Publikationsserver der Universitätsbibliothek Marburg

Titel:Identification and Characterization of the Lysobactin Biosynthetic GeneCluster and Its Unusual Termination Module
Autor:Hou, Jie
Weitere Beteiligte: Marahil, M.A. (Prof. Dr.)
Veröffentlicht:2012
URI:https://archiv.ub.uni-marburg.de/diss/z2012/0484
URN: urn:nbn:de:hebis:04-z2012-04842
DOI: https://doi.org/10.17192/z2012.0484
DDC: Chemie
Titel (trans.):Identifikation und Charakterisierung des Biosynthesegenclusters vonLysobactin und seines ungewöhnlichen Terminationmoduls
Publikationsdatum:2012-07-11
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Lysobactin, Lysobactin

Summary:
Nonribosomal peptides (NRPs) constitute a class of structurally and functionally diverse natural products, which are synthesized by nonribosomal peptide synthetases (NRPSs). NRPs exhibit a wide range of bioactivities, including antimicrobial, antifungal, antiviral, immunosuppressive and antitumor properties. Numerous of these compounds have been discovered via screening of microbial extracts. In recent years, increasing knowledge of the biosynthesis of natural products and development of new sequencing techniques lead to the identification of gene clusters, which are putatively involved in the biosynthesis of nonribosomal peptides. Based on the sequencing result of the genome of Lysobacter sp. ATCC 53042 and the former work from Bernhard et al.[1] on the gene fragment involved in the biosynthesis of lysobactin, the entire biosynthetic gene cluster of lysobactin was identified and characterized. The cluster encodes two multimodular nonribosomal peptide synthetases (LybA and LybB). Due to the correlation of the number of modules found within the lysobactin gene cluster and the primary sequence of lysobactin, the biosynthesis of lysobactin follows the colinearity principle. Investigation of the adenylation domain substrate specificities confirmed the direct association between the synthetases and lysobactin biosynthesis. Furthermore, an unusual tandem thioesterase domain architecture (PCP-TE1-TE2) of the LybB termination module was identified. Biochemical characterization of the individual thioesterases in vitro proved that the first thioesterase is responsible for the cyclization and the release of the final product, while the second thioesterase showed a type II TE activity, which is responsible for the regeneration of the mis-primed peptide carrier protein during the biosynthesis of lysobactin. Together with the observation of the proteolytic degradation during the heterologous production of LybB-PCP-TE1-TE2 giving rise of LybB-PCP-TE1, we have proposed that the LybB is also cleaved to generate lone-standing LybB-TE2 prior to lysobactin synthesis in the native strain. The resulting lone-standing TE2 serves as external type II TE to regenerate mis-primed peptide carrier protein via hydrolytic cleavage of the PCP-bound noncognate substrates. Additionally, the sequence of the genome of Lysobacter sp. ATCC 53042 was bioinformatically analyzed. The analysis result delivered further potential NRPS and PKS-NRPS hybrid gene clusters. Based on the proposed substrate specificities of the adenylation domains, the chemical structures of the products were proposed. However, further experiments are needed to confirm the production of these compounds.

Bibliographie / References

  1. de Crecy-Lagard, V., et al., Streptogramin B biosynthesis in Streptomyces pristinaespiralis and Streptomyces virginiae: molecular characterization of the last structural peptide synthetase gene. Antimicrob Agents Chemother, 1997. 41(9): p. 1904-9.
  2. Newman, D.J. and G.M. Cragg, Natural products as sources of new drugs over the last 25 years. J Nat Prod, 2007. 70(3): p. 461-77.
  3. Kohli, R.M., C.T. Walsh, and M.D. Burkart, Biomimetic synthesis and optimization of cyclic peptide antibiotics. Nature, 2002. 418(6898): p. 658-61.
  4. Wiest, A., et al., Identification of peptaibols from Trichoderma virens and cloning of a peptaibol synthetase. J Biol Chem, 2002. 277(23): p. 20862-8.
  5. Gaitatzis, N., B. Kunze, and R. Muller, In vitro reconstitution of the myxochelin biosynthetic machinery of Stigmatella aurantiaca Sg a15: Biochemical characterization of a reductive release mechanism from nonribosomal peptide synthetases. Proc Natl Acad Sci U S A, 2001. 98(20): p. 11136-41.
  6. Debono, M., et al., Enzymatic and chemical modifications of lipopeptide antibiotic A21978C: the synthesis and evaluation of daptomycin (LY146032). J Antibiot (Tokyo), 1988. 41(8): p. 1093-105.
  7. Yakimov, M.M., et al., A putative lichenysin A synthetase operon in Bacillus licheniformis: initial characterization. Biochim Biophys Acta, 1998. 1399(2-3): p. 141-53.
  8. Kim, B.S., et al., Biochemical evidence for an editing role of thioesterase II in the biosynthesis of the polyketide pikromycin. J Biol Chem, 2002. 277(50): p. 48028-34. 78.
  9. Mahlert, C., et al., Chemoenzymatic approach to enantiopure streptogramin B variants: characterization of stereoselective pristinamycin I cyclase from Streptomyces pristinaespiralis. J Am Chem Soc, 2005. 127(26): p. 9571-80.
  10. Kopp, F., et al., Chemoenzymatic design of acidic lipopeptide hybrids: new insights into the structure-activity relationship of daptomycin and A54145. Biochemistry, 2006. 45(35): p. 10474-81.
  11. Roongsawang, N., et al., Cloning and characterization of the gene cluster encoding arthrofactin synthetase from Pseudomonas sp. MIS38. Chem Biol, 2003. 10(9): p. 869-80.
  12. Cudic, P., et al., Complexation of peptidoglycan intermediates by the lipoglycodepsipeptide antibiotic ramoplanin: minimal structural requirements for References 106
  13. Linne, U. and M.A. Marahiel, Control of directionality in nonribosomal peptide synthesis: role of the condensation domain in preventing misinitiation and timing of epimerization. Biochemistry, 2000. 39(34): p. 10439-47.
  14. Reuter, K., et al., Crystal structure of the surfactin synthetase-activating enzyme sfp: a prototype of the 4'-phosphopantetheinyl transferase superfamily. EMBO J, 1999. 18(23): p. 6823-31.
  15. Weber, G. and E. Leitner, Disruption of the cyclosporin synthetase gene of Tolypocladium niveum. Curr Genet, 1994. 26(5-6): p. 461-7.
  16. Weber, T., et al., Exploiting the genetic potential of polyketide producing streptomycetes. J Biotechnol, 2003. 106(2-3): p. 221-32.
  17. Hopwood, D.A., Forty years of genetics with Streptomyces: from in vivo through in vitro References 103 References 104 References 105 2003. 16(4): p. 271-80.
  18. Hartmann, T., From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry, 2007. 68(22-24): p. 2831-46.
  19. Kraas, F.I., et al., Functional dissection of surfactin synthetase initiation module reveals insights into the mechanism of lipoinitiation. Chem Biol. 17(8): p. 872-80.
  20. Balibar, C.J., F.H. Vaillancourt, and C.T. Walsh, Generation of D amino acid residues in assembly of arthrofactin by dual condensation/epimerization domains. Chem Biol, 2005. 12(11): p. 1189-200.
  21. Schneider, A. and M.A. Marahiel, Genetic evidence for a role of thioesterase domains, integrated in or associated with peptide synthetases, in non-ribosomal peptide biosynthesis in Bacillus subtilis. Arch Microbiol, 1998. 169(5): p. 404-10.
  22. Hopwood, D.A., K.F. Chater, and M.J. Bibb, Genetics of antibiotic production in Streptomyces coelicolor A3(2), a model streptomycete. Biotechnology, 1995. 28: p. 65-102.
  23. Hou, J., L. Robbel, and M.A. Marahiel, Identification and characterization of the lysobactin biosynthetic gene cluster reveals mechanistic insights into an unusual termination module architecture. Chem Biol, 2011. 18(5): p. 655-64.
  24. References 1. Bernhard, F., et al., Identification of genes encoding for peptide synthetases in the gram-negative bacterium Lysobacter sp. ATCC 53042 and the fungus Cylindrotrichum oligospermum. DNA Seq, 1996. 6(6): p. 319-30.
  25. intermolecular complexation and fibril formation. Proc Natl Acad Sci U S A, 2002. 99(11): p. 7384-9.
  26. Couzinet, S., et al., In vitro activity of the polyether ionophorous antibiotic monensin against the cyst form of Toxoplasma gondii. Parasitology, 2000. 121 ( Pt 4): p. 359-65.
  27. Roongsawang, N., K. Washio, and M. Morikawa, In vivo characterization of tandem C-terminal thioesterase domains in arthrofactin synthetase. Chembiochem, 2007. 8(5): p. 501-12.
  28. Bonner, D.P., et al., Lysobactin, a novel antibacterial agent produced by Lysobacter sp. II. Biological properties. J Antibiot (Tokyo), 1988. 41(12): p. 1745-51.
  29. de Bruijn, I., et al., Massetolide A biosynthesis in Pseudomonas fluorescens. J Bacteriol, 2008. 190(8): p. 2777-89.
  30. Konz, D., S. Doekel, and M.A. Marahiel, Molecular and biochemical characterization of the protein template controlling biosynthesis of the lipopeptide lichenysin. J Bacteriol, 1999. 181(1): p. 133-40.
  31. Sieber, S.A. and M.A. Marahiel, Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem Rev, 2005. 105(2): p. 715-38.
  32. Weist, S., et al., Mutasynthesis of glycopeptide antibiotics: variations of vancomycin's AB-ring amino acid 3,5-dihydroxyphenylglycine. J Am Chem Soc, 2004. 126(19): p. 5942-3.
  33. Felnagle, E.A., et al., Nonribosomal peptide synthetases involved in the production of medically relevant natural products. Mol Pharm, 2008. 5(2): p. 191-211.
  34. Eriani, G., et al., Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature, 1990. 347(6289): p. 203-6.
  35. Walsh, C.T., Polyketide and nonribosomal peptide antibiotics: modularity and versatility. Science, 2004. 303(5665): p. 1805-10.
  36. Staunton, J. and K.J. Weissman, Polyketide biosynthesis: a millennium review. Nat Prod Rep, 2001. 18(4): p. 380-416.
  37. Borodovsky, M., et al., Prokaryotic gene prediction using GeneMark and GeneMark.hmm. Curr Protoc Bioinformatics, 2003. Chapter 4: p. Unit4 5.
  38. Mofid, M.R., R. Finking, and M.A. Marahiel, Recognition of hybrid peptidyl carrier proteins/acyl carrier proteins in nonribosomal peptide synthetase modules by the 4'-phosphopantetheinyl transferases AcpS and Sfp. J Biol Chem, 2002. 277(19): p. 17023-31.
  39. Hoffmann, D., et al., Sequence analysis and biochemical characterization of the nostopeptolide A biosynthetic gene cluster from Nostoc sp. GSV224. Gene, 2003. 311: p. 171-80.
  40. Samel, S.A., et al., Structural and functional insights into a peptide bond-forming bidomain from a nonribosomal peptide synthetase. Structure, 2007. 15(7): p. 781-92. 14.
  41. Conti, E., et al., Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J, 1997. 16(14): p. 4174-83.
  42. Helmetag, V., et al., Structural basis for the erythro-stereospecificity of the L-arginine oxygenase VioC in viomycin biosynthesis. FEBS J, 2009. 276(13): p. 3669-82.
  43. Taxonomy, isolation and partial characterization. J Antibiot (Tokyo), 1988. 41(12): p. 1740-4. 84. von Nussbaum, F., et al., Structure and total synthesis of lysobactin (katanosin B). Angew Chem Int Ed Engl, 2007. 46(12): p. 2039-42.
  44. Tymiak, A.A., et al,, Structure determination of lysobactin, a macrocyclic peptide lactone antibiotic. J. Org. Chem., 1989. 54: p. 1149-57.
  45. Schaffer, M.L. and L.G. Otten, Substrate flexibility of the adenylation reaction in the Tyrocidine non-ribosomal peptide synthetase. Journal of Molecular Catalysis B: Enzymatic, 2009. 59(1-3): p. 140-4.
  46. Grunewald, J., et al., Synthesis and derivatization of daptomycin: a chemoenzymatic route to acidic lipopeptide antibiotics. J Am Chem Soc, 2004. 126(51): p. 17025-31. 156.
  47. Schnappinger, D. and W. Hillen, Tetracyclines: antibiotic action, uptake, and resistance mechanisms. Arch Microbiol, 1996. 165(6): p. 359-69.
  48. Du, L., et al., The biosynthetic gene cluster for the antitumor drug bleomycin from Streptomyces verticillus ATCC15003 supporting functional interactions between nonribosomal peptide synthetases and a polyketide synthase. Chem Biol, 2000. 7(8): p. 623-42.
  49. Crotti, A.E.M., Fonseca, T., Hong, H., Staunton, J., Galembek, S. E., Lopes, N. P., The fragmentation mechanism of five-membered lactones by electrospray ionisation tandem mass spectrometry. Int. J. Mass Spectrometry, 2004. 232(1): p. 271-276.
  50. Kessler, N., et al., The linear pentadecapeptide gramicidin is assembled by four multimodular nonribosomal peptide synthetases that comprise 16 modules with 56 catalytic domains. J Biol Chem, 2004. 279(9): p. 7413-9.
  51. Fang, X., et al., The mechanism of action of ramoplanin and enduracidin. Mol Biosyst, 2006. 2(1): p. 69-76.
  52. Cosmina, P., et al., Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis. Mol Microbiol, 1993. 8(5): p. 821-31.
  53. Belshaw, P.J., C.T. Walsh, and T. Stachelhaus, Aminoacyl-CoAs as probes of condensation domain selectivity in nonribosomal peptide synthesis. Science, 1999. 284(5413): p. 486-9.
  54. Keating, T.A., et al., The structure of VibH represents nonribosomal peptide synthetase condensation, cyclization and epimerization domains. Nat Struct Biol, 2002. 9(7): p. 522-6.
  55. Tsuge, K., T. Akiyama, and M. Shoda, Cloning, sequencing, and characterization of the iturin A operon. J Bacteriol, 2001. 183(21): p. 6265-73.
  56. Schwarzer, D., et al., Regeneration of misprimed nonribosomal peptide synthetases by type II thioesterases. Proc Natl Acad Sci U S A, 2002. 99(22): p. 14083-8.
  57. Moran, M.A., L.T. Rutherford, and R.E. Hodson, Evidence for indigenous Streptomyces populations in a marine environment determined with a 16S rRNA probe. Appl Environ Microbiol, 1995. 61(10): p. 3695-700.
  58. Guzman-Martinez, A., R. Lamer, and M.S. VanNieuwenhze, Total synthesis of lysobactin. J Am Chem Soc, 2007. 129(18): p. 6017-21.
  59. Francklyn, C.S., DNA polymerases and aminoacyl-tRNA synthetases: shared mechanisms for ensuring the fidelity of gene expression. Biochemistry, 2008. 47(45): p. 11695-703.
  60. Nguyen, K.T., et al., Genetically engineered lipopeptide antibiotics related to A54145 and daptomycin with improved properties. Antimicrob Agents Chemother. 54(4): p. 1404-13. References 101
  61. Sieber, S.A. and M.A. Marahiel, Learning from nature's drug factories: nonribosomal synthesis of macrocyclic peptides. J Bacteriol, 2003. 185(24): p. 7036-43.
  62. Maki, H., K. Miura, and Y. Yamano, Katanosin B and plusbacin A(3), inhibitors of peptidoglycan synthesis in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother, 2001. 45(6): p. 1823-7.
  63. Stachelhaus, T., H.D. Mootz, and M.A. Marahiel, The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol, 1999. 6(8): p. 493-505.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten