Publikationsserver der Universitätsbibliothek Marburg

Titel:Biochemical and molecular analyses of the biosynthesis pathway of the indole derivatives in Piriformospora indica
Autor:Hilbert, Magdalena
Weitere Beteiligte: Kahmann, Regine (Prof. Dr.)
Veröffentlicht:2012
URI:https://archiv.ub.uni-marburg.de/diss/z2013/0072
DOI: https://doi.org/10.17192/z2013.0072
URN: urn:nbn:de:hebis:04-z2013-00721
DDC:570 Biowissenschaften, Biologie
Titel (trans.):Biochemische und molekulare Analysen des Biosynthesepfads von Indolderivaten bei Piriformospora indica
Publikationsdatum:2013-02-11
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
root endophyte Piriformospora indica, plant-fungi interaction

Summary:
The mutualistic root endophyte Piriformospora indica has the ability to colonize a wide range of plants including the monocot barley (Hordeum vulgare) and the dicot model plant Arabidopsis thaliana. The colonization of both, Arabidopsis and barley is characterized by a biphasic colonization strategy with an initial biotrophic interaction followed by a cell death associated phase. During both phases fungal inter- and intracellular growth is restricted to the root cortex cells and can never be observed in the endodermis or the central cylinder. The colonization of root cells by P. indica is often associated with beneficial effects to the host, such as growth promotion and changes in root morphology. The broad host range and the widely conferred benefits to the hosts suggest that the beneficial outcome could be based on general mechanisms and signaling pathways common to many different plant species. One such mechanism could be the recruitment of phytohormone pathways by P. indica. Beside their function in plant developmental processes, phytohormones were recently described to be involved in plant defence responses. Secretion of indole-3-acetic acid (IAA) by P. indica into the growth medium has already been reported. In this PhD study a tryptophan dependent IAA production pathway was identified in P. indica using biochemical and molecular methods. The main goals were focused on the functional analyses of the P. indica tryptophan dependent IAA pathway and how this may affect compatibility during the biotrophic interaction between P. indica and barley roots. For this, suitable molecular tools such as a PEG-mediated genetic transformation, a GFP reporter and an RNAi-mediated silencing system were established or optimized for use in P. indica. Time course transcriptional analyses after exposure to tryptophan designated the tryptophan aminotransferase piTam1 gene as the top candidate gene involved in the production of IAA in P. indica. A green fluorescence protein (GFP) reporter study and transcriptional analysis of colonized barley roots showed that piTam1 is induced during the biotrophic phase. Via an RNAi-mediated gene silencing piTam1 was identified as a key gene involved in the first step of auxin biosynthesis. RNAi transformants impaired in auxin production were characterized by a less compact colony growth phenotype and differences in their ability to utilize indole-3-acetaldehyde (IAD). Additionally, silencing of the piTam1 gene resulted in a reduced P. indica colonization of barley roots at 3 days after inoculation (dai) but the elicitation of growth promotion was not affected compared with barley colonized by the P. indica wild-type strain. Consistently an increased amount of free IAA and free indole-3-lactate (ILA), a byproduct of P. indica IAA biosynthesis pathway, could be detected in P. indica colonized barley roots compared to non colonized control plants at this time point Given the large amount of IAA detected in planta at 3 dai and the amount of IAA produced by P. indica in culture after tryptophan induction, it is unlikely that the differences in free IAA levels observed in planta are merely derived from fungal IAA. This suggests a local accumulation of both fungal and plant IAA during the initial biotrophic phase and is consistent with changes in IAA signaling and biosynthesis observed in barley transcriptome at this time point.

Bibliographie / References

  1. Ward W.W. 1979 Energy transfer processes in bioluminescence. Photochem. Photobiol. Rev. 4: 1-57.
  2. Ziv C. and Yarden O. 2010 Gene silencing for functional analysis: assessing RNAi as a tool for manipulation of gene expression. Methods Mol Biol., 638:77-100.
  3. Sprunck S., Jacobsen H.J., Reinard, T. 1995 Indole-3-lactic acid is a weak auxin analogue but not an anti-auxin. Journal of plant growth regulation 14:191-197.
  4. Zhao W., Fanning M.L., Lane T. 2005 Efficient RNAi-based gene family knockdown via set cover optimization. Artif Intell Med. 35(1-2): 61-73.
  5. Zuccaro A., Basiewicz M., Zurawska M., Biedenkopf D., Kogel KH. 2009 Karyotype analysis, genome organization, and stable genetic transformation of the root colonizing fungus Piriformospora indica. Fungal Genet Biol; 46(8):543-50.
  6. Yang T.T., Cheng L., Kain S.R., 1996. Optimized codon usage and chromophore mutations provide enhanced sensitivity with the green fluorescent protein. Nucleic Acids Res. 24: 4592–4593.
  7. Stein E., Molitor A., Kogel KH., Waller F. 2008 Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant Cell Physiol.; 49(11):1747-51.
  8. Staswick P.E., Serban B., Rowe M., Tiryaki I., Maldoado M.T., Maldonado M.C., Suza W. 2005 Characterization of a Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. The Plant Cell 17:616-627.
  9. The Tomato Aux/IAA Transcription Factor IAA9 Is Involved in Fruit Development and Leaf Morphogenesis. The Plant Cell 17: 2676–2692.
  10. Yoshida S., Nakashita H. 2008 Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis. Plant Cell 20:1678–1692.
  11. Shahollari B., Vadassery J., Varma A., Oelmüller R. 2007 A leucine-rich repeat protein is required for growth promotion and enhanced seed production mediated by the endophytic fungus Piriformospora indica in Arabidopsis thaliana. Plant J; 50(1):1-13.
  12. Piriformospora indica affects plant growth by auxin production. Physiol Plant.; 131(4):581-9.
  13. Tanaka E., Koga H., Mori M., Mori M. 2011 Auxin production by the rice Blast Fungus and its Localization in Host Tissue. Journal of Phytopathology 159(7-8): 522–530.
  14. Spaepen S., Vanderleyden J., Remans R. 2007 Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev.; 31(4):425-48.
  15. Somers E., Ptacek D., Gysegom P., Srinivasan M. and Vanderleyden J. 2005 Azospirillum brasilense Produces the Auxin-Like Phenylacetic Acid by Using the Key Enzyme for Indole-3-Acetic Acid Biosynthesis. Appl Environ Microbiol 71(4): 1803–1810.
  16. Shilts T., Erturk U., Patel N.J., Chung K-R. 2005 Physiological Regulation of Biosynthesis of Phytohormone Indole-3-acetic Acid and Other Indole Derivatives by the Citrus Fungal Pathogen Colletotrichum acutatum. Journal of biological Sciences 5(2): 205-210.
  17. Zhao Y., Hull A.K., Gupta N.R., Goss K.A., Alonso J., Ecker J.R., Normanly J., Chory J., Celenza J.L. 2002 Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev.; 16(23):3100-12.
  18. Sun C., Johnson J.M., Cai D., Sherameti I., Oelmüller R., Lou B. 2010 Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J Plant Physiol.15;167(12):1009-17.
  19. Vadassery J., Ritter C., Venus Y., Camehl I., Varma A., Shahollari B., Novák O., Strnad M., Ludwig-Müller J., Oelmüller R. 2008 The role of auxins and cytokinins in the mutualistic interaction between Arabidopsis and Piriformospora indica. Mol Plant Microbe Interact. 21(10):1371-83.
  20. Sitbon F., Astot C., Edlund A., Crozier A., Sandberg G. 2000 The relative importance of tryptophan-dependent and tryptophan- independent biosynthesis of indole-3-acetic acid in tobacco during vegetative growth. Planta.; 211(5):715-21. Literature 116
  21. Swarup R., Parry G., Graham N., Allen T., Bennett M. 2002 Auxin cross-talk: integration of signalling pathways to control plant development. Plant Mol Biol.; 49(3-4):411-26.
  22. Van de Rhee M., Graca P.M.A., Huizing H.J., Mooibroek H. 1996 Transformation of the cultivated mashroom, Agaricus bisporus, to hygromycin B resistance. Mol Gen Genet 250: 252-258.
  23. Woodward A.W. and Bartel B. 2005 Auxin: regulation, action, and interaction. Ann Bot.; 95(5):707-35. Review.
  24. Wu Y., Zhang D., Chu J.Y.,Boyle P., Wang Y., Brindle I.D., de LucaV., Després C. 2012 The Arabidopsis NPR1 Protein Is a Receptor for the Plant Defense Hormone Salicylic Acid. Cell Reports 1(6): 639–647.
  25. Woolcock K.J., Gaidatzis D., Punga T., Bühler M. 2011 Dicer associates with chromatin to repress genome activity in Schizosaccharomyces pombe. Nature Structural & Molecular Biology 18: 94–99.
  26. Schweizer P., Pokorny J., Abderhalden O., Dudler R. 1999 A transient assay system for the functional assessment of defense- related genes in wheat. Molecular Plant-Microbe Interactions 12(8): 647-654.
  27. Murat C., Martin F., Kogel KH. 2011 Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathog. 7(10):e1002290.
  28. Vinklárková K. and Sladký Z. 1978 Exogenous regulators in the mycelium of Pleurotus ostreatus after exogenous application.
  29. Wang J., Holden D.W. and Leong S.A. 1988 Gene transfer system for the phytopathogenic fungus Ustilago maydis. PNAS (1): 85(3): 865-869.
  30. Spellig T., Bottin A. and Kahmann R. 1996 Green fluorescent protein (GFP) as a new vital marker in the phytopathogenic fungus Ustilago maydis. Molecular and General Genetics 252(5): 503-509.
  31. Wang D., Pajerowska-Mukhtar K.., Hendrickson Culler A. and Dong1 X. 2007 Salicylic Acid Inhibits Pathogen Growth in Plants through Repression of the Auxin Signaling Pathway. Current Biology 17: 1784–1790.
  32. Schuren F.H.J. and Wessels J.G.H. 1994 Highly-efficient transformation of the homobasidiomycete Schizophllum commune to phleomycin resistance. Curr Genet 26:179-183.
  33. Vert G., Walcher C.L., Chory J., Nemhauser J.L. 2008 Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2. Proc Natl Acad Sci U S A.; 105(28):9829-34.
  34. Suzuki K., Imai Y., Yamashita I., Fukui S. 1983 In vivo ligation of linear DNA molecules to circular forms in the yeast Saccharomyces cerevisiae. J. Bacteriol. August 155 (2): 747-754.
  35. Sambrook J., Fritsch E., Maniatis T. 1989 Molecular Cloning: a laboratory manual. New York. Cold Spring Harbor laboratory. Cold Spring Harbor Press. 2-nd edition.
  36. Koshiba T. 1998 Molecular cloning and characterization of aldehyde oxidases in Arabidopsis thaliana. Plant Cell Physiol.; 39(4):433-42.
  37. Spoel S.H., Koornneef A., Claessens S.M., Korzelius J.P., Van Pelt J.A., Mueller M.J., Buchala A.J., Métraux J.P., Brown R., Kazan K., Van Loon L.C., Dong X., Pieterse C.M. 2003 NPR1 modulates cross-talk between salicylate-and jasmonate- dependent defense pathways through a novel function in the cytosol. Plant Cell; 15(3):760-70.
  38. Swofford D.L. 1993 Paup – a computer-program for phylogenetic inference using maximum parsimony. Journal of General Physiology 102:A9–A9.
  39. Varma A., Verma S., Sudha Sahay N., Bütehorn B., Franken P. 1999 Piriformospora indica, a Cultivable Plant-Growth- Promoting Root Endophyte Appl Environ Microbiol. 65(6): 2741–2744.
  40. Sosa-Morales M.E., Guevara-Lara F., Martínez-Juárez V. M. and Paredes-López O. 1997 Production of indole-3-acetic acid by mutant strains of Ustilago maydis (maize smut/huitlacoche). Applied Microbiology and Biotechnology 48(6): 726-729.
  41. Vandesompele1 J. 2009 Real-Time qPCR as a Tool for Evaluating RNAi-Mediated Gene Silencing. BioTechniques Protocol guide (p.47) DOI 10.2144/000113006.
  42. Stepanova A.N., Robertson-Hoyt J., Yun J., Benavente L.M., Xie D-Y., Dolezal K., Schlereth A., Jürgens G. and Alonso J.M. 2008 TAA1-Mediated Auxin Biosynthesis Is Essential for Hormone Crosstalk and Plant Development. Cell 133, 177–191.
  43. Sherameti I., Tripathi S., Varma A., Oelmüller R. 2008 The root-colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves. Mol Plant Microbe Interact; 21(6):799-807.
  44. Stewart C. 2001 The utility of green fluorescent protein in transgenic plants. Plant Cell Reports 20(5): 376-382, Straight A:F., Belmont A.S., Robinett C.C., Murray A.W. 1996 GFP tagging of budding yeast chromosomes reveals that protein–protein interactions can mediate sister chromatid cohesion. Current Biology 6(12): 1599–1608.
  45. Sarwar M., Arshad M., Martens D.A., Frankenberger W.T. 1992 Tryptophan-dependent biosynthesis of auxins in soil. Plant and Soil 147: 207-215.
  46. Wang H. and Chong S. 2002 Visualization of coupled protein folding and binding in bacteria and purification of the heterodimeric complex. PNAS; 100(2):478-83.
  47. Bouwmeester H.J., Fernie A.R., Klee H.J. 2010 SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza- induced apocarotenoid formation in tomato. Plant J.; 61(2):300-11.
  48. Sonnewald U., Kogel KH. 2009 Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with Piriformospora indica. Plant J; 59(3):461-74.
  49. Kogel K.H. 2008 Detection and identification of bacteria intimately associated with fungi of the order Sebacinales. Cell Microbiol 10(11): 2235-2246.
  50. Yamada T. 1993 The role of auxin in plant-disease development. Annu Rev Phytopathol.; 31:253-73.
  51. Verma S., Varma A., Rexer K-H, Hassel A., Kost G., Sarbhoy A., Bisen P., Bütehorn B., Franken P. 1998 Piriformospora indica, gen. Et sp. Nov., a new root-colonizing fungus. Mycologia 90 (5): 896-903.
  52. Wettstein D., Franken P., Kogel KH. 2005 The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A; 102(38):13386-91.
  53. Yadav V., Kumar M., Deep D.K., Kumar H., Sharma R., Tripathi T., Tuteja N., Saxena A.K., Johri A.K. 2010 A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant. J Biol Chem; 285(34):26532-44.
  54. Stepanova A.N., Hoyt J.M., Hamilton A.A. and Alonso J.M. 2005 A Link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell 17: 2230–2242.
  55. Sirois J.C. 1966 Studies on growth regulators. I. Improved Avena coleoptile elongation test for auxin. Plant Physiol. 41(8):1308-12.
  56. Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc Natl Acad Sci U S A;101(44):15811-6.
  57. Schulz B., Banuett F., Dahl M., Schlesinger R., Schafer W., Martin T., Herskowitz I., Kahmann R. 1990 The b alleles of U. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell 60(2): 295-306.
  58. Weiss M., Selosse M.A., Rexer K.H., Urban A., Oberwinkler F. 2004 Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycol Res.; 108(Pt 9):1003-10.
  59. Zipfel C. 2008 Pattern-recognition receptors in plant innate immunity Current Opinion in Immunology 20:10–16.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten