Summary:
In context of the present work, a scoring function for protein-ligand complexes has been developed, not aimed at affinity prediction, but rather a good recognition rate of near native geometries. The developed program DSX makes use of the same formalism as the knowledge-based scoring function DrugScore, hence using the knowledge from crystallographic databases and atom-type specific distance-dependent distribution functions. It is based on newly defined atom-types. Additionally, the program is augmented by two novel potentials which evaluate the torsion angles and (de-)solvation effects. Validation of DSX is based on a literature-known, comprehensive data-set that allows for comparison with other popular scoring functions.
DSX is intended for the recognition of near-native binding modes. In this important task, DSX outperforms the competitors, but is also among the best scoring functions regarding the ranking of different compounds.
Another essential step in the development of DSX was the automatical assignment of the new atom types. A powerful programming framework was implemented to fulfill this task. Validation was done on a literature-known data-set and showed superior efficiency and quality compared to similar programs where this data was available. The front-end fconv was developed to share this functionality with the scientific community. Multiple features useful in computational drug-design workflows are also included and fconv was made freely available as Open Source Project.
Based on the developed potentials for DSX, a number of further applications was created and impemented:
The program HotspotsX calculates favorable interaction fields in protein binding pockets that can be used as a starting point for pharmacophoric models and that indicate possible directions for the optimization of lead structures.
The program DSFP calculates scores based on fingerprints for given binding geometries. These fingerprints are compared with reference fingerprints that are derived from DSX interactions in known crystal structures of the particular target.
Finally, the program DSX_wat was developed to predict stable water networks within a binding pocket. DSX interaction fields are used to calculate the putative water positions.
Bibliographie / References
- Hamelryck, T., Borg, M., Paluszewski, M., Paulsen, J., Frellsen, J., Andreetta, C., Boomsma, W., Bottaro, S., and Ferkinghoff-Borg, J. (2010). Potentials of mean force for protein structure prediction vindicated, formalized and generalized. PLoS One, 5:e13714.
- Lide, D. R. e. (2009). CRC Handbook of Chemistry and Physics, 89th Edition. CRC Press/Taylor and Francis, Boca Raton, FL, 89th (Internet Version) edition.
- Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol., 267:727–748.
- Capra, J. A., Laskowski, R. A., Thornton, J. M., Singh, M., and Funkhouser, T. A. (2009). Predicting Protein Ligand Binding Sites by Combining Evo- lutionary Sequence Conservation and 3D Structure. PLoS Computational Biology, 5(12):18.
- Gabow, H. N. (1976). An Efficient Implementation of Edmonds' Algorithm for Maximum Matching on Graphs. Journal of the ACM, 23(2):221–234.
- Zhang, C., Liu, S., Zhu, Q., and Zhou, Y. (2005). A knowledge-based energy function for protein-ligand, protein-protein, and protein-DNA complexes. J. Med. Chem., 48:2325–2335.
- Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., and Mainz, D. T. (2006). Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 49:6177–6196.
- Bibliography Horn, B. K. P. (1987). Closed-form solution of absolute orientation using unit quaternions. Journal of the Optical Society of America A, 4(4):629.
- Berger, F., Flamm, C., Gleiss, P. M., Leydold, J., and Stadler, P. F. (2004). Counterexamples in chemical ring perception. Journal of Chemical Informa- tion and Computer Sciences, 44(2):323–331.
- Edelsbrunner, H., Facello, M., and Liang, J. (1998). On the definition and the construction of pockets in macromolecules. Discrete Applied Mathematics, 88(1-3):83–102.
- Cheng, T., Li, X., Li, Y., Liu, Z., and Wang, R. (2009). Comparative assessment of scoring functions on a diverse test set. J. Chem. Inf. Model., 49:1079–1093.
- Ritschel, T., Kohler, P. C., Neudert, G., Heine, A., Diederich, F., and Klebe, G. (2009). How to replace the residual solvation shell of polar active site residues to achieve nanomolar inhibition of tRNA-guanine transglycosylase. ChemMedChem, 4(12):2012–2023.
- Mooij, W. T. and Verdonk, M. L. (2005). General and targeted statistical potentials for protein-ligand interactions. Proteins: Struct., Funct., Bioinf., 61:272–287.
- Mosca, R. and Schneider, T. R. (2008). RAPIDO: a web server for the alignment of protein structures in the presence of conformational changes. Nucleic Acids Research, 36(Web Server issue):W42–W46.
- Aqvist, J., Medina, C., and Samuelsson, J. E. (1994). A new method for pre- dicting binding affinity in computer-aided drug design. Protein Engineering, 7(3):385–391.
- Bolon, D. N. and Mayo, S. L. (2001). Enzyme-like proteins by computational design. Proceedings of the National Academy of Sciences of the United States of America, 98(25):14274–14279.
- Koch, I. (2001). Enumerating all connected maximal common subgraphs in two graphs. Theoretical Computer Science, 250(1-2):1–30.
- Taylor, R. D., Jewsbury, P. J., and Essex, J. W. (2002). A review of protein- small molecule docking methods. J. Comput.-Aided Mol. Des., 16:151–166.
- Fischer, A., Enkler, N., Neudert, G., Bocola, M., Sterner, R., and Merkl, R. (2009). TransCent: Computational enzyme design by transferring active sites and considering constraints relevant for catalysis. BMC Bioinformatics, 10(1):54.
- Block, P., Weskamp, N., Wolf, A., and Klebe, G. (2007). Strategies to search and design stabilizers of protein-protein interactions: A feasibility study. Proteins: Struct., Funct., Bioinf., 68(1):170–186.
- Bibliography Kabsch, W. (1978). A discussion of the solution for the best rotation to relate two sets of vectors. Acta Crystallographica Section A, 34(5):827–828.
- Kabsch, W. (1976). A solution for the best rotation to relate two sets of vectors.
- Eldridge, M. D., Murray, C. W., Auton, T. R., Paolini, G. V., and Mee, R. P. (1997). Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J. Comput.-Aided Mol. Des., 11:425–445.
- Goodford, P. J. (1985). A Computational Procedure for Determining Energeti- cally Favorable Binding Sites on Biologically Important Macromolecules. J. Med. Chem., 28(1):849–857.
- Rarey, M., Kramer, B., Lengauer, T., and Klebe, G. (1996). A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol., 261:470–489.
- Muegge, I. and Martin, Y. C. (1999). A general and fast scoring function for protein-ligand interactions: a simplified potential approach. J. Med. Chem., 42:791–804.
- Needleman, S. B. and Wunsch, C. D. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3):443–453.
- Floyd, R. W. (1962). Algorithm 97: Shortest path. Communications of the ACM, 5(6):345.
- Deo, N., Prabhu, G., and Krishnamoorthy, M. S. (1982). Algorithms for Gener- ating Fundamental Cycles in a Graph. ACM Transactions on Mathematical Software, 8(1):26–42.
- Huang, S. Y. and Zou, X. (2006a). An iterative knowledge-based scoring function to predict protein-ligand interactions: I. Derivation of interaction potentials. J. Comput. Chem., 27:1866–1875.
- Galil, Z., Micali, S., and Gabow, H. N. (1986). An O(EV log V) Algorithm for Finding a Maximal Weighted Matching in General Graphs. SIAM Journal on Computing, 15(1):120–130.
- Horton, J. D. (1987). A polynomial-time algorithm to find the shortest cycle basis of a graph. SIAM Journal on Computing, 16(2):358–366.
- Drake, D. E. and Hougardy, S. (2003). A Simple Approximation Algorithm for the Weighted Matching Problem. Information Processing Letters, 85:211–213.
- Boström, J., Greenwood, J. R., and Gottfries, J. (2003). Assessing the per- formance of OMEGA with respect to retrieving bioactive conformations. J.
- Goodsell, D. S. and Olson, A. J. (1990). Automated docking of substrates to proteins by simulated annealing. Proteins: Struct., Funct., Bioinf., 8:195–202.
- Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., and Olson, A. J. (1998). Automated docking using a Lamarckian Bibliography genetic algorithm and an empirical binding free energy function. J. Comput.
- Baber, J. C. and Hodgkin, E. E. (1992). Automatic Assignment of Chemical Connectivity to Organic Molecules in the Cambridge Structural Database.
- Gasteiger, J., Rudolph, C., and Sadowski, J. (1990). Automatic generation of 3D-atomic coordinates for organic molecules. Tetrahedron Comput. Methodol., 3(6):537–547.
- Zhao, Y., Cheng, T., and Wang, R. (2007). Automatic Perception of Organic Molecules Based on Essential Structural Information. J. Chem. Inf. Model., 47(4):1379–1385.
- Hendlich, M., Rippmann, F., and Barnickel, G. (1997a). BALI: Automatic Assignment of Bond and Atom Types for Protein Ligands in the Brookhaven Protein Databank. J. Chem. Inf. Model., 37(4):774–778.
- Sippl, M. J. (1993). Boltzmann's principle, knowledge-based mean fields and protein folding. An approach to the computational determination of protein structures. J. Comput.-Aided Mol. Des., 7:473–501.
- Sippl, M. J. (1990). Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures in globular proteins. J. Mol. Biol., 213:859–883.
- Gilson, M. K. and Zhou, H.-X. (2007). Calculation of Protein-Ligand Binding Affinities. Annu. Rev. Biophys. Biomol. Struct., 36(1):21–42.
- Plewczynski, D., Łaźniewski, M., Augustyniak, R., and Ginalski, K. (2011). Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database. J. Comput. Chem., 32:742–755.
- Lipinski, C. A. (2003). Chris Lipinski discusses life and chemistry after the Rule of Five. Drug Discovery Today, 8(1):12–16.
- Lawler, E. L. (1976). Combinatorial Optimization: Networks and Matroids, volume 40. Holt, Rinehart and Winston.
- Massova, I. and Kollman, P. A. (2000). Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspect. Drug Discovery Des., 18:113–135.
- Kellenberger, E., Rodrigo, J., Muller, P., and Rognan, D. (2004). Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins: Struct., Funct., Bioinf., 57:225–242.
- Hovmöller, S., Zhou, T., and Ohlson, T. (2002). Conformations of amino acids in proteins. Acta Crystallographica Section D Biological Crystallography, 58(5):768–776.
- Paul, N. and Rognan, D. (2002). ConsDock: A new program for the consensus analysis of protein-ligand interactions. Proteins: Struct., Funct., Bioinf., 47:521–533.
- Meng, E. C. and Lewis, R. A. (1991). Determination of Molecular Topology and Atomic Hybridization States from Heavy Atom Coordinates. J. Comput. Chem., 12(7):891–898.
- Morris, G. M., Goodsell, D. S., Huey, R., and Olson, A. J. (1996). Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4. J. Comput.-Aided Mol. Des., 10:293–304.
- Ewing, T. J., Makino, S., Skillman, A. G., and Kuntz, I. D. (2001). DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J. Comput.-Aided Mol. Des., 15:411–428.
- Velec, H. F., Gohlke, H., and Klebe, G. (2005). DrugScore(CSD)-knowledge- based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affinity prediction. J. Med. Chem., 48:6296–6303.
- Pfeffer, P. and Gohlke, H. (2007). DrugScoreRNA–knowledge-based scoring function to predict RNA-ligand interactions. J. Chem. Inf. Model., 47:1868– 1876.
- Neudert, G. and Klebe, G. (2011a). DSX: A Knowledge-Based Scoring Function for the Assessment of Protein–Ligand Complexes. J. Chem. Inf. Model., 51(10):2731–2745.
- Gabow, H. N., Galil, Z., and Spencer, T. H. (1989). Efficient implementation of graph algorithms using contraction. Journal of the ACM, 36(3):540–572.
- Dixon, J. S. (1997). Evaluation of the CASP2 docking section. Proteins: Struct., Funct., Bioinf., Suppl 1:198–204.
- Neudert, G. and Klebe, G. (2011b). fconv: format conversion, manipulation and feature computation of molecular data. Bioinformatics, 27:1021–1022.
- Fredman, M. L. and Tarjan, R. E. (1987). Fibonacci heaps and their uses in improved network optimization algorithms. Journal of the ACM, 34(3):596– 615. Bibliography Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., and Shenkin, P. S. (2004). Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 47:1739–1749.
- Le Guilloux, V., Schmidtke, P., and Tuffery, P. (2009). Fpocket: An open source platform for ligand pocket detection. BMC Bioinformatics, 10(1):168.
- Craan, T. (2011). Fragment based Drug Discovery; Design and Validation of a Fragment Library; Computer-based Fragment Screening and Fragment-to- Lead Expansion. Dissertation, pages 53–66, 80–90.
- Jorgensen, W. L. (1989). Free energy calculations: A breakthrough for modeling organic chemistry in solution. Acc. Chem. Res., 22:184–189.
- Wang, R., Lai, L., and Wang, S. (2002). Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J. Comput.-Aided Mol. Des., 16:11–26.
- Raymond, J. W., Gardiner, E. J., and Willett, P. (2002). Heuristics for similarity searching of chemical graphs using a maximum common edge Bibliography subgraph algorithm. Journal of Chemical Information and Computer Sciences, 42(2):305–316.
- Edelsbrunner, H. and Shah, N. R. (1996). Incremental topological flipping works for regular triangulations. Algorithmica, 15(3):223–241.
- Röthlisberger, D., Khersonsky, O., Wollacott, A. M., Jiang, L., DeChancie, J., Betker, J., Gallaher, J. L., Althoff, E. A., Zanghellini, A., Dym, O., and et al. (2008). Kemp elimination catalysts by computational enzyme design. Nature, 453(7192):190–195.
- Koppensteiner, W. A. and Sippl, M. J. (1998). Knowledge-based potentials – back to the roots. Biochemistry (Moscow), 63:247–252.
- Bibliography Sippl, M. J. (1995). Knowledge-based potentials for proteins. Curr. Opin. Struct. Biol., 5:229–235.
- Shen, Q., Xiong, B., Zheng, M., Luo, X., Luo, C., Liu, X., Du, Y., Li, J., Zhu, W., Shen, J., and Jiang, H. (2011). Knowledge-based scoring functions in drug design: 2. Can the knowledge base be enriched? J. Chem. Inf. Model., 51:386–397.
- Gohlke, H., Hendlich, M., and Klebe, G. (2000). Knowledge-based scoring function to predict protein-ligand interactions. J. Mol. Biol., 295:337–356.
- Krammer, A., Kirchhoff, P. D., Jiang, X., Venkatachalam, C. M., and Waldman, M. (2005). LigScore: a novel scoring function for predicting binding affinities.
- Hendlich, M., Rippmann, F., and Barnickel, G. (1997b). LIGSITE: automatic and efficient detection of potential small molecule-binding sites in proteins. Journal of molecular graphics modelling, 15(6):359–363.
- Edmonds, J. (1965). Maximum matching and a polyhedron with 0,1-vertices.
- Bibliography Edelsbrunner, H., Face, M., Fu, P., and Liang, J. (1995). Measuring proteins and voids in proteins. In In Proc. 28th Ann. Hawaii Int'l Conf. System Sciences, pages 256–264.
- Toscano, M. D., Woycechowsky, K. J., and Hilvert, D. (2007). Minimalist active-site redesign: teaching old enzymes new tricks. Angewandte Chemie International Edition, 46(18):3212–3236.
- Jones, G., Willett, P., and Glen, R. C. (1995). Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J. Mol. Biol., 245:43–53.
- Gehlhaar, D. K., Verkhivker, G. M., Rejto, P. A., Sherman, C. J., Fogel, D. B., Fogel, L. J., and Freer, S. T. (1995). Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary programming. Chem. Biol. (Cambridge, MA, U. S.), 2:317–324.
- Halgren, T. (2007). New method for fast and accurate binding-site identification and analysis. Chemical biology drug design, 69(2):146–148.
- Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (2007a). Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, New York, NY, USA, 3rd ed. edition. pp 507-514.
- Labute, P. (2005). On the Perception of Molecules from 3D Atomic Coordinates. J. Chem. Inf. Model., 45(2):215–221.
- Zhai, L., Shukla, R., and Rathore, R. (2009). Oxidative C-C bond formation (Scholl reaction) with DDQ as an efficient and easily recyclable oxidant. Organic Letters, 11(15):3474–3477.
- Bush, L. B. and Sheridan, R. P. (1993). PATTY: A Programmable Atom Typer and Language for Automatic Classification of Atoms in Molecular Databases. J. Chem. Inf. Comp. Sci., 33:756–762.
- Kleywegt, G. J. and Jones, T. A. (1996). Phi/psi-chology: Ramachandran revisited. Structure, 4(12):1395–1400.
- Muegge, I. (2006). PMF scoring revisited. J. Med. Chem., 49:5895–5902.
- Levitt, D. G. and Banaszak, L. J. (1992). POCKET: a computer graphics method for identifying and displaying protein cavities and their surrounding amino acids. Journal of Molecular Graphics, 10(4):229–234.
- Böhm, H. J. (1998). Prediction of binding constants of protein ligands: a fast method for the prioritization of hits obtained from de novo design or 3D database search programs. J. Comput.-Aided Mol. Des., 12:309–323.
- Shindyalov, I. N. and Bourne, P. E. (1998). Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Engineering, 11(9):739–747.
- Hückel, E. (1931a). Quantentheoretische Beiträge zum Benzolproblem. I. Die Elektronenkonfiguration des Benzols und verwandter Verbindungen. Zeitschrift Für Physik, 70(3-4):204–286.
- Hückel, E. (1932). Quantentheoretische Beiträge zum Problem der aromatischen und ungesättigten Verbindungen. III. Zeitschrift Für Physik, 76(9-10):628– 648.
- Hendlich, M., Bergner, A., Günther, J., and Klebe, G. (2003). Relibase: design and development of a database for comprehensive analysis of protein-ligand interactions. J. Mol. Biol., 326(2):607–620.
- Jain, A. N. (1996). Scoring noncovalent protein-ligand interactions: a continuous differentiable function tuned to compute binding affinities. J. Comput.-Aided Mol. Des., 10:427–440.
- Sotriffer, C. A., Sanschagrin, P., Matter, H., and Klebe, G. (2008). SFCscore: scoring functions for affinity prediction of protein-ligand complexes. Proteins: Struct., Funct., Bioinf., 73:395–419.
- Ben-Naim, A. (1997). Statistical potentials extracted from protein structures: Are these meaningful potentials? J. Chem. Phys., 107(9):3698–3706.
- Jernigan, R. L. and Bahar, I. (1996). Structure-derived potentials and protein simulations. Curr. Opin. Struct. Biol., 6:195–209.
- Bibliography Verdonk, M. L., Cole, J. C., and Taylor, R. (1999). SuperStar: a knowledge- based approach for identifying interaction sites in proteins. Journal of Molecular Biology, 289(4):1093–1108.
- Jain, A. N. (2003). Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J. Med. Chem., 46:499–511.
- Laskowski, R. A. (1995). SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. Journal of Molecular Graphics, 13(5):323–30.
- Ritschel, T. (2009). TGT a Drug Target to Study pka Shifts, Residual Solvation and Protein-Protein Interface Formation. Dissertation, pages 80–83.
- Langmuir, I. (1919). THE ARRANGEMENT OF ELECTRONS IN ATOMS AND MOLECULES. J. Am. Chem. Soc., 41(6):868–934.
- Allen, F. H., Bellard, S., Brice, M. D., Cartwright, B. A., Doubleday, A., Higgs, H., Hummelink, T., Hummelink-Peters, B. G., Kennard, O., Motherwell, W. D., and et al. (1979). The Cambridge Crystallographic Data Centre: Computer-Based Search, Retrieval, Analysis and Display of Information.
- O.3et ACC S.ar S.3 S.3 ARO S.r3 S.3 S.3 ACC S.thi S.2 S.2 ACC S.o S.o S.o S S.o2h S.o2 S.o S S.o3h S.o2 S.o S S.o4h S.o2 S.o S S.o2 S.o2 S.o S S.o3 S.o2 S.o S S.o4 S.o2 S.o S S.2 S.2 S.2 ACC S.sh S.3 S.sh AnD S.s S.3 S.3 ACC S.3 S.3 S.3 ACC Bibliography Allen, F. H. (2002). The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr., Sect. B: Struct. Sci., 58:380–388.
- Böhm, H. J. (1994). The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure. J. Comput.-Aided Mol. Des., 8:243–256.
- Ruvinsky, A. M. and Kozintsev, A. V. (2005). The key role of atom types, reference states, and interaction cutoff radii in the knowledge-based method: new variational approach. Proteins: Struct., Funct., Bioinf., 58:845–851.
- Wang, R., Fang, X., Lu, Y., and Wang, S. (2004). The PDBbind database: collection of binding affinities for protein-ligand complexes with known three- dimensional structures. J. Med. Chem., 47:2977–2980.
- Wang, R., Fang, X., Lu, Y., Yang, C. Y., and Wang, S. (2005). The PDBbind database: methodologies and updates. J. Med. Chem., 48:4111–4119.
- Berman, H. M., Battistuz, T., Bhat, T. N., Bluhm, W. F., Bourne, P. E., Burkhardt, K., Feng, Z., Gilliland, G. L., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., Ravichandran, V., Schneider, B., Thanki, N., Weissig, H., Westbrook, J. D., and Zardecki, C. (2002). The Protein Data Bank. Acta Crystallogr., Sect. D: Biol. Crystallogr., 58:899–907.
- Tomita, E., Tanaka, A., and Takahashi, H. (2006). The worst-case time complexity for generating all maximal cliques and computational experiments. Theoretical Computer Science, 363(1):28–42.
- Vismara, P. (1997). Union Of All Minimum Cycle Bases Of A Graph. The electronic Journal of Combinatorics, 4:73–87.
- Spitzmüller, A., Velec, H. F. G., and Klebe, G. (2011). MiniMuDS: a new optimizer using knowledge-based potentials improves scoring of docking solutions. J. Chem. Inf. Model., 51(6):1423–1430.
- Warren, G. L., Andrews, C. W., Capelli, A. M., Clarke, B., LaLonde, J., Lambert, M. H., Lindvall, M., Nevins, N., Semus, S. F., Senger, S., Tedesco, G., Wall, I. D., Woolven, J. M., Peishoff, C. E., and Head, M. S. (2006). A critical assessment of docking programs and scoring functions. J. Med. Chem., 49:5912–5931.
- Levi, G. (1972). A note on the derivation of maximal common subgraphs of two directed or undirected graphs. Calcolo, 9(4):341–352.
- Chakravarty, S. and Kannan, K. K. (1994). Drug-protein interactions. Refined structures of three sulfonamide drug complexes of human carbonic anhydrase I enzyme. J. Mol. Biol., 243(2):298–309.
- Ramachandran, G. N., Ramakrishnan, C., and Sasisekharan, V. (1963). Stereo- chemistry of polypeptide chain configurations. Journal of Molecular Biology, 7:95–99.
- Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., and Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2):926.
- Bron, C. and Kerbosch, J. (1973). Algorithm 457: finding all cliques of an undirected graph. Communications of the ACM, 16(9):575–577.
- Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J., and Taylor, R. (2002). New software for searching the Cambridge Structural Database and visualizing crystal structures. Acta Crystallogr., Sect. B: Struct. Sci., 58:389–397.
- Xie, Z. R. and Hwang, M. J. (2010). An interaction-motif-based scoring function for protein-ligand docking. BMC Bioinf., 11:298.
- Behnen, J., Köster, H., Neudert, G., Craan, T., Heine, A., and Klebe, G. (2012). Experimental and Computational Active Site Mapping as a Starting Point to Fragment-Based Lead Discovery. ChemMedChem, 7(2):248–261.
- Ben-Naim, A. (1992). Statistical Thermodynamics for Chemists and Biochemists. Plenum Press, New York. chap. 5,6.
- Huang, B. and Schroeder, M. (2006). LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation. BMC Structural Biology, 6(1):19.
- Pinto, A. L., Hellinga, H. W., and Caradonna, J. P. (1997). Construction of a catalytically active iron superoxide dismutase by rational protein design. Proceedings of the National Academy of Sciences of the United States of America, 94(11):5562–5567.
- Liang, J., Edelsbrunner, H., and Woodward, C. (1998). Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Protein Science, 7(9):1884–1897.
- Ortiz, A. R., Strauss, C. E. M., and Olmea, O. (2002). MAMMOTH (Matching molecular models obtained from theory): An automated method for model comparison. Protein Science, 11(11):2606–2621.
- Kuhlman, B. and Baker, D. (2000). Native protein sequences are close to optimal for their structures. Proceedings of the National Academy of Sciences of the United States of America, 97(19):10383–10388.
- Stewart, R. F. and Jensen, L. H. (1967). Redetermination of the crystal structure of uracil. Acta Crystallographica, 124(2):305–308.
- Hou, T., Wang, J., Li, Y., and Wang, W. (2011). Assessing the Performance of the MM/PBSA and MM/GBSA Methods. 1. The Accuracy of Binding Free Energy Calculations Based on Molecular Dynamics Simulations. J. Chem. Inf. Model., 51(1):69–82.
- Tang, Y. T. and Marshall, G. R. (2011). PHOENIX: A Scoring Function for Affinity Prediction Derived Using High-Resolution Crystal Structures and Calorimetry Measurements. J. Chem. Inf. Model., 51:214–228.
- Huang, S. Y. and Zou, X. (2010). Inclusion of solvation and entropy in the knowledge-based scoring function for protein-ligand interactions. J. Chem. Inf. Model., 50:262–273.
- Holm, L. and Sander, C. (1993). Protein structure comparison by alignment of distance matrices. Journal of Molecular Biology, 233(1):123–138.
- Froeyen, M. and Herdewijn, P. (2005). Correct bond order assignment in a molecular framework using integer linear programming with application to molecules where only non-hydrogen atom coordinates are available. J. Chem. Inf. Model., 45(5):1267–1274.