Publikationsserver der Universitätsbibliothek Marburg

Titel:High-Performance Computing of Flow, Diffusion, and Hydrodynamic Dispersion in Random Sphere Packings
Autor:Khirevich, Siarhei
Weitere Beteiligte: Tallarek, Ulrich (Prof. Dr.)
Veröffentlicht:2011
URI:https://archiv.ub.uni-marburg.de/diss/z2011/0057
URN: urn:nbn:de:hebis:04-z2011-00578
DOI: https://doi.org/10.17192/z2011.0057
DDC:500 Naturwissenschaften
Titel (trans.):Hochleistungssimulation von Druckfluss, Diffusion, und hydrodynamische Dispersion in Zufallskugelpackungen
Publikationsdatum:2011-03-15
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
random walk particle tracking, hydrodynamic dispersion, Zufallsweg-Partikelverfolgungs-Verfahrens, Packungsmikrostruktur, lattice Boltzmann method, random sphere packing, hydrodynamische Dispersion, Zufallskugelpackungen, Gitter-Boltzmann-Methode
Referenziert von:

Summary:
This thesis is dedicated to the study of mass transport processes (flow, diffusion, and hydrodynamic dispersion) in computer-generated random sphere packings. Periodic and confined packings of hard impermeable spheres were generated using Jodrey–Tory and Monte Carlo procedure-based algorithms, mass transport in the packing void space was simulated using the lattice Boltzmann and random walk particle tracking methods. Simulation codes written in C programming language using MPI library allowed an efficient use of the high-performance computing systems (supercomputers). The first part of this thesis investigates the influence of the cross-sectional geometry of the confined random sphere packings on the hydrodynamic dispersion. Packings with different values of porosity (interstitial void space fraction) generated in containers of circular, quadratic, rectangular, trapezoidal, and irregular (reconstructed) geometries were studied, and resulting pre-asymptotic and close-to-asymptotic hydrodynamic dispersion coefficients were analyzed. It was demonstrated i) a significant impact of the cross-sectional geometry and porosity on the hydrodynamic dispersion coefficients, and ii) reduction of the symmetry of the cross section results in longer times to reach close-to-asymptotic values and larger absolute values of the hydrodynamic dispersion coefficients. In case of reconstructed geometry, good agreement with experimental data was found. In the second part of this thesis i) length scales of heterogeneity persistent in unconfined and confined sphere packings were analyzed and correlated with a time behavior of the hydrodynamic dispersion coefficients; close-to-asymptotic values of the dispersion coefficients (expressed in terms of plate height) were successfully fitted to the generalized Giddings equation; ii) influence of the packing microstructural disorder on the effective diffusion and hydrodynamic dispersion coefficients was investigated and clear qualitative corellation with geometrical descriptors (which are based on Delaunay and Voronoi spatial tessellations) was demonstrated.

Bibliographie / References

  1. M. STÖHR. Analysis of flow and transport in refractive index matched porous media. PhD thesis. Germany, Ruprecht Karl University of Heidelberg, 2003. (see p. 35)
  2. S. P. KUTTANIKKAD. Pore-scale direct numerical simulation of flow and transport in porous media. PhD thesis. Germany, Ruprecht Karl University of Heidelberg, 2009. (see pp. 24, 27, 33, 35, 39)
  3. W. FRINGS, F. WOLF, and V. PETKOV. " Scalable massively parallel I/O to task-local files " in: Proceed- ings of the Conference on High Performance Computing Networking, Storage and Analysis. New York, NY, USA, 2009. (see p. 47)
  4. S. S. SKIENA. The algorithm design manual. 2 nd ed. Springer-Verlag, 2008. (see pp. 5, 8)
  5. T. ASTE and D. L. WEAIRE. The pursuit of perfect packing. Taylor & Francis, 2000. (see p. 108)
  6. X. SHAN, X.-F. YUAN, and H. CHEN. Kinetic theory representation of hydrodynamics: a way beyond the Navier – Stokes equation. Journal of Fluid Mechanics, 550: 413 – 441, 2006. DOI: 10 . 1017 / S0022112005008153 (see p. 16)
  7. U. TALLAREK, K. ALBERT, E. BAYER, and G. GUIOCHON. Measurement of transverse and axial appar- ent dispersion coefficients in packed beds. AIChE Journal, 42: 3041 – 3054, 1996. DOI: 10.1002/ aic.690421106 (see p. 60)
  8. E. VANDRE, R. S. MAIER, D. M. KROLL, A. MCCORMICK, and H. T. DAVIS. Diameter-dependent dispersion in cylindrical bead packs. AIChE Journal, 54: 2024 – 2028, 2008. DOI: 10.1002/aic. 11529 (see p. 98)
  9. H. AHN and S. BRANDANI. Analysis of breakthrough dynamics in rectangular channels of arbitrary aspect ratio. AIChE Journal, 51: 1980 – 1990, 2005. DOI: 10.1002/aic.10432 (see p. 30)
  10. R. S. MAIER, D. M. KROLL, and H. T. DAVIS. Diameter-dependent dispersion in packed cylinders. AIChE Journal, 53: 527 – 530, 2007. DOI: 10.1002/aic.11083 (see pp. 37, 39, 50, 61, 92, 98, 118, 135)
  11. U. M. SCHEVEN. Dispersion in non-ideal packed beds. AIChE Journal, 56: 289 – 297, 2010. DOI: 10.1002/aic.11993 (see p. 39)
  12. Y. COHEN and A. B. METZNER. Wall effects in laminar flow of fluids through packed beds. AIChE Journal, 27: 705 – 715, 1981. DOI: 10.1002/aic.690270502 (see p. 22)
  13. K. E. THOMPSON and H. S. FOGLER. Modeling flow in disordered packed beds from pore-scale fluid mechanics. AIChE Journal, 43: 1377 – 1389, 1997. DOI: 10.1002/aic.690430602 (see pp. 110, 132)
  14. J. D. SEYMOUR and P. T. CALLAGHAN. Generalized approach to NMR analysis of flow and dispersion in porous media. AIChE Journal, 43: 2096 – 2111, 1997. DOI: 10.1002/aic.690430817 (see pp. 36 – 38)
  15. B. MANZ, L. F. GLADDEN, and P. B. WARREN. Flow and dispersion in porous media: Lattice- Boltzmann and NMR studies. AIChE Journal, 45: 1845 – 1854, 1999. DOI: 10.1002/aic.690450902 (see pp. 4, 92)
  16. M. WINTERBERG and E. TSOTSAS. Impact of tube-to-particle – diameter ratio on pressure drop in packed beds. AIChE Journal, 46: 1084 – 1088, 2000. DOI: 10.1002/aic.690460519 (see p. 22)
  17. B. G. YEW, J. URETA, R. A. SHALLIKER, E. C. DRUMM, and G. GUIOCHON. Mechanics of column beds: II. Modeling of coupled stress – strain-flow behavior. AIChE Journal, 49: 642 – 664, 2003. DOI: 10.1002/aic.690490310 (see p. 109)
  18. A. DE KLERK. Voidage variation in packed beds at small column to particle diameter ratio. AIChE Journal, 49: 2022 – 2029, 2003. DOI: 10.1002/aic.690490812 (see pp. 50, 63, 66, 68, 73, 86, 97, 106, 118)
  19. D. TANG, A. JESS, X. REN, B. BLUEMICH, and S. STAPF. Axial dispersion and wall effects in nar- row fixed bed reactors: A comparative study based on RTD and NMR measurements. Chemical Engineering & Technology, 27: 866 – 873, 2004. DOI: 10.1002/ceat.200402076 (see pp. 50, 97)
  20. D. S. GREBENKOV. Use, misuse, and abuse of apparent diffusion coefficients. Concepts in Magnetic Resonance Part A, 36A: 24 – 35, 2010. DOI: 10.1002/cmr.a.20152 (see p. 36)
  21. N. LION, T. C. ROHNER, L. DAYON, I. L. ARNAUD, E. DAMOC, N. YOUHNOVSKI, Z.-Y. WU, C. ROUSSEL, J. JOSSERAND, H. JENSEN, J. S. ROSSIER, M. PRZYBYLSKI, and H. H. GIRAULT. Microfluidic systems in proteomics. Electrophoresis, 24: 3533 – 3562, 2003. DOI: 10.1002/elps.200305629 (see p. 48)
  22. K. W. RO, R. NAYAK, and D. R. KNAPP. Monolithic media in microfluidic devices for proteomics. Electrophoresis, 27: 3547 – 3558, 2006. DOI: 10.1002/elps.200600058 (see pp. 49, 63)
  23. K. OHNO, K. TACHIKAWA, and M. MANZ. Microfluidics: Applications for analytical purposes in chemistry and biochemistry. Electrophoresis, 29: 4443 – 4453, 2008. DOI: 10.1002/elps.200800121 (see p. 75)
  24. N. N. MEDVEDEV, V. P. VOLOSHIN, V. A. LUCHNIKOV, and M. L. GAVRILOVA. An algorithm for three- dimensional Voronoi S-network. Journal of Computational Chemistry, 27: 1676 – 1692, 2006. DOI: 10.1002/jcc.20484 (see p. 11)
  25. K. MIYABE and G. GUIOCHON. Measurement of the parameters of the mass transfer kinetics in high performance liquid chromatography. Journal of Separation Science, 26: 155 – 173, 2003. DOI: 10.1002/jssc.200390024 (see pp. 94, 117)
  26. G. P. ROZING, T. VAN DE GOOR, H. YIN, K. KILLEEN, B. GLATZ, K. KRAICZEK, and H. H. LAUER. An experimental study of chromatographic dynamics in open and packed non-cylindrical conduits. Journal of Separation Science, 27: 1391 – 1401, 2004. DOI: 10.1002/jssc.200401856 (see pp. 3, 50, 63, 76)
  27. H. EGHBALI and G. DESMET. Optimum kinetic performance of open-tubular separations in microflu- idic devices. Journal of Separation Science, 30: 1377 – 1397, 2007. DOI: 10.1002/jssc.200600464 (see p. 50)
  28. J. HERNÁNDEZ-BORGES, Z. ATURKI, A. ROCCO, and S. FANALI. Recent applications in nanoliquid chromatography. Journal of Separation Science, 30: 1589 – 1610, 2007. DOI: 10.1002/jssc.200700 061 (see pp. 62, 75)
  29. H. EGHBALI, W. DE MALSCHE, J. DE SMET, J. BILLEN, M. DE PRA, W. TH. KOK, P. J. SCHOENMAKERS, H. GARDENIERS, and G. DESMET. Experimental investigation of the band broadening originating from the top and bottom walls in micromachined nonporous pillar array columns. Journal of Sepa- ration Science, 30: 2605 – 2613, 2007. DOI: 10.1002/jssc.200700203 (see p. 42)
  30. J. M. SAZ and M. L. MARINA. Application of micro-and nano-HPLC to the determination and characterization of bioactive and biomarker peptides. Journal of Separation Science, 31: 446 – 458, 2008. DOI: 10.1002/jssc.200700589 (see p. 75)
  31. S. EHLERT, T. RÖSLER, and U. TALLAREK. Packing density of slurry-packed capillaries at low aspect ratios. Journal of Separation Science, 31: 1719 – 1728, 2008. DOI: 10.1002/jssc.200800018 (see pp. 65, 78)
  32. T. ABE. Derivation of the lattice Boltzmann method by means of the discrete ordinate method for the Boltzmann equation. Journal of Computational Physics, 131: 241 – 246, 1997. DOI: 10.1006/ jcph.1996.5595 (see p. 15)
  33. A. P. PHILIPSE and C. PATHMAMANOHARAN. Liquid permeation (and sedimentation) of dense col- loidal hard-sphere packings. Journal of Colloid and Interface Science, 159: 96 – 107, 1993. DOI: 10.1006/jcis.1993.1301 (see p. 21)
  34. S. BRYANT, G. MASON, and D. MELLOR. Quantification of spatial correlation in porous media and its effect on mercury porosimetry. Journal of Colloid and Interface Science, 177: 88 – 100, 1996. DOI: 10.1006/jcis.1996.0009 (see p. 132)
  35. R. S. MAIER, D. M. KROLL, H. T. DAVIS, and R. S. BERNARD. Simulation of flow in bidisperse sphere packings. Journal of Colloid and Interface Science, 217: 341 – 347, 1999. DOI: 10.1006/jcis.1999. 6372 (see p. 21)
  36. A. Z. ZINCHENKO. Algorithm for random close packing of spheres with periodic boundary conditions. Journal of Computational Physics, 114: 298 – 307, 1994. DOI: 10.1006/jcph.1994.1168 (see pp. 5, 9, 129)
  37. D. KANDHAI, A. KOPONEN, A. G. HOEKSTRA, M. KATAJA, J. TIMONEN, and P. M. A. SLOOT. Im- plementation aspects of 3D lattice-BGK: boundaries, accuracy, and a new fast relaxation method. Journal of Computational Physics, 150: 482 – 501, 1999. DOI: 10.1006/jcph.1999.6191 (see p. 18)
  38. R. M. H. MERKS, A. G. HOEKSTRA, and P. M. A. SLOOT. The moment propagation method for advection – diffusion in the lattice Boltzmann method: Validation and Péclet number limits. Journal of Computational Physics, 183: 563 – 576, 2002. DOI: 10.1006/jcph.2002.7209 (see p. 35)
  39. L. L. LATOUR, P. P. MITRA, R. L. KLEINBERG, and C. H. SOTAK. Time-dependent diffusion coefficient of fluids in porous media as a probe of surface-to-volume ratio. Journal of Magnetic Resonance, Series A, 101: 342 – 346, 1993. DOI: 10.1006/jmra.1993.1056 (see p. 102)
  40. N. REBOUL, ERIC VINCENS, and B. CAMBOU. A statistical analysis of void size distribution in a simulated narrowly graded packing of spheres. Granular Matter, 10: 457 – 468, 2008. DOI: 10.1007/ s10035-008-0111-5 (see p. 132)
  41. J. P. DU PLESSIS and J. H. MASLIYAH. Mathematical modelling of flow through consolidated isotropic porous media. Transport in Porous Media, 3: 145 – 161, 1988. DOI: 10.1007/BF00820342 (see p. 126)
  42. S. WOLFRAM. Cellular automaton fluids 1: Basic theory. Journal of Statistical Physics, 45: 471 – 526, 1986. DOI: 10.1007/BF01021083 (see p. 14)
  43. B. D. LUBACHEVSKY and F. H. STILLINGER. Geometric properties of random disk packings. Journal of Statistical Physics, 60: 561 – 583, 1990. DOI: 10.1007/BF01025983 (see p. 5)
  44. B. D. LUBACHEVSKY, F. H. STILLINGER, and E. N. PINSON. Disks vs. spheres: Contrasting properties of random packings. Journal of Statistical Physics, 64: 501 – 524, 1991. DOI: 10.1007/BF01048304 (see p. 5)
  45. S. CHEN, Z. WANG, X. SHAN, and G. D. DOOLEN. Lattice Boltzmann computational fluid dynamics in three dimensions. Journal of Statistical Physics, 68: 379 – 400, 1992. DOI: 10.1007/BF01341754 (see p. 14)
  46. X. HE, Q. ZOU, L.-S. LUO, and M. DEMBO. Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model. Journal of Statistical Physics, 87: 115 – 136, 1997. DOI: 10.1007/BF02181482 (see pp. 17, 18)
  47. S. C. JAKEWAY, A. J. DE MELLO, and E. L. RUSSELL. Miniaturized total analysis systems for biological analysis. Fresenius' Journal of Analytical Chemistry, 366: 525 – 539, 2000. DOI: 10.1007/s00216005 1548 (see p. 48)
  48. D. BUYUKTAS and W. W. WALLENDER. Dispersion in spatially periodic porous media. Heat and Mass Transfer, 40: 261 – 270, 2004. DOI: 10.1007/s00231-003-0441-0 (see p. 33)
  49. J. M. P. Q. DELGADO. A critical review of dispersion in packed beds. Heat and Mass Transfer, 42: 279 – 310, 2006. DOI: 10.1007/s00231-005-0019-0 (see pp. 35, 50, 63, 90, 92, 93, 95, 98, 116, 118, 126)
  50. K. BAGI. On the concept of jammed configurations from a structural mechanics perspective. Granular Matter, 9: 109 – 134, 2007. DOI: 10.1007/s10035-006-0016-0 (see p. 109)
  51. J. Q. XU, R. P. ZOU, and A. B. YU. Analysis of the packing structure of wet spheres by Voronoi – Delaunay tessellation. Granular Matter, 9: 455 – 463, 2007. DOI: 10.1007/s10035-007-0052-4 (see pp. 113, 132)
  52. S. RÉMOND, J. L. GALLIAS, and A. MIZRAHI. Characterization of voids in spherical particle systems by Delaunay empty spheres. Granular Matter, 10: 329 – 334, 2008. DOI: 10.1007/s10035-008-0092-4 (see p. 132)
  53. P. RICHARD, L. OGER, J. LEMAÎTRE, L. SAMSON, and N. N. MEDVEDEV. Application of the Voronoï tessellation to study transport and segregation of grains inside 2D and 3D packings of spheres. Granular Matter, 1: 203 – 211, 1999. DOI: 10.1007/s100350050026 (see p. 113)
  54. D. SPIVAKOVSKAYA, A. W. HEEMINK, and E. DELEERSNIJDER. Lagrangian modelling of multi- dimensional advection – diffusion with space-varying diffusivities: theory and idealized test cases. Ocean Dynamics, 57: 189 – 203, 2007. DOI: 10.1007/s10236-007-0102-9 (see pp. 25, 28)
  55. D. DUTTA, A. RAMACHANDRAN, and D. T. LEIGHTON. Effect of channel geometry on solute dispersion in pressure-driven microfluidic systems. Microfluidics and Nanofluidics, 2: 275 – 290, 2006. DOI: 10.1007/s10404-005-0070-7 (see pp. 30, 50, 63, 80)
  56. A. V. ANIKEENKO, N. N. MEDVEDEV, M. K. KOVALEV, and M. S. MELGUNOV. Simulation of gas diffusion in porous layers of varying structure. Journal of Structural Chemistry, 50: 403 – 410, 2009. DOI: 10.1007/s10947-009-0061-8 (see p. 136)
  57. W.-A. YONG and L.-S. LUO. Nonexistence of H-theorem for some lattice Boltzmann models. Journal of Statistical Physics, 121: 91 – 103, 2005. DOI: 10.1007/s10955-005-5958-9 (see p. 16)
  58. M. PILLER, G. SCHENA, M. NOLICH, S. FAVRETTO, F. RADAELLI, and E. ROSSI. Analysis of hydraulic permeability in porous media: from high resolution X-ray tomography to direct numerical simulation. Transport in Porous Media, 80: 57 – 78, 2009. DOI: 10.1007/s11242-009-9338-9 (see p. 4)
  59. B. P. LEONARD. The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection. Computer Methods in Applied Mechanics and Engineering, 88: 17 – 74, 1991. DOI: 10.1016/ 0045-7825(91)90232-U (see p. 24)
  60. M.-K. LIU and J. H. SEINFELD. On the validity of grid and trajectory models of urban air pollution. Atmospheric Environment, 9: 555 – 574, 1975. DOI: 10.1016/0004-6981(75)90001-3 (see p. 24)
  61. J. J. VAN DEEMTER, F. J. ZUIDERWEG, and A. KLINKENBERG. Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography. Chemical Engineering Science, 5: 271 – 289, 1956. DOI: 10.1016/0009-2509(56)80003-1 (see pp. 94, 123)
  62. P. MISHRA, D. SINGH, and I. M. MISHRA. Momentum transfer to Newtonian and non-Newtonian fluids flowing through packed and fluidized beds. Chemical Engineering Science, 30: 397 – 405, 1975. DOI: 10.1016/0009-2509(75)85004-4 (see p. 22)
  63. M. QUINTARD and S. WHITAKER. Transport in ordered and disordered porous media: Volume- averaged equations, closure problems, and comparison with experiment. Chemical Engineering Sci- ence, 48: 2537 – 2564, 1993. DOI: 10.1016/0009-2509(93)80266-S (see p. 35)
  64. Computer Physics Communications, 64: 183 – 192, 1991. DOI: 10.1016/0010-4655(91)90060-X (see pp. 8, 9)
  65. B. P. BOUDREAU. The diffusive tortuosity of fine-grained unlithified sediments. Geochimica et Cos- mochimica Acta, 60: 3139 – 3142, 1996. DOI: 10.1016/0016-7037(96)00158-5 (see pp. 126, 131)
  66. G. T. NOLAN and P. E. KAVANAGH. Computer simulation of random packing of hard spheres. Powder Technology, 72: 149 – 155, 1992. DOI: 10.1016/0032-5910(92)88021-9 (see p. 5)
  67. M. B. REIDER and J. D. STERLING. Accuracy of discrete-velocity BGK models for the simulation of the incompressible Navier – Stokes equations. Computers & Fluids, 24: 459 – 467, 1995. DOI: 10.1016/0045-7930(94)00037-Y (see p. 17)
  68. J. TOBIS' and D. VORTMEYER. Scale-up effects due to near-wall channelling in isothermal adsorption columns: on the limitations in the use of plug flow models. Chemical Engineering and Processing: Process Intensification, 29: 147 – 153, 1991. DOI: 10.1016/0255-2701(91)85014-F (see p. 98)
  69. A. S. SANGANI and A. ACRIVOS. Slow flow through a periodic array of spheres. International Journal of Multiphase Flow, 8: 343 – 360, 1982. DOI: 10.1016/0301-9322(82)90047-7 (see p. 20)
  70. P. M. ADLER, M. ZUZOVSKY, and H. BRENNER. Spatially periodic suspensions of convex particles in linear shear flows. II. Rheology. International Journal of Multiphase Flow, 11: 387 – 417, 1985. DOI: 10.1016/0301-9322(85)90064-3 (see p. 18)
  71. S. F. EDWARDS and R. B. S. OAKESHOTT. Theory of powders. Physica A: Statistical and Theoretical Physics, 157: 1080 – 1090, 1989. DOI: 10.1016/0378-4371(89)90034-4 (see pp. 108, 116)
  72. E. K. ZHOLKOVSKIJ and J. H. MASLIYAH. Influence of cross-section geometry on band broadening in plug-flow microchannels. Chemical Engineering Science, 61: 4155 – 4164, 2006. DOI: 10.1016/j. ces.2005.10.020 (see p. 63)
  73. E. W. LLEWELLIN. LBflow: An extensible lattice Boltzmann framework for the simulation of geo- physical flows. Part II: usage and validation. Computers & Geosciences, 36: 123 – 132, 2010. DOI: 10.1016/j.cageo.2009.08.003 (see p. 20)
  74. C. SUN and L. L. MUNN. Lattice-Boltzmann simulation of blood flow in digitized vessel networks. Computers & Mathematics with Applications, 55: 1594 – 1600, 2008. DOI: 10.1016/j.camwa.2007. 08.019 (see p. 17)
  75. A. JAFARI, P. ZAMANKHAN, S. M. MOUSAVI, and K. PIETARINEN. Modeling and CFD simulation of flow behavior and dispersivity through randomly packed bed reactors. Chemical Engineering Journal, 144: 476 – 482, 2008. DOI: 10.1016/j.cej.2008.07.033 (see p. 35)
  76. E. DU PLESSIS, S. WOUDBERG, and J. P. DU PLESSIS. Pore-scale modelling of diffusion in unconsoli- dated porous structures. Chemical Engineering Science, 65: 2541 – 2551, 2010. DOI: 10.1016/j.ces. 2009.12.033 (see p. 126)
  77. R. DI FELICE and L. G. GIBILARO. Wall effects for the pressure drop in fixed beds. Chemical Engi- neering Science, 59: 3037 – 3040, 2004. DOI: 10.1016/j.ces.2004.03.030 (see p. 22)
  78. J. M. ZALC, S. C. REYES, and E. IGLESIA. The effects of diffusion mechanism and void structure on transport rates and tortuosity factors in complex porous structures. Chemical Engineering Science, 59: 2947 – 2960, 2004. DOI: 10.1016/j.ces.2004.04.028 (see p. 102)
  79. L. SHEN and Z. CHEN. Critical review of the impact of tortuosity on diffusion. Chemical Engineering Science, 62: 3748 – 3755, 2007. DOI: 10.1016/j.ces.2007.03.041 (see p. 126)
  80. H. P. ZHU, Z. Y. ZHOU, R. Y. YANG, and A. B. YU. Discrete particle simulation of particulate systems: A review of major applications and findings. Chemical Engineering Science, 63: 5728 – 5770, 2008. DOI: 10.1016/j.ces.2008.08.006 (see p. 109)
  81. F. AUGIER, F. IDOUX, and J. Y. DELENNE. Numerical simulations of transfer and transport properties inside packed beds of spherical particles. Chemical Engineering Science, 65: 1055 – 1064, 2010. DOI: 10.1016/j.ces.2009.09.059 (see pp. 36 – 38, 135, 136)
  82. S. EELTINK, G. P. ROZING, P. J. SCHOENMAKERS, and W. TH. KOK. Study of the influence of the aspect ratio on efficiency, flow resistance and retention factors of packed capillary columns in pressure- and electrically-driven liquid chromatography. Journal of Chromatography A, 1044: 311 – 316, 2004. DOI: 10.1016/j.chroma.2004.06.007 (see p. 50)
  83. J. BILLEN, P. GZIL, N. VERVOORT, G. V. BARON, and G. DESMET. Influence of the packing hetero- geneity on the performance of liquid chromatography supports. Journal of Chromatography A, 1073: 53 – 61, 2005. DOI: 10.1016/j.chroma.2004.10.042 (see pp. 33, 124)
  84. C.-Y. SHIH, Y. CHEN, J. XIE, Q. HE, and Y.-C. TAI. On-chip temperature gradient interaction chro- matography. Journal of Chromatography A, 1111: 272 – 278, 2006. DOI: 10.1016/j.chroma.2005. 08.075 (see pp. 2, 49, 62, 76)
  85. K. W. RO, J. LIU, and D. R. KNAPP. Plastic microchip liquid chromatography-matrix-assisted laser desorption/ionization mass spectrometry using monolithic columns. Journal of Chromatography A, 1111: 40 – 47, 2006. DOI: 10.1016/j.chroma.2006.01.105 (see pp. 2, 49, 62, 63, 76)
  86. D. HLUSHKOU and U. TALLAREK. Transition from creeping via viscous-inertial to turbulent flow in fixed beds. Journal of Chromatography A, 1126: 70 – 85, 2006. DOI: 10.1016/j.chroma.2006.06. 011 (see pp. 27, 98)
  87. A. ISHIDA, T. YOSHIKAWA, M. NATSUME, and T. KAMIDATE. Reversed-phase liquid chromatography on a microchip with sample injector and monolithic silica column. Journal of Chromatography A, 1132: 90 – 98, 2006. DOI: 10.1016/j.chroma.2006.07.025 (see pp. 49, 62, 76)
  88. G. GUIOCHON. The limits of the separation power of unidimensional column liquid chromatography. Journal of Chromatography A, 1126: 6 – 49, 2006. DOI: 10.1016/j.chroma.2006.07.032 (see pp. 92, 109)
  89. J. DE SMET, P. GZIL, G. V. BARON, and G. DESMET. On the 3-dimensional effects in etched chips for high performance liquid chromatography-separations. Journal of Chromatography A, 1154: 189 – 197, 2007. DOI: 10.1016/j.chroma.2007.03.076 (see p. 42)
  90. J. BILLEN and G. DESMET. Understanding and design of existing and future chromatographic support formats. Journal of Chromatography A, 1168: 73 – 99, 2007. DOI: 10.1016/j.chroma.2007.07.069 (see p. 63)
  91. K. BROECKHOVEN and G. DESMET. Approximate transient and long time limit solutions for the band broadening induced by the thin sidewall-layer in liquid chromatography columns. Journal of Chromatography A, 1172: 25 – 39, 2007. DOI: 10.1016/j.chroma.2007.09.052 (see p. 86)
  92. M. DE PRA, W. TH. KOK, and P. J. SCHOENMAKERS. Topographic structures and chromatographic supports in microfluidic separation devices. Journal of Chromatography A, 1184: 560 – 572, 2008. DOI: 10.1016/j.chroma.2007.09.086 (see pp. 63, 75)
  93. K. K. UNGER, R. SKUDAS, and M. M. SCHULTE. Particle packed columns and monolithic columns in high-performance liquid chromatography — comparison and critical appraisal. Journal of Chro- matography A, 1184: 393 – 415, 2008. DOI: 10.1016/j.chroma.2007.11.118 (see p. 109)
  94. S. JUNG, S. EHLERT, J.-A. MORA, K. KRAICZEK, M. DITTMANN, G. P. ROZING, and U. TALLAREK. Packing density, permeability, and separation efficiency of packed microchips at different particle- aspect ratios. Journal of Chromatography A, 1216: 264 – 273, 2009. DOI: 10.1016/j.chroma.2008. 11.073 (see pp. 22, 76, 78, 81, 87, 88)
  95. K. BROECKHOVEN, D. CABOOTER, F. LYNEN, P. SANDRA, and G. DESMET. Errors involved in the existing B-term expressions for the longitudinal diffusion in fully porous chromatographic media: Part II: Experimental data in packed columns and surface diffusion measurements. Journal of Chro- matography A, 1188: 189 – 198, 2008. DOI: 10.1016/j.chroma.2008.02.058 (see p. 94)
  96. P. A. LEVKIN, S. EELTINK, T. R. STRATTON, R. BRENNEN, K. ROBOTTI, H. YIN, K. KILLEEN, F. SVEC, and J. M. J. FRÉCHET. Monolithic porous polymer stationary phases in polyimide chips for the fast high-performance liquid chromatography separation of proteins and peptides. Journal of Chromatog- raphy A, 1200: 55 – 61, 2008. DOI: 10.1016/j.chroma.2008.03.025 (see p. 62)
  97. K. BROECKHOVEN and G. DESMET. Numerical and analytical solutions for the column length- dependent band broadening originating from axisymmetrical trans-column velocity gradients. Jour- nal of Chromatography A, 1216: 1325 – 1337, 2009. DOI: 10.1016/j.chroma.2008.12.065 (see p. 92)
  98. S. KHIREVICH, A. DANEYKO, A. HÖLTZEL, A. SEIDEL-MORGENSTERN, and U. TALLAREK. Statis- tical analysis of packed beds, the origin of short-range disorder, and its impact on eddy disper- sion. Journal of Chromatography A, 1217: 4713 – 4722, 2010. DOI: 10.1016/j.chroma.2010. 05.019
  99. D. HLUSHKOU, S. BRUNS, and U. TALLAREK. High-performance computing of flow and transport in physically reconstructed silica monoliths. Journal of Chromatography A, 1217: 3674 – 3682, 2010. DOI: 10.1016/j.chroma.2010.04.004 (see p. 4)
  100. S. KHIREVICH, A. DANEYKO, A. HÖLTZEL, A. SEIDEL-MORGENSTERN, and U. TALLAREK. Statistical analysis of packed beds, the origin of short-range disorder, and its impact on eddy dispersion. Journal of Chromatography A, 1217: 4713 – 4722, 2010. DOI: 10.1016/j.chroma.2010.05.019 (see p. 108)
  101. D. VIDAL, C. RIDGWAY, G. PIANET, J. SCHOELKOPF, R. ROY, and F. BERTRAND. Effect of particle size distribution and packing compression on fluid permeability as predicted by lattice-Boltzmann simulations. Computers & Chemical Engineering, 33: 256 – 266, 2009. DOI: 10.1016/j.compchemeng. 2008.09.003 (see pp. 21, 136)
  102. G. WELLEIN, T. ZEISER, G. HAGER, and S. DONATH. On the single processor performance of simple lattice Boltzmann kernels. Computers & Fluids, 35: 910 – 919, 2006. DOI: 10.1016/j.compfluid. 2005.02.008 (see p. 44)
  103. C. PAN, L.-S. LUO, and C. T. MILLER. An evaluation of lattice Boltzmann schemes for porous medium flow simulation. Computers & Fluids, 35: 898 – 909, 2006. DOI: 10.1016/j.compfluid.2005.03.008 (see pp. 17, 20)
  104. S. GELLER, M. KRAFCZYK, J. TÖLKE, S. TUREK, and J. HRON. Benchmark computations based on lattice-Boltzmann, finite element and finite volume methods for laminar flows. Computers & Fluids, 35: 888 – 897, 2006. DOI: 10.1016/j.compfluid.2005.08.009 (see p. 17)
  105. Z. YAO, J.-S. WANG, G.-R. LIU, and M. CHENG. Improved neighbor list algorithm in molecular simulations using cell decomposition and data sorting method. Computer Physics Communications, 161: 27 – 35, 2004. DOI: 10.1016/j.cpc.2004.04.004 (see p. 5)
  106. P. H. ISRAELSSON, Y. D. KIM, and E. E. ADAMS. A comparison of three Lagrangian approaches for extending near field mixing calculations. Environmental Modelling & Software, 21: 1631 – 1649, 2006. DOI: 10.1016/j.envsoft.2005.07.008 (see p. 26)
  107. M. BAHRAMI, M. M. YOVANOVICH, and J. R. CULHAM. A novel solution for pressure drop in singly connected microchannels of arbitrary cross-section. International Journal of Heat and Mass Transfer, 50: 2492 – 2502, 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.12.019 (see p. 63)
  108. J. LIU, K.-W. RO, R. NAYAK, and D. R. KNAPP. Monolithic column plastic microfluidic device for peptide analysis using electrospray from a channel opening on the edge of the device. International Journal of Mass Spectrometry, 259: 65 – 72, 2007. DOI: 10.1016/j.ijms.2006.08.017 (see pp. 49, 62, 76) [230] NANOSTREAM. Brio Cartridges. (see p. 49)
  109. R. Y. YANG, R. P. ZOU, A. B. YU, and S. K. CHOI. Pore structure of the packing of fine particles. Journal of Colloid and Interface Science, 299: 719 – 725, 2006. DOI: 10.1016/j.jcis.2006.02.041 (see p. 132)
  110. P. SALAMON, D. FERNÀNDEZ-GARCIA, and J. J. GÓMEZ-HERNÁNDEZ. A review and numerical assess- ment of the random walk particle tracking method. Journal of Contaminant Hydrology, 87: 277 – 305, 2006. DOI: 10.1016/j.jconhyd.2006.05.005 (see p. 25)
  111. A. DONEV, S. TORQUATO, and F. H. STILLINGER. Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. I. Algorithmic details. Journal of Computational Physics, 202: 737 – 764, 2005. DOI: 10.1016/j.jcp.2004.08.014 (see p. 5)
  112. R. S. MAIER and R. S. BERNARD. Lattice-Boltzmann accuracy in pore-scale flow simulation. Journal of Computational Physics, 229: 233 – 255, 2010. DOI: 10.1016/j.jcp.2009.09.013 (see pp. 18, 20, 21, 39, 127)
  113. R. P. DIAS, C. S. FERNANDES, J. A. TEIXEIRA, M. MOTA, and A. YELSHIN. Permeability analysis in bisized porous media: Wall effect between particles of different size. Journal of Hydrology, 349: 470 – 474, 2008. DOI: 10.1016/j.jhydrol.2007.11.020 (see p. 21)
  114. A. S. KIM and H. CHEN. Diffusive tortuosity factor of solid and soft cake layers: A random walk simulation approach. Journal of Membrane Science, 279: 129 – 139, 2006. DOI: 10.1016/j.memsci. 2005.11.042 (see pp. 27, 127)
  115. R. MIZUTANI, A. TAKEUCHI, R. Y. OSAMURA, S. TAKEKOSHI, K. UESUGI, and Y. SUZUKI. Submicrome- ter tomographic resolution examined using a micro-fabricated test object. Micron, 41: 90 – 95, 2010. DOI: 10.1016/j.micron.2009.09.001 (see p. 4)
  116. J. BORRILL, L. OLIKER, J. SHALF, H. SHAN, and A. USELTON. HPC global file system performance analysis using a scientific-application derived benchmark. Parallel Computing, 35: 358 – 373, 2009. DOI: 10.1016/j.parco.2009.02.002 (see p. 47)
  117. J. THEUERKAUF, P. WITT, and D. SCHWESIG. Analysis of particle porosity distribution in fixed beds using the discrete element method. Powder Technology, 165: 92 – 99, 2006. DOI: 10.1016/j.powtec. 2006.03.022 (see pp. 50, 97)
  118. G. E. MUELLER. Numerically packing spheres in cylinders. Powder Technology, 159: 105 – 110, 2005. DOI: 10.1016/j.powtec.2005.06.002 (see pp. 5, 118)
  119. M. D. MANTLE, A. J. SEDERMAN, and L. F. GLADDEN. Single-and two-phase flow in fixed-bed reactors: MRI flow visualisation and lattice-Boltzmann simulations. Chemical Engineering Science, 56: 523 – 529, 2001. DOI: 10.1016/S0009-2509(00)00256-6 (see p. 110)
  120. K. SCHNITZLEIN. Modelling radial dispersion in terms of the local structure of packed beds. Chemical Engineering Science, 56: 579 – 585, 2001. DOI: 10.1016/S0009-2509(00)00263-3 (see p. 136)
  121. B. EISFELD and K. SCHNITZLEIN. The influence of confining walls on the pressure drop in packed beds. Chemical Engineering Science, 56: 4321 – 4329, 2001. DOI: 10.1016/S0009-2509(00)00533-9 (see p. 22)
  122. P. MAGNICO. Hydrodynamic and transport properties of packed beds in small tube-to-sphere diame- ter ratio: pore scale simulation using an Eulerian and a Lagrangian approach. Chemical Engineering Science, 58: 5005 – 5024, 2003. DOI: 10.1016/S0009-2509(03)00282-3 (see pp. 39, 110)
  123. E. MAURET and M. RENAUD. Transport phenomena in multi-particle systems — I. Limits of applica- bility of capillary model in high voidage beds-application to fixed beds of fibers and fluidized beds of spheres. Chemical Engineering Science, 52: 1807 – 1817, 1997. DOI: 10.1016/S0009-2509(96) 00499-X (see pp. 126, 131)
  124. O. BEY and G. EIGENBERGER. Fluid flow through catalyst filled tubes. Chemical Engineering Science, 52: 1365 – 1376, 1997. DOI: 10.1016/S0009-2509(96)00509-X (see p. 96)
  125. R. A. SHALLIKER, B. S. BROYLES, and G. GUIOCHON. Physical evidence of two wall effects in liquid chromatography. Journal of Chromatography A, 888: 1 – 12, 2000. DOI: 10.1016/S0021-9673(00) 00517-3 (see pp. 50, 95, 98, 118)
  126. J. P. C. VISSERS, M. A. HOEBEN, J. LAVEN, H. A. CLAESSENS, and C. A. CRAMERS. Hydrodynamic as- pects of slurry packing processes in microcolumn liquid chromatography. Journal of Chromatography A, 883: 11 – 25, 2000. DOI: 10.1016/S0021-9673(00)00276-4 (see p. 4)
  127. C. H. EON. Comparison of broadening patterns in regular and radially compressed large-diameter columns. Journal of Chromatography, 149: 29 – 42, 1978. DOI: 10.1016/S0021-9673(00)80977-2 (see p. 92)
  128. J. H. KNOX, G. R. LAIRD, and P. A. RAVEN. Interaction of radial and axial dispersion in liquid chromatography in relation to the " infinite diameter effect " . Journal of Chromatography, 122: 129 – 145, 1976. DOI: 10.1016/S0021-9673(00)82240-2 (see p. 92)
  129. H. POPPE. Mass transfer in rectangular chromatographic channels. Journal of Chromatography A, 948: 3 – 17, 2002. DOI: 10.1016/S0021-9673(01)01372-3 (see p. 50)
  130. J. C. GIDDINGS and E. N. FULLER. Particle size nonuniformity in large scale columns. Journal of Chromatography, 7: 255 – 258, 1962. DOI: 10.1016/S0021-9673(01)86405-0 (see p. 106)
  131. A. L. BERDICHEVSKY and U. D. NEUE. Nature of the eddy dispersion in packed beds. Journal of Chromatography, 535: 189 – 198, 1990. DOI: 10.1016/S0021-9673(01)88944-5 (see p. 116)
  132. P. MAGNICO and M. MARTIN. Dispersion in the interstitial space of packed columns. Journal of Chromatography, 517: 31 – 49, 1990. DOI: 10.1016/S0021-9673(01)95708-5 (see pp. 95, 117)
  133. R. A. SHALLIKER, V. WONG, B. S. BROYLES, and G. GUIOCHON. Visualization of bed compression in an axial compression liquid chromatography column. Journal of Chromatography A, 977: 213 – 223, 2002. DOI: 10.1016/S0021-9673(02)01273-6 (see p. 98)
  134. R. A. SHALLIKER, B. S. BROYLES, and G. GUIOCHON. Axial and radial diffusion coefficients in a liquid chromatography column and bed heterogeneity. Journal of Chromatography A, 994: 1 – 12, 2003. DOI: 10.1016/S0021-9673(03)00311-X (see p. 92)
  135. J. H. KNOX. Band dispersion in chromatography — a new view of A-term dispersion. Journal of Chromatography A, 831: 3 – 15, 1999. DOI: 10.1016/S0021-9673(98)00497-X (see pp. 87, 94, 95, 98, 118)
  136. G. GUIOCHON, E. DRUMM, and D. CHERRAK. Evidence of a wall friction effect in the consolidation of beds of packing materials in chromatographic columns. Journal of Chromatography A, 835: 41 – 58, 1999. DOI: 10.1016/S0021-9673(98)01068-1 (see p. 98)
  137. L. A. COLÓN, T. D. MALONEY, and A. M. FERMIER. Packing columns for capillary electrochromatog- raphy. Journal of Chromatography A, 887: 43 – 53, 2000. DOI: 10.1016/S0021-9673(99)01328-X (see p. 4)
  138. A. E. HASSAN and M. M. MOHAMED. On using particle tracking methods to simulate transport in single-continuum and dual continua porous media. Journal of Hydrology, 275: 242 – 260, 2003. DOI: 10.1016/S0022-1694(03)00046-5 (see p. 26)
  139. H. V. NGUYEN, J. L. NIEBER, P. ODURO, C. J. RITSEMA, L. W. DEKKER, and T. S. STEENHUIS. Modeling solute transport in a water repellent soil. Journal of Hydrology, 215: 188 – 201, 1999. DOI: 10.1016/S0022-1694(98)00270-4 (see p. 26)
  140. A. J. SEDERMAN, P. ALEXANDER, and L. F. GLADDEN. Structure of packed beds probed by Magnetic Resonance Imaging. Powder Technology, 117: 255 – 269, 2001. DOI: 10.1016/S0032-5910(00) 00374-0 (see pp. 50, 97)
  141. S. WEISS and A. GOLDSTEIN. Floating point micropipeline performance. Journal of Systems Archi- tecture, 45: 15 – 29, 1998. DOI: 10.1016/S1383-7621(97)00070-2 (see p. 45)
  142. R. J. HILL, D. L. KOCH, and A. J. C. LADD. The first effects of fluid inertia on flows in ordered and random arrays of spheres. Journal of Fluid Mechanics, 448: 213 – 241, 2001. DOI: 10.1017/ S0022112001005948 (see p. 110)
  143. M. A. VAN DER HOEF, R. BEETSTRA, and J. A. M. KUIPERS. Lattice-Boltzmann simulations of low- Reynolds-number flow past mono-and bidisperse arrays of spheres: results for the permeability and drag force. Journal of Fluid Mechanics, 528: 233 – 254, 2005. DOI: 10.1017/S0022112004003295 (see pp. 17, 21, 22, 136)
  144. P. G. SAFFMAN. A theory of dispersion in a porous medium. Journal of Fluid Mechanics, 6: 321 – 349, 1959. DOI: 10.1017/S0022112059000672 (see p. 39)
  145. P. G. SAFFMAN. Dispersion due to molecular diffusion and macroscopic mixing in flow through a network of capillaries. Journal of Fluid Mechanics, 7: 194 – 208, 1960. DOI: 10.1017/S00221120600 01432 (see p. 39)
  146. A. A. ZICK and G. M. HOMSY. Stokes flow through periodic arrays of spheres. Journal of Fluid Mechanics, 115: 13 – 26, 1982. DOI: 10.1017/S0022112082000627 (see p. 20)
  147. D. L. KOCH and J. F. BRADY. Dispersion in fixed beds. Journal of Fluid Mechanics, 154: 399 – 427, 1985. DOI: 10.1017/S0022112085001598 (see pp. 29, 90, 116)
  148. J. LIU, C.-F. CHEN, C.-W. TSAO, C.-C. CHANG, C.-C. CHU, and D. L. DEVOE. Polymer microchips integrating solid-phase extraction and high-performance liquid chromatography using reversed- phase polymethacrylate monoliths. Analytical Chemistry, 81: 2545 – 2554, 2009. DOI: 10.1021/ ac802359e (see pp. 2, 76)
  149. R. T. KENNEDY and J. W. JORGENSON. Preparation and evaluation of packed capillary liquid chro- matography columns with inner diameters from 20 to 50 µm. Analytical Chemistry, 61: 1128 – 1135, 1989. DOI: 10.1021/ac00185a016 (see pp. 50, 98, 104)
  150. D. R. REYES, D. IOSSIFIDIS, P.-A. AUROUX, and A. MANZ. Micro total analysis systems. 1. Introduc- tion, theory, and technology. Analytical Chemistry, 74: 2623 – 2636, 2002. DOI: 10.1021/ac0202435 (see p. 48)
  151. M. R. SCHURE, R. S. MAIER, D. M. KROLL, and H. T. DAVIS. Simulation of packed-bed chromatogra- phy utilizing high-resolution flow fields: Comparison with models. Analytical Chemistry, 74: 6006 – 6016, 2002. DOI: 10.1021/ac0204101 (see pp. 27, 32, 95, 96, 113, 117)
  152. T. VILKNER, D. JANASEK, and A. MANZ. Micro total analysis systems. Recent developments. Analyti- cal Chemistry, 76: 3373 – 3386, 2004. DOI: 10.1021/ac040063q (see p. 48)
  153. D. S. REICHMUTH, T. J. SHEPODD, and B. J. KIRBY. Microchip HPLC of peptides and proteins. Analytical Chemistry, 77: 2997 – 3000, 2005. DOI: 10.1021/ac048358r (see pp. 2, 49, 62, 63, 76)
  154. M.-H. FORTIER, E. BONNEIL, P. GOODLEY, and P. THIBAULT. Integrated microfluidic device for mass spectrometry-based proteomics and its application to biomarker discovery programs. Analytical Chemistry, 77: 1631 – 1640, 2005. DOI: 10.1021/ac048506d (see p. 49)
  155. H. YIN, K. KILLEEN, R. BRENNEN, D. SOBEK, M. WERLICH, and T. VAN DE GOOR. Microfluidic chip for peptide analysis with an integrated HPLC column, sample enrichment column, and nanoelectrospray tip. Analytical Chemistry, 77: 527 – 533, 2005. DOI: 10.1021/ac049068d (see pp. 2, 49, 62, 76, 78)
  156. A. AJDARI, N. BONTOUX, and H. A. STONE. Hydrodynamic dispersion in shallow microchannels: The effect of cross-sectional shape. Analytical Chemistry, 78: 387 – 392, 2006. DOI: 10.1021/ac0508651 (see pp. 50, 63)
  157. J. XIE, Y. MIAO, J. SHIH, Y.-C. TAI, and T. D. LEE. Microfluidic platform for liquid chromatography – tandem mass spectrometry analyses of complex peptide mixtures. Analytical Chemistry, 77: 6947 – 6953, 2005. DOI: 10.1021/ac0510888 (see pp. 49, 62)
  158. A. BHATTACHARYYA and C. M. KLAPPERICH. Thermoplastic microfluidic device for on-chip purifi- cation of nucleic acids for disposable diagnostics. Analytical Chemistry, 78: 788 – 792, 2006. DOI: 10.1021/ac051449j (see p. 76)
  159. F. GRITTI and G. GUIOCHON. General HETP equation for the study of mass-transfer mechanisms in RPLC. Analytical Chemistry, 78: 5329 – 5347, 2006. DOI: 10.1021/ac060203r (see pp. 92, 94, 116, 117)
  160. I. M. LAZAR, P. TRISIRIPISAL, and H. A. SARVAIYA. Microfluidic liquid chromatography system for proteomic applications and biomarker screening. Analytical Chemistry, 78: 5513 – 5524, 2006. DOI: 10.1021/ac060434y (see pp. 49, 62, 76)
  161. P. S. DITTRICH, K. TACHIKAWA, and A. MANZ. Micro total analysis systems. Latest advancements and trends. Analytical Chemistry, 78: 3887 – 3908, 2006. DOI: 10.1021/ac0605602 (see pp. 48, 62)
  162. M. DE PRA, W. TH. KOK, J. G. E. GARDENIERS, G. DESMET, S. EELTINK, J. W. VAN NIEUWKASTEELE, and P. J. SCHOENMAKERS. Experimental study on band dispersion in channels structured with micropillars. Analytical Chemistry, 78: 6519 – 6525, 2006. DOI: 10.1021/ac060915h (see p. 42)
  163. D. HLUSHKOU, S. KHIREVICH, V. V. APANASOVICH, and U. TALLAREK. Pore-scale dispersion in electrokinetic flow through a random sphere packing. Analytical Chemistry, 79: 113 – 121, 2007. DOI: 10.1021/ac061168r
  164. W. DE MALSCHE, H. EGHBALI, D. CLICQ, J. VANGELOOVEN, H. GARDENIERS, and G. DESMET. Pressure-driven reverse-phase liquid chromatography separations in ordered nonporous pillar array columns. Analytical Chemistry, 79: 5915 – 5926, 2007. DOI: 10.1021/ac070352p (see p. 42)
  165. A. GASPAR, M. E. PIYASENA, and F. A. GOMEZ. Fabrication of fritless chromatographic microchips packed with conventional reversed-phase silica particles. Analytical Chemistry, 79: 7906 – 7909, 2007. DOI: 10.1021/ac071106g (see p. 62)
  166. M. BARRANDE, R. BOUCHET, and R. DENOYEL. Tortuosity of porous particles. Analytical Chemistry, 79: 9115 – 9121, 2007. DOI: 10.1021/ac071377r (see p. 131)
  167. S. KHIREVICH, A. HÖLTZEL, D. HLUSHKOU, and U. TALLAREK. Impact of conduit geometry and bed porosity on flow and dispersion in noncylindrical sphere packings. Analytical Chemistry, 79: 9340 – 9349, 2007. DOI: 10.1021/ac071428k (see pp. 48, 63, 66, 68)
  168. S. EHLERT, K. KRAICZEK, J.-A. MORA, M. DITTMANN, G. P. ROZING, and U. TALLAREK. Separation efficiency of particle-packed HPLC microchips. Analytical Chemistry, 80: 5945 – 5950, 2008. DOI: 10.1021/ac800576v (see pp. 62, 65, 76, 78, 81, 86 – 89)
  169. G. DESMET and K. BROECKHOVEN. Equivalence of the different C m -and C s -term expressions used in liquid chromatography and a geometrical model uniting them. Analytical Chemistry, 80: 8076 – 8088, 2008. DOI: 10.1021/ac8011363 (see p. 94)
  170. J. F. BOROWSKY, B. C. GIORDANO, Q. LU, A. TERRAY, and G. E. COLLINS. Electroosmotic flow-based pump for liquid chromatography on a planar microchip. Analytical Chemistry, 80: 8287 – 8292, 2008. DOI: 10.1021/ac801497r (see p. 76)
  171. H. EGHBALI, V. VERDOOLD, L. VANKEERBERGHEN, H. GARDENIERS, and G. DESMET. Experimental investigation of the band broadening arising from short-range interchannel heterogeneities in chro- matographic beds under the condition of identical external porosity. Analytical Chemistry, 81: 705 – 715, 2009. DOI: 10.1021/ac802124p (see pp. 40, 42)
  172. M. T. KOESDJOJO, C. R. KOCH, and V. T. REMCHO. Technique for microfabrication of polymeric- based microchips from an SU-8 master with temperature-assisted vaporized organic solvent bonding. Analytical Chemistry, 81: 1652 – 1659, 2009. DOI: 10.1021/ac802450u (see p. 76)
  173. S. KHIREVICH, A. HÖLTZEL, S. EHLERT, A. SEIDEL-MORGENSTERN, and U. TALLAREK. Large-scale simulation of flow and transport in reconstructed HPLC-microchip packings. Analytical Chemistry, 81: 4937 – 4945, 2009. DOI: 10.1021/ac900631d (see pp. 9, 75)
  174. S. KHIREVICH, A. HÖLTZEL, A. SEIDEL-MORGENSTERN, and U. TALLAREK. Time and length scales of eddy dispersion in chromatographic beds. Analytical Chemistry, 81: 7057 – 7066, 2009. DOI: 10.1021/ac901187d (see pp. 9, 90)
  175. A. ADROVER, S. CERBELLI, F. GAROFALO, and M. GIONA. Convection-dominated dispersion regime in wide-bore chromatography: A transport-based approach to assess the occurrence of slip flows in microchannels. Analytical Chemistry, 81: 8009 – 8014, 2009. DOI: 10.1021/ac901504u (see p. 31)
  176. S. JUNG, A. HÖLTZEL, S. EHLERT, J.-A. MORA, K. KRAICZEK, M. DITTMANN, G. P. ROZING, and U. TALLAREK. Impact of conduit geometry on the performance of typical particulate microchip packings. Analytical Chemistry, 81: 10193 – 10200, 2009. DOI: 10.1021/ac902069x (see p. 135)
  177. S. HSIEH and J. W. JORGENSON. Preparation and evaluation of slurry-packed liquid chromatography microcolumns with inner diameters from 12 to 33 µm. Analytical Chemistry, 68: 1212 – 1217, 1996. DOI: 10.1021/ac950682m (see pp. 50, 98, 104)
  178. J. LI and P. W. CARR. Accuracy of empirical correlations for estimating diffusion coefficients in aqueous organic mixtures. Analytical Chemistry, 69: 2530 – 2536, 1997. DOI: 10.1021/ac961005a (see p. 78)
  179. B. HE, N. TAIT, and F. REGNIER. Fabrication of nanocolumns for liquid chromatography. Analytical Chemistry, 70: 3790 – 3797, 1998. DOI: 10.1021/ac980028h (see p. 40)
  180. A. G. DIXON and M. NIJEMEISLAND. CFD as a design tool for fixed-bed reactors. Industrial & Engineering Chemistry Research, 40: 5246 – 5254, 2001. DOI: 10.1021/ie001035a (see p. 136)
  181. H. FREUND, J. BAUER, T. ZEISER, and G. EMIG. Detailed simulation of transport processes in fixed- beds. Industrial & Engineering Chemistry Research, 44: 6423 – 6434, 2005. DOI: 10.1021/ie0489453 (see pp. 4, 17, 25, 28, 29, 35, 118, 135, 136)
  182. U. TALLAREK, E. BAYER, and G. GUIOCHON. Study of dispersion in packed chromatographic columns by pulsed field gradient nuclear magnetic resonance. Journal of the American Chemical Society, 120: 1494 – 1505, 1998. DOI: 10.1021/ja9726623 (see pp. 63, 92, 95, 106, 117, 123)
  183. S. TORQUATO and F. H. STILLINGER. Multiplicity of generation, selection, and classification proce- dures for jammed hard-particle packings. Journal of Physical Chemistry B, 105: 11849 – 11853, 2001. DOI: 10.1021/jp011960q (see p. 109)
  184. U. TALLAREK, F. J. VERGELDT, and H. VAN AS. Stagnant mobile phase mass transfer in chromato- graphic media: Intraparticle diffusion and exchange kinetics. Journal of Physical Chemistry B, 103: 7654 – 7664, 1999. DOI: 10.1021/jp990828b (see p. 92)
  185. D. HLUSHKOU, A. SEIDEL-MORGENSTERN, and U. TALLAREK. Numerical analysis of electroosmotic flow in dense regular and random arrays of impermeable, nonconducting spheres. Langmuir, 21: 6097 – 6112, 2005. DOI: 10.1021/la050239z (see pp. 58, 87, 97, 110)
  186. S. TRINH, P. ARCE, and B. R. LOCKE. Effective diffusivities of point-like molecules in isotropic porous media by Monte Carlo simulation. Transport in Porous Media, 38: 241 – 259, 2000. DOI: 10.1023/A:1006616009669 (see p. 28)
  187. B. BIJELJIC and M. J. BLUNT. Pore-scale modeling and continuous time random walk analysis of dispersion in porous media. Water Resources Research, 42: W01202, 2006. DOI: 10.1029/2005WR00 4578 (see p. 35)
  188. P. SALAMON, D. FERNÀNDEZ-GARCIA, and J. J. GÓMEZ-HERNÁNDEZ. Modeling tracer transport at the MADE site: The importance of heterogeneity. Water Resources Research, 43: W08404, 2007. DOI: 10.1029/2006WR005522 (see p. 25)
  189. R. S. MAIER, M. R. SCHURE, J. P. GAGE, and J. D. SEYMOUR. Sensitivity of pore-scale dispersion to the construction of random bead packs. Water Resources Research, 44: W06S03, 2008. DOI: 10.1029/2006WR005577 (see pp. 36 – 39, 110)
  190. R. C. ACHARYA, A. J. VALOCCHI, C. J. WERTH, and T. W. WILLINGHAM. Pore-scale simulation of dispersion and reaction along a transverse mixing zone in two-dimensional porous media. Water Resources Research, 43: W10435, 2007. DOI: 10.1029/2007WR005969 (see pp. 17, 35, 41)
  191. B. H. DEVKOTA and J. IMBERGER. Lagrangian modeling of advection – diffusion transport in open channel flow. Water Resources Research, 45: W12406, 2009. DOI: 10.1029/2009WR008364 (see p. 24)
  192. J. C. GIDDINGS. 'Eddy' diffusion in chromatography. Nature, 184: 357 – 358, 1959. DOI: 10.1038/ 184357a0 (see pp. 94, 102, 117, 123, 136)
  193. J. D. BERNAL. A geometrical approach to the structure of liquids. Nature, 183: 141 – 147, 1959. DOI: 10.1038/183141a0 (see p. 108)
  194. J. D. BERNAL and J. MASON. Packing of spheres: co-ordination of randomly packed spheres. Nature, 188: 910 – 911, 1960. DOI: 10.1038/188910a0 (see p. 108)
  195. E. M. TORY, N. A. COCHRANE, and S. R. WADDELL. Anisotropy in simulated random packing of equal spheres. Nature, 220: 1023 – 1024, 1968. DOI: 10.1038/2201023a0 (see p. 9)
  196. G. M. WHITESIDES. The origins and the future of microfluidics. Nature, 442: 368 – 373, 2006. DOI: 10.1038/nature05058 (see p. 2)
  197. C. SONG, P. WANG, and H. A. MAKSE. A phase diagram for jammed matter. Nature, 453: 629 – 632, 2008. DOI: 10.1038/nature06981 (see pp. 35, 109, 112, 116, 127)
  198. P. S. DITTRICH and A. MANZ. Lab-on-a-chip: microfluidics in drug discovery. Nature Reviews Drug Discovery, 5: 210 – 218, 2006. DOI: 10.1038/nrd1985 (see p. 75)
  199. D. S. PETERSON. Solid supports for micro analytical systems. Lab on a Chip, 5: 132 – 139, 2005. DOI: 10.1039/b405311g (see pp. 49, 63, 75)
  200. Y. YANG, C. LI, J. KAMEOKA, K. H. LEE, and H. G. CRAIGHEAD. A polymeric microchip with integrated tips and in situ polymerized monolith for electrospray mass spectrometry. Lab on a Chip, 5: 869 – 876, 2005. DOI: 10.1039/b503025k (see pp. 49, 62, 76)
  201. N. BONTOUX, A. PÉPIN, Y. CHEN, A. AJDARI, and H. A. STONE. Experimental characterization of hydrodynamic dispersion in shallow microchannels. Lab on a Chip, 6: 930 – 935, 2006. DOI: 10.1039/b518130e (see p. 50)
  202. D. A. MAIR, E. GEIGER, A. P. PISANO, J. M. J. FRÉCHET, and F. SVEC. Injection molded microfluidic chips featuring integrated interconnects. Lab on a Chip, 6: 1346 – 1354, 2006. DOI: 10.1039/b6059 11b (see pp. 49, 62)
  203. D. LIANG, Q. PENG, K. MITCHELSON, X. GUAN, W. XING, and J. CHENG. A simple and efficient approach for calculating permeability coefficients and HETP for rectangular columns. Lab on a Chip, 7: 1062 – 1073, 2007. DOI: 10.1039/b706720h (see p. 30)
  204. S. KOSTER and E. VERPOORTE. A decade of microfluidic analysis coupled with electrospray mass spectrometry: An overview. Lab on a Chip, 7: 1394 – 1412, 2007. DOI: 10.1039/b709706a (see pp. 2, 62, 63, 75)
  205. W. DE MALSCHE, D. CLICQ, V. VERDOOLD, P. GZIL, G. DESMET, and H. GARDENIERS. Integration of porous layers in ordered pillar arrays for liquid chromatography. Lab on a Chip, 7: 1705 – 1711, 2007. DOI: 10.1039/b710507j (see p. 42)
  206. A. R. ABATE, D. LEE, T. DO, C. HOLTZE, and D. A. WEITZ. Glass coating for PDMS microfluidic channels by sol – gel methods. Lab on a Chip, 8: 516 – 518, 2008. DOI: 10.1039/b800001h (see p. 63)
  207. S. KHIREVICH, A. HÖLTZEL, D. HLUSHKOU, A. SEIDEL-MORGENSTERN, and U. TALLAREK. Structure – transport analysis for particulate packings in trapezoidal microchip separation channels. Lab on a Chip, 8: 1801 – 1808, 2008. DOI: 10.1039/b810688f (see p. 62)
  208. I. GINZBOURG and P. M. ADLER. Boundary flow condition analysis for the three-dimensional lattice Boltzmann model. Journal de Physique II, 4: 191 – 214, 1994. DOI: 10.1051/jp2:1994123 (see pp. 17, 18)
  209. B. LIN and R. A. FALCONER. Tidal flow and transport modeling using ULTIMATE QUICKEST scheme. Journal of Hydraulic Engineering, 123: 303 – 314, 1997. DOI: 10.1061/(ASCE)0733-9429(1997)123: 4(303) (see p. 24)
  210. D. R. NOBLE, S. CHEN, J. G. GEORGIADIS, and R. O. BUCKIUS. A consistent hydrodynamic boundary condition for the lattice Boltzmann method. Physics of Fluids, 7: 203 – 209, 1995. DOI: 10.1063/1. 868767 (see p. 17)
  211. A. A. KHRAPITCHEV and P. T. CALLAGHAN. Reversible and irreversible dispersion in a porous medium. Physics of Fluids, 15: 2649 – 2660, 2003. DOI: 10.1063/1.1596914 (see p. 36)
  212. R. S. MAIER, D. M. KROLL, R. S. BERNARD, S. E. HOWINGTON, J. F. PETERS, and H. T. DAVIS. Hydrodynamic dispersion in confined packed beds. Physics of Fluids, 15: 3795 – 3815, 2003. DOI: 10.1063/1.1624836 (see pp. 10, 17, 33, 39, 86, 91, 92, 97, 98, 100, 106, 118, 135)
  213. J. HARDY, Y. POMEAU, and O. DE PAZZIS. Time evolution of a two-dimensional model system. I. Invariant states and time correlation functions. Journal of Mathematical Physics, 14: 1746 – 1759, 1973. DOI: 10.1063/1.1666248 (see p. 14)
  214. H. L. WEISSBERG. Effective diffusion coefficient in porous media. Journal of Applied Physics, 34: 2636 – 2639, 1963. DOI: 10.1063/1.1729783 (see pp. 126, 131)
  215. M. GIONA, A. ADROVER, S. CERBELLI, and F. GAROFALO. Laminar dispersion at high Péclet numbers in finite-length channels: Effects of the near-wall velocity profile and connection with the generalized Leveque problem. Physics of Fluids, 21: 123601, 2009. DOI: 10.1063/1.3263704 (see p. 31)
  216. I. C. KIM and S. TORQUATO. Diffusion of finite-sized Brownian particles in porous media. Journal of Chemical Physics, 96: 1498 – 1503, 1992. DOI: 10.1063/1.462184 (see p. 27)
  217. J. SALLES, J.-F. THOVERT, R. DELANNAY, L. PREVORS, J.-L. AURIAULT, and P. M. ADLER. Taylor dis- persion in porous media. Determination of the dispersion tensor. Physics of Fluids A: Fluid Dynamics, 5: 2348 – 2376, 1993. DOI: 10.1063/1.858751 (see pp. 28, 29, 32)
  218. H. P. A. SOUTO and C. MOYNE. Dispersion in two-dimensional periodic porous media. Part II. Dispersion tensor. Physics of Fluids, 9: 2253 – 2263, 1997. DOI: 10.1063/1.869347 (see p. 32)
  219. H. P. A. SOUTO and C. MOYNE. Dispersion in two-dimensional periodic porous media. Part I. Hydrodynamics. Physics of Fluids, 9: 2243 – 2252, 1997. DOI: 10.1063/1.869365 (see p. 32)
  220. R. S. MAIER, D. M. KROLL, Y. E. KUTSOVSKY, H. T. DAVIS, and R. S. BERNARD. Simulation of flow through bead packs using the lattice Boltzmann method. Physics of Fluids, 10: 60 – 74, 1998. DOI: 10.1063/1.869550 (see p. 58)
  221. D. L. KOCH, R. J. HILL, and A. S. SANGANI. Brinkman screening and the covariance of the fluid velocity in fixed beds. Physics of Fluids, 10: 3035 – 3037, 1998. DOI: 10.1063/1.869830 (see pp. 33, 34)
  222. R. S. MAIER, D. M. KROLL, R. S. BERNARD, S. E. HOWINGTON, J. F. PETERS, and H. T. DAVIS. Pore- scale simulation of dispersion. Physics of Fluids, 12: 2065 – 2079, 2000. DOI: 10.1063/1.870452 (see pp. 25, 28, 29, 32 – 39, 51, 53, 65, 100, 136)
  223. L. OGER, A. GERVOIS, J.-P. TROADEC, and N. RIVIER. Voronoi tessellation of packings of spheres: Topological correlation and statistics. Philosophical Magazine, 74: 177 – 197, 1996. DOI: 10.1080/ 01418639608240335 (see p. 113)
  224. G. TAYLOR. Dispersion of soluble matter in solvent flowing slowly through a tube. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 219: 186 – 203, 1953. DOI: 10.1098/rspa.1953.0139 (see p. 30)
  225. G. TAYLOR. Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 225: 473 – 477, 1954. DOI: 10.1098/rspa.1954.0216 (see p. 30)
  226. R. ARIS. On the dispersion of a solute by diffusion, convection and exchange between phases. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 252: 538 – 550, 1959. DOI: 10.1098/rspa.1959.0171 (see p. 30)
  227. J. D. BERNAL. The Bakerian Lecture, 1962. The structure of liquids. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 280: 299 – 322, 1964. DOI: 10.1098/rspa.1964.0147 (see p. 108)
  228. J. L. FINNEY. Random packings and the structure of simple liquids. I. The geometry of random close packing. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 319: 479 – 493, 1970. DOI: 10.1098/rspa.1970.0189 (see p. 113)
  229. H. BRENNER. Dispersion resulting from flow through spatially periodic porous media. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 297: 81 – 133, 1980. DOI: 10.1098/rsta.1980.0205 (see p. 26)
  230. R. S. MAIER, D. M. KROLL, R. S. BERNARD, S. E. HOWINGTON, J. F. PETERS, and H. T. DAVIS. Enhanced dispersion in cylindrical packed beds. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 360: 497 – 506, 2002. DOI: 10.1098/rsta.2001.0951 (see pp. 39, 61, 110, 118)
  231. D. KANDHAI, U. TALLAREK, D. HLUSHKOU, A. G. HOEKSTRA, P. M. A. SLOOT, and H. VAN AS. Numer- ical simulation and measurement of liquid hold-up in biporous media containing discrete stagnant zones. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 360: 521 – 534, 2002. DOI: 10.1098/rsta.2001.0952 (see p. 79)
  232. V. A. LUCHNIKOV, N. N. MEDVEDEV, L. OGER, and J.-P. TROADEC. Voronoi – Delaunay analysis of voids in systems of nonspherical particles. Physical Review E, 59: 7205 – 7212, 1999. DOI: 10.1103/ PhysRevE.59.7205 (see p. 11)
  233. P. L. BHATNAGAR, E. P. GROSS, and M. KROOK. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Physical Review, 94: 511 – 525, 1954. DOI: 10.1103/PhysRev.94.511 (see p. 14)
  234. B. J. ALDER and T. E. WAINWRIGHT. Decay of the velocity autocorrelation function. Physical Review A, 1: 18 – 21, 1970. DOI: 10.1103/PhysRevA.1.18 (see p. 33)
  235. W. S. JODREY and E. M. TORY. Computer simulation of close random packing of equal spheres. Physical Review A, 32: 2347 – 2351, 1985. DOI: 10.1103/PhysRevA.32.2347 (see p. 6)
  236. P. N. SEN, L. M. SCHWARTZ, P. P. MITRA, and B. I. HALPERIN. Surface relaxation and the long-time diffusion coefficient in porous media: Periodic geometries. Physical Review B, 49: 215 – 225, 1994. DOI: 10.1103/PhysRevB.49.215 (see pp. 27, 29)
  237. A. W. J. HEIJS and C. P. LOWE. Numerical evaluation of the permeability and the Kozeny constant for two types of porous media. Physical Review E, 51: 4346 – 4352, 1995. DOI: 10.1103/PhysRevE. 51.4346 (see pp. 17, 21)
  238. R. JULLIEN, P. JUND, D. CAPRION, and D. QUITMANN. Computer investigation of long-range correla- tions and local order in random packings of spheres. Physical Review E, 54: 6035 – 6041, 1996. DOI: 10.1103/PhysRevE.54.6035 (see pp. 113, 116)
  239. X. HE and L.-S. LUO. Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation. Physical Review E, 56: 6811 – 6817, 1997. DOI: 10.1103/PhysRevE.56. 6811 (see pp. 14, 15)
  240. S. STAPF, K. J. PACKER, R. G. GRAHAM, J.-F. THOVERT, and P. M. ADLER. Spatial correlations and dispersion for fluid transport through packed glass beads studied by pulsed field-gradient NMR. Physical Review E, 58: 6206 – 6221, 1998. DOI: 10.1103/PhysRevE.58.6206 (see pp. 92, 110)
  241. D. HE, N. N. EKERE, and L. CAI. Computer simulation of random packing of unequal particles. Physical Review E, 60: 7098 – 7104, 1999. DOI: 10.1103/PhysRevE.60.7098 (see p. 5)
  242. J. M. BUICK and C. A. GREATED. Gravity in a lattice Boltzmann model. Physical Review E, 61: 5307 – 5320, 2000. DOI: 10.1103/PhysRevE.61.5307 (see p. 18)
  243. C. PAN, M. HILPERT, and C. T. MILLER. Pore-scale modeling of saturated permeabilities in random sphere packings. Physical Review E, 64: 066702, 2001. DOI: 10.1103/PhysRevE.64.066702 (see p. 21)
  244. R. Y. YANG, R. P. ZOU, and A. B. YU. Voronoi tessellation of the packing of fine uniform spheres. Physical Review E, 65: 041302, 2002. DOI: 10.1103/PhysRevE.65.041302 (see pp. 113, 116)
  245. P. SZYMCZAK and A. J. C. LADD. Boundary conditions for stochastic solutions of the convection – diffusion equation. Physical Review E, 68: 036704, 2003. DOI: 10.1103/PhysRevE.68.036704 (see pp. 27, 28, 30)
  246. T. ASTE, M. SAADATFAR, and T. J. SENDEN. Geometrical structure of disordered sphere packings. Physical Review E, 71: 061302, 2005. DOI: 10.1103/PhysRevE.71.061302 (see pp. 4, 109)
  247. B. CHUN and A. J. C. LADD. Interpolated boundary condition for lattice Boltzmann simulations of flows in narrow gaps. Physical Review E, 75: 066705, 2007. DOI: 10.1103/PhysRevE.75.066705 (see p. 20)
  248. T. ASTE and T. DI MATTEO. Emergence of Gamma distributions in granular materials and packing models. Physical Review E, 77: 021309, 2008. DOI: 10.1103/PhysRevE.77.021309 (see pp. 113, 116, 126)
  249. M. MATYKA, A. KHALILI, and Z. KOZA. Tortuosity – porosity relation in porous media flow. Physical Review E, 78: 026306, 2008. DOI: 10.1103/PhysRevE.78.026306 (see pp. 126, 131)
  250. S. S. CHIKATAMARLA and I. V. KARLIN. Lattices for the lattice Boltzmann method. Physical Review E, 79: 046701, 2009. DOI: 10.1103/PhysRevE.79.046701 (see p. 16)
  251. X. SHAN. General solution of lattices for Cartesian lattice Bhatanagar – Gross – Krook models. Physical Review E, 81: 036702, 2010. DOI: 10.1103/PhysRevE.81.036702 (see p. 16)
  252. A. M. TARTAKOVSKY. Langevin model for reactive transport in porous media. Physical Review E, 82: 026302, 2010. DOI: 10.1103/PhysRevE.82.026302 (see p. 33)
  253. P. B. WARREN and F. STEPANEK. Wall shear rate distribution for flow in random sphere packings. Physical Review Letters, 100: 084501, 2008. DOI: 10.1103/PhysRevLett.100.084501 (see p. 21)
  254. C. BRISCOE, C. SONG, P. WANG, and H. A. MAKSE. Entropy of jammed matter. Physical Review Letters, 101: 188001, 2008. DOI: 10.1103/PhysRevLett.101.188001 (see p. 109)
  255. U. FRISCH, B. HASSLACHER, and Y. POMEAU. Lattice-gas automata for the Navier – Stokes equation. Physical Review Letters, 56: 1505 – 1508, 1986. DOI: 10.1103/PhysRevLett.56.1505 (see p. 14)
  256. G. R. MCNAMARA and G. ZANETTI. Use of the Boltzmann equation to simulate lattice-gas automata. Physical Review Letters, 61: 2332 – 2335, 1988. DOI: 10.1103/PhysRevLett.61.2332 (see p. 14)
  257. D. FRENKEL and M. H. ERNST. Simulation of diffusion in a two-dimensional lattice-gas cellular automaton: A test of mode-coupling theory. Physical Review Letters, 63: 2165 – 2168, 1989. DOI: 10.1103/PhysRevLett.63.2165 (see p. 35)
  258. C. P. LOWE and D. FRENKEL. Do hydrodynamic dispersion coefficients exist? Physical Review Letters, 77: 4552 – 4555, 1996. DOI: 10.1103/PhysRevLett.77.4552 (see pp. 33 – 36)
  259. X. W. SHAN and X. HE. Discretization of the velocity space in the solution of the Boltzmann equation. Physical Review Letters, 80: 65 – 68, 1998. DOI: 10.1103/PhysRevLett.80.65 (see p. 16)
  260. A. KOPONEN, D. KANDHAI, E. HELLÉN, M. ALAVA, A. G. HOEKSTRA, M. KATAJA, K. NISKANEN, P. M. A. SLOOT, and J. TIMONEN. Permeability of three-dimensional random fiber webs. Physical Review Letters, 80: 716 – 719, 1998. DOI: 10.1103/PhysRevLett.80.716 (see p. 17)
  261. S. TORQUATO, T. M. TRUSKETT, and P. G. DEBENEDETTI. Is random close packing of spheres well defined? Physical Review Letters, 84: 2064 – 2067, 2000. DOI: 10.1103/PhysRevLett.84.2064 (see pp. 109, 110, 116)
  262. C. S. O'HERN, S. A. LANGER, A. J. LIU, and S. R. NAGEL. Random packings of frictionless particles. Physical Review Letters, 88: 075507, 2002. DOI: 10.1103/PhysRevLett.88.075507 (see p. 5)
  263. D. KANDHAI, D. HLUSHKOU, A. G. HOEKSTRA, P. M. A. SLOOT, H. VAN AS, and U. TALLAREK. Influence of stagnant zones on transient and asymptotic dispersion in macroscopically homogeneous porous media. Physical Review Letters, 88: 234501, 2002. DOI: 10.1103/PhysRevLett.88.234501 (see pp. 63, 87, 92)
  264. S. ANSUMALI, I. V. KARLIN, S. ARCIDIACONO, A. ABBAS, and N. I. PRASIANAKIS. Hydrodynamics beyond Navier – Stokes: Exact solution to the lattice Boltzmann hierarchy. Physical Review Letters, 98: 124502, 2007. DOI: 10.1103/PhysRevLett.98.124502 (see p. 16)
  265. A. V. ANIKEENKO and N. N. MEDVEDEV. Polytetrahedral nature of the dense disordered packings of hard spheres. Physical Review Letters, 98: 235504, 2007. DOI: 10.1103/PhysRevLett.98.235504 (see p. 113)
  266. U. M. SCHEVEN, R. HARRIS, and M. L. JOHNS. Intrinsic dispersivity of randomly packed monodis- perse spheres. Physical Review Letters, 99: 054502, 2007. DOI: 10.1103/PhysRevLett.99.054502 (see pp. 36 – 39)
  267. R. D. KAMIEN and A. J. LIU. Why is random close packing reproducible? Physical Review Letters, 99: 155501, 2007. DOI: 10.1103/PhysRevLett.99.155501 (see pp. 109, 113, 116)
  268. D. S. GREBENKOV. NMR survey of reflected Brownian motion. Reviews of Modern Physics, 79: 1077 – 1137, 2007. DOI: 10.1103/RevModPhys.79.1077 (see p. 36)
  269. D. G. FEITELSON. The supercomputer industry in light of the Top500 data. Computing in Science and Engineering, 7: 42 – 47, 2005. DOI: 10.1109/MCSE.2005.24 (see p. 2)
  270. T. ASTE and T. DI MATTEO. Structural transitions in granular packs: statistical mechanics and statistical geometry investigations. European Physical Journal B: Condensed Matter and Complex Systems, 64: 511 – 517, 2008. DOI: 10.1140/epjb/e2008-00224-8 (see pp. 109, 116)
  271. A. M. ARTOLI, A. G. HOEKSTRA, and P. M. A. SLOOT. Accelerated lattice BGK method for unsteady simulations through Mach number annealing. International Journal of Modern Physics C: Computa- tional Physics, Physical Computation, 14: 835 – 845, 2003. DOI: 10.1142/S012918310300498X (see p. 17)
  272. C. B. BARBER, D. P. DOBKIN, and H. HUHDANPAA. The QUICKHULL algorithm for convex hulls. ACM Transactions on Mathematical Software, 22: 469 – 483, 1996. DOI: 10.1145/235815.235821 (see pp. 114, 128)
  273. J. W. JORGENSON. Capillary liquid chromatography at ultrahigh pressures. Annual Review of An- alytical Chemistry, 3: 129 – 150, 2010. DOI: 10.1146/annurev.anchem.1.031207.113014 (see p. 2)
  274. S. CHEN and G. D. DOOLEN. Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics, 30: 329 – 364, 1998. DOI: 10.1146/annurev.fluid.30.1.329 (see p. 14)
  275. H. A. STONE, A. D. STROOCK, and A. AJDARI. Engineering flows in small devices. Annual Review of Fluid Mechanics, 36: 381 – 411, 2004. DOI: 10.1146/annurev.fluid.36.050802.122124 (see p. 3)
  276. B. R. DE SUPINSKI et al. BlueGene/L applications: Parallelism on a massive scale. International Journal of High Performance Computing Applications, 22: 33 – 51, 2008. DOI: 10.1177/10943420070 85025 (see p. 43)
  277. Y. H. QIAN, D. D'HUMIÈRES, and P. LALLEMAND. Lattice BGK models for Navier – Stokes equation. EPL, 17: 479 – 484, 1992. DOI: 10.1209/0295-5075/17/6/001 (see p. 16)
  278. X. B. NIE, X. SHAN, and H. CHEN. Galilean invariance of lattice Boltzmann models. EPL, 81: 34005, 2008. DOI: 10.1209/0295-5075/81/34005 (see p. 16)
  279. G. E. SCHRÖDER-TURK, W. MICKEL, M. SCHRÖTER, G. W. DELANEY, M. SAADATFAR, T. J. SENDEN, K. MECKE, and T. ASTE. Disordered spherical bead packs are anisotropic. EPL, 90: 34001, 2010. DOI: 10.1209/0295-5075/90/34001 (see p. 9)
  280. S. BLANCO and R. FOURNIER. An invariance property of diffusive random walks. EPL, 61: 168 – 173, 2003. DOI: 10.1209/epl/i2003-00208-x (see p. 136)
  281. S. ANSUMALI, I. V. KARLIN, and H. C. ÖTTINGER. Minimal entropic kinetic models for hydrodynam- ics. EPL, 63: 798 – 804, 2003. DOI: 10.1209/epl/i2003-00496-6 (see p. 16)
  282. O. BÉNICHOU, M. COPPEY, M. MOREAU, P. H. SUET, and R. VOITURIEZ. Averaged residence times of stochastic motions in bounded domains. EPL, 70: 42 – 48, 2005. DOI: 10.1209/epl/i2005-10001-y (see p. 136)
  283. S. ANWAR, A. CORTIS, and M. C. SUKOP. Lattice Boltzmann simulation of solute transport in het- erogeneous porous media with conduits to estimate macroscopic continuous time random walk model parameters. Progress in Computational Fluid Dynamics, 8: 213 – 221, 2008. DOI: 10.1504/ PCFD.2008.018092 (see p. 24)
  284. G. VORONOI. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. Journal für die reine und angewandte Mathematik, 133: 97 – 102, 1908. DOI: 10.1515/crll.1908.133.97 (see pp. 11, 113, 114)
  285. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. Journal für die reine und ange- wandte Mathematik, 134: 198 – 287, 1908. DOI: 10.1515/crll.1908.134.198 (see pp. 11, 113, 114)
  286. Deuxième mémoire. Recherches sur les paralléloèdres primitifs. Journal für die reine und angewandte Mathematik, 136: 67 – 182, 1909. DOI: 10.1515/crll.1909.136.67 (see pp. 113, 114)
  287. J. HRABE, S. HRAB ˘ ETOVÁ, and K. SEGETH. A model of effective diffusion and tortuosity in the extracellular space of the brain. Biophysical Journal, 87: 1606 – 1617, 2004. DOI: 10.1529/biophysj. 103.039495 (see p. 27)
  288. R. K. NANDIGAM and D. M. KROLL. Three-dimensional modeling of the brain's ECS by minimum configurational energy packing of fluid vesicles. Biophysical Journal, 92: 3368 – 3378, 2007. DOI: 10.1529/biophysj.106.095547 (see pp. 27, 28)
  289. P. A. CUNDALL and O. D. L. STRACK. A discrete numerical model for granular assemblies. Geotech- nique, 29: 47 – 65, 1979. DOI: 10.1680/geot.1979.29.1.47 (see pp. 37, 38)
  290. R. AL-RAOUSH, K. THOMPSON, and C. S. WILLSON. Comparison of network generation techniques for unconsolidated porous media. Soil Science Society of America Journal, 67: 1687 – 1700, 2003. DOI: 10.2136/sssaj2003.1687 (see p. 132)
  291. A. CORTIS and B. BERKOWITZ. Anomalous transport in " classical " soil and sand columns. Soil Science Society of America Journal, 68: 1539 – 1548, 2004. DOI: 10.2136/sssaj2004.1539 (see p. 24)
  292. F. J. JIMÉNEZ-HORNERO, J. V. GIRÁLDEZ, and A. LAGUNA. Simulation of tracer dispersion in porous media using lattice Boltzmann and random walk models. Vadose Zone Journal, 4: 310 – 316, 2005. DOI: 10.2136/vzj2004.0090 (see pp. 28, 29)
  293. F. DELAY, P. ACKERER, and C. DANQUIGNY. Simulating solute transport in porous or fractured formations using random walk particle tracking: A review. Vadose Zone Journal, 4: 360 – 379, 2005. DOI: 10.2136/vzj2004.0125 (see p. 25)
  294. K. HUANG. Statistical mechanics. 2 nd ed. John Wiley & Sons, 1987. (see p. 13)
  295. M. R. SCHURE. In: Advances in Chromatography. P. R. BROWN and E. GRUSHKA, eds. Vol. 39, 139 – 200. Marcel Dekker Publishing, 1998. (see p. 29)
  296. S. FADDEN. An Introduction to GPFS Version 3.3. IBM Corporation, 2010. (see p. 47)
  297. J. C. MAXWELL. A treatise on electricity and magnetism. 2 nd ed. Clarendon Press, 1881. (see pp. 125, 126)
  298. J. H. KNOX. Band dispersion in chromatography — a universal expression for the contribution from the mobile zone. Journal of Chromatography A, 960: 7 – 18, 2002. DOI: 10.1016/S0021- 9673(02)00240-6 (see pp. 87, 95, 117)
  299. M. BARGIEŁ and J. MOMO´ SCISCI´ NSKI. C-language program for the irregular close packing of hard spheres.
  300. M. P. ALLEN and D. J. TILDESLEY. Computer simulation of liquids. Oxford University Press, 1989. (see pp. 5, 6, 9)
  301. B. W. KERNIGHAN and D. M. RITCHIE. C programming language. 2 nd ed. Prentice Hall, 1988. (see p. 44)
  302. J. GÖTZ, K. IGLBERGER, M. STÜRMER, and U. RÜDE. " Direct numerical simulation of particulate flows on 294 912 processor cores " in: ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis. Los Alamitos, CA, USA, 2010. (see p. 44)
  303. D. J. GUNN and C. PRYCE. Dispersion in packed beds. Transactions of the Institution of Chemical Engineers, 47: T341, 1969. (see p. 32)
  304. C. Giddings. Dynamics of chromatography: principles and theory. Marcel Dekker, 1965. 89 J. Bear. Dynamics of fluids in porous media. Dover Publications, 1988.
  305. J. BEAR. Dynamics of fluids in porous media. Dover Publications, 1988. (see pp. 19, 21, 22, 24, 90, 116, 125)
  306. J. A. RUDNICK and G. D. GASPARI. Elements of the random walk: an introduction for advanced students and researchers. Cambridge University Press, 2004. (see pp. 1, 25)
  307. A. N. TIKHONOV and A. A. SAMARSKII. Equations of mathematical physics. Dover Publications, 1990. (see p. 24)
  308. K. HORIUCHI, P. DUTTA, and C. D. RICHARDS. Experiment and simulation of mixed flows in a trapezoidal microchannel. Microfluidics and Nanofluidics, 3: 347 – 358, 2007. DOI: 10.1007/s10404- 006-0129-0 (see p. 63)
  309. M. SAHIMI. Flow and transport in porous media and fractured rock: From classical methods to modern approaches. Wiley-VCH, 1995. (see p. 36)
  310. L. D. LANDAU and E. M. LIFSCHITZ. Fluid mechanics. 2 nd ed. Butterworth – Heinemann, 2007. (see p. 12)
  311. M. J. MADOU. Fundamentals of microfabrication: the science of miniaturization. 2 nd ed. CRC Press, 2002. (see p. 48)
  312. G. GUIOCHON, A. FELINGER, A. M. KATTI, and D. G. SHIRAZI. Fundamentals of preparative and nonlinear chromatography. 2 nd ed. Elsevier, 2006. (see pp. 2, 4, 126)
  313. du Plessis, S. Woudberg, and J. P. du Plessis. Chem. Eng. Sci., 65: 2541 – 2551, 2010. 6 G. Guiochon et al. Fundamentals of preparative and nonlinear chromatography. 2 nd ed. Elsevier, 2006.
  314. C. W. GARDINER. Handbook of stochastic methods: for physics, chemistry and the natural sciences. 2 nd ed. Springer-Verlag, 1996. (see p. 25)
  315. G. OCVIRK, E. VERPOORTE, A. MANZ, M. GRASSERBAUER, and M. H. WIDMER. High-performance liquid-chromatography partially integrated onto a silicon chip. Analytical Methods and Instrumenta- tion, 2: 74 – 82, 1995. (see p. 49)
  316. U. D. NEUE. HPLC columns: theory, technology, and practice. Wiley-VCH, 1997. (see p. 62)
  317. G. Weber and P. W. Carr. In: High Performance Liquid Chromatography. P. R. Brown and R. A. Hartwick, eds. Chap. 1. John Wiley & Sons, 1989.
  318. U. FRISCH, D. D'HUMIÈRES, B. HASSLACHER, P. LALLEMAND, Y. POMEAU, and J.-P. RIVET. Lattice gas hydrodynamics in two and three dimensions. Complex Systems, 1: 649 – 707, 1987. (see p. 14)
  319. MPI: A Message-Passing Interface Standard, Version 2.2. Message Passing Interface Forum, 2009. (see pp. 44, 46)
  320. A. KUZMIN. Multiphase simulations with lattice Boltzmann scheme. PhD thesis. Canada, University of Calgary, 2009. (see p. 17)
  321. J. W. STIJNEN. Numerical methods for stochastic environmental models. PhD thesis. The Netherlands, Delft University of Technology, 2002. (see p. 28)
  322. P. E. KLOEDEN and E. PLATEN. Numerical solution of stochastic differential equations. Springer-Verlag, 1995. (see pp. 25, 26)
  323. W. KINZELBACH. Numerische Methoden zur Modellierung des Transports von Schadstoffen im Grund- wasser. 2 nd ed. Oldenbourg Verlag, 1992. (see p. 24)
  324. Parallel Environment for AIX and Linux: MPI Subroutine Reference. IBM Corporation, 2010. (see p. 46)
  325. F. A. L. DULLIEN. Porous media: fluid transport and pore structure. 2 nd ed. Academic Press, 1992. (see pp. 19, 21, 22, 125)
  326. P. WESSELING. Principles of computational fluid dynamics. Springer-Verlag, 2001. (see p. 10)
  327. ISO/IEC 9899:1999: Programming languages — C. International Organization for Standardization, 1999. (see p. 44)
  328. S. TORQUATO. Random heterogeneous materials: microstructure and macroscopic properties. Springer, 2002. (see p. 108)
  329. S. KHIREVICH, A. DANEYKO, and U. TALLAREK. " Simulation of fluid flow and mass transport at extreme scale " in: Jülich Blue Gene/P Extreme Scaling Workshop 2010 ed. by B. MOHR and W. FRINGS. Forschungszentrum Jülich, Jülich Supercomputing Centre, 2010. (see pp. 43, 46)
  330. Okabe. Spatial tessellations: concepts and applications of Voronoi diagrams. 2 nd ed. John Wiley & Sons, 2000. 44 G. Voronoi. J. Reine Angew. Math., 133: 97 – 102, 1908.
  331. A. BEZRUKOV, M. BARGIEŁ, and D. STOYAN. Statistical analysis of simulated random packings of spheres. Particle & Particle Systems Characterization, 19: 111 – 118, 2002. DOI: 10.1002/1521- 4117(200205)19:2%3C111::AID-PPSC111%3E3.0.CO;2-M (see p. 6)
  332. T. RAGE. Studies of tracer dispersion and fluid flow in porous media. PhD thesis. Norway, University of Oslo, 1996. (see p. 28)
  333. J. HANDY. The cache memory book. 2 nd ed. Academic Press, 1998. (see p. 44)
  334. O. C. ZIENKIEWICZ, P. NITHIARASU, and R. L. TAYLOR. The finite element method for fluid dynamics. 6 th ed. Elsevier Butterworth – Heinemann, 2005. (see p. 24)
  335. S. SUCCI. The lattice Boltzmann equation for fluid dynamics and beyond. Oxford University Press, 2001. (see pp. 1, 14)
  336. S. CHAPMAN and T. G. COWLING. The mathematical theory of non-uniform gases. 3 rd ed. Cambridge University Press, 1990. (see p. 14)
  337. † There is no consensus on the definition of tortuosity in the literature. In fact several definitions of tortuosity, related to various experimentally accessible quantities or theoretical models, co-exist.
  338. S. KHIREVICH, A. HÖLTZEL, and U. TALLAREK. Transient and asymptotic dispersion in con- fined sphere packings with cylindrical and noncylindrical conduit geometries. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, accepted.
  339. W. M. CHARLES. Transport modelling in coastal waters using stochastic differential equations. PhD thesis. The Netherlands, Delft University of Technology, 2007. (see p. 28)
  340. G. P. ROZING. Trends in HPLC column formats — microbore, nanobore and smaller. LC-GC Europe, 16: 14 – 19, 2003. (see p. 75)
  341. A. CONIGLIO, A. FIERRO, H. J. HERRMANN, and M. NICODEMI, eds. Unifying concepts in granular media and glasses. Elsevier, 2004. (see p. 108)
  342. R. HYDE. Write great code, volume 2: Thinking low-level, writing high-level. No Starch Press, 2006. (see p. 45)
  343. O. GESCHKE, H. KLANK, and P. TELLEMANN. Microsystem engineering of lab-on-a-chip devices. John Wiley & Sons, 2004. (see p. 48)
  344. H. EGHBALI, W. DE MALSCHE, D. CLICQ, H. GARDENIERS, and G. DESMET. Pressure-driven chro- matography in perfectly ordered pillar array columns. LC-GC Europe, 20: 208 – 222, 2007. (see p. 42)


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten