Publikationsserver der Universitätsbibliothek Marburg

Titel:Development of a house dust mite model of mixed allergic airway inflammation and analysis of allergyprotective effects of Staphylococcus sciuri
Autor:Zhao, Min
Weitere Beteiligte: Renz, Harald (Prof. Dr.)
Veröffentlicht:2012
URI:https://archiv.ub.uni-marburg.de/diss/z2012/0842
URN: urn:nbn:de:hebis:04-z2012-08425
DOI: https://doi.org/10.17192/z2012.0842
DDC:610 Medizin
Titel (trans.):Entwicklung eines Hausstaubmilben-Modells der gemischten allergischen Atemwegsentzuendung und Analyse des allergoprotektiven Effekts von Staphylococcus sciuri
Publikationsdatum:2012-10-05
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Allergische Atemwegsentzuendung, Asthma bronchiale, Allergische Atemwegsentzuendung, Airway inflammation, Staphylococcus sciuri, Hausstaub, Allergic asthma, House dust mite, Staphylococcus sciuri

Summary:
Allergic asthma is a chronic inflammatory disease of the airways based on a dysregulated immune response to innocuous antigens (allergens) with a predominance of Th2-driven activities. According to the hygiene hypothesis, neonatal and early childhood exposure to certain microbes and their products may protect them from the development of allergic responses due to a shift in the balance of T cell subpopulation activities. This concept has been experimentally proven for Gram-negative bacteria in a mouse model representing an eosinophil granulocyte-dominated phenotype using ovalbumin as model allergen. Recently, epidemiological studies revealed a specific association between Staphylococcus sciuri exposure and reduced asthma prevalences. The aim in the first part of this work was to establish a murine model of allergic airway inflammation with a more pronounced contribution of neutrophil granulocytes, using the clinically relevant house dust mite (HDM) allergen. Various asthma-relevant parameters were monitored after exposure to house dust mite extracts from different sources, at a wide range of doses and at various intervals after allergen challenge. It could be revealed that HDM1 from Allergopharma Co. (Hamburg, Germany) elicited the strongest asthma phenotype with a mixed eosinophil and neutrophil airway inflammation, an increased production of serum HDM-IgG1 and subsequent histological changes. This phenotype was also more pronounced in mice sensitized with the highest tested HDM extract concentration (100 µg). It also became evident that neutrophils and eosinophils got involved at different time points of the inflammatory process by the action of different chemotactic factors and their activation thus representing different biological events. In the second part of this work, the Gram-positive bacterium S. sciuri was tested for its potential allergy-protective effect in this model. Exposure to S. sciuri strongly inhibited the generation of HDM extract-induced airway inflammation, as evidenced by a reduction of both eosinophil and neutrophil numbers compared to HDM extract-induced airway inflammation in non-exposed control-animals. This suppression of airway inflammation was accompanied by diminished production of cytokines and chemokines and by an alleviation of goblet cell hyperplasia and mucus production. These data provide the first experimental evidence that exposure to S. sciuri might be protective against the development of allergic airway inflammation and associated pulmonary pathology.

Bibliographie / References

  1. Holgate S.T. (2011). The sentinel role of the airway epithelium in asthma pathogenesis. Immunol Rev, 242,205-219. doi: 10.1111/j.1600-065X.2011.01030.x.
  2. Interferon-gamma enhances human eosinophil effector functions induced by granulocyte-macrophage colony-stimulating factor or interleukin-5. Immunol Lett, 118,88-95.
  3. Sel S., Wegmann M., Dicke T., Sel S., Henke W., Yildirim A.O., Renz H., and Garn H. (2008). Effective prevention and therapy of experimental allergic asthma using a GATA-3-specific DNAzyme. J Allergy Clin Immunol, 121,910-916.
  4. Heine H., and Holst O. (2008). Animal shed Bacillus licheniformis spores possess allergy-protective as well as inflammatory properties. J Allergy Clin Immunol, 122,307-312.
  5. Renz H., Autenrieth I.B., Brandtzaeg P., Cookson W.O., Holgate S., von Mutius E., Valenta R., and Haller D. (2011). Gene-environment interaction in chronic disease: A European Science Foundation Forward Look. J Allergy Clin Immunol, 128,S27-49.
  6. Stevenson C.S., and Birrell M.A. (2011). Moving towards a new generation of animal models for asthma and COPD with improved clinical relevance. Pharmacol Ther, 130,93-105.
  7. Von Ehrenstein O.S., Von Mutius E., Illi S., Baumann L., Böhm O., and von Kries R. (2000). Reduced risk of hay fever and asthma among children of farmers. Clin Exp Allergy, 30,187-193.
  8. Wegmann M., Fehrenbach H., Fehrenbach A., Held T., Schramm C., Garn H., and Renz H. (2005). Involvement of distal airways in a chronic model of experimental asthma.
  9. Wahn U. (2011). The significance of environmental exposure on the progression of allergic diseases. Allergy, 95,7-9.
  10. Uddin M., Nong G., Ward J., Seumois G., Prince L.R., Wilson S.J., Cornelius V., Dent G., and Djukanovic R. (2010). Prosurvival activity for airway neutrophils in severe asthma. Thorax, 65,684-689.
  11. Clarithromycin inhibits interleukin-13-induced goblet cell hyperplasia in human airway cells. Am J Respir Cell Mol Biol, 45,1075-1083.
  12. Interleukin-9 induces goblet cell hyperplasia during repair of human airway epithelia.
  13. Ishikawa Y., Kobayashi K., Yamamoto M., Nakata K., Takagawa T., Funada Y., Kotani Y., Karasuyama H., Yoshida M., and Nishimura Y. (2011). Antigen-Specific IgG ameliorates allergic airway inflammation via Fcγ receptor IIB on dendritic cells. Respir Res, 12,42.
  14. Shannon J., Ernst P., Yamauchi Y., Olivenstein R., Lemiere C., Foley S., Cicora L., Ludwig M., Hamid Q., and Martin J.G. (2008). Differences in airway cytokine profile in severe asthma compared to moderate asthma. Chest, 133,420-426.
  15. Schwartz D.A. (2009). Gene-environment interactions and airway disease in children. Pediatrics, 123 Suppl 3,S151-S159.
  16. Chronic exposure ot innocuous antigen in sensitized mice leads to suppressed airway eosinophilia that is reversed by granulocyte macrophage colony-stimulating factor. J Immunol, 169,3499-3506.
  17. Kohyama S., Ohno S., Isoda A., Moriya O., Belladonna M.L., Hayashi H., Iwakura Y., Yoshimoto T., Akatsuka T., and Matsui M. (2007). IL-23 enhances host defense against vaccinia virus infection via a mechanism party involving IL-17. J Immunol, 179,3917-3925.
  18. Woodman L., Siddiqui S., Cruse G., Sutcliffe A., Saunders R., Kaur D., Bradding P., and Brightling C. (2008). Mat cells promote airway smooth muscle cell differentiation via autocrine up-regulation of TGF-beta1. J Immunol, 181,5001-5007.
  19. Kool M., Soullié T., van Nimwegen M., Willart M.A., Muskens F., Jung S., Hoogsteden H.C., Hammad H., and Lambrecht B.N. (2008). Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J Exp Med, 205,869-882.
  20. Wenzel S.E. (2006). Asthma : defining of the persistent adult phenotypes. Lancet, 368,804-813.
  21. Riedler J., Eder W., Oberfeld G., and Schreuer M. (2000). Austrian children living on a farm have less hay fever, asthma and allergic sensitization. Clin Exp Allergy, 30,194-200.
  22. Hesselmar B., Aberg N., Aberg B., Eriksson B., and Björkstén B. (1999). Does early exposure to cat or dog protect against later allergy development? Clin Exp Allergy, 29, 611-617.
  23. Effects of a low-molecular-weight CCR-3 antagonist on chronic experimental asthma. Am J Respir Cell Mol Biol, 36,61-67.
  24. Rothenberg M.E., Ownbey R., Mehlhop P.D., Loiselle P.M., van de Rijn M., Bonventre J.V., Oettgen H.C., Leder P., and Luster A.D. (1996). Eotaxin triggers eosinophil-selective chemotaxis and calcium flux via a distinct receptor and induces pulmonary eosinophilia in the presence of interleukin 5 in mice. Mol Med, 2,334-348.
  25. Riedler J., Braun-Fahrländer C., Eder W., Schreuer M., Waser M., Maisch S., Carr D., Schierl R., Nowak D., von Mutius E., and ALEX Study Team. (2001). Exposure to farming in early life and development of asthma and allergy: a cross-sectional survey. Lancet, 358,1129-1133.
  26. Kleeberger S.R., and Peden D. (2005). Gene-environment interactions in asthma and other respiratory diseases. Annu Rev Med, 56,383-400.
  27. Holloway J.W., Yang I.A., and Holgate S.T. (2010). Genetics of allergic disease. J Allergy Clin Immunol, 125,S81-S94.
  28. Saha S., Doe C., Mistry V., Siddiqui S., Parker D., Sleeman M., Cohen E.S., and Brightling C.E. (2009). Granulocyte-macrophage colony-stimulating factor expression in induced sputum and bronchial mucosa in asthma and COPD. Thorax, 64,671-676.
  29. Strachan D.P. (1989). Hay fever, hygiene, and household size. BMJ, 299,1259-1260. Reference Page 90
  30. IL-23-dependent IL-17 production is essential in neutrophil recruitment and activity in mouse lung defense against respiratory Mycoplasma pneumoniae infection. Microbes Infect, 9,78-86.
  31. Kearley J., Erjefalt J.S., Andersson C., Benjamin E., Jones C.P., Robichaud A., Pegorier S., Brewah Y., Burwell T.J., Bjermer L., Kiener P.A., Kolbeck R., Lloyd C.M., Coyle A.J., and Humbles A.A. (2011). IL-9 governs allergen-induced mast cell numbers in the lung and chronic remodeling of the airways. Am J Respir Crit Care Med, 183,865-875.
  32. Kim Y.S., Kwon K.S., Kim D.K., Choi I.W., and Lee H.K. (2004). Inhibition of murine allergic airway disease by Bordetella pertussis. Immunology, 112,624-630.
  33. Witowski J., Ksiazek K., and Jörres A. (2004). Interleukin-17: a mediator of inflammatory responses. Cell Mol Life Sci, 61,567-579.
  34. Wong C.K., Cheung P.F., Ip W.K., and Lam C.W. (2005). Interleukin-25-induced chemokines and interleukin-6 release from eosinophils is mediated by p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, and nuclear factor-kappaB.
  35. van Rijt L.S., Jung S., Kleinjan A., Vos N., Willart M., Duez C., Hoogsteden H.C., and Lambrecht B.N. (2005). In vivo depletion of lung CD11c + dendritic cells during allergen challenge abrogates the characteristic features of asthma. J Exp Med, 201,981-991.
  36. Jeffery P.K. (1992). Pathology of asthma. Br Med Bull, 48,23-39.
  37. Woodruff P.G., Modrek B., Choy D.F., Jia G., Abbas A.R., Ellwanger A., Koth L.L., Arron J.R., and Fahy J.V. (2009). T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am J Respir Crit Care Med, 180,388-395.
  38. Mite, cat, and cockroach exposure, allergen sensitisation, and asthma in children: a case-control study of three schools. Thorax. 54,675-680.
  39. Squillace S.P., Sporik R.B., Rakes G., Couture N., Lawrence A., Merriam S., Zhang J., and Platts-Mills A.E. (1997). Sensitization to dust mites as a dominant risk factor for asthma among adolescents living in central Virginia. Multiple regression analysis of a population-based study. Am J Respir Crit Care Med, 156:1760-1764.
  40. Wegmann M. (2011). Targeting eosinophil biology in asthma therapy. Am J Respir Cell Mol Biol, 45,667-674.
  41. Ward M.D., Chung Y.J., Copeland L.B., and Doerfler D.L. (2011). Allergic responses induced by a fungal biopesticide Metarhizium anisopliae and house dust mite are compared in a mouse model. J Toxicol, 2011,360805.
  42. Yao X., Dai C., Fredriksson K., Dagur P.K., McCoy J.P., Qu X., Yu Z.X., Keeran K.J., Zywicke G.J., Amar M.J., Remaley A.T., and Levine S.J. (2011). 5A, an apolipoprotein A-I mimetic peptide, attenuates the induction of house dust mite-induced asthma. J Immunol, 186,576-583.
  43. Renz H., Blümer N., Virna S., Sel S., and Garn H. (2006). The immunological basis of the hygiene hypothesis. Chem Immunol Allergy, 91,30-48.
  44. Kaneko M., Swanson M.C., Gleich G.J., and Kita H. (1995). Allergen-specific IgG1 and IgG3 through Fc gamma RII induce eosinophil degranulation. J Clin Invest, 95,2813-2821.
  45. Williams T.J. (2004). The eosinophil enigma. J Clin Invest, 113,507-509.
  46. Vercelli D. (2008). Advances in asthma and allergy genetics in 2007. J Allergy Clin Immunol, 122,267-271.
  47. Kariyawasam H.H., and Robinson D.S. (2007). The role of eosinophils in airway tissue remodeling in asthma. Curr Opin Immunol, 19,681-686.
  48. Sironi M., and Clerici M. (2010). The hygiene hypothesis: an evolutionary perspective. Microbes Infect, 12,421-427.
  49. Jacquet A. (2011). The role of innate immunity activation in house dust mite allergy. Trends Mol Med, 17,604-611.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten