Publikationsserver der Universitätsbibliothek Marburg

Titel:Funktionelle Charakterisierung von Pep1, einem sekretierten Effektorprotein von Ustilago maydis
Autor:Herrberger, Christian
Weitere Beteiligte: Döhlemann, Gunther (Dr.)
Veröffentlicht:2012
URI:https://archiv.ub.uni-marburg.de/diss/z2012/0904
URN: urn:nbn:de:hebis:04-z2012-09045
DOI: https://doi.org/10.17192/z2012.0904
DDC:570 Biowissenschaften, Biologie
Titel (trans.):Functional Characterization of Pep1, a secreted effector protein of Ustilago maydis
Publikationsdatum:2012-10-05
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Cysteinprotease, Biotroph, Effektor, Peroxidase, Pep1, Cystein protease, Ustilago maydis, Peroxidase, Ustilago maydis, Pep1, Effector

Zusammenfassung:
Ustilago maydis, der Erreger des Maisbeulenbrandes, benötigt zur Etablierung einer biotrophen Interaktion mit seiner Wirtspflanze Mais eine Vielzahl sekretierter Effektoren. Die Deletion des für den Effektor Pep1 kodierenden Gens um01987 führt zum vollständigen Pathogenitätsverlust. Die Pflanze reagiert auf Penetrationsversuche der Δpep1-Mutante mit der Induktion verschiedener Abwehrreaktionen, was sich z.B. durch die Bildung nekrotischer Läsionen sowie reaktiver Sauerstoffspezies an den Penetrationsstellen zeigt. Pep1 ist zwischen verschiedenen Brandpilzarten konserviert und besteht aus einem N-terminalen Signalpeptid, einem konservierten Kernbereich sowie einem weniger konservierten Glycin- und Serin-reichen C-Terminus. In der vorliegenden Arbeit wurde das heterolog in E. coli exprimierte Pep1 aufgereinigt. Durch biochemische und molekularbiologische Methoden konnten zwei pflanzliche Bindungspartner von Pep1 identifiziert. So konnte mittels Aktivitäts-basiertem Protein-Profiling gezeigt werden, dass Pep1 spezifisch apoplastische Papain-ähnliche Cysteinproteasen inhibiert. Diese Proteasen spielen offenbar eine wichtige Rolle in der Abwehrinduktion in der Maispflanze. Des Weiteren bindet und inaktiviert Pep1 pflanzliche Klasse-III-Häm-Peroxidasen. In Kooperation mit Christoph Hemetsberger konnte die Hemmung der Horseradish-Peroxidase (HRP) durch Pep1 in vitro gezeigt. Außerdem konnte die physische Interaktion von Pep1 mit der HRP bewiesen werden. Während der Δpep1-Infektion wird eine Mais Peroxidase, die sekretierte Peroxidase-12, transkriptionell induziert. Durch Virus-induziertes-Gen-silencing der Peroxidase-12 konnte eine partielle Restauration des Δpep1-Phänotyps auf POX12si-Pflanzen bewirkt werden. So führte das silencing der Peroxidase-12 zu einer Unterdrückung pflanzlicher Abwehrreaktionen, wie z.B. der Papillenbildung, was eine erfolgreiche Penetration der Δpep1-Mutante ermöglichte. Zusammenfassend zeigen diese Ergebnisse, dass Pep1 Enzyme der basalen Pflanzenabwehr inhibiert und somit die angeborene Resistenz der Wirtspflanze gegen U. maydis unterdrückt.

Bibliographie / References

  1. Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.
  2. Martinez, C., Montillet, J.L., Bresson, E., Agnel, J.P., Dai, G.H., Daniel, J.F., Geiger, J.P., and Nicole, M. (1998). Apoplastic peroxidase generates superoxide anions in cells of cotton cotyledons undergoing the hypersensitive reaction to Xanthomonas campestris pv. malvacearum race 18. Mol Plant Microbe Interact 11, 1038-1047.
  3. Zhang, J., Li, W., Xiang, T., Liu, Z., Laluk, K., Ding, X., Zou, Y., Gao, M., Zhang, X., Chen, S., Mengiste, T., Zhang, Y., and Zhou, J. (2010). Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell host & microbe 7, 290-301.
  4. Greenbaum, D., Medzihradszky, K.F., Burlingame, A., and Bogyo, M. (2000). Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem Biol 7, 569–581.
  5. Banuett, F., and Herskowitz, I. (1996). Discrete developmental stages during teliospore formation in the corn smut fungus, Ustilago maydis. Development 122, 2965-2976.
  6. Tian, M., Huitema, E., Da Cunha, L., Torto-Alalibo, T., and Kamoun, S. (2004). A Kazal-like extracellular serine protease inhibitor from Phytophthora infestans targets the tomato pathogenesis-related protease P69B. J Biol Chem 279, 26370- 26377.
  7. Segal, A.W., and Abo, A. (1993). The Biochemical Basis of the Nadph Oxidase of Phagocytes. Trends Biochem Sci 18, 43-47.
  8. Martinez-Espinoza, A.D., Garcia-Pedrajas, M.D., and Gold, S.E. (2002). The Ustilaginales as plant pests and model systems. Fungal Genet Biol 35, 1-20.
  9. Passardi, F., Cosio, C., Penel, C., and Dunand, C. (2005). Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24, 255-265.
  10. Kämper, J. (2004). A PCR-based system for highly efficient generation of gene replacement mutants in Ustilago maydis. Mol Genet Genomics 271, 103-110.
  11. Brachmann, A., Konig, J., Julius, C., and Feldbrugge, M. (2004). A reverse genetic approach for generating gene replacement mutants in Ustilago maydis. Mol Genet Genomics 272, 216-226.
  12. Gillissen, B., Bergemann, J., Sandmann, C., Schroeer, B., Bölker, M., and Kahmann, R. (1992). A two-component regulatory system for self/non-self recognition in Ustilago maydis. Cell 68, 647-657.
  13. Multiallelic recognition: nonself-dependent dimerization of the bE and bW homeodomain proteins in Ustilago maydis. Cell 81, 73-83.
  14. Zamocky, M., Furtmuller, P.G., and Obinger, C. (2010). Evolution of structure and function of Class I peroxidases. Arch Biochem Biophys 500, 45-57.
  15. Misas-Villamil, J.C., and van der Hoorn, R.A.L. (2008). Enzyme-inhibitor interactions at the plant-pathogen interface. Curr Opin Plant Biol 11, 380-388.
  16. Lüthje, S., Meisrimler, C.N., Hopff, D., and Moller, B. (2011). Phylogeny, topology, structure and functions of membrane-bound class III peroxidases in vascular plants. Phytochemistry 72, 1124-1135.
  17. Bolwell, G.P., Bindschedler, L.V., Blee, K.A., Butt, V.S., Davies, D.R., Gardner, S.L., Gerrish, C., and Minibayeva, F. (2002). The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. J Exp Bot 53, 1367- 1376.
  18. Almagro, L., Gomez Ros, L.V., Belchi-Navarro, S., Bru, R., Ros Barcelo, A., and Pedreno, M.A. (2009). Class III peroxidases in plant defence reactions. J Exp Bot 60, 377-390.
  19. Rivas-San Vicente, M., and Plasencia, J. (2011). Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62, 3321-3338.
  20. Rawlings, N.D., Morton, F.R., Kok, C.Y., Kong, J., and Barrett, A.J. (2008). MEROPS: the peptidase database. Nucleic Acids Res 36, D320-325.
  21. Ogawa, K., Kanematsu, S., and Asada, K. (1997). Generation of superoxide anion and localization of CuZn-superoxide dismutase in the vascular tissue of spinach hypocotyls: their association with lignification. Plant Cell Physiol 38, 1118-1126.
  22. Doehlemann, G., Wahl, R., Horst, R.J., Voll, L.M., Usadel, B., Poree, F., Stitt, M., Pons-Kühnemann, J., Sonnewald, U., Kahmann, R., and Kämper, J. (2008b). Reprogramming a maize plant: transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis. Plant J 56, 181-195.
  23. Lehtonen, M.T., Akita, M., Kalkkinen, N., Ahola-Iivarinen, E., Ronnholm, G., Somervuo, P., Thelander, M., and Valkonen, J.P. (2009). Quickly-released peroxidase of moss in defense against fungal invaders. New Phytol 183, 432-443.
  24. van der Linde, K., Kastner, C., Kumlehn, J., Kahmann, R., and Doehlemann, G. (2011). Systemic virus-induced gene silencing allows functional characterization of maize genes during biotrophic interaction with Ustilago maydis. New Phytol 189, 471-483.
  25. Cleavage of Arabidopsis PBS1 by a bacterial type III effector. Science 301, 1230- 1233.
  26. Huitlacoche (Ustilago maydis) as a food source -biology, composition, and production. Crit Rev Food Sci Nutr 35, 191-229. van't Klooster, J.W., van der Kamp, M.W., Vervoort, J., Beekwilder, J., Boeren, S., Joosten, M.H.A.J., Thomma, B.P.H.J., and de Wit, P.J.G.M. (2011). Affinity of Avr2 for tomato cysteine protease Rcr3 correlates with the Avr2-triggered Cf-2- mediated hypersensitive response. Mol Plant Pathol 12, 21-30.
  27. Rooney, H.C., van't Klooster, J.W., van der Hoorn, R.A., Joosten, M.H., Jones, J.D., and de Wit, P.J. (2005). Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science 308, 1783-1786.
  28. van der Hoorn, R.A., and Jones, J.D. (2004). The plant proteolytic machinery and its role in defence. Curr Opin Plant Biol 7, 400-407.
  29. Munkacsi, A.B., Stoxen, S., and May, G. (2007). Domestication of maize, sorghum, and sugarcane did not drive the divergence of their smut pathogens. Evolution; 61, 388-403.
  30. Arolas, J.L., and Ventura, S. (2011). Protease Inhibitors as Models for the Study of Oxidative Folding. Antioxid Redox Signal 14, 97-112.
  31. Proteasome activity profiling: a simple, robust and versatile method revealing subunit-selective inhibitors and cytoplasmic, defense-induced proteasome activities. Plant J 62, 160-170.
  32. Kaschani, F., Gu, C., Niessen, S., Hoover, H., Cravatt, B.F., and van der Hoorn, R.A. (2009a). Diversity of serine hydrolase activities of unchallenged and Botrytis- infected Arabidopsis thaliana. Mol Cell Proteomics 8, 1082-1093.
  33. Minitags for small molecules: detecting targets of reactive small molecules in living plant tissues using 'click chemistry'. Plant J 57, 373-385.
  34. Shindo, T., and van der Hoorn, R.A.L. (2008). Papain-like cysteine proteases: key players at molecular battlefields employed by both plants and their invaders. Mol Plant Pathol 9, 119-125.
  35. Tian, M., Win, J., Song, J., van der Hoorn, R., van der Knaap, E., and Kamoun, S. (2007). A Phytophthora infestans cystatin-like protein targets a novel tomato papain-like apoplastic protease. Plant physiology 143, 364-377.
  36. Mathesius, U. (2001). Flavonoids induced in cells undergoing nodule organogenesis in white clover are regulators of auxin breakdown by peroxidase. J Exp Bot 52, 419- 426.
  37. Tarvainen, O., Markkola, A.M., Ahonen-Jonnarth, U., Jumpponen, A., and Strommer, R. (2004). Changes in ectomycorrhizal colonization and root peroxidase activity in Pinus sylvestris nursery seedlings planted in forest humus. Scand J of Forest Res 19, 400-408.
  38. Assignment of amino acid residues of the Avr9 peptide of Cladosporium fulvum that determine elicitor activity. Mol Plant Microbe Interact 10, 821-829.
  39. Kamoun, S. (2006). A catalogue of the effector secretome of plant pathogenic oomycetes. Annu Rev Phytopathol 44, 41-60.
  40. Fester, T., and Hause, G. (2005). Accumulation of reactive oxygen species in arbuscular mycorrhizal roots. Mycorrhiza 15, 373-379.
  41. Pallaghy, P.K., Nielsen, K.J., Craik, D.J., and Norton, R.S. (1994). A Common Structural Motif Incorporating a Cystine Knot and a Triple-Stranded Beta-Sheet in Toxic and Inhibitory Polypeptides. Prot Sci 3, 1833-1839.
  42. Baker, C.J., and Orlandi, E.W. (1995). Active oxygen in plant pathogenesis. Annu Rev Phytopathol 33, 299-321.
  43. Günther, H., Perner, B., and Gramss, G. (1998). Activities of phenol oxidizing enzymes of ectomycorrhizal fungi in axenic culture and in symbiosis with Scots pine (Pinus sylvestris L.). J Basic Microbiol 38, 197-206.
  44. Verdoes, M., Florea, B.I., Menendez-Benito, V., Maynard, C.J., Witte, M.D., Van der Linden, W.A., Van den Nieuwendijk, A.M.C.H., Hofmann, T., Berkers, C.R., van Leeuwen, F.W.B., Groothuis, T.A., Leeuwenburgh, M.A., Ovaa, H., Neefjes, J.J., Filippov, D.V., Van der Marel, G.A., Dantuma, N.P., and Overkleeft, H.S. (2006). A fluorescent broad-spectrum proteasome inhibitor for labeling proteasomes in vitro and in vivo. Chem Biol 13, 1217-1226.
  45. Rowe, H.C., and Kliebenstein, D.J. (2010). All Mold is not alike: The importance of intraspecific diversity in necrotrophic plant pathogens. PLoS Pathog 6.
  46. Fahimi, H.D. (1979). An assessment of the DAB methods for cytochemical detection of catalase and peroxidase. J Histochem 27, 1365-1366.
  47. Zimmerman, M., Yurewicz, E., and Patel, G. (1976). A new fluorogenic substrate for chymotrypsin. Anal Biochem 70, 258-262.
  48. Zhirnov, O.P., Klenk, N.D., and Wright, P.F. (2011). Aprotinin and similar protease inhibitors as drugs against influenza. Antiviral Res 92, 27-36.
  49. Bradford, M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principles of protein-dye binding. Anal Biochem 72, 248-254. .
  50. Allore, R.J., and Barber, B.H. (1984). A Recommendation for Visualizing Disulfide Bonding by One-Dimensional Sodium Dodecyl-Sulfate Polyacrylamide-Gel Electrophoresis. Anal Biochem 137, 523-527.
  51. Ausubel, F.M. (2005). Are innate immune signaling pathways in plants and animals conserved? Nat Immunol 6, 973-979.
  52. Leister, R.T., and Katagiri, F. (2000). A resistance gene product of the nucleotide binding site -leucine rich repeats class can form a complex with bacterial avirulence proteins in vivo. Plant J 22, 345-354.
  53. Broomfield, P.L.E., and Hargreaves, J.A. (1992). A Single Amino-Acid Change in the Iron-Sulfur Protein Subunit of Succinate-Dehydrogenase Confers Resistance to Carboxin in Ustilago maydis. Curr Genet 22, 117-121.
  54. Kruger, J., Thomas, C.M., Golstein, C., Dixon, M.S., Smoker, M., Tang, S.K., Mulder, L., and Jones, J.D.G. (2002). A tomato cysteine protease required for Cf-2- dependent disease resistance and suppression of autonecrosis. Science 296, 744- 747.
  55. van den Burg, H.A., Spronk, C.A., Boeren, S., Kennedy, M.A., Vissers, J.P., Vuister, G.W., de Wit, P.J., and Vervoort, J. (2004). Binding of the Avr4 elicitor of Cladosporium fulvum to chitotriose units is facilitated by positive allosteric protein- protein interactions: the chitin-binding site of Avr4 represents a novel binding site on the folding scaffold shared between the invertebrate and the plant chitin-binding domain. J Biol Chem 279, 16786-16796.
  56. Hückelhoven, R. (2007). Cell wall-associated mechanisms of disease resistance and susceptibility. Annu Rev Phytopathol 45, 101-127.
  57. Spanu, P., and Bonfantefasolo, P. (1988). Cell-Wall-Bound Peroxidase-Activity in Roots of Mycorrhizal Allium-Porrum. New Phytol 109, 119-124.
  58. Alvarez, S., Goodger, J.Q., Marsh, E.L., Chen, S., Asirvatham, V.S., and Schachtman, D.P. (2006). Characterization of the maize xylem sap proteome. J Proteome Res 5, 963-972.
  59. Pechan, T., Jiang, B.H., Steckler, D., Ye, L.J., Lin, L., Luthe, D.S., and Williams, W.P. (1999). Characterization of three distinct cDNA clones encoding cysteine proteinases from maize (Zea mays L.) callus. Plant Mol Biol 40, 111-119.
  60. Schipper, K. (2009). Charakterisierung eines Ustilago maydis Genclusters, das für drei neuartige sekretierte Effektoren kodiert. Dissertation, Philipps-Universität Marburg.
  61. Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annul Rev Phytopathol 43, 205-227.
  62. Kimmel, J.R., and Smith, E.L. (1954). Crystalline papain. I. Preparation, specificity, and activation. J Biol Chem 207, 515-531.
  63. Southern, E.M. (1975). Detection of Specific Sequences among DNA Fragments Separated by Gel-Electrophoresis. J Mol Biol 98, 503-&.
  64. Sanger, F., Nicklen, S., and Coulson, A.R. (1977). DNA sequencing with chain- terminating inhibitors. P Natl Acad Sci USA 74, 5463-5467.
  65. Bindschedler, L.V., Minibayeva, F., Gardner, S.L., Gerrish, C., Davies, D.R., and Bolwell, G.P. (2001). Early signalling events in the apoplastic oxidative burst in suspension cultured french bean cells involve cAMP and Ca 2+ . New Phytol 151, 185-194.
  66. Mentlak, T.A., Kombrink, A., Shinya, T., Ryder, L.S., Otomo, I., Saitoh, H., Terauchi, R., Nishizawa, Y., Shibuya, N., Thomma, B.P., and Talbot, N.J. (2012). Effector- mediated suppression of Chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. Plant Cell.
  67. Schirawski, J., Böhnert, H.U., Steinberg, G., Snetselaar, K., Adamikowa, L., and Kahmann, R. (2005). Endoplasmic reticulum glucosidase II is required for pathogenicity of Ustilago maydis. Plant Cell 17, 3532-3543.
  68. Sethi, A., McAuslane, H.J., Rathinasabapathi, B., Nuessly, G.S., and Nagata, R.T. (2009). Enzyme Induction as a Possible Mechanism for Latex-Mediated Insect Resistance in Romaine Lettuce. J Chem Ecol 35, 190-200.
  69. Farrell, B.D., Dussourd, D.E., and Mitter, C. (1991). Escalation of Plant Defense -Do Latex and Resin Canals Spur Plant Diversification. Am Nat 138, 881-900.
  70. Doehlemann, G., Wahl, R., Vranes, M., de Vries, R.P., Kämper, J., and Kahmann, R. (2008a). Establishment of compatibility in the Ustilago maydis/maize pathosystem.
  71. Abraham, D.J., and Leo, A.J. (1987). Extension of the fragment method to calculate amino acid zwitterion and side chain partition coefficients. Proteins 2, 130-152.
  72. Florence, T.M. (1990). Free radicals, antioxidants and cancer prevention. Proc Nutr Soc Aust Annu Conf 15, 88-93.
  73. Banuett, F. (1995). Genetics of Ustilago maydis, a fungal pathogen that induces tumors in maize. Annu Rev Gen 29, 179-208.
  74. Bocsanczy, A.M., Nissinen, R.M., Oh, C.S., and Beer, S.V. (2008). HrpN of Erwinia amylovora functions in the translocation of DspA/E into plant cells. Mol Plant Pathol 9, 425-434.
  75. Chen, S.X., and Schopfer, P. (1999). Hydroxyl-radical production in physiological reactions. A novel function of peroxidase. Eur J Biochem 260, 726-735.
  76. Romeis, T., Brachmann, A., Kahmann, R., and Kämper, J. (2000). Identification of a target gene for the bE-bW homeodomain protein complex in Ustilago maydis. Mol Microbiol 37, 54-66.
  77. Brachmann, A., Weinzierl, G., Kämper, J., and Kahmann, R. (2001). Identification of genes in the bW/bE regulatory cascade in Ustilago maydis. Mol Microbiol 42, 1047-1063.
  78. Snetselaar, K.M., and Mims, C.W. (1993). Infection of Maize Stigmas by Ustilago maydis -Light and Electron-Microscopy. Phytopathol 83, 843-850.
  79. Flor, H.H. (1942). Inheritance of pathogenicity in a cross between physiologic races 22 and 24 of Melampsora lini. Phytopathology 32, 653–669.
  80. Abbidlung 32: Mehrfachsubstitutionen im ersten putativen Serinprotease-Inhibitormotiv von Pep1 führen zur Abnahme der Pathogenität. Virulenzanalyse der Stämme U. maydis SG200, SG200Δpep1-pep1:GFP (pep1-gfp), SG200Δpep1-pep1 VA58,PA62 :GFP (VA58, PA62), SG200Δpep1- pep1 VA54,VA58,PQ62 :GFP (VA54, VA58, PQ62), SG200Δpep1-pep1 VA56,VA58 :GFP (VA56, VA58). Alle Komplementations-Stämme tragen eine einfache Integration des Komplementationskonstruktes im ip-Lokus. Die Abkürzungen der verschiedenen Stammbezeichnungen stehen in Klammern.
  81. Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Current opinion in cell biology 17, 183-189.
  82. Hanada, K., Tamai, M., Yamagishi, M., Ohmura, S., Sawada, J., and Tanaka, I. (1978). Isolation and characterization of E-64, a new thiol protease inhibitor. Agric Biol Chem 42, 523-528.
  83. Localization of components of the oxidative cross-linking of glycoproteins and of callose synthesis in papillae formed during the interaction between non-pathogenic strains of Xanthomonas campestris and French bean mesophyll cells. Plant J 15, 333-343.
  84. Skibbe, D.S., Doehlemann, G., Fernandes, J., and Walbot, V. (2010). Maize zumors caused by Ustilago maydis require organ-specific genes in host and pathogen. Science 328, 89-92.
  85. Chandra, S., Stennis, M., and Low, P.S. (1997). Measurement of Ca 2+ fluxes during elicitation of the oxidative burst in aequorin-transformed tobacco cells. J Biol Chem 272, 28274-28280.
  86. Metabolite profiling of sesquiterpene lactones from Lactuca species. Major latex components are novel oxalate and sulfate conjugates of lactucin and its derivatives. J Biol Chem 275, 26877-26884.
  87. Matsumoto, K., Yamamoto, D., Ohishi, H., Tomoo, K., Ishida, T., Inoue, M., Sadatome, T., Kitamura, K., and Mizuno, H. (1989). Mode of binding of E-64-c, a potent thiol protease inhibitor, to papain as determined by X-ray crystal analysis of the complex. FEBS letters 245, 177-180.
  88. Blee, K.A., Jupe, S.C., Richard, G., Zimmerlin, A., Davies, D.R., and Bolwell, G.P. (2001). Molecular identification and expression of the peroxidase responsible for the oxidative burst in French bean (Phaseolus vulgaris L.) and related members of the gene family. Plant Mol Biol 47, 607-620.
  89. Dong, X.N. (2004). NPR1, all things considered. Curr Opin Plant Biol 7, 547-552.
  90. Konno, K., Hirayama, C., Nakamura, M., Tateishi, K., Tamura, Y., Hattori, M., and Kohno, K. (2004). Papain protects papaya trees from herbivorous insects: role of cysteine proteases in latex. Plant J 37, 370-378.
  91. Howard, J.B., and Glazer, A.N. (1969). Papaya lysozyme. Terminal sequences and enzymatic properties. J Biol Chem 244, 1399-1409.
  92. Mendoza-Mendoza, A., Berndt, P., Djamei, A., Weise, C., Linne, U., Marahiel, M., Vraneš, M., Kämper, J., and Kahmann, R. (2009). Physical-chemical plant- derived signals induce differentiation in Ustilago maydis. Mol Microbiol 71, 895- 911.
  93. Bos, J.I., Armstrong, M.R., Gilroy, E.M., Boevink, P.C., Hein, I., Taylor, R.M., Zhendong, T., Engelhardt, S., Vetukuri, R.R., Harrower, B., Dixelius, C., Bryan, G., Sadanandom, A., Whisson, S.C., Kamoun, S., and Birch, P.R. (2010). Phytophthora infestans effector Avr3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1. P Natl Acad Sci USA 107, 9909-9914.
  94. Fellbrich, G., Blume, B., Brunner, F., Hirt, H., Kroj, T., Ligterink, W., Romanski, A., and Nurnberger, T. (2000). Phytophthora parasitica elicitor-induced reactions in cells of Petroselinum crispum. Plant Cell Physiol 41, 692-701.
  95. van der Biezen, E.A., and Jones, J.D.G. (1998). Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem Sci 23, 454-456.
  96. Konno, K. (2011). Plant latex and other exudates as plant defense systems: roles of various defense chemicals and proteins contained therein. Phytochemistry 72, 1510-1530.
  97. Caplan, J., Padmanabhan, M., and Dinesh-Kumar, S.P. (2008). Plant NB-LRR immune receptors: from recognition to transcriptional reprogramming. Cell Host Microbe 3, 126-135.
  98. Stahl, E.A., and Bishop, J.G. (2000). Plant-pathogen arms races at the molecular level. Curr Opin Plant Biol 3, 299-304.
  99. Li, J.G., Liu, H.X., Cao, J., Chen, L.F., Gu, C., Allen, C., and Guo, J.H. (2010). PopW of Ralstonia solanacearum, a new two-domain harpin targeting the plant cell wall. Mol Plant Pathol 11, 371-381.
  100. Odonnell, K.L., and Mclaughlin, D.J. (1984). Postmeiotic Mitosis, Basidiospore Development, and Septation in Ustilago maydis. Mycologia 76, 486-502.
  101. van der Hoorn, R.A., and Kaiser, M. (2011). Probes for activity-based profiling of plant proteases. Physiol Plant van der Hoorn, R.A.L. (2008). Plant proteases: from phenotypes to molecular mechanisms. Annu Rev Plant Biol 59, 191-223.
  102. Greenberg, J.T. (1997). Programmed cell death in plant-pathogen interactions. Annu Rev Plant Physiol Plant Mol Biol 48, 525-545.
  103. Rappay, G. (1989). Proteinases and Their Inhibitors in Cells and Tissues -Introduction. Prog Histochem Cytochem 18, 1-60.
  104. Salzwedel, J.L., and Dazzo, F.B. (1993). pSym nod gene influence on elicitation of peroxidase activity from white clover and pea roots by rhizobia and their cell-free supernatants. Molecular plant-microbe interactions Mol Plant Microbe Interact 6, 127-134.
  105. Proels, R.K., Oberhollenzer, K., Pathuri, I.P., Hensel, G., Kumlehn, J., and Huckelhoven, R. (2010). RBOHF2 of barley is required for normal development of penetration resistance to the parasitic fungus Blumeria graminis f. sp hordei. Mol Plant Microbe Interact 23, 1143-1150.
  106. Wojtaszek, P., Trethowan, J., and Bolwell, G.P. (1997). Reconstitution in vitro of the components and conditions required for the oxidative cross-linking of extracellular proteins in French bean (Phaseolus vulgaris L.). FEBS letters 405, 95-98.
  107. Bolwell, G.P. (1999). Role of active oxygen species and NO in plant defence responses. Curr Opin Plant Biol 2, 287-294.
  108. Kawano, T. (2003). Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant cell reports 21, 829-837.
  109. Torres, M.A. (2010). ROS in biotic interactions. Physiol Plant 138, 414-429.
  110. (Sequenzvergleich mittels " Sequence Assembly " /FastScan Method, Clonemanger 9.0).
  111. Bakkeren, G., Kämper, J., and Schirawski, J. (2008). Sex in smut fungi: Structure, function and evolution of mating-type complexes. Fungal Genet Biol 45, S15-21.
  112. Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G., and Erlich, H. (1986). Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor symposia on quantitative biology 51 Pt 1, 263-273.
  113. Snyder, B.A., and Nicholson, R.L. (1990). Synthesis of phytoalexins in sorghum as a site-specific response to fungal ingress. Science 248, 1637-1639.
  114. Sutherland, M.W. (1991). The generation of oxygen radicals during host plant-responses to infection. Physiol Mol Plant Pathol 39, 79-93.
  115. Lotze, M.T., Zeh, H.J., Rubartelli, A., Sparvero, L.J., Amoscato, A.A., Washburn, N.R., DeVera, M.E., Liang, X., Tor, M., and Billiar, T. (2007). The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol Rev 220, 60-81.
  116. Schlesinger, R., Kahmann, R., and Kämper, J. (1997). The homeodomains of the heterodimeric bE and bW proteins of Ustilago maydis are both critical for function. Mol Gen Genet 254, 514-519.
  117. Houterman, P.M., Speijer, D., Dekker, H.L., de Koster, C.G., Cornelissen, B.J.C., and Rep, M. (2007). The mixed xylem sap proteome of Fusarium oxysporum-infected tomato plants. Mol Plant Pathol 8, 215-221.
  118. Bolwell, G.P., Butt, V.S., Davies, D.R., and Zimmerlin, A. (1995). The origin of the oxidative burst in plants. Free Radic Res 23, 517-532.
  119. Lamb, C., and Dixon, R.A. (1997). The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48, 251-275.
  120. Doke, N., Miura, Y., Sanchez, L.M., Park, H.J., Noritake, T., Yoshioka, H., and Kawakita, K. (1996). The oxidative burst protects plants against pathogen attack: mechanism and role as an emergency signal for plant bio-defence -a review. Gene 179, 45-51.
  121. Jones, J.D., and Dangl, J.L. (2006). The plant immune system. Nature 444, 323-329.
  122. Wang, B., Yang, X., Zeng, H., Liu, H., Zhou, T., Tan, B., Yuan, J., Guo, L., and Qiu, D. (2011). The purification and characterization of a novel hypersensitive-like response-inducing elicitor from Verticillium dahliae that induces resistance responses in tobacco. Appl Microbiol Biotechnol Weber, I., Gruber, C., and Steinberg, G. (2003). A class-V myosin required for mating, hyphal growth, and pathogenicity in the dimorphic plant pathogen Ustilago maydis. Plant Cell 15, 2826-2842.
  123. Beers, E.P., Jones, A.M., and Dickerman, A.W. (2004). The S8 serine, C1A cysteine and A1 aspartic protease families in Arabidopsis. Phytochemistry 65, 43-58.
  124. Strickler, J.E., Berka, T.R., Gorniak, J., Fornwald, J., Keys, R., Rowland, J.J., Rosenberg, M., and Taylor, D.P. (1992). Two novel Streptomyces protein protease inhibitors. Purification, activity, cloning, and expression. J Biol Chem 267, 3236-3241.
  125. Ramberg, J.E., and Mclaughlin, D.J. (1980). Ultrastructural-Study of Promycelial Development and Basidiospore Initiation in Ustilago maydis. Can J Bot/Rev Can Bot 58, 1548-1561.
  126. Snetselaar, K.M., Bölker, M., and Kahmann, R. (1996). Ustilago maydis mating hyphae orient their growth toward pheromone sources. Fungal Genet Biol 20, 299-312.
  127. Ustilago maydis, The causative agent of corn smut disease. Fung Path, 347–371.
  128. Hilaire, E., Young, S.A., Willard, L.H., McGee, J.D., Sweat, T., Chittoor, J.M., Guikema, J.A., and Leach, J.E. (2001). Vascular defense responses in rice: peroxidase accumulation in xylem parenchyma cells and xylem wall thickening. Mol Plant Microbe Interact 14, 1411-1419.
  129. Buhtz, A., Kolasa, A., Arlt, K., Walz, C., and Kehr, J. (2004). Xylem sap protein composition is conserved among different plant species. Planta 219, 610-618.
  130. Beckers, G.J.M., and Spoel, S.H. (2006). Fine-tuning plant defence signalling: Salicylate versus jasmonate. Plant Biology 8, 1-10.
  131. Kasai, P.H., and McLeod, D. (1977). On the Chemical Reactivity of Superoxide Ion. J Am Chem Soc 78, 627-628.
  132. Aichinger, C., Hansson, K., Eichhorn, H., Lessing, F., Mannhaupt, G., Mewes, W., and Kahmann, R. (2003). Identification of plant-regulated genes in Ustilago maydis by enhancer-trapping mutagenesis. Mol Genet Genomics 270, 303-314.
  133. Snetselaar, K.M., and Mims, C.W. (1992). Sporidial fusion and infection of maize seedlings by the smut fungus Ustilago maydis. Mycologia 84, 193-203.
  134. Abbildung 32: Konservierte Domänen der Klasse-III-Häm-Peroxidasen (Lehtonen et al., 2009). Aminosäurensequenzvergleich von POX12 mit ausgeählten Klasse-III-Häm-Peroxidasen. Grüne Boxen: Signalpeptid Regionen (Ausgehend von der Signalpeptid-Vorhersage mittels SMART (http://smart.embl-heidelberg.de)). Rote Boxen: Konservierte Reste welche für die katalytische Aktivität wichtig sind. Graue Boxen: Substrat-Eingangs-Kanal auskleidende Reste. Grün schattierte Boxen: Ca 2+ -binde-Reste. Schwarze Boxen: Disulfidbrücken bildende Cystein-Reste. Die vorher- gesagte Asp-Arg-Salzbrücken-Reste wird durch " * " angezeigt. Die für den Vergleich mit POX12 zu Grunde gelegten POX sind: POX12, (Zea mays) (ACG36543); RP-C1A, (Armorica rusticana) (P00433.2); PO-C1, (Oryza sativa) (AAF65464.2); PpaPrx34b (Physcomitrella patens) (XP_001777299.1); BP1 (Hordeum vulgare) (Q40069); WP1 (Triticum aestivum) (AF525425).
  135. Armstrong, M.R., Whisson, S.C., Pritchard, L., Bos, J.I., Venter, E., Avrova, A.O., Rehmany, A.P., Böhme, U., Brooks, K., Cherevach, I., Hamlin, N., White, B., Fraser, A., Lord, A., Quail, M.A., Churcher, C., Hall, N., Berriman, M., Huang, S., Kamoun, S., Beynon, J.L., and Birch, P.R. (2005). An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognized in the host cytoplasm. P Natl Acad Sci USA 102, 7766-7771.
  136. Apel, K., and Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55, 373-399.
  137. Apostol, I., Heinstein, P.F., and Low, P.S. (1989). Rapid Stimulation of an Oxidative Burst during Elicitation of Cultured Plant Cells: Role in Defense and Signal Transduction. Plant physiol 90, 109-116.
  138. Kim, J.F., and Beer, S.V. (1998). HrpW of Erwinia amylovora, a new harpin that contains a domain homologous to pectate lyases of a distinct class. J Bacteriol 180, 5203- 5210.
  139. Pechan, T., Cohen, A., Williams, W.P., and Luthe, D.S. (2002). Insect feeding mobilizes a unique plant defense protease that disrupts the peritrophic matrix of caterpillars. P Natl Acad Sci USA 99, 13319-13323.
  140. Solomon, M., Belenghi, B., Delledonne, M., Menachem, E., and Levine, A. (1999). The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell 11, 431-444.
  141. Grant, J.J., and Loake, G.J. (2000). Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant physiol 124, 21-29.
  142. Mehdy, M.C. (1994). Active oxygen species in plant defense against pathogens. Plant Physiol 105, 467-472.
  143. Metwally, A., Finkemeier, I., Georgi, M., and Dietz, K.J. (2003). Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132, 272-281.
  144. Doehlemann, G., van der Linde, K., Assmann, D., Schwammbach, D., Hof, A., Mohanty, A., Jackson, D., and Kahmann, R. (2009). Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells. PLoS Pathog 5, e1000290.
  145. Lee, S.J., and Rose, J.K. (2010). Mediation of the transition from biotrophy to necrotrophy in hemibiotrophic plant pathogens by secreted effector proteins. Plant Signal Behav 5, 769-772.
  146. Taj, G., Agarwal, P., Grant, M., and Kumar, A. (2010). MAPK machinery in plants: recognition and response to different stresses through multiple signal transduction pathways. Plant signaling & behavior 5, 1370-1378.
  147. Seo, H.S., Song, J.T., Cheong, J.J., Lee, Y.H., Lee, Y.W., Hwang, I., Lee, J.S., and Choi, Y.D. (2001). Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses. P Natl Acad Sci USA 98, 4788-4793.
  148. Bindschedler, L.V., Dewdney, J., Blee, K.A., Stone, J.M., Asai, T., Plotnikov, J., Denoux, C., Hayes, T., Gerrish, C., Davies, D.R., Ausubel, F.M., and Bolwell, G.P. (2006). Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J 47, 851-863.
  149. Hemetsberger, C., Herrberger, C., Zechmann, B., Hillmer, M., and Doehlemann, G. (2012). The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity. PLoS (in submission).
  150. Guo, Z.J., Lamb, C., and Dixon, R.A. (1998). Potentiation of the oxidative burst and isoflavonoid phytoalexin accumulation by serine protease inhibitors. Plant physiol 118, 1487-1494.
  151. Comparative biochemistry of the oxidative burst produced by rose and french bean cells reveals two distinct mechanisms. Plant Physiol 116, 1379-1385.
  152. van der Hoorn, R.A.L., Leeuwenburgh, M.A., Bogyo, M., Joosten, M.H.A.J., and Peck, S.C. (2004). Activity profiling of papain-like cysteine proteases in plants. Plant Physiol 135, 1170-1178.
  153. Grant, S.G.N., Jessee, J., Bloom, F.R., and Hanahan, D. (1990). Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli Methylation-Restriction mutants. P Natl Acad Sci USA 87, 4645-4649.
  154. Tian, M.Y., Benedetti, B., and Kamoun, S. (2005). A second kazal-like protease inhibitor from Phytophthora infestans inhibits and interacts with the apoplastic pathogenesis-related protease P69B of tomato. Plant physiology 138, 1785-1793.
  155. Torres, M.A., Jones, J.D., and Dangl, J.L. (2006). Reactive oxygen species signaling in response to pathogens. Plant Physiol 141, 373-378.
  156. Schulz, B., Banuett, F., Dahl, M., Schlesinger, R., Schafer, W., Martin, T., Herskowitz, I., and Kahmann, R. (1990). The b alleles of U. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell 60, 295-306.
  157. Bölker, M., Urban, M., and Kahmann, R. (1992). The a mating type locus of U. maydis specifies cell signaling components. Cell 68, 441-450.
  158. Hoffman, C.S., and Winston, F. (1987). A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57, 267-272.
  159. Hanahan, D. (1983). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166, 557-580.
  160. Müller, O., Kahmann, R., Aguilar, G., Trejo-Aguilar, B., Wu, A., and de Vries, R.P. (2008). The secretome of the maize pathogen Ustilago maydis. Fungal Genet Biol 45, 63-70.
  161. Schulze-Lefert, P. (2004). Knocking on heaven's wall: pathogenesis of and resistance to biotrophic fungi at the cell wall. Curr Opin Plant Biol 7, 377-383.
  162. Begerow, D., Stoll, M., and Bauer, R. (2006). A phylogenetic hypothesis of Ustilaginomycotina based on multiple gene analyses and morphological data. Mycologia 98, 906-916.
  163. Thomma, B.P., van Esse, H.P., Crous, P.W., and de Wit, P.J. (2005). Cladosporium fulvum (syn. Passalora fulva), a highly specialized plant pathogen as a model for functional studies on plant pathogenic Mycosphaerellaceae. Mol Plant Pathol 6, 379-393.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten