Publikationsserver der Universitätsbibliothek Marburg

Titel:Cognitive Interpretations of Ambiguous Visual Stimuli
Autor:Naber, Marnix
Weitere Beteiligte: Lachnit, Harald (Prof.)
Veröffentlicht:2012
URI:https://archiv.ub.uni-marburg.de/diss/z2012/0097
DOI: https://doi.org/10.17192/z2012.0097
URN: urn:nbn:de:hebis:04-z2012-00978
DDC: Psychologie
Titel (trans.):Kognitive Interpretationen mehrdeutiger visueller Reize
Publikationsdatum:2012-06-21
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Mehrdeutig, Reize, Rivalität, Pupille, Rivalität, Mehrdeutig, Reize, Objecthood, Bewustsein, Bewustsein, Ambiguity, Pupille, Awareness, Pupil, Rivalry

Summary:
Unser Gehirn muss zu jeder Zeit relevante Signale von irrelevanten Informationen trennen. Dazu müssen diese als spezifische Einheiten erkannt und klassifiziert werden. Mehrdeutigkeit ist ein wesentlicher Aspekt dieses Verarbeitungsprozesses und kann durch verrauschte Eingangssignale und durch den Aufbau unserer sensorischer Systeme entstehen. Beispielsweise können Reize mehrdeutig sein, wenn sie verrauscht oder unvollständig sind oder nur kurzzeitig wahrgenommen werden. Unter solchen Bedingungen werden Wahrnehmung und Klassifikation eines Reizes deutlich erschwert. Bereits vorhandene kognitive Repräsentationen werden somit möglicherweise nicht aktiviert. Folglich müssen Rückschlüsse über die Reize aufgrund von Kontext und Erfahrung gezogen werden. Ein und derselbe Reiz kann jedoch unterschiedlich repräsentiert und im sensorischen System kodiert werden. Da nur eine Repräsentation die Basis zukünftigen Handelns bilden kann, entsteht eine Art Konkurrenz innerhalb der Wahrnehmung. Derartige Wahrnehmungsphänomene, die mit der Mehrdeutigkeit von Reizen in Verbindung stehen, bilden den Mittelpunkt der vorliegenden Dissertation. Wenn einem physikalisch konstanten Reiz mehrere Interpretationen zugeordnet werden, entsteht ein Wechsel zwischen diesen Einordnungen, den man wahrnimmt und Rivalität ("rivalry") nennt. In dieser Dissertation werden diverse neue Erkenntnisse zu diesem grundlegenden Phänomen der sensorischen Verarbeitung beschrieben. So wird gezeigt, dass Übergänge zwischen drei wahrgenommenen Interpretationen – ein vergleichsweise selten untersuchtes Phänomen, da Rivalität meist mit zweideutigen Reizen untersucht wird – vorhersehbaren Mustern folgen (Kapitel 2). Darüber hinaus zeigt sich, dass derartige Übergänge spezifische Eigenschaften aufweisen, welche die Geschwindigkeit und die Richtung ihrer räumlichen Ausbreitung im visuellen Feld bestimmen (Kapitel 3). Diese Eigenschaften der Mehrdeutigkeit werden weiterhin stark von Aufmerksamkeit und anderen, introspektiven Prozessen beeinflusst. Um die der Rivalität in der Wahrnehmung tatsächlich zugrundeliegenden Prozesse und die damit verbundenen Änderungen des Bewusstseins von derartigen subjektiven Prozessen abzugrenzen, müssen letztere kontrolliert oder sogar vollständig umgangen werden. Ein objektives Maß der Rivalität in der Wahrnehmung wird zur Lösung dieser Aufgabe vorgeschlagen und bietet eine wertvolle Alternative zu introspektivem Berichten über den Wahrnehmungszustand (Kapitel 4). Übergänge in der Wahrnehmung entstehen entlang einer bestimmten Merkmalsdimension des Reizes, wie beispielsweise der Orientierung des berühmten Neckerwürfels. Zudem kann auch eine Änderung in der Merkmalsdimension der Luminanz eine unterschiedliche Interpretation des Reizes hervorrufen. Es wird gezeigt, dass die Pupille kleiner wird, wenn eine Interpretation mit hoher Luminanz die Wahrnehmung übernimmt, und umgekehrt, dass die Pupille größer wird, wenn eine Interpretation mit niedriger Luminanz die Wahrnehmung übernimmt. Folglich kann die Pupille als ein zuverlässiges und objektives Maß für Änderungen in der Wahrnehmung verwendet werden. Durch die Verwendung solcher objektiven Maße konnten neue Eigenschaften der Übergänge in der Wahrnehmung aufgezeigt werden, welche die Theorie unterstützen, dass Introspektion die der Verarbeitung mehrdeutiger Situationen zugrundeliegenden Prozesse merklich beeinflussen kann. Als Nächstes wurden mehrdeutiger Reize im Zusammenhang mit der Wahrnehmung von Objekten eingesetzt (Kapitel 5). Am Beispiel der Kippfigur des "bewegten Diamanten" wird dabei die Bedeutung von mehrdeutigen Reizen veranschaulicht. Beim bewegten Diamanten werden zwei Interpretationen wahrgenommen, die sich entlang der Dimension der Objektkohärenz abwechseln. Das bedeutet, dass die Wahrnehmung zwischen einem einzelnen zusammenhängenden Objekt (Diamant) und mehreren unzusammenhängenden Komponenten kippt. Es wird gezeigt, dass die Interpretation des Reizes als ein einziges kohärentes Objekt, verglichen mit der Interpretation als mehrere Komponenten, zu einer Erhöhung der visuellen Empfindlichkeit innerhalb des Objektes führt. Diese Ergebnisse sind ein Beleg dafür, wie die Aktivierung einer Interpretation eines Reizes als Einzelobjekt (im Vergleich zur Komponentenwahrnehmung) dazu führt, dass die Aufmerksamkeit top-down zu den relevanten Bereichen des Gesichtsfeldes gelenkt wird. Es wird weiter untersucht, welche Eigenschaften des Reizes zu einer bottom-up Aktivierung der Interpretation solcher Objekte beitragen (Kapitel 6). Die Mehrdeutigkeit von Objekten kann erfolgreich aufgehoben werden, indem man einen starken Kontrast in Luminanz oder Farbe zwischen dem Objekt und dem Hintergrund erzeugt. Auch die Größe und die Form haben einen großen Einfluss auf die Detektion und Identifikation von Objekten. Des Weiteren sind die Eigenschaften eines Objektes nicht nur bestimmend für die Erfolgsquote bei der Objekterkennung, sondern ebenso bedeutend für die Speicherung der Repräsentation im Gedächtnis, beispielsweise von neu wahrgenommenen Objekten. Das Klassifizieren von Objekten durch die Versuchsperson wird ebenfalls durch Mehrdeutigkeit beeinflusst. So kann ein Objekt der Versuchsperson einerseits als neu erscheinen, obwohl es bereits bekannt war, weil es beispielsweise der Versuchsperson schon einmal gezeigt worden ist. Andererseits kann auch ein eigentlich unbekanntes Objekt der Versuchsperson dennoch vertraut vorkommen. In dieser Arbeit wird gezeigt, dass solche subjektiven Effekte einen Einfluss auf die Pupillengröße haben (Kapitel 7). Außerdem verkleinert sich die Pupille der Versuchspersonen beim Betrachten neuer Bilder stärker als bei bekannten. Ein ähnlicher Effekt wird gefunden, wenn das Bild vorher erfolgreich im Gedächtnis gespeichert wurde. Daher ist es wahrscheinlich, dass die Pupille die Verfestigung von neuen Objekten im Gedächtnis widerspiegelt. Abschließend wird untersucht, ob sich kognitive Prozesse, wie Entscheidungsfindung – ein wichtiger Prozess, falls mehreren Optionen zur Verfügung stehen und Mehrdeutigkeit aufgehoben werden soll – auch in der Pupille widerspiegeln (Kapitel 8). Es wird zunächst bestätigt, dass die Pupillen sich erweitern, nachdem man eine Entscheidung getroffen hat. Neu wird gezeigt, dass diese Pupillenausdehnungen erfolgreich von anderen Personen erkannt und verwendet werden können, um ein interaktives Spiel gegen die erste Person (den "Gegner") zu gewinnen. Insgesamt wird in dieser Dissertation untersucht, wie mehrdeutige Reize die Wahrnehmung beeinflussen und wie Mehrdeutigkeit verwendet werden kann, um Prozesse des Gehirns zu studieren. Es hat sich gezeigt, dass Mehrdeutigkeit vorhersehbaren Mustern folgt, sie objektiv mit Reflexen gemessen werden kann, und Einblicke in neuronale Prozesse wie Aufmerksamkeit, Objektwahrnehmung und Entscheidungsmechanismen liefern kann. Diese Ergebnisse zeigen, dass Mehrdeutigkeit eine zentrale Eigenschaft sensorischer Systeme ist, und Lebewesen in die Lage versetzt, mit ihrer Umwelt flexibel zu interagieren. Mehrdeutigkeit macht das Verhalten vielfältiger, ermöglicht es dem Gehirn, mit der Welt auf verschiedenen Wegen zu interagieren, und ist die Basis der Dynamik von Wahrnehmung, Interpretation und Entscheidung.

Bibliographie / References

  1. Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nat Rev Neurosci, 2 (3), 194- 203.
  2. Alais, D., van Boxtel, J., Parker, A., & van Ee, R. (2010). Attending to auditory signals slows visual alternations in binocular rivalry. Vision Res, 50 (10), 929-935.
  3. Carter, O., Konkle, T., Wang, Q., Hayward, V., & Moore, C. (2008). Tactile rivalry demonstrated with an ambiguous apparent-motion quartet. Curr Biol, 18 (14), 1050-1054.
  4. Zeki, S., Watson, J.D., Lueck, C.J., Friston, K.J., Kennard, C., & Frackowiak, R.S. (1991). A direct demonstration of functional specialization in human visual cortex. J Neurosci, 11 (3), 641- 649.
  5. Pressnitzer, D., & Hupé, J.M. (2006). Temporal dynamics of auditory and visual bistability reveal common principles of perceptual organization. Curr Biol, 16 (13), 1351-1357.
  6. VanRullen, R., & Thorpe, S.J. (2001). The time course of visual processing: from early perception to decision-making. J Cogn Neurosci, 13 (4), 454-461.
  7. Paffen, C., Naber, M., & Verstraten, F. (2008). The spatial origin of a perceptual transition in binocular rivalry. PLoS One, 3 (6), e2311.
  8. Knapen, T., van Ee, R., & Blake, R. (2007b). Stimulus motion propels traveling waves in binocular rivalry. PLoS One, 2 (8), e739.
  9. Kourtzi, Z., & Kanwisher, N. (2001). Representation of perceived object shape by the human lateral occipital complex. Science, 293 (5534), 1506-1509.
  10. Aston-Jones, G., Rajkowski, J., & Cohen, J. (1999). Role of locus coeruleus in attention and behavioral flexibility. Biol Psychiatry, 46 (9), 1309-1320.
  11. Knapen, T., Kanai, R., Brascamp, J., van Boxtel, J., & van Ee, R. (2007a). Distance in feature space determines exclusivity in visual rivalry. Vision Res, 47 (26), 3269-3275.
  12. Jepma, M., & Nieuwenhuis, S. (2011). Pupil diameter predicts changes in the exploration-exploitation trade-off: evidence for the adaptive gain theory. J Cogn Neurosci, 23 (7), 1587-1596.
  13. Steinhauer, S.R., Siegle, G.J., Condray, R., & Pless, M. (2004). Sympathetic and parasympathetic innervation of pupillary dilation during sustained processing. Int J Psychophysiol, 52 (1), 77- 86.
  14. Daniels, L., Hock, H.S., & Huisman, A. (2009). The effect of spatial attention on pupil dynamics. Perception, 38, 16.
  15. Lumer, E., Friston, K., & Rees, G. (1998). Neural correlates of perceptual rivalry in the human brain. Science, 280 (5371), 1930-1934.
  16. Bijleveld, E., Custers, R., & Aarts, H. (2009). The unconscious eye opener: pupil dilation reveals strategic recruitment of resources upon presentation of subliminal reward cues. Psychol Sci, 20 (11), 1313-1315.
  17. Haynes, J., Deichmann, R., & Rees, G. (2005). Eye-specific effects of binocular rivalry in the human lateral geniculate nucleus. Nature, 438 (7067), 496-499.
  18. Coull, J.T., Jones, M.E., Egan, T.D., Frith, C.D., & Maze, M. (2004). Attentional effects of noradrenaline vary with arousal level: selective activation of thalamic pulvinar in humans. Neuroimage, 22 (1), 315-322.
  19. Easton, A., Ridley, R.M., Baker, H.F., & Gaffan, D. (2002). Unilateral lesions of the cholinergic basal forebrain and fornix in one hemisphere and inferior temporal cortex in the opposite hemisphere produce severe learning impairments in rhesus monkeys. Cereb Cortex, 12 (7), 729-736.
  20. Klink, P., van Ee, R., Nijs, M., Brouwer, G., Noest, A., & van Wezel, R. (2008). Early interactions between neuronal adaptation and voluntary control determine perceptual choices in bistable vision. J Vis, 8 (5), 16.11-18.
  21. van Ee, R. (2009). Stochastic variations in sensory awareness are driven by noisy neuronal adaptation: evidence from serial correlations in perceptual bistability. J Opt Soc Am A Opt Image Sci Vis, 26 (12), 2612-2622.
  22. Britz, J., Landis, T., & Michel, C. (2009). Right parietal brain activity precedes perceptual alternation of bistable stimuli. Cereb Cortex, 19 (1), 55-65.
  23. Paffen, C., Alais, D., & Verstraten, F. (2006). Attention speeds binocular rivalry. Psychol Sci, 17 (9), 752-756.
  24. Apparent motion: event-related functional magnetic resonance imaging of perceptual switches and States. J Neurosci, 22 (9), RC219.
  25. Blake, R., O'Shea, R., & Mueller, T. (1992). Spatial zones of binocular rivalry in central and peripheral vision. Vis Neurosci, 8 (5), 469-478.
  26. Harrison, N., Singer, T., Rotshtein, P., Dolan, R., & Critchley, H. (2006). Pupillary contagion: central mechanisms engaged in sadness processing. Soc Cogn Affect Neurosci, 1 (1), 5-17.
  27. Watanabe, M., Cheng, K., Murayama, Y., Ueno, K., Asamizuya, T., Tanaka, K., & Logothetis, N. (2011). Attention but not awareness modulates the BOLD signal in the human V1 during binocular suppression. Science, 334 (6057), 829-831.
  28. Seymour, K., Clifford, C.W., Logothetis, N.K., & Bartels, A. (2009). The coding of color, motion, and their conjunction in the human visual cortex. Curr Biol, 19 (3), 177-183.
  29. Leopold, D., & Logothetis, N. (1996). Activity changes in early visual cortex reflect monkeys' percepts during binocular rivalry. Nature, 379 (6565), 549-553.
  30. Yoshitomi, T., Ito, Y., & Inomata, H. (1985). Adrenergic excitatory and cholinergic inhibitory innervations in the human iris dilator. Exp Eye Res, 40 (3), 453-459.
  31. Crick, F., & Koch, C. (2003). A framework for consciousness. Nat Neurosci, 6 (2), 119-126.
  32. Aguirre, G.K., Zarahn, E., & D'Esposito, M. (1998). An area within human ventral cortex sensitive to "building" stimuli: evidence and implications. Neuron, 21 (2), 373-383.
  33. Lehky, S. (1988). An astable multivibrator model of binocular rivalry. Perception, 17 (2), 215-228.
  34. Warren, R.M., & Gregory, R.L. (1958). An auditory analogue of the visual reversible figure. American Journal of Psychology, 71, 612-613.
  35. Blake, R. (1989). A neural theory of binocular rivalry. Psychol Rev, 96 (1), 145-167.
  36. Mueller, T.J. (1990). A physiological model of binocular rivalry. Vis Neurosci, 4 (1), 63-73.
  37. Utrecht University, Faculty of Social Sciences, Applied Cognitive Psychology Graduate (Masters, M.Sc.), Cum laude (with honors) 2003-2006
  38. Pettigrew, J.D., & Miller, S.M. (1998). A 'sticky' interhemispheric switch in bipolar disorder? Proc Biol Sci, 265 (1411), 2141-2148.
  39. Karatekin, C., Couperus, J.W., & Marcus, D.J. (2004). Attention allocation in the dual-task paradigm as measured through behavioral and psychophysiological responses. Psychophysiology, 41 (2), 175-185.
  40. Kahneman, D. (1973). Attention and effort. (New Jersey, USA: Prentice Hall.
  41. Hopfinger, J.B., & Ries, A.J. (2005). Automatic versus contingent mechanisms of sensory-driven neural biasing and reflexive attention. J Cogn Neurosci, 17 (8), 1341-1352.
  42. Huang, C.-B., Zhou, J., Lu, Z.-L., Feng, L., & Zhou, Y. (2009). Binocular combination in anisometropic amblyopia. Journal of Vision, 9 (3), 17.
  43. Tong, F., Nakayama, K., Vaughan, J., & Kanwisher, N. (1998). Binocular rivalry and visual awareness in human extrastriate cortex. Neuron, 21 (4), 753-759.
  44. Blake, R., & Bravo, M. (1985). Binocular rivalry suppression interferes with phase adaptation. Percept Psychophys, 38 (3), 277-280.
  45. Hasselmo, M.E., & Giocomo, L.M. (2006). Cholinergic modulation of cortical function. J Mol Neurosci, 30 (1-2), 133-135.
  46. Gross, C.G. (2000). Coding for visual categories in the human brain. Nat Neurosci, 3 (9), 855-856.
  47. Knight, R. (1996). Contribution of human hippocampal region to novelty detection. Nature, 383 (6597), 256-259.
  48. Wheatstone, C. (1838). Contributions to the physiology of vision. Part the first: On some remarkable, and hitherto unobserved, phaenomena of binocular vision. Philos. Trans. R. Soc. Lond., 128, 371–394.
  49. Kilgard, M.P., & Merzenich, M.M. (1998). Cortical map reorganization enabled by nucleus basalis activity. Science, 279 (5357), 1714-1718.
  50. Kourtzi, Z., & Kanwisher, N. (2000). Cortical regions involved in perceiving object shape. J Neurosci, 20 (9), 3310-3318.
  51. Karatekin, C. (2004). Development of attentional allocation in the dual task paradigm. Int J Psychophysiol, 52 (1), 7-21.
  52. Nagamine, M., Yoshino, A., Miyazaki, M., Takahashi, Y., & Nomura, S. (2009). Difference in binocular rivalry rate between patients with bipolar I and bipolar II disorders. Bipolar Disorders, 11, 539-546.
  53. Reinhard, G., & Lachnit, H. (2002a). Differential conditioning of anticipatory pupillary dilation responses in humans. Biol Psychol, 60 (1), 51-68.
  54. Dionisio, D.P., Granholm, E., Hillix, W.A., & Perrine, W.F. (2001). Differentiation of deception using pupillary responses as an index of cognitive processing. Psychophysiology, 38 (2), 205-211.
  55. Wilson, H., Blake, R., & Lee, S. (2001). Dynamics of travelling waves in visual perception. Nature, 412 (6850), 907-910.
  56. Simpson, H.M., & Molloy, F.M. (1971). Effects of audience anxiety on pupil size. Psychophysiology, 8 (4), 491-496.
  57. Reinhard, G., Lachnit, H., & König, S. (2007). Effects of stimulus probability on pupillary dilation and reaction time in categorization. Psychophysiology, 44 (3), 469-475.
  58. E-mail marnixnaber[at]gmail.com Education 2012-2013
  59. Winkler, J., Suhr, S.T., Gage, F.H., Thal, L.J., & Fisher, L.J. (1995). Essential role of neocortical acetylcholine in spatial memory. Nature, 375 (6531), 484-487.
  60. Eccles, J.C. (1992). Evolution of consciousness. Proc Natl Acad Sci U S A, 89 (16), 7320-7324.
  61. Harvard University, Vision Sciences Laboratory Internship, funded by the NWO-pioneer program 2007 Utrecht University, Faculty of Social Sciences Teaching assistant Other Activities 2011 Australian Neuroscience Society (ANS), Annual Conference Travel Award 2010 Summer School Rauischholzhausen, Visual Neuroscience Title: From spikes to awareness 2008 European Conference on Visual Perception (ECVP) Voluntary Staff 2007 University College Utrecht Voluntary Teaching Assistant 2003-2006
  62. Hunt, J., & Guilford, J.P. (1933). Fluctuation of an ambiguous figure in dementia praecox and in manic depressive patients. Journal of Abnormale Social Psychology, 27, 443-452.
  63. Zeki, S.M. (1978). Functional specialisation in the visual cortex of the rhesus monkey. Nature, 274 (5670), 423-428.
  64. Stedelijk Dalton College te Zutphen (High School) Nature & Technology Work Experience Currently SMS-Coach.eu / inquire.nu Website application developer 2007-2008 Efocus-group / Medicore Functional designer 2007
  65. Baars, B.J. (1993). How does a serial, integrated and very limited stream of consciousness emerge from a nervous system that is mostly unconscious, distributed, parallel and of enormous capacity? Ciba Found Symp, 174, 282-290; discussion 291-303.
  66. Himmelheber, A.M., Sarter, M., & Bruno, J.P. (2000). Increases in cortical acetylcholine release during sustained attention performance in rats. Brain Res Cogn Brain Res, 9 (3), 313-325.
  67. Conrad, R., & Hull, A.J. (1964). Information, Acoustic confusion and memory span. Br J Psychol, 55, 429-432.
  68. Quiroga, R.Q., Reddy, L., Kreiman, G., Koch, C., & Fried, I. (2005). Invariant visual representation by single neurons in the human brain. Nature, 435 (7045), 1102-1107.
  69. Raisig, S., Welke, T., Hagendorf, H., & van der Meer, E. (2010). I spy with my little eye: detection of temporal violations in event sequences and the pupillary response. Int J Psychophysiol, 76 (1), 1-8.
  70. Utrecht University, Faculty of Social Sciences Advisor and mentor for 1 st year students Skills Computer Software MatLab, PHP/HTML/CSS/Javascript/MySQL, SPSS (statistics), Permap (MDS), Microsoft related software (office), Adobe related software (design) High School Courses Physics, Mathematics, Chemistry, Biology, Sociology, General Nature Sciences, Dutch, English, German, French, Latin, Greek Spoken Languages Dutch (Native), English (fluent), German (good) Written Languages Dutch (Native), English (very good), German (intermediate) Interests Soccer, squash (racket-ball), skiing, hiking, music Referees Prof. Dr. Wolfgang Einhaeuser-Treyer PhD Supervisor, Philipps-University Marburg, Faculty of Physics, Neurophysics wet@physik.uni-marburg.de, +49 6421 28 24164
  71. Ostwald, D., Lam, J.M., Li, S., & Kourtzi, Z. (2008). Neural coding of global form in the human visual cortex. J Neurophysiol, 99 (5), 2456-2469.
  72. Sterzer, P., Russ, M., Preibisch, C., & Kleinschmidt, A. (2002). Neural correlates of spontaneous direction reversals in ambiguous apparent visual motion. Neuroimage, 15 (4), 908-916.
  73. Sugie, N. (1982). Neural models of brightness perception and retinal rivalry in binocular vision. Biol Cybern, 43 (1), 13-21.
  74. Polonsky, A., Blake, R., Braun, J., & Heeger, D. (2000). Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry. Nat Neurosci, 3 (11), 1153-1159.
  75. Tanaka, M., Yoshida, M., Emoto, H., & Ishii, H. (2000). Noradrenaline systems in the hypothalamus, amygdala and locus coeruleus are involved in the provocation of anxiety: basic studies. Eur J Pharmacol, 405 (1-3), 397-406.
  76. Charney, D.S., Scheier, I.H., & Redmond, D.E. (1995). Noradrenergic neural substrates for anxiety and fear. In: F.E. Bloom, & D.J. Kupfer (Eds.), Psychopharmacology: the Fourth Generation of Progress. (pp. 387-396). New York: Raven Press.
  77. Crundall, D., Cole, G.G., & Galpin, A. (2007). Object-based attention is mediated by collinearity of targets. Q J Exp Psychol (Hove), 60 (1), 137-153.
  78. Necker, L.A. (1832). Observations on some remarkable phenomenon which occurs in viewing a figure of a crystal or geometrical solid. London and Edinburgh Phil Mag J Sci, 3, 329-337.
  79. Prof. Dr. Olivia Carter Internship & PhD Collaborator, University of Melbourne, Department of Psychology, School of Behavioral Sciences ocarter@unimelb.edu.au, +61 (0)3 83446372
  80. Levelt, W.J.M. (1965). On Binocular Rivalry. (Institute for Perception RVO-TNO.
  81. Breese, B.B. (1899). On inhibition. Psychological Monographs, 3, 1-65.
  82. Surname Naber Givenname Marnix Date / Place of Birth 23-10-1984 / The Netherlands Address Marburg, Germany Phone 0049 (0)17683200150
  83. Haynes, J., & Rees, G. (2005). Predicting the stream of consciousness from activity in human visual cortex. Curr Biol, 15 (14), 1301-1307.
  84. Ngo, T.T., Mitchell, P.B., Martin, N.G., & Miller, S.M. (2011). Psychiatric and genetic studies of binocular rivalry:an endophenotype for bipolar disorder? Acta Neuropsychiatrica, 23 (1), 37- 42.
  85. Kahneman, D., & Beatty, J. (1966). Pupil diameter and load on memory. Science, 154 (756), 1583- 1585.
  86. Privitera, C.M., Renninger, L.W., Carney, T., Klein, S., & Aguilar, M. (2010). Pupil dilation during visual target detection. Journal of Vision, 10 (10), 1-14.
  87. Simpson, H.M., & Hale, S.M. (1969). Pupillary changes during a decision-making task. Percept Mot Skills, 29 (2), 495-498.
  88. Cabestrero, R., Crespo, A., & Quirós, P. (2009). Pupillary dilation as an index of task demands. Percept Mot Skills, 109 (3), 664-678.
  89. Steinhauer, S.R., Boller, F., Zubin, J., & Pearlman, S. (1983). Pupillary dilation to emotional visual stimuli revisited. Psychophysiology, 20, 472.
  90. Andreassi, J.L. (2000). Pupillary response and behavior. In: J.L. Andreassi (Ed.) Psychophysiology: Human Behavior & Physiological Response. (Mahwah, New Jersey London: Lawrence Erlbaum Assoc.
  91. Verney, S.P., Granholm, E., & Dionisio, D.P. (2001). Pupillary responses and processing resources on the visual backward masking task. Psychophysiology, 38 (1), 76-83.
  92. Ahern, S., & Beatty, J. (1979). Pupillary responses during information processing vary with Scholastic Aptitude Test scores. Science, 205 (4412), 1289-1292.
  93. Janisse, M.-P. (1977). Pupillometry: The Psychology of the Pupillary Response. (Washington, D.C.: Washington, D.C.
  94. Yoss, R.E., Moyer, N.J., & Hollenhorst, R.W. (1970). Pupil size and spontaneous pupillary waves associated with alertness, drowsiness, and sleep. Neurology, 20 (6), 545-554.
  95. Bradshaw, J. (1967). Pupil size as a measure of arousal during information processing. Nature, 216 (5114), 515-516.
  96. Hess, E.H., & Polt, J.M. (1964). Pupil Size in Relation to Mental Activity during Simple Problem- Solving. Science, 143 (3611), 1190-1192.
  97. Bitsios, P., Szabadi, E., & Bradshaw, C.M. (2002). Relationship of the 'fear-inhibited light reflex' to the level of state/trait anxiety in healthy subjects. Int J Psychophysiol, 43 (2), 177-184.
  98. Sterzer, P., Eger, E., & Kleinschmidt, A. (2003). Responses of extrastriate cortex to switching perception of ambiguous visual motion stimuli. Neuroreport, 14 (18), 2337-2341.
  99. Stuit, S., Verstraten, F., & Paffen, C. (2010). Saliency in a suppressed image affects the spatial origin of perceptual alternations during binocular rivalry. Vision Res, 50 (19), 1913-1921.
  100. Livingstone, M., & Hubel, D. (1988). Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science, 240 (4853), 740-749.
  101. Paffen, C., & Van der Stigchel, S. (2010). Shifting spatial attention makes you flip: Exogenous visual attention triggers perceptual alternations during binocular rivalry. Atten Percept Psychophys, 72 (5), 1237-1243.
  102. Koch, C., & Ullman, S. (1985). Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol, 4 (4), 219-227.
  103. Miller, S.M., Gynther, B.D., Heslop, K.R., Liu, G.B., Mitchell, P.B., Ngo, T.T., Pettigrew, J.D., & Geffen, L.B. (2003). Slow binocular rivalry in bipolar disorder. Psychol Med, 33 (4), 683-692.
  104. Alcmaeon, Society of Faculty of Social Sciences Chairman and PR in several organizational commissions 2004-2005
  105. Campbell, F.W., Gilinsky, A.S., Howell, E.R., Riggs, L.A., & Atkinson, J. (1973). The dependence of monocular rivalry on orientation. Perception, 123-125.
  106. Matsuoka, K. (1984). The dynamic model of binocular rivalry. Biol Cybern, 49 (3), 201-208.
  107. Reinhard, G., & Lachnit, H. (2002b). The effect of stimulus probability on pupillary response as an indicator of cognitive processing in human learning and categorization. Biol Psychol, 60 (2-3), 199-215.
  108. Llinás, R., Ribary, U., Contreras, D., & Pedroarena, C. (1998). The neuronal basis for consciousness. Philos Trans R Soc Lond B Biol Sci, 353 (1377), 1841-1849.
  109. Steinhauer, S.R., & Hakerem, G. (1992). The pupillary response in cognitive psychophysiology and schizophrenia. Ann N Y Acad Sci, 658, 182-204.
  110. Beatty, J., & Lucero-Wagoner, B. (2000). The Pupillary System. In: J.T. Cacioppo, G. Berntson, & L.G. Tassinar (Eds.), Handbook of Psychophysiology (pp. 142-162): Cambridge University Press.
  111. Hasselmo, M.E. (2006). The role of acetylcholine in learning and memory. Curr Opin Neurobiol, 16 (6), 710-715.
  112. Holmes, J.M., Repka, M.X., Kraker, R.T., & Clarke, M.P. (2006). The treatment of amblyopia. Strabismus, 14 (1), 37-42.
  113. Dehaene, S., & Naccache, L. (2001). Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition, 79 (1-2), 1-37.
  114. Lamme, V.A. (2006). Towards a true neural stance on consciousness. Trends Cogn Sci, 10 (11), 494- 501.
  115. Nagai, M., Wada, M., & Sunaga, N. (2002). Trait anxiety affects the pupillary light reflex in college students. Neurosci Lett, 328 (1), 68-70.
  116. Schröder, H. (1858). Ueber eine optische Inversion bei Betrachtung verkehrter, durch optische Vorrichtung entworfener physischer Bilder. Annalen der Physik und Chemie, 181, 298-311.
  117. Harvard University, Vision Sciences Laboratory Post-doc, funded by the NWO-Rubicon Grant 2008-2012
  118. Blake, R., & Logothetis, N. (2002). Visual competition. Nat Rev Neurosci, 3 (1), 13-21.
  119. Logothetis, N.K., & Sheinberg, D.L. (1996). Visual object recognition. Annu Rev Neurosci, 19, 577- 621.
  120. Hall, J.E., Uhrich, T.D., & Ebert, T.J. (2001). Sedative, analgesic and cognitive effects of clonidine infusions in humans. Br J Anaesth, 86 (1), 5-11.
  121. Boring , E.G. (1930). A new ambiguous figure. American Journal of Psychology, 42, 444.
  122. Van Noorden, L. (1975). Temporal coherence in the perception of tone sequences. (Eindhoven, The Netherlands: Eindhoven University of Technology.
  123. O'Shea, R.P., Sims, A.J., & Govan, D.G. (1997). The effect of spatial frequency and field size on the spread of exclusive visibility in binocular rivalry. Vision Res, 37 (2), 175-183.
  124. Beatty, J., & Wagoner, B.L. (1978). Pupillometric signs of brain activation vary with level of cognitive processing. Science, 199 (4334), 1216-1218.
  125. Granholm, E., Asarnow, R.F., Sarkin, A.J., & Dykes, K.L. (1996). Pupillary responses index cognitive resource limitations. Psychophysiology, 33 (4), 457-461.
  126. Wang, J.T., Spezio, M., & Camerer, C.F. (2006). Pinocchio's Pupil: Using Eyetracking and Pupil Dilation To Understand Truth-telling and Deception in Games. American Economic Review, 100, 984-1007.
  127. Prettyman, R., Bitsios, P., & Szabadi, E. (1997). Altered pupillary size and darkness and light reflexes in Alzheimer's disease. J Neurol Neurosurg Psychiatry, 62 (6), 665-668.
  128. Castelo-Branco, M., Formisano, E., Backes, W., Zanella, F., Neuenschwander, S., Singer, W., & Goebel, R. (2002). Activity patterns in human motion-sensitive areas depend on the interpretation of global motion. Proc Natl Acad Sci U S A, 99 (21), 13914-13919.
  129. Loewenfeld, I., & Lowenstein, O. (1993). The Pupil: Anatomy, Physiology, and Clinical Applications. (Detroit: Wayne State Univ Press.
  130. Ishai, A., Ungerleider, L.G., Martin, A., Schouten, J.L., & Haxby, J.V. (1999). Distributed representation of objects in the human ventral visual pathway. Proc Natl Acad Sci U S A, 96 (16), 9379-9384.
  131. Wilke, M., Logothetis, N., & Leopold, D. (2006). Local field potential reflects perceptual suppression in monkey visual cortex. Proc Natl Acad Sci U S A, 103 (46), 17507-17512.
  132. Squire, L.R., Wixted, J.T., & Clark, R.E. (2007). Recognition memory and the medial temporal lobe: a new perspective. Nat Rev Neurosci, 8 (11), 872-883.
  133. Krug, K., Brunskill, E., Scarna, A., Goodwin, G.M., & Parker, A.J. (2008). Perceptual switch rates with ambiguous structure-from-motion figures in bipolar disorder. Proc Biol Sci, 275 (1645), 1839-1848.
  134. Seol, G.H., Ziburkus, J., Huang, S., Song, L., Kim, I.T., Takamiya, K., Huganir, R.L., Lee, H.K., & Kirkwood, A. (2007). Neuromodulators control the polarity of spike-timing-dependent synaptic plasticity. Neuron, 55 (6), 919-929.
  135. Roelfsema, P.R., van Ooyen, A., & Watanabe, T. (2010). Perceptual learning rules based on reinforcers and attention. Trends Cogn Sci, 14 (2), 64-71.
  136. Wilson, H. (2003). Computational evidence for a rivalry hierarchy in vision. Proc Natl Acad Sci U S A, 100 (24), 14499-14503.
  137. Zhou, W., & Chen, D. (2009). Binaral rivalry between the nostrils and in the cortex. Curr Biol, 19 (18), 1561-1565.
  138. Alais, D., Cass, J., O'Shea, R., & Blake, R. (2010). Visual sensitivity underlying changes in visual consciousness. Curr Biol, 20 (15), 1362-1367.
  139. Gerardin, P., Kourtzi, Z., & Mamassian, P. (2010). Prior knowledge of illumination for 3D perception in the human brain. Proc Natl Acad Sci U S A, 107 (37), 16309-16314.
  140. Kanai, R., Bahrami, B., & Rees, G. (2010). Human parietal cortex structure predicts individual differences in perceptual rivalry. Curr Biol, 20 (18), 1626-1630.
  141. Bakin, J.S., & Weinberger, N.M. (1996). Induction of a physiological memory in the cerebral cortex by stimulation of the nucleus basalis. Proc Natl Acad Sci U S A, 93 (20), 11219-11224.
  142. Bai, L., Huang, X., Yang, Q., & Wu, J.Y. (2006). Spatiotemporal patterns of an evoked network oscillation in neocortical slices: coupled local oscillators. J Neurophysiol, 96 (5), 2528-2538.
  143. Mark, G.P., Shabani, S., Dobbs, L.K., & Hansen, S.T. (2011). Cholinergic modulation of mesolimbic dopamine function and reward. Physiol Behav, 104 (1), 76-81.
  144. Juliano, S.L., Ma, W., & Eslin, D. (1991). Cholinergic depletion prevents expansion of topographic maps in somatosensory cortex. Proc Natl Acad Sci U S A, 88 (3), 780-784.
  145. Beets, I.A., 't Hart, B.M., Rösler, F., Henriques, D.Y., Einhäuser, W., & Fiehler, K. (2010). Online action-to-perception transfer: only percept-dependent action affects perception. Vision Res, 50(24), 2633-2641
  146. Roelfsema, P.R. (2006). Cortical algorithms for perceptual grouping. Annu Rev Neurosci, 29, 203-227.
  147. Preuschoff, K., 't Hart, B.M., & Einhäuser, W. (2011). Pupil dilation signals surprise: evidence for noradrenaline " s role in decision making. Frontiers in Decision Neuroscience, 5 (115)
  148. Einhäuser, W., Koch, C., & Carter, O. (2010). Pupil dilation betrays the timing of decisions. Front Hum Neurosci, 4, 18.
  149. Hupé, J.M., Joffo, L.M., & Pressnitzer, D. (2008). Bistability for audiovisual stimuli: Perceptual decision is modality specific. J Vis, 8 (7), 1.1-15.
  150. Hupé, J., Lamirel, C., & Lorenceau, J. (2009). Pupil dynamics during bistable motion perception. J Vis, 9 (7), 10.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten