Y., Garcia, M., Delaveau, T., Jourdren, L., Le Crom, S., Lemoine, S., Tanty, V., Devaux, F., and Jacq, C. (2008). Yeast mitochondrial biogenesis: a role for the PUF RNA-binding protein Puf3p in mRNA localization. PloS One 3: e2293.
  141. Rutherford, J.C., Chua, G., Hughes, T., Cardenas, M.E., and Heitman, J. (2008). A Mep2-dependent Transcriptional Profile Links Permease Function to Gene Expression during Pseudohyphal Growth in Saccharomyces cerevisiae. Mol Biol Cell 19: 3028–39.
  142. Robertson, L.S. and Fink, G.R. (1998). The three yeast A kinases have specific signaling functions in pseudohyphal growth. Proc Natl Acad Sci USA 95: 13783–7.
  143. Kahana, J.A., Schlenstedt, G., Evanchuk, D.M., Geiser, J.R., Hoyt, M.A., and Silver, P.A. (1998). The yeast dynactin complex is involved in partitioning the mitotic spindle between mother and daughter cells during anaphase B. Mol Biol Cell 9: 1741–56.
  144. Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS Biol 6: e255.
  145. Bhaskaran, H. and Russell, R. (2007). Kinetic redistribution of native and misfolded RNAs by a DEAD-box chaperone. Nature 449: 1014–8.
  146. Sinha, H., David, L., Pascon, R.C., Clauder-Münster, S., Krishnakumar, S., Nguyen, M., Shi, G., Dean, J., Davis, R.W., Oefner, P.J., McCusker, J.H., and Steinmetz, L.M. (2008). Sequential elimination of major-effect contributors identifies additional quantitative trait loci conditioning high-temperature growth in yeast. Genetics 180: 1661–70.
  147. Suh, N., Crittenden, S.L., Goldstrohm, A., Hook, B., Thompson, B., Wickens, M., and Kimble, J. (2009). FBF and its dual control of gld-1 expression in the Caenorhabditis elegans germline. Genetics 181: 1249–60.
  148. Hedbacker, K. and Carlson, M. (2008). SNF1/AMPK pathways in yeast. Front Biosci 13: 2408–20.
  149. Filbin, M.E. and Kieft, J.S. (2010). Towards a structural understanding of IRES RNA function. Curr Opin Struct Biol 19: 267–76.
  150. Glisovic, T., Bachorik, J.L., Yong, J., and Dreyfuss, G. (2008). RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett 582: 1977–86.
  151. Wek, R.C., Jackson, B.M., and Hinnebusch, A.G. (1989). Juxtaposition of domains homologous to protein kinases and histidyl-tRNA synthetases in GCN2 protein suggests a mechanism for coupling GCN4 expression to amino acid availability. Proc Natl Acad Sci USA 86: 4579–83.
  152. Feed-forward regulation of a cell fate determinant by an RNA-binding protein generates asymmetry in yeast. Genetics 185: 513–22.
  153. Selmecki, A., Forche, A., and Berman, J. (2010). Genomic plasticity of the human fungal pathogen Candida albicans. Eukaryot Cell 9: 991–1008.
  154. Nagalakshmi, U., Wang, Z., Waern, K., Shou, C., Raha, D., Gerstein, M., and Snyder, M. (2008). The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320: 1344–9.
  155. Harbison, C.T., Gordon, D.B., Lee, T.I., Rinaldi, N.J., Macisaac, K.D., Danford, T.W., Hannett, N.M., Tagne, J.-B., Reynolds, D.B., Yoo, J., Jennings, E.G., Zeitlinger, J., Pokholok, D.K., Kellis, M., Rolfe, P.A., Takusagawa, K.T., Lander, E.S., Gifford, D.K., Fraenkel, E., and Young, R.A. (2004). Transcriptional regulatory code of a eukaryotic genome. Nature 431: 99–104.
  156. Kron, S.J., Styles, C.A., and Fink, G.R. (1994). Symmetric cell division in pseudohyphae of the yeast Saccharomyces cerevisiae. Mol Biol Cell 5: 1003–22.
  157. (2010). Structural basis of flocculin-mediated social behavior in yeast. Proc Natl Acad Sci USA 107: 22511–6.
  158. Hinnebusch, A.G. (2011). Molecular mechanism of scanning and start codon selection in eukaryotes. Microbiol Mol Biol Rev 75: 434–67.
  159. Rando, O.J. and Winston, F. (2012). Chromatin and transcription in yeast. Genetics 190: 351–87.
  160. Rajyaguru, P., She, M., and Parker, R. (2012). Scd6 targets eIF4G to repress translation: RGG motif proteins as a class of eIF4G-binding proteins. Mol Cell 45: 244–54.
  161. Haber, J.E. (2012). Mating-type genes and MAT switching in Saccharomyces cerevisiae. Genetics 191: 33–64.
  162. Verghese, J., Abrams, J., Wang, Y., and Morano, K.A. (2012). Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 76: 115–58.
  163. Jansen, R.-P. and Niessing, D. (2012). Assembly of mRNA-protein complexes for directional mRNA transport in eukaryotes-an overview. Curr Protein Pept Sci 13: 284– 93.
  164. Granek, J.A., Murray, D., Kayikçi, O., and Magwene, P.M. (2013). The Genetic Architecture of Biofilm Formation in a Clinical Isolate of Saccharomyces cerevisiae. Genetics 193: 587–600.
  165. Gimeno, C.J. and Fink, G.R. (1994). Induction of pseudohyphal growth by overexpression of PHD1, a Saccharomyces cerevisiae gene related to transcriptional regulators of fungal development. Mol Cell Biol 14: 2100–12.
  166. Garrett, S., Menold, M.M., and Broach, J.R. (1991). The Saccharomyces cerevisiae YAK1 gene encodes a protein kinase that is induced by arrest early in the cell cycle. Mol Cell Biol 11: 4045–52.
  167. Toda, T., Cameron, S., and Sass, P. (1987a). Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae. Mol Cell Biol 7: 1371–7.
  168. Mösch, H.-U., Roberts, R.L., and Fink, G.R. (1996). Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93: 5352–6.
  169. Yang, X., Jiang, R., and Carlson, M. (1994). A family of proteins containing a conserved domain that mediates interaction with the yeast SNF1 protein kinase complex. EMBO J 13: 5878–86.
  170. Towbin, H., Staehelin, T., and Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76: 4350–4.
  171. Tyers, M., Tokiwa, G., and Futcher, B. (1993). Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins. EMBO J 12: 1955–68.
  172. Hartwell, L.H. (1974). Saccharomyces cerevisiae cell cycle. Bacteriol Rev 38: 164–98.
  173. McMaster, G.K. and Carmichael, G.G. (1977). Analysis of single-and double-stranded nucleic acids on polyacrylamide and agarose gels by using glyoxal and acridine orange. Proc Natl Acad Sci USA 74: 4835–8.
  174. Weiss, R., Kukora, J., and Adams, J. (1975). The Relationship Between Enzyme Activity , Cell Geometry, and Fitness in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 72: 794–8.
  175. Jensen, K.B. and Darnell, R.B. (2008). CLIP: crosslinking and immunoprecipitation of in vivo RNA targets of RNA-binding proteins. Meth Mol Biol 488: 85–98.
  176. Tarun, S.Z. and Sachs, A.B. (1996). Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J 15: 7168–77.
  177. Kiledjian, M. and Dreyfuss, G. (1992). Primary structure and binding activity of the hnRNP U protein: binding RNA through RGG box. EMBO J 11: 2655–64.
  178. Pan, X. and Heitman, J. (1999). Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Cell Biol 19: 4874–87.
  179. Griffioen, G. and Branduardi, P. (2001). Nucleocytoplasmic distribution of budding yeast protein kinase A regulatory subunit Bcy1 requires Zds1 and is regulated by Yak1- dependent phosphorylation of its targeting domain. Mol Cell Biol 21: 511–23.
  180. Naumov, G.I., Naumova, E.S., and Sniegowski, P.D. (1998). Saccharomyces paradoxus and Saccharomyces cerevisiae are associated with exudates of North American oaks. Can J Microbiol 44: 1045–50.
  181. Sanger, F., Nicklen, S., and Coulsen, A.R. (1977). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–7.
  182. Hoffman, C.S. and Winston, F. (1987). A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57: 267–72.
  183. Jentoft, N. (1990). Why are proteins O-glycosylated? Trends Biochem Sci 15: 291–4.
  184. Roberts, R.L., Mösch, H.-U., and Fink, G.R. (1997). 14-3-3 proteins are essential for RAS/MAPK cascade signaling during pseudohyphal development in S. cerevisiae. Cell 89: 1055–65.
  185. Jansen, R.-P., Dowzer, C., Michaelis, C., Galova, M., and Nasmyth, K. (1996). Mother cell-specific HO expression in budding yeast depends on the unconventional myosin Myo4p and other cytoplasmic proteins. Cell 84: 687–97.
  186. Wu, J., Suka, N., Carlson, M., and Grunstein, M. (2001). TUP1 utilizes histone H3/H2B- specific HDA1 deacetylase to repress gene activity in yeast. Mol Cell 7: 117–26.
  187. Gerber, A.P., Herschlag, D., and Brown, P.O. (2004). Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding proteins in yeast. PLoS Biol 2: E79.
  188. Jungbluth, M., Renicke, C., and Taxis, C. (2010). Targeted protein depletion in Saccharomyces cerevisiae by activation of a bidirectional degron. BMC Syst Biol 4: 176.
  189. Van Mulders, S.E., Christianen, E., Saerens, S.M.G., Daenen, L., Verbelen, P.J., Willaert, R., Verstrepen, K.J., and Delvaux, F.R. (2009). Phenotypic diversity of Flo protein family-mediated adhesion in Saccharomyces cerevisiae. FEMS Yeast Res 9: 178–90.
  190. Verstrepen, K.J., Derdelinckx, G., Verachtert, H., and Delvaux, F.R. (2003). Yeast flocculation: what brewers should know. Appl Microbiol Biotechnol 61: 197–205.
  191. Verstrepen, K.J., Reynolds, T.B., and Fink, G.R. (2004). Origins of variation in the fungal cell surface. Nat Rev Microbiol 2: 533–40.
  192. Rolland, F., Wanke, V., Cauwenberg, L., Ma, P., Boles, E., Vanoni, M., De Winde, J.H., Thevelein, J.M., and Winderickx, J. (2001). The role of hexose transport and phosphorylation in cAMP signalling in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 1: 33–45.
  193. Zeller, C.E., Parnell, S.C., and Dohlman, H.G. (2007). The RACK1 ortholog Asc1 functions as a G-protein beta subunit coupled to glucose responsiveness in yeast. J Biol Chem 282: 25168–76.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten