Publikationsserver der Universitätsbibliothek Marburg

Titel:Entwicklung neuer Verfahren zur räumlich hochauflösenden Charakterisierung von Solarzellen
Autor:Schwalm, Michael
Weitere Beteiligte: Chaterjee, Sangam (Dr.)
Veröffentlicht:2011
URI:https://archiv.ub.uni-marburg.de/diss/z2011/0121
DOI: https://doi.org/10.17192/z2011.0121
URN: urn:nbn:de:hebis:04-z2011-01214
DDC: Physik
Titel (trans.):Characterization of solar cells: New techniques with high spatial resolution
Publikationsdatum:2011-08-08
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Charakterisierung, Optischer Gewinn, Strichlängenmethode, Effizienzsteigerung, Mehrfach-Solarzelle, Carrier-depletion, Ladungsträgerverarmung, Optical gain, Photostrom, Stripelength-Method

Zusammenfassung:
Der stetig steigende Weltenergieverbrauch wird derzeit zu 85% durch fossile Energieträger gedeckt. Im Hinblick auf den Klimawandel und schwindende Ressourcen ist hier ein Wandel hin zu regenerativen Formen der Energieerzeugung dringend geboten und auf lange Sicht alternativlos. Hier kommt speziell der Photovoltaik (PV) eine besondere Rolle zu, stellt sie doch den direktesten Weg dar um elektrischen Strom aus unserer wichtigsten Energiequelle, der Sonne, zu gewinnen. Aktuelle Generationen von PV-Anlagen besitzen aber nach wie vor eine zu geringe Leistungsfähigkeit bei zu hohen Kosten, um mit konventionellen Formen der Energieerzeugung wirtschaftlich konkurrieren zu können. Diesbezüglich bieten hocheffiziente Mehrschichtsolarzellen in Verbindung mit kostengünstigen Konzentratoroptiken zur Fokussierung einfallender Sonnenstrahlung einen möglichen Ausweg. Große Hoffnungen im Rahmen der Weiterentwicklung solcher Systeme ruhen auf dem Materialsystem (GaIn)(NAs), mit dem sich bereits bestehende Mehrschichtsolarzellenkonzepte nahezu ideal ergänzen ließen. Allerdings sind speziell die Ladungsträgerdiffusionslängen, welche sich derzeit in (GaIn)(NAs)-basierten Solarzellenschichten erzielen lassen, nicht hoch genug, um zufriedenstellende Wirkungsgrade erzielen zu können. Im Rahmen dieser Arbeit wurden zwei neuartige Verfahren zur Charakterisierung von Solarzellen, basierend auf der Messung laserinduzierter Photoströme, entwickelt und deren Zuverlässigkeit und Aussagekraft anhand eingehender Testmessungen sowie numerischer Simulationen untersucht. Hierbei handelt es sich um Methoden zur ortsaufgelösten Messung lokaler Photoströme bei fester Vorspannung (engl.: spatially-resolved photocurrent spectroscopy, SRPS) beziehungsweise zur Aufnahme lokaler Strom-Spannungs-Kennlinien an einer bestimmten Probenposition (engl.: spatially-resolved IV-characteristics, SRIV). Es zeigt sich, dass mit Hilfe von SRPS und SRIV eine zuverlässige und aussagekräftige Charakterisierung von Solarzellenprototypen möglich ist, die insbesondere eine Bestimmung der lokalen p-n-Parameter wie Kurzschlussstrom, Sättigungsstrom, Idealitätsfaktor und anregungsinduzierter Nebenwiderstand mit sehr hoher Ortsauflösung erlaubt. Aufbauend auf diesen Erkenntnissen dienten SRPS und SRIV als Bewertungsgrundlage in Versuchen zur Verbesserung prozessierter (GaIn)(NAs) Solarzellenschichten für Konzentratoranwendungen. Diese hatten zum Ziel durch den Einsatz starker elektrischer Ströme und intensiver Laserpulse die Materialqualität solcher Strukturen derart zu verbessern, dass deren Verwendung in einer zukünftigen Generation von PV-Systemen mit deutlich erhöhtem Wirkungsgrad möglich wird. Hier konnten erste Erfolge verbucht werden. So ließ sich zeigen, dass starke elektrische Ströme insbesondere in Sperrrichtung des p-n-Übergangs zu einer deutlichen Erhöhung des Kurzschlussstroms führten, wobei allerdings der Nebenwiderstand der untersuchten Probe bis auf wenige Ohm abfiel. Ferner führte intensive Laserbestrahlung unter bestimmten Voraussetzungen zu einer signifikanten Erhöhung der Ladungsträgerlebensdauer und Photolumineszenz, was sich allerdings nicht in einer Verbesserung der elektrischen Eigenschaften manifestierte. In Rahmen eines zweiten Projekts wurde der Einfluss einer möglichen Ladungsträgerverarmung auf die Auswertung von Strichlängenexperimenten, welche zur Bestimmung der optischen Verstärkung potentieller Lasermaterialien dienen, untersucht. Hier konnte anhand numerischer Simulationen und begleitender Messungen an einem GaAs-Quantenfilm klar gezeigt werden, dass die Methode der variablen Strichlänge in ihrer klassischen Form lediglich innerhalb eines sehr schmalen Parameterbereichs ihre Gültigkeit hat. Außerhalb dieser Grenzen, welche sich nur mit großem Aufwand und bei genauer Kenntnis der Probeneigenschaften bestimmen lassen, führt eine unvermeidliche Ladungsträgerverarmung infolge stimulierter Emissionsprozesse zu einer deutlichen Verfälschung der Auswertungsergebnisse. Da in aller Regel die erwähnten Kenntnisse im Vorfeld einer Messung naturgemäß nicht vorliegen, stellt dies die Zuverlässigkeit und Aussagekraft dieses Verfahrens generell in Frage.

Bibliographie / References

  1. M. Leuschner. Ortsaufgelöste Spektroskopie an Halbleiterstrukturen. PhD thesis, Philipps -Universität Marburg, 2003.
  2. J. Crank. The Mathematics of Diffusion. Oxford University Press, 1975.
  3. C. F. Klingshirn. Semiconductor Optics. Springer-Verlag -Berlin, Heidel- berg, New York, 2007.
  4. M. Mitchell. An introduction to genetic algorithms. MIT Press, 1998.
  5. C. Lange, M. Schwalm, S. Chatterjee, W. W. Rühle, N. C. Gerhardt, S. R. Johnson, J.-B. Wang, and Y.-H. Zhang. The variable stripe-length method revisited: Improved analysis. Appl. Phys. Lett., 91(19):191107, 2007.
  6. A. Beer. Bestimmung der Absorption des rothen Lichts in farbigen Flüssig- keiten. Ann. Phys. Chem., 86:78–88, 1852.
  7. C. Kittel. Einführung in die Festkörperphysik. Oldenbourg Verlag, 2006. [50] A. Einstein. ¨ Uber die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen.
  8. Z. Pan, L. H. Li, Y. W. Lin, B. Q. Sun, D. S. Jiang, and W. K. Ge. Con- duction band offset and electron effective mass in GaInNAs/GaAs quantum well structures with low nitrogen concentration. Appl. Phys. Lett., 78(15): 2217–2219, 2001.
  9. I. Vurgaftman and J. R. Meyer. Band parameters for nitrogen-containing semiconductors. J. Appl. Phys., 94(6):3675–3696, 2003.
  10. J. M. Hvam. Direct recording of optical-gain spectra from ZnO. J. Appl. Phys., 49:3124–3126, 1978.
  11. L. Dal Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi. App- licability conditions and experimental analysis of the variable stripe length method for gain measurements. Opt. Commun., 229:337–348, 2004.
  12. K. Hantke, J. D. Heber, S. Chatterjee, P. J. Klar, K. Volz, W. Stolz, and W. W. Rühle. Carrier relaxation dynamics in annealed and hydrogenated (GaIn)(NAs)/GaAs quantum wells. Appl. Phys. Lett., 87(25):252111, 2005.
  13. P. Y. Yu and M. Cardona. Fundamentals of Semiconductors. Springer-Verlag -Berlin, Heidelberg, New York, 2001.
  14. Xiang, and X. B. Liao. Field-aided collection in GaInP 2 top solar cells. Solar Energy Materials & Solar Cells, 80(3):265–272, 2003.
  15. D. J. Friedman, J. F. Geisz, S. R. Kurtz, and J. M. Olson. 1-eV solar cells with GaInNAs active layer. J. Cryst. Growth, 195(1-4):409–415, 1998.
  16. M. S. Shur and P. Maki, editors. Advanced High Speed Devices -Selected Topics in Electronics and Systems -Vol. 51. World Scientific Publishing, 2010.
  17. J. C. Maxwell. A dynamical theory of the electromagnetic field. Phil. Trans. Roy. Soc., 155:459–512, 1865.
  18. Labsphere. A Guide to Integrating Sphere Theory and Applications. 2011.
  19. A. Costela, O. Garciá, L. Cerdán, I. Garciá-Moreno, and R. Sastre. Amplified spontaneous emission and optical gain measurements from pyrromethene 567 -doped polymer waveguides and quasi-waveguides. Opt. Express, 16(10): 7023–7036, 2008.
  20. I. Galiana and C. Green. An Analysis of a Technology-led Climate Policy as a Response to Climate Change. Copenhagen Consensus Center, 2009.
  21. Hole confinement in quantum islands in Ga(AsSb)/GaAs/(AlGa)As he- terostructures S. Horst, S. Chatterjee, K. Hantke, P.J. Klar, C. Lange, I. Németh, M. Schwalm, W. Stolz, K. Volz, C. Bückers, A. Thränhardt, S. W. Koch, W. W. Rühle, S. Johnson, J. Wang, and Y.-H. Zhang Proc. SPIE, 7214: 72141A, 2009
  22. W. Shan, K. M. Yu, W. Walukiewicz, J. Wu, J. W. Ager III, and E. E. Haller. Band anticrossing in dilute nitrides. J. Phys. Condens. Matter, 16(31):S3355–S3372, 2004.
  23. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan. Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys., 89(11): 5815–5875, 2001.
  24. W. Raith. Bergmann Schaefer -Lehrbuch der Experimentalphysik, Band 2: Elektromagnetismus. Walter de Gruyter, 2006.
  25. C. Lange, M. Schwalm, B. Metzger, and S. Chatterjee. Carrier-depletion in the stripe-length method: Consequences for gain measurement. J. Appl. Phys., 108(10):103119, 2010.
  26. M. Schwalm, C. Lange, W. W. Rühle, W. Stolz, K. Volz, and S. Chatterjee. Characterization of solar cells by photocurrent spectroscopy and current- voltage characteristics with high spatial resolution. Opt. Express, 18(6): 6277–6287, 2010.
  27. M. Schwalm, C. Lange, W. W. Rühle, W. Stolz, K. Volz, and S. Chatterjee. Characterization of Solar Cells with High Spatial Resolution. In Conference on Lasers and Electro-Optics, OSA Technical Digest (CD), paper CPDA3, 2010.
  28. T. Meier, P. Thomas, and S. W. Koch. Coherent Semiconductor Optics -From Basic Concepts to Nanostructure Applications. Springer-Verlag - Berlin, Heidelberg, New York, 2007.
  29. C. Lange, N. S. Köster, S. Chatterjee, H. Sigg, D. Chrastina, G. Isella, H. von Känel, B. Kunert, and W. Stolz. Comparison of ultrafast carrier thermali- zation in Ga x In 1−x As and Ge quantum wells. Phys. Rev. B, 81(4):045320, 2010.
  30. A. S. Tanenbaum. Computer Networks. Prentice Hall, 2003.
  31. B. W. Hakki and T. L. Paoli. cw degradation at 300 @BULLET K of GaAs double- heterostructure junction lasers. II. electronic gain. J. Appl. Phys., 44(9): 4113–4119, 1973.
  32. R. Eccelston, B. F. Feuerbacher, J. Kuhl, W. W. Rühle, and K. Ploog. Density-dependent exciton rediative lifetimes in GaAs quantum wells. Rap. Comm., 45(19):11403–11406, 1992.
  33. H. Mehrer. Diffusion in Solids -Fundamentals, Methods, Materials, Diffusion-Controlled Processes. Springer-Verlag -Berlin, Heidelberg, New York, 2007.
  34. K. L. Shaklee and R. F. Leheny. Direct determination of optical gain in semiconductor crystals. Appl. Phys. Lett., 18(11):475–477, 1971.
  35. H. Attiya and J. Welch. Distributed Computing -Fundamentals, Simulations, and Advanced Topics. Wiley-IEEE, 2004.
  36. A. D. Kshemkalyani and M. Singhal. Distributed Computing -Principles, Algorithms, and Systems. Camebridge University Press, 2008.
  37. K. Volz, W. Stolz, J. Teubert, P. J. Klar, W. Heimbrodt, F. Dimroth, C. Baur, and A. W. Bett. Doping, Electrical Properties and Solar Cell App- lication of GaInNAs. In A. Erol, editor, Dilute III/V Nitride Semiconductors and Material Systems, pages 369–404. Springer-Verlag -Berlin, Heidelberg, New York, 2008.
  38. C. Skierbiszewski, P. Berlin, P. Wisniewski, T. Suski, W. Walukiewicz, W. Shan, J. W. Ager, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz. Effect of Nitrogen-Induced Modification of the Conduction Band Structure on Electron Transport in GaAsN Alloys. Phys. Stat. Sol. B, 216(1):135–139, 1999.
  39. K. Hantke. Einfluß von Stickstoff auf die Photolumineszenz von metastabilen III-V-Nitriden. PhD thesis, Philipps -Universität Marburg, 2005.
  40. M. Schwalm. Ein neues Verfahren zur Messung optischer Verstärkung nach der Strichlängenmethode. Master's thesis, Philipps -Universität Marburg, 2007.
  41. Berthold Schuppar. Elementare Numerische Mathematik -Eine problemori- entierte Einführung für Lehrer und Studierende. Vieweg + Teubner, 1998.
  42. V. A. Shchukin, N. N. Ledentsov, and D. Bimberg. Epitaxy of Nanostructu- res. Springer-Verlag -Berlin, Heidelberg, New York, 2004.
  43. M. A. Herman, W. Richter, and H. Sitter. Epitaxy -Physical Principles and Technical Implementation. Springer-Verlag -Berlin, Heidelberg, New York, 2004.
  44. I. Gerdes, F. Klawonn, and R. Kruse. Evolutionäre Algorithmen -Genetische Algorithmen, Strategien und Optimierungsverfahren, Beispielanwendungen. Vieweg, 2004.
  45. W. Demtröder. Experimentalphysik 2 -Elektrizität und Optik. Springer- Verlag -Berlin, Heidelberg, New York, 2006.
  46. W. Demtröder. Experimentalphysik 3 -Atome, Moleküle und Festkörper. Springer-Verlag -Berlin, Heidelberg, New York, 2005.
  47. C. Skierbiszewski. Experimental studies of the conduction-band structure of GaInNAs alloys. Semicond. Sci. Technol., 17:803–814, 2002.
  48. M. Lundstrom. Fundamentals of carrier transport. Cambridge University Press, 2000.
  49. R. Enderlein and N. J. M. Horing. Fundamentals of Semiconductor Physics and Devices. World Scientific Publishing, 1996.
  50. B. W. Hakki and T. L. Paoli. Gain spectra in GaAs double-heterostructure injection lasers. J. Appl. Phys., 46(3):1299–1306, 1975.
  51. D. Meschede. Gerthsen Physik. Springer-Verlag -Berlin, Heidelberg, New York, 2006.
  52. Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover. GPU Cluster for High Performance Computing. In SC '04 Proceedings of the 2004 ACM/IEEE conference on Supercomputing, 2004.
  53. W. Nolting. Grundkurs Theoretische Physik 3 -Elektrodynamik. Springer- Verlag -Berlin, Heidelberg, New York, 2007.
  54. W. Nolting. Grundkurs Theoretische Physik 5/1 -Quantenmechanik - Grundlagen. Springer-Verlag -Berlin, Heidelberg, New York, 2009.
  55. C. Lange. Halbleiter nanostrukturen auf Silizium: Ladungsträgerdynamik, optischer Verstärker und Laser. PhD thesis, Philipps -Universität Marburg, 2008.
  56. Kurtz. High-Efficiency Photovoltaic Technology. In Conference on Lasers and Electro-Optics, OSA Technical Digest (CD), paper CLM1, 2010.
  57. N. Balkan, editor. Hot Electrons in Semiconductors -Physics and Devices. Oxford University Press, 1998.
  58. J. F. Geisz and D. J. Friedman. III-N-V semiconductors for solar photovoltaic applications. Semicond. Sci. Technol., 17:769–777, 2002.
  59. A. J. Ptak, R. France, C. S. Jiang, and M. J. Romero. Improved performance of GaInNAs solar cells grown by molecular-beam epitaxy using increased growth rate instead of surfactants. J. Chryst. Growth, 311(7):1876–1880, 2009.
  60. R. Kurtz, A. A. Allermann, E. D. Jones, J. M. Gee, J. J. Banas, and B. E. Hammons. InGaAsN solar cells with 1.0 eV band gap, lattice matched to GaAs. Appl. Phys. Lett., 74(5):729–731, 1999.
  61. O. Madelung, M. Schulz, and H. Weiss, editors. Landolt-Börnstein -Nume- rical Data and Functional Relationships in Science and Technology, Group III: Crystal and Solid State Physics, Volume 17: Semiconductors, Subvolume a: Physics of Group IV Elements and III-V Compounds. Springer-Verlag - Berlin, Heidelberg, New York, 1982.
  62. W. Demtröder. Laserspektroskopie -Grundlagen und Techniken. Springer- Verlag -Berlin, Heidelberg, New York, 2007.
  63. D. S. Sizov, R. Bhat, J. Napierala, J. Xi, D. E. Allen, C. S. Gallinat, and C. Zah. Lasing and optical gain around 500 nm from optically pumped lasers grown on c-plane GaN substrates. Opt. Lett, 34(3):328–330, 2009.
  64. M. Rinio, H. J. Möller, and M. Werner. LBIC Investigations of the Lifetime Degradation by Extended Defects in Multicrystalline Solar Silicon. Solid State Phenomena, 63-64:115–122, 1998.
  65. G. Heliotis, D. D. C. Bradley, G. A. Turnbull, and I. D. W. Samuel. Light amplification and gain in polyflourene waveguides. Appl. Phys. Lett., 81(3): 415–417, 2002.
  66. A. Kaminski, O. Breitenstein, J. P. Boyeaux, P. Rakotoniaina, and A. Lau- gier. Light beam induced current and infrared thermography studies of mul- ticrystalline silicon solar cells. J. Phys. Condens. Matter, 16(2):S9–S18, 2004.
  67. Literaturverzeichnis [92] A. J. Ptak, D. J. Friedman, S. Kurtz, and R. C. Reedy. Low-acceptor- concentration GaInNAs grown by molecular-beam epitaxy for high-current p-i-n solar cell applications. J. Appl. Phys., 98(9):094501, 2005.
  68. S. R. Kurtz, A. A. Allerman, C. H. Seager, R. M. Sieg, and E. D. Jones. Minority carrier diffusion, defects, and localization in InGaAsN, with 2 % nitrogen. Appl. Phys. Lett., 77(3):400–402, 2000.
  69. C. H. Bamford and C. F. H. Tipper. Modern methods in kinetics. Elsevier Scientific Publishing, 1983.
  70. K. Volz, J. Koch, F. Höhnsdorf, B. Kunert, and W. Stolz. MOVPE growth of dilute nitride III/V semiconductors using all liquid metalorganic precursers. J. Chryst. Growth, 311(8):2418–2426, 2009.
  71. M. Hermann. Numerik gewöhnlicher Differentialgleichungen -Anfangs-und Randwertprobleme. Oldenbourg Verlag, 2004.
  72. K. Luterová, K. Dohnalová, V. ˇ Svrček, I. Pelant, J. P. Likforman, O. Crégut, P. Gilliot, and B. Hönerlage. Optical gain in porous silicon grains embedded in sol-gel derived SiO 2 matrix under femtosecond excitation. Appl. Phys. Lett., 84(17):3280–3282, 2004.
  73. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo. Optical gain in silicon nanocrystals. Nature (London), 408:440, 2000.
  74. K. Volz, D. Lackner, I. Németh, B. Kunert, W. Stolz, C. Baur, F. Dimroth, and A. W. Bett. Optimization of annealing conditions of (GaIn)(NAs) for solar cell applications. J. Chryst. Growth, 310(7-9):2222–2228, 2008.
  75. J. F. Geisz, D. J. Friedman, J. M. Olson, S. R. Kurtz, and B. M. Keyes. Photocurrent of 1 eV GaInNAs lattice-matched to GaAs. J. Cryst. Growth, 195(1-4):401–408, 1998.
  76. M. Johnson. Photodetection and Measurement -maximizing performance in optical systems. McGraw -Hill, 2003.
  77. A. Goetzberger and V. U. Hoffmann. Photovoltaic Solar Energy Generation. Springer-Verlag -Berlin, Heidelberg, New York, 2005.
  78. P. A. Tipler and G. Mosca. Physics -For Scientists and Engineers -With Modern Physics. W. H. Freeman and Company -New York, 2008.
  79. P. Würfel. Physik der Solarzellen. Spektrum-Verlag, 2000.
  80. W. Zinth. Physik III -Optik, Quantenphänomene und Aufbau der Atome. Oldenbourg Verlag, 1998.
  81. Dimitrijev. Principles of Semiconductor Devices. Oxford University Press, 2006.
  82. J. F. Rabek, editor. Progress in photochemistry and photophysics, Volume VI. CRC Press, 1992.
  83. J. Butty, Peyghambarian, Y. H. Kao, and J. D. Mackenzie. Room tempe- rature optical gain in sol-gel derived CdS quantum dots. Appl. Phys. Lett., 69(21):3224–3226, 1996.
  84. W. W. Chow and S. W. Koch. Semiconductor-Laser Fundamentals -Physics of the Gain Materials. Springer-Verlag -Berlin, Heidelberg, New York, 1999.
  85. W. R. Runyan and T. J. Shaffner. Semiconductor measurements and instru- mentation. McGraw -Hill, 1998.
  86. M. Schwalm, C. Lange, W. W. Rühle, W. Stolz, K. Volz, and S. Chatterjee. Solar Cell Characterization with High Spatial Resolution. In Optical Na- nostructures for Photovoltaics, OSA Technical Digest (CD), paper PWE4, 2010.
  87. L. Fraas and L. Partain. Solar Cells and Their Applications. John Wiley & Sons, 2010.
  88. E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential Equa- tions I -Nonstiff Problems. Springer-Verlag -Berlin, Heidelberg, New York, 2008.
  89. P. F. Moulton. Spectroscopy and laser characteristics of Ti:Al 2 O 3 . J. Opt. Soc. Am. B, 3(1):125–133, 1986.
  90. R. Kubo. Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems. J. Phys. Soc. Jpn., 12:570–586, 1957.
  91. H. Haug. Statistische Physik -Gleichgewichtstheorie und Kinetik. Springer- Verlag -Berlin, Heidelberg, New York, 2006.
  92. S. Wissel, S. Rath-Nagel, M. Blesl, U. Fahl, and A. Voß. Stromerzeugungs- kosten im Vergleich. Universität Stuttgart -Institut für Energiewirtschaft und Rationelle Energieanwendung, 2008.
  93. C. Kost and T. Schlegel. Studie Stromgestehungskosten erneuerbare Ener- gien. Fraunhofer-Institut für solare Energiesysteme ISE, 2010.
  94. M. Yamaguchi, T. Takamoto, and K. Araki. Super high-efficiency multi- junction and concentrator solar cells. Solar Energy Materials & Solar Cells, 90(18-19):3068–3077, 2006.
  95. P. Horowitz and W. Hill. The art of electronics. Cambridge University Press, 1989.
  96. P. C. Martin and J. Schwinger. Theory of Many-Particle Systems. I. Phys. Rev., 115(6):1342–1373, 1959.
  97. M. Grundmann. The Physics of Semiconductors -An Introduction including Nanophysics and Applications. Springer-Verlag -Berlin, Heidelberg, New York, 2010.
  98. J. Nelson. The Physics of Solar Cells. Imperial College Press, 2003.
  99. H. Frowein. Titan-Saphir Laser -Grundlagen und Anwendungen des wich- tigsten Kurzpulslasersystems. Optik & Photonik, 1:48–53, 2007.
  100. J. R. Lakowicz, editor. Topics in Flourescence Spectroscopy. Plenum Press -New York, 1994.
  101. C. Lange, S. Chatterjee, C. Schlichenmaier, A. Thränhardt, S. W. Koch, W. W. Rühle, J. Hader, J. V. Moloney, G. Khitrova, and H. M. Gibbs. Transient gain spectroscopy of (GaIn)As quantum wells: Experiment and microscopic analysis. Appl. Phys. Lett., 90(25):251102, 2007.
  102. A. Fick. Ueber Diffusion. Ann. Phys., 170(1):59–86, 1855.
  103. J. Valenta, I. Pelant, and J. Linnros. Waveguiding effects in the measurement of optical gain in a layer of Si nanocrystals. Appl. Phys. Lett., 81(8):1396– 1398, 2002.
  104. M. Smoluchowski. Zur kinetischen Theorie der brownschen Molekularbewe- gung und der Suspensionen. Ann. Phys., 326(14):756–780, 1906.
  105. H. Gumm and M. Sommer. Einführung in die Informatik. Oldenbourg Verlag, 2006.
  106. G. M. Lewis, P. M. Smowton, J. D. Thomson, H. D. Summers, and P. Blood. Measurement of true spontaneous emission spectra from the facet of diode laser structures. Appl. Phys. Lett., 80(1):1–3, 2002.
  107. H. Haug and S. W. Koch. Quantum Theory of the Optical and Electronic Properties of Semiconductors. World Scientific Publishing, 2004.
  108. Rühle, N. C. Gerhardt, and M. R. Hofmann. Lasing in optically pumped Ga(NAsP)/GaP heterostructures. Appl. Phys. Lett., 89(3):031102, 2006.
  109. J.-P. Colinge and C. A. Colinge. Physics of semiconductor devices. Kluwer Academic Publishers, 2003.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten