Publikationsserver der Universitätsbibliothek Marburg

Titel:Immunhistochemische, zellbiologische und physiologische in vivo Untersuchungen zum Apelin/APJ-Systemin Hypothalamus und Hypophyse der Ratte
Autor:Hatzelmann, Thomas
Weitere Beteiligte: Gerstberger, Rüdiger (Prof. Dr.)
Veröffentlicht:2012
URI:https://archiv.ub.uni-marburg.de/diss/z2012/0472
DOI: https://doi.org/10.17192/z2012.0472
URN: urn:nbn:de:hebis:04-z2012-04720
DDC: Biowissenschaften, Biologie
Titel (trans.):Immunohistochemical, cell biological and physiological in vivo analysis of the apelin/APJ system in rat hypothalamus and pituitary
Publikationsdatum:2012-05-14
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Hypothalamus, Physiologe, Neuron, Calcium-Imaging, Hypophyse, Apelin, Peptidhormon, Nucleus parave, Hypothalamus, Nucleus praeopticus medialis, Nucleus paraventricularis, Stickstoffmonoxid-Synthase, APJ, Immuncytochemie, Apelin, APJ, G-Protein gekoppelte Rezeptoren

Zusammenfassung:
Der Hypothalamus repräsentiert die wichtigste Komponente des Zentralnervensystems (ZNS) zur Integration afferenter Signalinformationen und zur Regulation der Homöostase von Körperkerntemperatur, Wasser- und Elektrolythaushalt des Extrazellularraumes, circadianer Rhythmik sowie Energiehaushalt. Das wichtigste Kerngebiet (Nucleus) des Hypothalamus zur Steuerung der genannten physiologischen Funktionen stellt der in der supraoptischen Region, in unmittelbarer Nähe zum dritten Hirnventrikel gelegene Nucleus paraventricularis (PVN) dar. Der PVN enthält zahlreiche neurosekretorische Zellen und weist darüber hinaus zahlreiche efferente und afferente neuronale Verknüpfungen zu anderen Struktureinheiten des Gehirns auf. Zusätzlich zum PVN kommt auch dem im Bereich der Commissura anterior gelegenen Nucleus praeopticus medianus (MnPO) eine bedeutende, integrative Funktion bei der Regulation des Wasser- und Elektrolythaushaltes sowie der Körperkerntemperatur zu. Bei der Regulation dieser Prozesse spielt neben klassischen und peptidergen Neurotransmittern auch das gasförmige Signalmolekül Stickstoffmonoxid (NO), produziert unter anderem von der neuronalen Stickstoffmonoxid-Synthase (nNOS), eine wesentliche neuromodulatorische Rolle. Auch für das apelinerge System, bestehend aus den verschiedenen, aktiven Fragmenten des Preproapelins (Apelin36, Apelin17 und Apelin13) und dem G-Protein gekoppelten Rezeptor APJ, wurde bereits ein zentral vermittelter Einfluss unter anderem auf die Temperaturregulation und auf die Kontrolle des Wasser- und Elektrolythaushaltes beschrieben. Eine Expression sowohl der Apelinpeptide als auch des Rezeptors konnte bisher in peripheren Organen sowie im ZNS, und dabei hauptsächlich im Hypothalamus, gezeigt werden. Trotz zahlreicher Expressionsstudien fehlte jedoch bisher eine detaillierte Kartierung der Verteilung des Rezeptorproteins in Hypothalamus und Thalamus. (1) Anhand der in der vorliegenden Arbeit durchgeführten immunhistochemischen Markierungen an coronalen Gehirnschnitten der Ratte wurde deshalb erstmalig eine detaillierte, semiquantitative Kartierung der Expression des APJ Proteins im Hypothalamus erstellt. Diese Untersuchung bestätigt einerseits die bereits auf mRNA-Ebene publizierte APJ-Expression in Strukturen wie PVN und Nucleus supraopticus (SON), konnte jedoch darüber hinaus in vielen Nuclei und/oder deren Substrukturen wie u.a. dem MnPO, dem medialen Teil des „Bed Nucleus“ der Stria terminalis, dem N. praecommissuralis und dem N. dorsomedialis eine APJ-Expression zum ersten Mal auf Proteinebene für einzelne Neurone bzw. deren Pseudopodia nachweisen. (2) Sowohl für den PVN als auch den MnPO wurde bereits eine Expression von nNOS in früheren Studien beschrieben. Zusätzlich dazu konnte in der Fachliteratur eine Vermittlung apelinerger Effekte über NO etwa anhand der Modulation kardiovaskulärer Parameter in der Peripherie postuliert werden. Deshalb wurde in der vorliegenden Arbeit eine mögliche Co-Distribution und -Lokalisation von APJ und nNOS anhand immunhistochemischer Markierungen im Hypothalamus der Ratte untersucht. Dabei konnte u.a. im MnPO eine ausgeprägte Co-Distribution nitrerger Neurone und APJ-immunpositiver Faserstrukturen festgestellt werden. Bei der quantitativen Analyse der Expression von nNOS und APJ in Perikaryen des PVN und des SON hingegen war sogar mit mit ca. 40 % bzw. ca. 50 % markante zelluläre Co-Expression der beiden Moleküle nachweisbar. Aufgrund der ausgeprägten Co-Lokalisation und Co-Distribution in PVN und MnPO könnte somit NO als nachgeschaltetes Signalmolekül auch an der Vermittlung zentraler, apelinerger Wirkmechanismen beteiligt sein. (3) Zur in vitro Untersuchung Apelin-induzierter, intrazellulärer Signaltransduktions-mechanismen wurden aufgrund der ausgeprägten APJ-Rezeptorexpression sowohl MnPO- und PVN-spezifische neurogliale Primärkulturen als auch eine primäre Hypophysenzwischen-lappenkultur (HZL) herangezogen. Änderungen der intrazellulären Calciumkonzentration ([Ca2+]i) als wichtigen second oder third messenger konnten für einzelne Zellen durch den Einsatz calciumbindener Fluorophore wie Fura-2 kontinuierlich erfasst werden (=Calcium-Imaging). Sowohl für Neurone als auch Astrozyten der MnPO- und PVN-spezifischen Kulturen ergab sich bei 2-9 % der Zellen, in PVN-spezifischen Mikrogliazellen hingegen bei 12 % eine direkte Responsivität in Form einer transienten Erhöhung der [Ca2+]i nach Stimulation mit der pyroglutamylierten Form von Apelin13 (PyrAp13) (10-6 mol/l). Wie bereits für andere Neuropeptide beschrieben, vermochte PyrAp13 darüber hinaus den Calciumeinstrom des klassischen Neurotransmitters Glutamat in nitrergen und vor allem nicht-nitrergen Zellen sowohl positiv als auch negativ zu modulieren. Diese modulatorische Wirkung könnte somit möglicherweise die zelluläre Grundlage für physiologische Funktionen des apelinergen Systems als neuer Neuromodulator im ZNS darstellen. Neben der Analyse der [Ca2+]i als dem Apelin13 nachgeschalteten Signal wurde in einigen Publikationen auch über die Involvierung der MAP-Kinasen extracellular regulated kinase 1/2 (ERK1/2) im apelinergen Signalweg in peripheren oder transfizierten Zellsystemen berichtet. In der Primärkultur des HZLs mit hoher nativer APJ-Expression konnte in der vorliegenden Arbeit nach apelinerger Stimulation anhand von Western Blot Analysen jedoch keine Aktivierung der ERK1/2 beobachtet werden, möglicherweise bedingt durch eine bereits hohe Phosphorylierung vor der peptidergen Stimulation. (4) Als weiterer wichtiger Aspekt der wissenschaftlichen Arbeit wurden in vivo physiologische Parameter nach intracerebroventrikulärer (i.c.v.) Applikation von PyrAp13 (20 nmol) in der Ratte anhand telemetrischer Datenaufzeichnung untersucht. (A) I.c.v. mikroappliziertes PyrAp13 zeigte dabei keinen signifikanten Einfluss auf durch bakterielles Lipopolysaccharid (LPS, 100 μg/kg Körpergewicht) induzierte Komponenten des sickness behavior wie Anorexie, Adipsie und Lethargie. Jedoch führte es zu einer signifikanten Reduktion des LPS-induzierten Fiebers 3-6 und 6-9 Std. post injectionem und einem signifikanten erniedrigten Plasmaspiegel an Tumornekrosefaktor-α (TNF-α) als prominenten proinflammatorischen Cytokin 2 Std. nach der Injektion. (B) Trotz der hohen Sequenzähnlichkeit von APJ und dem Angiotensin II (AngII)-Rezeptor und einer in vitro bereits gezeigten Interaktion mit diesem, zeigte i.c.v. mikroappliziertes PyrAp13 jedoch in vivo keinen Einfluss auf durch die zentrale AngII-Applikation induzierte Trinkwasseraufnahme bzw. nukleäre Translokation des neuronalen Aktivitätsmarkers und Transkriptionsfaktors c-Fos. (C) Weiterhin zeigte PyrAp13 i.c.v. selbst beim Vergleich der Injektion vor der Aktivitätsphase mit der Inaktivitätsphase der Versuchstiere keinen Einfluss auf die circadiane Rhythmik telemetrisch erfasster Parameter wie Körpertemperatur, lokomotorische Aktivität und Futter- bzw. Wasseraufnahme.

Bibliographie / References

  1. Oldfield, F. A. Mendelsohn, and S. Y. Chai, 2003, The brain renin-angiotensin system: location and physiological roles: Int.J.Biochem.Cell Biol., v. 35, no. 6, p. 901-918.
  2. Colmers, W. F., K. Lukowiak, and Q. J. Pittman, 1988, Neuropeptide Y action in the rat hippocampal slice: site and mechanism of presynaptic inhibition: J.Neurosci., v. 8, no. 10, p. 3827-3837.
  3. Herman, 2007, Bed nucleus of the stria terminalis subregions differentially regulate hypothalamic-pituitary-adrenal axis activity: implications for the integration of limbic inputs: J.Neurosci., v. 27, no. 8, p. 2025-2034.
  4. van den Pol, A. N., X. B. Gao, K. Obrietan, T. S. Kilduff, and A. B. Belousov, 1998, Presynaptic and postsynaptic actions and modulation of neuroendocrine neurons by a new hypothalamic peptide, hypocretin/orexin: J.Neurosci., v. 18, no. 19, p. 7962-7971.
  5. Charles, C. J., M. T. Rademaker, and A. M. Richards, 2006, Apelin-13 induces a biphasic haemodynamic response and hormonal activation in normal conscious sheep: J.Endocrinol., v. 189, no. 3, p. 701-710.
  6. Garthwaite, J., 2008, Concepts of neural nitric oxide-mediated transmission: Eur.J.Neurosci., v. 27, no. 11, p. 2783-2802.
  7. Israel, J. M., D. A. Poulain, and S. H. Oliet, 2010, Glutamatergic inputs contribute to phasic activity in vasopressin neurons: J.Neurosci., v. 30, no. 4, p. 1221-1232.
  8. Fioramonti, X.; Marsollier, N.; Song, Z.; Fakira, K.A.; Patel, R.M.; Brown, S.; Duparc, T.; Pica-Mendez, A.; Sanders, N.M.; Knauf, C.; Valet, P.; McCrimmon, R.J.; Beuve, A.; Magnan, C. and Routh, V.H., 2010, Ventromedial hypothalamic nitric oxide production is necessary for hypoglycemia detection and counterregulation: Diabetes, v. 59, no. 2, p. 519-528.
  9. Simpkin, J. C., D. M. Yellon, S. M. Davidson, S. Y. Lim, A. M. Wynne, and C. C. Smith, 2007, Apelin-13 and apelin-36 exhibit direct cardioprotective activity against ischemia- reperfusion injury: Basic Res.Cardiol., v. 102, no. 6, p. 518-528.
  10. Schreckenberg, R., G. Taimor, H. M. Piper, and K. D. Schluter, 2004, Inhibition of Ca2+- dependent PKC isoforms unmasks ERK-dependent hypertrophic growth evoked by phenylephrine in adult ventricular cardiomyocytes: Cardiovasc.Res., v. 63, no. 3, p. 553-560.
  11. Zhong, J. C., X. Y. Yu, Y. Huang, L. M. Yung, C. W. Lau, and S. G. Lin, 2007, Apelin modulates aortic vascular tone via endothelial nitric oxide synthase phosphorylation pathway in diabetic mice: Cardiovasc.Res., v. 74, no. 3, p. 388-395.
  12. Foldes, G.; Horkay, F.; Szokodi, I.; Vuolteenaho, O.; Ilves, M.; Lindstedt, K.A.; Mayranpaa, M.; Sarman, B.; Seres, L.; Skoumal, R.; Lako-Futo, Z.; deChatel, R.; Ruskoaho, H. and Toth, M., Circulating and cardiac levels of apelin, the novel ligand of the orphan receptor APJ, in patients with heart failure: Biochem.Biophys.Res.Commun., v. 308, no. 3, p. 480-485.
  13. Ullian, M. E., C. N. Beck, L. P. Walker, W. R. Fitzgibbon, and T. A. Morinelli, 2009, Thiol antioxidants regulate angiotensin II AT1 and arginine vasopressin V1 receptor functions differently in vascular smooth muscle cells: Am.J.Hypertens., v. 22, no. 2, p. 221-227.
  14. Roth, J., 2006, Endogenous antipyretics: Clin.Chim.Acta, v. 371, no. 1-2, p. 13-24.
  15. Bai, B., J. Tang, H. Liu, J. Chen, Y. Li, and W. Song, 2008, Apelin-13 induces ERK1/2 but not p38 MAPK activation through coupling of the human apelin receptor to the Gi2 pathway: Acta Biochim.Biophys.Sin.(Shanghai), v. 40, no. 4, p. 311-318.
  16. Ulrich-Lai, Y. M., K. R. Jones, D. R. Ziegler, W. E. Cullinan, and J. P. Herman, 2011, Forebrain origins of glutamatergic innervation to the rat paraventricular nucleus of the hypothalamus: differential inputs to the anterior versus posterior subregions: J.Comp Neurol., v. 519, no. 7, p. 1301-1319.
  17. Cobellis, L., F. M. De, A. Mastrogiacomo, D. Giraldi, D. Dattilo, C. Scaffa, N. Colacurci, and L. A. De, 2007, Modulation of apelin and APJ receptor in normal and preeclampsia- complicated placentas: Histol.Histopathol., v. 22, no. 1, p. 1-8.
  18. Kimura, S., Y. Ohshige, L. Lin, T. Okumura, C. Yanaihara, N. Yanaihara, and Y. Shiotani, 1994, Localization of pituitary adenylate cyclase-activating polypeptide (PACAP) in the hypothalamus-pituitary system in rats: light and electron microscopic immunocytochemical studies: J.Neuroendocrinol., v. 6, no. 5, p. 503-507.
  19. Roberts, E. M., G. R. Pope, M. J. Newson, R. Landgraf, S. J. Lolait, and A. M. O'Carroll, 2010, Stimulus-specific neuroendocrine responses to osmotic challenges in apelin receptor knockout mice: J.Neuroendocrinol., v. 22, no. 4, p. 301-308.
  20. Roberts, E. M., M. J. Newson, G. R. Pope, R. Landgraf, S. J. Lolait, and A. M. O'Carroll, 2009, Abnormal fluid homeostasis in apelin receptor knockout mice: J.Endocrinol., v. 202, no. 3, p. 453-462.
  21. Orlando, G. F., K. Langnaese, R. Landgraf, M. G. Spina, G. Wolf, and M. Engelmann, 2007, Neural nitric oxide gene inactivation affects the release profile of oxytocin into the blood in response to forced swimming: Nitric Oxide, v. 16, no. 1, p. 64-70.
  22. Burnashev, N., Z. Zhou, E. Neher, and B. Sakmann, 1995, Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes: J.Physiol., v. 485 Pt 2, p. 403-418.
  23. Japp, A.G.; Cruden, N.L.; Amer, D.A.; Li, V.K.; Goudie, E.B.; Johnston, N.R.; Sharma, S.; Neilson, I.; Webb, D.J.; Megson, I.L.; Flapan, A.D. and Newby, D.E., 2008, Vascular effects of apelin in vivo in man: J.Am.Coll.Cardiol., v. 52, no. 11, p. 908-913.
  24. Klingenspor, M., 2003, Cold-induced recruitment of brown adipose tissue thermogenesis: Exp.Physiol., v. 88, no. 1, p. 141-148.
  25. Galli, G., and M. Fratelli, 1993, Activation of apoptosis by serum deprivation in a teratocarcinoma cell line: inhibition by L-acetylcarnitine: Exp.Cell Res., v. 204, no. 1, p. 54- 60.
  26. Honda, K., H. Negoro, T. Higuchi, and Y. Tadokoro, 1987, Activation of neurosecretory cells by osmotic stimulation of anteroventral third ventricle: Am.J.Physiol., v. 252, no. 6 Pt 2, p. R1039-R1045.
  27. Chiba, T., and Y. Murata, 1985, Afferent and efferent connections of the medial preoptic area in the rat: a WGA-HRP study: Brain Res.Bull., v. 14, no. 3, p. 261-272.
  28. Saper, C. B., and D. Levisohn, 1983, Afferent connections of the median preoptic nucleus in the rat: anatomical evidence for a cardiovascular integrative mechanism in the anteroventral third ventricular (AV3V) region: Brain Res., v. 288, no. 1-2, p. 21-31.
  29. Lind, R. W., and A. K. Johnson, 1983, A further characterization of the effects of AV3V lesions on ingestive behavior: Am.J.Physiol., v. 245, no. 1, p. R83-R90.
  30. George, and B. F. O'Dowd, 2004, Agonist-independent nuclear localization of the apelin, angiotensin AT1, and bradykinin B2 receptors: J.Biol.Chem., v. 279, no. 9, p. 7901-7908.
  31. Lansdorp, P. M., L. A. Aarden, J. Calafat, and W. P. Zeiljemaker, 1986, A growth-factor dependent B-cell hybridoma: Curr.Top.Microbiol.Immunol., v. 132, p. 105-113.
  32. Espevik, T., and J. Nissen-Meyer, 1986, A highly sensitive cell line, WEHI 164 clone 13, for measuring cytotoxic factor/tumor necrosis factor from human monocytes: J.Immunol.Methods, v. 95, no. 1, p. 99-105.
  33. O'Dowd, B.F.; Heiber, M.; Chan, A.; Heng, H.H.; Tsui, L.C.; Kennedy, J.L.; Shi, X.; Petronis, A.; George, S.R. and Nguyen, T., 1993, A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11: Gene, v. 136, no. 1-2, p. 355-360.
  34. Rajora, N., G. Boccoli, D. Burns, S. Sharma, A. P. Catania, and J. M. Lipton, 1997, Alpha- MSH modulates local and circulating tumor necrosis factor-alpha in experimental brain inflammation: J.Neurosci., v. 17, no. 6, p. 2181-2186.
  35. Krettek, J. E., and J. L. Price, 1978, Amygdaloid projections to subcortical structures within the basal forebrain and brainstem in the rat and cat: J.Comp Neurol., v. 178, no. 2, p. 225-254.
  36. Livak, K. J., and T. D. Schmittgen, 2001, Analysis of relative gene expression data using real- time quantitative PCR and the 2(-Delta Delta C(T)) Method: Methods, v. 25, no. 4, p. 402-408.
  37. Bingham, B., C. Myung, L. Innala, M. Gray, A. Anonuevo, and V. Viau, 2011, Androgen receptors in the posterior bed nucleus of the stria terminalis increase neuropeptide expression and the stress-induced activation of the paraventricular nucleus of the hypothalamus: Neuropsychopharmacology, v. 36, no. 7, p. 1433-1443.
  38. Grynkiewicz, G., M. Poenie, and R. Y. Tsien, 1985, A new generation of Ca2+ indicators with greatly improved fluorescence properties: J.Biol.Chem., v. 260, no. 6, p. 3440-3450.
  39. Gebke, E., A. R. Muller, M. Jurzak, and R. Gerstberger, 1998, Angiotensin II-induced calcium signalling in neurons and astrocytes of rat circumventricular organs: Neuroscience, v. 85, no. 2, p. 509-520.
  40. Zhu, B., and J. Herbert, 1997, Angiotensin II interacts with nitric oxide-cyclic GMP pathway in the central control of drinking behaviour: mapping with c-fos and NADPH-diaphorase: Neuroscience, v. 79, no. 2, p. 543-553.
  41. Bock, M., J. Roth, M. J. Kluger, and E. Zeisberger, 1994, Antipyresis caused by stimulation of vasopressinergic neurons and intraseptal or systemic infusions of gamma-MSH: Am.J.Physiol., v. 266, no. 2 Pt 2, p. R614-R621.
  42. Bernardini, G. L., D. B. Richards, and J. M. Lipton, 1984, Antipyretic effect of centrally administered CRF: Peptides, v. 5, no. 1, p. 57-59.
  43. Lyudyno, V. I., I. N. Krasnova, M. P. Smirnova, and V. M. Klimenko, 2001, Antipyretic effect of neuropeptide galanin in endotoxin-induced fever: Bull.Exp.Biol.Med., v. 131, no. 1, p. 60-63.
  44. Masri, B., H. Lahlou, H. Mazarguil, B. Knibiehler, and Y. Audigier, 2002, Apelin (65-77) activates extracellular signal-regulated kinases via a PTX-sensitive G protein: Biochem.Biophys.Res.Commun., v. 290, no. 1, p. 539-545.
  45. Jia, Y.X.; Lu, Z.F.; Zhang, J.; Pan, C.S.; Yang, J.H.; Zhao, J.; Yu, F.; Duan, X.H.; Tang, C.S. and Qi,Y.F., Apelin activates L-arginine/nitric oxide synthase/nitric oxide pathway in rat aortas: Peptides, v. 28, no. 10, p. 2023-2029.
  46. Yoshimatsu, 2007, Apelin, an APJ receptor ligand, regulates body adiposity and favors the messenger ribonucleic acid expression of uncoupling proteins in mice: Endocrinology, v. 148, no. 6, p. 2690-2697.
  47. Xie, H.; Tang, S.Y.; Cui, R.R.; Huang, J.; Ren, X.H.; Yuan, L.Q.; Lu, Y.; Yang, M.; Zhou, H.D.; Wu, X.P.; Luo, X.H. and Liao, E.Y., 2006, Apelin and its receptor are expressed in human osteoblasts: Regul.Pept., v. 134, no. 2-3, p. 118-125.
  48. Raad, P. Valet, and C. Llorens-Cortes, 2011, Apelin and the proopiomelanocortin system: A new regulatory pathway of hypothalamic {alpha} -MSH release: Am.J.Physiol. Endocrinol.Metab. Nov; 301(5):E955-66.
  49. O'Donnell, L. A., A. Agrawal, P. Sabnekar, M. A. Dichter, D. R. Lynch, and D. L. Kolson, 2007, Apelin, an endogenous neuronal peptide, protects hippocampal neurons against excitotoxic injury: J.Neurochem., v. 102, no. 6, p. 1905-1917.
  50. Wang, G.; Anini, Y.; Wei, W.; Qi, X.; OCarroll, A.M.; Mochizuki, T.; Wang, H.Q.; Hellmich, M.R.; Englander, E.W. and Greeley, G.H.,Jr., 2004, Apelin, a new enteric peptide: localization in the gastrointestinal tract, ontogeny, and stimulation of gastric cell proliferation and of cholecystokinin secretion: Endocrinology, v. 145, no. 3, p. 1342-1348.
  51. Wang, C., J. F. Du, F. Wu, and H. C. Wang, 2008, Apelin decreases the SR Ca 2+ content but enhances the amplitude of [Ca 2+ ]i transient and contractions during twitches in isolated rat cardiac myocytes: Am.J.Physiol. Heart Circ.Physiol., v. 294, no. 6, p. H2540-H2546.
  52. Brailoiu, G. C., S. L. Dun, J. Yang, M. Ohsawa, J. K. Chang, and N. J. Dun, 2002, Apelin- immunoreactivity in the rat hypothalamus and pituitary: Neurosci.Lett., v. 327, no. 3, p. 193- 197.
  53. Akerman, and K. H. Herzig, 2005, Apelin, orexin-A and leptin plasma levels in morbid obesity and effect of gastric banding: Regul.Pept., v. 130, no. 1-2, p. 7-13.
  54. Tsao, R. L. Dalman, and T. Quertermous, 2009, Apelin prevents aortic aneurysm formation by inhibiting macrophage inflammation: Am.J.Physiol. Heart Circ.Physiol., v. 296, no. 5, p. H1329-H1335.
  55. Siddiquee, K., J. Hampton, S. Khan, D. Zadory, L. Gleaves, D. E. Vaughan, and L. H. Smith, 2011, Apelin protects against angiotensin II-induced cardiovascular fibrosis and decreases plasminogen activator inhibitor type-1 production: J.Hypertens., v. 29, no. 4, p. 724-731.
  56. Zeng, X. J., L. K. Zhang, H. X. Wang, L. Q. Lu, L. Q. Ma, and C. S. Tang, 2009, Apelin protects heart against ischemia/reperfusion injury in rat: Peptides, v. 30, no. 6, p. 1144-1152.
  57. Habata, Y.; Fujii, R.; Hosoya, M.; Fukusumi, S.; Kawamata, Y.; Hinuma, S.; Kitada, C.; Nishizawa, N.; Murosaki, S.; Kurokawa, T.; Onda, H.; Tatemoto, K. and Fujino, M., Apelin, the natural ligand of the orphan receptor APJ, is abundantly secreted in the colostrum: Biochim.Biophys.Acta, v. 1452, no. 1, p. 25-35.
  58. Szokodi, I.; Tavi, P.; Foldes, G.; Voutilainen-Myllyla, S.; Ilves, M.; Tokola, H.; Pikkarainen, S.; Piuhola, J.; Rysa, J.; Toth, M. and Ruskoaho, H., 2002, Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility: Circ.Res., v. 91, no. 5, p. 434-440.
  59. Yamamoto, T.; Habata, Y.; Matsumoto, Y.; Yasuhara, Y.; Hashimoto, T.; Hamajyo, H.; Anayama, H.; Fujii, R.; Fuse, H.; Shintani, Y. and Mori,M., 2011, Apelin-transgenic mice exhibit a resistance against diet-induced obesity by increasing vascular mass and mitochondrial biogenesis in skeletal muscle: Biochim.Biophys.Acta, v. 1810, no. 9, p. 853-862.
  60. O'Carroll, A. M., A. L. Don, and S. J. Lolait, 2003, APJ receptor mRNA expression in the rat hypothalamic paraventricular nucleus: regulation by stress and glucocorticoids: J.Neuroendocrinol., v. 15, no. 11, p. 1095-1101.
  61. Bradford, M. M., 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding: Anal.Biochem., v. 72, p. 248-254.
  62. Schmidt, H. H., H. Nau, W. Wittfoht, J. Gerlach, K. E. Prescher, M. M. Klein, F. Niroomand, and E. Bohme, 1988, Arginine is a physiological precursor of endothelium-derived nitric oxide: Eur.J.Pharmacol., v. 154, no. 2, p. 213-216.
  63. Porter, J. T., and K. D. McCarthy, 1997, Astrocytic neurotransmitter receptors in situ and in vivo: Prog.Neurobiol., v. 51, no. 4, p. 439-455.
  64. Jurzak, M., A. R. Muller, and R. Gerstberger, 1995, AVP-fragment peptides induce Ca2+ transients in cells cultured from rat circumventricular organs: Brain Res., v. 673, no. 2, p. 349-355.
  65. Jaszberenyi, M., E. Bujdoso, and G. Telegdy, 2004, Behavioral, neuroendocrine and thermoregulatory actions of apelin-13: Neuroscience, v. 129, no. 3, p. 811-816.
  66. Rowland, N. E., 1998, Brain mechanisms of mammalian fluid homeostasis: insights from use of immediate early gene mapping: Neurosci.Biobehav.Rev., v. 23, no. 1, p. 49-63.
  67. Kanosue, 2003, Brain regions expressing Fos during thermoregulatory behavior in rats: Am.J.Physiol. Regul.Integr.Comp. Physiol., v. 285, no. 5, p. R1116-R1123.
  68. Freeman, P. H., and P. J. Wellman, 1987, Brown adipose tissue thermogenesis induced by low level electrical stimulation of hypothalamus in rats: Brain Res.Bull., v. 18, no. 1, p. 7-11.
  69. Hollmann, M., M. Hartley, and S. Heinemann, 1991, Ca 2+ permeability of KA-AMPA--gated glutamate receptor channels depends on subunit composition: Science, v. 252, no. 5007, p. 851-853.
  70. Sudhof, T. C., 2011, Calcium Control of Neurotransmitter Release: Cold Spring Harb.Perspect.Biol.
  71. Burnashev, N., 1998, Calcium permeability of ligand-gated channels: Cell Calcium, v. 24, no. 5-6, p. 325-332.
  72. Boucher,J.; Masri,B.; Daviaud,D.; Gesta,S.; Guigne,C.; Mazzucotelli,A.; Castan-Laurell,I.; Tack,I.; Knibiehler,B.; Carpene,C.; Audigier,Y.; Saulnier-Blache,J.S. and Valet,P., 2005, Apelin, a newly identified adipokine up-regulated by insulin and obesity: Endocrinology, v. 146, no. 4, p. 1764-1771.
  73. Zhou, N., X. Fan, M. Mukhtar, J. Fang, C. A. Patel, G. C. DuBois, and R. J. Pomerantz, 2003, Cell-cell fusion and internalization of the CNS-based, HIV-1 co-receptor, APJ: Virology, v. 307, no. 1, p. 22-36.
  74. Kagiyama, S., M. Fukuhara, K. Matsumura, Y. Lin, K. Fujii, and M. Iida, 2005, Central and peripheral cardiovascular actions of apelin in conscious rats: Regul.Pept., v. 125, no. 1-3, p. 55-59.
  75. Kadekaro, M., and J. Y. Summy-Long, 2000, Centrally produced nitric oxide and the regulation of body fluid and blood pressure homeostases: Clin.Exp.Pharmacol.Physiol., v. 27, no. 5-6, p. 450-459.
  76. Herman, J. P., H. Figueiredo, N. K. Mueller, Y. Ulrich-Lai, M. M. Ostrander, D. C. Choi, and W. E. Cullinan, 2003, Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness: Front. Neuroendocrinol., v. 24, no. 3, p. 151-180.
  77. Morton, G. J., D. E. Cummings, D. G. Baskin, G. S. Barsh, and M. W. Schwartz, 2006, Central nervous system control of food intake and body weight: Nature, v. 443, no. 7109, p. 289-295.
  78. Morrison, S. F., and K. Nakamura, 2011, Central neural pathways for thermoregulation: Front Biosci., v. 16, p. 74-104.
  79. Givalois, L., S. Li, and G. Pelletier, 2002, Central nitric oxide regulation of the hypothalamic- pituitary-adrenocortical axis in adult male rats: Mol.Brain Res., v. 102, no. 1-2, p. 1-8.
  80. Kovacs, K. J., 1998, c-Fos as a transcription factor: a stressful (re)view from a functional map: Neurochem.Int., v. 33, no. 4, p. 287-297.
  81. Sharp, F. R., S. M. Sagar, K. Hicks, D. Lowenstein, and K. Hisanaga, 1991, C-fos mRNA, Fos, and Fos-related antigen induction by hypertonic saline and stress: J.Neurosci., v. 11, no. 8, p. 2321-2331.
  82. Ciriello, J., S. L. Hochstenbach, and L. Pastor Solano-Flores, 1996, Changes in NADPH diaphorase activity in forebrain structures of the laminae terminalis after chronic dehydration: Brain Res., v. 708, no. 1-2, p. 167-172.
  83. George, and B. F. O'Dowd, 2000, Characterization of apelin, the ligand for the APJ receptor: J.Neurochem., v. 74, no. 1, p. 34-41.
  84. Zaretskaia, M. V., D. V. Zaretsky, A. Shekhar, and J. A. DiMicco, 2002, Chemical stimulation of the dorsomedial hypothalamus evokes non-shivering thermogenesis in anesthetized rats: Brain Res., v. 928, no. 1-2, p. 113-125.
  85. Valle, A., N. Hoggard, A. C. Adams, P. Roca, and J. R. Speakman, 2008, Chronic central administration of apelin-13 over 10 days increases food intake, body weight, locomotor activity and body temperature in C57BL/6 mice: J.Neuroendocrinol., v. 20, no. 1, p. 79-84.
  86. Camacho A., and M.I. Phillips, 1987, Circumventricular Organs and Body Fluids: Boca Raton, FL, USA, CRC Press.
  87. Moon, M.J.; Oh, D.Y.; Moon, J.S.; Kim, D.K.; Hwang, J.I.; Lee, J.Y.; Kim, J.I.; Cho, S.; Kwon, H.B. and Seong, J.Y., 2007, Cloning and activation of the bullfrog apelin receptor: Gi/o coupling and high affinity for [Pro1]apelin-13: Mol.Cell. Endocrinol., v. 277, no. 1-2, p. 51-60.
  88. Sanchez, F., J. R. Alonso, R. Arevalo, E. Blanco, J. Aijon, and R. Vazquez, 1994, Coexistence of NADPH-diaphorase with vasopressin and oxytocin in the hypothalamic magnocellular neurosecretory nuclei of the rat: Cell Tissue Res., v. 276, no. 1, p. 31-34.
  89. Whitnall, M. H., E. Mezey, and H. Gainer, 1985, Co-localization of corticotropin-releasing factor and vasopressin in median eminence neurosecretory vesicles: Nature, v. 317, no. 6034, p. 248-250.
  90. Pittman, Q. J., H. W. Blume, and L. P. Renaud, 1981, Connections of the hypothalamic paraventricular nucleus with the neurohypophysis, median eminence, amygdala, lateral septum and midbrain periaqueductal gray: an electrophysiological study in the rat: Brain Res., v. 215, no. 1-2, p. 15-28.
  91. Yuste, R., and L. C. Katz, 1991, Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters: Neuron, v. 6, no. 3, p. 333-344.
  92. Tanious, F. A., J. M. Veal, H. Buczak, L. S. Ratmeyer, and W. D. Wilson, 1992, DAPI (4',6- diamidino-2-phenylindole) binds differently to DNA and RNA: minor-groove binding at AT sites and intercalation at AU sites: Biochemistry, v. 31, no. 12, p. 3103-3112.
  93. Frugiere, and C. Llorens-Cortes, 2011, Data supporting a new physiological role for brain apelin in the regulation of hypothalamic oxytocin neurons in lactating rats: Endocrinology, v. 152, no. 9, p. 3492-3503.
  94. Paton, 2011, Deep brain stimulation relieves refractory hypertension: Neurology, v. 76, no. 4, p. 405-407.
  95. Reaux-Le Goazigo A., A. Morinville, A. Burlet, C. Llorens-Cortes, and A. Beaudet, 2004, Dehydration-induced cross-regulation of apelin and vasopressin immunoreactivity levels in magnocellular hypothalamic neurons: Endocrinology, v. 145, no. 9, p. 4392-4400.
  96. Patronas, P., M. Horowitz, E. Simon, and R. Gerstberger, 1998, Differential stimulation of c- fos expression in hypothalamic nuclei of the rat brain during short-term heat acclimation and mild dehydration: Brain Res., v. 798, no. 1-2, p. 127-139.
  97. Gerstberger, R., Barth SW, Horowitz M, Hudl K, Patronas P, and Huebschle T, 2001, Differntial activation of nitregic hypothalamic neurons by heat exposure and dehydration., in M.Kosaka, T.Sugahara, K.L.Schmidt, and E.Simon eds., Thermotherapy for neoplasia, inflammation and pain.: Tokyo, Springer Press, p. 43-62.
  98. Clarke, K. J., K. W. Whitaker, and T. M. Reyes, 2009, Diminished metabolic responses to centrally-administered apelin-13 in diet-induced obese rats fed a high-fat diet: J.Neuroendocrinol., v. 21, no. 2, p. 83-89.
  99. Reaux, A., K. Gallatz, M. Palkovits, and C. Llorens-Cortes, 2002, Distribution of apelin- synthesizing neurons in the adult rat brain: Neuroscience, v. 113, no. 3, p. 653-662.
  100. Takayama, K., H. Iwazaki, M. Hirabayashi, K. Yakabi, and S. Ro, 2008, Distribution of c-Fos immunoreactive neurons in the brain after intraperitoneal injection of apelin-12 in Wistar rats: Neurosci.Lett., v. 431, no. 3, p. 247-250.
  101. Eyigor, O., A. Centers, and L. Jennes, 2001, Distribution of ionotropic glutamate receptor subunit mRNAs in the rat hypothalamus: J.Comp. Neurol., v. 434, no. 1, p. 101-124.
  102. O'Carroll, A. M., T. L. Selby, M. Palkovits, and S. J. Lolait, 2000, Distribution of mRNA encoding B78/apj, the rat homologue of the human APJ receptor, and its endogenous ligand apelin in brain and peripheral tissues: Biochim.Biophys.Acta, v. 1492, no. 1, p. 72-80.
  103. Hus-Citharel, A., N. Bouby, A. Frugiere, L. Bodineau, J. M. Gasc, and C. Llorens-Cortes, 2008, Effect of apelin on glomerular hemodynamic function in the rat kidney: Kidney Int., v. 74, no. 4, p. 486-494.
  104. McKinley, M. J., M. L. Mathai, G. Pennington, M. Rundgren, and L. Vivas, 1999, Effect of individual or combined ablation of the nuclear groups of the lamina terminalis on water drinking in sheep: Am.J.Physiol., v. 276, no. 3 Pt 2, p. R673-R683.
  105. Mitra, A., M. J. Katovich, A. Mecca, and N. E. Rowland, 2006, Effects of central and peripheral injections of apelin on fluid intake and cardiovascular parameters in rats: Physiol. Behav., v. 89, no. 2, p. 221-225.
  106. Nelson, R. J., 2005, Effects of nitric oxide on the HPA axis and aggression: Novartis.Found.Symp., v. 268, p. 147-160.
  107. Moga, M. M., R. P. Weis, and R. Y. Moore, 1995, Efferent projections of the paraventricular thalamic nucleus in the rat: J.Comp Neurol., v. 359, no. 2, p. 221-238.
  108. Kalsbeek, A., R. Teclemariam-Mesbah, and P. Pevet, 1993, Efferent projections of the suprachiasmatic nucleus in the golden hamster (Mesocricetus auratus): J.Comp. Neurol., v. 332, no. 3, p. 293-314.
  109. Gocmen, and T. Dogru, 2010, Elevated plasma levels of apelin in children with type 1 diabetes mellitus: J.Pediatr.Endocrinol.Metab, v. 23, no. 5, p. 497-502.
  110. Kleinz, M. J., and A. P. Davenport, 2005, Emerging roles of apelin in biology and medicine: Pharmacol.Ther., v. 107, no. 2, p. 198-211.
  111. Navarrete, M., and A. Araque, 2008, Endocannabinoids mediate neuron-astrocyte communication: Neuron, v. 57, no. 6, p. 883-893.
  112. Ceccatelli, S., J. M. Lundberg, J. Fahrenkrug, D. S. Bredt, S. H. Snyder, and T. Hökfelt, 1992, Evidence for involvement of nitric oxide in the regulation of hypothalamic portal blood flow: Neuroscience, v. 51, no. 4, p. 769-772.
  113. Puffer, B.A.; Sharron, M.; Coughlan, C.M.; Baribaud, F.; McManus, C.M.; Lee, B.; David,J.; Price, K.; Horuk, R.; Tsang, M. and Doms, R.W., 2000, Expression and coreceptor function of APJ for primate immunodeficiency viruses: Virology, v. 276, no. 2, p. 435-444.
  114. Ross, G., T. Hubschle, U. Pehl, H. A. Braun, K. Voigt, R. Gerstberger, and J. Roth, 2003, Fever induction by localized subcutaneous inflammation in guinea pigs: the role of cytokines and prostaglandins: J.Appl.Physiol., v. 94, no. 4, p. 1395-1402.
  115. Oldfield, B. J., E. Badoer, D. K. Hards, and M. J. McKinley, 1994, Fos production in retrogradely labelled neurons of the lamina terminalis following intravenous infusion of either hypertonic saline or angiotensin II: Neuroscience, v. 60, no. 1, p. 255-262.
  116. Hatzelmann T., Ott D., Gerstberger R., Functional analysis of apelin receptor protein APJ in the rat hypothalamic PVN and MnPO. In: 19. Symposium d. Fachgr. Physiol. und Bioch. der Dt. Veterinärmed. Gesell.; p. 76 Verlag DVG Service, Giessen
  117. Hatzelmann T., Ott D., Marks D., Gerstberger R., Functional expression of the apelin-12 receptor protein APJ in rat hypothalamic nuclei (PVN and MnPO) involved in body fluid homeostasis and temperature regulation. Acta Physiol. 195 (Suppl): 130
  118. Kolson, 2000, Functional expression of the seven-transmembrane HIV-1 co-receptor APJ in neural cells: J.Neurovirol., v. 6 Suppl 1, p. S61-S69.
  119. Hartley, D. M., M. C. Kurth, L. Bjerkness, J. H. Weiss, and D. W. Choi, 1993, Glutamate receptor-induced 45Ca 2+ accumulation in cortical cell culture correlates with subsequent neuronal degeneration: J.Neurosci., v. 13, no. 5, p. 1993-2000.
  120. Iremonger, K. J., A. M. Benediktsson, and J. S. Bains, 2010, Glutamatergic synaptic transmission in neuroendocrine cells: Basic principles and mechanisms of plasticity: Front. Neuroendocrinol., v. 31, no. 3, p. 296-306.
  121. O'Carroll, and S. J. Lolait, 2011, G protein-coupled receptors in the hypothalamic paraventricular and supraoptic nuclei -serpentine gateways to neuroendocrine homeostasis: Front. Neuroendocrinol.
  122. Porter, J. T., and K. D. McCarthy, 1996, Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals: J.Neurosci., v. 16, no. 16, p. 5073-5081.
  123. Vincent, S. R., and H. Kimura, 1992, Histochemical mapping of nitric oxide synthase in the rat brain: Neuroscience, v. 46, no. 4, p. 755-784.
  124. von Hirsch T., and J. Peiffer, 1955, [Histological methods in differential diagnosis of leukodystrophy from lipoidosis]: Arch.Psychiatr.Nervenkr.Z.Gesamte Neurol.Psychiatr., v. 194, no. 1, p. 88-104.
  125. Verbalis, J. G., 2007, How does the brain sense osmolality?: J.Am.Soc.Nephrol., v. 18, no. 12, p. 3056-3059.
  126. Overington, J. P., B. Al-Lazikani, and A. L. Hopkins, 2006, How many drug targets are there?: Nat.Rev.Drug Discov., v. 5, no. 12, p. 993-996.
  127. Vickers, C.; Hales, P.; Kaushik, V.; Dick, L.; Gavin, J.; Tang, J.; Godbout, K.; Parsons, T.; Baronas, E.; Hsieh, F.; Acton, S.; Patane, M.; Nichols, A. and Tummino, P., 2002, Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase: J.Biol.Chem., v. 277, no. 17, p. 14838-14843.
  128. Glyn, J. R., and J. M. Lipton, 1981, Hypothermic and antipyretic effects of centrally administered ACTH (1--24) and alpha-melanotropin: Peptides, v. 2, no. 2, p. 177-187.
  129. McKinley, M. J., D. K. Hards, and B. J. Oldfield, 1994, Identification of neural pathways activated in dehydrated rats by means of Fos-immunohistochemistry and neural tracing: Brain Res., v. 653, no. 1-2, p. 305-314.
  130. Fernandez, M., F. Sanchez-Franco, N. Palacios, I. Sanchez, C. Fernandez, and L. Cacicedo, 2004, IGF-I inhibits apoptosis through the activation of the phosphatidylinositol 3-kinase/Akt pathway in pituitary cells: J.Mol.Endocrinol., v. 33, no. 1, p. 155-163.
  131. Kleinz, M. J., J. N. Skepper, and A. P. Davenport, 2005, Immunocytochemical localisation of the apelin receptor, APJ, to human cardiomyocytes, vascular smooth muscle and endothelial cells: Regul.Pept., v. 126, no. 3, p. 233-240.
  132. Braun, P. E., F. Sandillon, A. Edwards, J. M. Matthieu, and A. Privat, 1988, Immunocytochemical localization by electron microscopy of 2'3'-cyclic nucleotide 3'- phosphodiesterase in developing oligodendrocytes of normal and mutant brain: J.Neurosci., v.
  133. Graeber, M. B., R. B. Banati, W. J. Streit, and G. W. Kreutzberg, 1989, Immunophenotypic characterization of rat brain macrophages in culture: Neurosci.Lett., v. 103, no. 3, p. 241-246.
  134. Kuba, K.; Zhang, L.; Imai, Y.; Arab, S.; Chen, M.; Maekawa, Y.; Leschnik, M.; Leibbrandt, A.; Markovic, M.; Schwaighofer, J.; Beetz, N.; Musialek, R.; Neely, G.G.; Komnenovic, V.; Kolm, U.; Metzler, B.; Ricci, R.; Hara, H.; Meixner, A.; Nghiem, M.; Chen, X.; Dawood, F.; Wong, K.M.; Sarao, R.; Cukerman, E.; Kimura, A.; Hein, L.; Thalhammer, J.; Liu, P.P.; and Penninger, J.M., 2007, Impaired heart contractility in Apelin gene-deficient mice associated with aging and pressure overload: Circ.Res., v. 101, no. 4, p. e32-e42.
  135. Herdegen, T., and J. D. Leah, 1998, Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins: Brain Res.Rev., v. 28, no. 3, p. 370-490.
  136. Scammell, T. E., J. K. Elmquist, and C. B. Saper, 1996, Inhibition of nitric oxide synthase produces hypothermia and depresses lipopolysaccharide fever: Am.J.Physiol., v. 271, no. 2 Pt 2, p. R333-R338.
  137. O'Shea, M., M. J. Hansen, K. Tatemoto, and M. J. Morris, 2003, Inhibitory effect of apelin-12 on nocturnal food intake in the rat: Nutr.Neurosci., v. 6, no. 3, p. 163-167.
  138. McKinley, M. J., A. M. Allen, P. Burns, L. M. Colvill, and B. J. Oldfield, 1998, Interaction of circulating hormones with the brain: the roles of the subfornical organ and the organum vasculosum of the lamina terminalis: Clin.Exp.Pharmacol.Physiol. Suppl., v. 25, p. S61-S67.
  139. Gurzu, B., B. C. Petrescu, M. Costuleanu, and G. Petrescu, 2006, Interactions between apelin and angiotensin II on rat portal vein: J.Renin.Angiotensin.Aldosterone.Syst., v. 7, no. 4, p. 212-216.
  140. Kapuscinski, J., 1990, Interactions of nucleic acids with fluorescent dyes: spectral properties of condensed complexes: J.Histochem.Cytochem., v. 38, no. 9, p. 1323-1329.
  141. Simon, E., 2000, Interface Properties of Circumventricular Organs in Salt and Fluid Balance: News Physiol. Sci., v. 15, p. 61-67.
  142. Pitkin, S. L., J. J. Maguire, T. I. Bonner, and A. P. Davenport, 2010, International Union of Basic and Clinical Pharmacology. LXXIV. Apelin receptor nomenclature, distribution, pharmacology, and function: Pharmacol.Rev., v. 62, no. 3, p. 331-342.
  143. Rivier, C., and G. H. Shen, 1994, In the rat, endogenous nitric oxide modulates the response of the hypothalamic-pituitary-adrenal axis to interleukin-1 beta, vasopressin, and oxytocin: J.Neurosci., v. 14, no. 4, p. 1985-1993.
  144. Sunter, D., A. K. Hewson, and S. L. Dickson, 2003, Intracerebroventricular injection of apelin-13 reduces food intake in the rat: Neurosci.Lett., v. 353, no. 1, p. 1-4.
  145. Oldfield, B. J., R. J. Bicknell, R. M. McAllen, R. S. Weisinger, and M. J. McKinley, 1991a, Intravenous hypertonic saline induces Fos immunoreactivity in neurons throughout the lamina terminalis: Brain Res., v. 561, no. 1, p. 151-156.
  146. Chang, T. L., and Y. P. Loh, 1984, In vitro processing of proopiocortin by membrane- associated and soluble converting enzyme activities from rat intermediate lobe secretory granules: Endocrinology, v. 114, no. 6, p. 2092-2099.
  147. Travis, K. A., and A. K. Johnson, 1993, In vitro sensitivity of median preoptic neurons to angiotensin II, osmotic pressure, and temperature: Am.J.Physiol., v. 264, no. 6 Pt 2, p. R1200- R1205.
  148. Sheikh, A.Y.; Chun, H.J.; Glassford, A.J.; Kundu, R.K.; Kutschka, I.; Ardigo, D.; Hendry, S.L.; Wagner, R.A.; Chen, M.M.; Ali, Z.A.; Yue, P.; Huynh, D.T.; Connolly, A.J.; Pelletier, M.P.; Tsao, P.S.; Robbins, R.C. and Quertermous, T., 2008, In vivo genetic profiling and cellular localization of apelin reveals a hypoxia-sensitive, endothelial-centered pathway activated in ischemic heart failure: Am.J.Physiol. Heart Circ.Physiol., v. 294, no. 1, p. H88- H98.
  149. Yamaguchi, K., and T. Yamada, 2006, Involvement of anteroventral third ventricular AMPA/kainate receptors in both hyperosmotic and hypovolemic AVP secretion in conscious rats: Brain Res.Bull., v. 71, no. 1-3, p. 183-192.
  150. Pumain, R., I. Kurcewicz, and J. Louvel, 1987, Ionic changes induced by excitatory amino acids in the rat cerebral cortex: Can.J.Physiol. Pharmacol., v. 65, no. 5, p. 1067-1077.
  151. Tatemoto, K.; Hosoya, M.; Habata, Y.; Fujii, R.; Kakegawa, T.; Zou, M.X.; Kawamata, Y.; Fukusumi, S.; Hinuma, S.; Kitada, C.; Kurokawa, T.; Onda, H. and Fujino, M., 1998, Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor: Biochem.Biophys.Res.Commun., v. 251, no. 2, p. 471-476.
  152. Tohyama, M., Takatsuji, K., and Katsuji, K., 1998, M.Tohyama, K.Takatsuji, and K.Katsuji Atlas of Neuroactive Substances and Their Receptors in the Rat: Oxford University Press. 1 st Edition.
  153. Bernstein, 2001, Lack of neuronal NOS has consequences for the expression of POMC and POMC-derived peptides in the mouse pituitary: Acta Histochem., v. 103, no. 4, p. 397-412.
  154. Bredt, D. S., P. M. Hwang, and S. H. Snyder, 1990, Localization of nitric oxide synthase indicating a neural role for nitric oxide: Nature, v. 347, no. 6295, p. 768-770.
  155. Moore, R. Y., and V. B. Eichler, 1972, Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat: Brain Res., v. 42, no. 1, p. 201-206.
  156. Tsien, R. Y., T. J. Rink, and M. Poenie, 1985, Measurement of cytosolic free Ca2+ in individual small cells using fluorescence microscopy with dual excitation wavelengths: Cell Calcium, v. 6, no. 1-2, p. 145-157.
  157. Oldfield, B. J., R. R. Miselis, and M. J. McKinley, 1991b, Median preoptic nucleus projections to vasopressin-containing neurones of the supraoptic nucleus in sheep. A light and electron microscopic study: Brain Res., v. 542, no. 2, p. 193-200.
  158. Stal'nenko, E. S., N. A. Kurchenko, and N. S. Sukachev, 1969, [Method of measuring arterial pressure in rats in chronic experiment]: Biull.Eksp.Biol.Med., v. 68, no. 7, p. 124-125.
  159. Hindmarch, C., M. Fry, S. T. Yao, P. M. Smith, D. Murphy, and A. V. Ferguson, 2008, Microarray analysis of the transcriptome of the subfornical organ in the rat: regulation by fluid and food deprivation: Am.J.Physiol. Regul.Integr.Comp Physiol., v. 295, no. 6, p. R1914-R1920.
  160. Lee, D. K., V. R. Saldivia, T. Nguyen, R. Cheng, S. R. George, and B. F. O'Dowd, 2005, Modification of the terminal residue of apelin-13 antagonizes its hypotensive action: Endocrinology, v. 146, no. 1, p. 231-236.
  161. Kombian, S. B., M. Hirasawa, D. Mouginot, and Q. J. Pittman, 2002, Modulation of synaptic transmission by oxytocin and vasopressin in the supraoptic nucleus: Prog.Brain Res., v. 139, p. 235-246.
  162. Hosoya, M.; Kawamata, Y.; Fukusumi, S.; Fujii, R.; Habata, Y.; Hinuma, S.; Kitada, C.; Honda, S.; Kurokawa, T.; Onda, H.; Nishimura, O. and Fujino, M., 2000, Molecular and functional characteristics of APJ. Tissue distribution of mRNA and interaction with the endogenous ligand apelin: J.Biol.Chem., v. 275, no. 28, p. 21061-21067.
  163. Knepper, M. A., 1997, Molecular physiology of urinary concentrating mechanism: regulation of aquaporin water channels by vasopressin: Am.J.Physiol., v. 272, no. 1 Pt 2, p. F3-F12.
  164. Kawamata, Y.; Habata, Y.; Fukusumi, S.; Hosoya, M.; Fujii, R.; Hinuma, S.; Nishizawa, N.; Kitada, C.; Onda, H.; Nishimura, O. and Fujino, M., 2001, Molecular properties of apelin: tissue distribution and receptor binding: Biochim.Biophys.Acta, v. 1538, no. 2-3, p. 162-171.
  165. Ulrich-Lai, Y. M., and J. P. Herman, 2009, Neural regulation of endocrine and autonomic stress responses: Nat.Rev.Neurosci., v. 10, no. 6, p. 397-409.
  166. Bhatnagar, S., and M. F. Dallman, 1998, Neuroanatomical basis for facilitation of hypothalamic-pituitary-adrenal responses to a novel stressor after chronic stress: Neuroscience, v. 84, no. 4, p. 1025-1039.
  167. Pyner, S., 2009, Neurochemistry of the paraventricular nucleus of the hypothalamus: implications for cardiovascular regulation: J.Chem.Neuroanat., v. 38, no. 3, p. 197-208.
  168. Herman, J. P., and W. E. Cullinan, 1997, Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis: Trends Neurosci., v. 20, no. 2, p. 78-84.
  169. Ventura, R. R., A. Giusti-Paiva, D. A. Gomes, L. L. Elias, and J. Antunes-Rodrigues, 2005, Neuronal nitric oxide synthase inhibition differentially affects oxytocin and vasopressin secretion in salt loaded rats: Neurosci.Lett., v. 379, no. 2, p. 75-80.
  170. Ott, D., J. Murgott, S. Rafalzik, F. Wuchert, B. Schmalenbeck, J. Roth, and R. Gerstberger, 2010, Neurons and glial cells of the rat organum vasculosum laminae terminalis directly respond to lipopolysaccharide and pyrogenic cytokines: Brain Res., v. 1363, p. 93-106.
  171. Moga, M. M., and C. B. Saper, 1994, Neuropeptide-immunoreactive neurons projecting to the paraventricular hypothalamic nucleus in the rat: J.Comp. Neurol., v. 346, no. 1, p. 137-150.
  172. Zeng, X. J., S. P. Yu, L. Zhang, and L. Wei, 2010, Neuroprotective effect of the endogenous neural peptide apelin in cultured mouse cortical neurons: Exp.Cell Res., v. 316, no. 11, p. 1773-1783.
  173. Ferguson, 1994, Nitric oxide actions in paraventricular nucleus: cardiovascular and neurochemical implications: Am.J.Physiol., v. 266, no. 1 Pt 2, p. R306-R313.
  174. Gerstberger, R., 1999, Nitric oxide and body temperature control: News Physiol. Sci., v. 14, p. 30-36.
  175. Riediger, T., P. Giannini, E. Erguven, and T. Lutz, 2006, Nitric oxide directly inhibits ghrelin- activated neurons of the arcuate nucleus: Brain Res., v. 1125, no. 1, p. 37-45.
  176. Mathai, M. L., H. Hjelmqvist, R. Keil, and R. Gerstberger, 1997, Nitric oxide increases cutaneous and respiratory heat dissipation in conscious rabbits: Am.J.Physiol., v. 272, no. 6 Pt 2, p. R1691-R1697.
  177. Kadekaro, M., 2004, Nitric oxide modulation of the hypothalamo-neurohypophyseal system: Braz.J.Med.Biol.Res., v. 37, no. 4, p. 441-450.
  178. Hirst, D. G., and T. Robson, 2011, Nitric oxide physiology and pathology: Methods Mol.Biol., v. 704, p. 1-13.
  179. Steinert, J. R., T. Chernova, and I. D. Forsythe, 2010, Nitric oxide signaling in brain function, dysfunction, and dementia: Neuroscientist., v. 16, no. 4, p. 435-452.
  180. Hatakeyama, S., Y. Kawai, T. Ueyama, and E. Senba, 1996, Nitric oxide synthase-containing magnocellular neurons of the rat hypothalamus synthesize oxytocin and vasopressin and express Fos following stress stimuli: J.Chem.Neuroanat., v. 11, no. 4, p. 243-256.
  181. Villar, M. J., S. Ceccatelli, M. Ronnqvist, and T. Hökfelt, 1994, Nitric oxide synthase increases in hypothalamic magnocellular neurons after salt loading in the rat. An immunohistochemical and in situ hybridization study: Brain Res., v. 644, no. 2, p. 273-281.
  182. Zhang, K., W. G. Mayhan, and K. P. Patel, 1997, Nitric oxide within the paraventricular nucleus mediates changes in renal sympathetic nerve activity: Am.J.Physiol., v. 273, no. 3 Pt 2, p. R864-R872.
  183. Kurose, T., Y. Ueta, M. Nomura, K. Yamaguchi, and S. Nagata, 2001, Nociceptive stimulation increases NO synthase mRNA and vasopressin heteronuclear RNA in the rat paraventricular nucleus: Auton.Neurosci., v. 88, no. 1-2, p. 52-60.
  184. Inagami, and T. Senbonmatsu, 2011, Non-activated APJ suppresses the angiotensin II type 1 receptor, whereas apelin-activated APJ acts conversely: Hypertens.Res., v. 34, no. 6, p. 701- 706.
  185. Chen, M.M.; Ashley, E.A.; Deng, D.X.; Tsalenko, A.; Deng, A.; Tabibiazar, R.; Ben-Dor, A.; Fenster, B.; Yang, E.; King, J.Y.; Fowler, M.; Robbins, R.; Johnson, F.L.; Bruhn, L.; McDonagh, T.; Dargie, H.; Yakhini, Z.; Tsao, P.S. and Quertermous, T., 2003, Novel role for the potent endogenous inotrope apelin in human cardiac dysfunction: Circulation, v. 108, no. 12, p. 1432-1439.
  186. Zhang, W., N. Zhang, T. Sakurai, and T. Kuwaki, 2009, Orexin neurons in the hypothalamus mediate cardiorespiratory responses induced by disinhibition of the amygdala and bed nucleus of the stria terminalis: Brain Res., v. 1262, p. 25-37.
  187. Thompson, R. H., N. S. Canteras, and L. W. Swanson, 1996, Organization of projections from the dorsomedial nucleus of the hypothalamus: a PHA-L study in the rat: J.Comp. Neurol., v. 376, no. 1, p. 143-173.
  188. Naylor, A. M., W. D. Ruwe, A. F. Kohut, and W. L. Veale, 1985, Perfusion of vasopressin within the ventral septum of the rabbit suppresses endotoxin fever: Brain Res.Bull., v. 15, no. 2, p. 209-213.
  189. Medhurst, A.D.; Jennings, C.A.; Robbins, M.J.; Davis, R.P.; Ellis, C.; Winborn, K.Y.; Lawrie, K.W.; Hervieu, G.; Riley, G.; Bolaky, J.E.; Herrity, N.C.; Murdock, P. and Darker, J.G., 2003, Pharmacological and immunohistochemical characterization of the APJ receptor and its endogenous ligand apelin: J.Neurochem., v. 84, no. 5, p. 1162-1172.
  190. Reaux, A., M. N. De, I. Skultetyova, Z. Lenkei, M. S. El, K. Gallatz, P. Corvol, M. Palkovits, and C. Llorens-Cortes, 2001, Physiological role of a novel neuropeptide, apelin, and its receptor in the rat brain: J.Neurochem., v. 77, no. 4, p. 1085-1096.
  191. Koch, B., and B. Lutz-Bucher, 1992, Pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates cyclic AMP formation as well as peptide output of cultured pituitary melanotrophs and AtT-20 corticotrophs: Regul.Pept., v. 38, no. 1, p. 45-53.
  192. Jurzak, M., A. R. Müller, H. A. Schmid, and R. Gerstberger, 1994, Primary culture of circumventricular organs from the rat brain lamina terminalis: Brain Res., v. 662, no. 1-2, p. 198-208.
  193. Perea, G., and A. Araque, 2005, Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes: J.Neurosci., v. 25, no. 9, p. 2192-2203.
  194. Volterra, 1998, Prostaglandins stimulate calcium-dependent glutamate release in astrocytes: Nature, v. 391, no. 6664, p. 281-285.
  195. Hitzel, N, D Ott, J Murgott, J Roth, R Gerstberger. Purinoceptor mediated signaling in neuronal and glial cells of the rat hypothalamic median preoptic nucleus. LBH: Proceedings 18.Tagung der DVG Fachgruppe Physiologie and Biochemie . 2007. Conference Proceeding Hoffman, T. L., E. B. Stephens, O. Narayan, and R. W. Doms, 1998, HIV type I envelope determinants for use of the CCR2b, CCR3, STRL33, and APJ coreceptors: Proc.Natl.Acad.Sci.U.S.A, v. 95, no. 19, p. 11360-11365.
  196. Maguire, J. J., M. J. Kleinz, S. L. Pitkin, and A. P. Davenport, 2009, [Pyr1]apelin-13 identified as the predominant apelin isoform in the human heart: vasoactive mechanisms and inotropic action in disease: Hypertension, v. 54, no. 3, p. 598-604.
  197. Mosmann, T., 1983, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays: J.Immunol.Methods, v. 65, no. 1-2, p. 55-63.
  198. Wuchert, F., D. Ott, J. Murgott, S. Rafalzik, N. Hitzel, J. Roth, and R. Gerstberger, 2008, Rat area postrema microglial cells act as sensors for the toll-like receptor-4 agonist lipopolysaccharide: J.Neuroimmunol., v. 204, no. 1-2, p. 66-74.
  199. Herbert, J., M. L. Forsling, S. R. Howes, P. M. Stacey, and H. M. Shiers, 1992, Regional expression of c-fos antigen in the basal forebrain following intraventricular infusions of angiotensin and its modulation by drinking either water or saline: Neuroscience, v. 51, no. 4, p. 867-882.
  200. Thrasher, T. N., and L. C. Keil, 1987, Regulation of drinking and vasopressin secretion: role of organum vasculosum laminae terminalis: Am.J.Physiol., v. 253, no. 1 Pt 2, p. R108-R120.
  201. Ishida, J.; Hashimoto, T.; Hashimoto, Y.; Nishiwaki, S.; Iguchi, T.; Harada, S.; Sugaya, T.; Matsuzaki, H.; Yamamoto, R.; Shiota, N.; Okunishi, H.; Kihara, M.; Umemura, S.; Sugiyama, F.; Yagami, K.; Kasuya, Y.; Mochizuki, N. and Fukamizu, A., 2004, Regulatory roles for APJ, a seven-transmembrane receptor related to angiotensin-type 1 receptor in blood pressure in vivo: J.Biol.Chem., v. 279, no. 25, p. 26274-26279.
  202. Geiger, J. R., T. Melcher, D. S. Koh, B. Sakmann, P. H. Seeburg, P. Jonas, and H. Monyer, 1995, Relative abundance of subunit mRNAs determines gating and Ca 2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS: Neuron, v. 15, no. 1, p. 193-204.
  203. Landgraf, R., T. Malkinson, T. Horn, W. L. Veale, K. Lederis, and Q. J. Pittman, 1990, Release of vasopressin and oxytocin by paraventricular stimulation in rats: Am.J.Physiol., v. 258, no. 1 Pt 2, p. R155-R159.
  204. Kasai, A.; Shintani, N.; Kato, H.; Matsuda, S.; Gomi, F.; Haba, R.; Hashimoto, H.; Kakuda, M.; Tano, Y. and Baba, A., 2008, Retardation of retinal vascular development in apelin- deficient mice: Arterioscler.Thromb.Vasc.Biol., v. 28, no. 10, p. 1717-1722.
  205. Manukhina, E. B., H. F. Downey, and R. T. Mallet, 2006, Role of nitric oxide in cardiovascular adaptation to intermittent hypoxia: Exp.Biol.Med.(Maywood.), v. 231, no. 4, p. 343-365.
  206. Fantuzzi, G., S. E. Di, S. Sacco, F. Benigni, and P. Ghezzi, 1995, Role of the hypothalamus- pituitary-adrenal axis in the regulation of TNF production in mice. Effect of stress and inhibition of endogenous glucocorticoids: J.Immunol., v. 155, no. 7, p. 3552-3555.
  207. Wheeler, D. B., A. Randall, and R. W. Tsien, 1994, Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission: Science, v. 264, no. 5155, p. 107- 111.
  208. Jackson, S., and P. J. Lowry, 1983, Secretion of pro-opiocortin peptides from isolated perfused rat pars intermedia cells: Neuroendocrinology, v. 37, no. 4, p. 248-257.
  209. Johnson, A. K., and P. M. Gross, 1993, Sensory circumventricular organs and brain homeostatic pathways: FASEB J., v. 7, no. 8, p. 678-686.
  210. Pirkmajer, S., and A. V. Chibalin, 2011, Serum starvation: caveat emptor: Am.J.Physiol. Cell Physiol., v. 301, no. 2, p. C272-C279.
  211. Hines, M., L. S. Allen, and R. A. Gorski, 1992, Sex differences in subregions of the medial nucleus of the amygdala and the bed nucleus of the stria terminalis of the rat: Brain Res., v. 579, no. 2, p. 321-326.
  212. Roth, J., E. M. Harre, C. Rummel, R. Gerstberger, and T. Hubschle, 2004, Signaling the brain in systemic inflammation: role of sensory circumventricular organs: Front Biosci., v. 9, p. 290-300.
  213. Tanabe, Y., A. Nomura, M. Masu, R. Shigemoto, N. Mizuno, and S. Nakanishi, 1993, Signal transduction, pharmacological properties, and expression patterns of two rat metabotropic glutamate receptors, mGluR3 and mGluR4: J.Neurosci., v. 13, no. 4, p. 1372-1378.
  214. Chrousos, G. P., 2009, Stress and disorders of the stress system: Nat.Rev.Endocrinol., v. 5, no. 7, p. 374-381.
  215. Fan, X., N. Zhou, X. Zhang, M. Mukhtar, Z. Lu, J. Fang, G. C. DuBois, and R. J. Pomerantz, 2003, Structural and functional study of the apelin-13 peptide, an endogenous ligand of the HIV-1 coreceptor, APJ: Biochemistry, v. 42, no. 34, p. 10163-10168.
  216. Xu, N., H. Wang, L. Fan, and Q. Chen, 2009, Supraspinal administration of apelin-13 induces antinociception via the opioid receptor in mice: Peptides, v. 30, no. 6, p. 1153-1157.
  217. Mains, R. E., and B. A. Eipper, 1979, Synthesis and secretion of corticotropins, melanotropins, and endorphins by rat intermediate pituitary cells: J.Biol.Chem., v. 254, no. 16, p. 7885-7894.
  218. Brownstein, M. J., J. T. Russell, and H. Gainer, 1980, Synthesis, transport, and release of posterior pituitary hormones: Science, v. 207, no. 4429, p. 373-378.
  219. Swanson, L. W., 2003, The amygdala and its place in the cerebral hemisphere: Ann.N.Y.Acad.Sci., v. 985, p. 174-184.
  220. Herman, 2008, The anteroventral bed nucleus of the stria terminalis differentially regulates hypothalamic-pituitary-adrenocortical axis responses to acute and chronic stress: Endocrinology, v. 149, no. 2, p. 818-826.
  221. Marson, O., C. L. Chernicky, K. L. Barnes, D. I. Diz, R. M. Slugg, and C. M. Ferrario, 1985, The anteroventral third ventricle region. Participation in the regulation of blood pressure in conscious dogs: Hypertension, v. 7, no. 3 Pt 2, p. I80-I87.
  222. Berridge M., An S.Tan, Kathy D.McCoy, and Rui Wang, 1996, The Biochemical and Cellular Basis of Cell Proliferation Assays that Use Tetrazolium Salts: Biochemica, v. 4, no. 4-96, p. 14-19.
  223. Chen, H. S., and S. A. Lipton, 2006, The chemical biology of clinically tolerated NMDA receptor antagonists: J.Neurochem., v. 97, no. 6, p. 1611-1626.
  224. Silverman, A. J., D. L. Hoffman, and E. A. Zimmerman, 1981, The descending afferent connections of the paraventricular nucleus of the hypothalamus (PVN): Brain Res.Bull., v. 6, no. 1, p. 47-61.
  225. Scalia, F., and S. S. Winans, 1975, The differential projections of the olfactory bulb and accessory olfactory bulb in mammals: J.Comp. Neurol., v. 161, no. 1, p. 31-55.
  226. Bellinger, L. L., and L. L. Bernardis, 2002, The dorsomedial hypothalamic nucleus and its role in ingestive behavior and body weight regulation: lessons learned from lesioning studies: Physiol. Behav., v. 76, no. 3, p. 431-442.
  227. Newson, M. J., E. M. Roberts, G. R. Pope, S. J. Lolait, and A. M. O'Carroll, 2009, The effects of apelin on hypothalamic-pituitary-adrenal axis neuroendocrine function are mediated through corticotrophin-releasing factor-and vasopressin-dependent mechanisms: J.Endocrinol., v. 202, no. 1, p. 123-129.
  228. Tobin, V. A., P. M. Bull, S. Arunachalam, A. M. O'Carroll, Y. Ueta, and M. Ludwig, 2008, The effects of apelin on the electrical activity of hypothalamic magnocellular vasopressin and oxytocin neurons and somatodendritic peptide release: Endocrinology, v. 149, no. 12, p. 6136-6145.
  229. Taheri, S.; Murphy, K.; Cohen, M.; Sujkovic, E.; Kennedy, A.; Dhillo, W.; Dakin, C.; Sajedi, A.; Ghatei, M. and Bloom,S., 2002, The effects of centrally administered apelin-13 on food intake, water intake and pituitary hormone release in rats: Biochem.Biophys.Res.Commun., v. 291, no. 5, p. 1208-1212.
  230. McKinley, M. J., A. M. Allen, S. Y. Chai, D. K. Hards, F. A. Mendelsohn, and B. J. Oldfield, 1989, The lamina terminalis and its neural connections: neural circuitry involved in angiotensin action and fluid and electrolyte homeostasis: Acta Physiol. Scand.Suppl., v. 583, p. 113-118.
  231. Chavis, P., H. Shinozaki, J. Bockaert, and L. Fagni, 1994, The metabotropic glutamate receptor types 2/3 inhibit L-type calcium channels via a pertussis toxin-sensitive G-protein in cultured cerebellar granule cells: J.Neurosci., v. 14, no. 11 Pt 2, p. 7067-7076.
  232. Tatemoto, K., K. Takayama, M. X. Zou, I. Kumaki, W. Zhang, K. Kumano, and M. Fujimiya, 2001, The novel peptide apelin lowers blood pressure via a nitric oxide-dependent mechanism: Regul.Pept., v. 99, no. 2-3, p. 87-92.
  233. Furchgott, R. F., and J. V. Zawadzki, 1980, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine: Nature, v. 288, no. 5789, p. 373-376.
  234. Sawchenko, P. E., and L. W. Swanson, 1983, The organization of forebrain afferents to the paraventricular and supraoptic nuclei of the rat: J.Comp. Neurol., v. 218, no. 2, p. 121-144.
  235. Bhatnagar, S., and M. F. Dallman, 1999, The paraventricular nucleus of the thalamus alters rhythms in core temperature and energy balance in a state-dependent manner: Brain Res., v. 851, no. 1-2, p. 66-75.
  236. Kopp, M. D., H. Meissl, F. Dehghani, and H. W. Korf, 2001, The pituitary adenylate cyclase- activating polypeptide modulates glutamatergic calcium signalling: investigations on rat suprachiasmatic nucleus neurons: J.Neurochem., v. 79, no. 1, p. 161-171.
  237. ter Horst, G. J., and P. G. Luiten, 1986, The projections of the dorsomedial hypothalamic nucleus in the rat: Brain Res.Bull., v. 16, no. 2, p. 231-248.
  238. Paxinos, G. and Watson, C.,2005, The rat brain in stereotaxic coordinates-the new coronal set: Elsevier Academic Press. 5 th Edition
  239. Tollner, B., J. Roth, B. Storr, D. Martin, K. Voigt, and E. Zeisberger, 2000, The role of tumor necrosis factor (TNF) in the febrile and metabolic responses of rats to intraperitoneal injection of a high dose of lipopolysaccharide: Pflugers Arch., v. 440, no. 6, p. 925-932.
  240. Wuchert, F., D. Ott, S. Rafalzik, J. Roth, and R. Gerstberger, 2009, Tumor necrosis factor- alpha, interleukin-1beta and nitric oxide induce calcium transients in distinct populations of cells cultured from the rat area postrema: J.Neuroimmunol., v. 206, no. 1-2, p. 44-51.
  241. Plata-Salaman, C. R., Y. Oomura, and Y. Kai, 1988, Tumor necrosis factor and interleukin-1 beta: suppression of food intake by direct action in the central nervous system: Brain Res., v. 448, no. 1, p. 106-114.
  242. Fazekas de St.Groth, S., R. G. Webster, and A. Datyner, 1963, Two new staining procedures for quantitative estimation of proteins on electrophoretic strips: Biochim.Biophys.Acta, v. 71, p. 377-391.
  243. Palmer, R. M., D. S. Ashton, and S. Moncada, 1988, Vascular endothelial cells synthesize nitric oxide from L-arginine: Nature, v. 333, no. 6174, p. 664-666.
  244. Swanson, L. W., and G. D. Petrovich, 1998, What is the amygdala?: Trends Neurosci., v. 21, no. 8, p. 323-331.
  245. Sorhede, W. M., C. Magnusson, and B. Ahren, 2005, The apj receptor is expressed in pancreatic islets and its ligand, apelin, inhibits insulin secretion in mice: Regul.Pept., v. 131, no. 1-3, p. 12-17.
  246. Hitzel, N., 2009, Charakterisierung ionotroper purinerger Rezeptoren im Nucleus medianus praeopticus des anterioren Hypothalamus der Ratte. Dissertation, Univ. Giessen
  247. Srisawat, R., V. R. Bishop, P. M. Bull, A. J. Douglas, J. A. Russell, M. Ludwig, and G. Leng, 2004, Regulation of neuronal nitric oxide synthase mRNA expression in the rat magnocellular neurosecretory system: Neurosci.Lett., v. 369, no. 3, p. 191-196.
  248. Cabou, C., P. D. Cani, G. Campistron, C. Knauf, C. Mathieu, C. Sartori, J. Amar, U. Scherrer, and R. Burcelin, 2007, Central insulin regulates heart rate and arterial blood flow: an endothelial nitric oxide synthase-dependent mechanism altered during diabetes: Diabetes, v. 56, no. 12, p. 2872-2877.
  249. Reaux-Le, G. A., R. vear-Perez, P. Zizzari, J. Epelbaum, M. T. Bluet-Pajot, and C. Llorens- Cortes, 2007, Cellular localization of apelin and its receptor in the anterior pituitary: evidence for a direct stimulatory action of apelin on ACTH release: Am.J.Physiol. Endocrinol.Metab, v. 292, no. 1, p. E7-E15.
  250. Masri, B., N. Morin, M. Cornu, B. Knibiehler, and Y. Audigier, 2004, Apelin (65-77) activates p70 S6 kinase and is mitogenic for umbilical endothelial cells: FASEB J., v. 18, no. 15, p. 1909-1911.
  251. Burnashev, N., A. Villarroel, and B. Sakmann, 1996, Dimensions and ion selectivity of recombinant AMPA and kainate receptor channels and their dependence on Q/R site residues: J.Physiol., v. 496 Pt 1, p. 165-173.
  252. Green N.M., 1963, Avidin. 3. The nature of the biotin-binding site: Biochem.J., v. 89, p. 599- 609.
  253. Roberts-Thomson, P. J., and K. Shepherd, 1990, Molecular size heterogeneity of immunoglobulins in health and disease: Clin.Exp.Immunol., v. 79, no. 3, p. 328-334.
  254. Katugampola, S. D., J. J. Maguire, S. R. Matthewson, and A. P. Davenport, 2001, [(125)I]- (Pyr(1))Apelin-13 is a novel radioligand for localizing the APJ orphan receptor in human and rat tissues with evidence for a vasoconstrictor role in man: Br.J.Pharmacol., v. 132, no. 6, p. 1255-1260.
  255. Hashimoto, T.; Kihara, M.; Imai, N.; Yoshida, S.; Shimoyamada, H.; Yasuzaki, H.; Ishida, J.; Toya, Y.; Kiuchi, Y.; Hirawa, N.; Tamura, K.; Yazawa, T.; Kitamura, H.; Fukamizu, A. and Umemura, S., Requirement of apelin-apelin receptor system for oxidative stress-linked atherosclerosis: Am.J.Pathol., v. 171, no. 5, p. 1705-1712.
  256. Malgaroli, A., D. Milani, J. Meldolesi, and T. Pozzan, 1987, Fura-2 measurement of cytosolic free Ca2+ in monolayers and suspensions of various types of animal cells: J.Cell Biol., v. 105, no. 5, p. 2145-2155.
  257. Gao, X. B., and A. N. van den Pol, 2001, Melanin concentrating hormone depresses synaptic activity of glutamate and GABA neurons from rat lateral hypothalamus: J.Physiol., v. 533, no. Pt 1, p. 237-252.
  258. Rawson, C. L., D. T. Loo, J. R. Duimstra, O. R. Hedstrom, E. E. Schmidt, and D. W. Barnes, 1991, Death of serum-free mouse embryo cells caused by epidermal growth factor deprivation: J.Cell Biol., v. 113, no. 3, p. 671-680.
  259. Chun, H.J.; Ali, Z.A.; Kojima, Y.; Kundu, R.K.; Sheikh, A.Y.; Agrawal, R.; Zheng, L.; Leeper, N.J.; Pearl, N.E.; Patterson, A.J.; Anderson, J.P.; Tsao,P.S.; Lenardo, M.J.; Ashley, E.A. and Quertermous,T., 2008, Apelin signaling antagonizes Ang II effects in mouse models of atherosclerosis: J.Clin.Invest., v. 118, no. 10, p. 3343-3354.
  260. Farber, 2009, Dimethyl sulfoxide (DMSO) produces widespread apoptosis in the developing central nervous system: Neurobiol.Dis., v. 34, no. 1, p. 1-10.
  261. Lee, H. J., A. H. Macbeth, J. H. Pagani, and W. S. Young, III, 2009, Oxytocin: the great facilitator of life: Prog.Neurobiol., v. 88, no. 2, p. 127-151.
  262. Charo, D.N.; Ho, M.; Fajardo, G.; Kawana, M.; Kundu, R.K.; Sheikh, A.Y.; Finsterbach, T.P.; Leeper, N.J.; Ernst, K.V.; Chen, M.M.; Ho, Y.D.; Chun, H.J.; Bernstein, D.; Ashley, E.A. and Quertermous, T., 2009, Endogenous regulation of cardiovascular function by apelin- APJ: Am.J.Physiol. Heart Circ.Physiol., v. 297, no. 5, p. H1904-H1913.
  263. Cook, D. R., A. J. Gleichman, S. A. Cross, S. Doshi, W. Ho, K. L. Jordan-Sciutto, D. R. Lynch, and D. L. Kolson, 2011, NMDA receptor modulation by the neuropeptide apelin: implications for excitotoxic injury: J.Neurochem., v. 118, no. 6, p. 1113-1123.
  264. Kang, J., L. Jiang, S. A. Goldman, and M. Nedergaard, 1998, Astrocyte-mediated potentiation of inhibitory synaptic transmission: Nat.Neurosci., v. 1, no. 8, p. 683-692.
  265. Stephan, F. K., and I. Zucker, 1972, Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions: Proc.Natl.Acad.Sci.U.S.A, v. 69, no. 6, p. 1583-1586.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten