Publikationsserver der Universitätsbibliothek Marburg

Titel:Identifizierung und Charakterisierung von Siderophorbindungsproteinen aus Bacillus subtilis
Autor:Peuckert, Florian
Weitere Beteiligte: Marahiel, Mohamed A. (Prof. Dr.)
Veröffentlicht:2011
URI:https://archiv.ub.uni-marburg.de/diss/z2011/0606
DOI: https://doi.org/10.17192/z2011.0606
URN: urn:nbn:de:hebis:04-z2011-06060
DDC:540 Chemie
Titel (trans.):Identification and Characterization of Siderophore Binding Proteins from Bacillus subtilis
Publikationsdatum:2011-10-21
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Elektronensprayionisations-Massenspektrometr, FeuA, CD-Spektroskopie, siderophore, Kristallographie, transport, Siderophor, FeuA, MALDI-MS, Transport, FpiA, Kristallisation, iron, Eisen, Affinitätschromatographie, FpiA, Proteine

Zusammenfassung:
Um die Versorgung mit dem essentiellen Spurenelement Eisen sicherzustellen, haben Mikroorganismen eine Vielzahl von Strategien entwickelt. Die Sekretion von niedermolekularen, chelatisierenden Molekülen, den sogenannten Siderophoren, nimmt unter den bakteriellen Eisenakquirierungsstrategien eine besonders prominente Rolle ein. Die Wiederaufnahme der eisenbeladenen Siderophore durch Mikroorganismen stellt dabei einen Schlüsselprozess dar und ist daher ein attraktives Ziel für potentielle Antibiotika. Hochaffine Bindung der Siderophore erfolgt durch Substratbindungsproteine, die Teil von ATP-Bindungskassetten-Transportern sind. Die potentielle Ausnutzung der Transportwege durch Wirkstoffe verlangt eine umfassende funktionelle und strukturelle Charakterisierung der beteiligten Proteine. In dieser Arbeit wurde ein Affinitätschromatographie-basiertes Verfahren zur Isolierung und Identifizierung eines Substratbindungsproteins aus Zelllysaten durch direkte Wechselwirkung mit seinem natürlichen Liganden entwickelt. Synthetische Derivate des Siderophors Petrobactin wurden auf einer Agarose‒Streptavidin-Matrix immobilisiert und mit dem Zelllysat einer Bacillus subtilis-Kultur behandelt, was die erfolgreiche Identifizierung des Petrobactin- Bindungsproteins FpiA ermöglichte. Die anschließende biochemische und physiologische Charakterisierung des Proteins bestätigte seine Signifikanz für die Petrobactin-Aufnahme und belegt damit das Potential dieser neuen Methode. Weiterhin wurde das Triscatecholat-Bindungsprotein FeuA aus B. subtilis strukturell und funktionell charakterisiert. Cokristallstrukturen mit den Siderophoren Bacillibactin und Enterobactin sowie dem Siderophor-Mimetikum mecam zeigten einen nahezu identischen Bindungsmodus für die drei verwandten, aber dennoch verschiedenen Eisenkomplexanionen. Eine basische Triade in der Bindungstasche wurde als Hauptbindungsmotiv für die Substrate identifiziert und durch ortsgerichtete Mutagenese und nachfolgende Charakterisierung der Varianten durch Fluoreszenzspektroskopie und ligandenabhängige Schmelzpunktanalyse untersucht. Kristallographische und CD-spektroskopische Experimente zeigten, dass die Bindungstasche nur Lambda-stereokonfigurierte Siderophore zulässt, daher wird beispielsweise die Delta-Stereokonfiguration des Eisenkomplexes von Enterobactin bei Bindung durch FeuA invertiert. Auffällig war der nahezu identische Bindungsmodus des Proteins für die verschiedenen Substrate, welcher mit einer Kippbewegung der zwei Domänen von FeuA um etwa 20° einhergeht, der größten bisher experimentell beobachteten Domänenbewegung eines Substratbindungsproteins der Klasse III. Diese Ähnlichkeit des Bindungsmodus impliziert seine Bedeutung für die nachfolgende Erkennung von FeuA durch die kognaten Transmembrandomänen FeuBC des Transporters, die durch Positionierung konservierter Glutamatreste auf der Oberfläche von FeuA ermöglicht wird. Diese Arbeit zeigt einen neuartigen Ansatz zur Identifizierung bakterieller Substratbindungsproteine und bietet einen detaillierten strukturellen und funktionellen Einblick in die Bindung von Triscatecholatsiderophoren durch solche Proteine.

Bibliographie / References

  1. U. K. Laemmli. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680‒685.
  2. S. A. Amin, D. H. Green, M. C. Hart, F. C. Kupper, W. G. Sunda, C. J. Carrano. Photolysis of iron‒siderophore chelates promotes bacterial‒algal mutualism. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 17071‒17076.
  3. E. L. Borths, K. P. Locher, A. T. Lee, D. C. Rees. The structure of Escherichia coli BtuF and binding to its cognate ATP binding cassette transporter. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 16642‒16647.
  4. J. J. Ward, J. S. Sodhi, L. J. McGuffin, B. F. Buxton, D. T. Jones. Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J. Mol. Biol. 2004, 337, 635‒645.
  5. C. Chang, A. Mooser, A. Plückthun, A. Wlodawer. Crystal structure of the dimeric C-terminal domain of TonB reveals a novel fold. J. Biol. Chem. 2001, 276, 27535‒27540.
  6. J. D. Bendtsen, H. Nielsen, G. von Heijne, S. Brunak. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 2004, 340, 783‒795.
  7. N. A. Larsen, H. Lin, R. Wei, M. A. Fischbach, C. T. Walsh. Structural characterization of enterobactin hydrolase IroE. Biochemistry 2006, 45, 10184‒10190.
  8. S. Banerjee, B. Wei, M. Bhattacharyya-Pakrasi, H. B. Pakrasi, T. J. Smith. Structural determinants of metal specificity in the zinc transport protein ZnuA from Synechocystis 6803. J. Mol. Biol. 2003, 333, 1061‒1069.
  9. N. A. Baker, D. Sept, S. Joseph, M. J. Holst, J. A. McCammon. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 10037‒ 10041.
  10. M. Wigger, J. P. Nawrocki, C. H. Watson, J. R. Eyler, S. A. Benner. Assessing enzyme substrate specificity using combinatorial libraries and electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spec. 1997, 11, 1749‒1752.
  11. D. T. Jones. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 1999, 292, 195‒202.
  12. D. D. Doorneweerd, W. A. Henne, R. G. Reifenberger, P. S. Low. Selective capture and identification of pathogenic bacteria using an immobilized siderophore. Langmuir 2010, 26, 15424‒15429.
  13. E. Pohl, J. C. Haller, A. Mijovilovich, W. Meyer-Klaucke, E. Garman, M. L. Vasil. Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulator. Mol. Microbiol. 2003, 47, 903‒915.
  14. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403‒410.
  15. V. Braun, A. Pramanik, T. Gwinner, M. Köberle, E. Bohn. Sideromycins: tools and antibiotics. BioMetals 2009, 22, 3‒13. [93]
  16. M. Oke, L. G. Carter, K. A. Johnson, H. Liu, S. A. McMahon, X. Yan, M. Kerou, N. D. Weikart, N. Kadi, M. A. Sheikh, S. Schmelz, M. Dorward, M. Zawadzki, C. Cozens, H. Falconer, H. Powers, I. M. Overton, C. A. van Niekerk, X. Peng, P. Patel, R. A. Garrett, D. Prangishvili, C. H. Botting, P. J. Coote, D. T. Dryden, G. J. Barton, U. Schwarz-Linek, G. L. Challis, G. L. Taylor, M. F. White, J. H. Naismith. The Scottish Structural Proteomics Facility: targets, methods and outputs. J. Struct. Funct. Genomics 2010, 11, 167‒180.
  17. H. C. Birnboim. A rapid alkaline extraction method for the isolation of plasmid DNA. Methods Enzymol. 1983, 100, 243‒255.
  18. K. Hollenstein, D. C. Frei, K. P. Locher. Structure of an ABC transporter in complex with its binding protein. Nature 2007, 446, 213‒216.
  19. K. Bryson, L. J. McGuffin, R. L. Marsden, J. J. Ward, J. S. Sodhi, D. T. Jones. Protein structure prediction servers at University College London. Nucleic Acids Res. 2005, 33, W36‒W38.
  20. M. Johnson, I. Zaretskaya, Y. Raytselis, Y. Merezhuk, S. McGinnis, T. L. Madden. NCBI BLAST: a better web interface. Nucleic Acids Res. 2008, 36, W5‒W9.
  21. L. Holm, P. Rosenstrom. Dali server: conservation mapping in 3D. Nucleic Acids Res. 2010, 38, W545‒549.
  22. H. Nielsen, J. Engelbrecht, S. Brunak, G. von Heijne. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 1997, 10, 1‒6.
  23. M. Miethke, O. Klotz, U. Linne, J. J. May, C. L. Beckering, M. A. Marahiel. Ferri-bacillibactin uptake and hydrolysis in Bacillus subtilis. Mol. Microbiol. 2006, 61, 1413‒1427.
  24. S. I. Patzer, V. Braun. Gene cluster involved in the biosynthesis of griseobactin, a catechol- peptide siderophore of Streptomyces sp. ATCC 700974. J. Bacteriol. 2010, 192, 426‒435.
  25. J. McGeehan, R. B. Ravelli, J. W. Murray, R. L. Owen, F. Cipriani, S. McSweeney, M. Weik, E. F. Garman. Colouring cryo-cooled crystals: online microspectrophotometry. J. Synchrotron Radiat. 2009, 16, 163‒172.
  26. A. Royant, P. Carpentier, J. Ohana, J. McGeehan, B. Paetzold, M. Noirclerc-Savoye, X. Vernède, V. Adam, D. Bourgeois. Advances in spectroscopic methods for biological crystals. 1. Fluorescence lifetime measurements. J. Appl. Crystallogr. 2007, 40, 1105‒1112.
  27. R. N. Hvorup, B. A. Goetz, M. Niederer, K. Hollenstein, E. Perozo, K. P. Locher. Asymmetry in the structure of the ABC transporter-binding protein complex BtuCD-BtuF. Science 2007, 317, 1387‒1390.
  28. E. Biemans-Oldehinkel, M. K. Doeven, B. Poolman. ABC transporter architecture and regulatory roles of accessory domains. FEBS Lett. 2006, 580, 1023‒1035.
  29. B. H. Oh, J. Pandit, C. H. Kang, K. Nikaido, S. Gokcen, G. F. Ames, S. H. Kim. Three-dimensional structures of the periplasmic lysine/arginine/ornithine-binding protein with and without a ligand. J. Biol. Chem. 1993, 268, 11348‒11355.
  30. I. C. Sutcliffe, D. J. Harrington. Pattern searches for the identification of putative lipoprotein genes in Gram-positive bacterial genomes. Microbiology 2002, 148, 2065‒2077.
  31. A. T. Brünger. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 1992, 355, 472‒475.
  32. E. Brenner, C. Chothia, T. J. Hubbard. Population statistics of protein structures: lessons from structural classifications. Curr. Opin. Struct. Biol. 1997, 7, 369‒376.
  33. X. Sun, H. M. Baker, R. Ge, H. Sun, Q. Y. He, E. N. Baker. Crystal structure and metal binding properties of the lipoprotein MtsA, responsible for iron transport in Streptococcus pyogenes. Biochemistry 2009, 48, 6184‒6190.
  34. J. Sambrook, F. Fritsch, T. Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989.
  35. Angew. Chem. 2010, 122, 10408‒10411; Direct Identification of a Siderophore Import Protein Using Synthetic Petrobactin Ligands. Angew. Chem. Int. Ed. 2010, 49, 10210‒10213.
  36. W. Kabsch. XDS. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 125‒132. [235] CCP4. The CCP4 suite: programs for protein crystallography.
  37. C. Klumpp, A. Burger, G. L. Mislin, M. A. Abdallah. From a total synthesis of cepabactin and its 3:1 ferric complex to the isolation of a 1:1:1 mixed complex between iron (III), cepabactin and pyochelin. Bioorg. Med. Chem. Lett. 2005, 15, 1721‒1724. [12] C. F. Tseng, A. Burger, G. L. Mislin, I. J. Schalk, S. S. Yu, S. I. Chan, M. A. Abdallah. Bacterial siderophores: the solution stoichiometry and coordination of the Fe(III) complexes of pyochelin and related compounds. J. Biol. Inorg. Chem. 2006, 11, 419‒432. [13] C. J. Carrano, K. N. Raymond. Coordination chemistry of microbial iron transport compounds: rhodotorulic acid and iron uptake in Rhodotorula pilimanae. J. Bacteriol. 1978, 136, 69‒74. [14] H. Drechsel, A. Thieken, R. Reissbrodt, G. Jung, G. Winkelmann. -Keto acids are novel siderophores in the genera Proteus, Providencia, and Morganella and are produced by amino acid deaminases. J. Bacteriol. 1993, 175, 2727‒2733. [15] H. Drechsel, G. Jung. Peptide siderophores. J. Pept. Sci. 1998, 4, 147‒181. [16] L. D. Loomis, K. N. Raymond. Solution Equilibria of Enterobactin and Metal Enterobactin Complexes. Inorg. Chem. 1991, 30, 906‒911. [17] E. A. Dertz, J. Xu, A. Stintzi, K. N. Raymond. Bacillibactin-mediated iron transport in Bacillus subtilis. J. Am. Chem. Soc. 2006, 128, 22‒23. [18]
  38. M. C. Venuti, W. H. Rastetter, J. B. Neilands. 1,3,5-Tris(N,N',N''-2,3-dihydroxybenzoyl)amino- methylbenzene, a synthetic iron chelator related to enterobactin. J. Med. Chem. 1979, 22, 123‒124.
  39. C. S. Bond, A. W. Schüttelkopf. ALINE: a WYSIWYG protein-sequence alignment editor for publication-quality alignments. Acta Crystallogr. D Biol. Crystallogr. 2009, 65, 510‒512.
  40. J. P. Claverys. A new family of high-affinity ABC manganese and zinc permeases. Res. Microbiol. 2001, 152, 231‒243.
  41. J. Yang, D. Goetz, J. Y. Li, W. Wang, K. Mori, D. Setlik, T. Du, H. Erdjument-Bromage, P. Tempst, R. Strong, J. Barasch. An iron delivery pathway mediated by a lipocalin. Mol. Cell 2002, 10, 1045‒1056. [65] R. J. Abergel, M. C. Clifton, J. C. Pizarro, J. A. Warner, D. K. Shuh, R. K. Strong, K. N. Raymond. The siderocalin/enterobactin interaction: a link between mammalian immunity and bacterial iron transport. J. Am. Chem. Soc. 2008, 130, 11524‒11534. [66] G. Bao, M. Clifton, T. M. Hoette, K. Mori, S. X. Deng, A. Qiu, M. Viltard, D. Williams, N. Paragas, T. Leete, R. Kulkarni, X. Li, B. Lee, A. Kalandadze, A. J. Ratner, J. C. Pizarro, K. M. Schmidt-Ott, D. W. Landry, K. N. Raymond, R. K. Strong, J. Barasch. Iron traffics in circulation bound to a siderocalin (Ngal)-catechol complex. Nat. Chem. Biol. 2010, 6, 602‒ 609. [67] N. Coudevylle, L. Geist, M. Hotzinger, M. Hartl, G. Kontaxis, K. Bister, R. Konrat. The v-myc- induced Q83 Lipocalin Is a Siderocalin. J. Biol. Chem. 2010, 285, 41646‒41652. [68] W. R. Harris, C. J. Carrano, K. N. Raymond. Coordination chemistry of microbial iron transport compounds. 16. Isolation, characterization, and formation constants of ferric aerobactin. J. Am. Chem. Soc. 1979, 101, 2722‒2727. [69] K. Hantke, G. Nicholson, W. Rabsch, G. Winkelmann. Salmochelins, siderophores of Salmonella enterica and uropathogenic Escherichia coli strains, are recognized by the outer membrane receptor IroN. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 3677‒3682. [70] B. Bister, D. Bischoff, G. J. Nicholson, M. Valdebenito, K. Schneider, G. Winkelmann, K. Hantke, R. D. Sussmuth. The structure of salmochelins: C-glucosylated enterobactins of Salmonella enterica. BioMetals 2004, 17, 471‒481. [71]
  42. M. M. Bradford. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248‒254.
  43. A. T. Brünger. Assessment of phase accuracy by cross validation: the free R value. Methods and applications. Acta Crystallogr. D Biol. Crystallogr. 1993, 49, 24‒36.
  44. B. C. H. Chu, H. J. Vogel. A structural and functional analysis of type III periplasmic and substrate binding proteins: their role in bacterial siderophore and heme transport. Biol. Chem. 2011, 392, 39‒52.
  45. R. P. Berntsson, S. H. Smits, L. Schmitt, D. J. Slotboom, B. Poolman. A structural classification of substrate-binding proteins. FEBS Lett. 2010, 584, 2606‒2617.
  46. F. A. Quiocho, P. S. Ledvina. Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes. Mol. Microbiol. 1996, 20, 17‒25.
  47. E. Schneider, S. Hunke. ATP-binding-cassette (ABC) transport systems: functional and structural aspects of the ATP-hydrolyzing subunits/domains. FEMS Microbiol. Rev. 1998, 22, 1‒20.
  48. A. L. Davidson, J. Chen. ATP-binding cassette transporters in bacteria. Annu. Rev. Biochem. 2004, 73, 241‒268.
  49. A. Mademidis, H. Killmann, W. Kraas, I. Flechsler, G. Jung, V. Braun. ATP-dependent ferric hydroxamate transport system in Escherichia coli: periplasmic FhuD interacts with a periplasmic and with a transmembrane/cytoplasmic region of the integral membrane protein FhuB, as revealed by competitive peptide mapping. Mol. Microbiol. 1997, 26, 1109‒1123.
  50. J. Chen, G. Lu, J. Lin, A. L. Davidson, F. A. Quiocho. A tweezers-like motion of the ATP-binding cassette dimer in an ABC transport cycle. Mol. Cell 2003, 12, 651‒661.
  51. B. C. Chu, R. S. Peacock, H. J. Vogel. Bioinformatic analysis of the TonB protein family. BioMetals 2007, 20, 467‒483.
  52. S. C. Gill, P. H. von Hippel. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 1989, 182, 319‒326.
  53. T. Eitinger, D. A. Rodionov, M. Grote, E. Schneider. Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions. FEMS Microbiol. Rev. 2011, 35, 3‒67.
  54. P. Schaeffer, J. Millet, J. P. Aubert. Catabolic repression of bacterial sporulation. Proc. Natl. Acad. Sci. U.S.A. 1965, 54, 704‒711.
  55. G. Richarme, T. D. Caldas. Chaperone properties of the bacterial periplasmic substrate- binding proteins. J. Biol. Chem. 1997, 272, 15607‒15612.
  56. J. Y. Lee, B. K. Janes, K. D. Passalacqua, B. F. Pfleger, N. H. Bergman, H. Liu, K. Hakansson, R. V. Somu, C. C. Aldrich, S. Cendrowski, P. C. Hanna, D. H. Sherman. Biosynthetic analysis of the petrobactin siderophore pathway from Bacillus anthracis. J. Bacteriol. 2007, 189, 1698‒1710. [43] B. F. Pfleger, J. Y. Lee, R. V. Somu, C. C. Aldrich, P. C. Hanna, D. H. Sherman. Characterization and analysis of early enzymes for petrobactin biosynthesis in Bacillus anthracis. Biochemistry 2007, 46, 4147‒4157. [44] A. M. Friedlander. Anthrax: clinical features, pathogenesis, and potential biological warfare threat. Curr. Clin. Top. Infect. Dis. 2000, 20, 335‒349. [45] T. V. Inglesby, T. O'Toole, D. A. Henderson, J. G. Bartlett, M. S. Ascher, E. Eitzen, A. M. Friedlander, J. Gerberding, J. Hauer, J. Hughes, J. McDade, M. T. Osterholm, G. Parker, T. M. Perl, P. K. Russell, K. Tonat. Anthrax as a biological weapon, 2002: updated recommendations for management. J. Am. Med. Assoc. 2002, 287, 2236‒2252. [46] S. J. Hickford, F. C. Kupper, G. Zhang, C. J. Carrano, J. W. Blunt, A. Butler. Petrobactin sulfonate, a new siderophore produced by the marine bacterium Marinobacter hydrocarbonoclasticus. J. Nat. Prod. 2004, 67, 1897‒1899. [47] V. V. Homann, K. J. Edwards, E. A. Webb, A. Butler. Siderophores of Marinobacter aquaeolei: petrobactin and its sulfonated derivatives. BioMetals 2009, 22, 565‒571. [48] R. J. Bergeron, G. Huang, R. E. Smith, N. Bharti, J. S. McManis, A. Butler. Total synthesis and structure revision of petrobactin. Tetrahedron 2003, 59, 2007‒2014. [49] D. Oves-Costales, N. Kadi, M. J. Fogg, L. Song, K. S. Wilson, G. L. Challis. Enzymatic logic of anthrax stealth siderophore biosynthesis: AsbA catalyzes ATP-dependent condensation of citric acid and spermidine. J. Am. Chem. Soc. 2007, 129, 8416‒8417. [50] D. Oves-Costales, L. Song, G. L. Challis. Enantioselective desymmetrisation of citric acid catalysed by the substrate-tolerant petrobactin biosynthetic enzyme AsbA. Chem. Commun. 2009, 1389‒1391. [51] A. T. Koppisch, K. Hotta, D. T. Fox, C. E. Ruggiero, C. Y. Kim, T. Sanchez, S. Iyer, C. C. Browder, P. J. Unkefer, C. J. Unkefer. Biosynthesis of the 3,4-dihydroxybenzoate moieties of petrobactin by Bacillus anthracis. J. Org. Chem. 2008, 73, 5759‒5765. [52] B. F. Pfleger, Y. Kim, T. D. Nusca, N. Maltseva, J. Y. Lee, C. M. Rath, J. B. Scaglione, B. K. Janes, E. C. Anderson, N. H. Bergman, P. C. Hanna, A. Joachimiak, D. H. Sherman. Structural and functional analysis of AsbF: origin of the stealth 3,4-dihydroxybenzoic acid subunit for petrobactin biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 17133‒17138. [53] D. T. Fox, K. Hotta, C. Y. Kim, A. T. Koppisch. The missing link in petrobactin biosynthesis: asbF encodes a (−)-3-dehydroshikimate dehydratase. Biochemistry 2008, 47, 12251‒12253. [54] D. Oves-Costales, N. Kadi, M. J. Fogg, L. Song, K. S. Wilson, G. L. Challis. Petrobactin biosynthesis: AsbB catalyzes condensation of spermidine with N 8 -citryl-spermidine and its N 1 - (3,4-dihydroxybenzoyl) derivative. Chem. Commun. 2008, 4034‒4036. [55] P. E. Carlson, Jr., S. D. Dixon, B. K. Janes, K. A. Carr, T. D. Nusca, E. C. Anderson, S. E. Keene, D. H. Sherman, P. C. Hanna. Genetic analysis of petrobactin transport in Bacillus anthracis. Mol. Microbiol. 2010, 75, 900‒909. [56] D. H. Goetz, S. T. Willie, R. S. Armen, T. Bratt, N. Borregaard, R. K. Strong. Ligand preference inferred from the structure of neutrophil gelatinase associated lipocalin. Biochemistry 2000, 39, 1935‒1941. [57] R. K. Strong, in Lipocalins (Eds.: B. Akerström, N. Borregaard, D. R. Flower, J.-P. Salier), Landes Bioscience, Austin, Texas, 2006. [58] D. H. Goetz, M. A. Holmes, N. Borregaard, M. E. Bluhm, K. N. Raymond, R. K. Strong. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell 2002, 10, 1033‒1043. [59] R. J. Abergel, M. K. Wilson, J. E. Arceneaux, T. M. Hoette, R. K. Strong, B. R. Byers, K. N. Raymond. Anthrax pathogen evades the mammalian immune system through stealth siderophore production. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 18499‒18503. [60]
  57. F. C. Beasley, E. D. Vines, J. C. Grigg, Q. Zheng, S. Liu, G. A. Lajoie, M. E. Murphy, D. E. Heinrichs. Characterization of staphyloferrin A biosynthetic and transport mutants in Staphylococcus aureus. Mol. Microbiol. 2009, 72, 947‒963.
  58. M. E. Poey, M. F. Azpiroz, M. Laviña. Comparative analysis of chromosome-encoded microcins. Antimicrob. Agents Chemother. 2006, 50, 1411‒1418. [98] D. Destoumieux-Garzón, X. Thomas, M. Santamaria, C. Goulard, M. Barthélémy, B. Boscher, Y. Bessin, G. Molle, A. M. Pons, L. Letellier, J. Peduzzi, S. Rebuffat. Microcin E492 antibacterial activity: evidence for a TonB-dependent inner membrane permeabilization on Escherichia coli. Mol. Microbiol. 2003, 49, 1031‒1041. [99] A. Müller, A. J. Wilkinson, K. S. Wilson, A. K. Duhme-Klair. An [{Fe(mecam)} 2 ] 6− bridge in the crystal structure of a ferric enterobactin binding protein. Angew. Chem. 2006, 118, 5256‒ 5260; Angew. Chem. Int. Ed. 2006, 45, 5132‒5136.
  59. T. B. Karpishin, T. M. Dewey, K. N. Raymond. Coordination Chemistry of Microbial Iron Transport. 49. The Vanadium(IV) Enterobactin Complex -Structural, Spectroscopic, and Electrochemical Characterization. J. Am. Chem. Soc. 1993, 115, 1842‒1851.
  60. M. E. Bluhm, B. P. Hay, S. S. Kim, E. A. Dertz, K. N. Raymond. Corynebactin and a serine trilactone based analogue: chirality and molecular modeling of ferric complexes. Inorg. Chem. 2002, 41, 5475‒5478.
  61. M. E. Bluhm, S. S. Kim, E. A. Dertz, K. N. Raymond. Corynebactin and enterobactin: related siderophores of opposite chirality. J. Am. Chem. Soc. 2002, 124, 2436‒2437.
  62. A. J. Sharff, L. E. Rodseth, J. C. Spurlino, F. A. Quiocho. Crystallographic evidence of a large ligand-induced hinge-twist motion between the two domains of the maltodextrin binding protein involved in active transport and chemotaxis. Biochemistry 1992, 31, 10657‒10663.
  63. M. L. Oldham, D. Khare, F. A. Quiocho, A. L. Davidson, J. Chen. Crystal structure of a catalytic intermediate of the maltose transporter. Nature 2007, 450, 515‒521.
  64. J. J. May, N. Kessler, M. A. Marahiel, M. T. Stubbs. Crystal structure of DhbE, an archetype for aryl acid activating domains of modular nonribosomal peptide synthetases. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 12120‒12125. [30] S. Khalil, P. D. Pawelek. Enzymatic Adenylation of 2,3-Dihydroxybenzoate Is Enhanced by a Protein-Protein Interaction between Escherichia coli 2,3-Dihydro-2,3-dihydroxybenzoate [41] S. Cendrowski, W. MacArthur, P. Hanna. Bacillus anthracis requires siderophore biosynthesis for growth in macrophages and mouse virulence. Mol. Microbiol. 2004, 51, 407‒417. [42]
  65. H. Li, G. Jogl. Crystal structure of the zinc-binding transport protein ZnuA from Escherichia coli reveals an unexpected variation in metal coordination. J. Mol. Biol. 2007, 368, 1358‒ 1366.
  66. N. K. Karpowich, H. H. Huang, P. C. Smith, J. F. Hunt. Crystal structures of the BtuF periplasmic-binding protein for vitamin B12 suggest a functionally important reduction in protein mobility upon ligand binding. J. Biol. Chem. 2003, 278, 8429‒8434.
  67. C. Sander, R. Schneider. Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins 1991, 9, 56‒68.
  68. M. Ghosh, M. J. Miller. Design, synthesis, and biological evaluation of isocyanurate-based antifungal and macrolide antibiotic conjugates: iron transport-mediated drug delivery. Bioorg. Med. Chem. 1995, 3, 1519‒1525. [88]
  69. T. B. Karpishin, K. N. Raymond. Die erste strukturelle Charakterisierung eines Metall‒ Enterobactin-Komplexes: [V(enterobactin)] 2− . Angew. Chem. 1992, 104, 486‒488; The First Structural Characterization of a Metal‒Enterobactin Complex: [V(enterobactin)] 2− . Angew. Chem. Int. Edit. Engl. 1992, 31, 466‒468.
  70. J. Ködding, P. Howard, L. Kaufmann, P. Polzer, A. Lustig, W. Welte. Dimerization of TonB is not essential for its binding to the outer membrane siderophore receptor FhuA of Escherichia coli. J. Biol. Chem. 2004, 279, 9978‒9986.
  71. M. Miethke, Dissertation, Philipps-Universität Marburg 2007.
  72. K. Fukami-Kobayashi, Y. Tateno, K. Nishikawa. Domain dislocation: a change of core structure in periplasmic binding proteins in their evolutionary history. J. Mol. Biol. 1999, 286, 279‒290.
  73. H. Neugebauer, C. Herrmann, W. Kammer, G. Schwarz, A. Nordheim, V. Braun. ExbBD- dependent transport of maltodextrins through the novel MalA protein across the outer membrane of Caulobacter crescentus. J. Bacteriol. 2005, 187, 8300‒8311.
  74. D. C. Scott, Z. Cao, Z. Qi, M. Bauler, J. D. Igo, S. M. Newton, P. E. Klebba. Exchangeability of N termini in the ligand-gated porins of Escherichia coli. J. Biol. Chem. 2001, 276, 13025‒13033.
  75. F. A. Quiocho, J. C. Spurlino, L. E. Rodseth. Extensive features of tight oligosaccharide binding revealed in high-resolution structures of the maltodextrin transport/chemosensory receptor. Structure 1997, 5, 997‒1015.
  76. T. E. Clarke, M. R. Rohrbach, L. W. Tari, H. J. Vogel, W. Koster. Ferric hydroxamate binding protein FhuD from Escherichia coli: mutants in conserved and non-conserved regions. BioMetals 2002, 15, 121‒131.
  77. M. T. Sebulsky, C. D. Speziali, B. H. Shilton, D. R. Edgell, D. E. Heinrichs. FhuD1, a ferric hydroxamate-binding lipoprotein in Staphylococcus aureus: a case of gene duplication and lateral transfer. J. Biol. Chem. 2004, 279, 53152‒53159.
  78. A. G. Marshall, C. L. Hendrickson, G. S. Jackson. Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom. Rev. 1998, 17, 1‒35.
  79. V. Barbe, S. Cruveiller, F. Kunst, P. Lenoble, G. Meurice, A. Sekowska, D. Vallenet, T. Wang, I. Moszer, C. Medigue, A. Danchin. From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later. Microbiology 2009, 155, 1758‒1775.
  80. J. A. Hoch. Genetic analysis in Bacillus subtilis. Methods Enzymol. 1991, 204, 305‒320.
  81. J. H. Crosa, C. T. Walsh. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol. Mol. Biol. Rev. 2002, 66, 223‒249. [19] R. Finking, M. A. Marahiel. Biosynthesis of nonribosomal peptides. Annu. Rev. Microbiol. 2004, 58, 453‒488. [20]
  82. N. Ivanova, A. Sorokin, I. Anderson, N. Galleron, B. Candelon, V. Kapatral, A. Bhattacharyya, G. Reznik, N. Mikhailova, A. Lapidus, L. Chu, M. Mazur, E. Goltsman, N. Larsen, M. D'Souza, T. Walunas, Y. Grechkin, G. Pusch, R. Haselkorn, M. Fonstein, S. D. Ehrlich, R. Overbeek, N. Kyrpides. Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 2003, 423, 87‒91.
  83. N. Baichoo, T. Wang, R. Ye, J. D. Helmann. Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon. Mol. Microbiol. 2002, 45, 1613‒1629.
  84. J. C. Grigg, C. L. Vermeiren, D. E. Heinrichs, M. E. Murphy. Heme coordination by Staphylococcus aureus IsdE. J. Biol. Chem. 2007, 282, 28815‒28822.
  85. B. Mao, M. R. Pear, J. A. McCammon, F. A. Quiocho. Hinge-bending in L-arabinose-binding protein. The "Venus's flytrap" model. J. Biol. Chem. 1982, 257, 1131‒1133.
  86. W. W. Ho, H. Li, S. Eakanunkul, Y. Tong, A. Wilks, M. Guo, T. L. Poulos. Holo-and apo-bound structures of bacterial periplasmic heme-binding proteins. J. Biol. Chem. 2007, 282, 35796‒ 35802.
  87. C. Kandt, D. P. Tieleman. Holo-BtuF stabilizes the open conformation of the vitamin B12 ABC transporter BtuCD. Proteins 2010, 78, 738‒753.
  88. D. M. Carter, I. R. Miousse, J. N. Gagnon, E. Martinez, A. Clements, J. Lee, M. A. Hancock, H. Gagnon, P. D. Pawelek, J. W. Coulton. Interactions between TonB from Escherichia coli and the periplasmic protein FhuD. J. Biol. Chem. 2006, 281, 35413‒35424.
  89. V. Braun, K. Günthner, K. Hantke, L. Zimmermann. Intracellular activation of albomycin in Escherichia coli and Salmonella typhimurium. J. Bacteriol. 1983, 156, 308‒315. [86] T. A. Wencewicz, U. Möllmann, T. E. Long, M. J. Miller. Is drug release necessary for antimicrobial activity of siderophore-drug conjugates? Syntheses and biological studies of the naturally occurring salmycin "Trojan Horse" antibiotics and synthetic desferridanoxamine- antibiotic conjugates. BioMetals 2009, 22, 633‒648. [87]
  90. Y. Quentin, G. Fichant, F. Denizot. Inventory, assembly and analysis of Bacillus subtilis ABC transport systems. J. Mol. Biol. 1999, 287, 467‒484.
  91. M. F. Azpiroz, M. Laviña. Involvement of enterobactin synthesis pathway in production of microcin H47. Antimicrob. Agents Chemother. 2004, 48, 1235‒1241. [95] D. Destoumieux-Garzón, J. Peduzzi, X. Thomas, C. Djediat, S. Rebuffat. Parasitism of iron- siderophore receptors of Escherichia coli by the siderophore-peptide microcin E492m and its unmodified counterpart. BioMetals 2006, 19, 181‒191. [96]
  92. G. Vassiliadis, D. Destoumieux-Garzon, C. Lombard, S. Rebuffat, J. Peduzzi. Isolation and characterization of two members of the siderophore-microcin family, microcins M and H47. Antimicrob. Agents Chemother. 2010, 54, 288‒297. [97]
  93. G. Benz, T. Schröder, J. Kurz, C. Wünsche, W. Karl, G. Steffens, J. Pfitzner, D. Schmidt. Konstitution der Desferriform der Albomycine 1 , 2 und . Angew. Chem. 1982, 94, 552‒553; Constitution of the Deferriform of the Albomycins 1 , 2 and . Angew. Chem. Int. Edit. Engl. 1982, 21, 1322‒1335. [79] H. Bickel, E. Gäumann, G. Nussberger, P. Reusser, E. Vischer, W. Voser, A. Wettstein, H. Zähner. Stoffwechselprodukte von Actinomyceten. 25. Mitteilung. Über die Isolierung und Charakterisierung der Ferrimycine A 1 und A 2 , neuer Antibiotika der Sideromycin-Gruppe. Helv. Chim. Acta 1960, 43, 2105‒2118. [80]
  94. F. Archibald. Lactobacillus plantarum, an organism not requiring iron. FEMS Microbiol. Lett. 1983, 19, 29‒32. [2] S. C. Andrews, A. K. Robinson, F. Rodríguez-Quiñones. Bacterial iron homeostasis. FEMS Microbiol. Rev. 2003, 27, 215‒237. [3] K. N. Raymond, C. J. Carrano. Coordination chemistry and microbial iron transport. Acc. Chem. Res. 1979, 12, 183‒190. [4]
  95. M. E. Newcomer, G. L. Gilliland, F. A. Quiocho. L-Arabinose-binding protein-sugar complex at 2.4 Å resolution. Stereochemistry and evidence for a structural change. J. Biol. Chem. 1981, 256, 13213‒13217.
  96. S. Trakhanov, N. K. Vyas, H. Luecke, D. M. Kristensen, J. Ma, F. A. Quiocho. Ligand-free and - bound structures of the binding protein (LivJ) of the Escherichia coli ABC leucine/isoleucine/valine transport system: trajectory and dynamics of the interdomain rotation and ligand specificity. Biochemistry 2005, 44, 6597‒6608.
  97. J. Porath, J. Carlsson, I. Olsson, G. Belfrage. Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 1975, 258, 598‒599.
  98. N. J. Greenfield. Methods to Estimate the Conformation of Proteins and Polypeptides from Circular Dichroism Data. Anal. Biochem. 1996, 235, 1‒10.
  99. N. Yao, P. S. Ledvina, A. Choudhary, F. A. Quiocho. Modulation of a salt link does not affect binding of phosphate to its specific active transport receptor. Biochemistry 1996, 35, 2079‒ 2085.
  100. K. D. Krewulak, C. M. Shepherd, H. J. Vogel. Molecular dynamics simulations of the periplasmic ferric-hydroxamate binding protein FhuD. BioMetals 2005, 18, 375‒386.
  101. N. N. Baranova, A. Danchin, A. A. Neyfakh. Mta, a global MerR-type regulator of the Bacillus subtilis multidrug-efflux transporters. Mol. Microbiol. 1999, 31, 1549‒1559.
  102. M. Miethke, A. Skerra. Neutrophil gelatinase-associated lipocalin expresses antimicrobial activity by interfering with L-norepinephrine-mediated bacterial iron acquisition. Antimicrob. Agents Chemother. 2010, 54, 1580‒1589.
  103. E. Hochuli, H. Dobeli, A. Schacher. New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. J. Chromatogr. 1987, 411, 177‒184.
  104. K. Schauer, D. A. Rodionov, H. de Reuse. New substrates for TonB-dependent transport: do we only see the 'tip of the iceberg'? Trends Biochem. Sci. 2008, 33, 330‒338.
  105. M. Strieker, A. Tanovic, M. A. Marahiel. Nonribosomal peptide synthetases: structures and dynamics. Curr. Opin. Struct. Biol. 2010, 20, 234‒240. [21] H. Budzikiewicz, A. Bössenkamp, K. Taraz, A. Pandey, J.-M. Meyer. Corynebactin, a Cyclic Catecholate Siderophore from Corynebacterium glutamicum ATCC 14067 (Brevibacterium sp. DSM 20411). Z. Naturforsch., C: J. Biosci. 1997, 52, 551‒554. [22]
  106. K. Schauer, B. Gouget, M. Carriere, A. Labigne, H. de Reuse. Novel nickel transport mechanism across the bacterial outer membrane energized by the TonB/ExbB/ExbD machinery. Mol. Microbiol. 2007, 63, 1054‒1068.
  107. C. Kandt, Z. Xu, D. P. Tieleman. Opening and closing motions in the periplasmic vitamin B12 binding protein BtuF. Biochemistry 2006, 45, 13284‒13292.
  108. C. Tang, C. D. Schwieters, G. M. Clore. Open-to-closed transition in apo maltose-binding protein observed by paramagnetic NMR. Nature 2007, 449, 1078‒1082.
  109. M. D. Cappellini, P. Pattoneri. Oral iron chelators. Annu. Rev. Med. 2009, 60, 25‒38.
  110. D. D. Shultis, M. D. Purdy, C. N. Banchs, M. C. Wiener. Outer membrane active transport: structure of the BtuB:TonB complex. Science 2006, 312, 1396‒1399.
  111. A. Wach. PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast 1996, 12, 259‒265.
  112. M. A. Marahiel. Persönliche Mitteilung 2008. [25] N. Bsat, A. Herbig, L. Casillas-Martinez, P. Setlow, J. D. Helmann. Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol. Microbiol. 1998, 29, 189‒198. [26] N. Bsat, J. D. Helmann. Interaction of Bacillus subtilis Fur (ferric uptake repressor) with the dhb operator in vitro and in vivo. J. Bacteriol. 1999, 181, 4299‒4307. [27] B. M. Rowland, H. W. Taber. Duplicate isochorismate synthase genes of Bacillus subtilis: regulation and involvement in the biosyntheses of menaquinone and 2,3-dihydroxybenzoate.
  113. R. J. Abergel, A. M. Zawadzka, K. N. Raymond. Petrobactin-mediated iron transport in pathogenic bacteria: coordination chemistry of an unusual 3,4-catecholate/citrate siderophore. J. Am. Chem. Soc. 2008, 130, 2124‒2125.
  114. K. Barbeau, E. L. Rue, K. W. Bruland, A. Butler. Photochemical cycling of iron in the surface ocean mediated by microbial iron(III)-binding ligands. Nature 2001, 413, 409‒413.
  115. K. Barbeau. Photochemistry of organic iron(III) complexing ligands in oceanic systems. Photochem. Photobiol. 2006, 82, 1505‒1516.
  116. B. Wei, A. M. Randich, M. Bhattacharyya-Pakrasi, H. B. Pakrasi, T. J. Smith. Possible regulatory role for the histidine-rich loop in the zinc transport protein, ZnuA. Biochemistry 2007, 46, 8734‒8743.
  117. G. J. Kleywegt, K. Henrick, E. J. Dodson, D. M. van Aalten. Pound-wise but penny-foolish: How well do micromolecules fare in macromolecular refinement? Structure 2003, 11, 1051‒1059. [255] G. J. Kleywegt. Crystallographic refinement of ligand complexes.
  118. J. B. Porter. Practical management of iron overload. Br. J. Haematol. 2001, 115, 239‒252.
  119. R. K. Saiki, D. H. Gelfand, S. Stoffel, S. J. Scharf, R. Higuchi, G. T. Horn, K. B. Mullis, H. A. Erlich. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 1988, 239, 487‒491.
  120. D. N. Perkins, D. J. Pappin, D. M. Creasy, J. S. Cottrell. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999, 20, 3551‒3567.
  121. R. A. Laskowski, M. W. MacArthur, D. S. Moss, J. M. Thornton. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 1993, 26, 283‒ 291.
  122. A. W. Schüttelkopf, D. M. van Aalten. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 1355‒1363.
  123. T. Ito, J. B. Neilands. Products of " Low-iron Fermentation " with Bacillus subilis: Isolation, Characterization and Synthesis of 2,3-Dihydroxybenzoylglycine. J. Am. Chem. Soc. 1958, 80, 4645‒4647.
  124. A. Wlodawer, W. Minor, Z. Dauter, M. Jaskolski. Protein crystallography for non- crystallographers, or how to get the best (but not more) from published macromolecular structures. FEBS J. 2008, 275, 1‒21.
  125. G. N. Murshudov, A. A. Vagin, E. J. Dodson. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 1997, 53, 240‒255.
  126. B. R. Byers, C. E. Lankford. Regulation of synthesis of 2,3-dihydroxybenzoic acid in Bacillus subtilis by iron and a biological secondary hydroxamate. Biochim. Biophys. Acta 1968, 165, 563‒566.
  127. C. Anagnostopoulos, J. Spizizen. Requirements for Transformation in Bacillus subtilis. J. Bacteriol. 1961, 81, 741‒746.
  128. J. R. Chipperfield, C. Ratledge. Salicylic acid is not a bacterial siderophore: a theoretical study. BioMetals 2000, 13, 165‒168. [5] C. J. Carrano, K. N. Raymond. Ferric ion sequestering agents. 2. Kinetics and mechanism of iron removal from transferrin by enterobactin and synthetic tricatechols. J. Am. Chem. Soc. 1979, 101, 5401‒5404. [6] R. C. Hider, X. Kong. Chemistry and biology of siderophores. Nat. Prod. Rep. 2010, 27, 637‒ 657. [7] L. R. Devireddy, D. O. Hart, D. H. Goetz, M. R. Green. A mammalian siderophore synthesized by an enzyme with a bacterial homolog involved in enterobactin production. Cell 2010, 141, 1006‒1017. [8]
  129. L. Vértesy, W. Aretz, H.-W. Fehlhaber, H. Kogler. Salmycin A–D, Antibiotika aus Streptomyces violaceus, DSM 8286, mit Siderophor-Aminoglycosid-Struktur. Helv. Chim. Acta 1995, 78, 46‒ 60. [81]
  130. E. Krissinel, K. Henrick. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 2256‒ 2268.
  131. M. A. Holmes, W. Paulsene, X. Jide, C. Ratledge, R. K. Strong. Siderocalin (Lcn 2) also binds carboxymycobactins, potentially defending against mycobacterial infections through iron sequestration. Structure 2005, 13, 29‒41. [61] T. H. Flo, K. D. Smith, S. Sato, D. J. Rodriguez, M. A. Holmes, R. K. Strong, S. Akira, A. Aderem. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 2004, 432, 917‒921. [62] T. M. Hoette, R. J. Abergel, J. Xu, R. K. Strong, K. N. Raymond. The role of electrostatics in siderophore recognition by the immunoprotein Siderocalin. J. Am. Chem. Soc. 2008, 130, 17584‒17592. [63] J. P. Gallivan, D. A. Dougherty. Cation- interactions in structural biology. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 9459‒9464. [64]
  132. M. Miethke, M. A. Marahiel. Siderophore-based iron acquisition and pathogen control. Microbiol. Mol. Biol. Rev. 2007, 71, 413‒451. [9] H. Boukhalfa, A. L. Crumbliss. Chemical aspects of siderophore mediated iron transport. BioMetals 2002, 15, 325‒339. [10] Z. D. Liu, R. C. Hider. Design of clinically useful iron(III)-selective chelators. Med. Res. Rev. 2002, 22, 26‒64. [11]
  133. J. Jancarik, S.-H. Kim. Sparse matrix sampling: a screening method for crystallization of proteins. J. Appl. Crystallogr. 1991, 24, 409‒411. [233] A. G. Leslie. The integration of macromolecular diffraction data.
  134. M. Valdebenito, S. I. Müller, K. Hantke. Special conditions allow binding of the siderophore salmochelin to siderocalin (NGAL-lipocalin). FEMS Microbiol. Lett. 2007, 277, 182‒187. [75] A. T. Koppisch, S. Dhungana, K. K. Hill, H. Boukhalfa, H. S. Heine, L. A. Colip, R. B. Romero, Y. Shou, L. O. Ticknor, B. L. Marrone, L. E. Hersman, S. Iyer, C. E. Ruggiero. Petrobactin is produced by both pathogenic and non-pathogenic isolates of the Bacillus cereus group of bacteria. BioMetals 2008, 21, 581‒589. [76]
  135. K. Mullis, F. Faloona, S. Scharf, R. Saiki, G. Horn, H. Erlich. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb. Symp. Quant. Biol. 1986, 51, 263‒273.
  136. K. B. Mullis, F. A. Faloona. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 1987, 155, 335‒350.
  137. E. Layne. Spectrophotometric and turbidimetric methods for measuring proteins. Methods Enzymol. 1957, 3, 447‒454.
  138. J. B. Neilands, T. J. Erickson, W. H. Rastetter. Stereospecificity of the ferric enterobactin receptor of Escherichia coli K-12. J. Biol. Chem. 1981, 256, 3831‒3832.
  139. A. D. Ferguson, R. Chakraborty, B. S. Smith, L. Esser, D. van der Helm, J. Deisenhofer. Structural basis of gating by the outer membrane transporter FecA. Science 2002, 295, 1715‒ 1719.
  140. B. P. Hay, D. A. Dixon, R. Vargas, J. Garza, K. N. Raymond. Structural criteria for the rational design of selective ligands. 3. Quantitative structure-stability relationship for iron(III) complexation by tris-catecholamide siderophores. Inorg. Chem. 2001, 40, 3922‒3935.
  141. X. Duan, F. A. Quiocho. Structural evidence for a dominant role of nonpolar interactions in the binding of a transport/chemosensory receptor to its highly polar ligands. Biochemistry 2002, 41, 706‒712.
  142. K. Hollenstein, R. J. Dawson, K. P. Locher. Structure and mechanism of ABC transporter proteins. Curr. Opin. Struct. Biol. 2007, 17, 412‒418.
  143. K. P. Locher. Structure and mechanism of ATP-binding cassette transporters. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 239‒245.
  144. A. L. Davidson, E. Dassa, C. Orelle, J. Chen. Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol. Mol. Biol. Rev. 2008, 72, 317‒364.
  145. R. J. Dawson, K. P. Locher. Structure of a bacterial multidrug ABC transporter. Nature 2006, 443, 180‒185.
  146. P. Ragunathan, B. Spellerberg, K. Ponnuraj. Structure of laminin-binding adhesin (Lmb) from Streptococcus agalactiae. Acta Crystallogr. D Biol. Crystallogr. 2009, 65, 1262‒1269.
  147. P. D. Pawelek, N. Croteau, C. Ng-Thow-Hing, C. M. Khursigara, N. Moiseeva, M. Allaire, J. W. Coulton. Structure of TonB in complex with FhuA, E. coli outer membrane receptor. Science 2006, 312, 1399‒1402.
  148. F. Peuckert, M. Miethke, A. G. Albrecht, L.-O. Essen, M. A. Marahiel. Strukturbasis und Stereochemie der Triscatecholat-Siderophor-Bindung durch FeuA. Angew. Chem. 2009, 121, 8066‒8069; Structural basis and stereochemistry of triscatecholate siderophore binding by FeuA. Angew. Chem. Int. Ed. 2009, 48, 7924‒7927.
  149. J. M. Roosenberg, II., Y. M. Lin, Y. Lu, M. J. Miller. Studies and syntheses of siderophores, microbial iron chelators, and analogs as potential drug delivery agents. Curr. Med. Chem. 2000, 7, 159‒197. [78]
  150. T. M. Garrett, T. J. McMurry, M. W. Hosseini, Z. E. Reyes, F. E. Hahn, K. N. Raymond. Synthesis and Characterization of Macrobicyclic Iron(III) Sequestering Agents. J. Am. Chem. Soc. 1991, 113, 2965‒2977.
  151. M. Ghosh, M. J. Miller. Synthesis and in vitro antibacterial activity of spermidine-based mixed catechol-and hydroxamate-containing siderophore‒vancomycin conjugates. Bioorg. Med. Chem. 1996, 4, 43‒48. [91] V. Braun. Active transport of siderophore-mimicking antibacterials across the outer membrane. Drug Resist. Updates 1999, 2, 363‒369. [92]
  152. M. Ghosh, L. J. Lambert, P. W. Huber, M. J. Miller. Synthesis, bioactivity, and DNA-cleaving ability of desferrioxamine B-nalidixic acid and anthraquinone carboxylic acid conjugates. Bioorg. Med. Chem. Lett. 1995, 5, 2337‒2340. [89] A. Ghosh, M. Ghosh, C. Niu, F. Malouin, U. Moellmann, M. J. Miller. Iron transport-mediated drug delivery using mixed-ligand siderophore- -lactam conjugates. Chem. Biol. 1996, 3, 1011‒1019. [90]
  153. K. B. Mullis. Target amplification for DNA analysis by the polymerase chain reaction. Ann. Biol. Clin. (Paris) 1990, 48, 579‒582.
  154. C. Notredame, D. G. Higgins, J. Heringa. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 2000, 302, 205‒217.
  155. J. Stülke, R. Hanschke, M. Hecker. Temporal activation of -glucanase synthesis in Bacillus subtilis is mediated by the GTP pool. J. Gen. Microbiol. 1993, 139, 2041‒2045.
  156. M. M. Flocco, S. L. Mowbray. The 1.9 Å X-ray structure of a closed unliganded form of the periplasmic glucose/galactose receptor from Salmonella typhimurium. J. Biol. Chem. 1994, 269, 8931‒8936.
  157. M. C. Lawrence, P. A. Pilling, V. C. Epa, A. M. Berry, A. D. Ogunniyi, J. C. Paton. The crystal structure of pneumococcal surface antigen PsaA reveals a metal-binding site and a novel structure for a putative ABC-type binding protein. Structure 1998, 6, 1553‒1561.
  158. Y. H. Lee, M. R. Dorwart, K. R. Hazlett, R. K. Deka, M. V. Norgard, J. D. Radolf, C. A. Hasemann. The crystal structure of Zn(II)-free Treponema pallidum TroA, a periplasmic metal-binding protein, reveals a closed conformation. J. Bacteriol. 2002, 184, 2300‒2304.
  159. J. J. May, T. M. Wendrich, M. A. Marahiel. The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2,3-dihydroxybenzoate-glycine- threonine trimeric ester bacillibactin. J. Biol. Chem. 2001, 276, 7209‒7217. [23] E. A. Dertz, A. Stintzi, K. N. Raymond. Siderophore-mediated iron transport in Bacillus subtilis and Corynebacterium glutamicum. J. Biol. Inorg. Chem. 2006, 11, 1087‒1097. [24]
  160. K. P. Locher, A. T. Lee, D. C. Rees. The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 2002, 296, 1091‒1098.
  161. K. Hamaguchi, E. P. Geiduschek. The Effect of Electrolytes on the Stability of the Deoxyribonucleate Helix. J. Am. Chem. Soc. 1962, 84, 1329‒1338.
  162. A. Wolf, E. W. Shaw, K. Nikaido, G. F. Ames. The histidine-binding protein undergoes conformational changes in the absence of ligand as analyzed with conformation-specific monoclonal antibodies. J. Biol. Chem. 1994, 269, 23051‒23058.
  163. V. Rukhman, R. Anati, M. Melamed-Frank, N. Adir. The MntC crystal structure suggests that import of Mn 2+ in cyanobacteria is redox controlled. J. Mol. Biol. 2005, 348, 961‒969.
  164. M. A. Fischbach, H. Lin, L. Zhou, Y. Yu, R. J. Abergel, D. R. Liu, K. N. Raymond, B. L. Wanner, R. K. Strong, C. T. Walsh, A. Aderem, K. D. Smith. The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 16502‒ 16507. [73] R. J. Abergel, E. G. Moore, R. K. Strong, K. N. Raymond. Microbial evasion of the immune system: structural modifications of enterobactin impair siderocalin recognition. J. Am. Chem. Soc. 2006, 128, 10998‒10999. [74]
  165. M. T. Sebulsky, B. H. Shilton, C. D. Speziali, D. E. Heinrichs. The role of FhuD2 in iron(III)- hydroxamate transport in Staphylococcus aureus. Demonstration that FhuD2 binds iron(III)- hydroxamates but with minimal conformational change and implication of mutations on transport. J. Biol. Chem. 2003, 278, 49890‒49900.
  166. R. S. Peacock, A. M. Weljie, S. Peter Howard, F. D. Price, H. J. Vogel. The solution structure of the C-terminal domain of TonB and interaction studies with TonB box peptides. J. Mol. Biol. 2005, 345, 1185‒1197.
  167. A. Garcia-Herrero, R. S. Peacock, S. P. Howard, H. J. Vogel. The solution structure of the periplasmic domain of the TonB system ExbD protein reveals an unexpected structural homology with siderophore-binding proteins. Mol. Microbiol. 2007, 66, 872‒889.
  168. T. E. Clarke, S. Y. Ku, D. R. Dougan, H. J. Vogel, L. W. Tari. The structure of the ferric siderophore binding protein FhuD complexed with gallichrome. Nat. Struct. Biol. 2000, 7, 287‒291.
  169. K. J. James, M. A. Hancock, J. N. Gagnon, J. W. Coulton. TonB interacts with BtuF, the Escherichia coli periplasmic binding protein for cyanocobalamin. Biochemistry 2009, 48, 9212‒9220.
  170. R. A. Gardner, R. Kinkade, C. Wang, O. Phanstiel IV. Total synthesis of petrobactin and its homologues as potential growth stimuli for Marinobacter hydrocarbonoclasticus, an oil- degrading bacteria. J. Org. Chem. 2004, 69, 3530‒3537.
  171. Y. H. Lee, R. K. Deka, M. V. Norgard, J. D. Radolf, C. A. Hasemann. Treponema pallidum TroA is a periplasmic zinc-binding protein with a helical backbone. Nat. Struct. Biol. 1999, 6, 628‒ 633.
  172. D. Mattle, A. Zeltina, J. S. Woo, B. A. Goetz, K. P. Locher. Two stacked heme molecules in the binding pocket of the periplasmic heme-binding protein HmuT from Yersinia pestis. J. Mol. Biol. 2010, 404, 220‒231.
  173. R. J. Dawson, K. Hollenstein, K. P. Locher. Uptake or extrusion: crystal structures of full ABC transporters suggest a common mechanism. Mol. Microbiol. 2007, 65, 250‒257.
  174. F. W. Studier, B. A. Moffatt. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 1986, 189, 113‒130.
  175. A. Skerra, T. G. Schmidt. Use of the Strep-Tag and streptavidin for detection and purification of recombinant proteins. Methods Enzymol. 2000, 326, 271‒304.
  176. M. J. Miller, H. Zhu, Y. Xu, C. Wu, A. J. Walz, A. Vergne, J. M. Roosenberg, G. Moraski, A. A. Minnick, J. McKee-Dolence, J. Hu, K. Fennell, E. Kurt Dolence, L. Dong, S. Franzblau, F. Malouin, U. Möllmann. Utilization of microbial iron assimilation processes for the development of new antibiotics and inspiration for the design of new anticancer agents. BioMetals 2009, 22, 61‒75. [82] A. Pramanik, V. Braun. Albomycin uptake via a ferric hydroxamate transport system of Streptococcus pneumoniae R6. J. Bacteriol. 2006, 188, 3878‒3886. [83] A. D. Ferguson, V. Braun, H. P. Fiedler, J. W. Coulton, K. Diederichs, W. Welte. Crystal structure of the antibiotic albomycin in complex with the outer membrane transporter FhuA. Protein Sci. 2000, 9, 956‒963. [84] T. E. Clarke, V. Braun, G. Winkelmann, L. W. Tari, H. J. Vogel. X-ray crystallographic structures of the Escherichia coli periplasmic protein FhuD bound to hydroxamate-type siderophores and the antibiotic albomycin. J. Biol. Chem. 2002, 277, 13966‒13972. [85]
  177. G. L. Griffiths, S. P. Sigel, S. M. Payne, J. B. Neilands. Vibriobactin, a siderophore from Vibrio cholerae. J. Biol. Chem. 1984, 259, 383‒385.
  178. H. C. Birnboim, J. Doly. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979, 7, 1513‒1523.
  179. J. Ködding, F. Killig, P. Polzer, S. P. Howard, K. Diederichs, W. Welte. Crystal structure of a 92- residue C-terminal fragment of TonB from Escherichia coli reveals significant conformational changes compared to structures of smaller TonB fragments. J. Biol. Chem. 2005, 280, 3022‒ 3028.
  180. R. Shi, A. Proteau, J. Wagner, Q. Cui, E. O. Purisima, A. Matte, M. Cygler. Trapping open and closed forms of FitE: a group III periplasmic binding protein. Proteins 2009, 75, 598‒609.
  181. O. Rahman, S. Cummings, D. Harrington, I. Sutcliffe. Methods for the bioinformatic identification of bacterial lipoproteins encoded in the genomes of Gram-positive bacteria. World J. Microbiol. Biotechnol. 2008, 24, 2377‒2382.
  182. R. Schneider, K. Hantke. Iron-hydroxamate uptake systems in Bacillus subtilis: identification of a lipoprotein as part of a binding protein-dependent transport system. Mol. Microbiol. 1993, 8, 111‒121.
  183. F. Kunst, N. Ogasawara, I. Moszer, A. M. Albertini, G. Alloni, V. Azevedo, M. G. Bertero, P. Bessières, A. Bolotin, S. Borchert, R. Borriss, L. Boursier, A. Brans, M. Braun, S. C. Brignell, S. Bron, S. Brouillet, C. V. Bruschi, B. Caldwell, V. Capuano, N. M. Carter, S. K. Choi, J. J. Codani, I. F. Connerton, N. J. Cummings, R. A. Daniel, F. Denizot, K. M. Devine, A. Düsterhöft, S. D. Ehrlich, P. T. Emmerson, K. D. Entian, J. Errington, C. Fabret, E. Ferrari, D. Foulger, C. Fritz, M. Fujita, Y. Fujita, S. Fuma, A. Galizzi, N. Galleron, S.-Y. Ghim, P. Glaser, A. Goffeau, E. J. Golightly, G. Grandi, G. Guiseppe, B. J. Guy, K. Haga, J. Haiech, C. R. Harwood, A. Hénaut, H. Hilbert, S. Holsappel, S. Hosono, M.-F. Hullo, M. Itaya, L. Jones, B. Joris, D. Karamata, Y. Kasahara, M. Klaerr-Blanchard, C. Klein, Y. Kobayashi, P. Koetter, G. Koningstein, S. Krogh, M. Kumano, K. Kurita, A. Lapidus, S. Lardinois, J. Lauber, V. Lazarevic, S.-M. Lee, A. Levine, H. Liu, S. Masuda, C. Mauël, C. Médigue, N. Medina, R. P. Mellado, M. Mizuno, D. Moestl, S. Nakai, M. Noback, D. Noone, M. O'Reilly, K. Ogawa, A. Ogiwara, B. Oudega, S.-H. Park, V. Parro, T. M. Pohl, D. Portetelle, S. Porwollik, A. M. Prescott, E. Presecan, P. Pujic, B. Purnelle, G. Rapoport, M. Rey, S. Reynolds, M. Rieger, C. Rivolta, E. Rocha, B. Roche, M. Rose, Y. Sadaie, T. Sato, E. Scanian, S. Schleich, R. Schroeter, F. Scoffone, J. Sekiguchi, A. Sekowska, S. J. Seror, P. Serror, B.-S. Shin, B. Soldo, A. Sorokin, E. Tacconi, T. Takagi, H. Takahashi, K. Takemaru, M. Takeuchi, A. Tamakoshi, T. Tanaka, P. Terpstra, A. Tognoni, V. Tosato, S. Uchiyama, M. Vandenbol, F. Vannier, A. Vassarotti, A. Viari, R. Wambutt, E. Wedler, H. Wedler, T. Weitzenegger, P. Winters, A. Wipat, H. Yamamoto, K. Yamane, K. Yasumoto, K. Yata, K. Yoshida, H.-F. Yoshikawa, E. Zumstein, H. Yoshikawa, A. Danchin. The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 1997, 390, 249‒256.
  184. O. Emanuelsson, S. Brunak, G. von Heijne, H. Nielsen. Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2007, 2, 953‒971.
  185. B. R. Chandra, M. Yogavel, A. Sharma. Structural analysis of ABC-family periplasmic zinc binding protein provides new insights into mechanism of ligand uptake and release. J. Mol. Biol. 2007, 367, 970‒982.
  186. A. J. McCoy, R. W. Grosse-Kunstleve, P. D. Adams, M. D. Winn, L. C. Storoni, R. J. Read. Phaser crystallographic software. J. Appl. Crystallogr. 2007, 40, 658‒674.
  187. P. Emsley, K. Cowtan. Coot: model-building tools for molecular graphics.
  188. H. A. Eisenhauer, S. Shames, P. D. Pawelek, J. W. Coulton. Siderophore transport through Escherichia coli outer membrane receptor FhuA with disulfide-tethered cork and barrel domains. J. Biol. Chem. 2005, 280, 30574‒30580.
  189. M. A. Fischbach, H. Lin, D. R. Liu, C. T. Walsh. In vitro characterization of IroB, a pathogen- associated C-glycosyltransferase. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 571‒576. [72]
  190. M. A. Sheikh, G. L. Taylor. Crystal structure of the Vibrio cholerae ferric uptake regulator (Fur) reveals insights into metal co-ordination. Mol. Microbiol. 2009, 72, 1208‒1220.
  191. E. Loisel, L. Jacquamet, L. Serre, C. Bauvois, J. L. Ferrer, T. Vernet, A. M. Di Guilmi, C. Durmort. AdcAII, a new pneumococcal Zn-binding protein homologous with ABC transporters: biochemical and structural analysis. J. Mol. Biol. 2008, 381, 594‒606.
  192. M. Kelly, N. C. Price. The use of circular dichroism in the investigation of protein structure and function. Curr. Protein Pept. Sci. 2000, 1, 349‒384.
  193. P. Thulasiraman, S. M. Newton, J. Xu, K. N. Raymond, C. Mai, A. Hall, M. A. Montague, P. E. Klebba. Selectivity of ferric enterobactin binding and cooperativity of transport in gram- negative bacteria. J. Bacteriol. 1998, 180, 6689‒6696.
  194. C. Sprencel, Z. Cao, Z. Qi, D. C. Scott, M. A. Montague, N. Ivanoff, J. Xu, K. N. Raymond, S. M. Newton, P. E. Klebba. Binding of ferric enterobactin by the Escherichia coli periplasmic protein FepB. J. Bacteriol. 2000, 182, 5359‒5364.
  195. T. van der Heide, B. Poolman. ABC transporters: one, two or four extracytoplasmic substrate- binding sites? EMBO Rep. 2002, 3, 938‒943.
  196. G. Lu, J. M. Westbrooks, A. L. Davidson, J. Chen. ATP hydrolysis is required to reset the ATP- binding cassette dimer into the resting-state conformation. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 17969‒17974.
  197. N. Baichoo, J. D. Helmann. Recognition of DNA by Fur: a reinterpretation of the Fur box consensus sequence. J. Bacteriol. 2002, 184, 5826‒5832.
  198. J. Ollinger, K. B. Song, H. Antelmann, M. Hecker, J. D. Helmann. Role of the Fur regulon in iron transport in Bacillus subtilis. J. Bacteriol. 2006, 188, 3664‒3673.
  199. M. T. Anderson, S. K. Armstrong. The Bordetella bfe system: growth and transcriptional response to siderophores, catechols, and neuroendocrine catecholamines. J. Bacteriol. 2006, 188, 5731‒5740.
  200. I. C. Sutcliffe, R. R. Russell. Lipoproteins of gram-positive bacteria. J. Bacteriol. 1995, 177, 1123‒1128.
  201. M. R. Rohrbach, V. Braun, W. Koster. Ferrichrome transport in Escherichia coli K-12: altered substrate specificity of mutated periplasmic FhuD and interaction of FhuD with the integral membrane protein FhuB. J. Bacteriol. 1995, 177, 7186‒7193.
  202. C. Klein, C. Kaletta, N. Schnell, K. D. Entian. Analysis of genes involved in biosynthesis of the lantibiotic subtilin. Appl. Environ. Microbiol. 1992, 58, 132‒142.
  203. V. Braun, C. Herrmann. Docking of the periplasmic FecB binding protein to the FecCD transmembrane proteins in the ferric citrate transport system of Escherichia coli. J. Bacteriol. 2007, 189, 6913‒6918.
  204. K. Kampfenkel, V. Braun. Membrane topology of the Escherichia coli ExbD protein. J. Bacteriol. 1992, 174, 5485‒5487.
  205. J. Grodberg, J. J. Dunn. ompT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification. J. Bacteriol. 1988, 170, 1245‒1253.
  206. D. J. Ecker, B. F. Matzanke, K. N. Raymond. Recognition and transport of ferric enterobactin in Escherichia coli. J. Bacteriol. 1986, 167, 666‒673.
  207. B. F. Matzanke, D. J. Ecker, T. S. Yang, B. H. Huynh, G. Müller, K. N. Raymond. Escherichia coli iron enterobactin uptake monitored by Mössbauer spectroscopy. J. Bacteriol. 1986, 167, 674‒680.
  208. P. S. Ledvina, A. L. Tsai, Z. Wang, E. Koehl, F. A. Quiocho. Dominant role of local dipolar interactions in phosphate binding to a receptor cleft with an electronegative charge surface: equilibrium, kinetic, and crystallographic studies. Protein Sci. 1998, 7, 2550‒2559.
  209. S. Heidinger, V. Braun, V. L. Pecoraro, K. N. Raymond. Iron supply to Escherichia coli by synthetic analogs of enterochelin. J. Bacteriol. 1983, 153, 109‒115.
  210. A. S. Juncker, H. Willenbrock, G. Von Heijne, S. Brunak, H. Nielsen, A. Krogh. Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci. 2003, 12, 1652‒1662.
  211. M. T. Anderson, S. K. Armstrong. Norepinephrine mediates acquisition of transferrin-iron in Bordetella bronchiseptica. J. Bacteriol. 2008, 190, 3940‒3947.
  212. L. Ma, W. Kaserer, R. Annamalai, D. C. Scott, B. Jin, X. Jiang, Q. Xiao, H. Maymani, L. M. Massis, L. C. Ferreira, S. M. Newton, P. E. Klebba. Evidence of ball-and-chain transport of ferric enterobactin through FepA. J. Biol. Chem. 2007, 282, 397‒406.
  213. D. G. Cooper, C. R. Macdonald, S. J. Duff, N. Kosaric. Enhanced Production of Surfactin from Bacillus subtilis by Continuous Product Removal and Metal Cation Additions. Appl. Environ. Microbiol. 1981, 42, 408‒412.
  214. M. Miethke, S. Schmidt, M. A. Marahiel. The major facilitator superfamily-type transporter YmfE and the multidrug-efflux activator Mta mediate bacillibactin secretion in Bacillus subtilis. J. Bacteriol. 2008, 190, 5143‒5152.
  215. W. J. Peters, R. A. Warren. Itoic acid synthesis in Bacillus subtilis. J. Bacteriol. 1968, 95, 360‒ 366.
  216. A. Gaballa, H. Antelmann, C. Aguilar, S. K. Khakh, K. B. Song, G. T. Smaldone, J. D. Helmann. The Bacillus subtilis iron-sparing response is mediated by a Fur-regulated small RNA and three small, basic proteins. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 11927‒11932.
  217. L. A. Yatsunyk, J. A. Easton, L. R. Kim, S. A. Sugarbaker, B. Bennett, R. M. Breece, I. I. Vorontsov, D. L. Tierney, M. W. Crowder, A. C. Rosenzweig. Structure and metal binding properties of ZnuA, a periplasmic zinc transporter from Escherichia coli. J. Biol. Inorg. Chem. 2008, 13, 271‒288.
  218. P. Ragunathan, B. Spellerberg, K. Ponnuraj. Expression, purification, crystallization and preliminary crystallographic analysis of laminin-binding protein (Lmb) from Streptococcus agalactiae. Acta Crystallogr. F Struct. Biol. Cryst. Commun. 2009, 65, 492‒494.
  219. C. Linke, T. T. Caradoc-Davies, P. G. Young, T. Proft, E. N. Baker. The laminin-binding protein Lbp from Streptococcus pyogenes is a zinc receptor. J. Bacteriol. 2009, 191, 5814‒5823.
  220. M. Sandy, A. Butler. Microbial iron acquisition: marine and terrestrial siderophores. Chem. Rev. 2009, 109, 4580‒4595.
  221. R. J. Abergel, A. M. Zawadzka, T. M. Hoette, K. N. Raymond. Enzymatic hydrolysis of trilactone siderophores: where chiral recognition occurs in enterobactin and bacillibactin iron transport. J. Am. Chem. Soc. 2009, 131, 12682‒12692.
  222. A. M. Zawadzka, R. J. Abergel, R. Nichiporuk, U. N. Andersen, K. N. Raymond. Siderophore- mediated iron acquisition systems in Bacillus cereus: Identification of receptors for anthrax virulence-associated petrobactin. Biochemistry 2009, 48, 3645‒3657.
  223. G. Zhang, S. A. Amin, F. C. Kupper, P. D. Holt, C. J. Carrano, A. Butler. Ferric stability constants of representative marine siderophores: marinobactins, aquachelins, and petrobactin. Inorg. Chem. 2009, 48, 11466‒11473.
  224. A. M. Zawadzka, Y. Kim, N. Maltseva, R. Nichiporuk, Y. Fan, A. Joachimiak, K. N. Raymond. Characterization of a Bacillus subtilis transporter for petrobactin, an anthrax stealth siderophore. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 21854‒21859.
  225. M. Sandrini, R. Shergill, J. Woodward, R. Muralikuttan, R. D. Haigh, M. Lyte, P. P. Freestone. Elucidation of the mechanism by which catecholamine stress hormones liberate iron from the innate immune defense proteins transferrin and lactoferrin. J. Bacteriol. 2010, 192, 587‒ 594.
  226. A. G. Albrecht, D. J. Netz, M. Miethke, A. J. Pierik, O. Burghaus, F. Peuckert, R. Lill, M. A. Marahiel. SufU is an essential iron-sulfur cluster scaffold protein in Bacillus subtilis. J. Bacteriol. 2010, 192, 1643‒1651.
  227. J. C. Grigg, J. D. Cooper, J. Cheung, D. E. Heinrichs, M. E. Murphy. The Staphylococcus aureus siderophore receptor HtsA undergoes localized conformational changes to enclose staphyloferrin A in an arginine-rich binding pocket. J. Biol. Chem. 2010, 285, 11162‒11171.
  228. J. C. Grigg, J. Cheung, D. E. Heinrichs, M. E. Murphy. Specificity of Staphyloferrin B recognition by the SirA receptor from Staphylococcus aureus. J. Biol. Chem. 2010, 285, 34579‒34588.
  229. A. Gaballa, J. D. Helmann. Substrate induction of siderophore transport in Bacillus subtilis mediated by a novel one-component regulator. Mol. Microbiol. 2007, 66, 164‒173.
  230. M. K. Wilson, R. J. Abergel, J. E. Arceneaux, K. N. Raymond, B. R. Byers. Temporal production of the two Bacillus anthracis siderophores, petrobactin and bacillibactin. BioMetals 2010, 23, 129‒134. [77]
  231. J. M. Vraspir, A. Butler. Chemistry of marine ligands and siderophores. Ann. Rev. Mar. Sci. 2009, 1, 43‒63.
  232. M. Sandy, A. Han, J. Blunt, M. Munro, M. Haygood, A. Butler. Vanchrobactin and anguibactin siderophores produced by Vibrio sp. DS40M4. J. Nat. Prod. 2010, 73, 1038‒1043.
  233. N. Noinaj, M. Guillier, T. J. Barnard, S. K. Buchanan. TonB-dependent transporters: regulation, structure, and function. Annu. Rev. Microbiol. 2010, 64, 43‒60.
  234. R. J. Abergel, J. A. Warner, D. K. Shuh, K. N. Raymond. Enterobactin protonation and iron release: structural characterization of the salicylate coordination shift in ferric enterobactin. J. Am. Chem. Soc. 2006, 128, 8920‒8931.
  235. P. C. Smith, N. Karpowich, L. Millen, J. E. Moody, J. Rosen, P. J. Thomas, J. F. Hunt. ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol. Cell 2002, 10, 139‒149.
  236. R. Tam, M. H. Saier, Jr. Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol. Rev. 1993, 57, 320‒346.
  237. B. Vogelstein, D. Gillespie. Preparative and analytical purification of DNA from agarose. Proc. Natl. Acad. Sci. U.S.A. 1979, 76, 615‒619.
  238. A. Sauter, V. Braun. Defined inactive FecA derivatives mutated in functional domains of the outer membrane transport and signaling protein of Escherichia coli K-12. J. Bacteriol. 2004, 186, 5303‒5310.
  239. J. Bacteriol. 1996, 178, 854‒861. [28] B. M. Rowland, T. H. Grossman, M. S. Osburne, H. W. Taber. Sequence and genetic organization of a Bacillus subtilis operon encoding 2,3-dihydroxybenzoate biosynthetic enzymes. Gene 1996, 178, 119‒123. [29]
  240. K. D. Krewulak, H. J. Vogel. Structural biology of bacterial iron uptake. Biochim. Biophys. Acta 2008, 1778, 1781‒1804.
  241. L. Holm, C. Sander. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 1993, 233, 123‒138.
  242. X. Thomas, D. Destoumieux-Garzón, J. Peduzzi, C. Afonso, A. Blond, N. Birlirakis, C. Goulard, L. Dubost, R. Thai, J. C. Tabet, S. Rebuffat. Siderophore peptide, a new type of post- translationally modified antibacterial peptide with potent activity. J. Biol. Chem. 2004, 279, 28233‒28242. [94]
  243. M. I. Hutchings, T. Palmer, D. J. Harrington, I. C. Sutcliffe. Lipoprotein biogenesis in Gram- positive bacteria: knowing when to hold 'em, knowing when to fold 'em. Trends Microbiol. 2009, 17, 13‒21.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten