Publikationsserver der Universitätsbibliothek Marburg

Titel:Regulation der Sporenzahl durch Bicarbonat und den cAMP/PKA-Signaltransduktionsweg in Saccharomyces cerevisiae
Autor:Jungbluth, Marc
Weitere Beteiligte: Mösch, Hans-Ulrich (Prof. Dr.)
Veröffentlicht:2011
URI:https://archiv.ub.uni-marburg.de/diss/z2011/0665
DOI: https://doi.org/10.17192/z2011.0665
URN: urn:nbn:de:hebis:04-z2011-06650
DDC: Biowissenschaften, Biologie
Titel(trans.):Regulation of spore numbers by bicarbonate and the cAMP/PKA signaling pathway in Saccharomyces cerevisiae
Publikationsdatum:2011-12-21
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Signaling, Bicarbonat, Regulation der Sporenzahl, cAMP/PKA-Signaltransduktionsweg, Sporenbildung, Pilzspore, bicarbonate, regulation of spore numbers, Meiose, Saccharomyces cerevisiae, Cyclo-AMP, Proteinkinase A, cAMP/PKA signaling pathway

Zusammenfassung:
Die Sporulation in Saccharomyces cerevisiae wird unter spezifischen Nährstoffmangelbedingungen induziert und setzt sich aus der Meiose und anschließenden Bildung von Ascosporen zusammen. Im Laufe der Sporulation entsteht aus einer diploiden Mutterzelle ein Ascus, der bis zu vier Ascosporen enthalten kann. Die Zahl der gebildeten Sporen hängt von der Nährstoffsituation ab, die maximale Anzahl von vier Sporen pro Zelle wird nur gebildet, wenn genügend Nährstoffe, zum Beispiel Kaliumacetat, zur Verfügung stehen. Diese Anpassung der Sporenzahl an die Nährstoffbedingungen wird Sporenzahlkontrolle genannt. Es ist nicht bekannt, wie das Nährstoffsignal wahrgenommen und in eine Adaption der Sporenzahl umgesetzt wird. In dieser Arbeit konnte gezeigt werden, dass der cAMP/PKA-Signaltransduktionsweg, der essentiell für das vegetative Wachstum und die Initiation der Sporulation ist, auch an der Regulation der Sporenzahl beteiligt ist. Um Schlüsselkomponenten des Signaltransduktionsweges gezielt während der Meiose auszuschalten, wurde eine Methode so modifiziert, dass sie die Meiose-spezifische Destabilisierung von Proteinen erlaubt. Auf diese Weise konnte gezeigt werden, dass der cAMP/PKA-Signaltransduktionsweg einen negativen Einfluss auf die Sporenbildung hat. Die erhobenen Daten deuten daraufhin, dass die Aktivität der Adenylylzyklase Cyr1 während des vegetativen Wachstums durch Bicarbonat positiv, während der Sporulation hingegen negativ beeinflusst wird. Weiterhin hat sich gezeigt, dass neben der Modulation auch die zeitliche Koordinierung der PKA-Aktivität wichtig für die Sporenzahlkontrolle ist. Zusätzlich konnte ein Zusammenhang zwischen geringer PKA-Aktivität und einer Erhöhung der Zell- und Ascusgröße aufgestellt werden. Ein mögliches, während der Meiose von PKA reguliertes Ziel ist das Protein Ady1. Es konnte eine genetische Interaktion zwischen Ady1 und Komponenten des Spindelpolkörpers identifiziert werden. Zusammenfassend hat diese Arbeit gezeigt, dass die Aktivität des cAMP/PKA-Signaltransduktionsweges während der Sporulation durch die Ras-Proteine und Bicarbonat reguliert wird. Auf diese Weise erzeugen unterschiedliche Acetatmengen unterschiedlich hohe PKA-Aktivität, was zu einer Anpassung der Sporenzahl an die Nährstoffbedingungen führt.

Summary:
Sporulation in Saccharomyces cerevisiae is induced under specific conditions of nutrient deficiency and consists of meiosis and the subsequent formation of ascospores. In the course of sporulation a diploid mother cell transforms into an ascus, which contains up to four ascospores. The number of spores formed depends on the nutritional situation, the maximum number of four spores per cell is only formed when adequate nutrients, for example potassium acetate, are available. This adjustment of spore numbers to the nutrient conditions is called spore number control. It is not known how the nutrient signal is perceived and converted into an adaptation of spore numbers. In this study it was shown that the cAMP/PKA signaling pathway, which is essential for vegetative growth and the initiation of sporulation, is also involved in the regulation of spore numbers. To inactivate key components of the signal transduction pathway during meiosis, a method was modified to allow meiosis-specific destabilization of proteins. Using this method it was shown that the cAMP/PKA signaling pathway has a negative influence on spore formation. The data collected indicate that the activity of the adenylyl cyclase Cyr1 is influenced by bicarbonate positively during vegetative growth and negatively during sporulation. Furthermore, it has been shown that in addition to the modulation, the temporal coordination of PKA activity is important for spore number control. Additionaly to the influence on spore number control, a correlation between low PKA activity and an increase in cell and ascus size was identified. A possible, meiosis specific target of PKA is the protein Ady1. A genetic interaction between Ady1 and components of the spindle pole bodies was identified. In summary, this work has shown that the activity of the cAMP/PKA signaling pathway is regulated by the Ras proteins and bicarbonate during sporulation. By this, varying acetate concentrations lead to differences in PKA activity, which consequently lead to the adjustment of spore numbers to the nutrient conditions.

Bibliographie / References

  1. Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.
  2. Ptacek, J., Devgan, G., Michaud, G., Zhu, H., Zhu, X., Fasolo, J., Guo, H., Jona, G., Breitkreutz, A., Sopko, R., et al. (2005). Global analysis of protein phosphorylation in yeast. Nature 438, 679-684.
  3. Uno, I., Matsumoto, K., Hirata, A., and Ishikawa, T. (1985). Outer plaque assembly and spore encapsulation are defective during sporulation of adenylate cyclase-deficient mutants of Saccharomyces cerevisiae. J Cell Biol 100, 1854-1862.
  4. The Sch9 protein kinase in the yeast Saccharomyces cerevisiae controls cAPK activity and is Hardwick, J.S., Kuruvilla, F.G., Tong, J.K., Shamji, A.F., and Schreiber, S.L. (1999). Rapamycin- modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc Natl Acad Sci U S A 96, 14866-14870.
  5. Paiva, S., Devaux, F., Barbosa, S., Jacq, C., and Casal, M. (2004). Ady2p is essential for the acetate permease activity in the yeast Saccharomyces cerevisiae. Yeast 21, 201-210.
  6. Purnapatre, K., Piccirillo, S., Schneider, B.L., and Honigberg, S.M. (2002). The CLN3/SWI6/CLN2 pathway and SNF1 act sequentially to regulate meiotic initiation in Saccharomyces cerevisiae. Genes Cells 7, 675-691.
  7. Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae.
  8. Martin, D.E., Soulard, A., and Hall, M.N. (2004). TOR regulates ribosomal protein gene expression via PKA and the Forkhead transcription factor FHL1. Cell 119, 969-979.
  9. Thevelein, J.M., Gelade, R., Holsbeeks, I., Lagatie, O., Popova, Y., Rolland, F., Stolz, F., Van de Velde, S., Van Dijck, P., Vandormael, P., et al. (2005). Nutrient sensing systems for rapid activation of the protein kinase A pathway in yeast. Biochem Soc Trans 33, 253-256.
  10. Marion, R.M., Regev, A., Segal, E., Barash, Y., Koller, D., Friedman, N., and O'Shea, E.K. (2004). Sfp1 is a stress-and nutrient-sensitive regulator of ribosomal protein gene expression. Proc Natl Acad Sci U S A 101, 14315-14322.
  11. Mosch, H.U., Kubler, E., Krappmann, S., Fink, G.R., and Braus, G.H. (1999). Crosstalk between the Ras2p-controlled mitogen-activated protein kinase and cAMP pathways during invasive growth of Saccharomyces cerevisiae. Mol Biol Cell 10, 1325-1335.
  12. Teixeira, M.C., Monteiro, P., Jain, P., Tenreiro, S., Fernandes, A.R., Mira, N.P., Alenquer, M., Freitas, A.T., Oliveira, A.L., and Sa-Correia, I. (2006). The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Res 34, D446-451.
  13. Jorgensen, P., Rupes, I., Sharom, J.R., Schneper, L., Broach, J.R., and Tyers, M. (2004). A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes Dev 18, 2491-2505.
  14. Olesen, J.T., and Guarente, L. (1990). The HAP2 subunit of yeast CCAAT transcriptional activator contains adjacent domains for subunit association and DNA recognition: model for the HAP2/3/4 complex. Genes Dev 4, 1714-1729.
  15. Covitz, P.A., Herskowitz, I., and Mitchell, A.P. (1991). The yeast RME1 gene encodes a putative zinc finger protein that is directly repressed by a1-alpha 2. Genes Dev 5, 1982-1989.
  16. Krisak, L., Strich, R., Winters, R.S., Hall, J.P., Mallory, M.J., Kreitzer, D., Tuan, R.S., and Winter, E. (1994). SMK1, a developmentally regulated MAP kinase, is required for spore wall assembly in Saccharomyces cerevisiae. Genes Dev 8, 2151-2161.
  17. Strich, R., Surosky, R.T., Steber, C., Dubois, E., Messenguy, F., and Esposito, R.E. (1994). UME6 is a key regulator of nitrogen repression and meiotic development. Genes Dev 8, 796-810.
  18. McNabb, D.S., Xing, Y., and Guarente, L. (1995). Cloning of yeast HAP5: a novel subunit of a heterotrimeric complex required for CCAAT binding. Genes Dev 9, 47-58.
  19. Jorgensen, P., Nishikawa, J.L., Breitkreutz, B.J., and Tyers, M. (2002). Systematic identification of pathways that couple cell growth and division in yeast. Science 297, 395-400.
  20. Shimoda, C. (2004). Forespore membrane assembly in yeast: coordinating SPBs and membrane trafficking. J Cell Sci 117, 389-396.
  21. Collins, T.J. (2007). ImageJ for microscopy. Biotechniques 43, 25-30.
  22. Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell 73, 585-596.
  23. Wach, A., Brachat, A., Pohlmann, R., and Philippsen, P. (1994). New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10, 1793-1808.
  24. Spadaccini, R., Reidt, U., Dybkov, O., Will, C., Frank, R., Stier, G., Corsini, L., Wahl, M.C., Luhrmann, R., and Sattler, M. (2006). Biochemical and NMR analyses of an SF3b155-p14-U2AF-RNA interaction network involved in branch point definition during pre-mRNA splicing. RNA 12, 410-425.
  25. Janke, C., Magiera, M.M., Rathfelder, N., Taxis, C., Reber, S., Maekawa, H., Moreno-Borchart, A., Doenges, G., Schwob, E., Schiebel, E., et al. (2004). A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947-962.
  26. Strijbis, K., and Distel, B. (2010). Intracellular acetyl unit transport in fungal carbon metabolism. Eukaryot Cell 9, 1809-1815.
  27. Taxis, C., Stier, G., Spadaccini, R., and Knop, M. (2009). Efficient protein depletion by genetically controlled deprotection of a dormant N-degron. Mol Syst Biol 5, 267.
  28. Makuc, J., Paiva, S., Schauen, M., Kramer, R., Andre, B., Casal, M., Leao, C., and Boles, E. (2001). The putative monocarboxylate permeases of the yeast Saccharomyces cerevisiae do not transport monocarboxylic acids across the plasma membrane. Yeast 18, 1131-1143.
  29. Leadsham, J.E., and Gourlay, C.W. (2010). cAMP/PKA signaling balances respiratory activity with mitochondria dependent apoptosis via transcriptional regulation. BMC Cell Biol 11, 92.
  30. Johnston, M., and Carlson, M. (1992). 5 Regulation of Carbon and Phosphate Utilization.
  31. Mitchell, A.P., and Herskowitz, I. (1986). Activation of meiosis and sporulation by repression of the RME1 product in yeast. Nature 319, 738-742.
  32. Nonfilamentous C. albicans mutants are avirulent. Cell 90, 939-949.
  33. Lamb, T.M., Xu, W., Diamond, A., and Mitchell, A.P. (2001). Alkaline response genes of Saccharomyces cerevisiae and their relationship to the RIM101 pathway. J Biol Chem 276, 1850- 1856.
  34. Vanhalewyn, M., Dumortier, F., Debast, G., Colombo, S., Ma, P., Winderickx, J., Van Dijck, P., and Thevelein, J.M. (1999). A mutation in Saccharomyces cerevisiae adenylate cyclase, Cyr1K1876M, specifically affects glucose-and acidification-induced cAMP signalling and not the basal cAMP level. Mol Microbiol 33, 363-376.
  35. Hayashi, M., Ohkuni, K., and Yamashita, I. (1998b). An extracellular meiosis-promoting factor in Saccharomyces cerevisiae. Yeast 14, 617-622.
  36. Kraakman, L., Lemaire, K., Ma, P., Teunissen, A.W., Donaton, M.C., Van Dijck, P., Winderickx, J., de Winde, J.H., and Thevelein, J.M. (1999). A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Mol Microbiol 32, 1002-1012.
  37. Neiman, A.M. (2005). Ascospore formation in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 69, 565-584.
  38. Tesfaigzi, J., Smith-Harrison, W., and Carlson, D.M. (1994). A simple method for reusing western blots on PVDF membranes. Biotechniques 17, 268-269.
  39. Ohkuni, K., and Yamashita, I. (2000). A transcriptional autoregulatory loop for KIN28-CCL1 and SRB10-SRB11, each encoding RNA polymerase II CTD kinase-cyclin pair, stimulates the meiotic development of S. cerevisiae. Yeast 16, 829-846.
  40. Stack, J.H., Whitney, M., Rodems, S.M., and Pollok, B.A. (2000). A ubiquitin-based tagging system for controlled modulation of protein stability. Nat Biotechnol 18, 1298-1302.
  41. Werner-Washburne, M., Brown, D., and Braun, E. (1991). Bcy1, the regulatory subunit of cAMP- dependent protein kinase in yeast, is differentially modified in response to the physiological status of the cell. J Biol Chem 266, 19704-19709.
  42. Ohkuni, K., Hayashi, M., and Yamashita, I. (1998). Bicarbonate-mediated social communication stimulates meiosis and sporulation of Saccharomyces cerevisiae. Yeast 14, 623-631.
  43. Hoyt, M.A. (1994). Cellular roles of kinesin and related proteins. Curr Opin Cell Biol 6, 63-68.
  44. Ptacek, J., and Snyder, M. (2006). Charging it up: global analysis of protein phosphorylation. Trends Genet 22, 545-554.
  45. Nikawa, J., Sass, P., and Wigler, M. (1987). Cloning and characterization of the low-affinity cyclic AMP phosphodiesterase gene of Saccharomyces cerevisiae. Mol Cell Biol 7, 3629-3636.
  46. Simchen, G. (2009). Commitment to meiosis: what determines the mode of division in budding yeast? Bioessays 31, 169-177.
  47. Hayashi, M., Ohkuni, K., and Yamashita, I. (1998a). Control of division arrest and entry into meiosis by extracellular alkalisation in Saccharomyces cerevisiae. Yeast 14, 905-913.
  48. Mitchell, A.P. (1994). Control of meiotic gene expression in Saccharomyces cerevisiae. Microbiol Rev 58, 56-70.
  49. Chen, J.C., and Powers, T. (2006). Coordinate regulation of multiple and distinct biosynthetic pathways by TOR and PKA kinases in S. cerevisiae. Curr Genet 49, 281-293.
  50. Johnston, G.C., Pringle, J.R., and Hartwell, L.H. (1977). Coordination of growth with cell division in the yeast Saccharomyces cerevisiae. Exp Cell Res 105, 79-98.
  51. Janbon, G. (2004). Cryptococcus neoformans capsule biosynthesis and regulation. FEMS Yeast Res 4, 765-771.
  52. van der Plaat, J.B. (1974). Cyclic 3',5'-adenosine monophosphate stimulates trehalose degradation in baker's yeast. Biochem Biophys Res Commun 56, 580-587.
  53. Hedbacker, K., Townley, R., and Carlson, M. (2004). Cyclic AMP-dependent protein kinase regulates the subcellular localization of Snf1-Sip1 protein kinase. Mol Cell Biol 24, 1836-1843.
  54. Tudisca, V., Recouvreux, V., Moreno, S., Boy-Marcotte, E., Jacquet, M., and Portela, P. (2010). Differential localization to cytoplasm, nucleus or P-bodies of yeast PKA subunits under different growth conditions. Eur J Cell Biol 89, 339-348.
  55. Smits, G.J., van den Ende, H., and Klis, F.M. (2001). Differential regulation of cell wall biogenesis during growth and development in yeast. Microbiology 147, 781-794.
  56. Mnaimneh, S., Davierwala, A.P., Haynes, J., Moffat, J., Peng, W.T., Zhang, W., Yang, X., Pootoolal, J., Chua, G., Lopez, A., et al. (2004). Exploration of essential gene functions via titratable promoter alleles. Cell 118, 31-44.
  57. Thevelein, J.M. (1991). Fermentable sugars and intracellular acidification as specific activators of the RAS-adenylate cyclase signalling pathway in yeast: the relationship to nutrient-induced cell cycle control. Mol Microbiol 5, 1301-1307.
  58. Moens, P.B. (1971). Fine structure of ascospore development in the yeast Saccharomyces cerevisiae. Can J Microbiol 17, 507-510.
  59. Watson, D.C., and Berry, D.R. (1977). Fluctuation in the levels of intracellular and extracellular cAMP during sporulation in Saccharomyces cerevisiae. FEMS Microbiology Letters 1, 83-86.
  60. Chu, S., and Herskowitz, I. (1998). Gametogenesis in yeast is regulated by a transcriptional cascade dependent on Ndt80. Mol Cell 1, 685-696.
  61. Hartwell, L.H., Culotti, J., Pringle, J.R., and Reid, B.J. (1974). Genetic control of the cell division cycle in yeast. Science 183, 46-51.
  62. Sherman, F. (2002). Getting started with yeast. Methods Enzymol 350, 3-41.
  63. Huh, W.K., Falvo, J.V., Gerke, L.C., Carroll, A.S., Howson, R.W., Weissman, J.S., and O'Shea, E.K. (2003). Global analysis of protein localization in budding yeast. Nature 425, 686-691.
  64. Rolland, F., De Winde, J.H., Lemaire, K., Boles, E., Thevelein, J.M., and Winderickx, J. (2000). Glucose- induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process. Mol Microbiol 38, 348- 358.
  65. Ordiz, I., Herrero, P., Rodicio, R., and Moreno, F. (1996). Glucose-induced inactivation of isocitrate lyase in Saccharomyces cerevisiae is mediated by the cAMP-dependent protein kinase catalytic subunits Tpk1 and Tpk2. FEBS Lett 385, 43-46.
  66. Wilson, W.A., Hawley, S.A., and Hardie, D.G. (1996). Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio. Curr Biol 6, 1426-1434.
  67. Ronne, H. (1995). Glucose repression in fungi. Trends Genet 11, 12-17.
  68. Kubler, E., Mosch, H.U., Rupp, S., and Lisanti, M.P. (1997). Gpa2p, a G-protein alpha-subunit, regulates growth and pseudohyphal development in Saccharomyces cerevisiae via a cAMP-dependent mechanism. J Biol Chem 272, 20321-20323.
  69. Kraakman, L.S., Griffioen, G., Zerp, S., Groeneveld, P., Thevelein, J.M., Mager, W.H., and Planta, R.J. (1993). Growth-related expression of ribosomal protein genes in Saccharomyces cerevisiae. Mol Gen Genet 239, 196-204.
  70. Zaman, S., Lippman, S.I., Zhao, X., and Broach, J.R. (2008). How Saccharomyces responds to nutrients. Annu Rev Genet 42, 27-81.
  71. Hoekstra, M.F., Liskay, R.M., Ou, A.C., DeMaggio, A.J., Burbee, D.G., and Heffron, F. (1991). HRR25, a putative protein kinase from budding yeast: association with repair of damaged DNA. Science 253, 1031-1034.
  72. Jaiswal, B.S., and Conti, M. (2001). Identification and functional analysis of splice variants of the germ cell soluble adenylyl cyclase. J Biol Chem 276, 31698-31708.
  73. Su, S.S., and Mitchell, A.P. (1993). Identification of functionally related genes that stimulate early meiotic gene expression in yeast. Genetics 133, 67-77.
  74. Kassir, Y., Granot, D., and Simchen, G. (1988). IME1, a positive regulator gene of meiosis in S. cerevisiae. Cell 52, 853-862.
  75. Shah, J.C., and Clancy, M.J. (1992). IME4, a gene that mediates MATand nutritional control of meiosis in Saccharomyces cerevisiae. Mol Cell Biol 12, 1078-1086.
  76. Matsumoto, K., Uno, I., and Ishikawa, T. (1983). Initiation of meiosis in yeast mutants defective in adenylate cyclase and cyclic AMP-dependent protein kinase. Cell 32, 417-423.
  77. Willis, I.M., and Moir, R.D. (2007). Integration of nutritional and stress signaling pathways by Maf1. Trends Biochem Sci 32, 51-53.
  78. Kirschner, M. (1999). Intracellular proteolysis. Trends Cell Biol 9, M42-45.
  79. Colombo, S., Ma, P., Cauwenberg, L., Winderickx, J., Crauwels, M., Teunissen, A., Nauwelaers, D., de Winde, J.H., Gorwa, M.F., Colavizza, D., et al. (1998). Involvement of distinct G-proteins, Gpa2 and Ras, in glucose-and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae. EMBO J 17, 3326-3341.
  80. Toda, T., Uno, I., Ishikawa, T., Powers, S., Kataoka, T., Broek, D., Cameron, S., Broach, J., Matsumoto, K., and Wigler, M. (1985). In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell 40, 27-36.
  81. Matsumoto, K., Uno, I., Oshima, Y., and Ishikawa, T. (1982). Isolation and characterization of yeast mutants deficient in adenylate cyclase and cAMP-dependent protein kinase. Proc Natl Acad Sci U S A 79, 2355-2359.
  82. Peterson, J.B., Gray, R.H., and Ris, H. (1972). Meiotic spindle plaques in Saccharomyces cerevisiae. J Cell Biol 53, 837-841.
  83. Lundh, F., Mouillon, J.M., Samyn, D., Stadler, K., Popova, Y., Lagerstedt, J.O., Thevelein, J.M., and Persson, B.L. (2009). Molecular mechanisms controlling phosphate-induced downregulation of the yeast Pho84 phosphate transporter. Biochemistry 48, 4497-4505.
  84. Wullschleger, S., Loewith, R., Oppliger, W., and Hall, M.N. (2005). Molecular organization of target of rapamycin complex 2. J Biol Chem 280, 30697-30704.
  85. Petronczki, M., Matos, J., Mori, S., Gregan, J., Bogdanova, A., Schwickart, M., Mechtler, K., Shirahige, K., Zachariae, W., and Nasmyth, K. (2006). Monopolar attachment of sister kinetochores at meiosis I requires casein kinase 1. Cell 126, 1049-1064.
  86. Jeanmougin, F., Thompson, J.D., Gouy, M., Higgins, D.G., and Gibson, T.J. (1998). Multiple sequence alignment with Clustal X. Trends Biochem Sci 23, 403-405.
  87. Kuret, J., Johnson, K.E., Nicolette, C., and Zoller, M.J. (1988). Mutagenesis of the regulatory subunit of yeast cAMP-dependent protein kinase. Isolation of site-directed mutants with altered binding affinity for catalytic subunit. J Biol Chem 263, 9149-9154.
  88. Pichova, A., Vondrakova, D., and Breitenbach, M. (1997). Mutants in the Saccharomyces cerevisiae RAS2 gene influence life span, cytoskeleton, and regulation of mitosis. Can J Microbiol 43, 774-781.
  89. Thevelein, J.M., and de Winde, J.H. (1999). Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 33, 904-918.
  90. Hartley, J.L., and Donelson, J.E. (1980). Nucleotide sequence of the yeast plasmid. Nature 286, 860-865.
  91. Murakami, Y., Matsufuji, S., Kameji, T., Hayashi, S., Igarashi, K., Tamura, T., Tanaka, K., and Ichihara, A. (1992). Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature 360, 597-599.
  92. Leberer, E., Thomas, D.Y., and Whiteway, M. (1997). Pheromone signalling and polarized morphogenesis in yeast. Curr Opin Genet Dev 7, 59-66.
  93. Moreno-Borchart, A.C., and Knop, M. (2003). Prospore membrane formation: how budding yeast gets shaped in meiosis. Microbiol Res 158, 83-90.
  94. Pickart, C.M., and Cohen, R.E. (2004). Proteasomes and their kin: proteases in the machine age. Nat Rev Mol Cell Biol 5, 177-187.
  95. Hlavata, L., and Nystrom, T. (2003). Ras proteins control mitochondrial biogenesis and function in Saccharomyces cerevisiae. Folia Microbiol (Praha) 48, 725-730.
  96. Zhang, Z., and Reese, J.C. (2004). Redundant mechanisms are used by Ssn6-Tup1 in repressing chromosomal gene transcription in Saccharomyces cerevisiae. J Biol Chem 279, 39240-39250.
  97. Swiegers, J.H., Pretorius, I.S., and Bauer, F.F. (2006). Regulation of respiratory growth by Ras: the glyoxylate cycle mutant, cit2Delta, is suppressed by RAS2. Curr Genet 50, 161-171.
  98. McCartney, R.R., and Schmidt, M.C. (2001). Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit. J Biol Chem 276, 36460-36466.
  99. Piekarska, I., Rytka, J., and Rempola, B. (2010). Regulation of sporulation in the yeast Saccharomyces cerevisiae. Acta Biochim Pol 57, 241-250.
  100. Smith, H.E., Su, S.S., Neigeborn, L., Driscoll, S.E., and Mitchell, A.P. (1990). Role of IME1 expression in regulation of meiosis in Saccharomyces cerevisiae. Mol Cell Biol 10, 6103-6113.
  101. Levine, K., Huang, K., and Cross, F.R. (1996). Saccharomyces cerevisiae G1 cyclins differ in their intrinsic functional specificities. Mol Cell Biol 16, 6794-6803.
  102. Schneper, L., Duvel, K., and Broach, J.R. (2004). Sense and sensibility: nutritional response and signal integration in yeast. Curr Opin Microbiol 7, 624-630.
  103. Inoki, K., Ouyang, H., Li, Y., and Guan, K.L. (2005). Signaling by target of rapamycin proteins in cell growth control. Microbiol Mol Biol Rev 69, 79-100.
  104. Honigberg, S.M., and Purnapatre, K. (2003). Signal pathway integration in the switch from the mitotic cell cycle to meiosis in yeast. J Cell Sci 116, 2137-2147.
  105. Pan, X., Harashima, T., and Heitman, J. (2000). Signal transduction cascades regulating pseudohyphal differentiation of Saccharomyces cerevisiae. Curr Opin Microbiol 3, 567-572.
  106. Thevelein, J.M. (1994). Signal transduction in yeast. Yeast 10, 1753-1790.
  107. Chen, Y., Cann, M.J., Litvin, T.N., Iourgenko, V., Sinclair, M.L., Levin, L.R., and Buck, J. (2000). Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289, 625-628.
  108. Moens, P.B., and Rapport, E. (1971). Spindles, spindle plaques, and meiosis in the yeast Saccharomyces cerevisiae (Hansen). J Cell Biol 50, 344-361.
  109. Taxis, C., Keller, P., Kavagiou, Z., Jensen, L.J., Colombelli, J., Bork, P., Stelzer, E.H., and Knop, M. (2005). Spore number control and breeding in Saccharomyces cerevisiae: a key role for a self- organizing system. J Cell Biol 171, 627-640.
  110. Simchen, G., Pinon, R., and Salts, Y. (1972). Sporulation in Saccharomyces cerevisiae: premeiotic DNA synthesis, readiness and commitment. Exp Cell Res 75, 207-218.
  111. Takeuchi, J., Chen, H., Hoyt, M.A., and Coffino, P. (2008). Structural elements of the ubiquitin- independent proteasome degron of ornithine decarboxylase. Biochem J 410, 401-407.
  112. Wigler, M., Field, J., Powers, S., Broek, D., Toda, T., Cameron, S., Nikawa, J., Michaeli, T., Colicelli, J., and Ferguson, K. (1988). Studies of RAS function in the yeast Saccharomyces cerevisiae. Cold Spring Harb Symp Quant Biol 53 Pt 2, 649-655.
  113. Xie, J., Pierce, M., Gailus-Durner, V., Wagner, M., Winter, E., and Vershon, A.K. (1999). Sum1 and Hst1 repress middle sporulation-specific gene expression during mitosis in Saccharomyces cerevisiae. EMBO J 18, 6448-6454.
  114. Zenvirth, D., Loidl, J., Klein, S., Arbel, A., Shemesh, R., and Simchen, G. (1997). Switching yeast from meiosis to mitosis: double-strand break repair, recombination and synaptonemal complex. Genes Cells 2, 487-498.
  115. Chen, R.E., and Thorner, J. (2010). Systematic epistasis analysis of the contributions of protein kinase A- and mitogen-activated protein kinase-dependent signaling to nutrient limitation-evoked responses in the yeast Saccharomyces cerevisiae. Genetics 185, 855-870.
  116. Heitman, J., Movva, N.R., and Hall, M.N. (1991). Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253, 905-909.
  117. Primig, M., Williams, R.M., Winzeler, E.A., Tevzadze, G.G., Conway, A.R., Hwang, S.Y., Davis, R.W., and Esposito, R.E. (2000). The core meiotic transcriptome in budding yeasts. Nat Genet 26, 415-423.
  118. Sari, F., Heinrich, M., Meyer, W., Braus, G.H., and Irniger, S. (2008). The C-terminal region of the meiosis-specific protein kinase Ime2 mediates protein instability and is required for normal spore formation in budding yeast. J Mol Biol 378, 31-43.
  119. Martin, D.E., and Hall, M.N. (2005). The expanding TOR signaling network. Curr Opin Cell Biol 17, 158-166.
  120. Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E.D., Sevier, C.S., Ding, H., Koh, J.L., Toufighi, K., Mostafavi, S., et al. (2010). The genetic landscape of a cell. Science 327, 425-431.
  121. Lorenz, M.C., and Fink, G.R. (2001). The glyoxylate cycle is required for fungal virulence. Nature 412, 83-86.
  122. Kruckeberg, A.L. (1996). The hexose transporter family of Saccharomyces cerevisiae. Arch Microbiol 166, 283-292.
  123. Rubin-Bejerano, I., Sagee, S., Friedman, O., Pnueli, L., and Kassir, Y. (2004). The in vivo activity of Ime1, the key transcriptional activator of meiosis-specific genes in Saccharomyces cerevisiae, is inhibited by the cyclic AMP/protein kinase A signal pathway through the glycogen synthase kinase 3- beta homolog Rim11. Mol Cell Biol 24, 6967-6979.
  124. Weissman, A.M. (2001). Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2, 169-178.
  125. Mogk, A., Schmidt, R., and Bukau, B. (2007). The N-end rule pathway for regulated proteolysis: prokaryotic and eukaryotic strategies. Trends Cell Biol 17, 165-172.
  126. Zeller, C.E., Parnell, S.C., and Dohlman, H.G. (2007). The RACK1 ortholog Asc1 functions as a G- protein beta subunit coupled to glucose responsiveness in yeast. J Biol Chem 282, 25168-25176.
  127. Kornberg, H.L. (1966). The role and control of the glyoxylate cycle in Escherichia coli. Biochem J 99, 1- 11.
  128. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15, 2227-2235.
  129. Huang, L.S., Doherty, H.K., and Herskowitz, I. (2005). The Smk1p MAP kinase negatively regulates Gsc2p, a 1,3-beta-glucan synthase, during spore wall morphogenesis in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 102, 12431-12436.
  130. Raught, B., Gingras, A.C., and Sonenberg, N. (2001). The target of rapamycin (TOR) proteins. Proc Natl Acad Sci U S A 98, 7037-7044.
  131. Chu, S., DeRisi, J., Eisen, M., Mulholland, J., Botstein, D., Brown, P.O., and Herskowitz, I. (1998). The transcriptional program of sporulation in budding yeast. Science 282, 699-705.
  132. Mizuno, T., Nakazawa, N., Remgsamrarn, P., Kunoh, T., Oshima, Y., and Harashima, S. (1998). The Tup1-Ssn6 general repressor is involved in repression of IME1 encoding a transcriptional activator of meiosis in Saccharomyces cerevisiae. Curr Genet 33, 239-247.
  133. Ciechanover, A., Finley, D., and Varshavsky, A. (1984). The ubiquitin-mediated proteolytic pathway and mechanisms of energy-dependent intracellular protein degradation. J Cell Biochem 24, 27-53.
  134. Hershko, A., and Ciechanover, A. (1998). The ubiquitin system. Annu Rev Biochem 67, 425-479.
  135. Toda, T., Cameron, S., Sass, P., Zoller, M., and Wigler, M. (1987b). Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell 50, 277-287.
  136. Wullschleger, S., Loewith, R., and Hall, M.N. (2006). TOR signaling in growth and metabolism. Cell 124, 471-484.
  137. Schuller, H.J. (2003). Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr Genet 43, 139-160.
  138. Kassir, Y., Adir, N., Boger-Nadjar, E., Raviv, N.G., Rubin-Bejerano, I., Sagee, S., and Shenhar, G. (2003). Transcriptional regulation of meiosis in budding yeast. Int Rev Cytol 224, 111-171.
  139. Loewith, R., Jacinto, E., Wullschleger, S., Lorberg, A., Crespo, J.L., Bonenfant, D., Oppliger, W., Jenoe, P., and Hall, M.N. (2002). Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10, 457-468.
  140. Hochstrasser, M. (1996). Ubiquitin-dependent protein degradation. Annu Rev Genet 30, 405-439.
  141. Jansen, G., Wu, C., Schade, B., Thomas, D.Y., and Whiteway, M. (2005). Drag&Drop cloning in yeast. Gene 344, 43-51.
  142. Toda, T., Cameron, S., Sass, P., and Wigler, M. (1988). SCH9, a gene of Saccharomyces cerevisiae that encodes a protein distinct from, but functionally and structurally related to, cAMP-dependent protein kinase catalytic subunits. Genes Dev 2, 517-527.
  143. Kataoka, T., Broek, D., and Wigler, M. (1985). DNA sequence and characterization of the S. cerevisiae gene encoding adenylate cyclase. Cell 43, 493-505.
  144. Kataoka, T., Powers, S., McGill, C., Fasano, O., Strathern, J., Broach, J., and Wigler, M. (1984). Genetic analysis of yeast RAS1 and RAS2 genes. Cell 37, 437-445.
  145. Tyers, M., Tokiwa, G., Nash, R., and Futcher, B. (1992). The Cln3-Cdc28 kinase complex of S. cerevisiae is regulated by proteolysis and phosphorylation. EMBO J 11, 1773-1784.
  146. McGrath, J.P., Jentsch, S., and Varshavsky, A. (1991). UBA 1: an essential yeast gene encoding ubiquitin-activating enzyme. EMBO J 10, 227-236.
  147. Epitope tagging of yeast genes using a PCR-based strategy: More tags and improved practical routines. Yeast 15, 963-972.
  148. Parviz, F., and Heideman, W. (1998). Growth-independent regulation of CLN3 mRNA levels by nutrients in Saccharomyces cerevisiae. J Bacteriol 180, 225-230.
  149. Versele, M., Lemaire, K., and Thevelein, J.M. (2001). Sex and sugar in yeast: two distinct GPCR systems. EMBO Rep 2, 574-579.
  150. Hoffman, C.S. (2005). Except in every detail: comparing and contrasting G-protein signaling in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Eukaryot Cell 4, 495-503.
  151. Iwamoto, M.A., Fairclough, S.R., Rudge, S.A., and Engebrecht, J. (2005). Saccharomyces cerevisiae Sps1p regulates trafficking of enzymes required for spore wall synthesis. Eukaryot Cell 4, 536-544.
  152. Multiple and distinct activation and repression sequences mediate the regulated transcription of IME1, a transcriptional activator of meiosis-specific genes in Saccharomyces cerevisiae. Mol Cell Biol 18, 1985-1995.
  153. Zaragoza, D., Ghavidel, A., Heitman, J., and Schultz, M.C. (1998). Rapamycin induces the G0 program of transcriptional repression in yeast by interfering with the TOR signaling pathway. Mol Cell Biol 18, 4463-4470.
  154. Honigberg, S.M., and Lee, R.H. (1998). Snf1 kinase connects nutritional pathways controlling meiosis in Saccharomyces cerevisiae. Mol Cell Biol 18, 4548-4555.
  155. Masuda, S., and Ono, T.A. (2005). Adenylyl cyclase activity of Cya1 from the cyanobacterium Synechocystis sp. strain PCC 6803 is inhibited by bicarbonate. J Bacteriol 187, 5032-5035.
  156. Lorenz, M.C., and Heitman, J. (1997). Yeast pseudohyphal growth is regulated by GPA2, a G protein alpha homolog. EMBO J 16, 7008-7018.
  157. Xue, Y., Batlle, M., and Hirsch, J.P. (1998). GPR1 encodes a putative G protein-coupled receptor that associates with the Gpa2p Galpha subunit and functions in a Ras-independent pathway. EMBO J 17, 1996-2007.
  158. Vincent, O., and Carlson, M. (1998). Sip4, a Snf1 kinase-dependent transcriptional activator, binds to the carbon source-responsive element of gluconeogenic genes. EMBO J 17, 7002-7008.
  159. Colomina, N., Gari, E., Gallego, C., Herrero, E., and Aldea, M. (1999). G1 cyclins block the Ime1 pathway to make mitosis and meiosis incompatible in budding yeast. EMBO J 18, 320-329.
  160. Versele, M., de Winde, J.H., and Thevelein, J.M. (1999). A novel regulator of G protein signalling in yeast, Rgs2, downregulates glucose-activation of the cAMP pathway through direct inhibition of Gpa2. EMBO J 18, 5577-5591.
  161. Suzuki, T., and Varshavsky, A. (1999). Degradation signals in the lysine-asparagine sequence space. EMBO J 18, 6017-6026.
  162. Thrower, J.S., Hoffman, L., Rechsteiner, M., and Pickart, C.M. (2000). Recognition of the polyubiquitin proteolytic signal. EMBO J 19, 94-102.
  163. Cooper, K.F., and Strich, R. (2002). Saccharomyces cerevisiae C-type cyclin Ume3p/Srb11p is required for efficient induction and execution of meiotic development. Eukaryot Cell 1, 66-74.
  164. Weber, J.M., Irlbacher, H., and Ehrenhofer-Murray, A.E. (2008). Control of replication initiation by the Sum1/Rfm1/Hst1 histone deacetylase. BMC Mol Biol 9, 100.
  165. Sikorski, R.S., and Hieter, P. (1989). A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19-27.
  166. Vallier, L.G., and Carlson, M. (1994). Synergistic release from glucose repression by mig1 and ssn mutations in Saccharomyces cerevisiae. Genetics 137, 49-54.
  167. Pereira, G., Tanaka, T.U., Nasmyth, K., and Schiebel, E. (2001). Modes of spindle pole body inheritance and segregation of the Bfa1p-Bub2p checkpoint protein complex. EMBO J 20, 6359-6370.
  168. Pak, J., and Segall, J. (2002b). Role of Ndt80, Sum1, and Swe1 as targets of the meiotic recombination checkpoint that control exit from pachytene and spore formation in Saccharomyces cerevisiae. Mol Cell Biol 22, 6430-6440.
  169. Pak, J., and Segall, J. (2002a). Regulation of the premiddle and middle phases of expression of the NDT80 gene during sporulation of Saccharomyces cerevisiae. Mol Cell Biol 22, 6417-6429.
  170. Clancy, M.J., Shambaugh, M.E., Timpte, C.S., and Bokar, J.A. (2002). Induction of sporulation in Saccharomyces cerevisiae leads to the formation of N6-methyladenosine in mRNA: a potential mechanism for the activity of the IME4 gene. Nucleic Acids Res 30, 4509-4518.
  171. Sopko, R., Raithatha, S., and Stuart, D. (2002). Phosphorylation and maximal activity of Saccharomyces cerevisiae meiosis-specific transcription factor Ndt80 is dependent on Ime2. Mol Cell Biol 22, 7024- 7040.
  172. Pope, B., and Kent, H.M. (1996). High efficiency 5 min transformation of Escherichia coli. Nucleic Acids Res 24, 536-537.
  173. Wagner, M., Briza, P., Pierce, M., and Winter, E. (1999). Distinct steps in yeast spore morphogenesis require distinct SMK1 MAP kinase thresholds. Genetics 151, 1327-1340.
  174. Lorenz, M.C., Pan, X., Harashima, T., Cardenas, M.E., Xue, Y., Hirsch, J.P., and Heitman, J. (2000). The G protein-coupled receptor gpr1 is a nutrient sensor that regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Genetics 154, 609-622.
  175. Howard, S.C., Hester, A., and Herman, P.K. (2003). The Ras/PKA signaling pathway may control RNA polymerase II elongation via the Spt4p/Spt5p complex in Saccharomyces cerevisiae. Genetics 165, 1059-1070.
  176. McCord, R., Pierce, M., Xie, J., Wonkatal, S., Mickel, C., and Vershon, A.K. (2003). Rfm1, a novel tethering factor required to recruit the Hst1 histone deacetylase for repression of middle sporulation genes. Mol Cell Biol 23, 2009-2016.
  177. Nickas, M.E., Schwartz, C., and Neiman, A.M. (2003). Ady4p and Spo74p are components of the meiotic spindle pole body that promote growth of the prospore membrane in Saccharomyces cerevisiae. Eukaryot Cell 2, 431-445.
  178. Sum1 and Ndt80 proteins compete for binding to middle sporulation element sequences that control meiotic gene expression. Mol Cell Biol 23, 4814-4825.
  179. Moir, R.D., Lee, J., Haeusler, R.A., Desai, N., Engelke, D.R., and Willis, I.M. (2006). Protein kinase A regulates RNA polymerase III transcription through the nuclear localization of Maf1. Proc Natl Acad Sci U S A 103, 15044-15049.
  180. Hong, S.P., Leiper, F.C., Woods, A., Carling, D., and Carlson, M. (2003). Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc Natl Acad Sci U S A 100, 8839- 8843.
  181. Takeuchi, J., Chen, H., and Coffino, P. (2007). Proteasome substrate degradation requires association plus extended peptide. EMBO J 26, 123-131.
  182. Clifton, D., Walsh, R.B., and Fraenkel, D.G. (1993). Functional studies of yeast glucokinase. J Bacteriol 175, 3289-3294.
  183. Mollapour, M., and Piper, P.W. (2007). Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol Cell Biol 27, 6446-6456.
  184. Neiman, A.M. (1998). Prospore membrane formation defines a developmentally regulated branch of the secretory pathway in yeast. J Cell Biol 140, 29-37.
  185. Rudge, S.A., Morris, A.J., and Engebrecht, J. (1998). Relocalization of phospholipase D activity mediates membrane formation during meiosis. J Cell Biol 140, 81-90.
  186. Uno, I., Oshima, T., Hirata, A., and Ishikawa, T. (1990). The functional domain of adenylate cyclase associated with entry into meiosis in Saccharomyces cerevisiae. J Bacteriol 172, 102-109.
  187. Jacquet, M., Renault, G., Lallet, S., De Mey, J., and Goldbeter, A. (2003). Oscillatory nucleocytoplasmic shuttling of the general stress response transcriptional activators Msn2 and Msn4 in Saccharomyces cerevisiae. J Cell Biol 161, 497-505.
  188. Walsh, R.B., Kawasaki, G., and Fraenkel, D.G. (1983). Cloning of genes that complement yeast hexokinase and glucokinase mutants. J Bacteriol 154, 1002-1004.
  189. Zaragoza, O., Fries, B.C., and Casadevall, A. (2003). Induction of capsule growth in Cryptococcus neoformans by mammalian serum and CO(2). Infect Immun 71, 6155-6164.
  190. Hoyt, M.A., He, L., Loo, K.K., and Saunders, W.S. (1992). Two Saccharomyces cerevisiae kinesin- related gene products required for mitotic spindle assembly. J Cell Biol 118, 109-120.
  191. Xu, L., Ajimura, M., Padmore, R., Klein, C., and Kleckner, N. (1995). NDT80, a meiosis-specific gene required for exit from pachytene in Saccharomyces cerevisiae. Mol Cell Biol 15, 6572-6581.
  192. Lee, R.H., and Honigberg, S.M. (1996). Nutritional regulation of late meiotic events in Saccharomyces cerevisiae through a pathway distinct from initiation. Mol Cell Biol 16, 3222-3232.
  193. Jiang, R., and Carlson, M. (1997). The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex. Mol Cell Biol 17, 2099- 2106.
  194. Randez-Gil, F., Bojunga, N., Proft, M., and Entian, K.D. (1997). Glucose derepression of gluconeogenic enzymes in Saccharomyces cerevisiae correlates with phosphorylation of the gene activator Cat8p. Mol Cell Biol 17, 2502-2510.
  195. Vidan, S., and Mitchell, A.P. (1997). Stimulation of yeast meiotic gene expression by the glucose- repressible protein kinase Rim15p. Mol Cell Biol 17, 2688-2697.
  196. Malathi, K., Xiao, Y., and Mitchell, A.P. (1997). Interaction of yeast repressor-activator protein Ume6p with glycogen synthase kinase 3 homolog Rim11p. Mol Cell Biol 17, 7230-7236.
  197. Coluccio, A.E., Rodriguez, R.K., Kernan, M.J., and Neiman, A.M. (2008). The yeast spore wall enables spores to survive passage through the digestive tract of Drosophila. PLoS One 3, e2873.
  198. Ravid, T., and Hochstrasser, M. (2008). Diversity of degradation signals in the ubiquitin-proteasome system. Nat Rev Mol Cell Biol 9, 679-690.
  199. McDonald, C.M., Wagner, M., Dunham, M.J., Shin, M.E., Ahmed, N.T., and Winter, E. (2009). The Ras/cAMP pathway and the CDK-like kinase Ime2 regulate the MAPK Smk1 and spore morphogenesis in Saccharomyces cerevisiae. Genetics 181, 511-523.
  200. Leadsham, J.E., Miller, K., Ayscough, K.R., Colombo, S., Martegani, E., Sudbery, P., and Gourlay, C.W. (2009). Whi2p links nutritional sensing to actin-dependent Ras-cAMP-PKA regulation and apoptosis in yeast. J Cell Sci 122, 706-715.
  201. Nakafuku, M., Obara, T., Kaibuchi, K., Miyajima, I., Miyajima, A., Itoh, H., Nakamura, S., Arai, K., Matsumoto, K., and Kaziro, Y. (1988). Isolation of a second yeast Saccharomyces cerevisiae gene (GPA2) coding for guanine nucleotide-binding regulatory protein: studies on its structure and possible functions. Proc Natl Acad Sci U S A 85, 1374-1378.
  202. Piccirillo, S., White, M.G., Murphy, J.C., Law, D.J., and Honigberg, S.M. (2010). The Rim101p/PacC pathway and alkaline pH regulate pattern formation in yeast colonies. Genetics 184, 707-716.
  203. Shin, M.E., Skokotas, A., and Winter, E. (2010). The Cdk1 and Ime2 protein kinases trigger exit from meiotic prophase in Saccharomyces cerevisiae by inhibiting the Sum1 transcriptional repressor. Mol Cell Biol 30, 2996-3003.
  204. Knop, M., and Strasser, K. (2000). Role of the spindle pole body of yeast in mediating assembly of the prospore membrane during meiosis. EMBO J 19, 3657-3667.
  205. Kadosh, D., and Struhl, K. (1998). Histone deacetylase activity of Rpd3 is important for transcriptional repression in vivo. Genes Dev 12, 797-805.
  206. Herruer, M.H., Mager, W.H., Woudt, L.P., Nieuwint, R.T., Wassenaar, G.M., Groeneveld, P., and Planta, R.J. (1987). Transcriptional control of yeast ribosomal protein synthesis during carbon-source upshift. Nucleic Acids Res 15, 10133-10144.
  207. Jones, S., Vignais, M.L., and Broach, J.R. (1991). The CDC25 protein of Saccharomyces cerevisiae promotes exchange of guanine nucleotides bound to ras. Mol Cell Biol 11, 2641-2646.
  208. Mitchell, A.P., Driscoll, S.E., and Smith, H.E. (1990). Positive control of sporulation-specific genes by the IME1 and IME2 products in Saccharomyces cerevisiae. Mol Cell Biol 10, 2104-2110.
  209. Tanaka, K., Nakafuku, M., Tamanoi, F., Kaziro, Y., Matsumoto, K., and Toh-e, A. (1990). IRA2, a second gene of Saccharomyces cerevisiae that encodes a protein with a domain homologous to mammalian ras GTPase-activating protein. Mol Cell Biol 10, 4303-4313.
  210. Mitts, M.R., Bradshaw-Rouse, J., and Heideman, W. (1991). Interactions between adenylate cyclase and the yeast GTPase-activating protein IRA1. Mol Cell Biol 11, 4591-4598.
  211. Tanaka, K., Matsumoto, K., and Toh, E.A. (1989). IRA1, an inhibitory regulator of the RAS-cyclic AMP pathway in Saccharomyces cerevisiae. Mol Cell Biol 9, 757-768.
  212. Mbonyi, K., Beullens, M., Detremerie, K., Geerts, L., and Thevelein, J.M. (1988). Requirement of one functional RAS gene and inability of an oncogenic ras variant to mediate the glucose-induced cyclic AMP signal in the yeast Saccharomyces cerevisiae. Mol Cell Biol 8, 3051-3057.
  213. Celenza, J.L., Eng, F.J., and Carlson, M. (1989). Molecular analysis of the SNF4 gene of Saccharomyces cerevisiae: evidence for physical association of the SNF4 protein with the SNF1 protein kinase. Mol Cell Biol 9, 5045-5054.
  214. Klengel, T., Liang, W.J., Chaloupka, J., Ruoff, C., Schroppel, K., Naglik, J.R., Eckert, S.E., Mogensen, E.G., Haynes, K., Tuite, M.F., et al. (2005). Fungal adenylyl cyclase integrates CO2 sensing with cAMP signaling and virulence. Curr Biol 15, 2021-2026.
  215. Toda, T., Cameron, S., Sass, P., Zoller, M., Scott, J.D., McMullen, B., Hurwitz, M., Krebs, E.G., and Wigler, M. (1987a). Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae. Mol Cell Biol 7, 1371-1377.
  216. Marshall, M.S., Gibbs, J.B., Scolnick, E.M., and Sigal, I.S. (1987). Regulatory function of the Saccharomyces cerevisiae RAS C-terminus. Mol Cell Biol 7, 2309-2315.
  217. Celenza, J.L., and Carlson, M. (1984). Structure and expression of the SNF1 gene of Saccharomyces cerevisiae. Mol Cell Biol 4, 54-60.
  218. Pinkham, J.L., and Guarente, L. (1985). Cloning and molecular analysis of the HAP2 locus: a global regulator of respiratory genes in Saccharomyces cerevisiae. Mol Cell Biol 5, 3410-3416.
  219. Varshavsky, A. (1996). The N-end rule: functions, mysteries, uses. Proc Natl Acad Sci U S A 93, 12142- 12149.
  220. Schmitt, A.P., and McEntee, K. (1996). Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 93, 5777-5782.
  221. Mosch, H.U., Roberts, R.L., and Fink, G.R. (1996). Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 93, 5352-5356.
  222. van Roermund, C.W., Elgersma, Y., Singh, N., Wanders, R.J., and Tabak, H.F. (1995). The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions. EMBO J 14, 3480-3486.
  223. Rose, K., Rudge, S.A., Frohman, M.A., Morris, A.J., and Engebrecht, J. (1995). Phospholipase D signaling is essential for meiosis. Proc Natl Acad Sci U S A 92, 12151-12155.
  224. Steber, C.M., and Esposito, R.E. (1995). UME6 is a central component of a developmental regulatory switch controlling meiosis-specific gene expression. Proc Natl Acad Sci U S A 92, 12490-12494.
  225. Wang, Y., Pierce, M., Schneper, L., Guldal, C.G., Zhang, X., Tavazoie, S., and Broach, J.R. (2004). Ras and Gpa2 mediate one branch of a redundant glucose signaling pathway in yeast. PLoS Biol 2, E128.
  226. Heywood, P., and Magee, P.T. (1976). Meiosis in protists. Some structural and physiological aspects of meiosis in algae, fungi, and protozoa. Bacteriol Rev 40, 190-240.
  227. Nickas, M.E., Diamond, A.E., Yang, M.J., and Neiman, A.M. (2004). Regulation of spindle pole function by an intermediary metabolite. Mol Biol Cell 15, 2606-2616.
  228. Matsuura, A., Treinin, M., Mitsuzawa, H., Kassir, Y., Uno, I., and Simchen, G. (1990). The adenylate cyclase/protein kinase cascade regulates entry into meiosis in Saccharomyces cerevisiae through the gene IME1. EMBO J 9, 3225-3232.
  229. Rocha, C.R., Schroppel, K., Harcus, D., Marcil, A., Dignard, D., Taylor, B.N., Thomas, D.Y., Whiteway, M., and Leberer, E. (2001). Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans. Mol Biol Cell 12, 3631-3643.
  230. Shenhar, G., and Kassir, Y. (2001). A positive regulator of mitosis, Sok2, functions as a negative regulator of meiosis in Saccharomyces cerevisiae. Mol Cell Biol 21, 1603-1612.
  231. Wesp, A., Prinz, S., and Fink, G.R. (2001). Conservative duplication of spindle poles during meiosis in Saccharomyces cerevisiae. J Bacteriol 183, 2372-2375.
  232. Sanger, F., Nicklen, S., and Coulson, A.R. (1992). DNA sequencing with chain-terminating inhibitors. 1977. Biotechnology 24, 104-108.
  233. Jorgensen, P., and Tyers, M. (2004). How cells coordinate growth and division. Curr Biol 14, R1014- 1027.
  234. Pauli, A., Althoff, F., Oliveira, R.A., Heidmann, S., Schuldiner, O., Lehner, C.F., Dickson, B.J., and Nasmyth, K. (2008). Cell-type-specific TEV protease cleavage reveals cohesin functions in Drosophila neurons. Dev Cell 14, 239-251.
  235. Jungbluth, M., Renicke, C., and Taxis, C. (2010). Targeted protein depletion in Saccharomyces cerevisiae by activation of a bidirectional degron. BMC Syst Biol 4, 176.
  236. Steegborn, C., Litvin, T.N., Levin, L.R., Buck, J., and Wu, H. (2005). Bicarbonate activation of adenylyl cyclase via promotion of catalytic active site closure and metal recruitment. Nat Struct Mol Biol 12, 32-37.
  237. Peeters, T., Louwet, W., Gelade, R., Nauwelaers, D., Thevelein, J.M., and Versele, M. (2006). Kelch- repeat proteins interacting with the Galpha protein Gpa2 bypass adenylate cyclase for direct regulation of protein kinase A in yeast. Proc Natl Acad Sci U S A 103, 13034-13039.
  238. Roosen, J., Engelen, K., Marchal, K., Mathys, J., Griffioen, G., Cameroni, E., Thevelein, J.M., De Virgilio, C., De Moor, B., and Winderickx, J. (2005). PKA and Sch9 control a molecular switch important for the proper adaptation to nutrient availability. Mol Microbiol 55, 862-880.
  239. Van Nuland, A., Vandormael, P., Donaton, M., Alenquer, M., Lourenco, A., Quintino, E., Versele, M., and Thevelein, J.M. (2006). Ammonium permease-based sensing mechanism for rapid ammonium activation of the protein kinase A pathway in yeast. Mol Microbiol 59, 1485-1505.
  240. Colombo, S., Ronchetti, D., Thevelein, J.M., Winderickx, J., and Martegani, E. (2004). Activation state of the Ras2 protein and glucose-induced signaling in Saccharomyces cerevisiae. J Biol Chem 279, 46715-46722.
  241. Pedruzzi, I., Dubouloz, F., Cameroni, E., Wanke, V., Roosen, J., Winderickx, J., and De Virgilio, C. (2003). TOR and PKA signaling pathways converge on the protein kinase Rim15 to control entry into G0. Mol Cell 12, 1607-1613.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten