Publikationsserver der Universitätsbibliothek Marburg

Titel:Investigations into the mechanism of the coenzyme B12 dependent reaction catalyzed by glutamate mutase from Clostridium cochlearium
Autor:Lyatuu, Fredrick Edwin
Weitere Beteiligte: Buckel, W. (Prof. Dr.)
URN: urn:nbn:de:hebis:04-z2013-01099
DDC: Biowissenschaften, Biologie
Titel (trans.):Untersuchungen zu den Mechanismen der Katalyse der Coenzym-B12 abhängigen Glutamat-Mutase von Clostridium cochlearium


Clostridium cochlearium, Glutamate Mutase, Clostridium cochlearium, Coenzyme B12, Coenzym, Methylaspartatmutase

Aims of this study were the search for inhibitors of the coenzyme B12-dependent glutamate mutase and for insight into the first step of its catalytic mechanism, the homolytic cleavage of the cobalt-carbon bond. Glutamate mutase is composed of two separately isolated protein components S and E2, which in the presence of coenzyme B12 assemble to the active holo-glutamate mutase E2S2-B12 that catalyzes the reversible conversion of (S)-glutamate to (2S,3S)-3-methylaspartate. This reaction has been coupled with methylaspartase, which deaminates (2S,3S)-3-methylaspartate to mesaconate absorbing at 240 nm, to allow activity assays for glutamate mutase by UV-spectrophotometry. As potential inhibitors, compounds with sp2-centers and structural analogies to the intermediate radicals in the proposed mechanism were selected. Analogues to the 4-glutamyl radical were (E)- and (Z)-glutaconates, whereas analogues to the (2S,3S)-3-methyleneaspartate radical included itaconate, buta-1,3-diene-2,3-dicarboxylate, fumarate, maleate and mesaconate. Because all these compounds inhibited the auxiliary enzyme methylaspartase, glutamate mutase was incubated with these compounds for a certain time, followed by gelfitration on Sephadex G25. The residual activity of the inactivator-free enzyme was then determined by the coupled assay described above, whereby unexpectedly fumarate, maleate and mesaconate caused inactivation of the mutase. To check whether the other compounds acted as reversible inhibitors, a new assay with (2S,3S)-3-methylaspartate and pyruvate as substrates involving glutamate-pyruvate aminotransferase and the NADH-dependent (R)-2-hydroxyglutarate dehydrogenase was developed. Application of this assay showed that 2.5 mM itaconate and 8 mM (E)-glutaconate inhibited glutamate mutase in the presence of 200 mM (2S,3S)-3-methylaspartate by 50%. Furthermore, the kinetic constants of (2S,3S)-3-methylaspartate in the reaction of glutamate mutase were determined as Km= 7 ± 0.07 mM, kcat= 0.54 ± 0.06 s-1and kcatKm-1= 77 s-1M-1. Together with the kinetic constants of (S)-glutamate determined with the methylaspartase assay (Km = 2.25 ± 0.03 mM, kcat = 2.85 ± 0.5 s-1 and kcatKm-1 = 1.3 × 10-3 s-1M-1), an equilibrium constant of Keq = [glutamate] × [methylaspartate]-1 = 16 was calculated by the Briggs-Haldane equation close to that described in the literature (Keq = 12). ... The mutL gene from Clostridium tetanomorphum is located between the structural genes of glutamate mutase. We speculate that MutL acts as chaperone, which removes cob(II)alamin from inactive glutamate mutase complexes in an ATP dependent manner. The liberated components E2 and S recombine with coenzyme B12 to form a new active enzyme. To check this hypothesis, mutL was successful cloned on pASG-IBA3 and pASG-IBA 5 expression vectors via the pre-entry vector IBA-20. The MutL chaperone was produced in E. coli Rossetta in good yields

Bibliographie / References

  1. Malouf R., Grimley E. J., Areosa S. A. (2003), Folic acid with or without vitamin B 12 for cognition and dementia, Cochrane Database of Systematic Reviews, Issue 4. Art. No.: CD004514. DOI: 10.1002/14651858.CD004514
  2. Decker, K., Jungermann, K., Thauer, R. K., (1970), Energy production in anaerobic organisms, Angew. Chem. Int. Ed. Engl., 9, 138–158
  3. Rétey, J., (1990), Enzymic Reaction Selectivity by Negative Catalysis or How Do Enzymes Deal with Highly Reactive Intermediates?, Angew. Chem. Int. Ed. Engl., 29, 355–361
  4. Buckel, W., Friedrich, P., Golding, B. T., (2012), Hydrogen Bonds Guide the Short- Lived 5′-Deoxyadenosyl Radical to the Place of Action, Angew. Chem. Int. Ed., 51, 9974– 9976
  5. Gschösser, S., Hannak, R. B., Konrat, R., Gruber, K., Mikl, C., Kratky, C., Kräutler, B., (2004), Homocoenzyme B 12 and bishomocoenzyme B 12 : covalent structural mimics for homolyzed, enzyme-bound coenzyme B 12 , Chemistry, 11, 81–93
  6. Durbeej, B., Sandala, G. M., Bucher, D., Smith, D. M., Radom, L. (2009), On the Importance of Ribose Orientation in the Substrate Activation of the Coenzyme B 12 - Dependent Mutases. Chem. Eur. J., 15, 8578–8585
  7. Buck, N. E., Wood, L. R. Hamilton, N. J., Bennett, M. J., Peters, H. L., (2012), Treatment of a methylmalonyl-CoA mutase stopcodon mutation, Biochem. Biophys. Res. Commun., 427, 753–757
  8. Reitz, S., Alhapel, A., Essen, L., Pierik, A. J. (2008), Structural and kinetic properties of a beta-hydroxyacid dehydrogenase involved in nicotinate fermentation, J. Mol. Biol., 382, 802–811
  9. Chih, H-W, Roymoulik, I., Huhta, M. S., Madhavapeddi, P., Marsh, E. N. G. (2002), Adenosylcobalamin-dependent glutamate mutase: pre-steady-state kinetic methods for investigating reaction mechanism, Meth. Enzymol., 354, 380–399
  10. Cheng, M-C., Marsh, E. N. G. (2005), Isotope effects for deuterium transfer between substrate and coenzyme in adenosylcobalamin-dependent glutamate mutase, Biochemistry, 44, 2686–2691
  11. Yoon, M., Patwardhan, A., Qiao, C., Mansoorabadi, S. O., Menefee, A. L., Reed, G. H., Marsh, E. N. G., (2006), Reaction of adenosylcobalamin-dependent glutamate mutase with 2-thiolglutarate, Biochemistry, 45 , 11650–11657
  12. Brown, K. L., Cheng, S., Zou, X., Li, J., Chen, G., Valente, E. J., Zubkowski, J.D., Marques, H.M.,(1998), Structural and enzymatic studies of a new analogue of coenzyme B 12 with an alpha-adenosyl upper axial ligand, Biochemistry, 37, 9704–9715
  13. Jensen, M. P., Halpern, J., (1999), Dealkylation of Coenzyme B 12 and Related Organocobalamins: Ligand Structural Effects on Rates and Mechanisms of Hydrolysis, J. Am. Chem. Soc., 121, 2181–2192
  14. Mellman, I. S., Youngdahl-Turner, P., Willard, H. F., Rosenberg, L. E., (1977), Intracellular binding of radioactive hydroxocobalamin to cobalamin-dependent apoenzymes in rat liver, Proc. Natl. Acad. Sci. U.S.A., 74, 916–920
  15. Schneider, K., Peyraud, R., Kiefer, P., Christen, P., Delmotte, N., Massou, S., Portais, J.C., Vorholt, J.A., (2012),The ethylmalonyl-CoA pathway is used in place of the glyoxylate cycle by Methylobacterium extorquens AM1 during growth on acetate, J. Biol.
  16. Chen, H-P., Hsu, H-J., Hsu, F-C., Lai, C-C, Hsu, C-H., Hsu, C-H., (2008), Interactions between coenzyme B 12 analogs and adenosylcobalamin-dependent glutamate mutase from Clostridium tetanomorphum, FEBS J., 275, 5960–5968
  17. Djurdjevic, I., (2010), Production of glutaconic acid in recombinant Escherichia coli, Dr. rer. nat. Dissertation, Philipps University Marburg
  18. Lau, S. K. P., Woo, P. C. Y., Woo, G. K. S., Fung, A. M. Y., Ngan, A. H. Y., Song, Y., Liu, C., Summanen, P., Finegold, S.M., Yuen, K., (2006), Bacteraemia caused by Anaerotruncus colihominis and emended description of the species, J. Clin. Pathol., 59, 748–752
  19. Heider, J., (2007), Adding handles to unhandy substrates: anaerobic hydrocarbon activation mechanisms, Curr. Opin. Chem. Biol., 11, 188–194
  20. Huhta, M. S., Ciceri, D., Golding, B. T., Marsh, E. N. G., (2002), A novel reaction between adenosylcobalamin and 2-methyleneglutarate catalyzed by glutamate mutase, Biochemistry,41, 3200–3206
  21. Bradford, M.M., (1976), A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal Biochem., 72, 248-254
  22. Jayamani, E., (2008), A unique way of energy conservation in glutamate fermenting clostridia, Dr. rer. nat. Dissertation, Philipps University Marburg 165. Textor, S., (1998), Propionat-Stoffwechsel in Escherichia coli: Nachweis des Methylcitrat-Zyklus in Bakterien, Dr. rer. nat. Dissertation, Philipps University Marburg
  23. Rappe, C., (1988), Cis-α,β-unsaturated acids: Isocrotonic acid, Organic synthesis,Coll. Vol.6, 711
  24. Gruber, K., Kratky, C., (2002), Coenzyme B(12) dependent glutamate mutase, Curr. Opin. Chem. Biol., 6 , 598–603
  25. Herrmann, G., (2008), Enzymes of two clostridial amino-acid fermentation pathways, Dr. rer. nat. Dissertation, Philipps University Marburg
  26. Bandarin V., Reed, G.H.,(1999), Ethanolamine ammonia-lyase, In Banerjee, R., (ed), Chemistry and Biochemistry of B12, p. 811-833, John Wiley & Sons, Inc., New York 162. Booker, S., Stubbe, J., (1993), Cloning, sequencing, and expression of the adenosylcobalamin-dependent ribonucleotide reductase from Lactobacillus leichmannii, Proc. Natl. Acad. Sci. U.S.A., 90 , 8352–8356
  27. Erb, T. J., Rétey, J., Fuchs, G., Alber, B. E. (2008), Ethylmalonyl-CoA mutase from Rhodobacter sphaeroides defines a new subclade of coenzyme B 12 -dependent acyl-CoA mutases, J. Biol. Chem. 283, 32283–32293
  28. Reitzer, R., Gruber, K., Jogl, G., Wagner, U. G., Bothe, H., Buckel, W., Kratky, C., (1999), Glutamate mutase from Clostridium cochlearium: the structure of a coenzyme B 12 -dependent enzyme provides new mechanistic insights, Structure, 7 , 891–902
  29. Kratky, C., Gruber, K., (2001), Glutamate Mutase, In Messerschmidt, A., Huber, R., Wieghardt, K., (eds), Handbook of Metalloproteins, John Wiley & Sons, Ltd, Chichester 182. Chowdhury, S., Thomas, M. G., Escalante-Semerena, J. C., Banerjee, R., (2001), The coenzyme B 12 analog 5'-deoxyadenosylcobinamide-GDP supports catalysis by methylmalonyl-CoA mutase in the absence of trans-ligand coordination, J. Biol. Chem., 276, 1015–1019
  30. Edwards, C.H., (1996), Investigations into the mechanism of action of the adenosylcobalamin dependent enzymes 2-methyleneglutarate mutase and glutamate mutase, PhD thesis, Newcastle university 174. Zagalak, B., Pawelkiewicz, J., (1965), Synthesis and Properties of Co-Adenine Nucleoside Analogue of Coenzyme B 12 , Acta Biochimica Polonica., XII(3), 219-228
  31. Alhapel, A., Darley, D. J., Wagener, N., Eckel, E., Elsner, N., Pierik, A. J., (2006), Molecular and functional analysis of nicotinate catabolism in Eubacterium barkeri, Proc. Natl. Acad. Sci. U.S.A., 103, 12341–12346
  32. Jeng, I., Barker, H. A., (1974), Purification and properties of l-3-aminobutyryl coenzyme A deaminase from a lysine-fermenting Clostridium, J. Biol. Chem., 249, 6578–6584
  33. Baker, J. J., Jeng, I., Barker, H. A., (1972), Purification and properties of L-erythro-3,5- diaminohexanoate dehydrogenase from a lysine-fermenting Clostridium, J. Biol. Chem., 247, 7724–7734
  34. Xia, L., Ballou, D. P., Marsh, E. N. G., (2004), Role of Arg100 in the active site of adenosylcobalamin-dependent glutamate mutase, Biochemistry, 43, 3238–3245
  35. Leutbecher, U., (1992), Studien zum Mechanismus der Coenzyme B 12 -abhängigen Glutamat-Mutase aus Clostridium cochlearium, Dr. rer. nat. Dissertation, Philipps University Marburg
  36. Erb, T. J., Berg, I. A., Brecht, V., Müller, M., Fuchs, G., Alber, B. E., (2007), Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase: the ethylmalonyl-CoA pathway, Proc. Natl. Acad. Sci. U.S.A., 104, 10631–10636
  37. Kornberg, H. L., Krebs, H. A., (1957), Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle, Nature, 179, 988–991
  38. Bradbeer, C., (1965), The clostridial fermentations of choline and ethanolamine. 1. Preparation and properties of cell-free extracts, J. Biol. Chem., 240 , 4669–4674
  39. Bucher, D., Sandala, G. M., Durbeej, B., Radom, L., Smith, D. M., (2012), The elusive 5'-deoxyadenosyl radical in coenzyme-B 12 -mediated reactions, J. Am. Chem. Soc., 134, 1591–1599 2004-2006: Science and Engineering Graduate Scheme (SEGS) Participant, UK. Occasionally working in the laboratory of Prof. Dr. Bernard Golding, School of Chemistry, Newcastle University 2006-2007: Scientist Tropical Pesticides Research Institute P. O. Box 3024 Arusha, Tanzania 2008-Todate: Ph D Student, Laboratory for Microbial Biochemistry Philipps University, Marburg Karl-von-Frisch-Str. 8 35032 Marburg Associate Member International Max Planck Research School (IMPRS) in Environmental, Cellular and Molecular Microbiology.
  40. Barker, H. A., Rooze, V., Suzuki, F., Iodice, A. A., (1964), The Glutamate Mutase System. Assays and Properties, J. Biol. Chem., 239, 3260–3266
  41. Filatova, L. V., Berg, I. A., Krasil'nikova, E. N., Ivanovskiĭ, R. N., (2005), The mechanism of acetate assimilation in purple nonsulfur bacteria lacking the glyoxylate pathway: enzymes of the citramalate cycle in Rhodobacter sphaeroides, Mikrobiologiia ,74, 319–328
  42. Bothe, H., (1998), Untersuchungen zum Reaktionsmechanismus der Coenzym B 12 - abhängigen Glutamat-Mutase aus Clostridium cochlearium, Dr. rer. nat. Dissertation, Philipps University Marburg
  43. Barker, H. A., Smyth, R. D., Wilson, R. M., Weissbach, H., (1959), The purification and properties of beta-methylaspartase, J. Biol. Chem., 234, 320–328
  44. Jacobsen, D. W., Holland, R. J., Montejano, Y., Huennekens, F. M., (1979), Cryptofluorescent analogs of cobalamin coenzymes: synthesis and characterization, J. Inorg. Biochem. ,10, 53–65
  45. Marsh, E.N.G., Drennan, C.L., (2001), Adenosylcobalamin-dependent isomerases: new insights into structure and mechanism, Curr. Opin Chem Biol, 5, 499-505

* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten