Publikationsserver der Universitätsbibliothek Marburg

Titel:Biofilm formation in the thermoacidophilic crenarchaea Sulfolobus spp.
Autor:Koerdt, Andrea
Weitere Beteiligte: Albers, Sonja V. (Dr.)
Veröffentlicht:2011
URI:https://archiv.ub.uni-marburg.de/diss/z2011/0647
URN: urn:nbn:de:hebis:04-z2011-06478
DOI: https://doi.org/10.17192/z2011.0647
DDC: Biowissenschaften, Biologie
Titel (trans.):Biofilm Bildung der thermoacidophilen Crenarchaea Sulfolobus spp.
Publikationsdatum:2011-12-19
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Biofilm, Biofilm formation, Surface appendages, Architecture, Zell Anhänge, Anheftung, Attachment,, Architektur

Summary:
In this study, the first analysis of crenarchaeal biofilm was performed. Furthermore, this work represents the first in-depth investigation of archaeal biofilm at all. Methods for the analysis of hyperthermophilic biofilm were developed, for instance, microtiter assay, CLSM, and detection of biofilm by fluorescent probes. Furthermore, it was shown that the three related strains S. solfataricus, S. acidocaldarius and S. tokodaii exhibit a high number of differences related to the architecture (carpet-like ranging to tower-like structures), protein and expression pattern, and the requirement of surface appendages. It was revealed that the matrix of biofilm contains a high amount of sugars (mannose, glucose, N-acetyl-D-glucosamine and galactosyl residues), while it is still unclear if these sugars are present in the exopolysaccharides, glycosylated proteins or both. Furthermore, the matrix included low levels eDNA which are not important for the stability and structure of the biofilm. Remarkable was the fact that the strains showed different reactions when they were exposed to stressful conditions (temperature, pH, and iron). Commonly required genes/proteins in all three Sulfolobus ssp. included Lrs14-like transcriptional regulators and FabG, which could be involved in a novel-archaea quorum sensing system. Another interesting aspect considered the impact of surface appendages to attachment and biofilm formation. S. solfataricus requires the flagella and the Ups-pili for surface attachment, but they seemed to be less important for biofilm formation. In contrast, S. acidocaldarius exhibited differences in surface attachment dependent on the presence of surface structures, while at least two appendages needed to be deleted before a significant reduction of attachment could be observed. The exception was the mutant which exhibited just the Aap-pili and had a higher affinity to the surface (150% increased). Additionally, the architecture of the biofilm changed in dependency on the appendages as well (three distinct phenotypes were observed). Furthermore, it was also possible to adapt a GFP usable for the study of biofilm formation in S. acidocaldarius. Finally, in vivo analyses of the expression of Ssα-man discovered the involvement in the sugar modification of the EPS in S. solfataricus. The result of this study indicated the possibility that glycan trimming might be existent in Sulfolobus spp.

Bibliographie / References

  1. Ortega Morales, B. O., J. Santiago García, M. Chan Bacab, X. Moppert, E. Miranda Tello, M. L. Fardeau, J. Carrero, P. Bartolo Pérez, A. Valadéz González, and J. Guezennec. 2007. Characterization of extracellular polymers synthesized by tropical intertidal biofilm bacteria. Journal of applied microbiology 102:254-264.
  2. Koerdt, A., A. Orell, T. K. Pham, J. Mukherjee, A. Wlodkowski, E. Karunakaran, C. A. Biggs, P. C. Wright, and S. V. Albers. 2011. Macromolecular Fingerprinting of Sulfolobus Species in Biofilm: A Transcriptomic and Proteomic Approach Combined with Spectroscopic Analysis. J Proteome Res.
  3. Sauer, K., A. K. Camper, G. D. Ehrlich, J. W. Costerton, and D. G. Davies. 2002. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140-1154.
  4. Spoering, A. L., and K. Lewis. 2001. Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 183:6746- 6751.
  5. O'Toole. 2007. BifA, a cyclic-Di-GMP phosphodiesterase, inversely regulates biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J Bacteriol 189:8165-8178.
  6. Sauer, K., and A. K. Camper. 2001. Characterization of phenotypic changes in Pseudomonas putida in response to surface-associated growth. J Bacteriol 183:6579- 6589.
  7. Yurist Doutsch, S., B. Chaban, D. J. VanDyke, K. F. Jarrell, and J. Eichler. 2008. Sweet to the extreme: protein glycosylation in Archaea. Molecular microbiology 68:1079- 1084.
  8. Wei, B. L., A. M. Brun-Zinkernagel, J. W. Simecka, B. M. Pruss, P. Babitzke, and T. Romeo. 2001. Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol Microbiol 40:245-256.
  9. Stanley, N. R., R. A. Britton, A. D. Grossman, and B. A. Lazazzera. 2003. Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays. J Bacteriol 185:1951-1957.
  10. Vats, N., and S. F. Lee. 2000. Active detachment of Streptococcus mutans cells adhered to epon-hydroxylapatite surfaces coated with salivary proteins in vitro. Arch Oral Biol 45:305-314.
  11. Thomas, N. A., S. Mueller, A. Klein, and K. F. Jarrell. 2002. Mutants in flaI and flaJ of the archaeon Methanococcus voltae are deficient in flagellum assembly. Mol Microbiol 46:879-887.
  12. Kawarabayasi, Y., Y. Hino, H. Horikawa, K. Jin-no, M. Takahashi, M. Sekine, S. Baba, A. Ankai, H. Kosugi, A. Hosoyama, S. Fukui, Y. Nagai, K. Nishijima, R. Otsuka, H. Nakazawa, M. Takamiya, Y. Kato, T. Yoshizawa, T. Tanaka, Y. Kudoh, J. Yamazaki, N. Kushida, A. Oguchi, K. Aoki, S. Masuda, M. Yanagii, M. Nishimura, A. Yamagishi, T. Oshima, and H. Kikuchi. 2001. Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain7. DNA Res 8:123-140.
  13. Tremblay, L. O., and A. Herscovics. 1999. Cloning and expression of a specific human alpha 1,2-mannosidase that trims Man9GlcNAc2 to Man8GlcNAc2 isomer B during N- glycan biosynthesis. Glycobiology 9:1073-1078.
  14. Peabody, C. R., Y. J. Chung, M. R. Yen, D. Vidal-Ingigliardi, A. P. Pugsley, and M. H. Saier, Jr. 2003. Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology 149:3051-3072.
  15. Ng, S. Y., B. Chaban, and K. F. Jarrell. 2006. Archaeal flagella, bacterial flagella and type IV pili: a comparison of genes and posttranslational modifications. J Mol Microbiol Biotechnol 11:167-191.
  16. Simon, G., J. Walther, N. Zabeti, Y. Combet-Blanc, R. Auria, J. van der Oost, and L. Casalot. 2009. Effect of O2 concentrations on Sulfolobus solfataricus P2. FEMS Microbiol Lett 299:255-260.
  17. van der Veen, S., and T. Abee. 2011. Mixed species biofilms of Listeria monocytogenes and Lactobacillus plantarum show enhanced resistance to benzalkonium chloride and peracetic acid. Int J Food Microbiol 144:421-431.
  18. Karlyshev, A. V., P. Everest, D. Linton, S. Cawthraw, D. G. Newell, and B. W. Wren. 2004. The Campylobacter jejuni general glycosylation system is important for attachment to human epithelial cells and in the colonization of chicks. Microbiology 150:1957-1964.
  19. Hall-Stoodley, L., and P. Stoodley. 2005. Biofilm formation and dispersal and the transmission of human pathogens. Trends Microbiol 13:7-10.
  20. Stoodley, P., A. Jacobsen, B. C. Dunsmore, B. Purevdorj, S. Wilson, H. M. Lappin- Scott, and J. W. Costerton. 2001. The influence of fluid shear and AICI3 on the material properties of Pseudomonas aeruginosa PAO1 and Desulfovibrio sp. EX265 biofilms. Water Sci Technol 43:113-120.
  21. Mai-Prochnow, A., J. S. Webb, B. C. Ferrari, and S. Kjelleberg. 2006. Ecological advantages of autolysis during the development and dispersal of Pseudoalteromonas tunicata biofilms. Appl Environ Microbiol 72:5414-5420.
  22. Stetter, K. O., A. Segerer, W. Zillig, G. Huber, G. Fiala, R. Huber, and H. König. 1986. Extremely thermophilic sulfur-metabolizing archaebacteria. Systematic and applied microbiology 7:393-397.
  23. Segerer, A. H., S. Burggraf, G. Fiala, G. Huber, R. Huber, U. Pley, and K. O. Stetter. 1993. Life in hot springs and hydrothermal vents. Orig Life Evol Biosph 23:77-90.
  24. Schopf, S., G. Wanner, R. Rachel, and R. Wirth. 2008. An archaeal bi-species biofilm formed by Pyrococcus furiosus and Methanopyrus kandleri. Arch Microbiol 190:371- 377.
  25. Nickell, S., R. Hegerl, W. Baumeister, and R. Rachel. 2003. Pyrodictium cannulae enter the periplasmic space but do not enter the cytoplasm, as revealed by cryo-electron tomography. J Struct Biol 141:34-42.
  26. Näther, D. J., R. Rachel, G. Wanner, and R. Wirth. 2006. Flagella of Pyrococcus furiosus : multifunctional organelles, made for swimming, adhesion to various surfaces, and cell-cell contacts. Journal of Bacteriology 188:6915-6923.
  27. Moissl, C., R. Rachel, A. Briegel, H. Engelhardt, and R. Huber. 2005. The unique structure of archaeal 'hami', highly complex cell appendages with nano-grappling hooks. Mol Microbiol 56:361-370.
  28. Thoma, C., M. Frank, R. Rachel, S. Schmid, D. Nather, G. Wanner, and R. Wirth. 2008. The Mth60 fimbriae of Methanothermobacter thermoautotrophicus are functional adhesins. Environ Microbiol 10:2785-2795.
  29. Zolghadr, B., A. Klingl, A. Koerdt, A. J. Driessen, R. Rachel, and S. V. Albers. 2010. Appendage-mediated surface adherence of Sulfolobus solfataricus. J Bacteriol 192:104-110.
  30. Sumper, M., E. Berg, R. Mengele, and I. Strobel. 1990. Primary structure and glycosylation of the S-layer protein of Haloferax volcanii. J Bacteriol 172:7111-7118.
  31. Sumper, M. 1987. Halobacterial glycoprotein biosynthesis. Biochim Biophys Acta 906:69-79.
  32. Rivas, L., N. Fegan, and G. A. Dykes. 2008. Expression and putative roles in attachment of outer membrane proteins of Escherichia coli O157 from planktonic and sessile culture. Foodborne Pathog Dis 5:155-164.
  33. Rivas, L., N. Fegan, and G. A. Dykes. 2005. Physicochemical properties of Shiga toxigenic Escherichia coli. J Appl Microbiol 99:716-727.
  34. Zolghadr, B., S. Weber, Z. Szabo, A. J. Driessen, and S. V. Albers. 2007. Identification of a system required for the functional surface localization of sugar binding proteins with class III signal peptides in Sulfolobus solfataricus. Mol Microbiol 64:795-806.
  35. Wagner, M., S. Berkner, M. Ajon, A. J. Driessen, G. Lipps, and S. V. Albers. 2009. Expanding and understanding the genetic toolbox of the hyperthermophilic genus Sulfolobus. Biochem Soc Trans 37:97-101.
  36. Peeters, E., S. V. Albers, A. Vassart, A. J. Driessen, and D. Charlier. 2009. Ss-LrpB, a transcriptional regulator from Sulfolobus solfataricus, regulates a gene cluster with a pyruvate ferredoxin oxidoreductase-encoding operon and permease genes. Mol Microbiol 71:972-988.
  37. Ramsing, N. B., M. Kuhl, and B. B. Jorgensen. 1993. Distribution of sulfate-reducing bacteria, O2, and H2S in photosynthetic biofilms determined by oligonucleotide probes and microelectrodes. Appl Environ Microbiol 59:3840-3849.
  38. Whitchurch, C. B., T. Tolker-Nielsen, P. C. Ragas, and J. S. Mattick. 2002. Extracellular DNA required for bacterial biofilm formation. Science 295:1487. References 161
  39. Veith, A., A. Klingl, B. Zolghadr, K. Lauber, R. Mentele, F. Lottspeich, R. Rachel, S. V. Albers, and A. Kletzin. 2009. Acidianus, Sulfolobus and Metallosphaera surface layers: structure, composition and gene expression. Mol Microbiol 73:58-72.
  40. Nutsch, T., W. Marwan, D. Oesterhelt, and E. D. Gilles. 2003. Signal processing and flagellar motor switching during phototaxis of Halobacterium salinarum. Genome Res 13:2406-2412.
  41. Pruschenk, R., W. Baumeister, and W. Zillig. 1987. Surface structure variants in different species of Sulfolobus. FEMS microbiology letters 43:327-330.
  42. Kirov, S. M., M. Castrisios, and J. G. Shaw. 2004. Aeromonas flagella (polar and lateral) are enterocyte adhesins that contribute to biofilm formation on surfaces. Infect Immun 72:1939-1945.
  43. Napoli, A., J. van der Oost, C. W. Sensen, R. L. Charlebois, M. Rossi, and M. Ciaramella. 1999. An Lrp-like protein of the hyperthermophilic archaeon Sulfolobus solfataricus which binds to its own promoter. J Bacteriol 181:1474-1480.
  44. Maruyama, Y., T. Nakajima, and E. Ichishima. 1994. A 1,2-alpha-D-mannosidase from a Bacillus sp.: purification, characterization, and mode of action. Carbohydr Res 251:89-98.
  45. Prokofeva, M., M. Miroshnichenko, N. Kostrikina, N. Chernyh, B. Kuznetsov, T. Tourova, and E. Bonch-Osmolovskaya. 2000. Acidilobus aceticus gen. nov., sp. nov., a novel anaerobic thermoacidophilic archaeon from continental hot vents in Kamchatka. International Journal of Systematic and Evolutionary Microbiology 50:2001.
  46. Gristina, A. G., C. D. Hobgood, L. X. Webb, and Q. N. Myrvik. 1987. Adhesive colonization of biomaterials and antibiotic resistance. Biomaterials 8:423-426.
  47. Magidovich, H., S. Yurist-Doutsch, Z. Konrad, V. V. Ventura, A. Dell, P. G. Hitchen, and J. Eichler. 2010. AglP is a S-adenosyl-L-methionine-dependent methyltransferase that participates in the N-glycosylation pathway of Haloferax volcanii. Mol Microbiol 76:190-199.
  48. Trent, J. D., E. Nimmesgern, J. S. Wall, F. U. Hartl, and A. L. Horwich. 1991. A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1. Nature 354:490-493.
  49. Karner, M. B., E. F. DeLong, and D. M. Karl. 2001. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409:507-510.
  50. Konig, H. 1988. Archaeobacterial cell envelopes. Can. J. Microbiol 34:395-406. References 152
  51. Van der Mei, H., M. Rosenberg, and H. Busscher. 1991. Assessment of microbial cell surface hydrophobicity. Microbial cell surface analysis. VCH, New York:265–287.
  52. Seifert, K. N., E. E. Adderson, A. A. Whiting, J. F. Bohnsack, P. J. Crowley, and L. J. Brady. 2006. A unique serine-rich repeat protein (Srr-2) and novel surface antigen (epsilon) associated with a virulent lineage of serotype III Streptococcus agalactiae. Microbiology 152:1029-1040.
  53. Lynch, A. S., and G. T. Robertson. 2008. Bacterial and fungal biofilm infections. Annu Rev Med 59:415-428.
  54. Hall-Stoodley, L., J. W. Costerton, and P. Stoodley. 2004. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95-108.
  55. Nigaud, Y., P. Cosette, A. Collet, P. C. Song, D. Vaudry, H. Vaudry, G. A. Junter, and T. Jouenne. 2010. Biofilm-induced modifications in the proteome of Pseudomonas aeruginosa planktonic cells. Biochim Biophys Acta 1804:957-966.
  56. Smith, A. W. 2005. Biofilms and antibiotic therapy: is there a role for combating bacterial resistance by the use of novel drug delivery systems? Adv Drug Deliv Rev 57:1539-1550.
  57. Stoodley, P., K. Sauer, D. Davies, and J. Costerton. 2002. Biofilms as complex differentiated communities. Annual Reviews in Microbiology 56:187-209.
  58. Miron, J., and C. W. Forsberg. 1999. Characterisation of cellulose-binding proteins that are involved in the adhesion mechanism of Fibrobacter intestinalis DR7. Appl Microbiol Biotechnol 51:491-497.
  59. McClaine, J. W., and R. M. Ford. 2002. Characterizing the adhesion of motile and nonmotile Escherichia coli to a glass surface using a parallel-plate flow chamber. Biotechnol Bioeng 78:179-189.
  60. Kandler, O., and H. Konig. 1978. Chemical composition of the peptidoglycan-free cell walls of methanogenic bacteria. Arch Microbiol 118:141-152.
  61. Nikolaev Iu, A., and V. K. Plakunov. 2007. [Biofilm--"City of microbes" or an analogue of multicellular organisms?]. Mikrobiologiia 76:149-163.
  62. Sara, M., and U. B. Sleytr. 1996. Crystalline bacterial cell surface layers (S-layers): from cell structure to biomimetics. Prog Biophys Mol Biol 65:83-111.
  63. Curriculum Vitae Personal Data Name: Andrea Koerdt Date of birth: 24 February 1983
  64. Lux, R., Y. Li, A. Lu, and W. Shi. 2004. Detailed three-dimensional analysis of structural features of Myxococcus xanthus fruiting bodies using confocal laser scanning microscopy. Biofilms 1:293-303.
  65. Haagensen, J. A. J., M. Klausen, R. K. Ernst, S. I. Miller, A. Folkesson, T. Tolker- Nielsen, and S. Molin. 2006. Differentiation and distribution of colistin/SDS tolerant cells in Pseudomonas aeruginosa biofilms. Journal of Bacteriology:JB. 00720- 00706v00721.
  66. Tanaka, G., M. Shigeta, H. Komatsuzawa, M. Sugai, H. Suginaka, and T. Usui. 1999. Effect of the growth rate of Pseudomonas aeruginosa biofilms on the susceptibility to antimicrobial agents: beta-lactams and fluoroquinolones. Chemotherapy 45:28-36. References 159
  67. Hall-Stoodley, L., and P. Stoodley. 2009. Evolving concepts in biofilm infections. Cell Microbiol 11:1034-1043.
  68. Szabo, Z., M. Sani, M. Groeneveld, B. Zolghadr, J. Schelert, S. V. Albers, P. Blum, E. J. Boekema, and A. J. Driessen. 2007. Flagellar motility and structure in the hyperthermoacidophilic archaeon Sulfolobus solfataricus. J Bacteriol 189:4305-4309.
  69. Ren, D., L. A. Bedzyk, P. Setlow, S. M. Thomas, R. W. Ye, and T. K. Wood. 2004. Gene expression in Bacillus subtilis surface biofilms with and without sporulation and the importance of yveR for biofilm maintenance. Biotechnol Bioeng 86:344-364.
  70. Ren, D., L. A. Bedzyk, S. M. Thomas, R. W. Ye, and T. K. Wood. 2004. Gene expression in Escherichia coli biofilms. Appl Microbiol Biotechnol 64:515-524.
  71. Solano, C., B. Garcia, J. Valle, C. Berasain, J. M. Ghigo, C. Gamazo, and I. Lasa. 2002. Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol Microbiol 43:793-808.
  72. Van Dellen, K. L., L. Houot, and P. I. Watnick. 2008. Genetic analysis of Vibrio cholerae monolayer formation reveals a key role for DeltaPsi in the transition to permanent attachment. J Bacteriol 190:8185-8196.
  73. M. Wen. 2003. Genome-based analysis of virulence genes in a non-biofilm-forming Staphylococcus epidermidis strain (ATCC 12228). Mol Microbiol 49:1577-1593.
  74. Whitaker, R. J., D. W. Grogan, and J. W. Taylor. 2003. Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301:976-978.
  75. Simm, R., M. Morr, A. Kader, M. Nimtz, and U. Romling. 2004. GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53:1123-1134.
  76. Schembri, M. A., K. Kjaergaard, and P. Klemm. 2003. Global gene expression in Escherichia coli biofilms. Mol Microbiol 48:253-267.
  77. Zhou, M., and H. Wu. 2009. Glycosylation and biogenesis of a family of serine-rich bacterial adhesins. Microbiology 155:317-327.
  78. Rodriguez-Valera, F., G. Juez, and D. Kushner. 1983. Halobacterium mediterranei spec. nov., a new carbohydrate-utilizing extreme halophile. Systematic and applied microbiology 4:369-381.
  79. Highschool, completed with general qualification for university entrance.
  80. Voisin, S., R. S. Houliston, J. Kelly, J. R. Brisson, D. Watson, S. L. Bardy, K. F. Jarrell, and S. M. Logan. 2005. Identification and characterization of the unique N-linked glycan common to the flagellins and S-layer glycoprotein of Methanococcus voltae. J Biol Chem 280:16586-16593.
  81. Gonzalez, D. S., K. Karaveg, A. S. Vandersall-Nairn, A. Lal, and K. W. Moremen. 1999. Identification, expression, and characterization of a cDNA encoding human endoplasmic reticulum mannosidase I, the enzyme that catalyzes the first mannose trimming step in mammalian Asn-linked oligosaccharide biosynthesis. J Biol Chem 274:21375-21386.
  82. Herscovics, A. 1999. Importance of glycosidases in mammalian glycoprotein biosynthesis. Biochim Biophys Acta 1473:96-107.
  83. Rivera-Marrero, C. A., W. Schuyler, S. Roser, and J. Roman. 2000. Induction of MMP-9 mediated gelatinolytic activity in human monocytic cells by cell wall components of Mycobacterium tuberculosis. Microb Pathog 29:231-244.
  84. Thormann, K. M., R. M. Saville, S. Shukla, and A. M. Spormann. 2005. Induction of rapid detachment in Shewanella oneidensis MR-1 biofilms. J Bacteriol 187:1014-1021.
  85. O'Toole, G. A., and R. Kolter. 1998. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28:449-461.
  86. Lawrence, J. R., G. D. Swerhone, U. Kuhlicke, and T. R. Neu. 2007. In situ evidence for microdomains in the polymer matrix of bacterial microcolonies. Can J Microbiol 53:450-458.
  87. Van Oss, C. J., M. K. Chaudhury, and R. J. Good. 1988. Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chemical Reviews 88:927-941.
  88. Grogan, D. W. 1996. Isolation and fractionation of cell envelope from the extreme thermo-acidophile Sulfolobus acidocaldarius. Journal of microbiological methods 26:35-43.
  89. Neu, T. R., and J. R. Lawrence. 1999. Lectin-binding analysis in biofilm systems. Methods Enzymol 310:145-152.
  90. Stetter, K. O., G. Fiala, R. Huber, G. Huber, and A. Segerer. 1986. Life above the boiling point of water? Cellular and Molecular Life Sciences 42:1187-1191.
  91. Mah, T. F., and G. A. O'Toole. 2001. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34-39.
  92. Prosser, B. L., D. Taylor, B. A. Dix, and R. Cleeland. 1987. Method of evaluating effects of antibiotics on bacterial biofilm. Antimicrob Agents Chemother 31:1502-1506.
  93. Hancock, I. 1991. Microbial cell surface architecture. Microbial cell surface analysis. VCH, Weinheim, Germany:21-59.
  94. Zeikus, J., M. Dawson, T. Thompson, K. Ingvorsen, and E. Hatchikian. 1983. Microbial Ecology of Volcanic Sulphidogenesis: Isolation and Characterization of Thermodesulfobacterium commune gen. nov. and sp. nov. Microbiology 129:1159.
  95. Leigh, J. A., S. V. Albers, H. Atomi, and T. Allers. 2011. Model organisms for genetics in the domain Archaea: methanogens, halophiles, Thermococcales and Sulfolobales. FEMS Microbiol Rev.
  96. Yildiz, F. H., X. S. Liu, A. Heydorn, and G. K. Schoolnik. 2004. Molecular analysis of rugosity in a Vibrio cholerae O1 El Tor phase variant. Mol Microbiol 53:497-515.
  97. Koerdt A, Paulick A, Mock M, Jost K, Thormann KM. (2009). "MotX and MotY are required for flagellar rotation in Shewanella oneidensis MR-1." J Bacteriol 191(16): 5085-93.
  98. Birthplace: Wickede (Ruhr) Nationality: German Marital status: Single Education 2008-Present PhD research, Max Planck Institute for terrestrial Microbiology in Marburg, department of Molecular Biology of Archaea, PhD is expected to be finalized in October 2011 2003-2008 Diploma theses, Max Planck Institute for terrestrial Microbiology in Marburg, Department of Ecophysiology, Study of biology, Philipps-Universität Marburg, Germany Major: Microbiology Minor subjects: Genetics and Virology. Study completed with distinction. 1994-2002
  99. Rudolph, C., G. Wanner, and R. Huber. 2001. Natural communities of novel archaea and bacteria growing in cold sulfurous springs with a string-of-pearls-like morphology. Appl Environ Microbiol 67:2336-2344.
  100. Yurist-Doutsch, S., H. Magidovich, V. V. Ventura, P. G. Hitchen, A. Dell, and J. Eichler. 2010. N-glycosylation in Archaea: On the coordinated actions of Haloferax volcanii AglF and AglM. Mol Microbiol.
  101. Grogan, D. W. 1996. Organization and interactions of cell envelope proteins of the extreme thermoacidophile Sulfolobus acidocaldarius. Canadian journal of microbiology 42:1163-1171.
  102. von Eiff, C., G. Peters, and C. Heilmann. 2002. Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect Dis 2:677-685.
  103. Lewis, K. 2007. Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5:48-56.
  104. Monds, R. D., P. D. Newell, R. H. Gross, and G. A. O'Toole. 2007. Phosphate- dependent modulation of c-di-GMP levels regulates Pseudomonas fluorescens Pf0-1
  105. Sampaio, M. M., F. Chevance, R. Dippel, T. Eppler, A. Schlegel, W. Boos, Y. J. Lu, and C. O. Rock. 2004. Phosphotransferase-mediated transport of the osmolyte 2-O-alpha- mannosyl-D-glycerate in Escherichia coli occurs by the product of the mngA (hrsA) gene and is regulated by the mngR (farR) gene product acting as repressor. J Biol Chem 279:5537-5548.
  106. Klenk, and W. Zillig. 1995. Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J Bacteriol 177:7050-7059.
  107. Zillig, W., K. O. Stetter, S. Wunderl, W. Schulz, H. Priess, and I. Scholz. 1980. The Sulfolobus- " Caldariella " group: taxonomy on the basis of the structure of DNA- dependent RNA polymerases. Archives of Microbiology 125:259-269.
  108. Karcher, U., H. Schroder, E. Haslinger, G. Allmaier, R. Schreiner, F. Wieland, A. Haselbeck, and H. Konig. 1993. Primary structure of the heterosaccharide of the surface glycoprotein of Methanothermus fervidus. J Biol Chem 268:26821-26826.
  109. Nicolaus, B., M. C. Manca, I. Ramano, and L. Lama. 1993. Production of an exopolysaccharide from two thermophilic archaea belonging to the genus Sulfolobus. FEMS microbiology letters 109:203-206.
  110. Nothaft, H., and C. M. Szymanski. 2010. Protein glycosylation in bacteria: sweeter than ever. Nat Rev Microbiol 8:765-778.
  111. Pohlschroder, M., M. I. Gimenez, and K. F. Jarrell. 2005. Protein transport in Archaea: Sec and twin arginine translocation pathways. Curr Opin Microbiol 8:713-719.
  112. Mescher, M. F., and J. L. Strominger. 1976. Purification and characterization of a prokaryotic glucoprotein from the cell envelope of Halobacterium salinarium. J Biol Chem 251:2005-2014.
  113. Kang, Y., H. Liu, S. Genin, M. A. Schell, and T. P. Denny. 2002. Ralstonia solanacearum requires type 4 pili to adhere to multiple surfaces and for natural transformation and virulence. Mol Microbiol 46:427-437.
  114. References 154 biofilm formation by controlling secretion of the adhesin LapA. Mol Microbiol 63:656- 679.
  115. Suzuki, K., X. Wang, T. Weilbacher, A. K. Pernestig, O. Melefors, D. Georgellis, P. Babitzke, and T. Romeo. 2002. Regulatory circuitry of the CsrA/CsrB and BarA/UvrY systems of Escherichia coli. J Bacteriol 184:5130-5140.
  116. Ukuku, D. O., and W. F. Fett. 2002. Relationship of cell surface charge and hydrophobicity to strength of attachment of bacteria to cantaloupe rind. J Food Prot 65:1093-1099.
  117. Gotz, D., S. Paytubi, S. Munro, M. Lundgren, R. Bernander, and M. F. White. 2007. Responses of hyperthermophilic crenarchaea to UV irradiation. Genome Biol 8:R220. 99. Grass, S., A. Z. Buscher, W. E. Swords, M. A. Apicella, S. J. Barenkamp, N. Ozchlewski, and J. W. St Geme, 3rd. 2003. The Haemophilus influenzae HMW1 adhesin is glycosylated in a process that requires HMW1C and phosphoglucomutase, an enzyme involved in lipooligosaccharide biosynthesis. Mol Microbiol 48:737-751.
  118. McClaine, J. W., and R. M. Ford. 2002. Reversal of flagellar rotation is important in initial attachment of Escherichia coli to glass in a dynamic system with high-and low- ionic-strength buffers. Appl Environ Microbiol 68:1280-1289.
  119. Peng, Z., H. Wu, T. Ruiz, Q. Chen, M. Zhou, B. Sun, and P. Fives-Taylor. 2008. Role of gap3 in Fap1 glycosylation, stability, in vitro adhesion, and fimbrial and biofilm formation of Streptococcus parasanguinis. Oral Microbiol Immunol 23:70-78.
  120. Zillig, W., A. Kletzin, C. Schleper, I. Holz, D. Janekovic, J. Hain, M. Lanzendörfer, and J. Kristjansson. 1994. Screening for Sulfolobales, their plasmids and their viruses in Icelandic solfataras. Systematic and applied microbiology 16:609-628.
  121. Potvin, E., F. Sanschagrin, and R. C. Levesque. 2008. Sigma factors in Pseudomonas aeruginosa. FEMS Microbiol Rev 32:38-55.
  122. Sara, M., and U. B. Sleytr. 2000. S-Layer proteins. J Bacteriol 182:859-868.
  123. Mobili, P., E. Gerbino, E. Tymczyszyn, and A. Gómez-Zavaglia. 2010. S-layers in lactobacilli: structural characteristics and putative role in surface and probiotic properties of whole bacteria.
  124. Heydorn, A., B. Ersboll, J. Kato, M. Hentzer, M. R. Parsek, T. Tolker-Nielsen, M. Givskov, and S. Molin. 2002. Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell References 151
  125. Smirnova, T., L. Didenko, R. Azizbekyan, and Y. M. Romanova. 2010. Structural and functional characteristics of bacterial biofilms. Microbiology 79:413-423.
  126. Kagawa, H. K., J. Osipiuk, N. Maltsev, R. Overbeek, E. Quaite-Randall, A. Joachimiak, and J. D. Trent. 1995. The 60 kDa heat shock proteins in the hyperthermophilic archaeon Sulfolobus shibatae. J Mol Biol 253:712-725.
  127. Mills, E., I. S. Pultz, H. D. Kulasekara, and S. I. Miller. 2011. The bacterial second messenger c-di-GMP: mechanisms of signalling. Cell Microbiol 13:1122-1129.
  128. Sutherland, I. W. 2001. The biofilm matrix--an immobilized but dynamic microbial environment. Trends Microbiol 9:222-227.
  129. Niemetz, R., U. Karcher, O. Kandler, B. J. Tindall, and H. Konig. 1997. The cell wall polymer of the extremely halophilic archaeon Natronococcus occultus. Eur J Biochem 249:905-911.
  130. Monds, R. D., and G. A. O'Toole. 2009. The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol 17:73-87.
  131. Starnbach, M. N., and S. Lory. 1992. The fliA (rpoF) gene of Pseudomonas aeruginosa encodes an alternative sigma factor required for flagellin synthesis. Mol Microbiol 6:459-469.
  132. Vasseur, P., I. Vallet-Gely, C. Soscia, S. Genin, and A. Filloux. 2005. The pel genes of the Pseudomonas aeruginosa PAK strain are involved at early and late stages of biofilm formation. Microbiology 151:985-997.
  133. Otto, K., H. Elwing, and M. Hermansson. 1999. The role of type 1 fimbriae in adhesion of Escherichia coli to hydrophilic and hydrophobic surfaces. Colloids and Surfaces B: Biointerfaces 15:99-111.
  134. Woese, C. R., O. Kandler, and M. L. Wheelis. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87:4576-4579.
  135. Rieger, G., R. Rachel, R. Hermann, and K. O. Stetter. 1995. Ultrastructure of the hyperthermophilic archaeon Pyrodictium abyssi. Journal of Structural Biology 115:78- 87.
  136. Nakajima, M., H. Imamura, H. Shoun, and T. Wakagi. 2003. Unique metal dependency of cytosolic alpha-mannosidase from Thermotoga maritima, a hyperthermophilic bacterium. Arch Biochem Biophys 415:87-93.
  137. Siebers, B., and P. Schonheit. 2005. Unusual pathways and enzymes of central carbohydrate metabolism in Archaea. Curr Opin Microbiol 8:695-705.
  138. Kalmokoff, M., P. Lanthier, T. L. Tremblay, M. Foss, P. C. Lau, G. Sanders, J. Austin, J. Kelly, and C. M. Szymanski. 2006. Proteomic analysis of Campylobacter jejuni 11168 biofilms reveals a role for the motility complex in biofilm formation. J Bacteriol 188:4312-4320.
  139. Goon, S., J. F. Kelly, S. M. Logan, C. P. Ewing, and P. Guerry. 2003. Pseudaminic acid, the major modification on Campylobacter flagellin, is synthesized via the Cj1293 gene. Mol Microbiol 50:659-671.
  140. Pratt, L. A., and R. Kolter. 1998. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285-293.
  141. O'Toole, G. A., and R. Kolter. 1998. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295-304.
  142. Klausen, M., A. Heydorn, P. Ragas, L. Lambertsen, A. Aaes-Jorgensen, S. Molin, and T. Tolker-Nielsen. 2003. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48:1511-1524.
  143. Klausen, M., A. Aaes-Jorgensen, S. Molin, and T. Tolker-Nielsen. 2003. Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol 50:61-68.
  144. Mathee, K., O. Ciofu, C. Sternberg, P. W. Lindum, J. I. Campbell, P. Jensen, A. H. Johnsen, M. Givskov, D. E. Ohman, S. Molin, N. Hoiby, and A. Kharazmi. 1999. Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology 145 ( Pt 6):1349-1357.
  145. Sherlock, O., M. A. Schembri, A. Reisner, and P. Klemm. 2004. Novel roles for the AIDA adhesin from diarrheagenic Escherichia coli: cell aggregation and biofilm formation. J Bacteriol 186:8058-8065.
  146. Qin, Z., Y. Ou, L. Yang, Y. Zhu, T. Tolker-Nielsen, S. Molin, and D. Qu. 2007. Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis. Microbiology 153:2083-2092.
  147. Sherlock, O., R. M. Vejborg, and P. Klemm. 2005. The TibA adhesin/invasin from enterotoxigenic Escherichia coli is self recognizing and induces bacterial aggregation and biofilm formation. Infect Immun 73:1954-1963.
  148. Rachid, S., K. Ohlsen, U. Wallner, J. Hacker, M. Hecker, and W. Ziebuhr. 2000. Alternative transcription factor sigma(B) is involved in regulation of biofilm expression in a Staphylococcus aureus mucosal isolate. J Bacteriol 182:6824-6826.
  149. Hamilton, S., R. J. M. Bongaerts, F. Mulholland, B. Cochrane, J. Porter, S. Lucchini, H. M. Lappin-Scott, and J. C. D. Hinton. 2009. The transcriptional programme of Salmonella enterica serovar Typhimurium reveals a key role for tryptophan metabolism in biofilms. BMC Genomics 10599-620.
  150. Whiteley, M., M. G. Bangera, R. E. Bumgarner, M. R. Parsek, G. M. Teitzel, S. Lory, and E. P. Greenberg. 2001. Gene expression in Pseudomonas aeruginosa biofilms. Nature 413:860-864.
  151. Prigent-Combaret, C., O. Vidal, C. Dorel, and P. Lejeune. 1999. Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J Bacteriol 181:5993-6002.
  152. Waite, R. D., A. Papakonstantinopoulou, E. Littler, and M. A. Curtis. 2005. Transcriptome analysis of Pseudomonas aeruginosa growth: comparison of gene expression in planktonic cultures and developing and mature biofilms. J Bacteriol 187:6571-6576.
  153. Oosthuizen, M. C., B. Steyn, J. Theron, P. Cosette, D. Lindsay, A. Von Holy, and V. S. Brozel. 2002. Proteomic analysis reveals differential protein expression by Bacillus cereus during biofilm formation. Appl Environ Microbiol 68:2770-2780.
  154. Szymanski, C. M., D. H. Burr, and P. Guerry. 2002. Campylobacter protein glycosylation affects host cell interactions. Infect Immun 70:2242-2244.
  155. Aas, J. A., B. J. Paster, L. N. Stokes, I. Olsen, and F. E. Dewhirst. 2005. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43:5721-5732.
  156. Rinker, K. D., and R. M. Kelly. 1996. Growth Physiology of the Hyperthermophilic Archaeon Thermococcus litoralis: Development of a Sulfur-Free Defined Medium, Characterization of an Exopolysaccharide, and Evidence of Biofilm Formation. Appl Environ Microbiol 62:4478 -4485.
  157. Lapaglia, C., and P. L. Hartzell. 1997. Stress-Induced Production of Biofilm in the Hyperthermophile Archaeoglobus fulgidus. Appl Environ Microbiol 63:3158-3163.
  158. Tachdjian, S., and R. M. Kelly. 2006. Dynamic metabolic adjustments and genome plasticity are implicated in the heat shock response of the extremely thermoacidophilic archaeon Sulfolobus solfataricus. J Bacteriol 188:4553-4559.
  159. Walters, M. C., 3rd, F. Roe, A. Bugnicourt, M. J. Franklin, and P. S. Stewart. 2003. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 47:317-323.
  160. Noyce, J. O., H. Michels, and C. W. Keevil. 2006. Use of copper cast alloys to control Escherichia coli O157 cross-contamination during food processing. Appl Environ Microbiol 72:4239-4244.
  161. Wozniak, D. J., T. J. Wyckoff, M. Starkey, R. Keyser, P. Azadi, G. A. O'Toole, and M. R. Parsek. 2003. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci U S A 100:7907-7912.
  162. Webb, J. S., L. S. Thompson, S. James, T. Charlton, T. Tolker-Nielsen, B. Koch, M. Givskov, and S. Kjelleberg. 2003. Cell death in Pseudomonas aeruginosa biofilm development. J Bacteriol 185:4585-4592.
  163. Ma, L., K. D. Jackson, R. M. Landry, M. R. Parsek, and D. J. Wozniak. 2006. Analysis of Pseudomonas aeruginosa conditional psl variants reveals roles for the psl polysaccharide in adhesion and maintaining biofilm structure postattachment. J Bacteriol 188:8213-8221.
  164. Ryan, R. P., Y. Fouhy, J. F. Lucey, and J. M. Dow. 2006. Cyclic di-GMP signaling in bacteria: recent advances and new puzzles. J Bacteriol 188:8327-8334.
  165. Parise, G., M. Mishra, Y. Itoh, T. Romeo, and R. Deora. 2007. Role of a putative polysaccharide locus in Bordetella biofilm development. J Bacteriol 189:750-760.
  166. Szabo, Z., A. O. Stahl, S. V. Albers, J. C. Kissinger, A. J. Driessen, and M. Pohlschroder. 2007. Identification of diverse archaeal proteins with class III signal peptides cleaved by distinct archaeal prepilin peptidases. J Bacteriol 189:772-778.
  167. Nickel, J. C., I. Ruseska, J. B. Wright, and J. W. Costerton. 1985. Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob Agents Chemother 27:619-624.
  168. Wagner, M., R. Amann, H. Lemmer, and K. H. Schleifer. 1993. Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture- dependent methods for describing microbial community structure. Appl Environ Microbiol 59:1520-1525.
  169. Wu, H., M. Zeng, and P. Fives-Taylor. 2007. The glycan moieties and the N-terminal polypeptide backbone of a fimbria-associated adhesin, Fap1, play distinct roles in the biofilm development of Streptococcus parasanguinis. Infect Immun 75:2181-2188.
  170. McKenzie, G. J., R. S. Harris, P. L. Lee, and S. M. Rosenberg. 2000. The SOS response regulates adaptive mutation. Proc Natl Acad Sci U S A 97:6646-6651.
  171. Lemon, K. P., D. E. Higgins, and R. Kolter. 2007. Flagellar motility is critical for Listeria monocytogenes biofilm formation. J Bacteriol 189:4418-4424.
  172. Kierek, K., and P. I. Watnick. 2003. Environmental determinants of Vibrio cholerae biofilm development. Appl Environ Microbiol 69:5079-5088.
  173. Stewart, P. S., B. M. Peyton, W. J. Drury, and R. Murga. 1993. Quantitative observations of heterogeneities in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 59:327-329.
  174. Van Loosdrecht, M., J. Lyklema, W. Norde, G. Schraa, and A. Zehnder. 1987. The role of bacterial cell wall hydrophobicity in adhesion. Applied and environmental microbiology 53:1893.
  175. van Loosdrecht, M. C., J. Lyklema, W. Norde, G. Schraa, and A. J. Zehnder. 1987. Electrophoretic mobility and hydrophobicity as a measured to predict the initial steps of bacterial adhesion. Appl Environ Microbiol 53:1898-1901.
  176. Ohnishi, K., Y. Ohto, S. Aizawa, R. M. Macnab, and T. Iino. 1994. FlgD is a scaffolding protein needed for flagellar hook assembly in Salmonella typhimurium. J Bacteriol 176:2272-2281.
  177. Monroe, D. 2007. Looking for chinks in the armor of bacterial biofilms. PLoS Biol 5:e307.
  178. Marwan, W., M. Alam, and D. Oesterhelt. 1991. Rotation and switching of the flagellar motor assembly in Halobacterium halobium. J Bacteriol 173:1971-1977.
  179. Lawrence, J. R., D. R. Korber, B. D. Hoyle, J. W. Costerton, and D. E. Caldwell. 1991. Optical sectioning of microbial biofilms. J Bacteriol 173:6558-6567.
  180. Kalmokoff, M. L., and K. F. Jarrell. 1991. Cloning and sequencing of a multigene family encoding the flagellins of Methanococcus voltae. J Bacteriol 173:7113-7125.
  181. Grogan, D. W. 1989. Phenotypic characterization of the archaebacterial genus Sulfolobus: comparison of five wild-type strains. J Bacteriol 171:6710-6719.
  182. Abella, M., S. Rodriguez, S. Paytubi, S. Campoy, M. F. White, and J. Barbe. 2007. The Sulfolobus solfataricus radA paralogue sso0777 is DNA damage inducible and positively regulated by the Sta1 protein. Nucleic Acids Res 35:6788-6797.
  183. Ryder, C., M. Byrd, and D. J. Wozniak. 2007. Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol 10:644-648.
  184. Yildiz, F. H. 2008. Cyclic dimeric GMP signaling and regulation of surface-associated developmental programs. J Bacteriol 190:781-783.
  185. Waters, C. M., W. Lu, J. D. Rabinowitz, and B. L. Bassler. 2008. Quorum sensing controls biofilm formation in Vibrio cholerae through modulation of cyclic di-GMP levels and repression of vpsT. J Bacteriol 190:2527-2536.
  186. Lemon, K. P., A. M. Earl, H. C. Vlamakis, C. Aguilar, and R. Kolter. 2008. Biofilm development with an emphasis on Bacillus subtilis. Curr Top Microbiol Immunol 322:1- 16.
  187. Moorthy, S., and P. I. Watnick. 2004. Genetic evidence that the Vibrio cholerae monolayer is a distinct stage in biofilm development. Mol Microbiol 52:573-587.
  188. Thomas, V. C., L. R. Thurlow, D. Boyle, and L. E. Hancock. 2008. Regulation of autolysis-dependent extracellular DNA release by Enterococcus faecalis extracellular proteases influences biofilm development. J Bacteriol 190:5690-5698.
  189. Ma, L., M. Conover, H. Lu, M. R. Parsek, K. Bayles, and D. J. Wozniak. 2009. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog 5:e1000354. References 153
  190. Abu-Qarn, M., and J. Eichler. 2007. An analysis of amino acid sequences surrounding archaeal glycoprotein sequons. Archaea 2:73-81.
  191. Lebeer, S., T. L. Verhoeven, G. Francius, G. Schoofs, I. Lambrichts, Y. Dufrene, J. Vanderleyden, and S. C. De Keersmaecker. 2009. Identification of a Gene Cluster for the Biosynthesis of a Long, Galactose-Rich Exopolysaccharide in Lactobacillus rhamnosus GG and Functional Analysis of the Priming Glycosyltransferase. Appl Environ Microbiol 75:3554-3563.
  192. Ueda, A., and T. K. Wood. 2009. Connecting quorum sensing, c-di-GMP, pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885). PLoS Pathog 5:e1000483.
  193. Karatan, E., and P. Watnick. 2009. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 73:310-347.
  194. Yang, M., E. M. Frey, Z. Liu, R. Bishar, and J. Zhu. 2010. The virulence transcriptional activator AphA enhances biofilm formation by Vibrio cholerae by activating expression of the biofilm regulator VpsT. Infect Immun 78:697-703.
  195. Kierek, K., and P. I. Watnick. 2003. The Vibrio cholerae O139 O-antigen polysaccharide is essential for Ca2+-dependent biofilm development in sea water. Proc Natl Acad Sci U S A 100:14357-14362.
  196. Zhou, M., F. Zhu, S. Dong, D. G. Pritchard, and H. Wu. 2010. A novel glucosyltransferase is required for glycosylation of a serine-rich adhesin and biofilm formation by Streptococcus parasanguinis. J Biol Chem 285:12140-12148.
  197. Watnick, P. I., and R. Kolter. 1999. Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol 34:586-595.
  198. Koo, H., J. Xiao, M. I. Klein, and J. G. Jeon. 2010. Exopolysaccharides produced by Streptococcus mutans glucosyltransferases modulate the establishment of microcolonies within multispecies biofilms. J Bacteriol 192:3024-3032.
  199. Tripepi, M., S. Imam, and M. Pohlschroder. 2010. Haloferax volcanii flagella are required for motility but are not involved in PibD-dependent surface adhesion. J Bacteriol 192:3093-3102.
  200. Li, Y., Y. Chen, X. Huang, M. Zhou, R. Wu, S. Dong, D. G. Pritchard, P. Fives-Taylor, and H. Wu. 2008. A conserved domain of previously unknown function in Gap1 mediates protein-protein interaction and is required for biogenesis of a serine-rich streptococcal adhesin. Mol Microbiol 70:1094-1104.
  201. Albers, and A. Dell. 2010. The S-layer glycoprotein of the crenarchaeote Sulfolobus acidocaldarius is glycosylated at multiple sites with chitobiose-linked N-glycans. Archaea 2010.
  202. Uppuluri, P., C. G. Pierce, D. P. Thomas, S. S. Bubeck, S. P. Saville, and J. L. Lopez- Ribot. 2010. The transcriptional regulator Nrg1p controls Candida albicans biofilm formation and dispersion. Eukaryot Cell 9:1531-1537.
  203. Koerdt, A., J. Godeke, J. Berger, K. M. Thormann, and S. V. Albers. 2010. Crenarchaeal biofilm formation under extreme conditions. PLoS One 5:e14104.
  204. Ng, S. Y., J. Wu, D. B. Nair, S. M. Logan, A. Robotham, L. Tessier, J. F. Kelly, K. Uchida, S. Aizawa, and K. F. Jarrell. 2011. Genetic and mass spectrometry analyses of the unusual type IV-like pili of the archaeon Methanococcus maripaludis. J Bacteriol 193:804-814.
  205. Zolghadr, B., A. Klingl, R. Rachel, A. J. Driessen, and S. V. Albers. 2011. The bindosome is a structural component of the Sulfolobus solfataricus cell envelope. Extremophiles 15:235-244.
  206. Schelert, J., V. Dixit, V. Hoang, J. Simbahan, M. Drozda, and P. Blum. 2004. Occurrence and characterization of mercury resistance in the hyperthermophilic archaeon Sulfolobus solfataricus by use of gene disruption. J Bacteriol 186:427-437.
  207. Meibom, K. L., X. B. Li, A. T. Nielsen, C. Y. Wu, S. Roseman, and G. K. Schoolnik. 2004. The Vibrio cholerae chitin utilization program. Proc Natl Acad Sci U S A 101:2524-2529.
  208. Ueda, A., C. Attila, M. Whiteley, and T. K. Wood. 2009. Uracil influences quorum sensing and biofilm formation in Pseudomonas aeruginosa and fluorouracil is an antagonist. Microb Biotechnol 2:62-74.
  209. Woese, C. R., and G. E. Fox. 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74:5088-5090.
  210. Matsukawa, M., and E. P. Greenberg. 2004. Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development. J Bacteriol 186:4449- 4456.
  211. Lauriano, C. M., C. Ghosh, N. E. Correa, and K. E. Klose. 2004. The sodium-driven flagellar motor controls exopolysaccharide expression in Vibrio cholerae. J Bacteriol 186:4864-4874.
  212. Herrmann, J. L., P. O'Gaora, A. Gallagher, J. E. Thole, and D. B. Young. 1996. Bacterial glycoproteins: a link between glycosylation and proteolytic cleavage of a 19 kDa antigen from Mycobacterium tuberculosis. EMBO J 15:3547-3554.
  213. Kuo, C., N. Takahashi, A. F. Swanson, Y. Ozeki, and S. Hakomori. 1996. An N-linked high-mannose type oligosaccharide, expressed at the major outer membrane protein of Chlamydia trachomatis, mediates attachment and infectivity of the microorganism to HeLa cells. J Clin Invest 98:2813-2818.
  214. Lequette, Y., and E. P. Greenberg. 2005. Timing and localization of rhamnolipid synthesis gene expression in Pseudomonas aeruginosa biofilms. J Bacteriol 187:37-44.
  215. van Schaik, E. J., C. L. Giltner, G. F. Audette, D. W. Keizer, D. L. Bautista, C. M. Slupsky, B. D. Sykes, and R. T. Irvin. 2005. DNA binding: a novel function of Pseudomonas aeruginosa type IV pili. J Bacteriol 187:1455-1464.
  216. Lindenthal, C., and E. A. Elsinghorst. 1999. Identification of a glycoprotein produced by enterotoxigenic Escherichia coli. Infect Immun 67:4084-4091.
  217. Ward, D. M., M. J. Ferris, S. C. Nold, and M. M. Bateson. 1998. A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiology and Molecular Biology Reviews 62:1353.
  218. Guggenheim, B., R. Gmur, J. C. Galicia, P. G. Stathopoulou, M. R. Benakanakere, A. Meier, T. Thurnheer, and D. F. Kinane. 2009. In vitro modeling of host-parasite interactions: the 'subgingival' biofilm challenge of primary human epithelial cells. BMC Microbiol 9:280.
  219. She, Q., R. K. Singh, F. Confalonieri, Y. Zivanovic, G. Allard, M. J. Awayez, C. C. Chan- Weiher, I. G. Clausen, B. A. Curtis, A. De Moors, G. Erauso, C. Fletcher, P. M. Gordon, I. Heikamp-de Jong, A. C. Jeffries, C. J. Kozera, N. Medina, X. Peng, H. P. Thi-Ngoc, P. Redder, M. E. Schenk, C. Theriault, N. Tolstrup, R. L. Charlebois, W. F. Doolittle, M. Duguet, T. Gaasterland, R. A. Garrett, M. A. Ragan, C. W. Sensen, and J. Van der Oost. 2001. The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci U S A 98:7835-7840.
  220. Zahringer, U., H. Moll, T. Hettmann, Y. A. Knirel, and G. Schafer. 2000. Cytochrome b558/566 from the archaeon Sulfolobus acidocaldarius has a unique Asn-linked highly branched hexasaccharide chain containing 6-sulfoquinovose. Eur J Biochem 267:4144- 4149.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten