Publikationsserver der Universitätsbibliothek Marburg

Titel:Kernimport des TEAD-Transkriptionsfaktors Tec1 aus Saccharomyces cerevisiae
Autor:Kern, Sandra
Weitere Beteiligte: Mösch, Hans-Ulrich (Prof. Dr.)
Veröffentlicht:2011
URI:https://archiv.ub.uni-marburg.de/diss/z2011/0122
DOI: https://doi.org/10.17192/z2011.0122
URN: urn:nbn:de:hebis:04-z2011-01226
DDC: Biowissenschaften, Biologie
Titel (trans.):Nuclear import of the TEAD transcription factor Tec1 from Saccharomyces cerevisiae
Publikationsdatum:2011-08-08
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
transcription factor, Proteintransport, Zellkern, Saccharomyces cerevisiae, Saccharomyces cerevisiae, protein transport, Transkriptionsfaktor, nucleus

Zusammenfassung:
Über den Kerntransport von Transkriptionsfaktoren der TEAD-Familie sind bisher noch keine Untersuchungen gemacht worden. In dieser Arbeit wurde der Kernimport von Tec1, dem einzigen TEAD-Protein aus Saccharomyces cerevisiae, detailliert untersucht. In S. cerevisiae erfüllt Tec1 vielfältige Funktionen bei der Steuerung der Zellteilung und der Zelldifferenzierung. In dieser Studie wurden zwei Bereiche des Proteins identifiziert, NLS1 und NLS2 (NLS für nuclear localization signal, Kernlokalisierungssignal), die notwendig und hinreichend für die Kernlokalisierung von Tec1 sind. NLS1 liegt in der N-terminalen Hälfte des Proteins und überlappt vollständig mit der TEA-Domäne, welche DNA-Bindung vermittelt. Es konnte gezeigt werden, dass mehrere Aminosäuren für die Funktion der NLS1 kritisch sind und die meisten dieser Reste auch gleichzeitig bei der Bindung an TCS-Elemente (TCS für TEA consensus sequence) in der DNA eine wichtige Rolle spielen. In einem Strukturmodell liegen diese Reste in einer gemeinsamen Ebene, die folglich sowohl die Kontaktstelle für die Bindung an die DNA als auch vermutlich an Importine darstellt. Drei Aminosäuren wurden identifiziert, deren Seitenketten nicht für die DNA-Bindung entscheidend sind, deren Mutation jedoch zu einer geringeren Kernimporteffizienz führt. Demzufolge können die Funktionen DNA-Bindung und Kernlokalisierung zumindest teilweise getrennt werden. NLS2 liegt in der C-terminalen Hälfte von Tec1 und entspricht einem Bereich, der auch für die Interaktion mit anderen Proteinen, z. B. dem Trans-kriptionsfaktor Ste12, notwendig ist. Es konnte aber gezeigt werden, dass in Abwesenheit von Ste12 der Kernimport von Tec1 über die NLS2 nicht beeinträchtigt ist. In der NLS2 wurden zwei benachbarte basische Reste, Lysin 318 und Arginin 319, als kritisch für die Funktion identifiziert. Weitere genetische und zellbiologische Untersuchungen ergaben, dass beide NLS-Bereiche für einen optimalen Kernimport benötigt werden. Biochemische Bindestudien ergaben zudem, dass beide NLSs mit mehreren Importinen interagieren können, wobei drei Importine beide Lokalisierungssignale erkennen, während vier Importine spezifisch für NLS1 bzw. NLS2 sind. Für Tec1 ergeben sich den Ergebnissen dieser Arbeit zufolge zahlreiche Importmöglichkeiten, da es zwei NLSs enthält, die jeweils von mehreren Importinen gebunden werden können. Dies lässt darauf schließen, dass der Kernimport von Tec1 unter verschiedenen Bedingungen sichergestellt wird, unter denen dieser TEAD-Transkriptionsfaktor seine vielfältigen Funktionen wahrnehmen kann.

Bibliographie / References

  1. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.
  2. Arnold K, Bordoli L, Kopp J & Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22: 195-201.
  3. Cokol M, Nair R & Rost B (2000) Finding nuclear localization signals. EMBO Rep 1: 411-415.
  4. Mosammaparast N, Jackson KR, Guo Y, Brame CJ, Shabanowitz J, Hunt DF & Pemberton LF (2001) Nuclear import of histone H2A and H2B is mediated by a network of karyopherins. J Cell Biol 153: 251-262.
  5. Nemergut ME & Macara IG (2000) Nuclear import of the ran exchange factor, RCC1, is mediated by at least two distinct mechanisms. J Cell Biol 149: 835-850.
  6. Reichelt R, Holzenburg A, Buhle EL, Jr., Jarnik M, Engel A & Aebi U (1990) Correlation between structure and mass distribution of the nuclear pore complex and of distinct pore complex components. J Cell Biol 110: 883-894.
  7. Grosshans H, Deinert K, Hurt E & Simos G (2001) Biogenesis of the signal recognition particle (SRP) involves import of SRP proteins into the nucleolus, assembly with the SRP-RNA, and Xpo1p-mediated export. J Cell Biol 153: 745-762.
  8. Tao T, Lan J, Lukacs GL, Hache RJ & Kaplan F (2006) Importin 13 regulates nuclear import of the glucocorticoid receptor in airway epithelial cells. Am J Respir Cell Mol Biol 35: 668-680.
  9. Macara IG (2001) Transport into and out of the nucleus. Microbiol Mol Biol Rev 65: 570-594, table of contents.
  10. Harel A, Chan RC, Lachish-Zalait A, Zimmerman E, Elbaum M & Forbes DJ (2003) Importin beta negatively regulates nuclear membrane fusion and nuclear pore complex assembly. Mol Biol Cell 14: 4387-4396.
  11. Kalderon D, Richardson WD, Markham AF & Smith AE (1984) Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature 311: 33-38.
  12. Allen NP, Huang L, Burlingame A & Rexach M (2001) Proteomic analysis of nucleoporin interacting proteins. J Biol Chem 276: 29268-29274.
  13. Quan Y, Ji ZL, Wang X, Tartakoff AM & Tao T (2008) Evolutionary and transcriptional analysis of karyopherin beta superfamily proteins. Mol Cell Proteomics 7: 1254-1269.
  14. Brückner S, Köhler T, Braus GH, Heise B, Bolte M & Mösch HU (2004) Differential regulation of Tec1 by Fus3 and Kss1 confers signaling specificity in yeast development. Curr Genet 46: 331-342.
  15. Banuett F (1992) Ustilago maydis, the delightful blight. Trends Genet 8: 174-178.
  16. Tedford K, Kim S, Sa D, Stevens K & Tyers M (1997) Regulation of the mating pheromone and invasive growth responses in yeast by two MAP kinase substrates. Curr Biol 7: 228-238.
  17. Yaffe MP & Schatz G (1984) Two nuclear mutations that block mitochondrial protein import in yeast. Proc Natl Acad Sci USA 81: 4819-4823.
  18. Hsu DK, Guo Y, Alberts GF, et al. (1996) Identification of a murine TEF-1-related gene expressed after mitogenic stimulation of quiescent fibroblasts and during myogenic differentiation. J Biol Chem 271: 13786-13795.
  19. Winnepenninckx V, Lazar V, Michiels S, et al. (2006) Gene expression profiling of primary cutaneous melanoma and clinical outcome. J Natl Cancer Inst 98: 472-482.
  20. Kiefer F, Arnold K, Kunzli M, Bordoli L & Schwede T (2009) The SWISS-MODEL Repository and associated resources. Nucleic Acids Res 37: D387-392.
  21. Zandi E, Tran TN, Chamberlain W & Parker CS (1997) Nuclear entry, oligomerization, and DNA binding of the Drosophila heat shock transcription factor are regulated by a unique nuclear localization sequence. Genes Dev 11: 1299-1314.
  22. Beals CR, Clipstone NA, Ho SN & Crabtree GR (1997) Nuclear localization of NF- ATc by a calcineurin-dependent, cyclosporin-sensitive intramolecular interaction. Genes Dev 11: 824-834.
  23. Roberts RL & Fink GR (1994) Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev 8: 2974-2985.
  24. Madhani HD & Fink GR (1997) Combinatorial control required for the specificity of yeast MAPK signaling. Science 275: 1314-1317.
  25. Köhler T, Wesche S, Taheri N, Braus GH & Mösch HU (2002) Dual role of the Saccharomyces cerevisiae TEA/ATTS family transcription factor Tec1p in regulation of gene expression and cellular development. Eukaryot Cell 1: 673-686.
  26. Mar JH & Ordahl CP (1990) M-CAT binding factor, a novel trans-acting factor governing muscle-specific transcription. Mol Cell Biol 10: 4271-4283.
  27. Milewski RC, Chi NC, Li J, Brown C, Lu MM & Epstein JA (2004) Identification of minimal enhancer elements sufficient for Pax3 expression in neural crest and implication of Tead2 as a regulator of Pax3. Development 131: 829-837.
  28. Schaper S, Franke J, Meijsing SH & Ehrenhofer-Murray AE (2005) Nuclear import of the histone acetyltransferase complex SAS-I in Saccharomyces cerevisiae. J Cell Sci 118: 1473-1484.
  29. Süel KE, Gu H & Chook YM (2008) Modular organization and combinatorial energetics of proline-tyrosine nuclear localization signals. PLoS Biol 6: e137.
  30. Kutay U, Bischoff FR, Kostka S, Kraft R & Görlich D (1997) Export of importin alpha from the nucleus is mediated by a specific nuclear transport factor. Cell 90: 1061- 1071.
  31. Kutay U, Hartmann E, Treichel N, et al. (2000) Identification of two novel RanGTP- binding proteins belonging to the importin beta superfamily. J Biol Chem 275: 40163- 40168.
  32. Melen K, Fagerlund R, Franke J, Köhler M, Kinnunen L & Julkunen I (2003) Importin alpha nuclear localization signal binding sites for STAT1, STAT2, and influenza A virus nucleoprotein. J Biol Chem 278: 28193-28200.
  33. Gavin AC, Aloy P, Grandi P, et al. (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440: 631-636.
  34. Schmidt-Zachmann MS & Nigg EA (1993) Protein localization to the nucleolus: a search for targeting domains in nucleolin. J Cell Sci 105 ( Pt 3): 799-806.
  35. Hall MN, Hereford L & Herskowitz I (1984) Targeting of E. coli beta-galactosidase to the nucleus in yeast. Cell 36: 1057-1065.
  36. Dahl E, Kristiansen G, Gottlob K, et al. (2006) Molecular profiling of laser- microdissected matched tumor and normal breast tissue identifies karyopherin alpha2 as a potential novel prognostic marker in breast cancer. Clin Cancer Res 12: 3950-3960.
  37. Kobe B (1999) Autoinhibition by an internal nuclear localization signal revealed by the crystal structure of mammalian importin alpha. Nat Struct Biol 6: 388-397.
  38. Catimel B, Teh T, Fontes MR, et al. (2001) Biophysical characterization of interactions involving importin-alpha during nuclear import. J Biol Chem 276: 34189- 34198.
  39. Ho Y, Gruhler A, Heilbut A, et al. (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415: 180-183.
  40. Miyauchi Y, Michigami T, Sakaguchi N, et al. (2005) Importin 4 is responsible for ligand-independent nuclear translocation of vitamin D receptor. J Biol Chem 280: 40901-40908.
  41. Beck M, Forster F, Ecke M, et al. (2004) Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science 306: 1387-1390.
  42. Görlich D & Kutay U (1999) Transport between the cell nucleus and the cytoplasm.
  43. Ribbeck K, Kutay U, Paraskeva E & Görlich D (1999) The translocation of transportin-cargo complexes through nuclear pores is independent of both Ran and energy. Curr Biol 9: 47-50.
  44. Arts GJ, Fornerod M & Mattaj IW (1998) Identification of a nuclear export receptor for tRNA. Curr Biol 8: 305-314.
  45. Görlich D, Kostka S, Kraft R, Dingwall C, Laskey RA, Hartmann E & Prehn S (1995) Two different subunits of importin cooperate to recognize nuclear localization signals and bind them to the nuclear envelope. Curr Biol 5: 383-392.
  46. Vetter IR, Arndt A, Kutay U, Görlich D & Wittinghofer A (1999) Structural view of the Ran-Importin beta interaction at 2.3 A resolution. Cell 97: 635-646.
  47. Taxis C, Stier G, Spadaccini R & Knop M (2009) Efficient protein depletion by genetically controlled deprotection of a dormant N-degron. Mol Syst Biol 5: 267.
  48. Scheffzek K, Klebe C, Fritz-Wolf K, Kabsch W & Wittinghofer A (1995) Crystal structure of the nuclear Ras-related protein Ran in its GDP-bound form. Nature 374: 378-381.
  49. Xia Z, Webster A, Du F, Piatkov K, Ghislain M & Varshavsky A (2008) Substrate- binding sites of UBR1, the ubiquitin ligase of the N-end rule pathway. J Biol Chem 283: 24011-24028.
  50. Noguchi E, Saitoh Y, Sazer S & Nishimoto T (1999) Disruption of the YRB2 gene retards nuclear protein export, causing a profound mitotic delay, and can be rescued by overexpression of XPO1/CRM1. J Biochem 125: 574-585.
  51. Kiseleva E, Goldberg MW, Allen TD & Akey CW (1998) Active nuclear pore complexes in Chironomus: visualization of transporter configurations related to mRNP export. J Cell Sci 111 ( Pt 2): 223-236.
  52. Taddei A (2007) Active genes at the nuclear pore complex. Curr Opin Cell Biol 19: 305-310.
  53. Rout MP, Blobel G & Aitchison JD (1997) A distinct nuclear import pathway used by ribosomal proteins. Cell 89: 715-725.
  54. Lai MC, Lin RI, Huang SY, Tsai CW & Tarn WY (2000) A human importin-beta family protein, transportin-SR2, interacts with the phosphorylated RS domain of SR proteins. J Biol Chem 275: 7950-7957.
  55. Daneholt B (1997) A look at messenger RNP moving through the nuclear pore. Cell 88: 585-588.
  56. Rosenblum JS, Pemberton LF & Blobel G (1997) A nuclear import pathway for a protein involved in tRNA maturation. J Cell Biol 139: 1655-1661.
  57. Johnson ES, Ma PC, Ota IM & Varshavsky A (1995) A proteolytic pathway that recognizes ubiquitin as a degradation signal. J Biol Chem 270: 17442-17456.
  58. Yamaguchi R & Newport J (2003) A role for Ran-GTP and Crm1 in blocking re- replication. Cell 113: 115-125.
  59. Kalderon D, Roberts BL, Richardson WD & Smith AE (1984) A short amino acid sequence able to specify nuclear location. Cell 39: 499-509.
  60. Cullen PJ, Sabbagh W, Jr., Graham E, et al. (2004) A signaling mucin at the head of the Cdc42-and MAPK-dependent filamentous growth pathway in yeast. Genes Dev 18: 1695-1708.
  61. Robzyk K & Kassir Y (1992) A simple and highly efficient procedure for rescuing autonomous plasmids from yeast. Nucleic Acids Res 20: 3790.
  62. Tesfaigzi J, Smith-Harrison W & Carlson DM (1994) A simple method for reusing western blots on PVDF membranes. Biotechniques 17: 268-269.
  63. Srivastava A, MacKay JO & Bell JB (2002) A Vestigial:Scalloped TEA domain chimera rescues the wing phenotype of a scalloped mutation in Drosophila melanogaster. Genesis 33: 40-47.
  64. Isgro TA & Schulten K (2005) Binding dynamics of isolated nucleoporin repeat regions to importin-beta. Structure 13: 1869-1879.
  65. Mandel M & Higa A (1970) Calcium-dependent bacteriophage DNA infection. J Mol Biol 53: 159-162.
  66. Sidorova JM, Mikesell GE & Breeden LL (1995) Cell cycle-regulated phosphorylation of Swi6 controls its nuclear localization. Mol Biol Cell 6: 1641-1658. Smith A, Brownawell A & Macara IG (1998) Nuclear import of Ran is mediated by the transport factor NTF2. Curr Biol 8: 1403-1406.
  67. Makhnevych T, Lusk CP, Anderson AM, Aitchison JD & Wozniak RW (2003) Cell cycle regulated transport controlled by alterations in the nuclear pore complex. Cell 115: 813-823.
  68. Harreman MT, Cohen PE, Hodel MR, Truscott GJ, Corbett AH & Hodel AE (2003) Characterization of the auto-inhibitory sequence within the N-terminal domain of importin alpha. J Biol Chem 278: 21361-21369.
  69. Nemergut ME, Mizzen CA, Stukenberg T, Allis CD & Macara IG (2001) Chromatin docking and exchange activity enhancement of RCC1 by histones H2A and H2B. Science 292: 1540-1543.
  70. Cremer T, Cremer M, Dietzel S, Muller S, Solovei I & Fakan S (2006) Chromosome territories-a functional nuclear landscape. Curr Opin Cell Biol 18: 307-316.
  71. Hahn S, Maurer P, Caesar S & Schlenstedt G (2008) Classical NLS proteins from Saccharomyces cerevisiae. J Mol Biol 379: 678-694.
  72. Xiao JH, Davidson I, Matthes H, Garnier JM & Chambon P (1991) Cloning, expression, and transcriptional properties of the human enhancer factor TEF-1. Cell 65: 551-568.
  73. Rose M & Botstein D (1983) Construction and use of gene fusions to lacZ (β- galactosidase) that are expressed in yeast. Methods Enzymol 101: 167-180.
  74. Guss KA, Nelson CE, Hudson A, Kraus ME & Carroll SB (2001) Control of a genetic regulatory network by a selector gene. Science 292: 1164-1167.
  75. Gancedo JM (2001) Control of pseudohyphae formation in Saccharomyces cerevisiae. FEMS Microbiol Rev 25: 107-123.
  76. Terry LJ, Shows EB & Wente SR (2007) Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science 318: 1412-1416.
  77. Stoffler D, Feja B, Fahrenkrog B, Walz J, Typke D & Aebi U (2003) Cryo-electron tomography provides novel insights into nuclear pore architecture: implications for nucleocytoplasmic transport. J Mol Biol 328: 119-130.
  78. Wolberger C, Pabo CO, Vershon AK & Johnson AD (1991) Crystallization and preliminary X-ray diffraction studies of a MAT alpha 2-DNA complex. J Mol Biol 217: 11-13.
  79. Conti E, Uy M, Leighton L, Blobel G & Kuriyan J (1998) Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin alpha. Cell 94: 193-204.
  80. Conti E & Kuriyan J (2000) Crystallographic analysis of the specific yet versatile recognition of distinct nuclear localization signals by karyopherin alpha. Structure 8: 329-338.
  81. Wolberger C, Vershon AK, Liu B, Johnson AD & Pabo CO (1991) Crystal structure of a MAT alpha 2 homeodomain-operator complex suggests a general model for homeodomain-DNA interactions. Cell 67: 517-528.
  82. Künzler M & Hurt EC (1998) Cse1p functions as the nuclear export receptor for importin alpha in yeast. FEBS Lett 433: 185-190.
  83. Solsbacher J, Maurer P, Bischoff FR & Schlenstedt G (1998) Cse1p is involved in export of yeast importin alpha from the nucleus. Mol Cell Biol 18: 6805-6815.
  84. Wunderlich J (2008) Die Rolle der TEA-DNA-Bindedomäne des Transkriptions- faktors Tec1 beim Kerntransport in Saccharomyces cerevisiae. Bachelorarbeit.
  85. van der Felden J (2008) Die Rolle der Tec1-Ste12-Heterodimerbildung bei der Transkriptionskontrolle in Saccharomyces cerevisiae. Diplomarbeit.
  86. Wesche, S. (2000) Die Rolle des Transkriptionsfaktors Tec1p bei der Regulation des invasiven Wachstums in Saccharomyces cerevisiae. Diplomarbeit Wiese C, Wilde A, Moore MS, Adam SA, Merdes A & Zheng Y (2001) Role of importin-beta in coupling Ran to downstream targets in microtubule assembly. Science 291: 653-656.
  87. Mitchell AP (1998) Dimorphism and virulence in Candida albicans. Curr Opin Microbiol 1: 687-692.
  88. Savory JG, Hsu B, Laquian IR, Giffin W, Reich T, Hache RJ & Lefebvre YA (1999) Discrimination between NL1-and NL2-mediated nuclear localization of the glucocorticoid receptor. Mol Cell Biol 19: 1025-1037.
  89. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA & Arnheim N (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230: 1350-1354.
  90. Renicke C (2010) Erweiterung eines Systems zur gezielten Proteindestabilisierung durch Degronaktivierung mittels Tabak-Ätz-Virus-Protease in Saccharomyces cerevisiae. Masterarbeit.
  91. Banuett F (1995) Genetics of Ustilago maydis, a fungal pathogen that induces tumors in maize. Annu Rev Genet 29: 179-208.
  92. Ghaemmaghami S, Huh WK, Bower K, et al. (2003) Global analysis of protein expression in yeast. Nature 425: 737-741.
  93. Andrade MA & Bork P (1995) HEAT repeats in the Huntington's disease protein. Nat Genet 11: 115-116.
  94. Yang CH, Lambie EJ, Hardin J, Craft J & Snyder M (1989) Higher order structure is present in the yeast nucleus: autoantibody probes demonstrate that the nucleolus lies opposite the spindle pole body. Chromosoma 98: 123-128.
  95. Wellmann A, Flemming P, Behrens P, et al. (2001) High expression of the proliferation and apoptosis associated CSE1L/CAS gene in hepatitis and liver neoplasms: correlation with tumor progression. Int J Mol Med 7: 489-494.
  96. Cunningham BC & Wells JA (1989) High-resolution epitope mapping of hGH- receptor interactions by alanine-scanning mutagenesis. Science 244: 1081-1085.
  97. Cadepond F, Gasc JM, Delahaye F, et al. (1992) Hormonal regulation of the nuclear localization signals of the human glucocorticosteroid receptor. Exp Cell Res 201: 99- 108.
  98. Zaman S, Lippman SI, Zhao X & Broach JR (2008) How Saccharomyces responds to nutrients. Annu Rev Genet 42: 27-81.
  99. Jiang SW, Wu K & Eberhardt NL (1999) Human placental TEF-5 transactivates the human chorionic somatomammotropin gene enhancer. Mol Endocrinol 13: 879-889.
  100. Grundt K, Haga IV, Huitfeldt HS & Ostvold AC (2007) Identification and characterization of two putative nuclear localization signals (NLS) in the DNA-binding protein NUCKS. Biochim Biophys Acta 1773: 1398-1406.
  101. Truant R, Fridell RA, Benson RE, Bogerd H & Cullen BR (1998) Identification and functional characterization of a novel nuclear localization signal present in the yeast Nab2 poly(A)+ RNA binding protein. Mol Cell Biol 18: 1449-1458.
  102. Wen W, Meinkoth JL, Tsien RY & Taylor SS (1995) Identification of a signal for rapid export of proteins from the nucleus. Cell 82: 463-473.
  103. Mingot JM, Kostka S, Kraft R, Hartmann E & Görlich D (2001) Importin 13: a novel mediator of nuclear import and export. EMBO J 20: 3685-3694.
  104. Goldfarb DS, Corbett AH, Mason DA, Harreman MT & Adam SA (2004) Importin alpha: a multipurpose nuclear-transport receptor. Trends Cell Biol 14: 505-514.
  105. Nachury MV, Maresca TJ, Salmon WC, Waterman-Storer CM, Heald R & Weis K (2001) Importin beta is a mitotic target of the small GTPase Ran in spindle assembly. Cell 104: 95-106.
  106. Wu J, Duggan A & Chalfie M (2001) Inhibition of touch cell fate by egl-44 and egl-46 in C. elegans. Genes Dev 15: 789-802.
  107. Cook JG, Bardwell L & Thorner J (1997) Inhibitory and activating functions for MAPK Kss1 in the S. cerevisiae filamentous-growth signalling pathway. Nature 390: 85-88.
  108. Hood JK & Silver PA (1999) In or out? Regulating nuclear transport. Curr Opin Cell Biol 11: 241-247.
  109. Klebe C, Bischoff FR, Ponstingl H & Wittinghofer A (1995) Interaction of the nuclear GTP-binding protein Ran with its regulatory proteins RCC1 and RanGAP1. Biochemistry 34: 639-647.
  110. Mirabito PM, Adams TH & Timberlake WE (1989) Interactions of three sequentially expressed genes control temporal and spatial specificity in Aspergillus development. Cell 57: 859-868.
  111. Bachmair A, Finley D & Varshavsky A (1986) In vivo half-life of a protein is a function of its amino-terminal residue. Science 234: 179-186.
  112. Aitchison JD, Blobel G & Rout MP (1996) Kap104p: a karyopherin involved in the nuclear transport of messenger RNA binding proteins. Science 274: 624-627.
  113. Msn5p/Kap142p promotes nuclear export of the hsp70 Ssa4p and relocates in response to stress. Mol Microbiol 62: 592-609.
  114. Conti E, Müller CW & Stewart M (2006) Karyopherin flexibility in nucleocytoplasmic transport. Curr Opin Struct Biol 16: 237-244.
  115. Wozniak RW, Rout MP & Aitchison JD (1998) Karyopherins and kissing cousins. Trends Cell Biol 8: 184-188.
  116. Chook YM & Blobel G (2001) Karyopherins and nuclear import. Curr Opin Struct Biol 11: 703-715.
  117. Mosammaparast N & Pemberton LF (2004) Karyopherins: from nuclear-transport mediators to nuclear-function regulators. Trends Cell Biol 14: 547-556.
  118. Madhani HD, Styles CA & Fink GR (1997) MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation. Cell 91: 673-684.
  119. Kupiec M, Byers B, Esposito RE & Mitchell AP (1997) Meiosis and sporulation in Saccharomyces cerevisiae. In: The Molecular Biology of the Yeast Saccharomyces. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. 889-1036.
  120. Sherman F, Fink GR & Hicks J (1986) Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  121. Gwizdek C, Ossareh-Nazari B, Brownawell AM, Evers S, Macara IG & Dargemont C (2004) Minihelix-containing RNAs mediate exportin-5-dependent nuclear export of the double-stranded RNA-binding protein ILF3. J Biol Chem 279: 884-891.
  122. Cingolani G, Bednenko J, Gillespie MT & Gerace L (2002) Molecular basis for the recognition of a nonclassical nuclear localization signal by importin beta. Mol Cell 10: 1345-1353.
  123. Sambrook J, Fritsch E & Maniatis T (1989) Molecular cloning. A Laboratory Manual. Plainview, N.Y.: Cold Spring Harbor Laboratory Press.
  124. Shepherd MG (1988) Morphogenetic transformation of fungi. Curr Top Med Mycol 2: 278-304.
  125. Stewart AF, Larkin SB, Farrance IK, Mar JH, Hall DE & Ordahl CP (1994) Muscle-enriched TEF-1 isoforms bind M-CAT elements from muscle-specific promoters and differentially activate transcription. J Biol Chem 269: 3147-3150.
  126. Chan CK, Hubner S, Hu W & Jans DA (1998) Mutual exclusivity of DNA binding and nuclear localization signal recognition by the yeast transcription factor GAL4: implications for nonviral DNA delivery. Gene Ther 5: 1204-1212.
  127. Iwase M & Toh-e A (2001) Nis1 encoded by YNL078W: a new neck protein of Saccharomyces cerevisiae. Genes Genet Syst 76: 335-343.
  128. Ribbeck K, Lipowsky G, Kent HM, Stewart M & Görlich D (1998) NTF2 mediates nuclear import of Ran. EMBO J 17: 6587-6598.
  129. Zhu J, Qiu Z, Wiese C, Ishii Y, Friedrichsen J, Rajashekara G & Splitter GA (2005) Nuclear and mitochondrial localization signals overlap within bovine herpesvirus 1 tegument protein VP22. J Biol Chem 280: 16038-16044. 10. Lebenslauf Persönliche Daten Geburtsdatum 19.05.1982
  130. Bakhrat A, Baranes-Bachar K, Reshef D, Voloshin O, Krichevsky O & Raveh D (2008) Nuclear export of Ho endonuclease of yeast via Msn5. Curr Genet 54: 271-281.
  131. Lund E, Guttinger S, Calado A, Dahlberg JE & Kutay U (2004) Nuclear export of microRNA precursors. Science 303: 95-98.
  132. Johnson AW, Lund E & Dahlberg J (2002) Nuclear export of ribosomal subunits. Trends Biochem Sci 27: 580-585.
  133. Jain AK, Bloom DA & Jaiswal AK (2005) Nuclear import and export signals in control of Nrf2. J Biol Chem 280: 29158-29168.
  134. Bakhrat A, Baranes K, Krichevsky O, Rom I, Schlenstedt G, Pietrokovski S & Raveh D (2006) Nuclear import of ho endonuclease utilizes two nuclear localization signals and four importins of the ribosomal import system. J Biol Chem 281: 12218- 12226.
  135. Nagoshi E, Imamoto N, Sato R & Yoneda Y (1999) Nuclear import of sterol regulatory element-binding protein-2, a basic helix-loop-helix-leucine zipper (bHLH- Zip)-containing transcription factor, occurs through the direct interaction of importin beta with HLH-Zip. Mol Biol Cell 10: 2221-2233.
  136. Hodel AE, Harreman MT, Pulliam KF, et al. (2006) Nuclear localization signal receptor affinity correlates with in vivo localization in Saccharomyces cerevisiae. J Biol Chem 281: 23545-23556.
  137. LaCasse EC & Lefebvre YA (1995) Nuclear localization signals overlap DNA-or RNA-binding domains in nucleic acid-binding proteins. Nucleic Acids Res 23: 1647- 1656.
  138. Hinshaw JE & Milligan RA (2003) Nuclear pore complexes exceeding eightfold rotational symmetry. J Struct Biol 141: 259-268.
  139. Galy V, Gadal O, Fromont-Racine M, Romano A, Jacquier A & Nehrbass U (2004) Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1. Cell 116: 63-73.
  140. Madrid AS & Weis K (2006) Nuclear transport is becoming crystal clear. Chromosoma 115: 98-109.
  141. Görlich D & Mattaj IW (1996) Nucleocytoplasmic transport. Science 271: 1513-1518.
  142. Conti E & Izaurralde E (2001) Nucleocytoplasmic transport enters the atomic age.
  143. Sorokin AV, Kim ER & Ovchinnikov LP (2007) Nucleocytoplasmic transport of proteins. Biochemistry (Mosc) 72: 1439-1457.
  144. Chen H, Cheng H & Bjerknes M (1993) One-step Coomassie brilliant blue R-250 staining of proteins in polyacrylamide gel. Anal Biochem 212: 295-296.
  145. Sheff MA & Thorn KS (2004) Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 21: 661-670.
  146. Shostak Y & Yamamoto KR (2005) Overlapping but separable determinants of DNA binding and nuclear localization map to the C-terminal end of the Caenorhabditis elegans DAF-12 DNA binding domain. J Biol Chem 280: 6554-6560.
  147. Mosammaparast N, Guo Y, Shabanowitz J, Hunt DF & Pemberton LF (2002) Pathways mediating the nuclear import of histones H3 and H4 in yeast. J Biol Chem 277: 862-868.
  148. Chen MH, Ben-Efraim I, Mitrousis G, Walker-Kopp N, Sims PJ & Cingolani G (2005) Phospholipid scramblase 1 contains a nonclassical nuclear localization signal with unique binding site in importin alpha. J Biol Chem 280: 10599-10606.
  149. Carvalho J, Bertram PG, Wente SR & Zheng XF (2001) Phosphorylation regulates the interaction between Gln3p and the nuclear import factor Srp1p. J Biol Chem 276: 25359-25365.
  150. Moroianu J, Blobel G & Radu A (1995) Previously identified protein of uncertain function is karyopherin alpha and together with karyopherin beta docks import substrate at nuclear pore complexes. Proc Natl Acad Sci USA 92: 2008-2011.
  151. Rexach M & Blobel G (1995) Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins. Cell 83: 683-692.
  152. Delahodde A, Pandjaitan R, Corral-Debrinski M & Jacq C (2001) Pse1/Kap121- dependent nuclear localization of the major yeast multidrug resistance (MDR) transcription factor Pdr1. Mol Microbiol 39: 304-312.
  153. Ueta R, Fukunaka A & Yamaguchi-Iwai Y (2003) Pse1p mediates the nuclear import of the iron-responsive transcription factor Aft1p in Saccharomyces cerevisiae. J Biol Chem 278: 50120-50127.
  154. Schwoebel ED, Talcott B, Cushman I & Moore MS (1998) Ran-dependent signal- mediated nuclear import does not require GTP hydrolysis by Ran. J Biol Chem 273: 35170-35175.
  155. Walther TC, Askjaer P, Gentzel M, et al. (2003) RanGTP mediates nuclear pore complex assembly. Nature 424: 689-694.
  156. Takizawa CG, Weis K & Morgan DO (1999) Ran-independent nuclear import of cyclin B1-Cdc2 by importin beta. Proc Natl Acad Sci USA 96: 7938-7943.
  157. Gruss OJ, Carazo-Salas RE, Schatz CA, et al. (2001) Ran induces spindle assembly by reversing the inhibitory effect of importin alpha on TPX2 activity. Cell 104: 83-93.
  158. Kushnirov VV (2000) Rapid and reliable protein extraction from yeast. Yeast 16: 857- 860.
  159. Chou S, Lane S & Liu H (2006) Regulation of mating and filamentation genes by two distinct Ste12 complexes in Saccharomyces cerevisiae. Mol Cell Biol 26: 4794-4805.
  160. Steggerda SM & Paschal BM (2002) Regulation of nuclear import and export by the GTPase Ran. Int Rev Cytol 217: 41-91.
  161. Richards SA, Carey KL & Macara IG (1997) Requirement of guanosine triphosphate-bound ran for signal-mediated nuclear protein export. Science 276: 1842- 1844.
  162. Komeili A & O'Shea EK (1999) Roles of phosphorylation sites in regulating activity of the transcription factor Pho4. Science 284: 977-980.
  163. Weiner MP, Costa GL, Schoettlin W, Cline J, Mathur E & Bauer JC (1994) Site- directed mutagenesis of double-stranded DNA by the polymerase chain reaction. Gene 151: 119-123.
  164. Mullis K, Faloona F, Scharf S, Saiki R, Horn G & Erlich H (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51 Pt 1: 263-273.
  165. Choi KY, Satterberg B, Lyons DM & Elion EA (1994) Ste5 tethers multiple protein kinases in the MAP kinase cascade required for mating in S. cerevisiae. Cell 78: 499- 512.
  166. Cook A, Bono F, Jinek M & Conti E (2007) Structural biology of nucleocytoplasmic transport. Annu Rev Biochem 76: 647-671.
  167. Akey CW (1995) Structural plasticity of the nuclear pore complex. J Mol Biol 248: 273-293.
  168. Jacobs MD & Harrison SC (1998) Structure of an IkappaBalpha/NF-kappaB complex. Cell 95: 749-758.
  169. Cingolani G, Petosa C, Weis K & Müller CW (1999) Structure of importin-beta bound to the IBB domain of importin-alpha. Nature 399: 221-229.
  170. Chook YM & Blobel G (1999) Structure of the nuclear transport complex karyopherin- beta2-Ran x GppNHp. Nature 399: 230-237.
  171. Heitman J, Movva NR & Hall MN (1991) Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253: 905-909.
  172. Laloux I, Dubois E, Dewerchin M & Jacobs E (1990) TEC1, a gene involved in the activation of Ty1 and Ty1-mediated gene expression in Saccharomyces cerevisiae: cloning and molecular analysis. Mol Cell Biol 10: 3541-3550.
  173. Truant R & Cullen BR (1999) The arginine-rich domains present in human immunodeficiency virus type 1 Tat and Rev function as direct importin beta-dependent nuclear localization signals. Mol Cell Biol 19: 1210-1217.
  174. Harreman MT, Hodel MR, Fanara P, Hodel AE & Corbett AH (2003) The auto- inhibitory function of importin alpha is essential in vivo. J Biol Chem 278: 5854-5863.
  175. Varagona MJ & Raikhel NV (1994) The basic domain in the bZIP regulatory protein Opaque2 serves two independent functions: DNA binding and nuclear localization. Plant J 5: 207-214.
  176. Isoyama T, Kuge S & Nomoto A (2002) The core protein of hepatitis C virus is imported into the nucleus by transport receptor Kap123p but inhibits Kap121p- dependent nuclear import of yeast AP1-like transcription factor in yeast cells. J Biol Chem 277: 39634-39641.
  177. Huxford T, Huang DB, Malek S & Ghosh G (1998) The crystal structure of the IkappaBalpha/NF-kappaB complex reveals mechanisms of NF-kappaB inactivation. Cell 95: 759-770.
  178. Moore MS & Blobel G (1993) The GTP-binding protein Ran/TC4 is required for protein import into the nucleus. Nature 365: 661-663.
  179. Greiner M, Caesar S & Schlenstedt G (2004) The histones H2A/H2B and H3/H4 are imported into the yeast nucleus by different mechanisms. Eur J Cell Biol 83: 511-520.
  180. Nasmyth K, Adolf G, Lydall D & Seddon A (1990) The identification of a second cell cycle control on the HO promoter in yeast: cell cycle regulation of SW15 nuclear entry. Cell 62: 631-647.
  181. Alber F, Dokudovskaya S, Veenhoff LM, et al. (2007) The molecular architecture of the nuclear pore complex. Nature 450: 695-701.
  182. Akhtar A & Gasser SM (2007) The nuclear envelope and transcriptional control. Nat Rev Genet 8: 507-517.
  183. DeVit MJ & Johnston M (1999) The nuclear exportin Msn5 is required for nuclear export of the Mig1 glucose repressor of Saccharomyces cerevisiae. Curr Biol 9: 1231- 1241.
  184. Clement M, Deshaies F, de Repentigny L & Belhumeur P (2006) The nuclear GTPase Gsp1p can affect proper telomeric function through the Sir4 protein in Saccharomyces cerevisiae. Mol Microbiol 62: 453-468.
  185. Matheny C, Day ML & Milbrandt J (1994) The nuclear localization signal of NGFI- A is located within the zinc finger DNA binding domain. J Biol Chem 269: 8176-8181.
  186. Warner JR (1990) The nucleolus and ribosome formation. Curr Opin Cell Biol 2: 521- 527.
  187. Radu A, Moore MS & Blobel G (1995) The peptide repeat domain of nucleoporin Nup98 functions as a docking site in transport across the nuclear pore complex. Cell 81: 215-222.
  188. Rost B, Yachdav G & Liu J (2004) The PredictProtein server. Nucleic Acids Res 32: W321-326.
  189. Moll T, Tebb G, Surana U, Robitsch H & Nasmyth K (1991) The role of phosphorylation and the CDC28 protein kinase in cell cycle-regulated nuclear import of the S. cerevisiae transcription factor SWI5. Cell 66: 743-758.
  190. Hartnett J, Gracyalny BS & Slater MR (2006) The Single Step (KRX) Competent Cells: Efficient Cloning and High Protein Yields. Promega Notes 94: 27-30.
  191. Bürglin TR (1991) The TEA domain: a novel, highly conserved DNA-binding motif. Cell 66: 11-12.
  192. Heise B, van der Felden J, Kern S, Malcher M, Brückner S & Mösch HU (2010) The TEA transcription factor Tec1 confers promoter-specific gene regulation by Ste12- dependent and -independent mechanisms. Eukaryot Cell 9: 514-531.
  193. Halder G, Polaczyk P, Kraus ME, Hudson A, Kim J, Laughon A & Carroll S (1998) The Vestigial and Scalloped proteins act together to directly regulate wing- specific gene expression in Drosophila. Genes Dev 12: 3900-3909.
  194. Yang Q, Rout MP & Akey CW (1998) Three-dimensional architecture of the isolated yeast nuclear pore complex: functional and evolutionary implications. Mol Cell 1: 223- 234.
  195. Izaurralde E & Adam S (1998) Transport of macromolecules between the nucleus and the cytoplasm. RNA 4: 351-364.
  196. Robbins J, Dilworth SM, Laskey RA & Dingwall C (1991) Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64: 615-623.
  197. Cook JG, Bardwell L, Kron SJ & Thorner J (1996) Two novel targets of the MAP kinase Kss1 are negative regulators of invasive growth in the yeast Saccharomyces cerevisiae. Genes Dev 10: 2831-2848.
  198. Chook YM, Jung A, Rosen MK & Blobel G (2002) Uncoupling Kapbeta2 substrate dissociation and ran binding. Biochemistry 41: 6955-6966.
  199. Gimeno CJ, Ljungdahl PO, Styles CA & Fink GR (1992) Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68: 1077-1090.
  200. Schweizer A, Rupp S, Taylor BN, Röllinghoff M & Schröppel K (2000) The TEA/ATTS transcription factor CaTec1p regulates hyphal development and virulence in Candida albicans. Mol Microbiol 38: 435-445.
  201. Gavrias V, Andrianopoulos A, Gimeno CJ & Timberlake WE (1996) Saccharomyces cerevisiae TEC1 is required for pseudohyphal growth. Mol Microbiol 19: 1255-1263.
  202. Campbell S, Inamdar M, Rodrigues V, Raghavan V, Palazzolo M & Chovnick A (1992) The scalloped gene encodes a novel, evolutionarily conserved transcription factor required for sensory organ differentiation in Drosophila. Genes Dev 6: 367-379.
  203. Deshpande N, Chopra A, Rangarajan A, Shashidhara LS, Rodrigues V & Krishna S (1997) The human transcription enhancer factor-1, TEF-1, can substitute for Drosophila scalloped during wingblade development. J Biol Chem 272: 10664-10668.
  204. Nguyen Ba AN, Pogoutse A, Provart N & Moses AM (2009) NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction. BMC Bioinformatics 10: 202.
  205. Lorenz MC, Cutler NS & Heitman J (2000) Characterization of alcohol-induced filamentous growth in Saccharomyces cerevisiae. Mol Biol Cell 11: 183-199.
  206. Mühlhäusser P, Müller EC, Otto A & Kutay U (2001) Multiple pathways contribute to nuclear import of core histones. EMBO Rep 2: 690-696.
  207. Hellmuth K, Lau DM, Bischoff FR, Künzler M, Hurt E & Simos G (1998) Yeast Los1p has properties of an exportin-like nucleocytoplasmic transport factor for tRNA. Mol Cell Biol 18: 6374-6386.
  208. Pemberton LF (2005) Nuclear import of TFIIB is mediated by Kap114p, a karyopherin with multiple cargo-binding domains. Mol Biol Cell 16: 3200-3210.
  209. Senger B, Simos G, Bischoff FR, Podtelejnikov A, Mann M & Hurt E (1998) Mtr10p functions as a nuclear import receptor for the mRNA-binding protein Npl3p. EMBO J 17: 2196-2207.
  210. Jäkel S & Görlich D (1998) Importin beta, transportin, RanBP5 and RanBP7 mediate nuclear import of ribosomal proteins in mammalian cells. EMBO J 17: 4491-4502.
  211. Yan C, Lee LH & Davis LI (1998) Crm1p mediates regulated nuclear export of a yeast AP-1-like transcription factor. EMBO J 17: 7416-7429.
  212. Jäkel S, Albig W, Kutay U, Bischoff FR, Schwamborn K, Doenecke D & Görlich D (1999) The importin beta/importin 7 heterodimer is a functional nuclear import receptor for histone H1. EMBO J 18: 2411-2423.
  213. Jäkel S, Mingot JM, Schwarzmaier P, Hartmann E & Görlich D (2002) Importins fulfil a dual function as nuclear import receptors and cytoplasmic chaperones for exposed basic domains. EMBO J 21: 377-386.
  214. Schlenstedt G, Smirnova E, Deane R, et al. (1997) Yrb4p, a yeast ran-GTP-binding protein involved in import of ribosomal protein L25 into the nucleus. EMBO J 16: 6237-6249.
  215. Jaquenoud M, van Drogen F & Peter M (2002) Cell cycle-dependent nuclear export of Cdh1p may contribute to the inactivation of APC/C(Cdh1). EMBO J 21: 6515-6526.
  216. Ström AC & Weis K (2001) Importin-beta-like nuclear transport receptors. Genome Biol 2: 3008.3001-3008.3009.
  217. Caesar S, Greiner M & Schlenstedt G (2006) Kap120 functions as a nuclear import receptor for ribosome assembly factor Rpf1 in yeast. Mol Cell Biol 26: 3170-3180.
  218. Ribbeck K & Görlich D (2001) Kinetic analysis of translocation through nuclear pore complexes. EMBO J 20: 1320-1330.
  219. Lorenz MC & Heitman J (1998) Regulators of pseudohyphal differentiation in Saccharomyces cerevisiae identified through multicopy suppressor analysis in ammonium permease mutant strains. Genetics 150: 1443-1457.
  220. Queralt E & Igual JC (2003) Cell cycle activation of the Swi6p transcription factor is linked to nucleocytoplasmic shuttling. Mol Cell Biol 23: 3126-3140.
  221. Andrianopoulos A & Timberlake WE (1991) ATTS, a new and conserved DNA binding domain. Plant Cell 3: 747-748.
  222. la Cour T, Gupta R, Rapacki K, Skriver K, Poulsen FM & Brunak S (2003) NESbase version 1.0: a database of nuclear export signals. Nucleic Acids Res 31: 393- 396.
  223. Cullen PJ & Sprague GF, Jr. (2000) Glucose depletion causes haploid invasive growth in yeast. Proc Natl Acad Sci USA 97: 13619-13624.
  224. Anbanandam A, Albarado DC, Nguyen CT, Halder G, Gao X & Veeraraghavan S (2006) Insights into transcription enhancer factor 1 (TEF-1) activity from the solution structure of the TEA domain. Proc Natl Acad Sci USA 103: 17225-17230.
  225. Shock TR, Thompson J, Yates JR 3rd & Madhani HD (2009) Hog1 mitogen- activated protein kinase (MAPK) interrupts signal transduction between the Kss1 MAPK and the Tec1 transcription factor to maintain pathway specificity. Eukaryot Cell 8: 606-616.
  226. Koepp DM, Wong DH, Corbett AH & Silver PA (1996) Dynamic localization of the nuclear import receptor and its interactions with transport factors. J Cell Biol 133: 1163- 1176.
  227. Shulga N, Roberts P, Gu Z, Spitz L, Tabb MM, Nomura M & Goldfarb DS (1996) In vivo nuclear transport kinetics in Saccharomyces cerevisiae: a role for heat shock protein 70 during targeting and translocation. J Cell Biol 135: 329-339.
  228. Hieda M, Tachibana T, Yokoya F, Kose S, Imamoto N & Yoneda Y (1999) A monoclonal antibody to the COOH-terminal acidic portion of Ran inhibits both the recycling of Ran and nuclear protein import in living cells. J Cell Biol 144: 645-655.
  229. Rosenblum JS, Pemberton LF, Bonifaci N & Blobel G (1998) Nuclear import and the evolution of a multifunctional RNA-binding protein. J Cell Biol 143: 887-899.
  230. Albertini M, Pemberton LF, Rosenblum JS & Blobel G (1998) A novel nuclear import pathway for the transcription factor TFIIS. J Cell Biol 143: 1447-1455.
  231. Görlich D, Dabrowski M, Bischoff FR, et al. (1997) A novel class of RanGTP binding proteins. J Cell Biol 138: 65-80.
  232. Rout MP, Aitchison JD, Suprapto A, Hjertaas K, Zhao Y & Chait BT (2000) The yeast nuclear pore complex: composition, architecture, and transport mechanism. J Cell Biol 148: 635-651.
  233. Ito H, Fukuda Y, Murata K & Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153: 163-168.
  234. Titov AA & Blobel G (1999) The karyopherin Kap122p/Pdr6p imports both subunits of the transcription factor IIA into the nucleus. J Cell Biol 147: 235-246.
  235. Yoshida K & Blobel G (2001) The karyopherin Kap142p/Msn5p mediates nuclear import and nuclear export of different cargo proteins. J Cell Biol 152: 729-740.
  236. Rout MP & Blobel G (1993) Isolation of the yeast nuclear pore complex. J Cell Biol 123: 771-783.
  237. Nachury MV & Weis K (1999) The direction of transport through the nuclear pore can be inverted. Proc Natl Acad Sci USA 96: 9622-9627.
  238. Theodore M, Kawai Y, Yang J, Kleshchenko Y, Reddy SP, Villalta F & Arinze IJ (2008) Multiple nuclear localization signals function in the nuclear import of the transcription factor Nrf2. J Biol Chem 283: 8984-8994.
  239. Goldberg MW & Allen TD (1992) High resolution scanning electron microscopy of the nuclear envelope: demonstration of a new, regular, fibrous lattice attached to the baskets of the nucleoplasmic face of the nuclear pores. J Cell Biol 119: 1429-1440.
  240. Seedorf M & Silver PA (1997) Importin/karyopherin protein family members required for mRNA export from the nucleus. Proc Natl Acad Sci USA 94: 8590-8595.
  241. Baur M, Esch RK & Errede B (1997) Cooperative binding interactions required for function of the Ty1 sterile responsive element. Mol Cell Biol 17: 4330-4337.
  242. Choi KY, Kranz JE, Mahanty SK, Park KS & Elion EA (1999) Characterization of Fus3 localization: active Fus3 localizes in complexes of varying size and specific activity. Mol Biol Cell 10: 1553-1568.
  243. Süel KE & Chook YM (2009) Kap104p imports the PY-NLS-containing transcription factor Tfg2p into the nucleus. J Biol Chem 284: 15416-15424.
  244. Mohr D, Frey S, Fischer T, Guttler T & Görlich D (2009) Characterisation of the passive permeability barrier of nuclear pore complexes. EMBO J 28: 2541-2553.
  245. Kaganovich D, Kopito R & Frydman J (2008) Misfolded proteins partition between two distinct quality control compartments. Nature 454: 1088-1095.
  246. De Vit MJ, Waddle JA & Johnston M (1997) Regulated nuclear translocation of the Mig1 glucose repressor. Mol Biol Cell 8: 1603-1618.
  247. Malik HS, Eickbush TH & Goldfarb DS (1997) Evolutionary specialization of the nuclear targeting apparatus. Proc Natl Acad Sci USA 94: 13738-13742.
  248. Kim KY, Truman AW, Caesar S, Schlenstedt G & Levin DE (2010) Yeast Mpk1 cell wall integrity mitogen-activated protein kinase regulates nucleocytoplasmic shuttling of the Swi6 transcriptional regulator. Mol Biol Cell 21: 1609-1619.
  249. Kron SJ, Styles CA & Fink GR (1994) Symmetric cell division in pseudohyphae of the yeast Saccharomyces cerevisiae. Mol Biol Cell 5: 1003-1022.
  250. Ma D, Cook JG & Thorner J (1995) Phosphorylation and localization of Kss1, a MAP kinase of the Saccharomyces cerevisiae pheromone response pathway. Mol Biol Cell 6: 889-909.
  251. Sabbagh W, Jr., Flatauer LJ, Bardwell AJ & Bardwell L (2001) Specificity of MAP kinase signaling in yeast differentiation involves transient versus sustained MAPK activation. Mol Cell 8: 683-691.
  252. Maurer P, Redd M, Solsbacher J, et al. (2001) The nuclear export receptor Xpo1p forms distinct complexes with NES transport substrates and the yeast Ran binding protein 1 (Yrb1p). Mol Biol Cell 12: 539-549.
  253. Kaffman A, Rank NM & O'Shea EK (1998) Phosphorylation regulates association of the transcription factor Pho4 with its import receptor Pse1/Kap121. Genes Dev 12: 2673-2683.
  254. Koshland DE (1958) Application of a Theory of Enzyme Specificity to Protein Synthesis. Proc Natl Acad Sci USA 44: 98-104.
  255. Nagai S, Dubrana K, Tsai-Pflugfelder M, et al. (2008) Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase. Science 322: 597-602.
  256. Andrianopoulos A & Timberlake WE (1994) The Aspergillus nidulans abaA gene encodes a transcriptional activator that acts as a genetic switch to control development. Mol Cell Biol 14: 2503-2515.
  257. Belhumeur P, Lee A, Tam R, DiPaolo T, Fortin N & Clark MW (1993) GSP1 and GSP2, genetic suppressors of the prp20-1 mutant in Saccharomyces cerevisiae: GTP- Brückner S (2007) Regulation des TEA/ATTS-Transkriptionsfaktors Tec1 durch die Pheromon-induzierte MAPK-Kaskade und den TOR-Signalweg in Saccharomyces cerevisiae. Dissertation.
  258. Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93: 5352-5356.
  259. Towbin H, Staehelin T & Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76: 4350-4354.
  260. Hwang JJ, Chambon P & Davidson I (1993) Characterization of the transcription activation function and the DNA binding domain of transcriptional enhancer factor-1.
  261. Hartwell LH (1974) Saccharomyces cerevisiae cell cycle. Bacteriiol Rev 38: 164-198.
  262. Görlich D, Henklein P, Laskey RA & Hartmann E (1996) A 41 amino acid motif in importin-alpha confers binding to importin-beta and hence transit into the nucleus. EMBO J 15: 1810-1817.
  263. Weis K, Ryder U & Lamond AI (1996) The conserved amino-terminal domain of hSRP1 alpha is essential for nuclear protein import. EMBO J 15: 1818-1825.
  264. Hall MN, Craik C & Hiraoka Y (1990) Homeodomain of yeast repressor alpha 2 contains a nuclear localization signal. Proc Natl Acad Sci USA 87: 6954-6958.
  265. Jensen TH, Neville M, Rain JC, McCarthy T, Legrain P & Rosbash M (2000) Identification of novel Saccharomyces cerevisiae proteins with nuclear export activity: cell cycle-regulated transcription factor ace2p shows cell cycle-independent nucleocytoplasmic shuttling. Mol Cell Biol 20: 8047-8058.
  266. Zenklusen D, Vinciguerra P, Strahm Y & Stutz F (2001) The yeast hnRNP-Like proteins Yra1p and Yra2p participate in mRNA export through interaction with Mex67p. Mol Cell Biol 21: 4219-4232.
  267. DeLano W (2002) The PyMOL molecular graphics system. DeLano Scientific LLC, San Carlos, CA.
  268. Hoffman CS & Winston F (1987) A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57: 267-272.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten