Publikationsserver der Universitätsbibliothek Marburg

Titel:Photochemische Linkerstrukturen zur laserinduzierten Wirkstofffreisetzung aus polymeren Intraokularlinsen
Autor:Liese, Julia
Weitere Beteiligte: Hampp, Norbert (Prof.)
Veröffentlicht:2011
URI:https://archiv.ub.uni-marburg.de/diss/z2011/0664
URN: urn:nbn:de:hebis:04-z2011-06642
DOI: https://doi.org/10.17192/z2011.0664
DDC: Chemie
Titel (trans.):Photochemical linkers for laser-induced drug release from polymeric intraocular lens
Publikationsdatum:2011-12-21
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Wirkstofffreisetzung, Zwei-Photonen-Absorption, Two-photon-absorption, Fluorouracil, Kontrollierte Wirkstofffreisetzung, Cataracta secundaria, Grauer Star, Nichtlineare Absorp, Neodym-YAG-Laser

Zusammenfassung:
Der Katarakt oder auch Grauer Star genannt, ist eine Erkankung des Auges, in deren Verlauf sich durch verschiedene Faktoren die ursprünglich klare Augenlinse trübt. Schätzungen gehen davon aus, dass etwa 18 Millionen Menschen ihr Sehvermögen durch Katarakt verloren haben und jährlich etwa 2 Millionen Erkrankungen hinzukommen. Das Hauptsymptom des Katarakts ist ein langsamer und schmerzloser Sehverlust. Die Sehschärfe nimmt ab, die Blendempfindlichkeit nimmt hingegen zu und die Umwelt wird zunehmend als verschwommen wahrgenommen. In fortgeschrittenem Stadium ist der Katarakt als graue oder bräunliche Verfärbung im Auge zu erkennen und der Patient erblindet. Obwohl die genauen Auslöser noch immer Gegenstand der Forschung sind und der Katarakt auch bei Kindern auftreten kann, gilt die Erkrankung mehrheitlich als alterungsbedingter Effekt. Die einzige Behandlungmöglichkeit stellt die operative Entfernung der natürliche Linse und ihr Ersatz durch eine künstliche polymere Intraokularlinse (IOL) dar. Eine in etwa 50 % der Fälle auftretende Komplikation dieser Methode ist der Nachstar (sekundärer Katarakt)[1, 2]. Dabei migrieren im Auge befindliche Ephitelzellen auf die IOL und den vorderen und hinteren Kapselsack, wodurch die Sicht wiederum stark beeinträchtigt wird. Neben der Möglichkeit den Nachstar durch eine Laserkapsulotomie, der nicht ungefährlichen thermischen Zerstörung der hinteren Wand des Kapselsacks, zu behandeln, wird derzeit ein neuer Ansatz auf der Basis von photoinduzierterWirkstofffreisetzung aus dem Linsenimplantat selbst untersucht. Dabei wird ein therapeutischerWirkstoff gegen die Ephitelzellen an der Polymerlinse über einen photochemischen Linker immobilisiert, der dann bei Bedarf durch eine gezielte photochemische Spaltung freigesetzt wird. Da die Linkerspaltung auf einer Cycloreversion eines Cyclobutanringes beruht, zu deren Spaltung über Ein-Photon- Absorption (SPA) Licht der Wellenlänge < 300 nm benötigt wird und die Hornhaut für dieseWellenlänge undurchlässig ist, muss die benötigte Energie über einen Zweiphotonenprozess (TPA) zugeführt werden. Dies hat den Vorteil, dass die Wirkstofffreisetzung durch die zwei einzustrahlenden Photonen räumlich genau kontrollierbar ist. Die vorliegende Arbeit konzentriert sich auf die synthetische Entwicklung und Optimierung eines neuen Linkersystems zur Immobilisierung von 5FU, einem bereits im Auge erprobten Zytostatikum, sowie der Effektivität der photochemischen Spaltung der synthetisierten Linker-Wirkstoff-Konjugate und der Charakterisierung der Freisetzung des Wirkstoffes aus dem fertigen Polymermaterial. Es wurden neben dem bereits bekannten Coumarin sechs weitere Monomere als Linker synthetisiert und getestet. Coumarin stellt das bereits bekannte System für die Wirkstoffimmobilisierung dar, brachte jedoch diverse Probleme für die Anwendung mit sich. Der Lactonring ist im Dimer stark hydrolyseempfindlich, weshalb nicht sichergestellt werden kann, dass das Coumarin im Hydrogel in wässriger Umgebung stabil ist. Als alternative Linker wurden 1,1-Dimethylnaphtalenon, 1,2-Dihydronaphtalin, Stilben, Zimtsäure, 1,4- Naphtochinon und Chalkon evaluiert. Dabei zeigte sich, dass insbesondere 1,1-Dimethylnaphtalenon, aber auch Coumarin, Zimtsäure und 1,2-Dihydronaphtalin gegenüber erhöhten Temperaturen instabil waren. Thermische Stabilität ist jedoch für die Sterilisation durch Autoklavieren, der einzigen Sterilisationsmethode für hydrophile Polymere, unbedingt erforderlich. Nach denWoodward-Hoffmann-Regeln ist in diesem Falle die thermische [2+2]-Cycloreversion verboten. Daher wurde die Reaktion am 1,1-Dimethylnaphtalenon-H5FUDimer näher untersucht und der in diesem Fall nicht-konzertierte, sondern radikalische Mechanismus mittels Radikalfängerreaktionen und ESR aufgeklärt und erstmals bewiesen. Diese Entdeckung ist für die Anwendung als Linkersystem zur Immobilisierung von 5FU recht ungünstig. Aus diesem Grund wurden weitere Polymere mit den temperaturstabilen Linkern 1,4-Naphtochinon und Chalkon synthetisiert und analysiert. Diese Polymermaterialien zeigten sich im Autoklavierungstest stabil. Des weiteren wurde in dieser Arbeit eine generelle Vorschrift für die Synthese derartiger wirkstoffbeladener Polymere entwickelt, die mit jeweils auf die Monomere zugeschnittenen kleinen Modifikationen erfolgreich für Coumarin, 1,1-Dimethylnaphtalenon, 1,4-Naphtochinon und Chalkon durchgeführt wurde. Letztere drei Monomere wurden genauer auf ihre photochemischen Eigenschaften, die 5FU-Freisetzung aus dem Polymer und das Diffusionsverhalten aus dem Hydrogel untersucht. Die Freisetzung von 5FU konnte für alle drei Polymere erfolgreich nachgewiesen werden. Aufgrund der Anforderung der Autoklavierbarkeit der Polymermaterialien erwiesen sich 1,4-Naphtochinon und Chalkon als die geeigneten Linker für 5FU. Zusätzlich besitzen beide im Vergleich zu früher untersuchten Linkermolekülen einen hohen Zwei-Photonen-Querschnitt, was vorteilhaft für die Laserfreisetzung ist, da hier geringere Energien bzw. kürze Bestrahlungszeiten im Auge angewendet werden können.

Bibliographie / References

  1. S. Pedersen, J. L. Herek, A. H. Zewail, The Validity of the Diradical Hypothesis: Direct Femtosecond Studies of the Transition-State Structures, Science 1994, 266, 1359–1364.
  2. R. Wayne, Principles and Applications of Photochemistry, Oxford University Press, 1988.
  3. A. Lembares, X.-H. Hu, G. W. Kalmus, Absorption Spectra of Corneas in the Far Ultraviolet Region, Investigative Ophthalmology & Visual Science 1997, 38, 1283– 1287.
  4. R. Wormald, M. Wilkins, C. Bunce, Postoperative 5-Fluorouracil for glaucoma surgery., Cochrane Database of Systematic Reviews 2001, 3.
  5. H. Morrison, H. Curtis, T. McDowell, Solvent effects on the photodimerization of coumarin, J. Am. Chem. Soc. 1966, 88, 5415–5419.
  6. G. Montaudo, S. Caccamese, Structure and conformation of chalcone photo- dimers and related compounds, The Journal of Organic Chemistry 1973, 38(4), 710–716.
  7. T. Wolff, H. Görner, Photodimerization of coumarin revisited: Effects of solvent polarity on the triplet reactivity and product pattern, Phys. Chem. Chem. Phys. 2004, 6, 368–376.
  8. N. Yonezawa, T. Yoshida, M. Hasegawa, Symmetric and Asymmetric Pho- tocleavage of the Cyclobutane Rings in Head-to-head Coumarin Dimers and Their Lactone-opened Derivatives, J. Chem. Soc. Perkin Trans. 1 1983, 1083–1086.
  9. E. J. Hollick, D. J. Spalton, P. G. Ursell, M. V. Pande, S. A. Barman, J. F. Boy- ce, K. Tilling, The Effect of Polymethylmethacrylate, Silicone, and Polyacrylic Intraocular Lenses on Posterior Capsular Opacification 3 Years after Cataract Surgery, Ophthalmology 1999, 106, 49–55.
  10. A. Ruseckas, E. B. Namdas, J. Y. Lee, S. Mukamel, S. Wang, G. C. Bazan, V. Sund- ström, Conformations and Photophysics of a Stilbene Dimer, J. Phys. Chem. A 2003, 107(40), 8029–8034.
  11. S. de Melo, R. Becker, A. Macanita, Photophysical behavior of coumarins as a function of substitution and solvent: experimental evidence for the existence of a lowest lying (n,phi*)-state, J. Phys. Chem. 1994, 98, 6054–6058.
  12. M. D. Auria, A. Vantaggi, Photochemical dimerization of methoxy substituted cinnamic acid methyl esters, Tetrahedron 1992, 48(12), 2523 – 2528.
  13. N. Ibaraki, A brighter future for cataract surgery, Nature Medicine 1997, 3, 958 – 960.
  14. N. H. L. Ridley, Artifical intraocular lenses after cataract extraction, St. Thomas' Hospital Reports 1951, 7, 12–14.
  15. A. Trinavarat, L. Atchaneeyasakul, Neodynium:YAG laser damage threshold of foldable intraocular lenses, Journal of Cataract and Refractive Surgery 2001, 27, 775–780.
  16. S. Umezawa, K. Shimizu, Biocompatibility of surface-modified intraocular len- ses, Journal of Cataract and Refractive Surgery 19, 1993, 371–374.
  17. H. Gan, M. G. Horner, B. J. Hrnjez, T. A. McCormack, J. L. King, Z. Gasyna, G. Chen, R. Gleiter, N. C. Yang, Chemistry of syn-o,o-Dibenzene, J. Am. Chem.
  18. D. G. Amirsakis, A. M. Elizarov, M. A. Garcia-Garibay, P. T. Glink, J. F. Stoddart, A. J. P. White, D. J. Williams, Diastereospecific Photochemical Dimerization of a Stilbene-Containing Daisy Chain Monomer in Solution as well as in the Solid State, Angewandte Chemie 2003, 115(10), 1158–1164.
  19. H.-P. Merkle, Diffusion, in: Grundlagen der Arzneiformenlehre-Galenik 2, (Hrsg.: C.-D. Herzfeldt, J. Kreuter), Springer Verlag, Berlin, 1999.
  20. R. G. Martin, D. R. Sanders, J. Souchek, M. G. Raanan, M. DeLuca, Effect of pos- terior chamber intraocular lens design and surgical placement on postoperative outcome, Journal of Cataract and Refractive Surgery 1992, 18(4), 333–341.
  21. V. Fernandez, M. Fragoso, C. Billotte, P. Lamar, M. Orozco, S. Dubovy, M. Will- cox, J. Parel, Efficacy of various drugs in the prevention of posterior capsule opacification: experimental study of rabbit eyes, J Cataract Refract Surg. 2004, 30(12), 2598–2605.
  22. H. Zehner, W. Flossmann, E. Westhof, A. Müller, Electron spin resonance of irradiated single crystals of uracil., Molecular Physics 1976, 32, 869–878.
  23. M. Goeppert-Mayer, Elementary processes with two-quantum transitions, Ann.
  24. L. Werner, J. M. Legeais, M. D. Nagel, G. Renard, Evaluation of teflon-coated intraocular lenses in an organ culture method, Journal of Biomedical Materials Research 1999, 46(3), 347–354.
  25. C. X. L. K. L. Z. Doering, W.v.E., Fate of the Intermediate Diradicals in the Caldera: Stereochemistry of Stereomutations, [2+2] Cycloreversions, and [2+4]
  26. No authors listed, Five-year follow-up of the Fluorouracil Filtering Surgery Stu- dy. The Fluorouracil Filtering Surgery Study Group., Am J Ophthalmol. 1996, 122, 751–752.
  27. A. Schaefer, H. Horn, R. Ahlrichs, Fully optimized contracted Gaussian basis sets for atoms Li to Kr., J. Chem. Phys. 1992, 97, 2571.
  28. N. H. L. Ridley, Further experiences of intraocular acrylic lens surgery, Br. J. Ophthalmol. 1954, 38, 156–162.
  29. N. H. L. Ridley, Further observations on intraocular acrylic lenses in cataract surgery, Trans. Am. Academy Ophthalmol. Otolaryngol. 1953, 57, 98–106.
  30. J. Liese, N. A. Hampp, 1,1-Dimethylnaphthalenon-dimers as photocleavable linkers with improved two-photon-absorption efficiency and hydrolytic stabi- lity, Journal of Photochemistry and Photobiology A: Chemistry 2010, 209, 128 – 134.
  31. T. Noh, H. Yu, Y. Jeong, K. Jeon, S. Kang, [2+2] Heterodimers of methyl phenanthrene-9-carboxylate and benzene, J. Chem. Soc., Perkin Trans. 1 2001, 21, 1066–1071.
  32. S. Shizuya, M. Takeshi, Histology of anterior capsule opacification with a po- lyHEMA/HOHEXMA hydrophilic hydrogel intraocular lens compared to po- ly(methyl methacrylate), silicone, and acrylic lenses, Journal of Cataract and Re- fractive Surgery 2003, 29(6), 1198.
  33. C. Latz, V. Migonney, G. Pavon-Djavid, Inhibition of lens epithelial cell proli- feration by substituted PMMA intraocular lens, Graefes Archive for Clinical and Experimental Ophthalmology 2000, 238(8), 696–700.
  34. S. L. X. Su, J. Zheng, Inhibition of rabbit lens epithelial cell proliferation, Zhong- hua Yan Ke Za Zhi 1996, 32, 339.
  35. W. Y. S. Y. Nishimura, J., Intramolecular [2+2] Photocycloaddition. 14. Cyclo- reversion of Cyclophanes Possessing a Cyclobutane Ring at their Tether, Bull. Chem. Soc. Jpn. 1992, 65, 618–619.
  36. N. H. L. Ridley, Intraocular acrylic lenses, Transactions of the American Ophthal- mological Society 1951, 71, 617.
  37. N. H. L. Ridley, Intraocular acrylic lenses -10 years development, Br. J. Ophthal- mol. 1960, 44, 705–712.
  38. D. R. Absolom, C. Thomson, L. A. Hawthorn, W. Zingg, A. W. Neumann, Kine- tics of cell adhesion to polymer surfaces, Journal of Biomedical Materials Research 1998, 22(3), 215–229.
  39. J. Netto-Ferreira, V. Wintgens, J. Scaiano, Lifetimes of biradicals produced in the Norrish type I reaction of methyl-substituted 2-tetralones, Journal of Photoche- mistry and Photobiology A: Chemistry 1991, 57(1-3), 153 – 163, tetralone radikale.
  40. D. M. Albert, Men of Vision. Lives of Notable Figures in Ophthalmology, Saunders (W.B.) Co. Ltd., 1993.
  41. J. D. Bhawalkar, G. S. He, P. N. Prasad, Nonlinear multiphoton processes in organic and polymeric materials, Rep. Prog. Phys. 1996, 59, 1041–1070.
  42. T. Nagata, I. Watanabe, Optic sharp edge or convexity: comparison of effects on posterior capsular opacification, Japanese Journal of Ophthalmology 1996, 40(3), 397–403.
  43. F. Neese, ORCA -an ab initio, Density Functional and Semiempirical program package Version 2.6-35, University of Bonn, 2008.
  44. R. Hoffman, P. Wells, H. Morrison, Organic photochemistry XII further studies on the mechanism of coumarin photodimerization, J. Org. Chem. 1971, 36, 102– 108.
  45. G. A. Segal, Organic transition states. III. Ab initio study of the pyrolysis of cyclobutane via the tetramethylene diradical, Journal of the American Chemical Society 1974, 96, 7892– 7898.
  46. T. M. Rabsilber, G. U. Auffarth, Pharmakologische Ansätze zur Prävention der Cataracta secundaria, Klin Monatsbl Augenheilkd 2006, 223, 559–567.
  47. C. H. Krauch, S. Farid, G. O. Schenck, Photo-C4-Cyclodimerisation von Cuma- rin, Chemische Berichte 1966, 99, 625–633.
  48. F. Lewis, S. Barancyk, Photodimerization and cross-cycloaddition of coumarin, J. Am. Chem. Soc. 1989, 111, 8653–8661.
  49. J. Rennnert, S. Japar, M. Guttman, Photo-Dimerization and Photo-Reduction of alpha-Naphtoquinone in Different Solvent Media, Photochemistry and Photobio- logy 1967, 6(7), 485–490.
  50. J. Dekker, P. Janse van Vuuren, D. P. Venter, Photodimerization. I. The syn and anti Photodimers of 1,4-Naphthoquinone, J.Org.Chem. 1968, 33, 464–466.
  51. J. Dekker, T. G. Dekker, Photodimerization Part III. The Photodimerization of 1,2-Dihydronaphtalene, Joernaal van die suid-afrikaanse chemiese Instituut 1973, 26, 25–29.
  52. S. Härtner, H.-C. Kim, N. A. Hampp, Photodimerized 7-hydroxycoumarin with improved solubility in PMMA: single-photon and two-photon-induced pho- tocleavage in solution and PMMA films, J. Photochem. Photobiol. A 2007, 187, 242–246.
  53. J. V. Ellis, J. E. Jones, Photolysis of 2-alkoxy-1,4-naphthoquinones, The Journal of Organic Chemistry 1975, 40(4), 485–488.
  54. G. O. Schenck, I. von Wilucki, C. H. Krauch, Photosensibilisierte Cyclodimeri- sation von Cumarin, Chemische Berichte 1962, 95(6), 1409–1412.
  55. S. Härtner, H.-C. Kim, N. Hampp, Phototriggered release of photolabile drugs via two-photon absorption-induced cleavage of polymer-bound dicoumarin, Journal of Polymer Science Part A: Polymer Chemistry 2007, 45, 2443–2452.
  56. A. Shaikh1, F. Shaikh, J. R. Adwani, Z. A. Shaikh, Prevalence of different Nd:YAG Laser induced complication in patients with significant posterior cap- sule opacification and their correlation with time duration after standard cata- ract surgery, International Journal of Medicine and Medical Sciences 2010, 2, 12–17.
  57. I. M. Mohamed, J. Alió, M. J. Ruiz, Prevention of Secondary Cataract by Anti- mitotic Drugs: Experimental Study, Ophthalmic Res 1996, 28, 64–69.
  58. L. N. William J. Bailey, Carl H. Cunov, Pyrolysis of Esters. IV. Thermal Cleavage of the Cyclobutane Ring, Journal of the American Chemical Society 1955, 77, 2787– 2790.
  59. L. A. Paquette, M. J. Kukla, Pyrolysis of stereotopically twisted Cyclobutane Rings, Tetrahedron Lett. 1973, 15, 1241–1244.
  60. X.-M. Zhang, Radical Substituent Effects of alpha-Fluorine and alpha- Trifluoromethyl Groups, The Journal of Organic Chemistry 1998, 63, 3590–3594.
  61. M. Hasegawa, H. Katsuki, N. Yonezawa, T. Yoshida, Y. Ikebe, Reaction of syn head-to-head Coumarin Dimer with Amines and Thermal Behavior of the Ad- ducts, Chemistry Letters 1982, 11, 1325–1328.
  62. L. Hesse, L. Freisberg, H. Bienert, H. Richter, C. Kreiner, C. Mittermayer, Reduc- tion of cataract by plasma etching of intraocular lenses. An animal experiment study, Ophthalmolge 1997, 94, 821–825.
  63. W. T. Wiesler, K. Nakanishi, Relative and Absolute Configurational Assi- gnments of Acyclic Polyols by Circular Dichroism. 1. Rationale for a Simple Procedure Based on the Exciton Chirality Method, J. Am. Chem. Soc. 1989, 111, 9205–9213.
  64. L. Rickman Barga, C. Florine, R. Larson, R. Lindstrom, Retinal detachement af- ter Neodymium:YAG-Laser posterior capsulotomy, Am J Ophthalmol 1989, 107, 531–536.
  65. Ring-Enlargements of cis-and trans-1-Cyano-2-(E and Z)-propenyl-cis-3,4-di- deuteriocyclobutanes, J. Am. Chem. Soc. 2002, 124, 11642–11652.
  66. J.-S. Lee, C.-Y. Li, Y.-C. Lin, S.-Y. Chang, K.-K. Lin, Ripple-like intraocular lens damage from a neodymium:YAG laser, Journal of cataract and refractive surgery 2003, 29(3), 621–623.
  67. X. Yu, D. Scheller, O. Rademacher, T. Wolff, Selectivity in the Photodimerization of 6-Alkylcoumarins, The Journal of Organic Chemistry 2003, 68, 73867399.
  68. S. Härtner, H.-C. Kim, N. Hampp, Single-and two-photon absorption induced photocleavage of dimeric coumarin linkers: therapeutic versus passive pho- tocleavage in ophthalmologic applications, J. Photochem. Photobiol. A 2008, 197, [41] P. S. Giacomo Ciamician, Chemische Lichteinwirkungen, Chem. Ber. 1902, 34, 1530–1543.
  69. A. W., B. M., T. Schoepf, E. Ambach, F. Katzengraber, F. Daxecker, A. Daxer, Spectral transmission of the optical media of the human eye with respect to keratitis and cataract formation, Documenta Ophthalmologica 1994, 88, 165–173.
  70. R. B. Woodward, R. J. Hoffmann, Stereochemistry of Electrocyclic Reactions, J. Am. Chem. Soc. 1965, 87, 395–397.
  71. O. Wiest, Structure and [2+2] Cycloreversion of the Cyclobutane Radical Cati- on, The Journal of Physical Chemistry A 1999, 103, 7907– 7911.
  72. T. Reinhard, M. Klüppel, R. Sundmacher, 5-Fluorouracil Injection After Filte- ring Surgery, Klin Monatsbl Augenheilkd 1993, 203, 329–335.
  73. P. Yammine, G. Pavon-Djavid, G. Helary, V. Migonney, Surface modification of silicone intraocular implants to inhibit cell proliferation, Biomacromolecules 2005, 6(5), 2630–2637.
  74. C. N. Cunanan, N. M. Tarbaux, P. M. Knight, Surface properties of intraocular lens materials and their influence on in vitro cell adhesion, Journal of Cataract and Refractive Surgery 1991, 17(6), 767–773.
  75. D. T. Pham, U. Kraffel, J. Wollensak, Surgical Polishing of Cataracta Secundaria and Its Complications, Klin Monatsbl Augenheilkd 1993, 202(6), 507–510.
  76. T. Noh, S. Kang, M. Joo, H. Yu, Syn-[2+2] Cyclodimers of 2-Cyanonaphtalene and Benzene, Bull. Korean Chem. Soc. 2000, 21, 459–460.
  77. J. Liese, N. A. Hampp, Synthesis and Photocleavage of new [2+2] hetero di- Literaturverzeichnis 173
  78. N. Yonezawa, M. Hasegawa, Synthesis of Lactone-opened Derivatives of anti and syn Head-to-Head Coumarin Dimers, Bull. Chem. Soc. Jpn. 1983, 56, 367– 368.
  79. D. M. Birney, J. A. Berson, Synthesis of the covalent benzene-carbon monoxide cycloadduct, norborna-2,5-dien-7-one: Correlation of kinetic and thermodyna- mic stabilities in cycloreversion reactions, Tetrahedron 1986, 42(6), 1561 – 1570.
  80. A. Willmes, Taschenbuch Chemische Substanzen: Elemente -Anorganika -Organika -Naturstoffe -Polymere, Verlag Harri Deutsch, 2007.
  81. C. Doubleday, Tetramethylene Optimized by MRCI and by CASSCF with a multiply Polarized Basis Set., J. Phys. Chem 1996, 100, 15083–15086.
  82. K. K., The application of cocaine to the eye as an anaesthetic, Wein Med Bl Oct 1884, 23, 1352–1355.
  83. R. B. Woodward, R. J. Hoffmann, The Conservation of Orbital Symmetry, An- gew. Chem. Int. Ed. 1969, 8, 781–853.
  84. R. B. Woodward, R. H. Eastman, The Dimerization of 6-Methoxy-3,4- dihydronaphthalene, Journal of the American Chemical Society 1944, 66(5), 674– 679.
  85. K. Pesudovs, D. B. Elliot, The evolution of cataract surgery., Optom. Today 2001, 41, 30–32.
  86. C. S. Pearlstein, S. S. Lane, R. L. Lindstrom, The incidence of secondary pos- terior capsulotomy in convex-posterior vs. convex-anterior posterior chamber intraocular lenses, Journal of Cataract and Refractive Surgery 1998, 14(5), 578–580.
  87. E. Miller, The metabolism and pharmacology of 5-fluorouracil, Journal of Surgi- cal Oncology 1971, 3(3), 309–315.
  88. H. I. Bernstein, W. C. Quimby, The Photochemical Dimerization of trans- Cinnamic Acid, Journal of the American Chemical Society 1943, 65(10), 1845–1846.
  89. J. Liese, N. A. Hampp, Thermal [2+2]-cycloreversion of a cyclobutane moiety via a biradical reaction, JPC A 2011, accepted.
  90. J. Carnduff, J. Iball, G. Leppard, J. N. Low, The Structure of the anti Head- to-head Photodimer of 1,1-Dimethyl-2(1H)-naphthalenone, Chem. Comm. 1969, 1218–1219.
  91. T. Mukai, T. Oine, H. Sukawa, Three Photodimers of 1,1-Dimethyl-2(1H)- naphthalenone, Chem. Comm. 1970, 271–272.
  92. H.-C. Kim, S. Härtner, M. Behe, T. Behr, N. A. Hampp, Two-photon absorption- controlled multidose drug release: a novel approach for secondary cataract treatment, J. Biomed. Opt. 2006, 11, 119.
  93. L. Parma, N. Omenetto, Two-photon absorption of 7-hydroxycoumarine, Che- mical Physics Letters 1978, 54(3), 541 – 543.
  94. W. Kaiser, C. G. B. Garrett, Two-Photon Excitation in CaF2:Eu2+, Physical Review Letters 1961, 7, 229.
  95. H.-C. Kim, S. Kreiling, A. Greiner, N. Hampp, Two-Photon-Induced Cyclore- version of Coumarin Photodimers., Chemical Physics Letters 2003, 372, 899.
  96. R. N. Beale, E. M. F. Roe, Ultra-violet absorption spectra of trans-and cis- stilbenes and their derivatives. Part I. Trans-and cis-stilbenes, J. Chem. Soc 1953, 2755–2763.
  97. T. K. Dobbs, D. V. Hertzler, G. W. Keen, E. J. Eisenbraun, R. Fink, M. B. Hos- sain, D. Van der Helm, Regioselective acid-catalyzed cyclodimerization of 1,2- dihydronaphthalene. Mechanism of formation and single-crystal x-ray analysis of two octahydrobenzo[j]fluoranthenes, The Journal of Organic Chemistry 1980, 45(23), 4769–4774.
  98. World Health Organisation, Prevention of Blindness and Visual Impairment: Priority eye diseases – Cataract 2011.
  99. R. Dahm, Zwischen glasklar und grauem Star: Augenlinse, Biologie in unserer Zeit 2003, 33, 366–374.
  100. D. B. Longley, D. P. Harkin, P. G. Johnston, 5-Fluorouracil: mechanisms of action and clinical strategies, Nat Rev Cancer 2003, 3, 330–338.
  101. R. W. Carr, W. D. Walters, The Thermal Decomposition of Cyclobutane, J. Phys. Chem. 1963, 67, 1370–1372.
  102. J. Daviel, A new method of curing cataract by extraction of the lens., Memoires de L'Academie Royale de Chirurgie 1753, 2, 337–354.
  103. N. H. L. Ridley, Intraocular acrylic lenses after cataract extraction, Lancet 1952, 19, 118–129.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten