Publikationsserver der Universitätsbibliothek Marburg

Titel:Metalloproteases involved in the Temozolomide (TMZ) resistance of U87-MG glioma cells
Autor:Dong, Fangyong
Weitere Beteiligte: Bartsch, Jörg-Walter (Prof. Dr. rer. nat. )
Veröffentlicht:2013
URI:https://archiv.ub.uni-marburg.de/diss/z2013/0162
DOI: https://doi.org/10.17192/z2013.0162
URN: urn:nbn:de:hebis:04-z2013-01620
DDC:610 Medizin
Titel (trans.):Induktion von Metalloproteasen bei der TMZ-Resistenz von U87-MG Gliom-Zellen
Publikationsdatum:2013-04-08
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Resistenz, Malignes Gliom, metalloproteases, Glioblastom, resistance, glioma, Metalloproteasen, Temozolomid, temozolomide, Induzierte Resistenz

Summary:
Glioblastoma Multiforme (GBM) ist der aggressivste hirneigene Tumor mit einer schlechten Überlebensprognose. Trotz Weiterentwicklung der multimodalen Behandlungsansätze, bestehend aus Tumorresektion und Radio- sowie Chemotherapie ist die Therapie des GBM bei einem durchschnittlichen Überleben von 2 Jahren nur bedingt erfolgreich. Als Standardchemotherapie kommt heutzutage das alkylierende Chemotherapeutikum Temozolomid (TMZ, Temodal®) zum Einsatz. Ein Grund für die ineffiziente Wirksamkeit von Chemo-und Radiotherapie ist die Ausbildung von Resistenzen in den Tumorzellen. Das Verständnis der Resistenzbildung auf molekularer Ebene ist daher sehr wichtig und könnte neue Ansätze zur Optimierung der Chemo- und Radiotherapie liefern. Metalloproteasen (MPs) sind in GBMs erhöht exprimiert und stets mit einer schlechten Prognose verbunden. In dieser Studie haben wir die Expression von MPs nach TMZ-Behandlung in U87-MG Glioblastom-Zellen systematisch untersucht. Eine TMZ-Behandlung von 5 Tagen induziert in U87-MG Zellen eine erhöhte Expression von ADAM8, MMP-1, MMP-9 and MMP-14 in den überlebenden Zellen. Um die Funktion der induzierten MPs zu untersuchen, wurde der Breitband MP-Inhibitor Batimastat (BB-94) in U87-MG Zellen in Verbindung mit TMZ eingesetzt. BB-94 führt zu einer erhöhten Sensitivität von U87-MG Zellen gegenüber dem TMZ-induzierten Zelltod und verringert das durch TMZ induzierte invasive Potenzial von U87-MG Zellen. Daraus folgt, dass die durch TMZ induzierten MPs sowohl zu einer Chemoresistenz als auch zu einer Rezidiv-Bildung beitragen können. Als potenzieller Signalweg der TMZ-vermittelten MP-Induktion in U87-MG Zellen wurde eine Zunahme der ERK1/2 Phosphorylierung unter TMZ-Behandlung nachgewiesen. Die Verwendung des ERK1/2 Inhibitors UO126 führte zu einer Abnahme der TMZ-induzierten Expression von ADAM8, MMP-1 and MMP-9, aber nicht von MMP-14, was darauf hindeutet, dass es alternative Signalwege bei der Induktion von MMP-14 gibt. PS/γ-Sekretase kombiniert mit MPs führt zu einer Prozessierung von Transmembran-Proteinen, durch die zahlreiche intrazelluläre Signalwege gesteuert werden. Die Inhibition von γ-Sekretase durch DAPT hat in unseren Analysen einen vergleichbaren Effekt wie BB-94 auf die Sensitivierung von U87-MG Zellen durch TMZ, was darauf schließen lässt, dass γ-Sekretase zusammen mit MPs zu einer Chemoresistenz von Glioblastom-Zellen führen kann. Zusammenfassend lässt sich sagen, dass die Induktion der Metalloproteasen MMP-1, MMP-9, MMP-14, and ADAM8 durch TMZ eine Chemoresistenz von Glioblastom-Zellen vermitteln kann und dass diese Metalloproteasen durch die Spaltung von Membranproteinen wie z.B. CD44, Met oder Integrinen an der „DNA Damage Response“ beteiligt sind oder die Proliferation und die Invasivität von Glioblastom-Zellen fördern können. Deshalb wäre eine kombinierte Therapie von TMZ mit Metalloprotease-Inhibitoren eine mögliche Therapie-Option, um die Effizienz der Standard-TMZ-Therapie zu verbessern und die Rezidivneigung zu verhindern.

Bibliographie / References

  1. Mahoney ET, Benton RL, Maddie MA, Whittemore SR, Hagg T (2009). ADAM8 is selectively up-regulated in endothelial cells and is associated with angiogenesis after spinal cord injury in adult mice. J Comp Neurol 512: 243-55.
  2. Kelly K, Hutchinson G, Nebenius-Oosthuizen D, Smith AJ, Bartsch JW, Horiuchi K, Rittger A, Manova K, Docherty AJ, Blobel CP (2005). Metalloprotease-disintegrin ADAM8: expression analysis and targeted deletion in mice. Dev Dyn 232: 221-31. References 66
  3. References 64 hemopexin domain of MMP-9 inhibits angiogenesis and retards the growth of intracranial glioblastoma xenograft in nude mice. Int J Cancer 124: 306-15.
  4. Expression and quantitative analysis of matrix metalloproteinase-2 and -9 in human gliomas. Brain Tumour Pathol 21: 105-12.
  5. Villano JL, Seery TE, Bressler LR (2009). Temozolomide in malignant gliomas: current use and future targets. Cancer Chemother Pharmacol 64: 647-55.
  6. Fritzsche FR, Jung M, Xu C, Rabien A, Schicktanz H, Stephan C, Dietel M, Jung K, Kristiansen G (2006). ADAM8 expression in prostate cancer is associated with parameters of unfavorable prognosis. Virchows Arch 449: 628-36.
  7. Anand M, Van Meter TE, Fillmore HL (2011). Epidermal growth factor induces matrix metalloproteinase-1 (MMP-1) expression and invasion in glioma cell lines via the MAPK pathway. J Neurooncol 104: 679-87.
  8. Strik HM, Marosi C, Kaina B, Neyns B (2012). Temozolomide dosing regimens for glioma patients. Curr Neurol Neurosci Rep 12: 286-93.
  9. Xie H, Xue YX, Liu LB, Wang P, Liu YH, Ying HQ (2011). Expressions of matrix metalloproteinase-7 and matrix metalloproteinase-14 associated with the activation of extracellular signal-regulated kinase1/2 in human brain gliomas of different pathological grades. Med Oncol 28 Suppl 1: S433-8.
  10. He S, Ding L, Cao Y, Li G, Deng J, Tu Y, Wang B (2011). Overexpression of a disintegrin and metalloprotease 8 in human gliomas is implicated in tumour progression and prognosis. Med Oncol 29: 2032-7.
  11. Hall T, Pegg LE, Pauley AM, Fischer HD, Tomasselli AG, Zack MD (2009). ADAM8 substrate specificity: influence of pH on pre-processing and proteoglycan degradation. Arch Biochem Biophys 491: 106-11.
  12. Trog D, Yeghiazaryan K, Fountoulakis M, Friedlein A, Moenkemann H, Haertel N, Schueller H, Breipohl W, Schild H, Leppert D, Golubnitschaja O (2006). Pro-invasive gene regulating effect of irradiation and combined temozolomide-radiation treatment on surviving human malignant glioma cells. Eur J Pharmacol 542: 8-15.
  13. References 69 (2007). The detection of ADAM8 protein on cells of the human immune system and the demonstration of its expression on peripheral blood B cells, dendritic cells and monocyte subsets. Immunobiology 212: 29-38.
  14. Wong ML, Kaye AH, Hovens CM (2007). Targeting malignant glioma survival signalling to improve clinical outcomes. J Clin Neurosci 14: 301-8.
  15. Stojic J, Hagemann C, Haas S, Herbold C, Kuhnel S, Gerngras S, Roggendorf W, Roosen K, Vince GH (2008). Expression of matrix metalloproteinases MMP-1, MMP-11 and MMP-19 is correlated with the WHO-grading of human malignant gliomas. Neurosci Res 60: 40-9.
  16. Gabelloni P, Da Pozzo E, Bendinelli S, Costa B, Nuti E, Casalini F, Orlandini E, Da Settimo F, Rossello A, Martini C (2010). Inhibition of metalloproteinases derived from tumours: new insights in the treatment of human glioblastoma. Neuroscience 168: 514-22.
  17. Sternlicht MD, Lochter A, Sympson CJ, Huey B, Rougier JP, Gray JW, Pinkel D, Bissell MJ, Werb Z (1999). The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98: 137-46.
  18. Weihofen A, Martoglio B (2003). Intramembrane-cleaving proteases: controlled liberation of proteins and bioactive peptides. Trends Cell Biol 13: 71-8.
  19. Kargiotis O, Chetty C, Gondi CS, Tsung AJ, Dinh DH, Gujrati M, Lakka SS, Kyritsis AP, Rao JS (2008). Adenovirus-mediated transfer of siRNA against MMP-2 mRNA results in impaired invasion and tumour-induced angiogenesis, induces apoptosis in vitro and inhibits tumour growth in vivo in glioblastoma. Oncogene 27: 4830-40.
  20. Apoptosis in malignant glioma cells triggered by the temozolomide-induced DNA lesion O6-methylguanine. Oncogene 26: 186-97.
  21. McGowan PM, McKiernan E, Bolster F, Ryan BM, Hill AD, McDermott EW, Evoy D, O'Higgins N, Crown J, Duffy MJ (2008). ADAM-17 predicts adverse outcome in patients with breast cancer. Ann Oncol 19: 1075-81.
  22. Barthet G, Shioi J, Shao Z, Ren Y, Georgakopoulos A, Robakis NK (2011). Inhibitors of gamma-secretase stabilize the complex and differentially affect processing of amyloid precursor protein and other substrates. FASEB J 25: 2937-46.
  23. Metalloproteinase disintegrins ADAM8 and ADAM19 are highly regulated in human primary brain tumours and their expression levels and activities are associated with invasiveness. J Neuropathol Exp Neurol 65: 516-27.
  24. Predictive value of MMP-7 expression for response to chemotherapy and survival in patients with non-small cell lung cancer. Cancer Sci 99: 2185-92.
  25. Valkovskaya N, Kayed H, Felix K, Hartmann D, Giese NA, Osinsky SP, Friess H, Kleeff J (2007). ADAM8 expression is associated with increased invasiveness and reduced patient survival in pancreatic cancer. J Cell Mol Med 11: 1162-74.
  26. Devy L, Huang L, Naa L, Yanamandra N, Pieters H, Frans N, Chang E, Tao Q, Vanhove M, Lejeune A, van Gool R, Sexton DJ, Kuang G, Rank D, Hogan S, Pazmany C, Ma YL, Schoonbroodt S, Nixon AE, Ladner RC, Hoet R, Henderikx P, Tenhoor C, Rabbani SA, Valentino ML, Wood CR, Dransfield DT (2009). Selective inhibition of matrix metalloproteinase-14 blocks tumour growth, invasion, and angiogenesis. Cancer Res 69: 1517-26.
  27. Littlepage LE, Sternlicht MD, Rougier N, Phillips J, Gallo E, Yu Y, Williams K, Brenot A, Gordon JI, Werb Z (2010). Matrix metalloproteinases contribute distinct roles in neuroendocrine prostate carcinogenesis, metastasis, and angiogenesis progression. Cancer Res 70: 2224-34.
  28. Duffy MJ, McKiernan E, O'Donovan N, McGowan PM (2009). Role of ADAMs in cancer formation and progression. Clin Cancer Res 15: 1140-4.
  29. Garcia-Taboada E, Barcia J, Guzman M, Velasco G (2011). A combined preclinical therapy of cannabinoids and temozolomide against glioma. Mol Cancer Ther 10: 90-103.
  30. Xu Q, Liu X, Chen W, Zhang Z (2010). Inhibiting adenoid cystic carcinoma cells growth and metastasis by blocking the expression of ADAM 10 using RNA interference. J Transl Med 8: 136.
  31. Duffy MJ, Mullooly M, O'Donovan N, Sukor S, Crown J, Pierce A, McGowan PM (2011). The ADAMs family of proteases: new biomarkers and therapeutic targets for cancer? Clin Proteomics 8: 9.
  32. Stupp R, Dietrich PY, Ostermann Kraljevic S, Pica A, Maillard I, Maeder P, Meuli R, Janzer R, Pizzolato G, Miralbell R, Porchet F, Regli L, de Tribolet N, Mirimanoff RO, Leyvraz S (2002). Promising survival for patients with newly diagnosed glioblastoma multiforme treated with concomitant radiation plus temozolomide followed by adjuvant temozolomide. J Clin Oncol 20: 1375-82.
  33. Kitange GJ, Carlson BL, Schroeder MA, Grogan PT, Lamont JD, Decker PA, Wu W, James CD, Sarkaria JN (2009). Induction of MGMT expression is associated with temozolomide resistance in glioblastoma xenografts. Neuro Oncol 11: 281-91.
  34. Badiga AV, Chetty C, Kesanakurti D, Are D, Gujrati M, Klopfenstein JD, Dinh DH, Rao JS (2011). MMP-2 siRNA inhibits radiation-enhanced invasiveness in glioma cells. PLoS One 6: e20614.
  35. Knolle MD, Owen CA (2009). ADAM8: a new therapeutic target for asthma. Expert Opin Ther Targets 13: 523-40.
  36. Roemer A, Schwettmann L, Jung M, Roigas J, Kristiansen G, Schnorr D, Loening SA, Jung K, Lichtinghagen R (2004). Increased mRNA expression of ADAMs in renal cell carcinoma and their association with clinical outcome. Oncol Rep 11: 529-36.
  37. Oliva CR, Moellering DR, Gillespie GY, Griguer CE (2011). Acquisition of chemoresistance in gliomas is associated with increased mitochondrial coupling and decreased ROS production. PLoS One 6: e24665.
  38. Baker SD, Wirth M, Statkevich P, Reidenberg P, Alton K, Sartorius SE, Dugan M, Cutler D, Batra V, Grochow LB, Donehower RC, Rowinsky EK (1999). Absorption, metabolism, and excretion of 14C-temozolomide following oral administration to patients with advanced cancer. Clin Cancer Res 5: 309-17.
  39. Sato T, Diehl TS, Narayanan S, Funamoto S, Ihara Y, De Strooper B, Steiner H, Haass C, Wolfe MS (2007). Active gamma-secretase complexes contain only one of each component. J Biol Chem 282: 33985-93.
  40. Lin WW, Karin M (2007). A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest 117: 1175-83.
  41. ADAM-17 expression in breast cancer correlates with variables of tumour progression. Clin Cancer Res 13: 2335-43.
  42. Choi SJ, Han JH, Roodman GD (2001). ADAM8: a novel osteoclast stimulating factor. J Bone Miner Res 16: 814-22.
  43. Ishikawa N, Daigo Y, Yasui W, Inai K, Nishimura H, Tsuchiya E, Kohno N, Nakamura Y (2004). ADAM8 as a novel serological and histochemical marker for lung cancer. Clin Cancer Res 10: 8363-70.
  44. Involvement of a disintegrin and a metalloproteinase 8 (ADAM8) in osteoclastogenesis and pathological bone destruction. Ann Rheum Dis 68: 427-34.
  45. Arribas J, Bech-Serra JJ, Santiago-Josefat B (2006). ADAMs, cell migration and cancer. Cancer Metastasis Rev 25: 57-68.
  46. Blobel CP (2005). ADAMs: key components in EGFR signalling and development. Nat Rev Mol Cell Biol 6: 32-43.
  47. Lee LG, Connell CR, Bloch W (1993). Allelic discrimination by nick-translation PCR with fluorogenic probes. Nucleic Acids Res 21: 3761-6.
  48. Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-8.
  49. ADAM8/MS2/CD156, an emerging drug target in the treatment of inflammatory and invasive pathologies. Curr Pharm Des 15: 2272-81.
  50. Peschon JJ, Slack JL, Reddy P, Stocking KL, Sunnarborg SW, Lee DC, Russell WE, Castner BJ, Johnson RS, Fitzner JN, Boyce RW, Nelson N, Kozlosky CJ, Wolfson MF, Rauch CT, Cerretti DP, Paxton RJ, March CJ, Black RA (1998). An essential role for ectodomain shedding in mammalian development. Science 282: 1281-4.
  51. Ochs K, Kaina B (2000). Apoptosis induced by DNA damage O6-methylguanine is Bcl-2 and caspase-9/3 regulated and Fas/caspase-8 independent. Cancer Res 60: 5815-24.
  52. Spasic D, Annaert W (2008). Building gamma-secretase: the bits and pieces. J Cell Sci 121: 413-20.
  53. Yu Q, Stamenkovic I (2000). Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumour invasion and angiogenesis. Genes Dev 14: 163-76.
  54. Creighton TE (1993). Chapter 9.3 in Proteins: structures and Molecular Properties, 2nd Ed. W.H.Freeman and Co., New York.
  55. Tsang LL, Farmer PB, Gescher A, Slack JA (1990). Characterisation of urinary metabolites of temozolomide in humans and mice and evaluation of their cytotoxicity. Cancer Chemother Pharmacol 26: 429-36.
  56. Beier D, Schulz JB, Beier CP (2011). Chemoresistance of glioblastoma cancer stem cells--much more complex than expected. Mol Cancer 10: 128.
  57. Kaina B, Ziouta A, Ochs K, Coquerelle T (1997). Chromosomal instability, reproductive cell death and apoptosis induced by O6-methylguanine in Mex-, Mex+ and methylation-tolerant mismatch repair compromised cells: facts and models. Mutat Res 381: 227-41.
  58. Comparative analyses of gene copy number and mRNA expression in glioblastoma multiforme tumours and xenografts. Neuro Oncol 11: 477-87.
  59. Roos WP, Kaina B (2006). DNA damage-induced cell death by apoptosis. Trends Mol Med 12: 440-50.
  60. Karran P, Bignami M (1994). DNA damage tolerance, mismatch repair and genome instability. Bioessays 16: 833-9.
  61. Lakka SS, Jasti SL, Gondi C, Boyd D, Chandrasekar N, Dinh DH, Olivero WC, Gujrati M, Rao JS (2002). Downregulation of MMP-9 in ERK-mutated stable transfectants inhibits glioma invasion in vitro. Oncogene 21: 5601-8.
  62. Tonn JC, Kerkau S, Hanke A, Bouterfa H, Mueller JG, Wagner S, Vince GH, Roosen K (1999). Effect of synthetic matrix-metalloproteinase inhibitors on invasive capacity and proliferation of human malignant gliomas in vitro. Int J Cancer 80: 764-72.
  63. Moss ML, Rasmussen FH (2007). Fluorescent substrates for the proteinases ADAM17, ADAM10, ADAM8, and ADAM12 useful for high-throughput inhibitor screening.
  64. Gilbert CA, Daou MC, Moser RP, Ross AH (2010). Gamma-secretase inhibitors enhance temozolomide treatment of human gliomas by inhibiting neurosphere repopulation and xenograft recurrence. Cancer Res 70: 6870-9.
  65. Giese A, Westphal M (1996). Glioma invasion in the central nervous system. Neurosurgery 39: 235-50; discussion 250-2.
  66. Forsyth PA, Laing TD, Gibson AW, Rewcastle NB, Brasher P, Sutherland G, Johnston RN, Edwards DR (1998). High levels of gelatinase-B and active gelatinase-A in metastatic glioblastoma. J Neurooncol 36: 21-9.
  67. Induction of membrane-type-1 matrix metalloproteinase by epidermal growth factor-mediated signaling in gliomas. Neuro Oncol 6: 188-99.
  68. Ulasov IV, Nandi S, Dey M, Sonabend AM, Lesniak MS (2011). Inhibition of Sonic hedgehog and Notch pathways enhances sensitivity of CD133(+) glioma stem cells to temozolomide therapy. Mol Med 17: 103-12.
  69. L1CAM regulates DNA damage checkpoint response of glioblastoma stem cells through NBS1. EMBO J 30: 800-13.
  70. Mitsiades N, Yu WH, Poulaki V, Tsokos M, Stamenkovic I (2001). Matrix metalloproteinase-7-mediated cleavage of Fas ligand protects tumour cells from chemotherapeutic drug cytotoxicity. Cancer Res 61: 577-81.
  71. Hoekstra R, Eskens FA, Verweij J (2001). Matrix metalloproteinase inhibitors: current References 65 developments and future perspectives. Oncologist 6: 415-27.
  72. Coussens LM, Werb Z (1996). Matrix metalloproteinases and the development of cancer. Chem Biol 3: 895-904.
  73. Deryugina EI, Quigley JP (2006). Matrix metalloproteinases and tumour metastasis. Cancer Metastasis Rev 25: 9-34.
  74. Parks WC, Wilson CL, Lopez-Boado YS (2004). Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 4: 617-29.
  75. Hur JH, Park MJ, Park IC, Yi DH, Rhee CH, Hong SI, Lee SH (2000). Matrix metalloproteinases in human gliomas: activation of matrix metalloproteinase-2
  76. McCawley LJ, Matrisian LM (2000). Matrix metalloproteinases: multifunctional contributors to tumour progression. Mol Med Today 6: 149-56.
  77. Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S (1980). Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284: 67-8.
  78. (MMP-2) may be correlated with membrane-type-1 matrix metalloproteinase (MT1-MMP) expression. J Korean Med Sci 15: 309-14.
  79. Rao JS (2003). Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 3: 489-501.
  80. Egeblad M, Werb Z (2002). New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2: 161-74.
  81. Shah S, Lee SF, Tabuchi K, Hao YH, Yu C, LaPlant Q, Ball H, Dann CE, 3rd, Sudhof T, Yu G (2005). Nicastrin functions as a gamma-secretase-substrate receptor. Cell 122: 435-47.
  82. Nuclear translocation and signalling of L1-CAM in human carcinoma cells requires ADAM10 and presenilin/gamma-secretase activity. Biochem J 420: 391-402.
  83. Hermisson M, Klumpp A, Wick W, Wischhusen J, Nagel G, Roos W, Kaina B, Weller M (2006). O6-methylguanine DNA methyltransferase and p53 status predict temozolomide sensitivity in human malignant glioma cells. J Neurochem 96: 766-76.
  84. Livak KJ, Flood SJ, Marmaro J, Giusti W, Deetz K (1995). Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for References 67 detecting PCR product and nucleic acid hybridization. PCR Methods Appl 4: 357-62.
  85. Weiss SJ, Peppin G, Ortiz X, Ragsdale C, Test ST (1985). Oxidative autoactivation of latent collagenase by human neutrophils. Science 227: 747-9.
  86. Boire A, Covic L, Agarwal A, Jacques S, Sherifi S, Kuliopulos A (2005). PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumourigenesis of breast cancer cells. Cell 120: 303-13.
  87. Vetrivel KS, Zhang YW, Xu H, Thinakaran G (2006). Pathological and physiological functions of presenilins. Mol Neurodegener 1: 4.
  88. Kleihues P, Cavenee WK (2000). Pathology and Genetics of Tumours of the Central Nervous System. World Heath Organization Classification of Tumours. Lyon, IARC.
  89. Newlands ES, Blackledge GR, Slack JA, Rustin GJ, Smith DB, Stuart NS, Quarterman CP, Hoffman R, Stevens MF, Brampton MH, et al. (1992). Phase I trial of temozolomide (CCRG 81045: M&B 39831: NSC 362856). Br J Cancer 65: 287-91.
  90. Dhodapkar M, Rubin J, Reid JM, Burch PA, Pitot HC, Buckner JC, Ames MM, Suman VJ (1997). Phase I trial of temozolomide (NSC 362856) in patients with advanced cancer. Clin Cancer Res 3: 1093-100.
  91. References 63 inhibits angiogenesis via regulated intracellular proteolysis of vascular endothelial growth factor receptor 1. J Biol Chem 281: 3604-13.
  92. Struhl G, Adachi A (2000). Requirements for presenilin-dependent cleavage of notch and other transmembrane proteins. Mol Cell 6: 625-36.
  93. Nagase H, Visse R, Murphy G (2006). Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69: 562-73.
  94. Structure of the murine CD156 gene, characterization of its promoter, and chromosomal location. J Biol Chem 272: 18209-15.
  95. O'Reilly SM, Newlands ES, Glaser MG, Brampton M, Rice-Edwards JM, Illingworth RD, Richards PG, Kennard C, Colquhoun IR, Lewis P, et al. (1993). Temozolomide: a new oral cytotoxic chemotherapeutic agent with promising activity against primary brain tumours. Eur J Cancer 29A: 940-2.
  96. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007). The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114: 97-109.
  97. Edwards DR, Handsley MM, Pennington CJ (2008). The ADAM metalloproteinases. Mol Aspects Med 29: 258-89.
  98. Murphy G (2008). The ADAMs: signalling scissors in the tumour microenvironment. Nat Rev Cancer 8: 929-41.
  99. Stupack DG (2007). The biology of integrins. Oncology (Williston Park) 21: 6-12.
  100. Haapasalo A, Kovacs DM (2011). The many substrates of presenilin/gamma-secretase.
  101. Schlomann U, Wildeboer D, Webster A, Antropova O, Zeuschner D, Knight CG, Docherty AJ, Lambert M, Skelton L, Jockusch H, Bartsch JW (2002). The metalloprotease disintegrin ADAM8. Processing by autocatalysis is required for proteolytic activity and cell adhesion. J Biol Chem 277: 48210-9.
  102. Moss ML, Bartsch JW (2004). Therapeutic benefits from targeting of ADAM family members. Biochemistry 43: 7227-35.
  103. Nieder C, Adam M, Molls M, Grosu AL (2006). Therapeutic options for recurrent high-grade glioma in adult patients: recent advances. Crit Rev Oncol Hematol 60: 181-93.
  104. Nakada M, Okada Y, Yamashita J (2003). The role of matrix metalloproteinases in glioma invasion. Front Biosci 8: e261-9.
  105. Tumour necrosis factor alpha induces a metalloprotease-disintegrin, ADAM8 (CD 156): implications for neuron-glia interactions during neurodegeneration. J Neurosci 20: 7964-71.
  106. Bartsch JW, Wildeboer D, Koller G, Naus S, Rittger A, Moss ML, Minai Y, Jockusch H (2010). Tumour necrosis factor-alpha (TNF-alpha) regulates shedding of TNF-alpha receptor 1 by the metalloprotease-disintegrin ADAM8: evidence for a protease-regulated feedback loop in neuroprotection. J Neurosci 30: 12210-8.
  107. Sareddy GR, Challa S, Panigrahi M, Babu PP (2009). Wnt/beta-catenin/Tcf signaling pathway activation in malignant progression of rat gliomas induced by transplacental N-ethyl-N-nitrosourea exposure. Neurochem Res 34: 1278-88.
  108. Hormigo A, Gu B, Karimi S, Riedel E, Panageas KS, Edgar MA, Tanwar MK, Rao JS, Fleisher M, DeAngelis LM, Holland EC (2006). YKL-40 and matrix metalloproteinase-9 as potential serum biomarkers for patients with high-grade gliomas. Clin Cancer Res 12: 5698-704.
  109. Zheng X, Jiang F, Katakowski M, Lu Y, Chopp M (2012). ADAM17 promotes glioma cell malignant phenotype. Mol Carcinog 51: 150-64.
  110. ADAM12 is highly expressed in carcinoma-associated stroma and is required for mouse prostate tumour progression. Oncogene 25: 5462-6.
  111. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352: 987-96.
  112. Zubel A, Flechtenmacher C, Edler L, Alonso A (2009). Expression of ADAM9 in CIN3 lesions and squamous cell carcinomas of the cervix. Gynecol Oncol 114: 332-6.
  113. Pelletier L, Guillaumot P, Freche B, Luquain C, Christiansen D, Brugiere S, Garin J, Manie SN (2006). Gamma-secretase-dependent proteolysis of CD44 promotes neoplastic transformation of rat fibroblastic cells. Cancer Res 66: 3681-7.
  114. Sriraman V, Eichenlaub-Ritter U, Bartsch JW, Rittger A, Mulders SM, Richards JS (2008). Regulated expression of ADAM8 (a disintegrin and metalloprotease domain 8) in the mouse ovary: evidence for a regulatory role of luteinizing hormone, progesterone receptor, and epidermal growth factor-like growth factors. Biol Reprod 78: 1038-48.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten