Publikationsserver der Universitätsbibliothek Marburg

Titel:Einfluss des PAR-2 auf die epitheliale Permeabilität und Ionensekretion im Gastrointestinaltrakt
Autor:Dasdelen, Süha
Weitere Beteiligte: Böhm, Stephan (PD Dr.)
Veröffentlicht:2012
URI:https://archiv.ub.uni-marburg.de/diss/z2012/1011
URN: urn:nbn:de:hebis:04-z2012-10111
DOI: https://doi.org/10.17192/z2012.1011
DDC:610 Medizin
Titel (trans.):The influence of PAR-2 on intestinal ion-secretion and -permeability in the lower gastrointestinal tract
Publikationsdatum:2012-12-21
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
intestinal barrier5, Elektrolythaushalt, lower gastrointestinal tract2, Permeabilität, Proteinase-aktivierte Rezeptoren, PAR-2, Gastrointestinaltrakt, Trypsin, par, proteinase activated receptor3, intestinal ion-secretion4, permeability1

Zusammenfassung:
Zielsetzung dieser Arbeit war die Charakterisierung der äußerst komplexen und vielseitigen Wirkungen, die durch den PAR-2 im Gastrointestinaltrakt vermittelt werden. Hier wurde vor allem der regulatorische Einfluss des PAR-2 (Protease aktivierter Rezeptor 2) auf die intestinale Ionensekretion und die Permeabilität im unteren Intestinaltrakt untersucht. Die Ausbildung der inneren intestinalen Barriere ist zu einem bedeutenden Anteil von Proteasen abhängig. Entscheidend im Prozess einer regelhaften Reifung und Ausbildung der Zell-Zell-Verbindungen ist nach Bacher jedoch vor allem der andauernde, intraluminale (apikale) Einfluss der Proteasen (Bacher A et al, 1992). Im Hinblick auf die Tatsache, dass eine Inhibition der Proteasen intraluminal eine verminderte Bildung eines transepithelialen Widerstandes (TER) zur Folge hat (Bacher A et al, 1992), sind hier die kurzfristigen Veränderungen des TER und des Kurzschlussstromes durch Trypsin und das PAR-2-AP untersucht worden. Hinweise auf eine evtl. protektive Funktion i.S. einer Steigerung des transepithelialen Widerstandes durch Proteasen erhielt man durch die Arbeiten von Lynch (Lynch RD et al, 1995), der zeigen konnte, dass durch eine basolaterale Stimulation von Zellen mittels Trypsin tight-junction-Komplexe (vor allem ZO-1-Proteine) neu formiert werden. Über welche Rezeptoren dieser Vorgang reguliert wird, wurde in der damaligen Arbeit nicht untersucht. Entscheidend war, dass eine basolaterale Stimulation zu einem ca. 1 stündigen Anstieg des TER (transepithelialen Widerstandes) auf über 190% des Ausgangswertes geführt hatte. In der nun vorliegenden Arbeit konnte durch die Versuchsreihe mit der Protease Trypsin und dem PAR-2-aktivierenden Peptid der Mechanismus der kurzfristig adaptiven (und vielleicht auch der permanenten) Vorgänge der tight-junction-Regulation an den Darmepithelien noch ein wenig besser charakterisiert und verstanden werden. Ein wichtiger Kandidat für diese Rezeptoren, die an der Regulation der hochkomplexen Organisation der Interzellularbrücken beteiligt sind, könnte tatsächlich der PAR-2 sein. Dass (besser Satz so umstellen, dass er nicht mit dass beginnt) es sich bei den gezeigten Veränderungen des transepithelialen Widerstandes nicht nur um unspezifische Effekte des Trypsins über diverse andere Rezeptoren an Darmepithelien handelt, sondern tatsächlich PAR-2 vermittelte Wirkungen vorliegen, konnte schließlich dadurch bewiesen werden, dass gleichsinnige Effekte in der gleichen Versuchsreihe durch das aktivierende Peptid mit der spezifischen Aminosäuresequenz erzielt wurden. Zwar blieb die Effektivität des PAR-2-AP deutlich hinter der des Trypsins zurück, jedoch ist dieses Phänomen durch den besonderen Rezeptoraktivierungsmechanismus der PARs erklärt (ein Molekül Trypsin vermag mehrere PARs in Serie zu aktivieren, wohingegen ein PAR-2-aktivierendes Peptid jeweils nur einen Rezeptor aktiviert und dann internalisiert wird). Die Erkenntnis, dass körpereigene Proteasen die Permeabilität des Gastrointestinaltraktes beeinflussen können und dass es sich beim transepithelialen Widerstand eher um eine dynamische, und nicht um eine statische Eigenschaft des Intestinums handelt, bietet neben der genaueren Sichtweise und dem besserem Verständnis, auch einen potenziellen pharmakologischen Ansatzpunkt in der Medizin. Von Interesse wären hier z.B. Krankheitsbilder, die durch eine gesteigerte Permeabilität der intestinalen Barriere entweder die Ursache oder auch die unmittelbare Folge eine Erkrankung darstellen, und so zu einer weiteren Zustandsverschlechterung des Organismus beitragen können. In diesem Zusammenhang sind die chronisch-entzündlichen Darmerkrankungen von Interesse, bei denen eine erhöhte Permeabilität nachgewiesen werden kann. Genauso wäre es z.B. denkbar, dass bei akuten Darminfektionen eine Keiminvasion in den Organismus therapeutisch durch Erhöhung des transepithelialen Widerstandes vermindert werden könnte. Durch Entwicklung von geeigneten Agonisten in der Zukunft könnten hier beispielsweise supportive Medikamente entwickelt werden.

Bibliographie / References

  1. Kim E. Barrett, Jane Smitham, Alexis Traynor-Kaplan and Jorge M. Uribe. Inhibition of Ca2+- dependent Cl-secretion in T84 cells: membrane target(s) of inhibition is agonist specific Am J Physiol Cell Physiol 274:C958-C965, 1998.
  2. Katona G. et al., Crystal structure reveals basis for the inhibitor resistance of human brain trypsine. J Mol Biol: 1209-1218, 2002
  3. Israel EJ, Schiffrin EJ, Carter EA, Frieberg E, Walker WA. Cortisone strengthens the intestinal mucosal barrier in a rodent necrotizing enterocolitis model. Adv Exp Med Biol. 1991;310:375-80.
  4. W. Bieger et al., Dissoziation der Serumkinetik von Amylase und Trypsin nach Stimulation mit Sekretin und Pankreomyzin, Journal of Molecular Medicine, Volume 60, Number 21 / November 1982
  5. Guo X. et al., Pharmacological evidence that calcium is not required for P2-receptor-stimulated Cl -secretion in HT29-Cl.16E., J.Membr. Biol. 155: 239–246, 1997
  6. Jeannette E. Gonzalez et al., Remodeling of the tight junction during recovery from exposure to hydrogen peroxide in kidney epithelial cells, Free Radical Biology and Medicine, Volume 47, Issue 11, 1 December 2009, Pages 1561-1569
  7. Thomas M.Cocks, et al, Protease-activated receptors mediate apamin-sensitive relaxation of mouse and guinea pig gastrointestinal smooth muscle Gastroenterology Volume 116, Issue 3 , Pages 586-592, March 1999
  8. Ramachandran R. et al, Targeting proteinase-activated receptors: therapeutic potential and challenges. Nature Reviews Drug Discovery, Jan 2012
  9. Komuro T et al., 1997 ,The involvement of a novel mechanism distinct from the thrombin receptor in the vasocontraction induced by trypsin. Br J Pharmacol
  10. Lan RS et al., 2001 Role of PGE(2) in protease-activated receptor-1, -2 and -4 mediated relaxation in the mouse isolated trachea. Br J Pharmacol 132:93–100
  11. Ma L et al., 2001 Thrombin-induced platelet endostatin release is blocked by a proteinase activated receptor-4 (PAR4) antagonist. Br J Pharmacol 134:701–704
  12. Maoret JJ et al. Nantes, Frankreich. A mucus-secreting human colonic cancer cell line. Purification and partial characterization of the secreted mucins, Biochem J., 1989 Mar 15;258(3):793.
  13. Shpacovitch VM et al., 2002 Agonists of proteinase-activated receptor 2 induce cytokine release and activation of nuclear transcription factor_B in human dermal microvascular endothelial cells. J Invest Dermatol
  14. Vergnolle N 2000 Review article: proteinase-activated receptors — novel signals for gastrointestinal pathophysiology. Aliment Pharmacol Ther.
  15. Kameda H et al., 1997 Re-expression of functional P-selectin molecules on the endothelial cell surface by repeated stimulation with thrombin. Br J Haematol 97:348–355
  16. Rudroff C et al., 2001 Thrombin enhances adhesion in pancreatic cancer in vitro through the activation of the thrombin receptor PAR 1. Eur J Surg Oncol
  17. Kauffmann HF et al., Protease dependent activation of epithelial cells by fungal allergens leads to morphologic changes and cytokine production. J Allergy Clin Immunol 105: 1185-1193, 2000
  18. Vliagoftis H et al., 2000 Proteinase-activated receptor-2-mediated matrix metalloproteinase-9 release from airway epithelial cells. J Allergy Clin Immunol 106:537–545
  19. Jilling T. et al., Cyclic AMP and Chloride-dependent Regulation of the Apical Constitutive Secretory Pathway in Colonic Epithelial Cells, J Biol Chem. 1996 Feb 23;271(8):4381-7)
  20. Maren Amasheh, Ingo Grotjohann, Salah Amasheh, Anja Fromm, Johan D. Söderholm, Martin Zeitz, Michael Fromm, Jörg-Dieter Schulzke . Regulation of mucosal structure and barrier function in rat colon exposed to tumor necrosis factor alpha and interferon gamma in vitro: A novel model for studying the pathomechanisms of inflammatory bowel disease cytokines.
  21. Ku DD et al., Mechanism of thrombin-induced endothelium dependent coronary vasodilation in dogs: role of its proteolytic enzymatic activity. J Cardiovasc Pharmacol, 1986
  22. Giacaman RA et al., Cleavage of protease-activated receptors on an immortalized oral epithelial cell line by Porphyromonas gingivalis gingipains, Microbiology. 2009 Oct;155(Pt 10):3238-46. Epub 2009 Jul 16
  23. McNamara et al., Basolateral K¤ channel involvement in forskolinactivated chloride secretion in human colon, Journal of Physiology (1999), 519.1, pp. 251—260 251
  24. Karaki Si. Et al., Regulation of intestinal secretion involved in the interaction between neurotransmitters and prostaglandin E2, Neurogastroenterol Motil. 2004 Apr;16 Suppl 1:96-9. Review
  25. Keely SJ et al., Regulation of chloride secretion. Novel pathways and messengers. Ann N Y Acad Sci. 2000;915:67-76
  26. Mule F et al., 2002 Signal transduction pathways involved in the mechanical responses to protease- activated receptors in rat colon. J Pharmacol Exp
  27. JW Petersonet al., Role of prostaglandins and cAMP in the secretory effects of cholera toxin, Science, Vol 245, Issue 4920, 857-859, 1989
  28. Rodríguez-Lagunas MJ, Martín-Venegas R, Moreno JJ, Ferrer R. PGE2 promotes Ca2+-mediated epithelial barrier disruption through EP1 and EP4 receptors in Caco-2 cell monolayers. Am J Physiol Cell Physiol. 2010 Aug;299(2):C324-34. Epub 2010 May 19
  29. Mall M. et al., Activation of ion secretion via proteinase-activated receptor-2 in human colon. Am J Physiol Gastrointest Liver Physiol. 2002 Feb; 282(2):G200-10
  30. van der Merwe JQ et al., EGF receptor transactivation and MAP kinase mediate proteinase-activated receptor-2-induced chloride secretion in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 294(2):G441-51, Feb 2008
  31. Swystun V, Chen L, Factor P, Siroky B, Bell PD, Matalon S. Apical trypsin increases ion transport and resistance by a phospholipase C-dependent rise of Ca2+. Am J Physiol Lung Cell Mol Physiol. 2005 May;288(5):L820-30. Epub 2004 Dec 30.
  32. Ricciardolo FLet al., 2000 Presence and bronchomotor activity of protease-activated receptor-2 in guinea pig airways.AmJ RespirCrit Care Med 161:1672–1680
  33. Schmidlin Fet al., 2001 Expression and function of proteinase-activated receptor 2 in human bronchial smooth muscle. Am J Respir Crit Care Med 164:1276–1281
  34. Ludwicka-Bradley A et al., 2000 Thrombin upregulates interleukin-8 in lung fibroblasts via cleavage of proteolytically activated receptor-I and protein kinase C-activation. Am J Respir Cell Mol Biol Lynch RD, Tkachuk-Ross LJ, McCormack JM, McCarthy KM, Rogers RA, Schneeberger EE.
  35. Moffatt JD et al., 2002 Protease-activated receptor-2 activating peptide SLIGRL inhibits bacterial lipopolysaccharide-induced recruitment of polymorphonuclear leukocytes into the airways of mice.
  36. Martin Steinhoff et al., " Proteinase-Activated Receptors: Transducers of Proteinase-Mediated Signaling in Inflammation and Immune Response " ,Endocr Rev. 2005 Feb;26(1):1-43.
  37. Nishikawa H et al., 2000 Characterization of protease-activated receptors in rat peritoneal mast cells.
  38. Kunzelmann K. et al., Ion transport induced by proteinase-activated receptors (PAR-2) in colon and airways. Cell Biochem Biophys. 2002; 36(2-3): 209-14
  39. Miike S et al., 2001 Trypsin induces activation and inflammatory mediator release from human eosinophils through protease-activated receptor-2. J Immunol
  40. Vergnolle N et al., 2002 Characterization of thrombin-induced leukocyte rolling and adherence: a potential proinflammatory role for proteinase-activated receptor-4. J Immunol 169:1467–1473
  41. Ussing, H. H., Zerahn, K. 1951. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol. Scand. 23:110-27
  42. Lerner DJ et al., Agonist recognition by PAR-2 and thrombin receptor. Importance of extracellular loop interactions for receptor function. J Biol Chem 271: 13943-13947, 1996
  43. Grynkiewicz Get al., A new generation of Ca2+ indicators with greatly improved fluorescence properties, J Biol Chem. 1985 Mar 25;260(6):3440-50
  44. Shinozuka T, Shimada K, et al. Arylamine based cathepsin K inhibitors: investigating P3 heterocyclic substituents. Bioorg Med Chem. 2006 Oct 15;14(20):6807-19. Epub 2006 Jul 7
  45. Basolateral but not apical application of protease results in a rapid rise of transepithelial electrical resistance and formation of aberrant tight junction strands in MDCK cells. Eur J Cell Biol. 1995 Mar;66(3):257-67
  46. Whittle, B.J.R. and Salmon, J.A. Biosynthesis of prostacyclin and prostaglandin E2 in gastro-intestinal tissue. In Proc. of IIIB.S.G./SK&FInternational Workshop 'Intestinal Secretion', ed. Turnberg, L.A.pp.69-73. Welwyn Garden City: Smith Kline and French Publications., 1983
  47. Schwiebert EM et al., Both CFTR and outwardly rectifying chloride channels contribute to cAMP-stimulated whole cell chloride currents. Am J Physiol. 1994 May; 266(5 Pt 1):C1464-77
  48. Sambrano GR et al., Cathepsin G activates PAR-4 in human platelets. J Biol Chem 275: 6819-6823, 2000
  49. Sambrano GR et al., 2000 Cathepsin G activates protease-activated receptor-4 in human platelets. J Biol Chem 275:6819–6823
  50. Rasmussen UB et al., cDNA cloning and expression of a Hamster alpha-thrombin receptor coupled to Ca 2+ mobilization. FEBS Lett 288: 123-128, 1991
  51. Takeuchi T et al., Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. J Biol Chem 275: 26333-26342, 2000
  52. Vaandrager AB et al., cGMP stimulation of cystic fibrosis transmembrane conductance regulator Cl- channels co-expressed with cGMP-dependent protein kinase type II but not type Ibeta, J Biol Chem. 1997 Feb 14;272(7):4195-200.
  53. Michel A. Boivin, Dongmei Ye, John C. Kennedy, Rana Al-Sadi, Chris Shepela; Mechanism of glucocorticoid regulation of theintestinal tight junction barrier. Am J Physiol Gastrointest Liver Physiol 292:G590-G598, 2007. First published 26 October 2006;
  54. Kinugasa T, Sakaguchi T, Gu X, Reinecker HC. Claudins regulate the intestinal barrier in response to immune mediators. Gastroenterology. 2000 Jun;118(6):1001-11.
  55. Hung DT et al., 1992 Cloned platelet thrombin receptor is necessary for thrombin-induced platelet activation. J Clin Invest 89:1350–1353
  56. Xu WF et al., 1998 Cloning and characterization of human protease-activated receptor 4.
  57. Konturek SJ, Robert A, Hanchar AJ, and Nezamis JE. Comparison of prostacyclin and prostaglandin E2 on gastric acid secretion, gastrin release, and mucosal blood flow in dogs. Dig Dis Sci 25:673–679.
  58. Saifeddine M et al., 2001 Contractile actions of proteinase-activated receptorderived polypeptides in guinea-pig gastric and lung parenchymal strips: evidence for distinct receptor systems. Br J Pharmacol Saifeddine M et al., at proteinase-activated receptor-2 (PAR-2): cDNA sequence and activity of receptor-derived peptides in gastric and vascular tissue.Br J Pharmacol
  59. Robert A, Nezamis JE, Lancaster C, and Hanchar AJ. Cytoprotection by prostaglandins in rats.
  60. Lindner JR et al., 2000 Delayed onset of inflammation in protease-activated receptor-2-deficient mice. J Immunol Lourbakos A et al., 2001 Arginine-specific protease from Porphyromonas gingivalis activates protease-activated receptors on human oral epithelial cells and induces interleukin-6 secretion. Infect Immun Lourbakos A et al., 1998 Cleavage and activation of proteinase-activated receptor-2 on human neutrophils by gingipain-R from Porphyromonas gingivalis. FEBS Lett Lourbakos A et al., Activation of protease-activated receptors by gingipains from Porphyromonas gingivalis eads to platelet aggregation: a new trait in microbial pathogenicity. Blood 97: 3790-3797, 2001
  61. Die Seiten 98-99 enthalten persönliche Daten. Sie sind deshalb nicht Bestandteil der Online- Veröffentlichung 100
  62. Vu et al., Domains specifying thrombin-receptor interaction,Nature. 1991 Oct 17;353(6345):674-7
  63. Reynolds et al., 2007, Dynamic and differential regulation of NKCC1 by calcium and cAMP in the native human , J Physiol.; 582: 507-524
  64. Shivanna M, Srinivas SP.Elevated cAMP opposes (TNF-alpha)-induced loss in the barrier integrity of corneal endothelium. Mol Vis. 2010 Sep 2;16:1781-90.
  65. Schulzke et al., Epithelial and subepithelial resistance of rat large intestine: segmental differences, effect of stripping time course, and action of aldosterone, Pflugers Arch. 1986 Dec;407(6):632-7.
  66. Hwa JJ et al., 1996 Evidence for the presence of a proteinase activated receptor distinct from the thrombin receptor in vascular endothelial cells. Circ Res
  67. Striggow F et al., 2001 Four different types of protease-activated receptors are widely expressed in the brain and are up-regulated in hippocampus by severe ischemia. Eur J Neurosci 14:595–608
  68. Tordai A. et al., 1993 Functional thrombin receptors on human T lymphoblastoid cells. J Immunol Ubl JJ et al., 2002 Human bronchial epithelial cells express PAR-2 with different sensitivity to thermolysin. Am J Physiol Lung Cell Mol Physiol 282:L1339–L1348
  69. Seidler U. et al., 2001 Na+/HCO3-Cotransport in Normal and Cystic Fibrosis Intestine.JOP.J.Pancreas (Online) 2, 247-256
  70. Murakami H, Masui H. Hormonal control of human colon carcinoma cell growth in serum-free medium. Proc. Natl. Acad. Sci. USA 77: 3464-3468, 1980
  71. Koivunen et al., Human ovarian tumor-associated trypsin. Its purification and characterization from mucinous cyst fluid and identification as an activator of pro-urokinase. J Biol Chem 264: 14095- 14099, 1989
  72. Roberts LJ 2nd, Sweetman BJ, Lewis RA, Austen KF, and Oates JA Increased production of prostaglandin D2 in patients with systemic mastocytosis. N Engl J Med 303:1400–1404., 1980
  73. Malcom P. Caulfield and Nigel J.M. Birdsall, International Union of Pharmacology. XVII. Classification of Muscarinic Acetylcholine Receptors, PHARMA-COLOGICAL REVIEWS Vol. 50, No. 2 by The American Society for Pharmacology and Experimental Therapeutics, 1998
  74. Green BT,Intestinal type 2 proteinase-activated receptors: expression in opioid-sensitive secretomotor neural circuits that mediate epithelial ion transport, J Pharmacol Exp Ther. 2000 Oct;295(1):410-6
  75. Kawabata A et al., 2001 In vivo evidence that protease-activated receptors 1 and 2 modulate gastro- intestinal transit in the mouse. Br J Pharmacol Kawabata A et al., 1999 Physiology of protease-activated receptors (PARs): involvement of PARs in digestive functions. Nippon Yakurigaku Zasshi 114(Suppl 1))
  76. Ishii K et al., Kinetics of thrombin receptor cleavage o intact cells. Relation to signaling. J Biol Chem 268: 9780-9786, 1993
  77. Kong W, Böhm SK et al., 1997 Luminal trypsin may regulate enterocytes through proteinase-activated receptor 2. Proc Natl Acad Sci USA 94:8884–8889
  78. Perdue M, Bunnett NW.Mast cell tryptase controls paracellular permeability of the intestine. Role of protease-activated receptor 2 and beta-arrestins.J Biol Chem. 2005 Sep 9;280(36):31936-48. Epub 2005 Jul 18.
  79. Riewald M. et al., Mechanistics coupling of protease signalling and initiation of coagulation by tissue factor. Proc Natl Acad Sci USA 98: 7742-7747, 2001
  80. Miederer SE The gastric mucosal barrier.Hepatogastroenterology. 1986 Apr;33(2):88-91. Review
  81. Kawabata A, Kuroda R, Nishikawa H and Kawai K, Modulation by protease-activated receptors of the rat duodenal motility in vitro: possible mechanisms underlying the evoked contraction and relaxation., Br J Pharmacol. 1999 Oct;128(4):865-72.
  82. Lan RS e tal., 2000 Modulation of airway smooth muscle tone by protease activated receptor-1,-2, -3 and -4 in trachea isolated from influenza A virus-infected mice. Br J Pharmacol 129: 63–70
  83. Jpn J Pharmacol Nystedt et al., Molecular cloning and functional expression of the encoding the human proteinase- activated receptor 2. Eur J Biochem 232: 84-89, 1995
  84. Vu et al., Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64: 1057-1068, 1991
  85. Nystedt S et al., Molecular cloning of a potential proteinase activated receptor, Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9208-12
  86. Uehara A. et al., Neutrophil serine proteinases activate human nonepithelial cells to produce inflammatory cytokines through PAR-2. J Immunol 169: 4594-4603, 2002
  87. Nicolas Cenac, Alex C., Rafael Garcia-Villar et al., PAR2 activation alters colonic paracellular permeability in mice via IFN-gamma-dependent and -independent pathways. J Physiol 558.3 (2004) pp 913-925
  88. Kanke T. et al., PAR-2-mediated activation of stress-activated protein kinases and inhibitory kappa B kinases in NCTC 2544 keratinocytes. J Biol Chem 18: 18, 2001
  89. Nakanishi-Matsui M et al., 2000 PAR3 is a cofactor for PAR4 activation by thrombin. Nature
  90. Henriksen RA et al., 2002 PAR-4 agonist AYPGKF stimulates thromboxane production by human platelets. Arterioscler Thromb Vasc Biol Hollenberg MD et al., 1992 Action of thrombin receptor polypeptide in gastric smooth muscle: identification of a core pentapeptide retaining full thrombin-mimetic intrinsic activity. Mol Pharmacol Hollenberg MD et al., Proteinase activated receptors: sturctural requirements for activity, receptor cross-reactivity, and receptor selectivity of receptor-activating peptides. Can J Physiol Pharmacol 75: 832-841, 1997
  91. Shaun R. Coughlin, PARticipation in inflammation, J. Clin. Invest. 111:25–27, 2003
  92. Kügelgen I., Pharmacological profiles of cloned mammalian P2Y-receptor subtypes.
  93. Walker TR, et al.1998 Platelet-derived growth factor-BB and thrombin activate phosphoinositide 3- kinase and protein kinase B: role in mediating airway smooth muscle proliferation. Mol Pharmacol Weiss EJ et al., 2002 Protection against thrombosis in mice lacking PAR3. Blood 100:3240–3244
  94. Prevention of gastric necrosis produced by alcohol, HCl, NaOH, hypertonic NaCl, and thermal injury. Gastroenterology 77:433–443.1979
  95. Halm DR, Halm ST. Prostanoids stimulate K secretion and Cl secretion in guinea pig distal colon via distinct pathways. Am J Physiol Gastrointest Liver Physiol 281 (4): G984–G996.2001.
  96. Schmidlin F et al., 2002 Proteaseactivated receptor 2 mediates eosinophil infiltration and hyperreactivity in allergic inflammation of the airway. J Immunol 169:5315–5321
  97. Ishihara H et al., 1997 Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 386:502–506
  98. Peter J.O. Brien, " Protease activated receptors: theme and variations " , Oncogene. 2001 Mar 26;20(13): 1570-81. 2001 Pflugers Arch. 1986 Dec;407(6):632-7
  99. Johansson C, Aly A, Befrits R, Smedfors B, Uribe A. Protection of the gastroduodenal mucosa by prostaglandins. Scand J Gastroenterol Suppl. 1985;110:41-8. Review.
  100. Vergnolle N 1999 Proteinase-activated receptor-2-activating peptides induce leukocyte rolling, adhesion, and extravasation in vivo. J Immunol
  101. Howells GL et al., 1997 Proteinase-activated receptor-2: expression by human neutrophils. J Cell Sci Hryciw DH, Guggino WB, Cystic fibrosis transmembrane conductance regulator and the outwardly rectifying chloride channel: a relationship between two chloride channels expressed in epithelial cells, Clin Exp Pharmacol Physiol. 2000 Nov;27(11):892-5
  102. Steinhoff M et al., 1999 Proteinase-activatedreceptor-2 in human skin: tissue distribution and activation of keratinocytes by mast cell tryptase. Exp Dermatol Steinhoff M et al., 2000 Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nat Med
  103. Kawabata A et al., 2000 Proteinase-activated receptor-2 (PAR-2): regulation of salivary and pancreatic exocrine secretion in vivo in rats and mice. Br J Pharmacol 129:1808–1814
  104. Yu Z. et al., Protein-tyrosine phosphatases SHP2 is positively linked to proteinase-activated receptor- 2-mediated mitogenic pathway. J Biol Chem 272: 7519-7524, 1997
  105. Molino M, et al., Proteolysis of the human platelet and endothelial cell thrombin receptor by neutrophil-derived cathepsin G. J Biol Chem 270: 11168-11175, 1995
  106. Szaba FM, Smiley ST et al., 2002 Roles for thrombin and fibrin(ogen) in cytokine/chemokine production and macrophage adhesion in vivo. Blood;
  107. Riewald M et al., Science review: role of coagulation protease cascades in sepsis. Crit Care 7: 123- 129, 2003
  108. Renesto P et al., Specific inhibition of thrombin-induced cell activation by the neutrophil proteinases elastase, cathepsin G, and proteinase 3: evidence for distinct cleavage sites within the aminoterminal domain of the thrombin receptor. Blood 89: 1944-1953, 1997
  109. Hattori R et al., Stimulated secretion of endothelial von Willebrand factor is accompanied by rapid redistribution to the cell surface of the intracellular granule membrane protein GMP-140, J Biol Chem. 1989 May 15;264(14):7768-71
  110. Johansson C and Kollberg B. Stimulation by intragastrically administered E2 prostaglandins of human gastric mucus output. Eur J Pharmacol 9:229–232.1979.
  111. Guo X. et al., Stimulation of Cl2 secretion by extracellular ATP does not depend on increased cytosolic Ca 2+ in HT-29-Cl.16E. Am. J.Physiol. 269 (Cell Physiol. 38): C1457–C1463, 1995
  112. X. Guo et al., 1995, Stimulation of Cl-secretion by extracellular ATP does not depend on increased cytosolic Ca2+ in HT-29.Cl16E, Am J Physiol. 1995
  113. Weksler BB et al., 1978 Stimulation of endothelial cell prostacyclin production by thrombin, trypsin, and the ionophore A 23187. J Clin Invest 62:923–930
  114. Vassallo Jr RRet al., 1992 Structure-function relationships in the activation of platelet thrombin receptors by receptor-derived peptides. J Biol Chem;
  115. Scarborough, R.M., Tethered ligand agonist peptides: structural requirements for thrombin receptor activation reveal mechanism of proteolytic unmasking of agonist function. J. Biol. Chem., 267,13146 ± 13149. (1992).
  116. Spitz J, Hecht G, Taveras M, Aoys E, Alverdy J. The effect of dexamethasone administration on rat intestinal permeability: the role of bacterial adherence. Gastroenterology. 1994 Jan;106(1):35-41.
  117. Kawabata A et al., 2001 The protease-activated receptor-2 agonist induces gastric mucus secretion and mucosal cytoprotection. J Clin Invest 107:1443–1450
  118. Hou L et al., 1998 The proteaseactivated receptors and their cellular expression and function inblood- related cells. Br J Haematol
  119. Hoogerwerf WA et al., 2001 The proteinase-activated receptor 2 is involved in nociception. J Neurosci 21:9036–9042
  120. Suidan HS. Et al., 1996 The thrombin receptor in the nervous system. Semin Thromb Hemost Sun G et al., Interaction of mite allergens der P3 and der P9 with PAR-2-expressed by lung epithelial cells. J Immunol 167: 1014-1021, 2001
  121. Mari B et al., 1996 Thrombin and trypsin-induced Ca (2+) mobilization in human T cell lines through interaction with different protease-activated receptors. FASEB J 10:309–316
  122. Sugama Y et al., Thrombin-induced expression of endothelial Pselectin and intercellular adhesion molecule-1: a mechanism for stabilizing neutrophil adhesion. J Cell Biol, 1992
  123. Kaplanski G et al., 1997 Thrombin induces endothelial type II activation in vitro: IL-1 and TNF-α- independent IL-8 secretion and E-selectin expression. J Immunol
  124. Naldini A. et al., 1998 Thrombin receptor expression and responsiveness of human monocytic cells to thrombin is linked to interferon-induced cellular differentiation. J Cell Physiol
  125. Nelken NA et al., Thrombin receptor expression in normal and atherosclerotic human arteries. J Clin Invest, 1992
  126. Morris R. et al., 1996 Thrombin receptor expression in rheumatoid and osteoarthritic synovial tissue. Ann Rheum Dis
  127. Naldini A. et al., 2000 Thrombin regulates the expression of proangiogenic cytokines viaproteolytic activation of protease-activated receptor-1. Gen Pharmacol Nath SK, Desjeux JF. Human intestinal cell lines as in vitro tools for electrolyte transport studies with relevance to secretory diarrhoea. J Diarrhoeal Dis Res. 1990 Dec;8(4):133-42. Review.
  128. Storck J et al., 1996 Trypsin induced von Willebrand factor release from human endothelial cells in mediated by PAR-2 activation. Thromb Res
  129. Muramatsu I et al., Vascular actions of thrombin receptor peptide. Can J Physiol Pharmacol, 1992 Jul;70(7):996-1003.
  130. Gitter AH, Bendfeldt K, Schmitz H, Schulzke JD, Bentzel CJ, Fromm M. Epithelial barrier defects in HT-29/B6 colonic cell monolayers induced by tumor necrosis factor-alpha.
  131. Greger, R. 2000 Role of CFTR in the Colon. Annu Rev Physiol 62, 467-491
  132. Ishihara H et al., 1998 Antibodies to protease-activated receptor 3 inhibit activation of mouse platelets by thrombin. Blood 91:4152–4157
  133. Nguyen TD et al., 1999 Trypsin activates pancreatic duct epithelial cell ion channels through proteinase-activated receptor-2. J Clin Invest 103: 261–269
  134. Temkin V et al., 2002 Tryptase activates the mitogen-activated protein kinase/activator protein-1 pathway in human peripheral blood eosinophils, causing cytokine production and release. J Immunol 169
  135. Kahn ML et al., 1998 A dual thrombin receptor system for platelet activation. Nature 394:690–694
  136. Sambrano GR et al., 2001 Role of thrombin signalling in platelets in haemo-stasis and thrombosis. Nature 413:74–78
  137. Joiner WJ et al., (1997). "hSK4, a member of a novel subfamily of calcium-activated potassium channels." Proc. Natl. Acad. Sci. U.S.A. 94 (20): 11013-8
  138. Koshikawa N et al., 1997 Expression of trypsin in vascular endothelial cells. FEBS Lett Koshikawa N et al., Expression of Trypsin by epithelial cells of various tissues, leukocytes, and neurons in human and mouse. Am J Pathol 153: 937-944, 1998
  139. Shin H et al., 1995 Thrombinreceptor-mediated synovial proliferation in patients with rheumatoid arthritis. Clin Immunol Immunopathol
  140. Vliagoftis H et al., 2001 Airway epithelial cells release eosinophil survival-promoting factors (GMCSF) after stimulation of proteinase-activated receptor 2. J Allergy Clin Immunol 107:679–685
  141. Kahn ML et al., Gene and locus structure and chromosomal localization of the protease-activated receptor gene family, J Biol Chem. 1998 Sep 4;273(36):23290-6


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten