Publikationsserver der Universitätsbibliothek Marburg

Titel:Charakterisierungsstudien der biologischen und neurotrophen Eigenschaften des cerebral dopamine neurotrophic factor (CDNF)
Autor:Barkholz, Michael
Weitere Beteiligte: Petersen, Maike (Prof.)
Veröffentlicht:2011
URI:https://archiv.ub.uni-marburg.de/diss/z2012/0792
DOI: https://doi.org/10.17192/z2012.0792
URN: urn:nbn:de:hebis:04-z2012-07920
DDC: Medizin
Titel (trans.):Characterization studies on the biological and neurotrophic effects of cerebral dopamine neurotrophic factor (CDNF)
Publikationsdatum:2012-08-29
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Brain-derived neurotrophic factor, Mesc-Zellen, Production of recombinant proteins, Ciliary neurotrophic factor, Mesc cells, ER-Retention, LUHMES-Zellen, HT-22 Zellen, Cerebral dopamine neurotrphic factor, LUHMES cells, HT-22 cells, 6-Hydroxydopamin, 6-hydroxydopamine, Herstellung rekombinanter Proteine

Zusammenfassung:
Neurotrophe Faktoren ermöglichen das Überleben von Neuronen auch unter pathologischen Stressbedingungen sowie eine erneute Proliferation neuronaler Zellstrukturen nach Beschädigung. Neurotrophe Faktoren sind definiert als sekretierte Proteine. Sie werden nach Strukturhomologien, Rezeptoren und Signaltransduktionswegen in verschiedene Familien unterteilt. Die Bezeichnung „neurotropher Faktor“ umfasst Proteine mit unterschiedlichsten Funktionen. Die neurotrophen Eigenschaften von CDNF, das zur CDNF/MANF Proteinfamilie gehört, wurden durch intrastriatale Injektion und darauf folgende Protektion und Proliferation von Neuronen in einem in vivo Schädigungsmodell nachgewiesen. Diese Proteinfamilie könnte somit einen neuen Ansatz zu einer Therapiemöglichkeit von neurodegenerativen Krankheiten bieten. CDNF und MANF haben ein Molekulargewicht von ungefähr 21 kDa. Der Aminoterminus enthält eine globuläre Saposin-ähnliche (saposin like protein SAPLIP)-Domäne, und der Carboxyterminus ist verwandt mit der Sequenz von scaffold attachment factors (SAFs) und enthält analog zu SAFs eine redoxaktive Cysteinbrücke eingebettet in ein CXXC-Motiv. Die biologische Funktion, Rezeptoren und Wirkmechanismus der Neuroprotektion der CDNF/MANF Proteinfamilie sind bisher unbekannt. In dieser Arbeit wurden unterschiedliche Versuche zur Charakterisierung der Eigenschaften von CDNF und dessen SAPLIP-Domäne unternommen. Für alle Versuche waren umfangreiche biotechnologische Vorarbeiten notwendig, die in der Forschungsabteilung von CSL Behring, Marburg vorgenommen wurden. Der erste Teil der Arbeit befasst sich mit der Überprüfung der These, dass CDNF, ausgehend von seiner SAPLIP-Domäne, transduktorische Eigenschaften besitzen könnte: Makromoleküle in Zellen zu schleusen, ist durch die selektiv durchlässige Zellmembran nur sehr beschränkt möglich. Diese Restriktionen erlauben nur einem sehr kleinen Teil möglicher therapeutischer Substanzen den Zugang ins Zellinnere. Die natürliche Struktur von beispielsweise Proteinen verhindert das passive Eindringen dieser Stoffe in die Zelle. In den 1980er Jahren wurden jedoch Peptidsequenzen entdeckt, die als Molekültransporter Makromoleküle in das Zellinnere schleusen können. Die N-terminalen Domäne von CDNF besitzt nicht die klassische Struktur proteinogener Molekültransporter, sie ist jedoch verwandt mit Saposinen. Saposine und Saposin-ähnliche Domänen weiterer Proteine können Lipide binden oder Zellmembranen permeabilisieren. Diese Eigenschaften führten zu der These, dass auch die SAPLIP-Domäne von CDNF potentielle transduktorische Funktionen ausüben könnte. Zur Überprüfung der These wurden CDNF-Fusionsproteine biotechnologisch produziert und auf ihre transduktorischen Eigenschaften untersucht. Es konnte aber keine Transduktion von CDNF oder Assoziation mit der Zellmembran detektiert werden. Der zweite Teil der Arbeit zeigt die zelluläre Lokalisation von nativem CDNF. CDNF wird als sekretierter neurotropher Faktor beschrieben. Die C-terminale KTEL-Sequenz von CDNF weist jedoch eine große Ähnlichkeit zum allgemeinen ER-Retentionssignal KDEL auf. Wir zeigen in dieser Arbeit mit unterschiedlichen Methoden zum ersten Mal, dass CDNF tatsächlich im ER retardiert wird. Es wurden weiterhin CDNF-Mutanten mit verändertem CTerminus produziert. Die CDNF-Mutante mit C-terminaler KDEL-Sequenz und natives CDNF konnten nicht im Überstand von transfizierten Säugetier-Zellkulturen detektiert werden. Im Gegensatz zu CDNF-Mutanten mit deletiertem, maskiertem oder anderweitig verändertem C-Terminus, die im Kulturüberstand nachweisbar waren. Dieser Vergleich mit unterschiedlichen CDNF-Mutanten zeigt die wichtige Funktion einer freien C-terminalen KTEL-Sequenz bei der zellulären Lokalisation von CDNF. Der dritte Teil der Arbeit beschäftigt sich mit den neurotrophen Eigenschaften von CDNF in vitro. Nach erfolgreicher Protektion sollte durch molekulare und biochemische Methoden der unbekannte Mechanismus der neuroprotektiven Wirkung von CDNF näher untersucht werden. Verschiedene neuronale Zellkulturen wurden dafür mit 6-Hydroxydopamin oder Glutamat geschädigt. Rekombinant hergestelltes CDNF oder dessen SAPLIP-Domäne wurden extern zugeführt und der Einfluss der zugesetzten Proteine analysiert. Im Gegensatz zu den vorherigen Ergebnissen in vivo, konnte in keinem der verwendeten in vitro Systeme eine signifikante Protektion oder Proliferation durch CDNF beobachtet werden.

Bibliographie / References

  1. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970; 227(5259):680-5.
  2. Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics. 2006; 22(2):195- 201.
  3. Bertani G. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol. 1951; 62(3):293-300.
  4. Vanyukov MM, Maher BS, Devlin B, Tarter RE, Kirillova GP, Yu LM, Ferrell RE. Haplotypes of the monoamine oxidase genes and the risk for substance use disorders. Am J Med Genet B Neuropsychiatr Genet. 2004; 125B(1):120-5.
  5. Airavaara M, Shen H, Kuo CC, Peränen J, Saarma M, Hoffer B, Wang Y. Mesencephalic astrocyte-derived neurotrophic factor reduces ischemic brain injury and promotes behavioral recovery in rats. J Comp Neurol. 2009; 515(1):116-24.
  6. Altmann F, Staudacher E, Wilson IB, März L. Insect cells as hosts for the expression of recombinant glycoproteins. Glycoconj J. 1999; 16(2):109-23.
  7. Kappus H. Oxidative stress in chemical toxicity.!Arch Toxicol. 1987; 60(1-3):144-9.
  8. Chen C, Smye SW, Robinson MP, Evans JA. Membrane electroporation theories: a review. Med Biol Eng Comput. 2006; 44(1-2):5-14.
  9. Hellman M, Peränen J, Saarma M, Permi P. 1H, 13C and 15N resonance assignments of the human mesencephalic astrocyte-derived neurotrophic factor. Biomol NMR Assign. 2010; 4(2):215-7.
  10. Nundlall S, Rajpar MH, Bell PA, Clowes C, Zeeff LA, Gardner B, Thornton DJ, Boot- Handford RP, Briggs MD. An unfolded protein response is the initial cellular response to the expression of mutant matrilin-3 in a mouse model of multiple epiphyseal dysplasia. Cell Stress Chaperones. 2010; 15(6):835-49.
  11. Porro M, Viti S, Antoni G, Saletti M. Ultrasensitive silver-stain method for the detection of proteins in polyacrylamide gels and immunoprecipitates on agarose gels. Anal Biochem. 1982; 127(2):316-21.
  12. Ziegler A. Thermodynamic studies and binding mechanisms of cell-penetrating peptides with lipids and glycosaminoglycans. Adv Drug Deliv Rev. 2008; 60(4-5):580-97.
  13. Lynes EM, Simmen T. Urban planning of the endoplasmic reticulum (ER): how diverse mechanisms segregate the many functions of the ER. Biochim Biophys Acta. 2011 ; 1813(10):1893-905.
  14. Teng Y, Liu Q, Ma J, Liu F, Han Z, Wang Y, Wang W. Cloning, expression and characterization of a novel human CAP10-like gene hCLP46 from CD34(+) stem/progenitor cells. Gene. 2006; 371(1):7-15.
  15. Rahhal B, Heermann S, Ferdinand A, Rosenbusch J, Rickmann M, Krieglstein K. In vivo requirement of TGF-beta/GDNF cooperativity in mouse development: focus on the neurotrophic hypothesis. Int J Dev Neurosci 2009; 27(1):97-102.
  16. Sukhodub AL, Burchell A. Preparation of intact microsomes from cultured mammalian H4IIE cells. J Pharmacol Toxicol Methods. 2005; 52(3):330-4.
  17. Davies AM. Developmental changes in the neurotrophic factor survival requirements of peripheral nervous system neurons.!Prog Brain Res. 1998; 117:47-56.
  18. Buceta M, Galbete JL, Kostic C, Arsenijevic Y, Mermod N. Use of human MAR elements to improve retroviral vector production. Gene Ther. 2011; 18(1):7-13.
  19. Liu B, Yang Y, Qiu Z, Staron M, Hong F, Li Y, Wu S, Li Y, Hao B, Bona R, Han D, Li Z. Folding of Toll-like receptors by the HSP90 paralogue gp96 requires a substrate-specific cochaperone. Nat Commun. 2010; 1:79.
  20. Bauer S, Kerr BJ, Patterson PH. The neuropoietic cytokine family in development, plasticity, disease and injury.!Nat Rev Neurosci. 2007; 8(3):221-32.
  21. Kokame K, Kato H, Miyata T. Identification of ERSE-II, a new cis-acting element responsible for the ATF6-dependent mammalian unfolded protein response. J Biol Chem. 2001; 276(12):9199-205. Epub 2000 Dec 8.
  22. Horibe T, Gomi M, Iguchi D, Ito H, Kitamura Y, Masuoka T, Tsujimoto I, Kimura T, Kikuchi M. Different contributions of the three CXXC motifs of human protein-disulfide isomerase- related protein to isomerase activity and oxidative refolding. J Biol Chem. 2004; 279(6):4604-11.
  23. Kolter T, Winau F, Schaible UE, Leippe M, Sandhoff K. Lipid-binding proteins in membrane digestion, antigen presentation, and antimicrobial defense. J Biol Chem. 2005; 280(50):41125-8.
  24. Myhill N, Lynes EM, Nanji JA, Blagoveshchenskaya AD, Fei H, Carmine Simmen K, Cooper TJ, Thomas G, Simmen T.!The subcellular distribution of calnexin is mediated by PACS-2. Mol Biol Cell. 2008; 19(7):2777-88.
  25. Schwede T, Kopp J, Guex N, Peitsch MC. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res. 2003; 31(13):3381-5.
  26. Parkash V, Lindholm P, Peränen J, Kalkkinen N, Oksanen E, Saarma M, Leppänen VM, Goldman A. The structure of the conserved neurotrophic factors MANF and CDNF explains why they are bifunctional. Protein Eng Des Sel. 2009; 22(4):233-41.
  27. Sun ZP, Gong L, Huang SH, Geng Z, Cheng L, Chen ZY. Intracellular trafficking and secretion of cerebral dopamine neurotrophic factor in neurosecretory cells. J Neurochem. 2011; 117(1):121-32.
  28. Tan S, Schubert D, Maher P. Oxytosis: A novel form of programmed cell death. Curr Top Med Chem. 2001; 1(6):497-506.
  29. Halliwell B, Cross CE. Oxygen-derived species: their relation to human disease and environmental stress. Environ Health Perspect. 1994; 102 Suppl 10:5-12.
  30. Saran M, Bors W. Oxygen radicals acting as chemical messengers: a hypothesis. Free Radic Res Commun. 1989; 7(3-6):213-20.
  31. Yang L, Johansson J, Ridsdale R, Willander H, Fitzen M, Akinbi HT, Weaver TE. Surfactant protein B propeptide contains a saposin-like protein domain with antimicrobial activity at low pH. J Immunol. 2010; 184(2):975-83.
  32. Anelli T, Alessio M, Mezghrani A, Simmen T, Talamo F, Bachi A, Sitia R. ERp44, a novel endoplasmic reticulum folding assistant of the thioredoxin family. EMBO J. 2002; 21(4):835-44.
  33. Shridhar V, Rivard S, Shridhar R, Mullins C, Bostick L, Sakr W, Grignon D, Miller OJ, Smith DI.!A gene from human chromosomal band 3p21.1 encodes a highly conserved arginine-rich protein and is mutated in renal cell carcinomas.!Oncogene. ;12(9):1931-9.
  34. Vennema H, Heijnen L, Rottier PJ, Horzinek MC, Spaan WJ. A novel glycoprotein of feline infectious peritonitis coronavirus contains a KDEL-like endoplasmic reticulum retention signal. J Virol. 1992; 66(8):4951-6.
  35. Olanow CW, Rascol O, Hauser R, Feigin PD, Jankovic J, Lang A, Langston W, Melamed E, Poewe W, Stocchi F, Tolosa E; ADAGIO Study Investigators. A double-blind, delayed- start trial of rasagiline in Parkinson's disease. N Engl J Med. 2009; 361(13):1268-78.
  36. Konno K, Wakabayashi Y, Akashi-Takamura S, Ishii T, Kobayashi M, Takahashi K, Kusumoto Y, Saitoh S, Yoshizawa Y, Miyake K. A molecule that is associated with Toll- like receptor 4 and regulates its cell surface expression. Biochem Biophys Res Commun. 2006; 339(4):1076-82.
  37. Leitner ML, Molliver DC, Osborne PA, Vejsada R, Golden JP, Lampe PA, Kato AC, Milbrandt J, Johnson EM Jr. Analysis of the retrograde transport of glial cell line-derived neurotrophic factor (GDNF), neurturin, and persephin suggests that in vivo signaling for the GDNF family is GFRalpha coreceptor-specific. J Neurosci. 1999; 19(21):9322-31.
  38. Culmsee C, Zhu C, Landshamer S, Becattini B, Wagner E, Pellecchia M, Blomgren K, Plesnila N. Apoptosis-inducing factor triggered by poly(ADP-ribose) polymerase and Bid mediates neuronal cell death after oxygen-glucose deprivation and focal cerebral ischemia. J Neurosci. 2005; 25:10262-10272.
  39. Apostolou A, Shen Y, Liang Y, Luo J, Fang S. Armet, a UPR-upregulated protein, inhibits cell proliferation and ER stress-induced cell death. Exp Cell Res. 2008; 314(13):2454-67.
  40. Mizobuchi N, Hoseki J, Kubota H, Toyokuni S, Nozaki J, Naitoh M, Koizumi A, Nagata K.! ARMET is a soluble ER protein induced by the unfolded protein response via ERSE-II element. Cell Struct Funct. 2007; 32(1):41-50.
  41. Baloh RH, Tansey MG, Lampe PA, Fahrner TJ, Enomoto H, Simburger KS, Leitner ML, Araki T, Johnson EM Jr, Milbrandt J. Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRalpha3-RET receptor complex. Neuron. 1998; 21(6):1291-302.
  42. Tobaben S, Grohm J, Seiler A, Conrad M, Plesnila N, Culmsee C. Bid-mediated mitochondrial damage is a key mechanism in glutamate-induced oxidative stress and AIF- dependent cell death in immortalized HT-22 hippocampal neurons. Cell Death Differ. 2011; 18(2):282-92.
  43. Kabouridis PS. Biological applications of protein transduction technology. Trends Biotechnol. 2003; 21(11):498-503.
  44. Di Giovanni G, Di Matteo V, Esposito E. Birth, life and death of dopaminergic neurons in the Substantia Nigra. Springer, 2009, 1. Auflage, ISBN: 978-3211926598.
  45. Oppenheim RW. Cell death during development of the nervous system. Annu Rev Neurosci. 1991; 14:453-501.
  46. Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ, Chernomordik LV, Lebleu B. Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem. 2003; 278(1):585-90.
  47. Yu BP. Cellular defenses against damage from reactive oxygen species. Physiol Rev. 1994; 74(1):139-62.
  48. Sagara Y, Dargusch R, Chambers D, Davis J, Schubert D, Maher P. Cellular mechanisms of resistance to chronic oxidative stress. Free Radic. Biol. Med. 1998; 24:1375-89.
  49. Hiesberger T, Hüttler S, Rohlmann A, Schneider W, Sandhoff K, Herz J. Cellular uptake of saposin (SAP) precursor and lysosomal delivery by the low density lipoprotein receptor- related protein (LRP). EMBO J. 1998; 17(16):4617-25.
  50. Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell. 1988; 55(6):1189-93.
  51. Romig H, Fackelmayer FO, Renz A, Ramsperger U, Richter A. Characterization of SAF-A, a novel nuclear DNA binding protein from HeLa cells with high affinity for nuclear matrix/scaffold attachment DNA elements. EMBO J. 1992; 11(9):3431-40.
  52. Voutilainen MH, Bäck S, Peränen J, Lindholm P, Raasmaja A, Männistö PT, Saarma M, Tuominen RK. Chronic infusion of CDNF prevents 6-OHDA-induced deficits in a rat model of Parkinson's disease. Exp Neurol. 2011; 228(1):99-108.
  53. Culmsee für die Möglichkeit in seinem Labor arbeiten zu dürfen und die Übernahme des Zweitgutachtens. Außerdem möchte ich mich bei Herrn Prof. Dr. Klebe und Herrn Prof. Dr.
  54. Phillis JW, Horrocks LA, Farooqui AA. Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res Rev. 2006; 52(2):201-43.
  55. Levi-Montalcini R, Aloe L.!Differentiating effects of murine nerve growth factor in the peripheral and central nervous systems of Xenopus laevis tadpoles. Proc Natl Acad Sci U S A. 1985; 82(20):7111-5.
  56. Gill SS, Patel NK, Hotton GR, O'Sullivan K, McCarter R, Bunnage M, Brooks DJ, Svendsen CN, Heywood P. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med. 2003; 9(5):589-95
  57. Burdo J, Dargusch R, Schubert D. Distribution of the cystine/glutamate antiporter system xc- in the brain, kidney, and duodenum. J Histochem Cytochem. 2006; 54(5):549-57.
  58. Sukharev SI, Klenchin VA, Serov SM, Chernomordik LV, Chizmadzhev YuA. Electroporation and electrophoretic DNA transfer into cells. The effect of DNA interaction with electropores. Biophys J. 1992; 63(5):1320-7.
  59. Ryu J, Han K, Park J, Choi SY. Enhanced uptake of a heterologous protein with an HIV-1 Tat protein transduction domains (PTD) at both termini. Mol Cells. 2003; 16(3):385-91.
  60. Engvall E, Perlmann P. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry. 1971; 8(9):871-4.
  61. Hallböök F, Ibáñez CF, Persson H. Evolutionary studies of the nerve growth factor family reveal a novel member abundantly expressed in Xenopus ovary. Neuron. 1991; 6(5):845- 58.
  62. Morimoto BH, Koshland DE Jr.!Excitatory amino acid uptake and N-methyl-D-aspartate- mediated secretion in a neural cell line. Proc Natl Acad Sci U S A. 1990; 87(9):3518-21.
  63. Krieglstein K.!Factors promoting survival of mesencephalic dopaminergic neurons.!Cell Tissue Res. 2004; 318(1):73-80.
  64. Für die Bereitstellung des Themas und der Arbeitsmaterialien möchte ich mich bei Herrn Dr.
  65. Riley PA. Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol. 1994; 65(1):27-33.
  66. Leifert JA, Harkins S, Whitton JL. Full-length proteins attached to the HIV tat protein transduction domain are neither transduced between cells, nor exhibit enhanced immunogenicity. Gene Ther. 2002; 9(21):1422-8.
  67. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F.!GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science. 1993; 260(5111):1130-2.! Lindholm, P. Novel CDNF/MANF Protein Family: Molecular Structure, Expression and Neurotrophic Activity, Institute of Biotechnology and Faculty of Biosciences, University of Helsinki, Finland 2009, ISBN:978-952-10-5586-7
  68. Bespalov MM, Saarma M. GDNF family receptor complexes are emerging drug targets. Trends Pharmacol Sci. 2007; 28(2):68-74.
  69. Baur B, Hanselmann K, Schlimme W, Jenni B. Genetic transformation in freshwater: Escherichia coli is able to develop natural competence. Appl Environ Microbiol. 1996; 62(10):3673-8.
  70. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1982; 1(7):841-5.
  71. Tomac AC, Grinberg A, Huang SP, Nosrat C, Wang Y, Borlongan C, Lin SZ, Chiang YH, Olson L, Westphal H, Hoffer BJ. Glial cell line-derived neurotrophic factor receptor alpha1 availability regulates glial cell line-derived neurotrophic factor signaling: evidence from mice carrying one or two mutated alleles. Neuroscience. 2000; 95(4):1011-23.
  72. European Medicines Agency, ICH Topic Q 6 B Specifications: Test Procedures and Acceptance Criteria for Biotechnological/Biological Products. 1999, Document # CPMP/ICH/365/96.
  73. Jackson MR, Nilsson T, Peterson PA. Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J. 1990; 9(10):3153-62.
  74. Ernfors P, Wetmore C, Olson L, Persson H. Identification of cells in rat brain and peripheral tissues expressing mRNA for members of the nerve growth factor family. Neuron. 1990; 5(4):511-26.
  75. Towbin H, Staehelin T, Gordon J. Immunoblotting in the clinical laboratory. J Clin Chem Clin Biochem. 1989; 27(8):495-501.
  76. Blum H, Beier H, Gross H. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis. 1987; 8(2):93–99.
  77. Rabilloud T, Carpentier G, Tarroux P. Improvement and simplification of low-background silver staining of proteins by using sodium dithionite. Electrophoresis. 1988; 9(6):288-91.
  78. Lundberg M, Johansson M. Is VP22 nuclear homing an artifact? Nat. Biotechnol. 2001; 19:713–714
  79. Wurm F, Bernard A. Large-scale transient expression in mammalian cells for recombinant protein production. Curr Opin Biotechnol. 1999; 10(2):156-9.
  80. Dugaiczyk A, Boyer HW, Goodman HM. Ligation of EcoRI endonuclease-generated DNA fragments into linear and circular structures. J Mol Biol. 1975; 96(1):171-84.
  81. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A. 1987; 84(21):7413-7.
  82. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002; 30(14):3059-66.
  83. Petrova P, Raibekas A, Pevsner J, Vigo N, Anafi M, Moore MK, Peaire AE, Shridhar V, Smith DI, Kelly J, Durocher Y, Commissiong JW. MANF: a new mesencephalic, astrocyte- derived neurotrophic factor with selectivity for dopaminergic neurons. J Mol Neurosci. 2003; 20(2):173-88.
  84. Calabrese V, Scapagnini G, Ravagna A, Giuffrida Stella AM, Butterfield DA.!Molecular chaperones and their roles in neural cell differentiation. Dev Neurosci. 2002; 24(1):1-13.
  85. Leibrock J, Lottspeich F, Hohn A, Hofer M, Hengerer B, Masiakowski P, Thoenen H, Barde YA. Molecular cloning and expression of brain-derived neurotrophic factor. Nature. 1989; 341(6238):149-52.
  86. Sattler R, Tymianski M. Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol Neurobiol. 2001; 24(1-3):107-29.
  87. Berkemeier LR, Winslow JW, Kaplan DR, Nikolics K, Goeddel DV, Rosenthal A. Neurotrophin-5: a novel neurotrophic factor that activates trk and trkB. Neuron. 1991; 7(5):857-66.
  88. Kotzbauer PT, Lampe PA, Heuckeroth RO, Golden JP, Creedon DJ, Johnson EM Jr, Milbrandt J. Neurturin, a relative of glial-cell-line-derived neurotrophic factor. Nature. 1996; 384(6608):467-70.
  89. Lindholm P, Saarma M. Novel CDNF/MANF family of neurotrophic factors. Dev Neurobiol. 2010; 70(5):360-71.
  90. Lindholm P, Voutilainen MH, Laurén J, Peränen J, Leppänen VM, Andressoo JO, Lindahl M, Janhunen S, Kalkkinen N, Timmusk T, Tuominen RK, Saarma M. Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo. Nature. 2007; 448(7149):73-7.
  91. Kohen R, Nyska A.!Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification.!Toxicol Pathol. 2002; 30(6):620-50.
  92. Duan J, Kasper DL.!Oxidative depolymerization of polysaccharides by reactive oxygen/nitrogen species.!Glycobiology. 2011; 21(4):401-9.
  93. Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science. 1993; 262 (5134):689-95.
  94. Behl C, Holsboer F. Oxidative stress in the pathogenesis of Alzheimer's disease and antioxidant neuroprotection. Fortschr Neurol Psychiatr. 1998; 66 (3):113-21.
  95. Halliwell B, Gutteridge JM. Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch Biochem Biophys. 1986; 246(2):501-14.
  96. Frank L, Bucher JR, Roberts RJ.!Oxygen toxicity in neonatal and adult animals of various species.!J Appl Physiol. 1978; 45(5):699-704.
  97. Wickner S, Maurizi MR, Gottesman S. Posttranslational quality control: folding, refolding, and degrading proteins. Science. 1999; 286(5446):1888-93.
  98. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988; 239(4839):487-91.
  99. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Müller-Newen G, Schaper F.!Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J. 2003; 374(1):1- 20.
  100. Lotharius J, Falsig J, van Beek J, Payne S, Dringen R, Brundin P, Leist M. Progressive degeneration of human mesencephalic neuron-derived cells triggered by dopamine- dependent oxidative stress is dependent on the mixed-lineage kinase pathway. Neurosci. 2005; 25(27):6329-42.
  101. Dagert M, Ehrlich SD. Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. Gene. 1979; 6(1):23-8.
  102. Tomac AC, Lindqvist E, Lin LF, Ogren SO, Young D, Hoffer BJ, Olson L.!Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature. 1995; 373(6512):335-9.
  103. Barde YA, Edgar D, Thoenen H. Purification of a new neurotrophic factor from mammalian brain. EMBO J. 1982;1(5):549-53.
  104. Lang AE, Gill S, Patel NK, Lozano A, Nutt JG, Penn R, Brooks DJ, Hotton G, Moro E, Heywood P, Brodsky MA, Burchiel K, Kelly P, Dalvi A, Scott B, Stacy M, Turner D, Wooten VG, Elias WJ, Laws ER, Dhawan V, Stoessl AJ, Matcham J, Coffey RJ, Traub M. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol. 2006 Mar;59(3):459-66. Erratum in: Ann Neurol. 2006; 60(6):747.
  105. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983; 65(1-2): 55-63.
  106. Veldhoen S, Laufer SD, Restle T. Recent developments in peptide-based nucleic acid delivery. Int J Mol Sci. 2008; 9(7):1276-320.
  107. Lee TJ, Sartor O, Luftig RB, Koochekpour S.!Saposin C promotes survival and prevents apoptosis via PI3K/Akt-dependent pathway in prostate cancer cells. Mol Cancer. 2004; 3:31.
  108. Rabilloud T, Vuillard L, Gilly C, Lawrence JJ. Silver-staining of proteins in polyacrylamide gels: a general overview. Cell Mol Biol (Noisy-le-grand). 1994; 40(1):57-75. Review.
  109. Hüsler J, Zimmermann H. Statistische Prinzipien für medizinische Projekte. Verlag Hans Huber. 2001; 5. Auflage, ISBN: 9783456848686
  110. Avery OT, MacLeod CM, McCarty M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus type III. J Exp Med. 1944; 79(2):137-58.
  111. Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997; 18(15):2714-23.
  112. Flamm H. The Austrian pediatrician Theodor Escherich as bacteriologist and social hygienist: The 100th anniversary of his death on February 15th, 1911. Wien Klin Wochenschr. 2011; 123(5-6):157-71.
  113. Cookson MR. The biochemistry of Parkinson's disease. Annu Rev Biochem. 2005; 74:29-52.
  114. Wender PA, Galliher WC, Goun EA, Jones LR, Pillow TH. The design of guanidinium-rich transporters and their internalization mechanisms. Adv Drug Deliv Rev. 2008; 60(4-5):452- 72.
  115. Airaksinen MS, Saarma M. The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci. 2002; 3(5):383-94.
  116. Maher P, Davis JB. The role of monoamine metabolism in oxidative glutamate toxicity. J Neurosci. 1996; 16(20):6394-401.
  117. Chauhan A, Tikoo A, Kapur AK, Singh M. The taming of the cell penetrating domain of the HIV Tat: myths and realities. J Control Release. 2007; 117(2):148-62.
  118. Wadia JS, Stan RV, Dowdy SF. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med. 2004; 10(3):310-5.
  119. Gilham D, Alam M, Gao W, Vance DE, Lehner R.!Triacylglycerol hydrolase is localized to the endoplasmic reticulum by an unusual retrieval sequence where it participates in VLDL assembly without utilizing VLDL lipids as substrates. Mol Biol Cell. 2005; 16(2):984-96.
  120. Vielen Dank, meine lieben Freunde, für die schönen Stunden und den bedingungslosen Rückhalt.
  121. Birnboim HC, Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979; 7(6):1513-23.
  122. Cochrane CG, Revak SD. Pulmonary surfactant protein B (SP-B): structure-function relationships. Science. 1991; 254(5031):566-8.
  123. Weiss B, Jacquemin-Sablon A, Live TR, Fareed GC, Richardson CC. Enzymatic breakage and joining of deoxyribonucleic acid. VI. Further purification and properties of polynucleotide ligase from Escherichia coli infected with bacteriophage T4. J Biol Chem. 1968; 243(17):4543-55.
  124. Kowalski JM, Parekh RN, Mao J, Wittrup KD. Protein folding stability can determine the efficiency of escape from endoplasmic reticulum quality control. J Biol Chem. 1998; 273(31):19453-8.
  125. Kjeldsen T, Ludvigsen S, Diers I, Balschmidt P, Sorensen AR, Kaarsholm NC.!Engineering- enhanced protein secretory expression in yeast with application to insulin.!J Biol Chem. 2002 ; 277(21):18245-8.
  126. Lotharius J, Barg S, Wiekop P, Lundberg C, Raymon HK, Brundin P. Effect of mutant alpha- synuclein on dopamine homeostasis in a new human mesencephalic cell line. J Biol Chem. 2002; 277(41):38884-94.
  127. Schubert D, Piasecki D. Oxidative glutamate toxicity can be a component of the excitotoxicity cascade. J Neurosci. 2001; 21(19):7455-62.
  128. Capstick PB, Garland AJ, Chapman WG, Masters RC. Production of foot-and-mouth disease virus antigen from BHK 21 clone 13 cells grown and infected in deep suspension cultures. Nature. 1965; 205(976):1135-6.
  129. Mao Y, Daniel LN, Whittaker N, Saffiotti U.!DNA binding to crystalline silica characterized by Fourier-transform infrared spectroscopy. Environ Health Perspect. 1994; 102 Suppl 10:165-71.
  130. Sitia R, Meldolesi J. Endoplasmic reticulum: a dynamic patchwork of specialized subregions. Mol Biol Cell. 1992; 3(10):1067-72.
  131. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977; 74(12):5463-7.
  132. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985; 150(1):76-85.
  133. Munro S, Pelham HR. A C-terminal signal prevents secretion of luminal ER proteins. Cell. 1987; 48(5):899-907
  134. Murphy TH, Miyamoto M, Sastre A et al. Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 1989; 2 (6):1547-58.
  135. Hiraiwa M, Campana WM, Martin BM, O'Brien JS. Prosaposin receptor: evidence for a G- protein-associated receptor. Biochem Biophys Res Commun. 1997; 240(2):415-8.
  136. Gilchrist A, Au CE, Hiding J, Bell AW, Fernandez-Rodriguez J, Lesimple S, Nagaya H, Roy L, Gosline SJ, Hallett M, Paiement J, Kearney RE, Nilsson T, Bergeron JJ.!Quantitative proteomics analysis of the secretory pathway.!Cell. 2006 Dec 15;127(6):1265-81.
  137. Hamilton RL, Moorehouse A, Lear SR, Wong JS, Erickson SK. A rapid calcium precipitation method of recovering large amounts of highly pure hepatocyte rough endoplasmic reticulum. J Lipid Res. 1999; 40(6):1140-7.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten