Publikationsserver der Universitätsbibliothek Marburg

Titel:Untersuchungen zu einer Methyltransferase und verschiedenen Prenyltransferasen aus dem Sekundärstoffwechsel von Aspergillus-Arten
Autor:Rigbers, Ole Jörgen
Weitere Beteiligte: Li, Shu-Ming (Prof. Dr.)
Veröffentlicht:2012
URI:https://archiv.ub.uni-marburg.de/diss/z2012/0661
URN: urn:nbn:de:hebis:04-z2012-06614
DOI: https://doi.org/10.17192/z2012.0661
DDC:610 Medizin, Gesundheit
Titel(trans.):Investigations on a methyltransferase and different prenyltransferases from the secondary metabolism of various Aspergillus species
Publikationsdatum:2012-10-05
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Ergot alkaloids, Dimethylallyl-Transferase, Aspergillus, Dimethylallyl-Transferase, SAM-dependent N-methyltransferase, Ergotalkaloide, Dimethylallyl-trans-Transferase, Aspergillus, Indole alkaloids, Indolalkaloide, Sekundärstoffwechsel, Secondary metabolism, SAM-abhängige N-Methyltransferase

Zusammenfassung:
In der vorliegenden Dissertation wurden Arbeiten zur biochemischen Charakterisierung der SAM-abhängigen N-Methyltransferase FgaMT aus A. fumigatus sowie verschiedener putativer Prenyltransferasen unterschiedlicher Aspergillen durchgeführt. Das putative Gen fgaMT, bestehend aus zwei Exons von 272 bp und 748 bp, getrennt durch ein Intron von 72 bp, wurde in dem Biosynthese-Gencluster von Fumigaclavin C in A. fumigatus identifiziert. Das abgeleitete Protein FgaMT besteht aus insgesamt 339 Aminosäuren und weist eine molekulare Masse von 38.1 kDa auf. Der codierende Abschnitt dieses Gens konnte per PCR erfolgreich aus cDNA amplifiziert werden. Nach Klonierung in den Expressionsvektor pQE60 wurde das entstandene Expressionskonstrukt pOR15 mit dem Stamm E. coli XL1 Blue MRF´ transformiert. Die Überexpression des fgaMT-Gens erfolgte bei 37 oC, 200 rpm und 1 mM IPTG Endkonzentration im Medium. Das lösliche FgaMT-His6 wurde bis zur Homogenität aufgereinigt und biochemisch charakterisiert. Mit Hilfe von Enzymassays wurde bewiesen, dass FgaMT in Anwesenheit von S-Adenosylmethionin (SAM) als Co-Substrat die Methylierung von 4-Dimethylallyltryptophan (4-DMAT) an der NH2-Gruppe katalysiert. Das Produkt dieser Reaktion wurde durch Analyse per NMR und Massenspektroskopie eindeutig als 4-Dimethylallylabrin nachgewiesen. Da FgaMT 4-DMAT, nicht aber L-Tryptophan als Substrat akzeptierte, konnte nachgewiesen werden, dass FgaMT den zweiten Schritt in der Biosynthese von Ergotalkaloiden katalysiert. Das Enzym benötigt keine Metall-ionen für seine enzymatische Aktivität und weist eine relativ hohe Substratspezifität gegenüber einem Prenylrest an Position C-4 des Indolringes auf. Derivate von 4-DMAT mit Modifikationen am Indolring wurden ebenfalls von FgaMT als Substrate akzeptiert. Sogar 4-Methyl-L-tryptophan wurde von FgaMT umgesetzt. Die KM-Werte wurden mit 0,12 mM für 4-DMAT und 2,4 mM für SAM bestimmt. Die Umsatzrate betrug 2,0 s-1. Durch eine Analyse über FPLC konnte gezeigt werden, dass FgaMT als Homodimer wirkt. Das putative Prenyltransferasegen NFIA_112230 konnte von dem von mir betreuten Bachelor-Studenten Andreas Schweitzer aus genomischer DNA von N. fischeri NRRL181 amplifiziert und mit dem Expressionsvektor pQE60 kloniert werden. In Fortführung dieses Projektes wurde das Gen von mir in dem Stamm E. coli XL1 Blue MRF´ erfolgreich überexprimiert und das abgeleitete, rekombinante Enzym EAW20699-His6 isoliert. Das Protein konnte mit einer molekularen Masse von ca. 50 kDa fast bis zur Homogenität aufgereinigt werden. Um das natürliche Substrat von EAW20699 zu identifizieren, wurde eine Vielzahl von Enzymassays mit unterschiedlichen Substraten durchgeführt und über HPLC analysiert. Bisher konnte jedoch noch keine Prenylierungsaktivität nachgewiesen werden. Die beiden putativen Prenyltransferasegene AN9229-PT1 und AN9229-PT2 aus A. nidulans sowie das Gen ATEG_03092.1 aus A. terreus, ebenfalls für eine Prenyltransferase kodierend, wurden erfolgreich durch Fusions-PCR aus Fosmiden bzw. gDNA der entsprechenden Aspergillus-Stämme amplifiziert und in die beiden E. coli Expressionsvektoren pQE60 und pHis8, sowie im Falle von AN9229-PT2, auch in den Hefevektor pYES2/NT C kloniert und mit den entsprechenden Wirtsstämmen transformiert. Die erfolgreiche Klonierung konnte durch die Sequenzierung der Expressionskonstrukte bei allen drei Prenyltransferasegenen verifiziert werden. Die Überexpression der Gene war in dem für die Expression von pQE60-Konstrukten optimierten Wirtsstamm E. coli M15 [pREP4] ebenfalls erfolgreich, wobei die überproduzierten Proteine jedoch anscheinend zu “inclusion bodies“ aggregierten, ausfielen und nicht mehr ohne Weiteres isoliert und gereinigt werden konnten. Im Falle der Überexpression von AN9229-PT2 konnte aber durch Kultivierung unter sehr milden Bedingungen (niedrige Kultivierungstemperatur und Dauer, Induktion durch geringe IPTG-Konzentration) bzw. durch Aufreinigung mit Laurylsarcosin, das Protein in geringer Menge isoliert werden. Die Enzymassays mit den so gewonnenen Proteinen, wie auch durchgeführte Assays mit dem Rohextrakt, zeigten bisher aber noch keine Prenyltransferaseaktivität. Auch Enzymassays mit Rohextrakten der beiden anderen Prenyltransferasen AN9229-PT1 und EAU36366 wiesen auf keine enzymatische Aktivität hin.

Summary:
The main topics of the present dissertation are the biochemical characterisation of a SAM-dependent N-methyltransferase from A. fumigatus and different putative Prenyltransferases from various Aspergillus species. The putative gene fgaMT, consisting of two exons with a size of 272 bp and 748 bp and an intron sequence with a size of 72 bp, was identified in a biosynthetic gene cluster of fumigaclavines in A. fumigatus. Its deduced protein FgaMT comprises 339 amino acids with a molecular mass of 38.1 kDa. The coding region of the gene was successfully amplified from a cDNA library by PCR. After cloning of fgaMT into the expression vector pQE60 the created expression construct pOR15 was transformed into E. coli strain XL1 Blue MRF´. Overexpression of fgaMT was carried out by cultivation at 37 oC, 200 rpm and 1 mM IPTG induction. Soluble FgaMT-His6 was purified to near homogeneity and characterised biochemically. By performing enzyme assays we could prove that FgaMT catalyzes the methylation of 4-dimethylallytryptophan (4-DMAT) in the presence of S-adenosylmethionine (SAM) at the NH2-group. The product of this reaction was identified as 4-dimethylallyl-L-abrine by NMR and mass spectrometry analysis. FgaMT only accepts 4-DMAT but not L-Trp as substrate, which proves that FgaMT is responsible for the second step in the biosynthesis of ergot alkaloids. This enzyme does not require metal ions for its enzymatic activity and shows relatively high substrate specificity towards tryptophan derivatives with a prenyl moiety at position C-4 of the indole ring. 4-DMAT derivatives with modifications at the indole ring were also accepted as substrates. Even 4-methyl-L-tryptophan was accepted by FgaMT. KM values were determined at 0.12 mM for 4-DMAT and 2.4 mM for SAM. The turnover number was 2.0 s-1. FPLC analysis showed that FgaMT acts as a homodimer. The putative prenyltransferase gene NFIA_112230 from Neosartorya fischeri NRRL 181 was successfully amplified by PCR and cloned into expression vector pQE60. This work was started by bachelor student Andreas Schweitzer under my supervision. The expression construct pAS6os was transformed with E. coli XL1 Blue MRF´, the gene was successfully overexpressed and the derived, recombinant protein EAW20699-His6 was isolated. The protein with a molecular mass of about 50 kDa was purified to near homogeneity. To identify its natural substrate a series of enzyme assays with various different substances were carried out and analyzed by HPLC. Until now no prenylation activity could be detected for the recombinant enzyme. Two putative prenyltransferase genes from A. nidulans FGSC A4, named AN9229-PT1 and AN9229-PT2, and the putative prenyltransferase gene ATEG_03092.1 from A. terreus DSM1958 were successfully amplified by Fusion-PCR from Fosmids or gDNA of the appropriate Aspergillus strains, respectively. The amplified genes were cloned into the expression vectors pQE60 and pHis8, and in case of AN9229-PT2, also into pYES2NT/C. The gene sequences were verified by sequencing of the expression constructs. Expression of the genes was successful in the optimized overexpression E. coli strain M15 [pREP4], but the overproduced proteins aggregated to so called inclusion bodies and could not be used for further experiments. In case of AN9229-PT2, it was possible to isolate little amounts of soluble protein by cultivation under mild conditions (low temperature, short cultivation duration and low IPTG concentration) and purification with N-laurylsarcosin, alternatively. Enzyme assays carried out with purified protein as well as with crude extracts in the presence of different possible substrates showed no enzymatic activity until now. Similarily, enzyme assays carried out with crude extracts of AN9229-PT1 and EAU36366 showed the same result.

Bibliographie / References

  1. Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685
  2. Newman, D.J. & Cragg, G.M. (2007) Natural Products as Sources of New Drugs over the Last 25 Years. J Nat Prod 70:461-477
  3. LaRosa, J.C., He, J. & Vupputuri, S. (1999) Effect of statins on risk of coronary disease: a meta-analysis of randomized controlled trials. J Am Med Asoc 282:2340-2346
  4. Yin, W.-B., Ruan, H.-L., Westrich, L., Grundmann, A. & Li, S.-M. (2007) CdpNPT, an N- prenyltransferase from Aspergillus fumigatus: overproduction, purification and biochemical characterisation. Chembiochem 8:1154-1161
  5. Liu, X., Wang, L., Steffan, N., Yin, W.-B. & Li, S.-M. (2009) Ergot alkaloid biosynthesis in Aspergillus fumigatus: FgaAT catalyses the acetylation of fumigaclavine B. Chembiochem 10:2325-2328
  6. Stec, E., Pistorius, D., Muller, R. & Li, S.-M. (2011) AuaA, a membrane-bound farnesyltransferase from Stigmatella aurantiaca, catalyzes the prenylation of 2-methyl-4- hydroxyquinoline in the biosynthesis of aurachins. Chembiochem 12:1724-1730
  7. Lindel, T., Marsch, N. & Adla, S.K. (2012) Indole prenylation in alkaloid synthesis. Top Curr Chem 309:67-129
  8. Williams, R.M., Stocking, E.M. & Sanz-Cervera, J.F. (2000) Biosynthesis of prenylated alkaloids derived from tryptophan. Topics Curr Chem 209:97-173
  9. Zou, H.-X., Xie, X., Zheng, X.-D. & Li, S.-M. (2011) The tyrosine O-prenyltransferase SirD catalyzes O-, N-, and C-prenylations. Appl Microbiol Biotechnol 89:1443-1451
  10. Schneider, P., Weber, M. & Hoffmeister, D. (2008) The Aspergillus nidulans enzyme TdiB catalyzes prenyltransfer to the precursor of bioactive asterriquinones. Fungal Genet Biol 45:302-309
  11. Spikes, S., Xu, R., Nguyen, C.K., Chamilos, G. et al. (2008) Gliotoxin production in Aspergillus fumigatus contributes to host-specific differences in virulence. J Infect Dis 197:479-486
  12. Söding, J., Biegert, A. & Lupas, A.N. (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244-W248
  13. Salamov, A.A. & Solovyev, V.V. (2000) Ab initio gene finding in Drosophila genomic DNA.
  14. Markert, A., Steffan, N., Ploss, K., Hellwig, S. et al. (2008) Biosynthesis and accumulation of ergoline alkaloids in a mutualistic association between Ipomoea asarifolia (Convolvulaceae) and a Clavicipitalean fungus. Plant Physiol 147:296-305
  15. Sallam, L.A., El-Refai, A.M., Hamdy, A.H., El-Minofi, H.A. & Abdel-Salam, I.S. (2003) Role of some fermentation parameters on cyclosporin A production by a new isolate of Aspergillus terreus. J Gen Appl Microbiol 49:321-328
  16. Sugui, J.A., Pardo, J., Chang, Y.C., Zarember, K.A. et al. (2007) Gliotoxin is a virulence factor of Aspergillus fumigatus: gliP deletion attenuates virulence in mice immunosuppressed with hydrocortisone. Eukaryot Cell 6:1562-1569
  17. van Dongen, P.W. & de Groot, A.N. (1995) History of ergot alkaloids from ergotism to ergometrine. Eur J Obstet Gynecol Reprod Biol 60:109-116
  18. Kremer, A. & Li, S.-M. (2008) Potential of a 7-dimethylallyltryptophan synthase as a tool for production of prenylated indole derivatives. Appl Microbiol Biotechnol 79:951-961
  19. Monteith, T.S. & Goadsby, P.J. (2010) Acute migraine therapy: new drugs and new approaches. Curr Treat Options Neurol 13:1-14
  20. Tekaia, F. & Latgé, J.-P. (2005) Aspergillus fumigatus: saprophyte or pathogen? Curr Opin Microbiol 8:385-392
  21. Scherlach, K., Schuemann, J., Dahse, H.M. & Hertweck, C. (2010) Aspernidine A and B, prenylated isoindolinone alkaloids from the model fungus Aspergillus nidulans. J Antibiot 63:375-377
  22. Stoll, A. (1945) Über Ergotamin (10. Mitteilung über Mutterkornalkaloide). Helv Chim Acta 28:1283-1308
  23. Yu, X., Liu, Y., Xie, X., Zheng, X.-D. & Li, S.-M. (2012) Biochemical characterization of indole prenyltransferases: Filling the last gap of prenylation positions by a 5-dimethylallyl tryptophansynthase from Aspergillus clavatus. J Biol Chem 287:1371-1380
  24. Stachelhaus, T., Huser, A. & Marahiel, M.A. (1996) Biochemical characterization of peptidyl carrier protein (PCP), the thiolation domain of multifunctional peptide synthetases.
  25. Wilson, D.M., Mubatanhema, W. & Jurjevic, Z. (2002) Biology and ecology of mycotoxigenic Aspergillus species as related to economic and health concerns. Adv Exp Med Biol 504:3-17
  26. Tudzynski, P., Correia, T. & Keller, U. (2001) Biotechnology and genetics of ergot alkaloids. Appl Microbiol Biotechnol 57:593-605
  27. Steffan, N., Unsöld, I.A. & Li, S.-M. (2007) Chemoenzymatic synthesis of prenylated indole derivatives by using a 4-dimethylallyltryptophan synthase from Aspergillus fumigatus.
  28. Sinz, A. (2008) Die Bedeutung der Mutterkorn-Alkaloide als Arzneistoffe. Pharmazie in unserer Zeit 37:306-309
  29. Micheli, P.A. (1729) Nova Plantarum Genera. Florentiae Miranda, T.B. & Jones, P.A. (2007) DNA methylation: the nuts and bolts of repression. J Cell Physiol 213:384-390
  30. Schardl, C.L., Panaccione, D.G. & Tudzynski, P. (2006) Ergot alkaloids--biology and molecular biology. The Alkaloids, Chem Biol 63:45-86
  31. Wallwey, C. & Li, S.-M. (2011) Ergot alkaloids: structure diversity, biosynthetic gene clusters and functional proof of biosynthetic genes. Nat Prod Rep 28:496-510
  32. Tudzynski, P., Holter, K., Correia, T., Arntz, C., Grammel, N. & Keller, U. (1999) Evidence for an ergot alkaloid gene cluster in Claviceps purpurea. Mol Gen Genet 261:133-141
  33. Li, S.-M. (2009) Evolution of aromatic prenyltransferases in the biosynthesis of indole derivatives. Phytochemistry 70:1746-1757
  34. Weber, T. & Marahiel, M.A. (2001) Exploring the domain structure of modular nonribosomal peptide synthetases. Structure 9:R3-R9
  35. Turgay, K., Krause, M. & Marahiel, M.A. (1992) Four homologous domains in the primary structure of GrsB are related to domains in a superfamily of adenylate-forming enzymes. Mol Microbiol 6:529-546
  36. Wu, X.-F., Fei, M.-J., Shu, R.-G., Tan, R.-X. & Xu, Q. (2005) Fumigaclavine C, an fungal metabolite, improves experimental colitis in mice via downregulating Th1 cytokine production and matrix metalloproteinase activity. Int Immunopharmacol 5:1543-1553
  37. Zhao, Y., Liu, J., Wang, J., Wang, L. et al. (2004) Fumigaclavine C improves concanavalin A-induced liver injury in mice mainly via inhibiting TNF-alpha production and lymphocyte adhesion to extracellular matrices. J Pharm Pharmacol 56:775-782
  38. Seshime, Y., Juvvadi, P.R., Tokuoka, M., Koyama, Y. et al. (2009) Functional expression of the Aspergillus flavus PKS-NRPS hybrid CpaA involved in the biosynthesis of cyclopiazonic acid. Bioorg Med Chem Lett 19:3288-3292
  39. Vining, L.C. (1990) Functions of secondary metabolites. Annu Rev Microbiol 44:395-427
  40. Nierman, W.C., Pain, A., Anderson, M.J., Wortman, J.R. et al. (2005) Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438:1151
  41. Yazaki, K., Kunihisa, M., Fujisaki, T. & Sato, F. (2002) Geranyl diphosphate:4- hydroxybenzoate geranyltransferase from Lithospermum erythrorhizon. Cloning and characterization of a key enzyme in shikonin biosynthesis. J Biol Chem 277:6240-6246
  42. Maiya, S., Grundmann, A., Li, X., Li, S.-M. & Turner, G. (2007) Identification of a hybrid PKS/NRPS required for pseurotin A biosynthesis in the human pathogen Aspergillus fumigatus. Chembiochem 8:1736-1743
  43. Kurup, V.P., Shen, H.D. & Vijay, H. (2002) Immunobiology of fungal allergens. Int Arch Allergy Immunol 129:181-188
  44. Velkov, T. & Lawen, A. (2003) Mapping and molecular modeling of S-adenosyl-L- methionine binding sites in N-methyltransferase domains of the multifunctional polypeptide cyclosporin synthetase. J Biol Chem 278:1137-1148
  45. Sugiyama, A., Linley, P.J., Sasaki, K., Kumano, T. et al. (2011) Metabolic engineering for the production of prenylated polyphenols in transgenic legume plants using bacterial and plant prenyltransferases. Metab Eng 13:629-637
  46. Tulasne, L.R. (1853) Mémoire sur l´ergot des glumacées. Ann Sci Nat Bot 3:5-56
  47. Marahiel, M.A., Stachelhaus, T. & Mootz, H.D. (1997) Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev 97:2651-2674
  48. Stachelhaus, T. & Marahiel, M.A. (1995) Modular structure of genes encoding multifunctional peptide synthetases required for non-ribosomal peptide synthesis. FEMS Microbiol Lett 125:3-14
  49. Liscombe, D.K. & Facchini, P.J. (2007) Molecular cloning and characterization of tetrahydroprotoberberine cis-N-methyltransferase, an enzyme involved in alkaloid biosynthesis in opium poppy. J Biol Chem 282:14741-14751
  50. Lonial, S., Williams, L., Carrum, G., Ostrowski, M. & McCarthy, P.Jr. (1997) Neosartorya fischeri: an invasive fungal pathogen in an allogeneic bone marrow transplant patient. Bone Marrow Transplant 19:753-755
  51. Matuschek, M., Wallwey, C., Xie, X. & Li, S.-M. (2011) New insights into ergot alkaloid biosynthesis in Claviceps purpurea: an agroclavine synthase EasG catalyses, via a non- enzymatic adduct with reduced glutathione, the conversion of chanoclavine-I aldehyde to agroclavine. Org Biomol Chem 9:4328-4335
  52. Stack, D., Neville, C. & Doyle, S. (2007) Nonribosomal peptide synthesis in Aspergillus fumigatus and other fungi. Microbiology 153:1297-1306
  53. Marahiel, M. & Essen, L. (2009) Nonribosomal peptide synthetases: mechanistic and structural aspects of essential domains. Methods Enzymol 458:337-351
  54. Röttig, M., Medema, M.H., Blin, K., Weber, T., Rausch, C. & Kohlbacher, O. (2011) NRPSpredictor2--a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res 39:W362-W367 Ryckeboer, J., Mergaert, J., Coosemans, J., Deprins, K. & Swings, J. (2003) Microbiological aspects of biowaste during composting in a monitored compost bin. J Appl Microbiol 94:127-137
  55. Unsöld, I.A. & Li, S.-M. (2005) Overproduction, purification and characterization of FgaPT2, a dimethylallyltryptophan synthase from Aspergillus fumigatus. Microbiology 151:1499-1505
  56. Ward, O.P., Qin, W.M., Dhanjoon, J., Ye, J. & Singh, A. (2006) Physiology and biotechnology of Aspergillus. Adv Appl Microbiol 58:1-75
  57. Tsumoto, K., Ejima, D., Kumagai, I. & Arakawa, T. (2003) Practical considerations in refolding proteins from inclusion bodies. Protein Expr Purif 28:1-8
  58. Li, S.-M. (2010) Prenylated indole derivatives from fungi: structure diversity, biological activities, biosynthesis and chemoenzymatic synthesis. Nat Prod Rep 27:57-78
  59. Sasaki, K., Tsurumaru, Y. & Yazaki, K. (2009) Prenylation of flavonoids by biotransformation of yeast expressing plant membrane-bound prenyltransferase SfN8DT-1.
  60. Teuber, M., Azemi, M.E., Namjoyan, F., Meier, A.C. et al. (2007) Putrescine N- methyltransferases -a structure-function analysis. Plant Mol Biol 63:787-801
  61. Stocking, E.M., Williams, R.M. & Sanz-Cervera, J.F. (2000) Reverse prenyl transferases exhibit poor facial discrimination in the biosynthesis of paraherquamide A, brevianamide A, and austamide. J Am Chem Soc 122:9089-9098
  62. Martin, J.L. & McMillan, F.M. (2002) SAM (dependent) I AM: the S-adenosylmethionine- dependent methyltransferase fold. Curr Opin Struct Biol 12:783-793
  63. Zou, H.-X., Xie, X.-L., Linne, U., Zheng, X.-D. & Li, S.-M. (2010) Simultaneous C7-and N1- prenylation of cyclo-L-Trp-L-Trp catalyzed by a prenyltransferase from Aspergillus oryzae.
  64. Lam, K.C., Ibrahim, R.K., Behdad, B. & Dayanandan, S. (2007) Structure, function, and evolution of plant O-methyltransferases. Genome 50:1001-1013
  65. Liang, P.H., Ko, T.P. & Wang, A.H. (2002) Structure, mechanism and function of prenyltransferases. Eur J Biochem 269:3339-3354
  66. Lee, M.R. (2009) The history of ergot of rye (Claviceps purpurea) I: from antiquity to 1900. J R Coll Physicians Edinb 39:179-184
  67. Latgé, J.-P. (2001) The pathobiology of Aspergillus fumigatus. Trends Microbiol 9:382-389
  68. Kremer, A., Westrich, L. & Li, S.-M. (2007) A 7-dimethylallyltryptophan synthase from Aspergillus fumigatus: overproduction, purification and biochemical characterization. Microbiology 153:3409-3416
  69. Kremer, A. & Li, S.-M. (2010) A tyrosine O-prenyltransferase catalyses the first pathway- specific step in the biosynthesis of sirodesmin PL. Microbiology 156:278-286
  70. Unsöld, I.A. & Li, S.-M. (2006) Reverse prenyltransferase in the biosynthesis of fumigaclavine C in Aspergillus fumigatus: gene expression, purification and characterization of fumigaclavine C synthase FgaPT1. Chembiochem 7:158-164
  71. Yu, X. & Li, S.-M. (2011) Prenylation of flavonoids by using a dimethylallyltryptophan synthase 7-DMATS from Aspergillus fumigatus. Chembiochem 12:2280-2283
  72. Speth, C., Rambach, G., Wurzner, R. & Lass-Florl, C. (2008) Complement and fungal pathogens: an update. Mycoses 51:477-496
  73. Steffan, N., Grundmann, A., Yin, W.-B., Kremer, A. & Li, S.-M. (2009) Indole prenyltransferases from fungi: a new enzyme group with high potential for the production of prenylated indole derivatives. Curr Med Chem 16:218-231
  74. Stachelhaus, T., Mootz, H.D., Bergendahl, V. & Marahiel, M.A. (1998) Peptide bond formation in nonribosomal peptide biosynthesis. Catalytic role of the condensation domain. J Biol Chem 273:22773-22781
  75. Yin, W.-B., Grundmann, A., Cheng, J. & Li, S.-M. (2009) Acetylaszonalenin biosynthesis in Neosartorya fischeri: Identification of the biosynthetic gene cluster by genomic mining and functional proof of the genes by biochemical investigation. J Biol Chem 284:100-109
  76. Vidgren, J., Svennson, L.A. & Liljas, A. (1994) Crystal structure of catechol O- methyltransferase. Nature 368:354-358
  77. Schiff, P.L. (2006) Ergot and its alkaloids. Am J Pharma Edu 70:1-10
  78. Nielsen, P.V., Beuchat, L.R. & Frisvad, J.C. (1988) Growth of and fumitremorgin production by Neosartorya fischeri as affected by temperature, light, and water activity. Appl Environ Microbiol 54:1504-1510
  79. Metzger, U., Schall, C., Zocher, G., Unsöld, I. et al. (2009) The structure of dimethylallyl tryptophan synthase reveals a common architecture of aromatic prenyltransferases in fungi and bacteria. Proc Natl Acad Sci U S A 106:14309-14314
  80. Lee, T.V., Johnson, L.J., Johnson, R.D., Koulman, A. et al. (2010) Structure of a eukaryotic nonribosomal peptide synthetase adenylation domain that activates a large hydroxamate amino acid in siderophore biosynthesis. J Biol Chem 285:2415-2427
  81. Schultz, A.W., Lewis, C.A., Luzung, M.R., Baran, P.S. & Moore, B.S. (2010) Functional characterization of the cyclomarin/cyclomarazine prenyltransferase CymD directs the biosynthesis of unnatural cyclic peptides. J Nat Prod 73:373-377
  82. Tello, M., Kuzuyama, T., Heide, L., Noel, J.P. & Richard, S.B. (2008) The ABBA family of aromatic prenyltransferases: broadening natural product diversity. Cell Mol Life Sci 65:1459-
  83. Takahashi, S., Takagi, H., Toyoda, A., Uramoto, M. et al. (2010) Biochemical characterization of a novel indole prenyltransferase from Streptomyces sp. SN-593. J Bacteriol 192:2839-2851
  84. Sanchez, J.F., Entwistle, R., Hung, J.H., Yaegashi, J. et al. (2011) Genome-based deletion analysis reveals the prenyl xanthone biosynthesis pathway in Aspergillus nidulans. J Am Chem Soc 133:4010-4017
  85. Subazini, T.K. & Kumar, G.R. (2011) Characterization of Lovastatin biosynthetic gene cluster proteins in Aspergillus terreus strain ATCC 20542. Bioinformation 6:250-254
  86. Sasaki, K., Tsurumaru, Y., Yamamoto, H. & Yazaki, K. (2011) Molecular characterization of a membrane-bound prenyltransferase specific for isoflavone from Sophora flavescens. J Biol Chem 286:24125-24134
  87. Samson, R.A., Peterson, S.W., Frisvad, J.C. & Varga, J. (2011) New species in Aspergillus section Terrei. Studies in Mycology 69:39-55
  88. Latgé, J.-P. (1999) Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev 12:310-350
  89. Wasylnka, J.A. & Moore, M.M. (2000) Adhesion of Aspergillus species to extracellular matrix proteins: Evidence for involvement of negatively charged carbohydrates on the conidial surface. Infect Immun 68:3377-3384
  90. Tsai, H.F., Wang, H., Gebler, J.C., Poulter, C.D. & Schardl, C.L. (1995) The Claviceps purpurea gene encoding dimethylallyltryptophan synthase, the committed step for ergot alkaloid biosynthesis. Biochem Biophys Res Commun 216:119-125
  91. Stachelhaus, T., Mootz, H.D. & Marahiel, M.A. (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6:493-505
  92. von Döhren, H. (2009) A survey of nonribosomal peptide synthetase (NRPS) genes in Aspergillus nidulans. Fungal Genet Biol 46 Suppl 1:S45-S52
  93. Sulewska, A., Niklinska, W., Kozlowski, M., Minarowski, L. et al. (2007) DNA methylation in states of cell physiology and pathology. Folia Histochem Cytobiol 45:149-158
  94. Wu, G., Liu, J., Bi, L., Zhao, M. et al. (2007) Toward breast cancer resistance protein (BCRP) inhibitors: design, synthesis of a series of new simplified fumitremorgin C analogues.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten