Publikationsserver der Universitätsbibliothek Marburg

Titel:Strukturelle und funktionelle Charakterisierung von Komponenten der eukaryotischen Eisen-Schwefel-Cluster-Biogenese-Maschinerie
Autor:Webert, Holger
Weitere Beteiligte: Lill, Roland (Prof. Dr.)
Veröffentlicht:2011
URI:https://archiv.ub.uni-marburg.de/diss/z2011/0102
DOI: https://doi.org/10.17192/z2011.0102
URN: urn:nbn:de:hebis:04-z2011-01023
DDC:570 Biowissenschaften, Biologie
Titel (trans.):Structural and functional characterization of components of the eukaryotic iron-sulfur-cluster biogenesis machinery
Publikationsdatum:2011-06-28
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
ISC-Maschinerie, cofactor-biogenesis, Kofaktor-Biogenese, ISC-machinery, Iron-sulfur-cluster, Biogenese, iron-sulfur-protein, Eisen-Schwefel-Protein, Ferredoxin, ferredoxin, Eisen-Schwefel-Cluster

Zusammenfassung:
Eisen-Schwefel-Cluster (Fe/S-Cluster) sind essentielle und vielseitige Kofaktoren zahlreicher Proteine und kommen in allen bekannten Lebensformen vor. Trotz ihrer vergleichsweise einfachen Struktur erfordert ihre Biosynthese und der Einbau in Apoproteine komplexe Synthesemaschinerien, die evolutionär konserviert sind. Im eukaryotischen Modellorganismus S. cerevisiae hängt die Biogenese mitochondrialer Fe/S-Proteine von der mitochondrialen ISC-Maschinerie ab, während die Synthese zytosolischer und nukleärer Fe/S-Proteine zusätzlich noch die mitochondriale ISC-Export- und die zytosolische CIA Maschinerie erfordert. Sowohl die Biosynthese mitochondrialer Fe/S-Proteine als auch die von zytosolischen oder nukleären Fe/S Proteinen kann in zwei biochemische Hauptreaktionen eingeteilt werden. Nach der de novo Assemblierung eines Fe/S Clusters auf einem Gerüstprotein wird der so vorgefertigte Cluster auf das eigentliche Zielprotein übertragen und dort inseriert. Während nahezu alle Komponenten der Biogenesemaschinerien mittlerweile bekannt sind, ist der molekulare Mechanismus der in vivo Fe/S-Cluster Biosynthese noch in vielen Punkten ungeklärt. Für die de novo Assemblierung von Fe/S-Clustern auf dem Gerüstprotein Isu1 der mitochondrialen ISC-Maschinerie ist die Elektronenübertragung durch ein Ferredoxin essentiell. Im ersten Teil dieser Arbeit wurde gezeigt, dass sich eukaryotische mitochondriale Ferredoxine funktionell und strukturell in drei Untergruppen aufteilen lassen. Während die Mitglieder der ersten Untergruppe wie humanes Ferredoxin Fdx2 spezifisch an der Fe/S-Cluster Biogenese und der Häm A Biosynthese beteiligt sind, liefern die Ferredoxine der zweiten Untergruppe wie das Fdx2-verwandte humane Ferredoxin Fdx1 Elektronen für die Steroidbiogenese durch Cytochrom P450 Enzyme (CYP). Die dritte Untergruppe bilden die noch vielseitigeren Ferredoxine aus Pilzen wie Yah1 aus S. cerevisiae, das neben den Funktionen des Fdx2 auch noch eine essentielle Rolle in der Biosynthese von Koenzym Q6 spielt. In dieser Arbeit wurde die Struktur des humanen Ferredoxins Fdx2 mit einer Auflösung von 1,7 Å durch Röntgenstrukturanalyse bestimmt. Im Vergleich zur schon bekannten Struktur von Fdx1 besitzt Fdx2 eine nahezu identische Faltung. Strukturelle Unterschiede wurden nur in der α-Helix C sowie im Bereich nach α-Helix C gefunden. Dies warf die Frage nach der strukturellen Basis für die hohe Substratspezifität der beiden humanen Ferredoxine auf. Durch genetische und biochemische Experimente konnte gezeigt werden, dass der hoch konservierte C Terminus von Fdx2 essentiell für die in vivo Funktion des Proteins in der Biogenese von Fe/S-Clustern ist. Ein in der Fe/S-Cluster Biogenese funktionelles Fdx1 konnte durch die Übertragung der 27 C-terminalen Aminosäuren des Fdx2 an den Fdx1 C-Terminus erzeugt werden. Weitere Sequenzaustausche im Bereich der α Helix C sowie in der Fe/S-Cluster-bedeckenden Schlaufe erhöhten die Funktionsfähigkeit des Fdx1 in der Fe/S Proteinbiogenese, was die Rolle dieser Reste bei der Erzeugung der Substratspezifität nachweist. Umgekehrt gelang es, in Fdx2 eine Elektronenübertragungsfunktion auf CYP einzuführen. Die hierfür kritische Mutation wurde als R73E identifiziert. Die Umfunktionalisierung des Fdx2 war überraschenderweise nicht abhängig von der Sequenz am C Terminus. Da die Funktionsübertragung durch die R73E Mutation nur partiell erfolgte, scheint diese Schlüsselaminosäure nicht allein verantwortlich für die Spezifität von Fdx1 für CYP zu sein. Der positiv geladene Rest R73 im Fdx2 könnte daher eher verhindern, dass dieses Ferredoxin Elektronen auf CYP übertragen kann. Die theoretische Analyse des Dipolmomentes der Ferredoxine Fdx1 und Fdx2 ergab, dass die Dipolmomentvektoren der beiden Ferredoxine nahezu senkrecht zueinander stehen. Da die Interaktion der hochgeladenen Ferredoxine mit ihren Proteinpartnern auf Ladungswechselwirkungen beruht, deutet dieser Unterschied auf einen elektrostatischen Steuerungseffekt bei der Annäherung der Ferredoxine an den entsprechenden Elektronenakzeptor als mögliche Unterstützung der Funktionsspezifität hin. Ein solcher Steuerungseffekt könnte ein allgemeines Prinzip bei der Annäherung von Proteinen in transienten Elektronentransferkomplexen darstellen. ..

Bibliographie / References

  1. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685
  2. Urbina HD, Silberg JJ, Hoff KG, Vickery LE (2001) Transfer of sulfur from IscS to IscU during Fe/S cluster assembly. J Biol Chem 276: 44521-44526
  3. Tong WH, Rouault TA (2006) Functions of mitochondrial ISCU and cytosolic ISCU in mammalian iron- sulfur cluster biogenesis and iron homeostasis. Cell Metabolism 3: 199-210
  4. Shi R, Proteau A, Villarroya M, Moukadiri I, Zhang LH, Trempe JF, Matte A, Armengod ME, Cygler M (2010) Structural Basis for Fe-S Cluster Assembly and tRNA Thiolation Mediated by IscS Protein- Protein Interactions. Plos Biology 8: e1000354
  5. Pierik AJ, Netz DJA, Lill R (2009) Analysis of iron-sulfur protein maturation in eukaryotes. Nat Protocols 4: 753-766
  6. Sheftel AD, Stehling O, Pierik AJ, Netz DJA, Kerscher S, Elsasser HP, Wittig I, Balk J, Brandt U, Lill R (2009) Human Ind1, an Iron-Sulfur Cluster Assembly Factor for Respiratory Complex I. Molecular and Cellular Biology 29: 6059-6073
  7. Urzica E, Pierik AJ, Muhlenhoff U, Lill R (2009) Crucial Role of Conserved Cysteine Residues in the Assembly of Two Iron-Sulfur Clusters on the CIA Protein Nar1. Biochemistry 48: 4946-4958
  8. Gerber J, Neumann K, Prohl C, Muhlenhoff U, Lill R (2004) The yeast scaffold proteins Isu1p and Isu2p are required inside mitochondria for maturation of cytosolic Fe/S proteins. Molecular and Cellular Biology 24: 4848-4857
  9. Tovar J, Leon-Avila G, Sanchez LB, Sutak R, Tachezy J, van der Giezen M, Hernandez M, Muller M, Lucocq JM (2003) Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426: 172-176
  10. Rudolf J, Makrantoni V, Ingledew WJ, Stark MJR, White MF (2006) The DNA repair helicases XPD and FancJ have essential iron-sulfur domains. Molecular Cell 23: 801-808
  11. Xu XM, Moller SG (2011) Iron-Sulfur Clusters: Biogenesis, Molecular Mechanisms, and Their Functional Significance. Antioxid Redox Signal in press: DOI: 10.1089/ars.2010.3259
  12. Shethna YI, Dervarta.Dv, Beinert H (1968) Non Heme (Iron-Sulfur) Proteins of Azotobacter Vinelandii. Biochemical and Biophysical Research Communications 31: 862-868
  13. Ito S, Tan LJ, Andoh D, Narita T, Seki M, Hirano Y, Narita K, Kuraoka I, Hiraoka Y, Tanaka K (2010) MMXD, a TFIIH-independent XPD-MMS19 protein complex involved in chromosome segregation. Mol Cell 39: 632-640
  14. Tsai CL, Barondeau DP (2010) Human Frataxin Is an Allosteric Switch That Activates the Fe-S Cluster Biosynthetic Complex. Biochemistry 49: 9132-9139
  15. Wingert RA, Galloway JL, Barut B, Foott H, Fraenkel P, Axe JL, Weber GJ, Dooley K, Davidson AJ, Schmidt B, Paw BH, Shaw GC, Kingsley P, Palis J, Schubert H, Chen O, Kaplan J, Zon LI, Tubingen Screen C (2005) Deficiency of glutaredoxin 5 reveals Fe-S clusters are required for vertebrate haem synthesis. Nature 436: 1035-1039
  16. Netz DJA, Stumpfig M, Dore C, Muhlenhoff U, Pierik AJ, Lill R (2010) Tah18 transfers electrons to Dre2 in cytosolic iron-sulfur protein biogenesis. Nature Chemical Biology 6: 758-765
  17. Rouault TA, Tong WH (2005) Iron-sulphur cluster biogenesis and mitochondrial iron homeostasis. Nat Rev Mol Cell Biol 6: 345-351
  18. Lotierzo M, Tse Sum Bui B, Florentin D, Escalettes F, Marquet A (2005) Biotin synthase mechanism: an overview. Biochem Soc Trans 33: 820-823
  19. Kosman DJ (2003) Molecular mechanisms of iron uptake in fungi. Mol Microbiol 47: 1185-1197
  20. Lange H, Kispal G, Lill R (1999) Mechanism of iron transport to the site of heme synthesis inside yeast mitochondria. Journal of Biological Chemistry 274: 18989-18996
  21. Gouet P, Courcelle E, Stuart DI, Metoz F (1999) ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15: 305-308
  22. Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview Version 2 -a multiple sequence alignment editor and analysis workbench. Bioinformatics 25: 1189-1191
  23. Muhlenhoff U, Richhardt N, Ristow M, Kispal G, Lill R (2002b) The yeast frataxin homolog Yfh1p plays a specific role in the maturation of cellular Fe/S proteins. Human Molecular Genetics 11: 2025-2036
  24. Pondarre C, Antiochos BB, Campagna DR, Greer EL, Deck KM, McDonald A, Han AP, Medlock A, Kutok JL, Anderson SA, Eisenstein RS, Fleming MD (2006) The mitochondrial ATP-binding cassette transporter Abcb7 is essential in mice and participates in cytosolic iron-sulfur cluster biogenesis. Human Molecular Genetics 15: 953-964
  25. Shi YB, Ghosh MC, Tong WH, Rouault TA (2009) Human ISD11 is essential for both iron-sulfur cluster assembly and maintenance of normal cellular iron homeostasis. Human Molecular Genetics 18: 3014- 3025
  26. Seroz T, Winkler GS, Auriol J, Verhage RA, Vermeulen W, Smit B, Brouwer J, Eker APM, Weeda G, Egly JM, Hoeijmakers JHJ (2000) Cloning of a human homolog of the yeast nucleotide excision repair gene MMS19 and interaction with transcription repair factor TFIIH via the XPB and XPD helicases. Nucleic Acids Research 28: 4506-4513
  27. Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, Pupko T, Ben-Tal N (2005) ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Research 33: W299-W302
  28. Grinberg AV, Bernhardt R (1998) Effect of replacing a conserved proline residue on the function and stability of bovine adrenodoxin. Protein Engineering 11: 1057-1064
  29. Outten FW, Djaman O, Storz G (2004) A suf operon requirement for Fe-S cluster assembly during iron starvation in Escherichia coli. Molecular Microbiology 52: 861-872
  30. Muhlenhoff U, Gerl MJ, Flauger B, Pirner HM, Balser S, Richhardt N, Lill R, Stolz J (2007) The ISC proteins Isa1 and Isa2 are required for the function but not for the de novo synthesis of the Fe/S clusters of biotin synthase in Saccharomyces cerevisiae. Eukaryotic Cell 6: 753-753
  31. Uhlmann H, Bernhardt R (1995) Role of Threonine 54 in Adrenodoxin for the Properties of Its Iron- Sulfur Cluster and Its Electron Transfer Function. Journal of Biological Chemistry 270: 29959-29966
  32. Muller A, Muller JJ, Muller YA, Uhlmann H, Bernhardt R, Heinemann U (1998) New aspects of electron transfer revealed by the crystal structure of a truncated bovine adrenodoxin, Adx(4-108). Structure 6: 269-280
  33. Muller JJ, Muller A, Rottmann M, Bernhardt R, Heinemann U (1999) Vertebrate-type and plant-type ferredoxins: Crystal structure comparison and electron transfer pathway modelling. Journal of Molecular Biology 294: 501-513
  34. Muller JJ, Lapko A, Bourenkov G, Ruckpaul K, Heinemann U (2001b) Adrenodoxin reductase- adrenodoxin complex structure suggests electron transfer path in steroid biosynthesis. J Biol Chem 276: 2786-2789
  35. Gavin A-C, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon A-M, Cruciat C-M, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier M-A, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415: 141-147
  36. Schiffler B, Bureik M, Reinle W, Muller EC, Hannemann F, Bernhardt R (2004) The adrenodoxin-like ferredoxin of Schizosaccharomyces pombe mitochondria. Journal of Inorganic Biochemistry 98: 1229
  37. Gavin A-C, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen LJ, Bastuck S, Dumpelfeld B, Edelmann A, Heurtier M-A, Hoffman V, Hoefert C, Klein K, Hudak M, Michon A-M, Schelder M, Schirle M, Remor M, Rudi T, Hooper S, Bauer A, Bouwmeester T, Casari G, Drewes G, Neubauer G, Rick JM, Kuster B, Bork P, Russell RB, Superti-Furga G (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440: 631-636
  38. Sainz G, Jakoncic J, Sieker LC, Stojanoff V, Sanishvili N, Asso M, Bertrand P, Armengaud J, Jouanneau Y (2006) Structure of a 2Fe-2S ferredoxin from Rhodobacter capsulatus likely involved in Fe-S cluster biogenesis and conformational changes observed upon reduction. Journal of Biological Inorganic Chemistry 11: 235-246
  39. Pierrel F, Hamelin O, Douki T, Kieffer-Jaquinod S, Muhlenhoff U, Ozeir M, Lill R, Fontecave M (2010) Involvement of Mitochondrial Ferredoxin and Para-Aminobenzoic Acid in Yeast Coenzyme Q Biosynthesis. Chemistry & Biology 17: 449-459
  40. Rodriguez-Manzaneque MT, Tamarit J, Belli G, Ros J, Herrero E (2002) Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes. Molecular Biology of the Cell 13: 1109- 1121
  41. Muhlenhoff U, Molik S, Godoy JR, Uzarska MA, Richter N, Seubert A, Zhang Y, Stubbe J, Pierrel F, Herrero E, Lillig CH, Lill R (2010) Cytosolic Monothiol Glutaredoxins Function in Intracellular Iron Sensing and Trafficking via Their Bound Iron-Sulfur Cluster. Cell Metabolism 12: 373-385
  42. Srinivasan V, Netz DJA, Webert H, Mascarenhas J, Pierik AJ, Michel H, Lill R (2007) Structure of the yeast WD40 domain protein Cia1, a component acting late in iron-sulfur protein biogenesis. Structure 15: 1246-1257
  43. Goldberg AV, Molik S, Tsaousis AD, Neumann K, Kuhnke G, Delbac F, Vivares CP, Hirt RP, Lill R, Embley TM (2008) Localization and functionality of microsporidian iron-sulphur cluster assembly proteins. Nature 452: 624-629
  44. Kostic M, Bernhardt R, Pochapsky TC (2003) A conserved histidine in vertebrate-type ferredoxins is critical for redox-dependent dynamics. Biochemistry 42: 8171-8182
  45. Rutherford JC, Ojeda L, Balk J, Mühlenhoff U, Lill R, Winge DR (2005) Activation of the iron regulon by the yeast Aft1/Aft2 transcription factors depends on mitochondrial but not cytosolic iron-sulfur protein biogenesis. J Biol Chem 280: 10135-10140
  46. Lambeth JD, McCaslin DR, Kamin H (1976) Adrenodoxin reductase-adrenodexin complex. J Biol Chem 251: 7545-7550
  47. Williams BAP, Hirt RP, Lucocq JM, Embley TM (2002) A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418: 865-869
  48. Hwang DM, Dempsey A, Tan KT, Liew CC (1996) A modular domain of NifU, a nitrogen fixation cluster protein, is highly conserved in evolution. Journal of Molecular Evolution 43: 536-540
  49. Zheng L, Baumann U, Reymond JL (2004) An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res 32: e115
  50. Gerber J, Muhlenhoff U, Lill R (2003) An interaction between frataxin and Isu1/Nfs1 that is crucial for
  51. Suzuki K, Kimura T (1965) An Iron Protein as a Component of Steroid 11beta-Hydroxylase Complex. Biochemical and Biophysical Research Communications 19: 340-345
  52. Song DS, Lee FS (2008) A role for IOP1 in mammalian cytosolic iron-sulfur protein biogenesis. Journal of Biological Chemistry 283: 9231-9238
  53. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64: 112-122
  54. Zheng LM, Cash VL, Flint DH, Dean DR (1998) Assembly of iron-sulfur clusters -Identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii. Journal of Biological Chemistry 273: 13264-13272
  55. Trounce IA, Kim YL, Jun AS, Wallace DC (1996) Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods in Enzymology 264: 484-509
  56. Takahashi Y, Tokumoto U (2002) A third bacterial system for the assembly of iron-sulfur clusters with homologs in archaea and plastids. Journal of Biological Chemistry 277: 28380-28383
  57. Perrakis A, Morris R, Lamzin VS (1999) Automated protein model building combined with iterative structure refinement. Nat Struct Mol Biol 6: 458-463
  58. Lipscomb JD, Sligar SG, Namtvedt MJ, Gunsalus IC (1976) Autooxidation and hydroxylation reactions of oxygenated cytochrome P-450cam. Journal of Biological Chemistry 251: 1116-1124
  59. Green J, Paget MS (2004) Bacterial redox sensors. Nature Reviews Microbiology 2: 954-966
  60. Wang T, Craig EA (2008) Binding of yeast frataxin to the scaffold for Fe-S cluster biogenesis, Isu. Journal of Biological Chemistry 283: 12674-12679
  61. Jacobson MR, Cash VL, Weiss MC, Laird NF, Newton WE, Dean DR (1989) Biochemical and genetic analysis of the nifUSVWZM cluster from Azotobacter vinelandii. Molecular & General Genetics 219: 49-57
  62. Gill SC, von Hippel PH (1989) Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem 182: 319-326
  63. Zheng LM, Dean DR (1994) Catalytic formation of a nitrogenase iron-sulfur cluster. Journal of Biological Chemistry 269: 18723-18726
  64. Muhlenhoff U, Richhardt N, Gerber J, Lill R (2002a) Characterization of iron-sulfur protein assembly in isolated mitochondria -A requirement for ATP, NADH, and reduced iron. Journal of Biological Chemistry 277: 29810-29816
  65. Olson JW, Agar JN, Johnson MK, Maier RJ (2000) Characterization of the NifU and NifS Fe-S cluster formation proteins essential for viability in Helicobacter pylori. Biochemistry 39: 16213-16219
  66. Parvin R (1969) Citrate synthase from yeast. Methods in Enzymology 13: 16-19
  67. Kostic M, Pochapsky SS, Obenauer J, Mo HP, Pagani GM, Pejchal R, Pochapsky TC (2002) Comparison of functional domains in vertebrate-type Ferredoxins. Biochemistry 41: 5978-5989
  68. Kimura T, Suzuki K (1967) Components of the electron transport system in adrenal steroid hydroxylase. Isolation and properties of non-heme iron protein (adrenodoxin). J Biol Chem 242: 485- 491
  69. Muller EC, Lapko A, Otto A, Muller JJ, Ruckpaul K, Heinemann U (2001a) Covalently crosslinked complexes of bovine adrenodoxin with adrenodoxin reductase and cytochrome P450scc -Mass spectrometry and Edman degradation of complexes of the steroidogenic hydroxylase system. European Journal of Biochemistry 268: 1837-1843
  70. Pelletier H, Kraut J (1992) Crystal structure of a complex between electron transfer partners, cytochrome c peroxidase and cytochrome c. Science 258: 1748-1755
  71. Sondek J, Bohm A, Lambright DG, Hamm HE, Sigler PB (1996) Crystal structure of a G(A) protein beta gamma dimer at 2.1 angstrom resolution. Nature 379: 369-374
  72. Kakuta Y, Horio T, Takahashi Y, Fukuyama K (2001) Crystal structure of Escherichia coli Fdx, an adrenodoxin-type ferredoxin involved in the assembly of iron-sulfur clusters. Biochemistry 40: 11007-
  73. Sun F, Huo X, Zhai Y, Wang A, Xu J, Su D, Bartlam M, Rao Z (2005) Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 121: 1043-1057
  74. McPherson A (1990) Current approaches to macromolecular crystallization. Eur J Biochem 189: 1-23
  75. Poyton RO, Goehring B, Droste M, Sevarino KA, Allen L, Zhao XJ (1995) Cytochrome-c oxidase from Saccharomyces cerevisiae. Methods in Enzymology 260: 97-116
  76. Peterson JA, Lu JY, Geisselsoder J, Grahamlorence S, Carmona C, Witney F, Lorence MC (1992) Cytochrome-P450Terp -Isolation and Purification of the Protein and Cloning and Sequencing of Its Operon. Journal of Biological Chemistry 267: 14193-14203
  77. van der Giezen M, Tovar J (2005) Degenerate mitochondria. Embo Reports 6: 525-530
  78. Zollner A, Hannemann F, Lisurek M, Bernhardt R (2002) Deletions in the loop surrounding the iron- sulfur cluster of adrenodoxin severely affect the interactions with its native redox partners adrenodoxin reductase and cytochrome P450(scc) (CYP11A1). Journal of Inorganic Biochemistry 91: 644-654
  79. Williams BAP, Cali A, Takvorian PM, Keeling PJ (2008) Distinct localization patterns of two putative mitochondrial proteins in the microsporidian Encephalitozoon cuniculi. Journal of Eukaryotic Microbiology 55: 131-133
  80. Smith TF (2008) Diversity of WD-Repeat Proteins. Subcellular Biochemistry 48: 20-30
  81. Knoell HE, Knappe J (1974) Escherichia coli ferredoxin, an iron-sulfur protein of the adrenodoxin type.
  82. Seeber F (2002) Eukaryotic genomes contain a 2Fe-2S ferredoxin isoform with a conserved C-terminal sequence motif. Trends in Biochemical Sciences 27: 545-547
  83. Xia B, Volkman BF, Markley JL (1998) Evidence for oxidation-state-dependent conformational changes in human ferredoxin from multinuclear, multidimensional NMR spectroscopy. Biochemistry 37: 3965-3973
  84. Tagawa K, Arnon DI (1962) Ferredoxins as electron carriers in photosynthesis and in the biological production and consumption of hydrogen gas. Nature 195: 537-543
  85. Meyer J (2001) Ferredoxins of the third kind. Febs Letters 509: 1-5
  86. Robinson K, Lemire B (1995) [3] Flavinylation of succinate: Ubiquinone oxidoreductase from Saccharomyces cerevisiae. Methods in Enzymology 260: 34-51
  87. Takahashi Y, Nakamura M (1999) Functional assignment of the ORF2-iscS-iscU-iscA-hscB-hscA-fdx- ORF3 gene cluster involved in the assembly of Fe-S clusters in Escherichia coli. Journal of Biochemistry 126: 917-926
  88. Muhlenhoff U, Balk J, Richhardt N, Kaiser JT, Sipos K, Kispal G, Lill R (2004) Functional characterization of the eukaryotic cysteine desulfurase Nfs1p from Saccharomyces cerevisiae. Journal of Biological Chemistry 279: 36906-36915
  89. Lill R (2009) Function and biogenesis of iron-sulphur proteins. Nature 460: 831-838
  90. Yeh AP, Ambroggio XI, Andrade SLA, Einsle O, Chatelet C, Meyer J, Rees DC (2002) High resolution crystal structures of the wild type and Cys-55 -> Ser and Cys-59 -> Ser variants of the thioredoxin-like 2Fe-2S ferredoxin from Aquifex aeolicus. Journal of Biological Chemistry 277: 34499-34507
  91. Ruthenburg AJ, Wang WK, Graybosch DM, Li HT, Allis CD, Patel DJ, Verdine GL (2006) Histone H3 recognition and presentation by the WDR5 module of the MLL1 complex. Nature Structural & Molecular Biology 13: 704-712
  92. Takubo K, Morikawa T, Nonaka Y, Mizutani M, Takenaka S, Takabe K, Takahashi MA, Ohta D (2003) Identification and molecular characterization of mitochondrial ferredoxins and ferredoxin reductase from Arabidopsis. Plant Molecular Biology 52: 817-830
  93. Shethna YI, Beinert H, Hansen RE, Wilson PW (1964) Identification by Isotopic Substitution of EPR Signal at G equals 1.94 in Non-Heme Iron Protein from Azotobacter. Proceedings of the National Academy of Sciences of the United States of America 52: 1263-1271
  94. Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. Journal of Molecular Biology 372: 774-797
  95. Taylor GL (2010) Introduction to phasing. Acta Crystallogr D Biol Crystallogr 66: 325-338
  96. Unciuleac MC, Chandramouli K, Naik S, Mayer S, Huynh BH, Johnson MK, Dean DR (2007) In vitro activation of apo-aconitase using a 4Fe-4S cluster-loaded form of the IscU Fe-S cluster scaffolding protein. Biochemistry 46: 6812-6821
  97. Lambeth JD, Seybert DW, Kamin H (1979) Ionic effects on adrenal steroidogenic electron transport. The role of adrenodoxin as an electron shuttle. J Biol Chem 254: 7255-7264
  98. Layer G, Ollagnier-de Choudens S, Sanakis Y, Fontecave M (2006) Iron-sulfur cluster biosynthesis - Characterization of Escherichia coli CyaY as an iron donor for the assembly of 2Fe-2S clusters in the scaffold IscU. Journal of Biological Chemistry 281: 16256-16263
  99. Stehling O, Elsasser HP, Bruckel B, Muhlenhoff U, Lill R (2004) Iron-sulfur protein maturation in human cells: evidence for a function of frataxin. Human Molecular Genetics 13: 3007-3015
  100. Krebs C, Agar JN, Smith AD, Frazzon J, Dean DR, Huynh BH, Johnson MK (2001) IscA, an alternate scaffold for Fe-S cluster biosynthesis. Biochemistry 40: 14069-14080
  101. Omura T, Sanders E, Estabrook RW, Cooper DY, Rosenthal O (1966) Isolation from adrenal cortex of a nonheme iron protein and a flavoprotein functional as a reduced triphosphopyridine nucleotide- cytochrome P-450 reductase. Archives of Biochemistry and Biophysics 117: 660-673
  102. Kohlhaw GB (1988) Isopropylmalate dehydratase from yeast. Methods Enzymol 166: 423-429
  103. Gray HB, Winkler JR (2005) Long-range electron transfer. Proceedings of the National Academy of Sciences of the United States of America 102: 3534-3539
  104. Schmucker S, Martelli A, Colin F, Page A, Wattenhofer-Donze M, Reutenauer L, Puccio H (2011) Mammalian Frataxin: An Essential Function for Cellular Viability through an Interaction with a Preformed ISCU/NFS1/ISD11 Iron-Sulfur Assembly Complex. Plos One 6: e16199 Schuetz A, Allali-Hassani A, Martin F, Loppnau P, Vedadi M, Bochkarev A, Plotnikov AN, Arrowsmith CH, Min JR (2006) Structural basis for molecular recognition and presentation of histone H3 By WDR5. Embo Journal 25: 4245-4252
  105. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver- stained polyacrylamide gels. Analytical Chemistry 68: 850-858
  106. Zheng LM, White RH, Cash VL, Dean DR (1994) Mechanism for the desulfurization of L-cysteine catalyzed by the nifS gene product. Biochemistry 33: 4714-4720
  107. Lill R, Dutkiewicz R, Elsasser HP, Hausmann A, Netz DJ, Pierik AJ, Stehling O, Urzica E, Muhlenhoff U (2006) Mechanisms of iron-sulfur protein maturation in mitochondria, cytosol and nucleus of eukaryotes. Biochim Biophys Acta 1763: 652-667
  108. Gelling C, Dawes IW, Richhardt N, Lill R, Mühlenhoff U (2008) Mitochondrial Iba57p Is Required for
  109. Maniatis T, Fritsch EF, Sambrook J (1989) Molecular Cloning: A Laboratory Manual (3 Volume Set), Cold Spring Harbor: Cold Spring Harbor Laboratory Press.
  110. Van Duyne RP (2004) Molecular Plasmonics. Science 306: 985-986
  111. Vickery LE (1997) Molecular recognition and electron transfer in mitochondrial steroid hydroxylase systems. Steroids 62: 124-127
  112. Kim KD, Chung WH, Kim HJ, Lee KC, Roe JH (2010) Monothiol glutaredoxin Grx5 interacts with Fe-S scaffold proteins Isa1 and Isa2 and supports Fe-S assembly and DNA integrity in mitochondria of fission yeast. Biochemical and Biophysical Research Communications 392: 467-472
  113. Page CC, Moser CC, Chen XX, Dutton PL (1999) Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature 402: 47-52
  114. Selzer T, Schreiber G (2001) New insights into the mechanism of protein-protein association. Proteins-Structure Function and Genetics 45: 190-198
  115. Yuvaniyama P, Agar JN, Cash VL, Johnson MK, Dean DR (2000) NifS-directed assembly of a transient 2Fe-2S cluster within the NifU protein. Proceedings of the National Academy of Sciences of the United States of America 97: 599-604
  116. Spiro S (2006) Nitric oxide-sensing mechanisms in Escherichia coli. Biochemical Society Transactions 34: 200-202
  117. Miroux B, Walker JE (1996) Over-production of Proteins inEscherichia coli: Mutant Hosts that Allow Synthesis of some Membrane Proteins and Globular Proteins at High Levels. Journal of Molecular Biology 260: 289-298
  118. Janin J (1995) Principles of protein-protein recognition from structure to thermodynamics. Biochimie 77: 497-505
  119. Laskowski RA, Macarthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography 26: 283-291
  120. Orengo CA, Thornton JM (2005) Protein families and their evolution -A structural perspective.
  121. Malkin R, Rabinowitz J (1966) Reconstitution of Clostridial Ferredoxin. Biochemical and Biophysical Research Communications 23: 822-827
  122. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallographica Section D 53: 240-255
  123. Klausner RD, Rouault TA, Harford JB (1993) Regulating the Fate of Messenger-RNA -The Control of Cellular Iron-Metabolism. Cell 72: 19-28
  124. Wang J, Pantopoulos K (2011) Regulation of cellular iron metabolism. Biochemical Journal 434: 365- 381
  125. Nemeth E, Ganz T (2006) Regulation of iron metabolism by hepcidin. Annu Rev Nutr 26: 323-342
  126. Garland SA, Hoff K, Vickery LE, Culotta VC (1999) Saccharomyces cerevisiae ISU1 and ISU2: Members of a well-conserved gene family for iron-sulfur cluster assembly. Journal of Molecular Biology 294: 897-907
  127. Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. Journal of Molecular Biology 247: 536- 540 NC-IUB (1979) Nomenclature of iron-sulfur proteins. Recommendations, 1978: Nomenclature Committee of the International Union of Biochemistry (NC-IUB). Biochim Biophys Acta 549: 101-105
  128. Krissinel E, Henrick K (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallographica Section D-Biological Crystallography 60: 2256-2268
  129. Sugano S, Morishima N, Ikeda H, Horie S (1989) Sensitive assay of cytochrome P450scc activity by high-performance liquid chromatography. Anal Biochem 182: 327-333
  130. Matthews BW (1968) Solvent Content of Protein Crystals. Journal of Molecular Biology 33: 491-497
  131. Jancarik J, Kim SH (1991) Sparse matrix sampling: a screening method for crystallization of proteins.
  132. Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155: 335-350
  133. Vornholt W, Hartmann M, Keusgen M (2007) SPR studies of carbohydrate–lectin interactions as useful tool for screening on lectin sources. Biosensors and Bioelectronics 22: 2983-2988
  134. Iwema T, Picciocchi A, Traore DAK, Ferrer JL, Chauvat F, Jacquamet L (2009) Structural Basis for Delivery of the Intact Fe2S2 Cluster by Monothiol Glutaredoxin. Biochemistry 48: 6041-6043
  135. Omura T (2010) Structural diversity of cytochrome P450 enzyme system. Journal of Biochemistry 147: 297-306
  136. White M (2009) Structure, function and evolution of the XPD family of iron-sulfur-containing 5 '-> 3 ' DNA helicases. Biochemical Society Transactions 37: 547-551
  137. Johnson DC, Dean DR, Smith AD, Johnson MK (2005) Structure, function, and formation of biological iron-sulfur clusters. Annu Rev Biochem 74: 247-281
  138. Schindelin H, Kisker C, Schlessman JL, Howard JB, Rees DC (1997) Structure of ADP x AIF4(-)-stabilized nitrogenase complex and its implications for signal transduction. Nature 387: 370-376
  139. Walden WE, Selezneva AI, Dupuy J, Volbeda A, Fontecilla-Camps JC, Theil EC, Volz K (2006) Structure of dual function iron regulatory protein 1 complexed with ferritin IRE-RNA. Science 314: 1903-1908
  140. Sazanov LA, Hinchliffe P (2006) Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311: 1430-1436
  141. Smith AD, Agar JN, Johnson KA, Frazzon J, Amster IJ, Dean DR, Johnson MK (2001) Sulfur transfer from IscS to IscU: the first step in iron-sulfur cluster biosynthesis. J Am Chem Soc 123: 11103-11104
  142. Salamona Z, Macleodb AH, Tollina G (1997) Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. I: Theoretical principles. Biochimica et Biophysica Acta (BBA) -Reviews on Biomembranes 1331: 117-129
  143. Lo Conte L, Chothia C, Janin J (1999) The atomic structure of protein-protein recognition sites. Journal of Molecular Biology 285: 2177-2198
  144. Johansson C, Roos AK, Montano SJ, Sengupta R, Filippakopoulos P, Guo K, von Delft F, Holmgren A, Oppermann U, Kavanagh KL (2010) The crystal structure of human GLRX5: iron-sulfur cluster co- ordination, tetrameric assembly and monomer activity. Biochem J 433: 303-311
  145. Liberek K, Galitski TP, Zylicz M, Georgopoulos C (1992) The DnaK chaperone modulates the heat shock response of Escherichia coli by binding to the sigma 32 transcription factor. Proc Natl Acad Sci U S A 89: 3516-3520
  146. Tovar J, Fischer A, Clark CG (1999) The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Molecular Microbiology 32: 1013-1021
  147. Ziegler GA, Vonrhein C, Hanukoglu I, Schulz GE (1999) The structure of adrenodoxin reductase of mitochondrial P450 systems: Electron transfer for steroid biosynthesis. Journal of Molecular Biology 289: 981-990
  148. Outten FW, Wood MJ, Munoz FM, Storz G (2003) The SufE protein and the SufBCD complex enhance SufS cysteine desulfurase activity as part of a sulfur transfer pathway for fe-s cluster assembly in Escherichia coli. Journal of Biological Chemistry 278: 45713-45719
  149. Pikuleva IA, Tesh K, Waterman MR, Kim YC (2000) The tertiary structure of full-length bovine adrenodoxin suggests functional dimers. Archives of Biochemistry and Biophysics 373: 44-55
  150. Smith TF, Gaitatzes C, Saxena K, Neer EJ (1999) The WD repeat: a common architecture for diverse functions. Trends in Biochemical Sciences 24: 181-185
  151. Nishio K, Nakai M (2000) Transfer of iron-sulfur cluster from NifU to apoferredoxin. Journal of Biological Chemistry 275: 22615-22618
  152. Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350: 87-96
  153. Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189: 113-130
  154. Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185: 60-89
  155. Rosenberg AH, Lade BN, Chui DS, Lin SW, Dunn JJ, Studier FW (1987) Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene 56: 125-135
  156. Li D, Roberts R (2001) WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases. Cellular and Molecular Life Sciences 58: 2085-2097
  157. Jensen LH (1974) X-Ray Structural Studies of Ferredoxin and Related Electron Carriers. Annual Review of Biochemistry 43: 461-474
  158. Mumberg D, Muller R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156: 119-122
  159. Muhlenhoff U, Gerber J, Richhardt N, Lill R (2003) Components involved in assembly and dislocation of iron-sulfur clusters on the scaffold protein Isu1p. Embo Journal 22: 4815-4825
  160. Kispal G, Sipos K, Lange H, Fekete Z, Bedekovics T, Janaky T, Bassler J, Netz DJA, Balk J, Rotte C, Lill R (2005) Biogenesis of cytosolic ribosomes requires the essential iron-sulphur protein Rli1p and mitochondria. Embo Journal 24: 589-598
  161. Netz DJA, Pierik AJ, Stuempfig M, Muhlenhoff U, Lill R (2007) The Cfd1-Nbp35 complex acts as a scaffold for iron-sulfur protein assembly in the yeast cytosol. Nature Chemical Biology 3: 278-286
  162. Picciocchi A, Douce R, Alban C (2003) The plant biotin synthase reaction. Identification and characterization of essential mitochondrial accessory protein components. J Biol Chem 278: 24966- 24975
  163. Jennings BH, Pickles LM, Wainwright SM, Roe SM, Pearl LH, Ish-Horowicz D (2006) Molecular recognition of transcriptional repressor motifs by the WD domain of the Groucho/TLE corepressor. Molecular Cell 22: 645-655
  164. Prischi F, Konarev PV, Iannuzzi C, Pastore C, Adinolfi S, Martin SR, Svergun DI, Pastore A (2010) Structural bases for the interaction of frataxin with the central components of iron-sulphur cluster assembly. Nature Communications 1: 95
  165. Taylor GL (2003) The phase problem. Acta Crystallogr D Biol Crystallogr 59: 1881-1890
  166. Lill R, Muhlenhoff U (2008) Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Annu Rev Biochem 77: 669-700
  167. Nelson DR (2009) The Cytochrome P450 Homepage. Human Genomics 4: 59-65
  168. Sipos K, Lange H, Fekete Z, Ullmann P, Lill R, Kispal G (2002) Maturation of cytosolic iron-sulfur proteins requires glutathione. Journal of Biological Chemistry 277: 26944-26949
  169. Rouault TA (2006) The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nature Chemical Biology 2: 406-414
  170. Gray HB, Winkler JR (2010) Electron flow through metalloproteins. Biochimica Et Biophysica Acta- Bioenergetics 1797: 1563-1572
  171. Kispal G, Csere P, Prohl C, Lill R (1999) The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. EMBO J 18: 3981-3989
  172. Huet G, Daffe M, Saves I (2005) Identification of the Mycobacterium tuberculosis SUF machinery as the exclusive mycobacterial system of Fe-S cluster assembly: Evidence for its implication in the pathogen's survival. Journal of Bacteriology 187: 6137-6146
  173. Wiedemann N, Urzica E, Guiard B, Muller H, Lohaus C, Meyer HE, Ryan MT, Meisinger C, Muhlenhoff U, Lill R, Pfanner N (2006) Essential role of Isd11 in mitochondrial iron-sulfur cluster synthesis on Isu scaffold proteins. Embo Journal 25: 184-195
  174. Smith AD, Frazzon J, Dean DR, Johnson MK (2005) Role of conserved cysteines in mediating sulfur transfer from IscS to IscU. FEBS Lett 579: 5236-5240
  175. Lombaerts M, Tijsterman M, Verhage RA, Brouwer J (1997) Saccharomyces cerevisiae mms19 mutants are deficient in transcription-coupled and global nucleotide excision repair. Nucleic Acids Research 25: 3974-3979
  176. Lange H, Kaut A, Kispal G, Lill R (2000) A mitochondrial ferredoxin is essential for biogenesis of cellular iron-sulfur proteins. Proc Natl Acad Sci U S A 97: 1050-1055
  177. Roy A, Solodovnikova N, Nicholson T, Antholine W, Walden WE (2003) A novel eukaryotic factor for cytosolic Fe-S cluster assembly. Embo Journal 22: 4826-4835
  178. Hutchinson EG, Thornton JM (1996) PROMOTIF -a program to identify and analyze structural motifs in proteins. Protein Sci 5: 212-220
  179. Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153: 163-168
  180. Klinge S, Hirst J, Maman JD, Krude T, Pellegrini L (2007) An iron-sulfur domain of the eukaryotic primase is essential for RNA primer synthesis. Nature Structural & Molecular Biology 14: 875-877
  181. Lauder S, Bankmann M, Guzder SN, Sung P, Prakash L, Prakash S (1996) Dual requirement for the yeast MMS19 gene in DNA repair and RNA polymerase II transcription. Molecular and Cellular Biology 16: 6783-6793
  182. Song JJ, Garlick JD, Kingston RE (2008) Structural basis of histone H4 recognition by p55. Genes & Development 22: 1313-1318
  183. Raulfs EC, O'Carroll IP, Dos Santos PC, Unciuleac MC, Dean DR (2008) In vivo iron-sulfur cluster formation. Proceedings of the National Academy of Sciences of the United States of America 105: 8591-8596
  184. Stehling O, Netz DJA, Niggemeyer B, Rosser R, Eisenstein RS, Puccio H, Pierik AJ, Lill R (2008) Human Nbp35 is essential for both cytosolic iron-sulfur protein assembly and iron homeostasis. Molecular and Cellular Biology 28: 5517-5528
  185. Kou HP, Zhou Y, Gorospe RMC, Wang ZG (2008) Mms19 protein functions in nucleotide excision repair by sustaining an adequate cellular concentration of the TFIIH component Rad3. Proceedings of the National Academy of Sciences of the United States of America 105: 15714-15719
  186. Rouault TA, Tong WH (2008) Iron-sulfur cluster biogenesis and human disease. Trends in Genetics 24: 398-407
  187. Kondapalli KC, Kok NM, Dancis A, Stemmler TL (2008) Drosophila frataxin: An iron chaperone during cellular Fe-S cluster bioassembly. Biochemistry 47: 6917-6927
  188. Li HQ, Gakh O, Smith DY, Isaya G (2009) Oligomeric Yeast Frataxin Drives Assembly of Core Machinery for Mitochondrial Iron-Sulfur Cluster Synthesis. Journal of Biological Chemistry 284: 21971-21980
  189. Terauchi AM, Lu SF, Zaffagnini M, Tappa S, Hirasawa M, Tripathy JN, Knaff DB, Farmer PJ, Lemaire SD, Hase T, Merchant SS (2009) Pattern of Expression and Substrate Specificity of Chloroplast Ferredoxins from Chlamydomonas reinhardtii. Journal of Biological Chemistry 284: 25867-25878
  190. Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong SE, Walford GA, Sugiana C, Boneh A, Chen WK, Hill DE, Vidal M, Evans JG, Thorburn DR, Carr SA, Mootha VK (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134: 112-123
  191. Sheldrick GM (2010) Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallographica Section D-Biological Crystallography 66: 479-485
  192. Sevrioukova IF, Poulos TL, Churbanova IY (2010) Crystal Structure of the Putidaredoxin Reductase.Putidaredoxin Electron Transfer Complex. Journal of Biological Chemistry 285: 13616- 13620
  193. Ye H, Rouault TA (2010) Human iron-sulfur cluster assembly, cellular iron homeostasis, and disease. Biochemistry 49: 4945-4956
  194. Sheftel AD, Stehling O, Pierik AJ, Elsasser HP, Muhlenhoff U, Webert H, Hobler A, Hannemann F, Bernhardt R, Lill R (2010) Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. Proc Natl Acad Sci U S A 107: 11775-11780
  195. Yang W, Bell SG, Wang H, Zhou WH, Hoskins N, Dale A, Bartlam M, Wong LL, Rao ZH (2010) Molecular Characterization of a Class I P450 Electron Transfer System from Novosphingobium aromaticivorans DSM12444. Journal of Biological Chemistry 285: 27372-27384
  196. Pisarev AV, Skabkin MA, Pisareva VP, Skabkina OV, Rakotondrafara AM, Hentze MW, Hellen CUT, Pestova TV (2010) The Role of ABCE1 in Eukaryotic Posttermination Ribosomal Recycling. Molecular Cell 37: 196-210
  197. Voss I, Goss T, Murozuka E, Altmann B, McLean KJ, Rigby SE, Munro AW, Scheibe R, Hase T, Hanke GT (2011) FdC1, a novel ferredoxin protein capable of alternative electron partitioning, increases in conditions of acceptor limitation at photosystem I. J Biol Chem 286: 50-59
  198. Nechushtai R, Lammert H, Michaeli D, Eisenberg-Domovich Y, Zuris J, Luca M, Capraro D, Fish A, Shimshon O, Roy M, Schug A, Whitford P, Livnah O, Onuchic J, Jennings P (2011) Allostery in the ferredoxin protein motif does not involve a conformational switch. Proc Natl Acad Sci U S A 108: 2240-2245
  199. Imlay JA (2008) Cellular defenses against superoxide and hydrogen peroxide. Annual Review of Biochemistry 77: 755-776
  200. Weerapana E, Wang C, Simon GM, Richter F, Khare S, Dillon MBD, Bachovchin DA, Mowen K, Baker D, Cravatt BF (2010) Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468: 790-795
  201. Song D, Lee FS (2011) Mouse knockout of Iop1 reveals its essential role in mammalian cytosolic iron- sulfur protein biogenesis. J Biol Chem in press: 10.1074/jbc.M1110.201731
  202. Sevrioukova IF, Poulos TL (2011) Structural biology of redox partner interactions in P450cam monooxygenase: A fresh look at an old system. Arch Biochem Biophys 507: 66-74
  203. Rutherford JC, Bird AJ (2004) Metal-Responsive Transcription Factors That Regulate Iron, Zinc, and Copper Homeostasis in Eukaryotic Cells. Eukaryot Cell 3: 1-13
  204. Rawat S, Stemmler TL (2011) Key players and their role during mitochondrial iron-sulfur cluster biosynthesis. Chemistry 17: 746-753
  205. Vogelstein B, Gillespie D (1979) Preparative and analytical purification of DNA from agarose. Proc Natl Acad Sci U S A 76: 615-619
  206. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76: 4350-4354
  207. Zheng LM, White RH, Cash VL, Jack RF, Dean DR (1993) Cysteine desulfurase activity indicates a role for NIFS in metallocluster biosynthesis. Proceedings of the National Academy of Sciences of the United States of America 90: 2754-2758
  208. Yarunin A, Panse VG, Petfalski E, Dez C, Tollervey D, Hurt EC (2005) Functional link between ribosome formation and biogenesis of iron-sulfur proteins. Embo Journal 24: 580-588
  209. Miyashita O, Okamura MY, Onuchic JN (2005) Interprotein electron transfer from cytochrome c(2) to photosynthetic reaction center: Tunneling across an aqueous interface. Proceedings of the National Academy of Sciences of the United States of America 102: 3558-3563
  210. Patzer SI, Hantke K (1999) SufS is a NifS-like protein, and SufD is necessary for stability of the 2Fe-2S FhuF protein in Escherichia coli. Journal of Bacteriology 181: 3307-3309
  211. Mortenson LE, Carnahan JE, Valentine RC (1962) An electron transport factor from Clostridium pasteurianum. Biochemical and Biophysical Research Communications 7: 448-452
  212. Wall MA, Coleman DE, Lee E, Iniguezlluhi JA, Posner BA, Gilman AG, Sprang SR (1995) The structure of the G protein heterotrimer Gi alpha 1 beta 1 gamma 2. Cell 83: 1047-1058
  213. Mesecke N, Terziyska N, Kozany C, Baumann F, Neupert W, Hell K, Herrmann JM (2005) A disulfide relay system in the intermembrane space of mitochondria that mediates protein import. Cell 121: 1059-1069
  214. Johnstone RW, Wang J, Tommerup N, Vissing H, Roberts T, Shi Y (1998) Ciao 1 is a novel WD40 protein that interacts with the tumor suppressor protein WT1. Journal of Biological Chemistry 273: 10880-10887
  215. Sutak R, Lesuisse E, Tachezy J, Richardson DR (2008) Crusade for iron: iron uptake in unicellular eukaryotes and its significance for virulence. Trends Microbiol 16: 261-268
  216. Meyer J (2008) Iron-sulfur protein folds, iron-sulfur chemistry, and evolution. J Biol Inorg Chem 13: 157-170


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten