Publikationsserver der Universitätsbibliothek Marburg

Titel:Regulation of motility and polarity in Myxococcus xanthus
Autor:Keilberg, Daniela
Weitere Beteiligte: Søgaard-Andersen, Lotte (Prof. Dr.)
Veröffentlicht:2013
URI:https://archiv.ub.uni-marburg.de/diss/z2013/0242
URN: urn:nbn:de:hebis:04-z2013-02424
DOI: https://doi.org/10.17192/z2013.0242
DDC: Biowissenschaften, Biologie
Titel (trans.):Regulation der Fortbewegung und Polarität bei Myxococcus xanthus
Publikationsdatum:2013-05-23
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Polarität, Signal transduction, Fortbewegung, Signaltransduktion, Motility, Polarity

Summary:
M. xanthus cells possess two independent motility systems: the adventurous (A) system and the social (S) system. S-motility depends on the extension and retraction of Type-4-pili, whereas A-motility is mediated via focal adhesion complexes that incorporate a MotAB-like motor. The rod-shaped M. xanthus cells can reverse the direction of movement, which is accompanied by a polarity inversion of components of both motility systems. Reversals are induced by the Frz chemosensory system, acting upstream of a small GTPase, MglA and its cognate GTPase activating protein, MglB. MglA and MglB localize to opposite cell poles in a moving cell, defining the leading pole (MglA) and the lagging pole (MglB). MglA and MglB directly interact. In this study we identified residues in MglB that are required for the interaction with MglA. Furthermore, we show that inhibition of the MglA/MglB interaction affects MglA GTPase activity and localization of MglB. In addition to the MglA/MglB system, the response regulator RomR is required for motility and reversals. RomR localizes in a bipolar asymmetric pattern with a large cluster at the lagging cell pole. Previously RomR was reported to regulate the A-motility system. We show that RomR localization does not depend on A-motility proteins. In contrast, we found that RomR is required for both motility systems, suggesting that it acts upstream of the two motility machineries. Consistent with that, we found that RomR directly interacts with MglA and MglB. Moreover, RomR, MglA and MglB affect the localization of each other in all pair-wise directions suggesting that RomR stimulates motility by promoting correct localization of MglA and MglB in MglA/RomR and MglB/RomR complexes at opposite poles. Furthermore, localization analyses suggest that the two RomR complexes mutually exclude each other from their respective poles. We further showed that RomR interfaces with FrzZ, the output response regulator of the Frz chemosensory system, to regulate reversals. Thus, RomR serves at the interface to connect a classic bacterial signalling module (Frz) to a classic eukaryotic polarity module (MglA/MglB). This modular design is paralleled by the phylogenetic distribution of the proteins suggesting an evolutionary scheme in which RomR was incorporated into the MglA/MglB module to regulate cell polarity followed by the addition of the Frz system to dynamically regulate cell polarity. Importantly, RomR possesses a conserved aspartate in its receiver domain, required for activation via phosphorylation. Because we found no evidence for direct phosphotransfer between FrzE and RomR, further phylogenetic studies were carried out. These analyzis revealed two candidate proteins involved in motility, RomX and RomY, which display a co-evolutionary relationship with RomR. We show that both proteins are involved in motility and that RomX behaves similarly to RomR with respect to phenotype and localization. We suggest that RomX and RomY play a role in regulation of motility together with RomR, MglA and MglB and possibly in RomR activation.

Bibliographie / References

  1. Punta M et al. (2012) The Pfam protein families database. Nucleic Acids Res 40:D290-301
  2. Kirkpatrick CL, Viollier PH (2011) Poles apart: prokaryotic polar organelles and their spatial regulation. Cold Spring Harb Perspect Biol 3
  3. Huitema E, Pritchard S, Matteson D, Radhakrishnan SK, Viollier PH (2006) Bacterial birth scar proteins mark future flagellum assembly site. Cell 124:1025-1037
  4. Blackhart BD, Zusman DR (1985a) Cloning and complementation analysis of the "Frizzy" genes of Myxococcus xanthus. Mol. Gen. Genet. 198:243- 254
  5. Blair DF, Berg HC (1990) The MotA protein of E. coli is a proton-conducting component of the flagellar motor. Cell 60:439-449
  6. Lam H, Schofield WB, Jacobs-Wagner C (2006) A landmark protein essential for establishing and perpetuating the polarity of a bacterial cell. Cell 124:1011-1023
  7. Leonardy S, Bulyha I, Sogaard-Andersen L (2008) Reversing cells and oscillating motility proteins. Mol Biosyst 4:1009-1014
  8. Youderian P, Burke N, White DJ, Hartzell PL (2003) Identification of genes required for adventurous gliding motility in Myxococcus xanthus with the transposable element mariner. Mol Microbiol 49:555-570
  9. Kim SK, Kaiser D (1990) Cell motility is required for the transmission of C- factor, an intercellular signal that coordinates fruiting body morphogenesis of Myxococcus xanthus. Genes & Dev. 4:896-904
  10. Wu SS, Kaiser D (1995) Genetic and functional evidence that Type IV pili are required for social gliding motility in Myxococcus xanthus. Mol Microbiol 18:547-558
  11. Bustamante VH, Martinez-Flores I, Vlamakis HC, Zusman DR (2004) Analysis of the Frz signal transduction system of Myxococcus xanthus shows the importance of the conserved C-terminal region of the cytoplasmic chemoreceptor FrzCD in sensing signals. Mol. Microbiol. 53:1501-1513
  12. Yu R, Kaiser D (2007) Gliding motility and polarized slime secretion. Mol Microbiol 63:454-467
  13. Wennerberg K, Rossman KL, Der CJ (2005) The Ras superfamily at a glance. J Cell Sci 118:843-846
  14. Mattick JS (2002) Type IV pili and twitching motility. Ann. Rev. Microbiol. 56:289-314
  15. Kortholt A, van Haastert PJ (2008) Highlighting the role of Ras and Rap during Dictyostelium chemotaxis. Cell Signal 20:1415-1422
  16. Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129:865-877
  17. Shi X, Wegener-Feldbrugge S, Huntley S, Hamann N, Hedderich R, Sogaard- Andersen L (2008) Bioinformatics and experimental analysis of proteins of two-component systems in Myxococcus xanthus. J Bacteriol 190:613- 624
  18. Zhang Y, Franco M, Ducret A, Mignot T (2010) A bacterial Ras-like small GTP- binding protein and its cognate GAP establish a dynamic spatial polarity axis to control directed motility. PLoS Biol 8:e1000430
  19. Mauriello EM, Nan B, Zusman DR (2009) AglZ regulates adventurous (A-) motility in Myxococcus xanthus through its interaction with the cytoplasmic receptor, FrzCD. Mol Microbiol 72:964-977
  20. Herzog A., Voss , Keilberg D., Hot E., Søgaard-Andersen L., Garbe C., Kostina E. (2012) A stategy for identifying fluorescence intensity profiles of single rod- shaped cells. Journal of Bioinformatics and Computational Biology Online Ready 1250024
  21. Romantsov T, Helbig S, Culham DE, Gill C, Stalker L, Wood JM (2007) Cardiolipin promotes polar localization of osmosensory transporter ProP in Escherichia coli. Mol Microbiol 64:1455-1465
  22. Keilberg D (2009) Cis-and trans-acting determinants of the response regulator RomR in M. xanthus, Diploma thesis
  23. Mignot T, Shaevitz JW, Hartzell PL, Zusman DR (2007) Evidence that focal adhesion complexes power bacterial gliding motility. Science 315:853- 856
  24. McBride MJ, Weinberg RA, Zusman DR (1989) "Frizzy" aggregation genes of the gliding bacterium Myxococcus xanthus show sequence similarities to the chemotaxis genes of enteric bacteria. Proc. Natl. Acad. Sci. U S A 86:424-428
  25. Blackhart BD, Zusman DR (1985b) "Frizzy" genes of Myxococcus xanthus are involved in control of frequency of reversal of gliding motility. Proc. Natl. Acad. Sci. U S A 82:8771-8774
  26. Sun M, Wartel M, Cascales E, Shaevitz JW, Mignot T (2011) From the Cover: Motor-driven intracellular transport powers bacterial gliding motility. Proc Natl Acad Sci U S A 108:7559-7564
  27. Hodgkin J, Kaiser D (1979) Genetics of Gliding Motility in Myxococcus xanthus (Myxobacterales): Two gene systems control movement. Mol. Gen.
  28. Bulyha I, Hot E, Huntley S, Sogaard-Andersen L (2011) GTPases in bacterial cell polarity and signalling. Curr Opin Microbiol 14:726-733
  29. Morano KA, Thiele DJ (1999) Heat shock factor function and regulation in response to cellular stress, growth, and differentiation signals. Gene Expr 7:271-282
  30. Trudeau KG, Ward MJ, Zusman DR (1996) Identification and characterization of FrzZ, a novel response regulator necessary for swarming and fruiting- body formation in Myxococcus xanthus. Mol. Microbiol. 20:645-655
  31. Mechanistic insights into bacterial polarity from structural analysis of the Ras- like G protein MglA and its cognate GAP MglB. EMBO J. 30, 4185-4197.
  32. Nan B, Chen J, Neu JC, Berry RM, Oster G, Zusman DR (2011) Myxobacteria gliding motility requires cytoskeleton rotation powered by proton motive force. Proc Natl Acad Sci U S A Nan B, Mauriello EM, Sun IH, Wong A, Zusman DR (2010) A multi-protein complex from Myxococcus xanthus required for bacterial gliding motility. Mol Microbiol 76:1539-1554
  33. Nudleman E, Wall D, Kaiser D (2006) Polar assembly of the type IV pilus secretin in Myxococcus xanthus. Mol Microbiol 60:16-29
  34. Leonardy S (2009) Regulierung der Polarität des A-Bewegungssystems in M. xanthus; PhD thesis
  35. Strauch MA, Hoch JA (1993) Signal transduction in Bacillus subtilis sporulation. Curr Opin Genet Dev 3:203-212
  36. Baker MD, Wolanin PM, Stock JB (2006) Signal transduction in bacterial chemotaxis. Bioessays 28:9-22
  37. Appleby JL, Parkinson JS, Bourret RB (1996) Signal transduction via the multi- step phosphorelay: not necessarily a road less traveled. Cell 86:845-848
  38. Scott AE, Simon E, Park SK, Andrews P, Zusman DR (2008) Site-specific receptor methylation of FrzCD in Myxococcus xanthus is controlled by a tetra-trico peptide repeat (TPR) containing regulatory domain of the FrzF methyltransferase. Mol Microbiol 69:724-735
  39. Inclan YF, Laurent S, Zusman DR (2008) The receiver domain of FrzE, a CheA- CheY fusion protein, regulates the CheA histidine kinase activity and downstream signalling to the A-and S-motility systems of Myxococcus xanthus. Mol Microbiol 68:1328-1339
  40. Gerding MA, Ogata Y, Pecora ND, Niki H, de Boer PA (2007) The trans- envelope Tol-Pal complex is part of the cell division machinery and required for proper outer-membrane invagination during cell constriction in E. coli. Mol Microbiol 63:1008-1025
  41. Rodrigue A, Quentin Y, Lazdunski A, Mejean V, Foglino M (2000) Two- component systems in Pseudomonas aeruginosa: why so many? Trends Microbiol 8:498-504
  42. Wall D, Kaiser D (1999) Type IV pili and cell motility. Mol Microbiol 32:01-10
  43. Inclan YF, Vlamakis HC, Zusman DR (2007) FrzZ, a dual CheY-like response regulator, functions as an output for the Frz chemosensory pathway of Myxococcus xanthus. Mol Microbiol 65:90-102
  44. Pelicic V (2008) Type IV pili: e pluribus unum? Mol Microbiol 68:827-837
  45. Mignot T, Merlie JP, Jr., Zusman DR (2005) Regulated pole-to-pole oscillations of a bacterial gliding motility protein. Science 310:855-857
  46. Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183-215
  47. Dubnau D (1999) DNA uptake in bacteria. Annu Rev Microbiol 53:217-244
  48. Pelling AE, Li Y, Shi W, Gimzewski JK (2005) Nanoscale visualization and characterization of Myxococcus xanthus cells with atomic force microscopy. Proc Natl Acad Sci U S A 102:6484-6489
  49. Galperin M (2005) A census of membrane-bound and intracellular signal transduction proteins in bacteria: Bacterial IQ, extroverts and introverts. BMC Microbiology 5:35
  50. Maier B, Potter L, So M, Long CD, Seifert HS, Sheetz MP (2002) Single pilus motor forces exceed 100 pN. Proc Natl Acad Sci U S A 99:16012-16017
  51. Sambrook J, Russell DW (2001) Molecular cloning : a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  52. Youderian P, Hartzell PL (2006) Transposon insertions of magellan-4 that impair social gliding motility in Myxococcus xanthus. Genetics 172:1397- 1410
  53. Li Y et al. (2003) Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 100:5443-5448
  54. Goldman BS et al. (2006) Evolution of sensory complexity recorded in a myxobacterial genome. Proc Natl Acad Sci U S A 103:15200-15205
  55. Julien B, Kaiser AD, Garza A (2000) Spatial control of cell differentiation in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 97:9098-9103
  56. Spormann AM, Kaiser AD (1995) Gliding movements in Myxococcus xanthus. J. Bacteriol. 177:5846-5852
  57. Leonardy S, Freymark G, Hebener S, Ellehauge E, Sogaard-Andersen L (2007) Coupling of protein localization and cell movements by a dynamically localized response regulator in Myxococcus xanthus. Embo J 26:4433 References 137
  58. Hartzell P, Kaiser D (1991a) Function of MglA, a 22-kilodalton protein essential for gliding in Myxococcus xanthus. J Bacteriol 173:7615-7624
  59. Hartzell P, Kaiser D (1991b) Upstream gene of the mgl operon controls the level of MglA protein in Myxococcus xanthus. J Bacteriol 173:7625-7635
  60. Jelsbak L, Søgaard-Andersen L (1999) The cell surface-associated intercellular C-signal induces behavioral changes in individual Myxococcus xanthus cells during fruiting body morphogenesis. Proc. Natl. Acad. Sci. USA 96:5031-5036
  61. Hunter P (2008) Not so simple after all. A renaissance of research into prokaryotic evolution and cell structure. EMBO Rep 9:224-226
  62. Jakovljevic V, Leonardy S, Hoppert M, Sogaard-Andersen L (2008) PilB and PilT are ATPases acting antagonistically in type IV pilus function in Myxococcus xanthus. J Bacteriol 190:2411-2421
  63. Rosenberg E, Keller KH, Dworkin M (1977) Cell density-dependent growth of Myxococcus xanthus on casein. J Bacteriol 129:770-777
  64. Wireman JW, Dworkin M (1977) Developmentally induced autolysis during fruiting body formation by Myxococcus xanthus. J Bacteriol 129:798-802
  65. Jenal U, Galperin MY (2009) Single domain response regulators: molecular switches with emerging roles in cell organization and dynamics. Curr. Opin. Microbiol. 12:152-160
  66. Ulrich LE, Koonin EV, Zhulin IB (2005) One-component systems dominate signal transduction in prokaryotes. Trends Microbiol 13:52-56
  67. Bulyha I et al. (2009) Regulation of the type IV pili molecular machine by dynamic localization of two motor proteins. Mol Microbiol 74:691-706
  68. Paul R et al. (2008) Allosteric regulation of histidine kinases by their cognate response regulator determines cell fate. Cell 133:452-461
  69. Mauriello EM et al. (2010) Bacterial motility complexes require the actin-like protein, MreB and the Ras homologue, MglA. EMBO J 29:315-326
  70. Muller FD, Treuner-Lange A, Heider J, Huntley SM, Higgs PI (2010) Global transcriptome analysis of spore formation in Myxococcus xanthus reveals a locus necessary for cell differentiation. BMC Genomics 11:264
  71. Leonardy S, Miertzschke M, Bulyha I, Sperling E, Wittinghofer A, Sogaard- Andersen L (2010) Regulation of dynamic polarity switching in bacteria by a Ras-like G-protein and its cognate GAP. EMBO J. 29:2276-2289
  72. Galperin MY (2010) Diversity of structure and function of response regulator output domains. Curr. Opin. Microbiol. 13:150-159
  73. Luciano J et al. (2011) Emergence and modular evolution of a novel motility machinery in bacteria. PLoS Genet 7:e1002268
  74. Miertzschke M et al. (2011) Structural analysis of the Ras-like G protein MglA and its cognate GAP MglB and implications for bacterial polarity. EMBO J. 30:4185-4197
  75. Patryn J, Allen K, Dziewanowska K, Otto R, Hartzell PL (2010) Localization of MglA, an essential gliding motility protein in Myxococcus xanthus. Cytoskeleton (Hoboken) 67:322-337
  76. Wuichet K, Cantwell BJ, Zhulin IB (2010) Evolution and phyletic distribution of two-component signal transduction systems. Curr. Opin. Microbiol. 13:219-225
  77. Wuichet K, Zhulin IB (2010) Origins and diversification of a complex signal transduction system in prokaryotes. Sci Signal 3:ra50
  78. Schramm, A., B. Lee, et al. (2012). "Intra-and interprotein phosphorylation between two-hybrid histidine kinases controls Myxococcus xanthus developmental progression." J Biol Chem 287(30): 25060-72.
  79. Zhang Y, Guzzo M, Ducret A, Li YZ, Mignot T (2012) A dynamic response regulator protein modulates G-protein-dependent polarity in the bacterium Myxococcus xanthus. PLoS Genet 8:e1002872 List of publications
  80. Keilberg D, Wuichet K, Drescher F, Sogaard-Andersen L (2012) A Response Regulator Interfaces between the Frz Chemosensory System and the MglA/MglB GTPase/GAP Module to Regulate Polarity in Myxococcus xanthus. PLoS Genet 8:e1002951
  81. Skerker JM, Berg HC (2001) Direct observation of extension and retraction of type IV pili. Proc. Natl. Acad. Sci. USA 98:6901-6904
  82. Kaiser D (1979) Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 76:5952-5956
  83. Hodgkin J, Kaiser D (1977) Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus. Proc. Natl. Acad. Sci. USA 74:2938-2942
  84. Shimkets L, Woese CR (1992) A phylogenetic analysis of the myxobacteria: basis for their classification. Proc Natl Acad Sci U S A 89:9459-9463
  85. Yang R et al. (2004) AglZ is a filament-forming coiled-coil protein required for adventurous gliding motility of Myxococcus xanthus. J Bacteriol 186:6168-6178
  86. Craig L, Li J (2008) Type IV pili: paradoxes in form and function. Curr Opin Struct Biol 18:267-277
  87. Sun H, Zusman DR, Shi W (2000) Type IV pilus of Myxococcus xanthus is a motility apparatus controlled by the frz chemosensory system. Current Biology 10:1143-1146
  88. Maddock JR, Shapiro L (1993) Polar location of the chemoreceptor complex in the Escherichia coli cell. Science 259:1717-1723
  89. Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294:1299-1304
  90. Ridley AJ et al. (2003) Cell migration: integrating signals from front to back. Science 302:1704-1709
  91. Lenarcic R et al. (2009) Localisation of DivIVA by targeting to negatively curved membranes. EMBO J 28:2272-2282


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten