Publikationsserver der Universitätsbibliothek Marburg

Titel:Funktionelle Analyse des Ustilago maydis Effektorproteins Tin3 im Gencluster 19A
Autor:Neidig, Nina
Weitere Beteiligte: Kahmann, Regine (Prof. Dr.)
Veröffentlicht:2013
URI:https://archiv.ub.uni-marburg.de/diss/z2013/0355
URN: urn:nbn:de:hebis:04-z2013-03553
DOI: https://doi.org/10.17192/z2013.0355
DDC: Biowissenschaften, Biologie
Titel (trans.):Functional analysis of Ustilago maydis effector protein Tin3 in gene cluster 19A
Publikationsdatum:2013-06-26
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Ustilago zeae, Mais, effector, Effektor, autophagy, Proteaseinhibitor, plant pathogen, Autophagie, Pflanzenpathogen

Zusammenfassung:
U. maydis ist ein pilzliches Pflanzenpathogen, das in Mais den sogenannten Maisbeulenbrand auslöst. Die pathogene Entwicklung aller Brandpilze ist an die sexuelle Entwicklung gekoppelt, die durch die Fusion zweier haploider Zellen mit unterschiedlichen Paarungstypen initiiert wird (Bölker et al., 1992). Dies führt zur Bildung eines dikaryotischen Filaments, welches in der Lage ist, Pflanzenzellen mittels spezieller Infektionsstrukturen, den Appressorien, zu penetrieren (Feldbrügge et al., 2004). Während dieses Prozesses wird die Plasmamembran des Wirtes eingestülpt und umhüllt die Pilzhyphen. Dies erzeugt eine spezielle Interaktionszone zwischen Pflanze und Pilz. Biotrophe Pathogene wie U. maydis sind vom Überleben der Wirtspflanze abhängig. Aus diesem Grund ist es essenziell für das Pathogen Erkennung durch das Pflanzenimmunsystem zu vermeiden oder zu unterdrücken, um eine kompatible Interaktion zu etablieren (Doehlemann et al., 2008b). Um diese biotrophe Interaktion mit seiner Wirtspflanze aufzubauen ist U. maydis auf eine Vielzahl von sekretierten Proteinen angewiesen. In dieser Arbeit wurde der U. maydis Effektor Tin3 charakterisiert, der signifikant an der Tumorbildung beteiligt ist und der in Hefe Zwei-Hybrid-Analysen mit einer pflanzlichen Cysteinprotease und dem pflanzlichen Autophagieprotein Beclin1 interagiert (T. Brefort, pers. Mitteilung). Expressionsstudien zeigten, dass tin3 stark und spezifisch während der biotrophen Phase hochreguliert wird. Funktionelle Studien offenbarten eine duale Funktion von Tin3, die über die Interaktion mit zwei Maisproteinen vollzogen wird. Nach der Sekretion in die apoplastische Interaktionszone inhibiert Tin3 sekretierte Mais Cysteinproteasen. In vitro Protease-Aktivitätstests in Kombination mit in vivo Studien zeigen, dass Tin3 in der Lage ist die Cysteinprotease Mir3 und nahe verwandte Proteasen durch Bindung im aktiven Zentrum zu inhibieren. Die biologische Relevanz der roteaseinhibition durch Tin3 zeigte sich in Versuchen, in denen es gelang den Virulenzphänotyp der tin3 Mutante partiell durch Proteaseinhibitoren zu erreichen. Des Weiteren konnte eine zweite Funktion von Tin3 als Autophagie-Repressor postuliert werden, die durch Hefe-Assays und in planta Autophagosomen-Färbungen entdeckt wurde. Die Expression von vier pflanzlichen Autophagiegenen war nach Deletion von tin3 induziert, ein Befund der die Inhibition der Autophagie durch Tin3 unterstützte. H2O2 Akkumulationen in Infektionen mit der tin3 Deletionsmutante deuten an, dass der Tin3 Effektor pflanzliche Abwehrreaktionen durch seine duale Funktion aktiv unterdrückt und deshalb für die Etablierung der Biotrophie benötigt wird.

Bibliographie / References

  1. Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-&.
  2. Bendtsen, J.D., Nielsen, H., von Heijne, G. and Brunak, S. (2004). Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783-795.
  3. Grant, S.R., Fisher, E.J., Chang, J.H., Mole, B.M. and Dangl, J.L. (2006b). Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annu. Rev. Microbiol. 60, 425-449.
  4. Staskawicz, B.J., Ausubel, F.M., Baker, B.J., Ellis, J.G. and Jones, J.D.G. (1995). Molecular genetics of plant disease resistance. Science 268, 661-667.
  5. Gutierrez, M.G., Master, S.S., Singh, S.B., Taylor, G.A., Colombo, M.I. and Deretic, V. (2004). Autophagy Is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119, 753-766.
  6. Banuett, F. and Herskowitz, I. (1996). Discrete developmental stages during teliospore formation in the corn smut fungus, Ustilago maydis. Development 122, 2965-2976.
  7. Talloczy, Z., Virgin, H.W.I.V. and Levine, B. (2006). PKR-dependent autophagic degradation of herpes simplex virus type 1. Autophagy 2, 24-29.
  8. Rawlings, N.D., Barrett, A.J. and Bateman, A. (2011). MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 40.
  9. Banuett, F. and Herskowitz, I. (1994). Morphological transitions in the life cycle of Ustilago maydis and their genetic control by the a and b loci. Exp. Mycology 18, 247-266.
  10. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403-410.
  11. Kämper, J. (2004). A PCR-based system for highly efficient generation of gene replacement mutants in Ustilago maydis. Mol. Genet. Genomics 271, 103-110.
  12. Kroesen, B.J., Mesander, G., Terhaar, J.G., The, T.H. and Deleij, L. (1992). Direct visualisation and quantification of cellular cytotoxicity using two colour flourescence. J. Immunol. Methods 156, 47-54.
  13. Gillissen, B., Bergemann, J., Sandmann, C., Schroeer, B., Bolker, M. and Kahmann, R. (1992). A two-component regulatory system for self/non-self recognition in Ustilago maydis. Cell 68, 647-657.
  14. Bölker, M., Urban, M. and Kahmann, R. (1992). The a mating type locus of Ustilago maydis specifies cell signaling component. Cell 68, 441-450.
  15. Kämper, J., Reichmann, M., Romeis, T., Bölker, M. and Kahmann, R. (1995). Multiallelic recognition: nonself-dependent dimerization of the bE and bW homeodomain proteins in Ustilago maydis. Cell 81, 73-83.
  16. Xiang, T.T., Zong, N., Zou, Y., Wu, Y., Zhang, J. and Xing, W. (2008). Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Curr. Biol. 18, 74- 80.
  17. Ketelaar, T., Voss, C., Dimmock, S.A., Thumm, M. and Hussey, P.J. (2004). Arabidopsis homologues of the autophagy protein Atg8 are a novel family of microtubule binding preoteins. FEBS Lett. 567, 302-306.
  18. Doehlemann, G., Wahl, R., Vranes, M., de Vries, R.P., Kämper, J. and Kahmann, R. (2008b). Establishment of compatibility in the Ustilago maydis/maize pathosystem. J. Plant Physiol. 165, 29-40.
  19. Thompson, A.R. and Vierstra, R.D. (2005). Autophagic recycling: lessons from yeast help define the process in plants. Curr. Opin. Plant Biol. 8, 165-173.
  20. Talbot, N.J. and Kershaw, M.J. (2009). The emerging role of autophagy in plant pathogen attack and host defence. Curr. Opin. Plant Biol. 12, 444-450.
  21. Steinberg, G. and Perez-Martin, J. (2008). Ustilago maydis, a new fungal model system for cell biology. Tr. Cell Biol. 18, 61-67.
  22. Nair, U. and Klionsky, D.J. (2005). Molecular mechanisms and regulation of specific and nonspecific autophagy pathways in yeast. J. Biol. Chem. 280, 41785-41788.
  23. Gaffal, K.P., Friedrichs, G.J. and El-Gammal, S. (2007). Ultrastructural evidence for a dual function of the phloem and programmed cell death in the floral nectary of Digitalis purpurea. Ann. Bot. 99, 593-607.
  24. Vieira, P., Danchin, E.G.J., Neveu, C., Crozat, C., Jaubert, S. and Hussey, R.S. (2011). The plant apoplasm is an important recipient compartment for nematode secreted proteins. J. Exp. Bot. 62, 1241-1253.
  25. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J.H., Zhang, Z., Miller, W. and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402.
  26. Nielsen, H., Engelbrecht, J., Brunak, S. and vonHeijne, G. (1997). Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10, 1-6.
  27. Xiang, T.T., Zong, N., Zhang, J., Chen, J.F., Chen, M.S. and Zhou, J.M. (2011). BAK1 is not a target of the Pseudomonas syringae effector AvrPto. Mol. Plant Microbe Interact. 24, 100- 107.
  28. Mendoza-Mendoza, A., Berndt, P., Djamei, A., Weise, C., Linne, U., Marahiel, M., et al. (2009). Physical-chemical plant-derived signals induce differentiation in Ustilago maydis. Mol. Microbiol. 71, 895-911.
  29. Ligoxygakis, P., Pelte, N., Hoffmann, J.A. and Reichhart, J.-M. (2002). Activation of Drosophila Toll during fungal infection by a blood serine protease. Science 297, 114-116.
  30. Suzuki, N.N., Yoshimoto, K., Fujioka, Y., Ohsumi, Y. and Inagaki, F. (2005). The crystal structure of plant ATG12 and its biological implication in autophagy. Autophagy 1, 119- 126.
  31. Yu, L., Strandberg, L. and Lenardo, M.J. (2008). The selectivity of autophagy and its role in cell death and survival. Autophagy 4, 567-573.
  32. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. Plant Cell 24, 322-335.
  33. van der Hoorn, R.A.L. and Jones, J.D. (2004). The plant proteolytic machinery and its role in defence. Curr. Opin. Plant Biol. 7, 400-407.
  34. van der Hoorn, R.A.L., de Wit, P.J.G.M. and Joosten, M.H.A.J. (2002). Balancing selection favors guarding resistance proteins. Tr. Plant Sci. 7, 67-71.
  35. Xia, Y., Suzuki, H., Borevitz, J., Blount, J., Guo, Z., Patel, K., et al. (2004). An extracellular aspartic protease functions in Arabidopsis disease resistance signalling. EMBO 23, 980- 988.
  36. Williams, B. and Dickman, M. (2008). Plant programmed cell death: can't live with it; can't live without it. Mol. Plant Pathol. 9, 531-544.
  37. Krüger, J., Thomas, C.M., Golstein, C., Dixon, M.S., Smoker, M., Tang, S., et al. (2002). A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis. Science 296, 744-747.
  38. Klionsky, D.J., Cregg, J.M. and Dunn Jr., W.A. (2003). A unified nomenclature for yeast autophagy-related genes. Dev. Cell 5, 539-545.
  39. van der Linde, K., Hemetsberger, C., Kastner, C., Kaschani, F., van der Hoorn, R.A.L., Kumlehn, J. and Doehlemann, G. (2012). A Maize Cystatin Suppresses Host Immunity by Inhibiting Apoplastic Cysteine Proteases. Plant Cell 24, 1285-1300.
  40. Kaschani, F., Shabab, M., Bozkurt, T., Shindo, T., Schornack, S., Gu, C., et al. (2010). An Effector-targeted protease contributes to defense against Phytophthora infestans and is under diversifying selection in natural hosts. Plant Physiol. 154, 1794-1804.
  41. Shindo, T. and Van Der Hoorn, R.A.L. (2008). Papain-like cysteine proteases: key players at molecular battlefields employed by both plants and their invaders. Mol. Plant Pathol. 9, 119-125.
  42. van der Hoorn, R.A.L. (2008). Plant Proteases: From phenotypes to molecular mechanisms. Annu. Rev. Plant Biol. 59, 191-223.
  43. O'Connell, R.J. and Panstruga, R. (2006). Tete a tete inside a plant cell: establishing compatibility between plants and biotrophic fungi and oomycetes. New Phytol. 171, 699- 718.
  44. Tian, M., Win, J., Song, J., van der Hoorn, R.A., van der Knaap, E. and Kamoun, S. (2007). A Phytophthora infestans Cystatin-Like Protein Targets a Novel Tomato Papain-Like Apoplastic Protease. Plant Physiol. 143, 364-377.
  45. Koeck, M., Hardham, A.R. and Dodds, P.N. (2011). The role of effectors of biotrophic and hemibiotrophic fungi in infection. Cell. Microbiol. 13, 1849-1857.
  46. Ogawa, M., Yoshimori, T., Suzuki, T., Sagara, H., Mizushima, N. and Sasakawa, C. (2005). Escape of intracellular Shigella from autophagy. Science 307, 727-731.
  47. Fryer, M.J., Oxborough, K., Mullineaux, P.M. and Baker, N.R. (2002). Imaging of photooxidative stress responses in leaves. J. Exp. Bot. 53, 1249-1254.
  48. Zimmerman, M., Yurewicz, E. and Patel, G. (1976). A new fluorogenic substrate for chymotrypsin. Anal. biochem. 70, 258-262.
  49. GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol. 136, 2621-2632.
  50. Funktionelle Analyse des Tin3 Effektor Proteins Yamada, K., Matsushima, R., Nishimura, M. and Hara-Nishimura, I. (2001). A slow maturation of a cysteine protease with a granulin domain in the vacuoles of senescing Arabidopsis leaves. Plant Physiol. 127, 1626-1634.
  51. Hoffman, C.S. and Winston, F. (1987). A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of E. coli. Gene 57, 267-272.
  52. Pechan, T., Ye, L., Chang, Y., Mitra, A., Lin, L., Davis, F.D., et al. (2000). A unique 33-kD cysteine proteinase accumulates in response to larval feeding in maize genotypes resistant to fall armyworm and other Lepidoptera. Plant Cell 12, 1031-1040.
  53. Xie, Z. and Klionsky, D.J. (2007). Autophagosome formation: core machinery and adaptations. Nat. Cell Biol. 9, 1102-1109.
  54. Hayward, A.P., Tsao, J. and Dinesh-Kumar, S.P. (2009). Autophagy and plant innate immunity: Defense through degradation. Semin. Cell Dev. Biol. 20, 1041-1047.
  55. Baehrecke, E.H. (2005). Autophagy: dual roles in life and death? Nat. Rev. Mol. Cell Biol. 6, 505- 510.
  56. Levine, B. and Yuan, J. (2005). Autophagy in cell death: an innocent convict? J. Clin. Invest. 115, 2679-2688.
  57. Autophagy regulates programmed cell death during the plant innate immune response. Cell 121, 567-577.
  58. Gymnasialer Zweig der Carl-Weyprecht-Schule in Bad König 1999 -2002 Gymnasium Michelstadt STUDIUM 2002 -2009 Biologiestudium an der Technischen Universität in Darmstadt 2007 -2009 Diplomarbeit an der Technischen Universität in Darmstadt Fachbereich Ökologie Titel: " Interactions of Caenorhabditis elegans with Acanthamoeba castellanii and Pseudomonas fluorescens " 2009 Diplom der Biologie Hauptfächer: Ökologie, Mikrobiologie und Pflanzenphysiologie Gesamtnote " sehr gut " , mit Auszeichnung PROMOTION 2009 -2013
  59. Rooney, H.C., van't Klooster, J.W., van der Hoorn, R.A., Joosten, M.H., Jones, J.D. and de Wit, P.J. (2005). Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2- dependent disease resistance. Science 308, 1783-1786.
  60. Müller, A.N., Ziemann, S., Treitschke, S., Aßmann, D. and Doehlemann, G. (2013). Compatibility in the maize -Ustilago maydis interaction requires inhibition of host cysteine proteases by the fungal effector Pit2. Plos Pathog. 9, 1-13.
  61. Lewis, D.H. (1973). Concepts in fungal nutrition and origin of biotrophy. Biol. Rev. 48, 261-278.
  62. Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43, 205-227.
  63. Oberstein, A., Jeffrey, P.D. and Shi, Y. (2007). Crystal structure of the Bcl-XL-Beclin1 peptide complex: Beclin1 is a novel BH3-only Protein. J. Biol. Chem. 282, 13123-13132.
  64. Ausubel, F.M., Brenz, R., Kongston, R.E., Moore, D.D., Seidmann, J.G., Smith, J.A. and Strukl, K. (1987). Current protocols in molecular microbiology. John Wiley & Sons, Inc., USA.
  65. Southern, E.M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503-&.
  66. Levine, B. and Klionsky, D.J. (2004). Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell 6, 463-477.
  67. Lenz, H.D. (2011). Die Rolle autophagie-assoziierter Proteine in der pflanzlichen Immunantwort. Dissertation, Eberhard Karls Universität, Tübingen.
  68. Jia, J., McAdams, S.A., Bryan, G.T., Hershey, H.P. and Valent, B. (2000). Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO 19, 4004- 4014.
  69. Baidez, A.G., Gomez, P., Del Rio, J.A. and Ortuno, A. (2007). Dysfunctionality of the xylem in Olea europaea L. plants associated with the infection process by Verticillium dahliae Kleb. Role of phenolic compounds in plant defense mechanism. J. Agric. Food Chem. 55, 3373- 3377.
  70. Schirawski, J., Böhnert, H.U., Steinberg, G., Snetselaar, K., Adamikowa, L. and Kahmann, R. (2005). Endoplasmic reticulum glucosidase II is required for pathogenicity of Ustilago maydis. Plant Cell 17, 3532-3543.
  71. Rowell, J.B. (1955). Functional role of compatibility factors and an in vitro test for sexual compatibility with haploid lines of Ustilago zeae. Phytopathol. 45, 370-374.
  72. Matile, P.H. and Winkenbach, F. (1971). Function of lysosomes and lysosomal enzymes in the senescing corolla of the Morning Glory. J. Exp. Bot. 22, 759-771.
  73. Genome comparison of barley and maize smut fungi reveals targeted loss of RNA silencing components and species-specific presence of TEs. Plant Cell 24, 1733-1745.
  74. Blum, H., Beier, H. and Gross, H.J. (1987). Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8, 93-99.
  75. Liang, X.H., Jackson, S., Seaman, M., Brown, K., Kempkes, B., Hibshoosh, H. and Levine, B. (1999). Induction of autophagy and inhibition of tumorigenesis by beclin1. Nature 402, 672-676.
  76. Nürnberger, T., Brunner, F., Kemmerling, B. and Piater, L. (2004). Innate immunity in plants and animals, striking similarities and obvious differences. Immunol. Rev. 198, 249-266.
  77. Kämper, J., Kahmann, R., Boelker, M., Ma, L.-J., Brefort, T., Saville, B.J., et al. (2006). Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444, 97-101.
  78. Isolation and characterization of E-64, a new thiol protease inhibitor. Agric. Biological Chem. 42, 523-528.
  79. Bohlmann, R. (1996). Isolierung und Charakterisierung von filamentspezifisch exprimierten Genen aus Ustilago maydis. Dissertation, Ludwig-Maximilians-Universität, München.
  80. Mein größter Dank gilt António, der einfach immer für mich da ist! Anhang 127
  81. Sambrook, J., Frisch, E.F. and Maniatis, T. (1989). Molecular Cloning: A laboratory manual. Cold Spring Harbour, New York.
  82. Biederbick, A., Kern, H.F. and Elsasser, H.P. (1995). Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. European J. Cell Biol. 66, 3-14.
  83. Martinon, F. and Tschopp, J. (2005). NLRs join TLRs as innate sensors of pathogens. Tr. Immunol. 26, 447-454.
  84. Konno, K., Hirayama, C., Nakamura, M., Tateishi, K., Tamura, Y., Hattori, M. and Kohno, K. (2003). Papain protects papaya trees from herbivorous insects: role of cysteine proteases in latex. Plant J. 37, 370-378.
  85. Zipfel, C. and Felix, G. (2005). Plant and animal: a different taste for microbes. Curr. Opin. Plant Biol. 8, 353-360.
  86. Bassham, D.C. (2007). Plant autophagy-more than a starvation response. Curr. Opin. Plant Biol. 10, 587-593.
  87. van der Biezen, E.A. and Jones, J.D.G. (1998). Plant disease-resistance proteins and the gene- for-gene concept. Tr. Plant Sci. 23, 454-456.
  88. Mackey, D., Holt, B.F., Wiig, A. and Dangl, J.L. (2002). RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated disease resistance in Arabidopsis. Cell 108, 743-754.
  89. van Loon, L.C., Rep, M. and Pieterse, C.M.J. (2006). Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44, 135-162.
  90. Bowman, D.H. (1946). Sporidial fusion in Ustilago maydis. J. Agric. Res. 72, 233-243.
  91. Thordal-Christensen, H., Zhang, Z., Wei, Y. and Collinge, D.B. (1997). Subcellular localization of H 2 O 2 in plants: H 2 O 2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant Journal 11, 1187-1194.
  92. Grant, M. and Lamb, C. (2006a). Systemic immunity. Curr. Opin. Plant Biol. 9, 414-420.
  93. Schulz, B., Banuett, F., Dahl, M., Schlesinger, R., Schafer, W., Martin, T., et al. (1990). The b alleles of Ustilago maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell 60, 295-306.
  94. He, C. and Levine, B. (2010). The Beclin1 interactome. Curr. Opin. Cell Biol. 22, 140-149.
  95. Lamb, C. and Dixon, R.A. (1997) The oxidative burst in plant disease resistance. In Annu. Rev. Plant Physiol. Plant Mol. Biol., R.L. Jones (ed.). pp. 251-275.
  96. Jones, J.D.G. and Dangl, J.L. (2006). The plant immune system. Nature 444, 323-329.
  97. Koncz, C. and Schell, J. (1986). The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol. Gen. Genet. 204, 383-396.
  98. Kamoun, S. (2009) The secretome of plant-associated fungi and oomycetes. In The Mycota, H.B. Deising (ed.). Berlin, Heidelberg, Springer, pp. 173-180.
  99. Snetselaar, K.M., Boelker, M. and Kahmann, R. (1996). Ustilago maydis mating hyphae orient their growth toward pheromone sources. Fungal Genet. Biol. 20, 299-312.
  100. Resistance to broomrape (Orobanche crenata) in faba bean (Vicia faba): cell wall changes associated with prehaustorial defensive mechanisms. Ann. Appl. Biol. 151, 89-98.
  101. Perez-de-Luque, A., Moreno, M.T. and Rubiales, D. (2008). Host plant resistance against broomrapes (Orobanche spp.): defence reactions and mechanisms of resistance. Ann. Appl. Biol. 152, 131-141.
  102. Aichinger, C., Hansson, K., Eichhorn, H., Lessing, F., Mannhaupt, G., Mewes, W. and Kahmann, R. (2003). Identification of plant-regulated genes in Ustilago maydis by enhancer-trapping mutagenesis. Mol. Genet. Genomics 270, 303-314.
  103. Schirawski, J., Mannhaupt, G., Münch, K., Brefort, T., Schipper, K., Doehlemann, G., et al. (2010). Pathogenicity determinants in smut fungi revealed by genome comparison. Science 330, 1546-1548.
  104. Snetselaar, K.M. and Mims, C.W. (1993). Infection of maize by Ustilago maydis: light and electron microscopy. Phytopathol. 83, 843-850.
  105. Snetselaar, K.M. and Mims, C.W. (1992). Sporidial fusion and infection of maize seedlings by the smut fungus Ustilago maydis. Mycologica 84, 193-203.
  106. Skibbe, D., Doehlemann, G., Fernandes, J. and Walbot, V. (2010). Maize tumors caused by Ustilago maydis require organ-specific genes in host and pathogen. Science 328, 89-92.
  107. Holliday, R. (1974). Ustilago maydis. In King, R. C. (ed.) Handbook of Genetics 1, Plenum Press, New York/USA, 575-595.
  108. Birch, P.R.J., Rehmany, A.P., Prichard, L., Kamoun, S. and Beynon, J.L. (2006). Trafficking arms: oomycete effectors enter host plant cells. Tr. Mikrobiol. 14, 8-11.
  109. Apel, K. and Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373-399.
  110. Banuett, F. (2007) History of the mating types in Ustilago maydis. In Sex in Fungi: Molecular Determination and Evolutionary Implications. Washington, DC, ASM Press.
  111. Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. Nature 415, 389-395.
  112. Erez, E., Fass, D. and Bibi, E. (2009). How intramembrane proteases bury hydrolytic reactions in the membrane. Nature 459, 371-378.
  113. Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death. EMBO 22, 60-69.
  114. Navarre, D.A. and Wolpert, T.J. (1999). Victorin induction of an apoptotic/senescence-like response in oats. Plant Cell 11, 237-249.
  115. Huffaker, A., Pearce, G. and Ryan, C.A. (2006). An endogenous peptide signal in Arabidopsis activates components of the innate immune response. PNAS USA 103, 10098-10103.
  116. Jakobek, J.L., Smith, J.A. and Lindgren, P.B. (1993). Suppression of bean defense responses by Pseudomonas syringae. Plant Cell 5, 57-63.
  117. Ryerson, D.E. and Heath, M.C. (1996). Cleavage of nuclear DNA into oligonucleosomal fragments during cell death induced by fungal infection or abiotic treatments. Plant Cell 8, 393-402.
  118. Shintani, T. and Klionsky, D.J. (2004). Autophagy in health and disease: a double-edged sword. Science 306, 990-995.
  119. Ma, W., Dong, F.F.T., Stavrinides, J. and Guttman, D.S. (2006). Type III effector diversification via both pathoadaptation and horizontal transfer in response to a coevolutionary arms race. Plos. Genet. 2, 2131-2142.
  120. Scott, R.C., Juhasz, G. and Neufeld, T.P. (2007). Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr. Biol. 17, 1-11.
  121. Kankanala, P., Czymmek, K. and Valent, B. (2007). Roles for the rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell 19, 706-724.
  122. van Esse, H.P., van't Klooster, J.W., Bolton, M.D., Yadeta, K., Van-Baarlen, P., Boeren, S., et al. (2008). The Cladosporium fulvum virulence protein Avr2 inhibits host proteases required for basal defense. Plant Cell 20, 1948-1963.
  123. van der Hoorn, R.A.L. and Kamoun, S. (2008). From Guard to Decoy: a new model for perception of plant pathogen effectors. Plant Cell 20, 2009-2017.
  124. Song, J., Win, J., Tian, M., Schornack, S., Kaschani, F., Ilyas, M., et al. (2009). Apoplastic effectors secreted by two unrelated eukaryotic plant pathogens target the tomato defense protease Rcr3. PNAS USA 106, 1654-1659.
  125. Xu, Y., Jagannath, C., Liu, X.D., Sharafkhaneh, A., Kolodziejska, K.E. and Eissa, N.T. (2007). Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 27, 135-144.
  126. Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. J. Cell. Biol. 186, 255-268.
  127. Panstruga, R. and Dodds, P.N. (2009). Terrific protein traffic: the mystery of effector protein delivery by filamentous plant pathogens. Science 324, 748-750.
  128. He, C. and Klionsky, D.J. (2009). Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43, 67-93.
  129. Pearce, G., Yamaguchi, Y., Barona, G. and Ryan, C.A. (2010). A subtilisin-like protein from soybean contains an embedded, cryptic signal that activates defense-related genes. PNAS USA 107, 14921-14925.
  130. Ariki, S., Koori, K., Osaki, T., Motoyama, K., Inamori, K.I. and Kawabata, S.I. (2004). A serine protease zymogen functions as a pattern-recognition receptor for lipopolysaccharides. PNAS USA 101, 953-958.
  131. The Ustilago maydis Effector Pep1 Suppresses Plant Immunity by Inhibition of Host Peroxidase Activity. Plos Pathog. 8.
  132. Spellig, T., Bölker, M., Lottspeich, F., Frank, R.W. and Kahmann, R. (1994). Pheromones trigger filamentous growth in Ustilago maydis. EMBO 13, 1620-1627.
  133. Yoshimoto, K., Hanaoka, H., Sato, S., Kato, T., Tabata, S., Noda, T. and Ohsumi, Y. (2004). Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell 16, 2967-2983.
  134. Grant, S.G.N., Jessee, J., Bloom, F.R. and Hanahan, D. (1990). Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. PNAS USA 87, 4645-4649.
  135. Bauer, R., Oberwinkler, F. and Vánky, K. (1997). Ultrastructural markers and systematics in smut fungi and allied taxa. Can. J. Bot. 75, 1273-1314.
  136. Müller, O., Kahmann, R., Aguilar, G., Trejo-Aguilar, B. and Wu, A. (2008). The secretome of the maize pathogen Ustilago maydis. Fungal Genet. Biol. 45, 63-70.
  137. Feldbrügge, M., Kämper, J., Steinberg, G. and Kahmann, R. (2004). Regulation of mating and pathogenic development in Ustilago maydis. Curr. Opin. Plant Biol. 7, 666-672.
  138. Patel, S. and Dinesh-Kumar, S.P. (2008). Arabidopsis ATG6 is required to limit the pathogen- associated cell death response. Autophagy 4, 20-27.
  139. Mitou, G., Budak, H. and Gozuacik, D. (2009). Techniques to Study Autophagy in Plants. Int. J. Plant Genomics 2009.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten