Publikationsserver der Universitätsbibliothek Marburg

Titel:Die Oligomerisierung des Nukleoproteins und ihre Bedeutung für den Replikationszyklus der Arenaviren
Autor:Lennartz, Frank
Weitere Beteiligte: Lingelbach, Klaus (Prof. Dr.)
Veröffentlicht:2012
URI:https://archiv.ub.uni-marburg.de/diss/z2013/0248
URN: urn:nbn:de:hebis:04-z2013-02484
DOI: https://doi.org/10.17192/z2013.0248
DDC: Biowissenschaften, Biologie
Titel (trans.):The role of nucleoprotein oligomerization for the replication of arenaviruses
Publikationsdatum:2013-06-03
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Oligomerisation, Interferon, Matrixprotein, Matrix Protein, Nukleoprotein, Interferon, Lassa virus, Lassavirus, Arenaviren, Replikation, Nucleoprotein, Viren

Zusammenfassung:
Das Nukleoprotein der Arenaviren erfüllt zentrale Aufgaben im viralen Replikationszyklus. Dazu gehört die Enkapsidierung des viralen Genoms und die Regulation von Transkription und Replikation sowie die Interaktion mit dem Matrixprotein und die Inhibition der Typ I Interferon-Antwort. Über die Homo-Oligomerisierung des Nukleoproteins, ihre Bedeutung für diese vier Aufgaben sowie die hierfür notwendigen Domänen innerhalb des Nukleoproteins war bisher nichts bekannt. In der vorliegenden Arbeit wurde gezeigt, dass sich das Nukleoprotein in Abwesenheit viraler RNA zu symmetrischen, ringförmigen Trimeren zusammenlagert. Die Bildung dieser Trimere ist unabhängig von posttranslationalen Modifikationen und ist innerhalb der Arenaviren konserviert. Mutationsanalysen ergaben, dass Bereiche innerhalb der N- und der C-terminalen Domäne kritisch für die Trimerisierung des Nukleoproteins sind. Darüber hinaus wurde gezeigt, dass die Oligomerisierung des Nukleoproteins eine Grundvorraussetzung für seine Funktion bei der Replikation und Transkription des viralen Genoms ist. Im Gegensatz dazu spielt sie bei der Interaktion des Nukleoproteins mit dem Matrixprotein und für die Fähigkeit des Nukleoproteins zur Inhibition der Typ I Interferon-Antwort keine Rolle. Vermutlich wird das Nukleoprotein der Arenaviren durch Wirtszell-spezifische Proteasen verkürzt. Die dabei entstehenden, großen Spaltfragmente liegen als Monomere vor und könnten in der infizierten Zelle die Funktion als Interferon-Antagonist übernehmen, während ungespaltenes Nukleoprotein für die Replikation, Transkription und Enkapsidierung des viralen Genoms verwendet wird. Das Nukleoprotein sorgt durch seine Interaktion mit dem Matrixprotein für den Einbau des viralen Genoms in neu entstehende Virionen. In dieser Arbeit wurden die dafür verantwortlichen Aminosäurebereiche auf kurze Bereiche innerhalb der C-terminalen Proteindomäne des Nukleoproteins eingegrenzt. Anhand dieser Untersuchungen wurde ein Modell für die Interaktion zwischen dem Nukleoprotein und dem Matrixprotein an der Virusmembran aufgestellt. Vergleichende Studien zwischen den Nukleoproteinen und Matrixproteinen verschiedener Arenaviren ergaben zudem, dass heterotypische Interaktionen nur zwischen dem Nukleoprotein und dem Matrixprotein nahe verwandeter Arenaviren möglich sind. Die Interaktion zwischen dem Nukleoprotein und dem Matrixprotein wurde somit als Faktor identifiziert, der die die Bildung von Arenavirus-Reassortanten stark einschränkt. Insgesamt konnte in dieser Arbeit der Zusammenhang zwischen der Homo-Oligomerisierung und den biologischen Funktionen des Nukleoproteins aufgezeigt werden. Darüber hinaus wurden funktionelle Domänen für die NP-NP-Interaktion und die Interaktion zwischen dem Nukleoprotein und dem Matrixprotein innerhalb des Nukleoproteins identifiziert.

Bibliographie / References

  1. Lämmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259), 680-5.
  2. Raju, R., Raju, L., Hacker, D., Garcin, D., Compans, R. and Kolakofsky, D. (1990) Nontemplated bases at the 5' ends of Tacaribe virus mRNAs. Virology 174(1), 53-62.
  3. Iseni, F., Barge, A., Baudin, F., Blondel, D. and Ruigrok, R.W. (1998) Characterization of rabies virus nucleocapsids and recombinant nucleocapsid-like structures. J Gen Virol 79 ( Pt 12), 2909-19.
  4. Perez, M. and de la Torre, J.C. (2003) Characterization of the genomic promoter of the prototypic arenavirus lymphocytic choriomeningitis virus. J Virol 77(2), 1184-94.
  5. Jacamo, R., Lopez, N., Wilda, M. and Franze-Fernandez, M.T. (2003) Tacaribe virus Z protein interacts with the L polymerase protein to inhibit viral RNA synthesis. J Virol 77(19), 10383-93.
  6. Morin, B., Coutard, B., Lelke, M., Ferron, F., Kerber, R., Jamal, S., Frangeul, A., Baronti, C., Charrel, R., de Lamballerie, X., Vonrhein, C., Lescar, J., Bricogne, G., Günther, S. and Canard, B. (2010) The N-terminal domain of the arenavirus L protein is an RNA endonuclease essential in mRNA transcription. PLoS Pathog 6(9), e1001038.
  7. Mullis, K.B. and Faloona, F.A. (1987) Specific synthesis of DNA in vitro via a polymerase- catalyzed chain reaction. Methods Enzymol 155, 335-50.
  8. McCormick, J.B., King, I.J., Webb, P.A., Johnson, K.M., O'Sullivan, R., Smith, E.S., Trippel, S. and Tong, T.C. (1987) A case-control study of the clinical diagnosis and course of Lassa fever. J Infect Dis 155(3), 445-55.
  9. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution 28(10), 2731-2740.
  10. Price, M.E., Fisher-Hoch, S.P., Craven, R.B. and McCormick, J.B. (1988) A prospective study of maternal and fetal outcome in acute Lassa fever infection during pregnancy. BMJ 297(6648), 584-7.
  11. Mir, M.A. and Panganiban, A.T. (2006) The bunyavirus nucleocapsid protein is an RNA chaperone: possible roles in viral RNA panhandle formation and genome replication. RNA 12(2), 272-82.
  12. Young, P.R. and Howard, C.R. (1983) Fine structure analysis of Pichinde virus nucleocapsids. J Gen Virol 64 (Pt 4), 833-42.
  13. Tortorici, M., Albariño, C., Posik, D., Ghiringhelli, P., Lozano, M., Rivera Pomar, R. and Romanowski, V. (2001a) Arenavirus nucleocapsid protein displays a transcriptional antitermination activity in vivo. Virus Res 73(1), 41-96.
  14. Yoneyama, M., Suhara, W., Fukuhara, Y., Sato, M., Ozato, K. and Fujita, T. (1996) Autocrine amplification of type I interferon gene expression mediated by interferon stimulated gene factor 3 (ISGF3). J Biochem 120(1), 160-9.
  15. Klewitz, C., Klenk, H.-D. and ter Meulen, J. (2007) Amino acids from both N-terminal hydrophobic regions of the Lassa virus envelope glycoprotein GP-2 are critical for pH- dependent membrane fusion and infectivity. J Gen Virol 88(Pt 8), 2320-2328. 8. Literatur 131
  16. Spiropoulou, C.F., Kunz, S., Rollin, P.E., Campbell, K.P. and Oldstone, M.B. (2002) New World arenavirus clade C, but not clade A and B viruses, utilizes alpha-dystroglycan as its major receptor. J Virol 76(10), 5140-6.
  17. Urata, S., Yasuda, J. and de la Torre, J.C. (2009) The z protein of the new world arenavirus tacaribe virus has bona fide budding activity that does not depend on known late domain motifs. J Virol 83(23), 12651-5.
  18. Kawaguchi, A., Momose, F. and Nagata, K. (2011) Replication-coupled and host factor- mediated encapsidation of the influenza virus genome by viral nucleoprotein. J Virol 85(13), 6197-204.
  19. Nguyen, T.L., Schoehn, G., Weissenhorn, W., Hermone, A.R., Burnett, J.C., Panchal, R.G., McGrath, C., Zaharevitz, D.W., Aman, M.J., Gussio, R. and Bavari, S. (2005) An all- atom model of the pore-like structure of hexameric VP40 from Ebola: structural insights into the monomer-hexamer transition. J Struct Biol 151(1), 30-40.
  20. Müller, S., Geffers, R. and Günther, S. (2007) Analysis of gene expression in Lassa virus- infected HuH-7 cells. The Journal of general virology 88(Pt 5), 1568-1643.
  21. Webster, C.G., Reitz, S.R., Perry, K.L. and Adkins, S. (2011) A natural M RNA reassortant arising from two species of plant-and insect-infecting bunyaviruses and comparison of its sequence and biological properties to parental species. Virology 413(2), 216-25. 8. Literatur 135
  22. Günther, S., Kühle, O., Rehder, D., Odaibo, G., Olaleye, D., Emmerich, P., ter Meulen, J. and Schmitz, H. (2001) Antibodies to Lassa virus Z protein and nucleoprotein co-occur in human sera from Lassa fever endemic regions. Medical microbiology and immunology 189(4), 225-234.
  23. Howard, C.R. and Buchmeier, M.J. (1983) A protein kinase activity in lymphocytic choriomeningitis virus and identification of the phosphorylated product using monoclonal antibody. Virology 126(2), 538-47.
  24. O'Neil, K.T. and DeGrado, W.F. (1990) A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science 250(4981), 646-51.
  25. Salvato, M.S., Schweighofer, K.J., Burns, J. and Shimomaye, E.M. (1992) Biochemical and immunological evidence that the 11 kDa zinc-binding protein of lymphocytic choriomeningitis virus is a structural component of the virus. Virus Res 22(3), 185-98.
  26. Rojek, J., Perez, M. and Kunz, S. (2008a) Cellular entry of lymphocytic choriomeningitis virus. J Virol 82(3), 1505-1522.
  27. Martinez, M., Cordo, S. and Candurra, N. (2007) Characterization of Junin arenavirus cell entry. The Journal of general virology 88(Pt 6), 1776-1860.
  28. Rudolph, M.G., Kraus, I., Dickmanns, A., Eickmann, M., Garten, W. and Ficner, R. (2003) Crystal structure of the borna disease virus nucleoprotein. Structure 11(10), 1219-26.
  29. Saijo, M., Georges-Courbot, M.-C., Marianneau, P., Romanowski, V., Fukushi, S., Mizutani, T., Georges, A.-J., Kurata, T., Kurane, I. and Morikawa, S. (2007) Development of recombinant nucleoprotein-based diagnostic systems for Lassa fever. Clinical and vaccine immunology : CVI 14(9), 1182-1191.
  30. Kato, H., Takeuchi, O., Sato, S., Yoneyama, M., Yamamoto, M., Matsui, K., Uematsu, S., Jung, A., Kawai, T., Ishii, K.J., Yamaguchi, O., Otsu, K., Tsujimura, T., Koh, C.S., Reis e Sousa, C., Matsuura, Y., Fujita, T. and Akira, S. (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses.Nature 441(7089),101-5.
  31. Niwa, H., Yamamura, K. and Miyazaki, J. (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108(2), 193-9.
  32. Saiki, R.K., Scharf, S., Faloona, F., Mullis, K.B., Horn, G.T., Erlich, H.A. and Arnheim, N. (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230(4732), 1350-4.
  33. Rodriguez-Carreno, M., Nelson, M., Botten, J., Smith-Nixon, K., Buchmeier, M. and Whitton, J. (2005) Evaluating the immunogenicity and protective efficacy of a DNA vaccine encoding Lassa virus nucleoprotein. Virology 335(1), 87-185.
  34. Lecompte, E., ter Meulen, J., Emonet, S., Daffis, S. and Charrel, R. (2007) Genetic identification of Kodoko virus, a novel arenavirus of the African pigmy mouse (Mus Nannomys minutoides) in West Africa. Virology 364(1), 178-261.
  35. Rodriguez, L.L., Owens, J.H., Peters, C.J. and Nichol, S.T. (1998) Genetic reassortment among viruses causing hantavirus pulmonary syndrome. Virology 242(1), 99-106.
  36. Nakabayashi, H., Taketa, K., Miyano, K., Yamane, T. and Sato, J. (1982) Growth of human hepatoma cells lines with differentiated functions in chemically defined medium. Cancer Res 42(9), 3858-63.
  37. Lundberg, K.S., Shoemaker, D.D., Adams, M.W., Short, J.M., Sorge, J.A. and Mathur, E.J. (1991) High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus. Gene 108(1), 1-6.
  38. Reid, S.P., Cardenas, W.B. and Basler, C.F. (2005) Homo-oligomerization facilitates the interferon-antagonist activity of the ebolavirus VP35 protein. Virology 341(2), 179-89.
  39. Ter Meulen, J., Lukashevich, I., Sidibe, K., Inapogui, A., Marx, M., Dorlemann, A., Yansane, M., Koulemou, K., Chang-Claude, J. and Schmitz, H. (1996) Hunting of peridomestic rodents and consumption of their meat as possible risk factors for rodent-to-human transmission of Lassa virus in the Republic of Guinea. Am J Trop Med Hyg 55(6), 661- 667.
  40. Lukashevich, I.S., Maryankova, R., Vladyko, A.S., Nashkevich, N., Koleda, S., Djavani, M., Horejsh, D., Voitenok, N.N. and Salvato, M.S. (1999) Lassa and Mopeia virus replication in human monocytes/macrophages and in endothelial cells: different effects on IL-8 and TNF-alpha gene expression. J Med Virol 59(4), 552-60.
  41. McCormick, J.B. and Fisher-Hoch, S.P. (2002) Lassa fever. Curr Top Microbiol Immunol 262, 75-109.
  42. McCormick, J.B., King, I.J., Webb, P.A., Scribner, C.L., Craven, R.B., Johnson, K.M., Elliott, L.H. and Belmont-Williams, R. (1986) Lassa fever. Effective therapy with ribavirin. N Engl J Med 314(1), 20-6.
  43. Günther, S. and Lenz, O. (2004) Lassa virus. Critical reviews in clinical laboratory sciences 41(4), 339-429.
  44. Strecker, T., Eichler, R., Meulen, J., Weissenhorn, W., Dieter Klenk, H., Garten, W. and Lenz, O. (2003) Lassa virus Z protein is a matrix protein and sufficient for the release of virus-like particles [corrected]. J Virol 77(19), 10700-5.
  45. Peters, C.J. (2006) Lymphocytic choriomeningitis virus--an old enemy up to new tricks. N Engl J Med 354(21), 2208-11.
  46. Lecompte, E., Fichet-Calvet, E., Daffis, S., Koulémou, K., Sylla, O., Kourouma, F., Doré, A., Soropogui, B., Aniskin, V., Allali, B., Kouassi Kan, S., Lalis, A., Koivogui, L., Günther, S., Denys, C. and ter Meulen, J. (2006) Mastomys natalensis and Lassa fever, West Africa. Emerg Infect Dis 12(12), 1971-1975.
  47. Schlie, K., Strecker, T. and Garten, W. (2010c) Maturation cleavage within the ectodomain of Lassa virus glycoprotein relies on stabilization by the cytoplasmic tail. FEBS Lett 584(21), 4379-82.
  48. Puthavathana, P., Auewarakul, P., Charoenying, P.C., Sangsiriwut, K., Pooruk, P., Boonnak, K., Khanyok, R., Thawachsupa, P., Kijphati, R. and Sawanpanyalert, P. (2005) Molecular characterization of the complete genome of human influenza H5N1 virus isolates from Thailand. J Gen Virol 86(Pt 2), 423-33.
  49. Ruigrok, R.W., Crepin, T. and Kolakofsky, D. (2011) Nucleoproteins and nucleocapsids of negative-strand RNA viruses. Curr Opin Microbiol 14(4), 504-10.
  50. Pasqual, G., Rojek, J., Masin, M., Chatton, J.-Y. and Kunz, S. (2011) Old world arenaviruses enter the host cell via the multivesicular body and depend on the endosomal sorting complex required for transport. PLoS Pathog 7(9).
  51. Hock, M., Kraus, I., Schoehn, G., Jamin, M., Andrei-Selmer, C., Garten, W. and Weissenhorn, W. (2010) RNA induced polymerization of the Borna disease virus nucleoprotein. Virology 397(1), 64-72.
  52. Price, J.L. (1978) Serological evidence of infection of Tacaribe virus and arboviruses in Trinidadian bats. Am J Trop Med Hyg 27(1 Pt 1), 162-7.
  53. Lyu, P.C., Liff, M.I., Marky, L.A. and Kallenbach, N.R. (1990) Side chain contributions to the stability of alpha-helical structure in peptides. Science 250(4981), 669-73.
  54. Leung, D.W., Prins, K.C., Borek, D.M., Farahbakhsh, M., Tufariello, J.M., Ramanan, P., Nix, J.C., Helgeson, L.A., Otwinowski, Z., Honzatko, R.B., Basler, C.F. and Amarasinghe, G.K. (2010) Structural basis for dsRNA recognition and interferon antagonism by Ebola VP35. Nat Struct Mol Biol 17(2), 165-72.
  55. Weissenhorn, W., Dessen, A., Calder, L.J., Harrison, S.C., Skehel, J.J. and Wiley, D.C. (1999) Structural basis for membrane fusion by enveloped viruses. Mol Membr Biol 16(1), 3-9.
  56. Volpon, L., Osborne, M.J., Capul, A.A., de la Torre, J.C. and Borden, K.L. (2010) Structural characterization of the Z RING-eIF4E complex reveals a distinct mode of control for eIF4E. Proc Natl Acad Sci U S A 107(12), 5441-6.
  57. Iapalucci, S., López, N. and Franze-Fernández, M. (1991) The 3' end termini of the Tacaribe arenavirus subgenomic RNAs. Virology 182(1), 269-347.
  58. Salvato, M.S. and Shimomaye, E.M. (1989) The completed sequence of lymphocytic choriomeningitis virus reveals a unique RNA structure and a gene for a zinc finger protein. Virology 173(1), 1-10.
  59. Perry, A., Chen, G., Zheng, D., Tang, H. and Cheng, G. (2005) The host type I interferon response to viral and bacterial infections. Cell Res 15(6), 407-429.
  60. Lenz, O., ter Meulen, J., Klenk, H., Seidah, N. and Garten, W. (2001) The Lassa virus glycoprotein precursor GP-C is proteolytically processed by subtilase SKI-1/S1P. Proc Natl Acad Sci U S A 98(22), 12701-12706.
  61. Ye, Q., Krug, R.M. and Tao, Y.J. (2006) The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA. Nature 444(7122), 1078-82.
  62. Pinschewer, D.D., Perez, M. and de la Torre, J.C. (2005) Dual role of the lymphocytic choriomeningitis virus intergenic region in transcription termination and virus propagation. J Virol 79(7), 4519-26.
  63. Neuman, B.W., Adair, B.D., Burns, J.W., Milligan, R.A., Buchmeier, M.J. and Yeager, M. (2005) Complementarity in the supramolecular design of arenaviruses and retroviruses revealed by electron cryomicroscopy and image analysis. J Virol 79(6), 3822-30.
  64. Sanchez, A.B. and de la Torre, J.C. (2005) Genetic and biochemical evidence for an oligomeric structure of the functional L polymerase of the prototypic arenavirus lymphocytic choriomeningitis virus. J Virol 79(11), 7262-8.
  65. Lee, K.J., Novella, I.S., Teng, M.N., Oldstone, M.B. and de La Torre, J.C. (2000) NP and L proteins of lymphocytic choriomeningitis virus (LCMV) are sufficient for efficient transcription and replication of LCMV genomic RNA analogs. J Virol 74(8), 3470-7.
  66. Lindemann, D., Pietschmann, T., Picard-Maureau, M., Berg, A., Heinkelein, M., Thurow, J., Knaus, P., Zentgraf, H. and Rethwilm, A. (2001) A particle-associated glycoprotein signal peptide essential for virus maturation and infectivity. J Virol 75(13), 5762-5833.
  67. Lopez, N., Jacamo, R. and Franze-Fernandez, M.T. (2001) Transcription and RNA replication of tacaribe virus genome and antigenome analogs require N and L proteins: Z protein is an inhibitor of these processes. J Virol 75(24), 12241-51.
  68. Urata, S., Noda, T., Kawaoka, Y., Yokosawa, H. and Yasuda, J. (2006) Cellular factors required for Lassa virus budding. J Virol 80(8), 4191-5.
  69. Pinschewer, D., Perez, M. and de la Torre, J. (2003) Role of the virus nucleoprotein in the regulation of lymphocytic choriomeningitis virus transcription and RNA replication. J Virol 77(6), 3882-3889.
  70. Martínez-Sobrido, L., Zúñiga, E., Rosario, D., García-Sastre, A. and de la Torre, J. (2006) Inhibition of the type I interferon response by the nucleoprotein of the prototypic arenavirus lymphocytic choriomeningitis virus. J Virol 80(18), 9192-9201.
  71. Hass, M., Westerkofsky, M., Müller, S., Becker-Ziaja, B., Busch, C. and Günther, S. (2006) Mutational analysis of the lassa virus promoter. J Virol 80(24), 12414-9.
  72. Martinez-Sobrido, L., Giannakas, P., Cubitt, B., Garcia-Sastre, A. and de la Torre, J.C. (2007) Differential inhibition of type I interferon induction by arenavirus nucleoproteins. J Virol 81(22), 12696-703.
  73. Webb, P.A., Justines, G. and Johnson, K.M. (1975) Infection of wild and laboratory animals with Machupo and Latino viruses. Bull World Health Organ 52(4-6), 493-9.
  74. Perez, M., Craven, R.C. and de la Torre, J.C. (2003) The small RING finger protein Z drives arenavirus budding: implications for antiviral strategies. Proc Natl Acad Sci U S A 100(22), 12978-83.
  75. Rojek, J., Sanchez, A., Nguyen, N., de la Torre, J.-C. and Kunz, S. (2008b) Different mechanisms of cell entry by human-pathogenic Old World and New World arenaviruses. J Virol 82(15), 7677-7764.
  76. Labudova, M., Tomaskova, J., Skultety, L., Pastorek, J. and Pastorekova, S. (2009) The nucleoprotein of lymphocytic choriomeningitis virus facilitates spread of persistent infection through stabilization of the keratin network. J Virol 83(16), 7842-7851.
  77. Martínez-Sobrido, L., Emonet, S., Giannakas, P., Cubitt, B., García-Sastre, A. and de la Torre, J. (2009) Identification of amino acid residues critical for the anti-interferon activity of the nucleoprotein of the prototypic arenavirus lymphocytic choriomeningitis virus. J Virol 83(21), 11330-11370.
  78. Schlie, K., Maisa, A., Lennartz, F., Ströher, U., Garten, W. and Strecker, T. (2010b) Characterization of Lassa virus glycoprotein oligomerization and influence of cholesterol on virus replication. J Virol 84(2), 983-92.
  79. Schlie, K., Maisa, A., Freiberg, F., Groseth, A., Strecker, T. and Garten, W. (2010a) Viral protein determinants of Lassa virus entry and release from polarized epithelial cells. J Virol 84(7), 3178-88.
  80. Shtanko, O., Imai, M., Goto, H., Lukashevich, I.S., Neumann, G., Watanabe, T. and Kawaoka, Y. (2010) A role for the C terminus of Mopeia virus nucleoprotein in its incorporation into Z protein-induced virus-like particles. J Virol 84(10), 5415-22.
  81. Raymond, D.D., Piper, M.E., Gerrard, S.R. and Smith, J.L. (2010) Structure of the Rift Valley fever virus nucleocapsid protein reveals another architecture for RNA encapsidation. Proc Natl Acad Sci U S A 107(26), 11769-74.
  82. Versteeg, G. and García-Sastre, A. (2010) Viral tricks to grid-lock the type I interferon system. Cur Opin Microbiol 13(4), 508-524.
  83. Reguera, J., Weber, F. and Cusack, S. (2010) Bunyaviridae RNA polymerases (L-protein) have an N-terminal, influenza-like endonuclease domain, essential for viral cap-dependent transcription. PLoS Pathog 6(9), e1001101.
  84. Kranzusch, P.J., Schenk, A.D., Rahmeh, A.A., Radoshitzky, S.R., Bavari, S., Walz, T. and Whelan, S.P. (2010) Assembly of a functional Machupo virus polymerase complex. Proc Natl Acad Sci U S A 107(46), 20069-74.
  85. Hastie, K., Kimberlin, C., Zandonatti, M., MacRae, I. and Saphire, E. (2011a) Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3' to 5' exonuclease activity essential for immune suppression. Proceedings of the National Academy of Sciences of the United States of America 108(6), 2396-2797.
  86. Qi, X., Lan, S., Wang, W., Schelde, L., Dong, H., Wallat, G., Ly, H., Liang, Y. and Dong, C. (2010) Cap binding and immune evasion revealed by Lassa nucleoprotein structure. Nature 468(7325), 779-862.
  87. Levingston Macleod, J.M., D'Antuono, A., Loureiro, M.E., Casabona, J.C., Gomez, G.A. and Lopez, N. (2011) Identification of two functional domains within the arenavirus nucleoprotein. J Virol 85(5), 2012-23.
  88. Shtanko, O., Watanabe, S., Jasenosky, L.D., Watanabe, T. and Kawaoka, Y. (2011) ALIX/AIP1 is required for NP incorporation into Mopeia virus Z-induced virus-like particles. J Virol 85(7), 3631-41.
  89. Oldstone, M. and Campbell, K. (2011) Decoding arenavirus pathogenesis: essential roles for alpha-dystroglycan-virus interactions and the immune response. Virology 411(2), 170- 179.
  90. Groseth, A., Hoenen, T., Weber, M., Wolff, S., Herwig, A., Kaufmann, A. and Becker, S. (2011) Tacaribe virus but not junin virus infection induces cytokine release from primary human monocytes and macrophages. PLoS Negl Trop Dis 5(5), e1137.
  91. Radoshitzky, S.R., Abraham, J., Spiropoulou, C.F., Kuhn, J.H., Nguyen, D., Li, W., Nagel, J., Schmidt, P.J., Nunberg, J.H., Andrews, N.C., Farzan, M. and Choe, H. (2007) Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses. Nature 446(7131), 92-6.
  92. Kerber, R., Rieger, T., Busch, C., Flatz, L., Pinschewer, D.D., Kümmerer, B.M. and Günther, S. (2011) Cross-species analysis of the replication complex of old world arenaviruses reveals two nucleoprotein sites involved in L protein function. J Virol 85(23), 12518-28.
  93. Hastie, K., Liu, T., Li, S., King, L., Ngo, N., Zandonatti, M., Woods, V., de la Torre, J. and Saphire, E. (2011b) Crystal structure of the Lassa virus nucleoprotein-RNA complex reveals a gating mechanism for RNA binding. Proc Natl Acad Sci U S A 108(48):19365- 19370
  94. Ortiz-Riano, E., Cheng, B.Y., de la Torre, J.C. and Martinez-Sobrido, L. (2011) The C-terminal region of lymphocytic choriomeningitis virus nucleoprotein contains distinct and segregable functional domains involved in NP-Z interaction and counteraction of the type I interferon response. J Virol 85(24), 13038-48.
  95. Grantham, R., Gautier, C., Gouy, M., Mercier, R. and Pave, A. (1980) Codon catalog usage and the genome hypothesis. Nucleic Acids Res 8(1), r49-r62.
  96. Leung, W., Ghosh, H. and Rawls, W. (1977) Strandedness of Pichinde virus RNA. J Virol 22(1), 235-242.
  97. Vezza, A., Gard, G., Compans, R. and Bishop, D. (1977) Structural components of the arenavirus Pichinde. J Virol 23(3), 776-862.
  98. York, J., Romanowski, V., Lu, M. and Nunberg, J. (2004) The signal peptide of the Junín arenavirus envelope glycoprotein is myristoylated and forms an essential subunit of the mature G1-G2 complex. J Virol 78(19), 10783-10875.
  99. Perez, M., Greenwald, D.L. and de la Torre, J.C. (2004) Myristoylation of the RING finger Z protein is essential for arenavirus budding. J Virol 78(20), 11443-8.
  100. Marie, J.C., Saltel, F., Escola, J.M., Jurdic, P., Wild, T.F. and Horvat, B. (2004) Cell surface delivery of the measles virus nucleoprotein: a viral strategy to induce immunosuppression. J Virol 78(21), 11952-61.
  101. Heinz, D.W., Baase, W.A. and Matthews, B.W. (1992) Folding and function of a T4 lysozyme containing 10 consecutive alanines illustrate the redundancy of information in an amino acid sequence. Proc Natl Acad Sci U S A 89(9), 3751-5.
  102. Hass, M., Golnitz, U., Muller, S., Becker-Ziaja, B. and Günther, S. (2004) Replicon system for Lassa virus. J Virol 78(24), 13793-803.
  103. Strecker, T., Maisa, A., Daffis, S., Eichler, R., Lenz, O. and Garten, W. (2006) The role of myristoylation in the membrane association of the Lassa virus matrix protein Z. Virol J 3, 93.
  104. Geisbert, T., Jones, S., Fritz, E., Shurtleff, A., Geisbert, J., Liebscher, R., Grolla, A., Ströher, U., Fernando, L., Daddario, K., Guttieri, M., Mothé, B., Larsen, T., Hensley, L., Jahrling, P. and Feldmann, H. (2005) Development of a new vaccine for the prevention of Lassa fever. PLoS medicine 2(6).


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten