Publikationsserver der Universitätsbibliothek Marburg

Titel:Molekularbiologische und biochemische Untersuchungen zur Biosynthese von Ergotalkaloiden in Pilzen der Familien Trichocomaceae und Arthrodermataceae
Autor:Wallwey, Christiane
Weitere Beteiligte: Li, Shu-Ming (Prof. Dr.)
Veröffentlicht:2012
URI:https://archiv.ub.uni-marburg.de/diss/z2012/0490
URN: urn:nbn:de:hebis:04-z2012-04906
DOI: https://doi.org/10.17192/z2012.0490
DDC: Naturwissenschaften
Titel (trans.):Molecular biological and biochemical investigations on the biosynthesis of ergot alkaloids in fungi of the families Trichocomaceae and Arthrodermataceae
Publikationsdatum:2012-07-11
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Dissertation, Schlauchpilze, Aspergillus fumigatus, Arthrodermataceae, Biosynthese, Arthrodermataceae, Gencluster, Arthroderma benhamiae, Ergotalkaloide, Arthroderma benhamiae

Zusammenfassung:
Ergotalkaloide (EA) sind eine komplexe Familie von Indolderivaten mit einem tetrazyklischen Ergolinringsystem, die von Pilzen aus zwei unterschiedlichen Familien produziert werden. Dies sind z.B. Aspergillus fumigatus (A. fumigatus) aus der Familie Trichocomaceae oder Claviceps purpurea (C. purpurea) aus der Familie Clavicipitaceae. EA besitzen unterschiedliche Strukturen und dadurch auch unterschiedliche biologische Aktivitäten. Aufgrund ihrer Strukturen können EA in drei Gruppen eingeteilt werden: Alkaloide vom Clavin-Typ, Ergoamide und Ergopeptine. Ergoamide sind Amid-Derivate der D-Lysergsäure, während Ergopeptine Peptid-Derivate der D-Lysergsäure darstellen. Alkaloide vom Clavin-Typ enthalten zwar das tetrazyklische Ergolinringsystem, sind jedoch keine Derivate der D-Lysergsäure. Ein Beispiel für diese Gruppe ist Fumigaclavin C, das Endprodukt der Ergotalkaloidbiosynthese in A. fumigatus. Die Pilze der Familie Trichocomaceae produzieren nur Alkaloide vom Clavin-Typ, während Pilze der Familie Clavicipitaceae hauptsächlich Ergoamide und Ergopeptine bilden. Durch den Vergleich der Gencluster für die Biosynthese von EA verschiedener Produzenten konnten sieben homologe Gene identifiziert werden. Es wurde die Hypothese aufgestellt, dass diese Gene in die Bildung des tetrazyklischen Ergolinringsystems involviert sein müssen. In früheren Studien konnten zwei der sieben homologen Gene, fgaPT2 und fgaMT aus A. fumigatus, den entsprechenden Schritten in der Biosynthese des Ergolinrings zugeordnet werden. Die Prenyltransferase FgaPT2 katalysiert den ersten Schritt, die Prenylierung von L-Tryptophan. Das Produkt 4-Dimethylallyltryptophan wird im nächsten Schritt durch die N-Methyltransferase FgaMT zu N-Methyl-4-Dimethylallyltryptophan umgesetzt. Im Rahmen der vorliegenden Dissertation konnten die Funktionen von drei weiteren der sieben homologen Gene aus A. fumigatus, fgaDH, fgaOx3 und fgaFS, in der Biosynthese von Fumigaclavin C aufgeklärt werden. FgaDH besitzt die konservierten Motive von klassischen Short-Chain Dehydrogenasen/Reduktasen (SDRs), weist aber ansonsten keine Sequenzähnlichkeiten zu SDRs oder anderen bekannten Proteinen auf. Es konnte gezeigt werden, dass FgaDH die Oxidation von Chanoclavin-I zu Chanoclavin-I-Aldehyd katalysiert, wobei NAD+ als Kofaktor benötigt wird. Die Struktur von Chanoclavin-I-Aldehyd konnte eindeutig durch NMR- und MS-Analysen nachgewiesen werden. Die KM-Werte für Chanoclavin-I und NAD+ betrugen 0,27 bzw. 1,1 mM. Eine Wechselzahl von 0,38 s-1 wurde aus den kinetischen Parametern berechnet. Das Protein FgaOx3 enthält eine old yellow enzyme-like FMN binding domain, während FgaFS keine konservierten Bereiche oder sonstige Ähnlichkeiten zu bekannten Proteinen aufweist. Die beiden Proteine FgaOx3 und FgaFS sind zusammen für die Umsetzung von Chanoclavin-I-Aldehyd zu Festuclavin verantwortlich. In Abwesenheit von FgaFS kommt es durch FgaOx3 unter Einbau von Sauerstoff zur Bildung eines Produktgemischs, das aus zwei Stereoisomeren besteht und durch FgaFS nicht weiter umgesetzt wird. Die Strukturen von Festuclavin und den zwei Stereoisomeren konnten durch detailierte NMR- und MS-Analysen aufgeklärt werden. Anhand der gesammelten Daten wurde ein Reaktionsmechanismus ausgehend von Chanoclavin-I-Aldehyd postuliert. Desweiteren konnte in dieser Dissertation durch eine Analyse der Genomsequenzen verschiedener Pilze ein putatives Ergotalkaloidgencluster in den Pilzen der Familie Arthrodermataceae identifiziert werden. Das Cluster besteht aus fünf Genen, deren Homologe in A. fumigatus und C. purpurea in die Bildung von Chanoclavin-I-Aldehyd aus L-Tryptophan involviert sind. Es konnten keine homologen Gene zu denen gefunden werden, die für die weitere Umsetzung von Chanoclavin-I-Aldehyd zu Festuclavin bzw. Agroclavin oder für die späteren Schritte im Biosyntheseweg von A. fumigatus bzw. C. purpurea verantwortlich sind. Aus dem putativen Gencluster von Arthroderma benhamiae (A. benhamiae) wurde das Gen ARB_04646, welches das Homolog zu fgaDH ist, mit korrigierter Intron/Exon-Struktur amplifiziert, kloniert und erfolgreich exprimiert. Das Enzym bekam die Bezeichnung ChaDH. ChaDH katalysiert wie sein Homolog FgaDH in Anwesenheit von NAD+ die Oxidation von Chanoclavin-I. Das enzymatische Produkt konnte durch NMR- und MS-Analysen eindeutig als Chanoclavin-I-Aldehyd identifiziert werden. Die KM-Werte für Chanoclavin-I und NAD+ betrugen 0,09 bzw. 0,36 mM. Aus den kinetischen Parametern wurde eine Wechselzahl von 0,76 s-1 berechnet. In den Kulturüberständen von A. benhamiae konnten keine EA nachgewiesen werden. Die Expressionsanalyse der Gene zeigte, dass unter den gewählten Laborbedingungen keine detektierbare Expression stattfand. In dieser Arbeit konnte somit eine dritte pilzliche Familie identifiziert werden, die zumindest die genetischen Informationen für die Biosynthese von EA bzw. Chanoclavin-I-Aldehyd enthält.

Bibliographie / References

  1. Robertson, C. E., Black, D. F. & Swanson, J. W. (2010). Management of migraine headache in the emergency department. Semin. Neurol. 30, 201-211.
  2. Matuschek, M., Wallwey, C., Wollinsky, B., Xie, X. & Li, S.-M. (2012). In vitro conversion of chanoclavine-I aldehyde to the stereoisomers festuclavine and pyroclavine controlled by the second reduction step. RSC Advances DOI:10.1039/C2RA20104F.
  3. Williams, R. M., Stocking, E. M. & Sanz-Cervera, J. F. (2000). Biosynthesis of prenylated alkaloids derived from tryptophan. Topics Curr. Chem. 209, 97-173.
  4. Walsh, C. T. & Fischbach, M. A. (2010). Natural products version 2.0: Connecting genes to molecules. J. Am. Chem. Soc. 132, 2469-2493.
  5. Ge, H. M., Yu, Z. G., Zhang, J., Wu, J. H. & Tan, R. X. (2009). Bioactive alkaloids from endophytic Aspergillus fumigatus. J. Nat. Prod. 72, 753-755.
  6. Hoffmeister, D. & Keller, N. P. (2007). Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat. Prod. Rep. 24, 393-416.
  7. Markert, A., Steffan, N., Ploss, K., Hellwig, S., Steiner, U., Drewke, C., Li, S.-M., Boland, W. & Leistner, E. (2008). Biosynthesis and accumulation of ergoline alkaloids in a mutualistic association between Ipomoea asarifolia (Convolvulaceae) and a Clavicipitalean fungus. Plant Physiol. 147, 296-305.
  8. Holtzhauser, M. & Behlke, J. (1996) Methoden in der Proteinanalytik. Springer- Verlag Berlin Heidelberg.
  9. van Dongen, P. W. & de Groot, A. N. (1995). History of ergot alkaloids from ergotism to ergometrine. Eur. J Obstet. Gynecol. Reprod. Biol. 60, 109-116.
  10. Maier, W., Erge, D., Schmidt, J. & Groger, D. (1980). A blocked mutant of Claviceps purpurea accumulating chanoclavine-I-aldehyde. Experientia 36, 1353-1354.
  11. Oppermann, U. C., Filling, C., Berndt, K. D., Persson, B., Benach, J., Ladenstein, R. & Jornvall, H. (1997). Active site directed mutagenesis of 3 beta/17 beta-hydroxysteroid dehydrogenase establishes differential effects on short-chain dehydrogenase/reductase reactions. Biochemistry 36, 34-40.
  12. Alkaloid composition of Penicillium palitans and Penicillium oxalicum. Appl. Biochem. Microbiol. 27, 644-648.
  13. Schumann, B., Erge, D., Maier, W. & Groeger, D. (1982). A new strain of Claviceps purpurea accumulating tetracyclic clavine alkaloids. Planta Med. 45, 11-14.
  14. Plieninger, H., Meyer, E., Maier, W. & Gröger, D. (1978). Über den Einbau von [4´- (E)-13C]4-[3-Methyl-2-butenyl)tryptophan in Clavinalkaloide und Lysergsäure. Justus Liebigs Ann. Chem. 1978, 813-817.
  15. Setnikar, I., Schmid, K., Rovati, L. C., Vens-Cappell, B., Mazur, D. & Kozak, I. (2001). Bioavailability and pharmacokinetic profile of dihydroergotoxine from a tablet and from an oral solution formulation. Arzneimittelforschung. 51, 2-6.
  16. von Döhren, H. (2004). Biochemistry and general genetics of nonribosomal peptide synthetases in fungi. Adv. Biochem. Eng Biotechnol. 88, 217-264.
  17. Gröger, D. & Floss, H. G. (1998). Biochemistry of ergot alkaloids -Achievements and challenges . The Alkaloids, Chem. Biol. 50, 171-218.
  18. Floss, H. G. (1976). Biosynthesis of ergot alkaloids and related compounds. Tetrahedron 32, 873-912.
  19. Hassam, S. B. & Floss, H. G. (1981). Biosynthesis of ergot alkaloids. Incorporation of (17R)-(17-3 H)-and (17S)-(17-3 H) chanoclavine-I into elymoclyvine by Claviceps. J. Nat. Prod. 44, 756-758.
  20. I. & Cassady, J. M. (1974). Biosynthesis of ergot alkaloids. Studies on the mechanism of the conversion of chanoclavine-I into tetracyclic ergolines. J . Am.
  21. Naidoo, B., Cassady, J. M., Blair, G. E. & Floss, H. G. (1970). Biosynthesis of ergot alkaloids. Synthesis of chanoclavine-I-aldehyde and its incorporation into elymoclavine by Claviceps. J. Chem. Soc. , Chem. Commun. 471-472.
  22. Huang, X., Holden, H. M. & Raushel, F. M. (2001). Channeling of substrates and intermediates in enzyme-catalyzed reactions. Annu. Rev. Biochem. 70, 149-180.
  23. Halker, R., Vargas, B. & Dodick, D. W. (2010). Cluster headache: diagnosis and treatment. Semin. Neurol. 30, 175-185.
  24. Luzhetska, M., Härle, J. & Bechthold, A. (2010). Combinatorial and synthetic biosynthesis in actinomycetes. Fortschr. Chem Org. Naturstoffe 93, 211-237.
  25. Sajdl, P. & Rehácek, Z. (1975). Cyclization of chanoclavine-I by cell-free preparations from saprophytic Claviceps strains. Folia Microbiol. (Praha) 20, 365- 367.
  26. Sinz, A. (2008). Die Bedeutung der Mutterkorn-Alkaloide als Arzneistoffe. Pharmazie in unserer Zeit 37, 306-309.
  27. Dissection of malonyl-coenzyme A decarboxylation from polyketide formation in the reaction mechanism of a plant polyketide synthase. Biochemistry 39, 890-902.
  28. Endophytic fungal metabolite fumigaclavine C causes relaxation of isolated rat aortic rings. Planta Med. 72, 387-392.
  29. Schardl, C. L., Scott, B., Florea, S. & Zhang, D. (2009). Epichloë endophytes: Clavicipitaceous symbionts of grasses. In The Mycota V: Plant Relationships, pp. 275-306. Springer-Verlag Berlin Heidelberg.
  30. Schardl, C. L. (2001). Epichloë festucae and related mutualistic symbionts of grasses. Fungal. Genet. Biol. 33, 69-82.
  31. Rigbers, O. & Li, S.-M. (2008). Ergot alkaloid biosynthesis in Aspergillus fumigatus: overproduction and biochemical characterisation of a 4-dimethylallyltryptophan N- methyltransferase. J. Biol. Chem. 283, 26859-26868.
  32. Schardl, C. L., Panaccione, D. G. & Tudzynski, P. (2006). Ergot alkaloids--biology and molecular biology. The Alkaloids, Chem. Biol. 63, 45-86.
  33. Pedrosa, K. & Grießler, K. (2010). Ergot alkaloids of increasing concern. Feed Intern. September/October, 28-30.
  34. Flieger, M., Wurst, M. & Shelby, R. (1997). Ergot alkaloids--sources, structures and analytical methods. Folia Microbiol. (Praha) 42, 3-30.
  35. Wallwey, C. & Li, S.-M. (2011). Ergot alkaloids: structure diversity, biosynthetic gene clusters and functional proof of biosynthetic genes. Nat. Prod. Rep. 28, 496-510.
  36. Haarmann, T., Rolke, Y., Giesbert, S. & Tudzynski, P. (2009). Ergot: from witchcraft to biotechnology. Mol. Plant Pathol. 10, 563-577.
  37. Evidence for an ergot alkaloid gene cluster in Claviceps purpurea. Mol. Gen. Genet. 261, 133-141.
  38. Wu, X.-F., Fei, M.-J., Shu, R.-G., Tan, R.-X. & Xu, Q. (2005). Fumigaclavine C, an fungal metabolite, improves experimental colitis in mice via downregulating Th1 cytokine production and matrix metalloproteinase activity. Int. Immunopharmacol. 5, 1543-1553.
  39. Fumigaclavine C improves concanavalin A-induced liver injury in mice mainly via inhibiting TNF-alpha production and lymphocyte adhesion to extracellular matrices. J. Pharm. Pharmacol. 56, 775-782.
  40. Nierman, W. C., Pain, A., Anderson, M. J., Wortman, J. R. et al. (2005). Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438, 1151-1156.
  41. Katzug, B. G. (2009). Histamine, serotonin and the ergot alkaloids. In Basic and Clinical Pharmacology, pp. 271-292. Edited by. B. G. Katzung, S. B. Masters & A. J.
  42. Haarmann, T., Ortel, I., Tudzynski, P. & Keller, U. (2006). Identification of the cytochrome P450 monooxygenase that bridges the clavine and ergoline alkaloid pathways. Chembiochem. 7, 645-652.
  43. Furuta, T., Koike, M. & Abe, M. (1982). Isolation of Cycloclavine from the Culture Broth of Aspergillus japonicus SAITO. Agri. Biol. Chem. 46, 1921-1922.
  44. Spilsbury, J. F. & Wilkinson, S. (1961). Isolation of festuclavine and two new clavine alkaloids from Aspergillus fumigatus. J. Chem. Soc. 2085-2091.
  45. Stauffacher, D. & Tscherter, H. (1964). Isomere des Chanoclavines aus Claviceps purpurea (Fr.) TUL. (Secale cornutum). Helv. Chim. Acta 47, 2186-2194.
  46. Uhlig, S. & Petersen, D. (2008). Lactam ergot alkaloids (ergopeptams) as predominant alkaloids in sclerotia of Claviceps purpurea from Norwegian wild grasses. Toxicon 52, 175-185.
  47. Hofmann, A. (1980) LSD -My problem child. New York: McGraw-Hill.
  48. Jörnvall, H. (2008). Medium-and short-chain dehydrogenase/reductase gene and protein families: MDR and SDR gene and protein superfamilies. Cell Mol. Life Sci. 65, 3873-3878.
  49. Unsöld, I. A. (2006). Molecular biological and biochemical investigations on the biosynthesis of fumigaclavines in Aspergillus fumigatus AF 293 / B 5233 and Penicillium commune NRRL2033. Dissertation Universität Tübingen.
  50. Pertz, H. (1996). Naturally occurring clavines: antagonism/partial agonism at 5-HT2A receptors and antagonism at alpha 1-adrenoceptors in blood vessels. Planta Med. 62, 387-392.
  51. Matuschek, M., Wallwey, C., Xie, X. & Li, S.-M. (2011). New insights into ergot alkaloid biosynthesis in Claviceps purpurea: an agroclavine synthase EasG catalyses, via a non-enzymatic adduct with reduced glutathione, the conversion of chanoclavine-I aldehyde to agroclavine. Org. Biomol. Chem. 9, 4328-4335.
  52. Lovell, B. V. & Marmura, M. J. (2010). New therapeutic developments in chronic migraine. Curr. Opin. Neurol. 23, 254-258.
  53. Stack, D., Neville, C. & Doyle, S. (2007). Nonribosomal peptide synthesis in Aspergillus fumigatus and other fungi. Microbiology 153, 1297-1306.
  54. One and Two Dimensional NMR Spectroscopy: An Introduction., pp. 301-329. Wiley-VCH Weinheim.
  55. Unsöld, I. A. & Li, S.-M. (2005). Overproduction, purification and characterization of FgaPT2, a dimethylallyltryptophan synthase from Aspergillus fumigatus. Microbiology 151, 1499-1505.
  56. Periglandula, a new fungal genus within the Clavicipitaceae and its association with Convolvulaceae. Mycologia. 103, 1133-1145.
  57. Saper, J. R. & Silberstein, S. (2006). Pharmacology of dihydroergotamine and evidence for efficacy and safety in migraine. Headache 46 Suppl 4, S171-S181.
  58. Du, L. & Lou, L. (2010). PKS and NRPS release mechanisms. Nat. Prod. Rep. 27, 255-278.
  59. Rajan, P. V. & Wing, D. A. (2010). Postpartum hemorrhage: Evidence-based medical interventions for prevention and treatment. Clin. Obst. Gyn. 53, 165-181.
  60. Vinokurova, N. G., Boichenko, L. V. & Arinbasarov, M. U. (2003a). Production of alkaloids by fungi of the genus Penicillium grown on wheat grain. Appl. Biochem.
  61. Janardhanan, K. K., Sattar, A. & Husain, A. (1984). Production of fumigaclavine A by Aspergillus tamarii Kita. Can. J. Microbiol. 30, 247-250.
  62. Ohmomo, S., Kaneko, M. & Atthasampunna, P. (1989). Production of fumigaclavine B by a thermophilic strain of Aspergillus fumigatus. MIRCEN J. Appl. Microbiol. Biotechn. 5, 5-13.
  63. Osbourn, A. (2010). Secondary metabolic gene clusters: evolutionary toolkits for chemical innovation. Trends Genet. 26, 449-457.
  64. Zhelifonova, V. P., Antipova, T. V., Ozerskaya, S. M., Kochkina, G. A. & Kozlovsky, A. G. (2009). Secondary metabolites of Penicillium fungi isolated from permafrost deposits as chemotaxonomic markers. Microbiology (Moscow) 78, 350- 354. ANHANG 136
  65. Structure of rugulovasine A, B, and their derivatives. Agric. Biol. Chem. 34, 485-487.
  66. Pretsch, E., Bühlmann, P. & Affolter, C. (2000) Struture determination of organic compounds. Berlin, Heidelberg: Springer-Verlag.
  67. Nakahara, Y., Niwaguchi, T. & Ishii, H. (1977). Studies on lysergic acid diethylamide and related compounds. V. Syntheses of dihydrolysergic acid diethylamides and related compounds. Chem. Pharm. Bull. 25, 1756-1763.
  68. Schardl, C. L., Leuchtmann, A. & Spiering, M. J. (2004). Symbioses of grasses with seedborne fungal endophytes. Annu. Rev. Plant Biol. 55, 315-340.
  69. Martinez-Martin, P. & Kurtis, M. M. (2009). Systematic review of the effect of dopamine receptor agonists on patient health-related quality of life. Parkinsonism.
  70. Lorenz, N., Olšovská, J., Šulc, M. & Tudzynski, P. (2010). The alkaloid cluster gene ccsA of the ergot fungus Claviceps purpurea encodes the chanoclavine-I- synthase, an FAD-containing oxidoreductase mediating the transformation of N- methyl-dimethylallyltryptophan to chanoclavine-I. Appl. Environ. Microbiol. 76, 1822- 1830.
  71. Wang, J., Machado, C., Panaccione, D. G., Tsai, H. F. & Schardl, C. L. (2004). The determinant step in ergot alkaloid biosynthesis by an endophyte of perennial ryegrass. Fungal Genet. Biol. 41, 189-198.
  72. G. & Tudzynski, P. (2005). The ergot alkaloid gene cluster in Claviceps purpurea: Extension of the cluster sequence and intra species evolution. Phytochemistry 66, 1312-1320.
  73. Vinokurova, N. G., Ozerskaya, S. M., Baskunov, B. P. & Arinbasarov, M. U. (2003b). The Penicillium commune Thom and Penicillium clavigerum demelius fungi producing fumigaclavines A and B. Microbiology (Moscow) 72, 149-151.
  74. The relationship between intensity of oxidative metabolism and predominance of agroclavine or elymoclavine in submerged Claviceps purpurea cultures. J. Nat. Prod. 44, 225-235.
  75. Sakharovsky, V. G. & Kozlovsky, A. G. (1983). The study of costaclavine and epicostaclavine structure by 1H NMR. J. Structumoy Khimii (in Russian) 24, 100-105.
  76. Tscherter, H. & Hauth, H. (1974). Three new ergot alkaloids from saprophytic culture of Claviceps paspali Stevens et Hall. Helv. Chim. Acta 57, 113-121.
  77. Unsöld, I. A. & Li, S.-M. (2006). Reverse prenyltransferase in the biosynthesis of fumigaclavine C in Aspergillus fumigatus: gene expression, purification and characterization of fumigaclavine C synthase FgaPT1. Chembiochem 7, 158-164.
  78. Frisvad, J. C., Rank, C., Nielsen, K. F. & Larsen, T. O. (2009). Metabolomics of Aspergillus fumigatus. Med. Mycol. 47, S53-S71.
  79. O'Brien, M., Nielsen, K. F., O'Kiely, P., Forristal, P. D., Fuller, H. T. & Frisvad, J. C. (2006). Mycotoxins and other secondary metabolites produced in vitro by Penicillium paneum Frisvad and Penicillium roqueforti Thom isolated from baled grass silage in Ireland. J. Agric. Food Chem. 54, 9268-9276.
  80. Frisvad, J. C., Smedsgaard, J., Larsen, T. O. & Samson, R. A. (2004). Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud. Mycol. 49, 201-241.
  81. Jones, M. G. (2007). The first filamentous fungal genome sequences: Aspergillus leads the way for essential everyday resources or dusty museum specimens? Microbiology 153, 1-6.
  82. Jourdan, G., Verwaerde, P., Pathak, A., Tran, M. A., Montastruc, J. L. & Senard, J. M. (2007). In vivo pharmacodynamic interactions between two drugs used in orthostatic hypotension--midodrine and dihydroergotamine. Fundam. Clin. Pharmacol. 21, 45-53.
  83. Steffan, N., Grundmann, A., Yin, W.-B., Kremer, A. & Li, S.-M. (2009). Indole prenyltransferases from fungi: a new enzyme group with high potential for the production of prenylated indole derivatives. Curr. Med. Chem. 16, 218-231.
  84. Panaccione, D. G. & Coyle, C. M. (2005). Abundant respirable ergot alkaloids from the common airborne fungus Aspergillus fumigatus. Appl. Environ. Microbiol. 71, 3106-3111.
  85. Schiff, P. L. (2006). Ergot and its alkaloids. Am. J. Pharma. Edu. 70, 1-10.
  86. Fleetwood, D. J., Scott, B., Lane, G. A., Tanaka, A. & Johnson, R. D. (2007). A complex ergovaline gene cluster in epichloe endophytes of grasses. Appl. Environ.
  87. Gutierrez, S., Velasco, J., Fernandez, F. J. & Martin, J. F. (1992). The cefG gene of Cephalosporium acremonium is linked to the cefEF gene and encodes a deacetylcephalosporin C acetyltransferase closely related to homoserine O- acetyltransferase. J. Bacteriol. 174, 3056-3064.
  88. Comparison of ergot alkaloid biosynthesis gene clusters in Claviceps species indicates loss of late pathway steps in evolution of C. fusiformis. Appl. Environ. Microbiol. 73, 7185-7191.
  89. Ortel, I. & Keller, U. (2009). Combinatorial assembly of simple and complex D- lysergic acid alkaloid peptide classes in the ergot fungus Claviceps purpurea. J. Biol. Chem. 284, 6650-6660.
  90. Metzger, U., Schall, C., Zocher, G., Unsöld, I., Stec, E., Li, S.-M., Heide, L. & Stehle, T. (2009). The structure of dimethylallyl tryptophan synthase reveals a common architecture of aromatic prenyltransferases in fungi and bacteria. Proc. Natl. Acad. Sci. U. S. A 106, 14309-14314.
  91. Panaccione, D. G., Johnson, R. D., Wang, J., Young, C. A., Damrongkool, P., Scott, B. & Schardl, C. L. (2001). Elimination of ergovaline from a grass- Neotyphodium endophyte symbiosis by genetic modification of the endophyte. Proc.
  92. Tsai, H. F., Wang, H., Gebler, J. C., Poulter, C. D. & Schardl, C. L. (1995). The Claviceps purpurea gene encoding dimethylallyltryptophan synthase, the committed step for ergot alkaloid biosynthesis. Biochem. Biophys. Res. Commun. 216, 119-125.
  93. Ergot cluster-encoded catalase is required for synthesis of chanoclavine-I in Aspergillus fumigatus. Curr. Genet. 57, 201-211.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten