Publikationsserver der Universitätsbibliothek Marburg

Titel:Mikroskopische Analyse optoelektronischer Eigenschaften von Halbleiterverstärkungsmedien für Laseranwendungen
Autor:Bückers, Christina
Weitere Beteiligte: Koch, Stephan W. (Prof. Dr.)
Veröffentlicht:2011
URI:https://archiv.ub.uni-marburg.de/diss/z2011/0046
DOI: https://doi.org/10.17192/z2011.0046
URN: urn:nbn:de:hebis:04-z2011-00466
DDC: Physik
Titel (trans.):Microscopic analysis of the optoelectronic properties of semiconductor gain media for laser applications
Publikationsdatum:2011-01-20
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Modulation spectroscopy, Modellierung, Semiconductor laser modelling, Optischer Gewinn, Modulationsspektroskopie, Halbleiterlaser, Lumineszenz, AlGaInAs, Auger-recombination, GaAsBi, Auger-Rekombination, Optical gain, AlGaInAsSb, GaNAsP, Luminescence

Zusammenfassung:
Eine mikroskopische Vielteilchentheorie wird auf verschiedenste Materialsysteme angewendet, die als Verstärkungselement den Grundbaustein von Halbleiterlasersystemen bilden. Das Verständnis der mikroskopischen Prozesse und ihre Modellierung ermöglichen die Analyse und quantitative Prognose optoelektronischer Eigenschaften, die das Laserverhalten maßgeblich bestimmen. Mit dem Modell lassen sich Materialeigenschaften treffend simulieren, wie umfassende Theorie-Experiment-Vergleiche zeigen. Die Untersuchung von Absorption, optischer Verstärkung, Lumineszenz und intrinsischen Ladungsträgerverlusten durch strahlende sowie Auger-Rekombination bildet den Leitfaden zur Charakterisierung verschiedenster Halbleiterverstärkungsmedien. Darauf aufbauend werden nicht nur Lasereigenschaften wie Emissionswellenlängen und Schwellenverhalten berechenbar, sondern es lassen sich auch unbekannte und experimentell schwer zugängliche Strukturparameter bestimmen. So können Konzepte erarbeitet werden, mit denen Laserdesigns mit Blick auf die Anforderungen spezifischer Anwendungen hin optimiert und weiterentwickelt werden können, und mit denen neuartige Lasersysteme auf ihr Anwendungspotential hin eingeschätzt und bewertet werden können.

Bibliographie / References

  1. SCHLICHENMAIER, C.: Modeling of Optical Properties of Semiconductor Heterostructu- res, Philipps-Universität Marburg, Dissertation, 2005
  2. COLDREN, L. A. ; CORZINE, S. W.: Diode Lasers and Photonic Integrated Circuits. Wiley New York, 1995
  3. STRINGFELLOW, G. B.: Organometallic Vapor-Phase Epitaxy: Theory and Practice (2nd ed.). Academic Press San Diego London, 1999
  4. MISIEWICZ, J. ; SITAREK, P. ; SEK, G. ; KUDRAWIEC, R.: Semiconductor heterostruc- tures and device structures investigated by photoreflectance spectroscopy. In: Material Science Poland 21 (2003), S. 263
  5. KIRA, M. ; KOCH, S. W.: Many-body correlations and excitonic effects in semiconductor spectroscopy. In: Progress in Quantum Electronics 30 (2006), S. 155
  6. LANGE, C. ; SCHWALM, M. ; CHATTERJEE, S. ; RÜHLE, W. W. ; GERHARDT, N. C. ; JOHNSON, S. R. ; WANG, J.-B. ; ZHANG, Y.-H.: The variable stripe-length method revi- sited: Improved analysis. In: Applied Physics Letters 91 (2007), S. 191107
  7. HVAM, J. M.: Direct recording of optical-gain spectra from ZnO. In: Journal of Applied Physics 49 (1978), S. 3124
  8. S. Imhof, C. Bückers, A. Thränhardt, J. Hader, J. V. Moloney und S. W. Koch: Microscopic theory of the optical properties of Ga(AsBi)/GaAs quantum wells. In: Semiconductor Science and Technology 23 (2008), S. 125009
  9. GIESEN, A. ; HÜGEL, H. ; VOSS, A. ; WITTIG, K. ; BRAUCH, U. ; OPOWER, H.: Scalable Concept for Diode-Pumped High-Power Solid-State Lasers. In: Applied Physics B 58 (1994), S. 365
  10. KELLER, U. ; TROPPER, A. C.: Passively modelocked surface-emitting semiconductor lasers. In: Physics Reports 429 (2006), S. 67
  11. TROPPER, A. C. ; HOOGLAND, S. H.: Extended cavity surface-emitting semiconductor lasers. In: Progress in Quantum Electronics 30 (2006), S. 1
  12. CHAMINGS, J. ; ADAMS, A. R. ; SWEENEY, S. J. ; KUNERT, B. ; VOLZ, K. ; STOLZ, W.: Temperature dependence and physical properties of Ga(NAsP)/GaP semiconductor lasers. In: Applied Physics Letters 93 (2008), S. 101108
  13. TIXIER, S. ; ADAMCYK, M. ; TIEDJE, T. ; FRANCOEUR, S. ; MASCARENHAS, A. ; WEI, P. ; SCHIETTEKATTE, F.: Molecular beam epitaxy growth of GaAs 1−x Bi x . In: Applied Physics Letters 82 (2003), S. 2245
  14. CLARK, G. D. ; HOLONYAK, N.: Optical properties of Gallium Arsenide-Phosphide. In: Physical Review 156 (1967), S. 913
  15. S. Horst, S. Chatterjee, K. Hantke, P. J. Klar, I. Nemeth, W. Stolz, K. Volz, C. Bückers, A. Thränhardt, S. W. Koch, W. Rühle, S. R. Johnson, J.-B. Wang und Y.-H. Zhang: Hole con- finement in quantum islands in Ga(AsSb)/GaAs/(AlGa)As heterostructures. In: Applied Physics Letters 92 (2008), S. 161101, ausgewählt für " Virtual Journal of Nanoscale Science and Techno- logy " (Mai 2008)
  16. RATTUNDE, M.: 2.X µm-Hochleistungs-Dioden-Laser. In: FRAUNHOFER-INSTITUT FÜR ANGEWANDTE FESTKÖRPERPHYSIK (Hrsg.): Jahresbericht 2005. Freiburg, 2006
  17. RONG, H. ; JONES, R. ; LIU, A. ; COHEN, O. ; HAK, D. ; FANG, A. ; PANICCIA, M.: A continous-wave Raman silicon laser. In: Nature 433 (2005), S. 725
  18. HOLM, M. A. ; BURNS, D. ; FERGUSON, A. I. ; DAWSON, M. D.: Actively stabilized single-frequency vertical-external-cavity AlGaAs laser. In: IEEE Photonics Technology Letters 11 (1999), S. 1551
  19. 5—3.5 µm optically pumped GaInSb/AlGaInSb multiple quantum well lasers grown on AlInSb metamorphic buffer layers. In: Journal of Applied Physics 93 (2003), S. 3177
  20. C. Bückers, A. Bäumner, A. Thränhardt, J. Hader, J. V. Moloney, S. W. Koch, W. Zhang und T. Ackemann, Analysis of in-well pumping of semiconductor lasers by microscopic gain calcu- lations, Materialforschungstag Mittelhessen, Gießen, Juli 2009 (Poster)
  21. SCHULZ, N. ; RÖSENER, B. ; MOSER, R. ; RATTUNDE, M. ; MANZ, C. ; KÖHLER, K. ; WAGNER, J.: An improved active region concept for highly efficient GaSb-based opti- cally in-well pumped vertical-external-cavity surface-emitting lasers. In: Applied Physics Letters 93 (2008), S. 181113
  22. KUNERT, B. ; TRUSHEIM, D. ; VOSSEBÜRGER, V. ; VOLZ, K. ; STOLZ, W.: Annealing experiments of the GaP based dilute nitride Ga(NAsP). In: Physica Status Solidi A 205 (2008), S. 114
  23. RIEDEL, E. ; JANIAK, C.: Anorganische Chemie (7. Auflage). de Gruyter Berlin, 2007
  24. FEHSE, R. ; TOMITOMI´ TOMI´C, S. ; ADAMS, A. R. ; SWEENEY, S. J. ; O'REILLY, E. P. ; ANDREEV, A. ; RIECHERT, H.: A quantitative study of radiative, Auger, and defect related recom- bination processes in 1.3-µm GaInNAs-based quantum-well lasers. In: IEEE Journal of Selected Topics in Quantum Electronics 8 (2002), S. 801
  25. Ga(AsSb)/GaAs/(AlGa)As heterostructures: additional hole-confinement due to quantum islands.
  26. BEATTIE, A. R. ; LANDSBERG, P. T.: Auger effect in semiconductors. In: Proceedings of the Royal Society of London Series A 249 (1959), S. 16
  27. CHAMINGS, J. ; AHMED, S. ; ADAMS, A. R. ; SWEENEY, S. J. ; ODNOBLYUDOV, V. A. ; TU, C. W. ; KUNERT, B. ; STOLZ, W.: Band anti-crossing and carrier recombination in dilute nitride phosphide based lasers and light emitting diodes. In: Physica Status Solidi B 246 (2009), S. 527
  28. SHAN, W. ; WALUKIEWICZ, W. ; AGER, J. W. ; HALLER, E. E. ; GEISZ, J. F. ; FRIEDMAN, D. J. ; OLSON, J. M. ; KURTZ, S. R.: Band Anticrossing in GaInNAs Alloys. In: Physical Review Letters 82 (1999), S. 1221
  29. WU, J. ; SHAN, W. ; WALUKIEWICZ, W.: Band anticrossing in highly mismatched III–V semiconductor alloys. In: Semiconductor Science and Technology 17 (2002), S. 860
  30. MILLER, D. A. B. ; CHEMLA, D. S. ; DAMEN, T. C. ; GOSSARD, A. C. ; WIEGMANN, W. ; WOOD, T. H. ; BURRUS, C. A.: Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect. In: Physical Review Letters 53 (1984), S. 2173
  31. FRANCOEUR, S. ; SEONG, M.-J. ; MASCARENHAS, A. ; TIXIER, S. ; ADAMCYK, M. ; TIEDJE, T.: Band gap of GaAs 1−x Bi x , 0<x<3.6%. In: Applied Physics Letters 82 (2003), S. 3874
  32. ADACHI, S.: Band gaps and refractive indices of AlGaAsSb, GaInAsSb and InPAsSb: Key properties for a variety of the 2–4-µm optoelectronic device applications. In: Journal of Applied Physics 61 (1987), S. 4869
  33. TIXIER, S. ; WEBESTER, S. E. ; YOUNG, E. C. ; TIEDJE, T. ; FRANCOEUR, S. ; MAS- CARENHAS, A. ; WEI, P. ; SCHIETTEKATTE, F.: Band gaps of the dilute quaternary alloys GaN x As 1−x−y Bi y and Ga 1−y In y N x As 1−x . In: Applied Physics Letters 86 (2005), S. 112113
  34. VURGAFTMAN, I. ; MEYER, J. R. ; RAM-MOHAN, L. R.: Band parameters for III–V compound semiconductors and their alloys. In: Journal of Applied Physics 89 (2001), S. 5815
  35. HADER, J. ; MOLONEY, J. V. ; FALLAHI, M. ; FAN, L. ; KOCH, S. W.: Closed-loop design of a semiconductor laser. In: Optics Letters 31 (2006), S. 3300 [3] HADER, J. ; HARDESTY, G. ; WANG, T.-L. ; YARBOROUGH, M. J. ; KANEDA, Y. ; MOLONEY, J. V. ; KUNERT, B. ; STOLZ, W. ; KOCH, S. W.: Predictive Microscopic Modeling of VECSELs. In: IEEE Journal of Quantum Electronics 46 (2010), S. 810 [4] CZYCHOLL, G.: Theoretische Festkörperphysik (2. Auflage). Springer Berlin Heidelberg, 2004 [5] YU, P. Y. ; CARDONA, M.: Fundamentals of Semiconductors: Physics and Materials Properties (3rd ed.). Springer Berlin Heidelberg New York, 2001 [6] BURT, M. G.: The justification for applying the effective-mass approximation to mi- crostructures. In: Journal of Physics: Condensed Matter 4 (1992), S. 6651 [7] VOON, L. C. L. Y. ; WILLATZEN, M.: The k · p Method, Electronic Properties of Semi- conductors. Springer Berlin Heidelberg New York, 2009 [8] CHOW, W. W. ; KOCH, S. W.: Semiconductor-Laser Fundamentals: Physics of the Gain Materials. Springer Berlin Heidelberg New York, 1999
  36. KIRA, M. ; KOCH, S. W.: Cluster-expansion representation in quantum optics. In: Physical Review A 78 (2008), S. 022102
  37. MASCARENHAS, A. ; KINI, R. ; ZHANG, Y. ; FRANCE, R. ; PTAK, A.: Comparison of the dilute bismide and nitride alloys GaAsBi and GaAsN. In: Physica Status Solidi B 246 (2009), S. 504
  38. LU, X. ; BEATON, D. A. ; LEWIS, R. B. ; T.TIEDJE ; ZHANG, Y.: Composition dependence of photoluminescence of GaAs 1−x Bi x alloys. In: Applied Physis Letters 95 (2009), S. 041903
  39. ROTTER, T. J. ; TATEBAYASHI, J. ; SENANAYAKE, P. ; BALAKRISHNAN, G. ; RATTUNDE, M. ; WAGNER, J. ; HADER, J. ; MOLONEY, J. V. ; KOCH, S. W. ; DAWSON, L. R. ; HUFFAKER, D. L.: Continuous-Wave, Room-Temperature Operation of 2-µm Sb- Based Optically-Pumped Vertical-External-Cavity Surface-Emitting Laser Monolithically Grown on GaAs Substrates. In: Applied Physics Express 2 (2009), S. 112102
  40. HOYER, W. ; KIRA, M. ; KOCH, S. W.: Coulomb effects on quantum-well luminescence spectra and radiative recombination times. In: Journal of the Optical Society of America B 24 (2007), S. 1344
  41. WATERS, R. G. ; DALBY, R. J. ; BAUMANN, J. A. ; DE SANCTIS, J. L. ; SHEPARD, A. H.: Dark-line-resistant diode laser at 0.8 µm comprising InAlGaAs strained quantum well. In: IEEE Photonics Technology Letters 3 (1991), S. 409
  42. HADER, J. ; MOLONEY, J. V. ; KOCH, S. W.: Density-activated defect recombination as a possible explanation for the efficiency droop in GaN-based diodes. In: Applied Physics Letters 96 (2010), S. 221106
  43. KUZNETSOV, M. ; HAKIMI, F. ; SPRAGUE, R. ; MOORADIAN, A.: Design and characteri- stics of high-power (> 0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductorlasers with circular TEM 00 beams. In: IEEE Journal of Selected Topics in Quantum Electronics 5 (1999), S. 561
  44. CORZINE, S. W. ; GEELS, R. S. ; SCOTT, J. W. ; YAN, R.-H. ; COLDREN, L. A.: Design of Fabry-Perot Surface-Emitting Lasers with a Periodic Gain Structure. In: IEEE Journal of Quantum Electronics 25 (1989), S. 1513
  45. KUNERT, B. ; VOLZ, K. ; KOCH, J. ; STOLZ, W.: Direct-band-gap Ga(NAsP)-material system pseudomorphically grown on GaP substrate. In: Applied Physics Letters 88 (2006), S. 182108
  46. ASPNES, D. E.: Direct Verification of the Third-Deriavative Nature of Electroreflectance Spectra. In: Physical Review Letters 28 (1972), S. 168
  47. TAKESHIMA, M.: Effect of Auger recombination on laser operation on Ga 1−x Al x As. In: Journal of Applied Physics 58 (1985), S. 3846
  48. PIKUS, G. E. ; BIR, G. L.: Effect of deformation on the hole energy spectrum of germa- nium and silicon. In: Soviet Physics -Solid state 1 (1960), S. 1502. – [Fizika Tverdogo Tela 1 (1959), S. 1642]
  49. SERAPHIN, B. O. ; ASPNES, D. E.: Electric Field Effects in Optical and First-Derivative Modulation Spectroscopy. In: Physical Review B 6 (1972), S. 3158
  50. BARANOV, A. N. ; CUMINAL, Y. ; BOISSIER, G. ; NICOLAS, J. C. ; LAZZARI, J. L. ; ALIBERT, C. ; JOULLIÉ, A.: Electroluminescence of GaInSb/GaSb strained single quan- tum well structures grown by molecular beam epitaxy. In: Semiconductor Science and Technology 11 (1996), S. 1185
  51. WHITE, S. R. ; SHAM, L. J.: Electronic Properties of Flat-Band Semiconductor Hete- rostructures. In: Physical Review Letters 47 (1981), S. 879
  52. LIU, X. ; PISTOL, M.-E. ; SAMUELSON, L.: Excitons bound to nitrogen pairs in GaAs. In: Physical Review B 42 (1990), S. 7504
  53. KLAR, P. J. ; GRÜNING, H. ; HEIMBRODT, W. ; KOCH, J. ; HÖHNSDORF, F. ; STOLZ, W. ; VICENTE, P. M. A. ; CAMASSEL, J.: From N isoelectronic impurities to N-induced bands in the GaN x As 1−x alloy. In: Applied Physics Letters 76 (2000), S. 3439
  54. HADER, J. ; KOCH, S. W. ; MOLONEY, J. V. ; O'REILLY, E. P.: Gain in 1.3 µm materials: InGaNAs and InGaPAs semiconductor quantum-well lasers. In: Applied Physics Letters 77 (2000), S. 630
  55. HAKKI, B. W. ; PAOLI, T. L.: Gain spectra in GaAs double-heterostructure injection lasers. In: Journal of Applied Physics 46 (1975), S. 1299
  56. HOFMANN, M. ; WAGNER, A. ; ELLMERS, C. ; SCHLICHENMEIER, C. ; SCHÄFER, S. ; HÖHNSDORF, F. ; KOCH, J. ; STOLZ, W. ; KOCH, S. W. ; RÜHLE, W. W. ; HADER, J. ; MOLONEY, J. V. ; O'REILLY, E. P. ; BORCHERT, B. ; EGOROV, A. Y. ; RIECHERT, H.: Gain Spectra of (GaIn)(NAs) laser diodes for the 1.3-µm-wavelength regime. In: Applied Physics Letters 78 (2001), S. 3009
  57. RATTUNDE, M. ; SCHMITZ, J. ; KAUFEL, G. ; KELEMEN, M. ; WEBER, J. ; WAGNER, J.: GaSb-based 2.X µm quantum-well diode lasers with low beam divergence and high output power. In: Applied Physics Letters 88 (2006), S. 081115
  58. LIU, J. ; SUN, X. ; CAMACHO-AGUILERA, R. ; KIMERLING, L. C. ; MICHEL, J.: Ge-on- Si laser operating at room temperature. In: Optics Letters 35 (2010), S. 679
  59. KUZNETSOV, M. ; HAKIMI, F. ; SPRAGUE, R. ; MOORADIAN, A.: High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor la- sers with circular TEM 00 beams. In: IEEE Photonics Technology Letters 9 (1997), S. 1063
  60. CHILLA, J. ; BUTTERWORTH, S. ; ZEITSCHEL, A. ; CHARLES, J. ; CAPRARA, A. ; REED, Literaturverzeichnis M. ; SPINELLI, L.: High power optically pumped semiconductor lasers. In: SCHEPS, R. (Hrsg.) ; HOFFMAN, H. J. (Hrsg.): Solid State Lasers XIII: Technology and Devices Bd. 5332, 2004 (Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE)), S. 143
  61. GRÜNING, H. ; KOHARY, K. ; BARANOVSKII, S. D. ; RUBEL, O. ; KLAR, P. J. ; RAMAKRISHNAN, A. ; EBBINGHAUS, G. ; THOMAS, P. ; HEIMBRODT, W. ; STOLZ, W. ; RÜHLE, W. W.: Hopping relaxation of excitons in GaInNAs/GaNAs quantum wells. In: Physica Status Solidi C 1 (2004), S. 109
  62. PAVESI, L. (Hrsg.) ; GAPONENKO, S. (Hrsg.) ; DAL NEGRO, L. (Hrsg.): Towards the first silicon laser. Kluwer Academic Publishers Dodrecht Boston London, 2003
  63. LINDBERG, H. ; STRASSNER, M. ; LARSSON, A.: Improved spectral properties of an Literaturverzeichnis optically pumped semiconductor disk laser using a thin diamond heat spreader as an in- tracavity filter. In: IEEE Photonics Technology Letters 17 (2005), S. 1363
  64. TOMITOMI` TOMI`C, S. ; O'REILLY, E. P. ; KLAR, P. J. ; GRÜNING, H. ; HEIMBRODT, W. ; CHEN, W. M. ; BUYANOVA, I. A.: Influence of conduction-band nonparabolicity on electron confinement and effective mass in GaN x As 1−x /GaAs quantum wells. In: Physical Review B 69 (2004), S. 245305
  65. SCHAFER, M. ; HOYER, W. ; KIRA, M. ; KOCH, S. W. ; MOLONEY, J. V.: Influence of dielectric environment on quantum-well luminescence spectra. In: Journal of the Optical Society of America B 25 (2008), S. 187
  66. HADER, J. ; KOCH, S. W. ; MOLONEY, J. V. ; O'REILLY, E. P.: Influence of the valence- band offset on gain and absorption in GaNAs/GaAs quantum well lasers. In: Applied Physics Letters 76 (2000), S. 3685
  67. WAGNER, J.: Infrarot-Halbleiterlaser für sensorische und medizinische Anwendungen. In: FRAUNHOFER-INSTITUT FÜR ANGEWANDTE FESTKÖRPERPHYSIK (Hrsg.): Jahres- bericht 2003. Freiburg, 2004
  68. YABLONOVITCH, E.: Inhibited Spontaneous Emission in Solid-State Physics and Elec- tronics. In: Physical Review Letters 58 (1987), S. 2059
  69. THOMAS, D. G. ; HOPFIELD, J. J.: Isoelectronic traps due to nitrogen in gallium phosphi- de. In: Physical Review B 150 (1966), S. 680
  70. KOLOKOLOV, K. I. ; LI, J. ; NING, C. Z.: k · p Hamiltonian without spurious-state solu- tions. In: Physical Review B 68 (2003), S. 161308
  71. HADER, J. ; LINDER, N. ; DÖHLER, G. H.: k · p theory of the Franz-Keldysh effect. In: Physical Review B 55 (1997), S. 6960
  72. KOGELNIK, H. ; LI, T.: Laser Beams and Resonators. In: Applied Optics 5 (1966), S. 1550
  73. SALOMON, C. ; DALIBARD, J. ; PHILLIPS, W. D. ; CLAIRON, A. ; GUELLATI, S.: Laser Cooling of Cesium Atoms below 3 µK. In: Europhysics Letters 12 (1990), S. 683
  74. C. Bückers, A. Thränhardt, S. W. Koch, J. Hader, J. V. Moloney, M. Rattunde, N. Schulz und J. Wagner, Laser properties of (GaIn)Sb heterostructures -a microscopic evaluation, Frühjahrs- Veröentlichungen tagung der Deutschen Physikalischen Gesellschaft, Berlin, Februar 2008 (Vortrag)
  75. WANG, E. Y. ; ALBERS, W. A. ; BLEIL, C. E.: Light-modulated Reflectance of Semi- conductors. In: THOMAS, D. G. (Hrsg.): Proceedings of the International Conference on II-VI Semiconducting Compounds, Providence, Rhode Island 1967, W. A. Benjamin Inc. New York, 1968, S. 136
  76. JAHNKE, F. ; KIRA, M. ; KOCH, S. W.: Linear and nonlinear optical properties of excitons in semiconductor quantum wells and microcavities. In: Zeitschrift für Physik B 104 (1997), S. 559
  77. JAKOWETZ, W. ; RÜHLE, W. ; BREUNINGER, K. ; PILKUHN, M.: Luminescence and Photoconductivity of Undoped p-GaSb. In: Physica Status Solidi A 12 (1972), S. 169
  78. WATTS, R. N. ; WIEMAN, C. E.: Manipulating atomic velocities using diode lasers. In: Optics Letters 11 (1986), S. 291
  79. GAY, J. G. ; KLAUDER, L. T.: Mechnaism for the Photoreflectance Effect. In: Physical Review 172 (1968), S. 811
  80. C. Bückers, A. Thränhardt, S. W. Koch, M. Rattunde, N. Schulz, J. Wagner, J. Hader und J. V. Moloney: Microscopic calculation and measurement of the laser gain in a (GaIn)Sb quan- tum well structure. In: Applied Physics Letters 92 (2008), S. 071107
  81. HADER, J. ; MOLONEY, J. V. ; KOCH, S. W.: Microscopic Evaluation of Spontaneous Emission and Auger-Processes in Semiconductor Lasers. In: IEEE Journal of Quantum Electronics 41 (2005), S. 1217
  82. HADER, J. ; MOLONEY, J. V. ; KOCH, S. W. ; CHOW, W. W.: Microscopic Modeling of Gain and Luminescence in Semiconductors. In: IEEE Journal of Selected Topics in Quantum Electronics 9 (2003), S. 688
  83. C. Bückers, S. Imhof, A. Thränhardt, J. Hader, J. V. Moloney und S. W. Koch: Microscopic Modeling of Quantum Well Gain Media for VECSEL Applications. In: IEEE Journal of Selected Topics in Quantum Electronics 15 (2009), S. 984, eingeladener Beitrag S. Horst, S. Chatterjee, K. Hantke, P. J. Klar, I. Nemeth, W. Stolz, K. Volz, C. Bückers, A. Thränhardt, S. W. Koch, W. Rühle, S. R. Johnson, J.-B. Wang und Y.-H. Zhang:
  84. C. Bückers, S. W. Koch, A. Thränhardt, J. Hader, J. V. Moloney, C. Karcher, W. Heimbrodt, B. Kunert, K. Volz und W. Stolz, Microscopic modeling of the optical properties of dilute ni- tride semiconductor gain materials, Conference on Lasers and Electro-Optics/Europe (CLEO- Europe), München, Juni 2009 (Vortrag)
  85. KÜHN, E. ; KOCH, S. W. ; THRÄNHARDT, A. ; HADER, J. ; MOLONEY, J. V.: Microscopic simulation of nonequilibrium features in quantum-well pumped semiconductor disk lasers. In: Applied Physics Letters 96 (2010), S. 051116
  86. Veröentlichungen A. Thränhardt, C. Bückers, C. Schlichenmaier, I. Kuznetsova, S. W. Koch, J. Hader und J. V. Moloney: Microscopic simulation of semiconductor lasers at telecommunication wave- lengths. In: Optical and Quantum Electronics 38 (2006), S. 1005
  87. HADER, J. ; KOCH, S. W. ; MOLONEY, J. V.: Microscopic theory of gain and spontaneous emission in GaInNAs laser material. In: Solid-State Electronics 47 (2003), S. 513
  88. C. Bückers, S. Imhof, A. Thränhardt, S. W. Koch, C. Karcher, W. Heimbrodt, B. Kunert, S. Zinnkann, K. Volz, W. Stolz, J. Hader und J. V. Moloney, Modelling of the optical proper- ties of semiconductor laser materials, Seminar des europäischen Graduiertenkollegs " Electron- Electron Interactions in Solids " , Riezlern (Österreich), August 2008 (Vortrag)
  89. HUANG, W. ; OE, K. ; FENG, G. ; YOSHIMOTO, M.: Molecular-beam epitaxy and cha- racteristics of GaN y As 1−x−y Bi x . In: Journal of Applied Physics 98 (2005), S. 053505
  90. KUNERT, B. ; ZINNKANN, S. ; VOLZ, K. ; STOLZ, W.: Monolithic integration of Ga(NAsP)/(BGa)P multi-quantum well structures on (0 0 1) silicon substrate by MOVPE.
  91. KUNERT, B. ; VOLZ, K. ; KOCH, J. ; STOLZ, W.: MOVPE growths conditions of the novel direct band gap, dilute nitride Ga(NAsP) material system pseudomorphically strained on GaP-substrate. In: Journal of Crystal Growth 298 (2007), S. 121
  92. GRINDT, A. ; JAHNKE, F. ; KNORR, A. ; KOCH, S. W. ; CHOW, W. W.: Multi-Band Bloch Equations and Gain Spectra of Highly Excited II–VI Semiconductor Quantum Wells. In: Physica Status Solidi B 202 (1997), S. 725
  93. KUNERT, B. ; KLEHR, A. ; REINHARDT, S. ; VOLZ, K. ; STOLZ, W.: Near room tempe- rature electrical injection lasing for dilute nitride Ga(NAsP)/GaP quantum-well structures grown by metal organic vapour phase epitaxy. In: Electronics Letters 42 (2006), S. 601
  94. THRÄNHARDT, A. ; KUZNETSOVA, I. ; SCHLICHENMAIER, C. ; KOCH, S. W. ; SHTERENGAS, L. ; BELENKY, G. ; YEH, J.-Y. ; MAWST, L. J. ; TANSU, N. ; HADER, J. ; MOLONEY, J. V. ; CHOW, W. W.: Nitrogen incorporation effects on gain properties of GaInNAs lasers: Experiment and theory. In: Applied Physics Letters 86 (2005), S. 201117
  95. LIU, X. ; PISTOL, M.-E. ; SAMUELSON, L. ; SCHWETLICK, S. ; SEIFERT, W.: Nitrogen pair luminescence in GaAs. In: Applied Physics Letters 56 (1990), S. 1451
  96. CHOW, W. W. ; SCHNEIDER, H. C. ; KOCH, S. W. ; CHANG, C. H. ; CHROSTOWSKI, L. ; CHANG-HASNAIN, C. J.: Nonequilibrium Model for Semiconductor Laser Modulation Response. In: IEEE Journal of Quantum Electronics 38 (2002), S. 402
  97. OLESBERG, J. T.: Noninvasive blood glucose monitoring in the 2.0–2.5 µm wavelength range. In: IEEE/LEOS Conference Proceedings 2 (2001), S. 529
  98. WINTNER, E. ; IPPEN, E. P.: Nonlinear carrier dynamics in Ga x In 1−x As y P 1−y compounds. In: Applied Physics Letters 44 (1984), S. 999
  99. KHITROVA, G. ; GIBBS, H. M. ; JAHNKE, F. ; KIRA, M. ; KOCH, S. W.: Nonlinear optics of normal-mode-coupling semiconductor microcavities. In: Reviews of Modern Physics 71 (1999), S. 1591
  100. LANDOLT-BÖRNSTEIN: Numerical Data and Functional Relationships in Science and Technology, Group III: Condensed Matter, Volume 41: Semiconductors. Springer Berlin Heidelberg New York, 2002
  101. C. Bückers, S. W. Koch, S. Imhof, A. Thränhardt, T. Ackemann, C. Karcher, W. Heimbrodt, B. Kunert, K. Volz, W. Stolz, J. Hader und J. V. Moloney, Optical gain and carrier losses in vertical-external-cavity surface-emitting lasers, Seminar des europäischen Graduiertenkollegs " Electron-Electron Interactions in Solids " , Ráckeve (Ungarn), April 2009 (Vortrag)
  102. GANGYI, X. ; AIZHEN, L.: Optical gain of InGaAsSb/AlGaAsSb type-I long wavelength quantum-well lasers. In: Semiconductor Science and Technology 18 (2003), S. 827
  103. BEYERTT, S. S. ; ZORN, M. ; KÜBLER, T. ; WENZEL, H. ; WEYERS, M. ; GIESEN, A. ; TRÄNKLE, G. ; BRAUCH, U.: Optical In-Well Pumping of a Semiconductor Disk Laser With High Optical Efficiency. In: IEEE Journal of Quantum Electronics 41 (2005), S. 1439
  104. SCHMID, M. ; BENCHABANE, S. ; TORABI-GOUDARZI, F. ; ABRAM, R. ; FERGUSON, A. I. ; RIIS, E.: Optical in-well pumping of a vertical-external-cavity surface-emitting laser. In: Applied Physics Letters 84 (2004), S. 4860
  105. SLUSHER, R. E. ; WEISBUCH, C.: Optical mircocavities in condensed matter systems. In: Solid State Communications 92 (1994), S. 149
  106. C. Bückers, S. Imhof, A. Thränhardt, S. W. Koch, J. Hader und J. V. Moloney, Optical properties of dilute nitride Ga(NAsP) structures -a microscopic analysis, Materialforschungstag Mittelhes- sen, Marburg, Juni 2008 (Poster)
  107. KARCHER, C. ; GRÜNING, H. ; GÜNGERICH, M. ; KLAR, P. J. ; VOLZ, K. ; STOLZ, W. ; HEIMBRODT, W.: Optical properties of Ga(NAsP) lattice matched to Si. In: Physica Status Solidi C 6 (2009), S. 2638
  108. BOTTAZZI, C. ; PARISINI, A. ; TARRICONE, L. ; MAGNANINI, R. ; BARALDI, A.: Optical properties of GaSb/Al 0.4 Ga 0.6 Sb multiple quantum wells. In: Physical Review B 62 (2000), S. 2731
  109. HECHT, E.: Optik (4. Auflage). Oldenbourg-Verlag München, 2005
  110. KUDRAWIEC, R.: Paramterization of energy gap at the Γ point and outside this point for dilute nitrides: Ga 1−y In y N x P 1−x and GaN x As 1−x−z P z allyos. In: Journal of Applied Physics 105 (2009), S. 063529
  111. SHAY, J. L.: Photoreflectance Line Shape at the Fundamental Edge in Ultrapure GaAs. In: Physical Review B 2 (1970), S. 803
  112. GLEMBOCKI, O. J. ; SHANABROOK, B. V.: Photoreflectance spectroscopy of microstruc- tures. In: Semiconductors and Semimetals (1992) [145] KARCHER, C.: Optische Spektroskopie an Ga(N,As,P)GaP Quantenfilmstrukturen, Philipps-Universität Marburg, Diplomarbeit, 2007
  113. O'REILLY, E. P. ; LINDSAY, A.: k · P Model of Ordered GaN x As 1−x . In: Physica Status [122] LINDSAY, A. ; O'REILLY, E. P.: Theory of enhanced bandgap non-parabolicity in GaN x As 1−x and related alloys. In: Solid State Communications 112 (1999), S. 443
  114. BEDFORD, R. G. ; KOLESKI, M. ; CHILLA, J. ; REED, M. K. ; NELSON, T. R. ; MOLONEY, J. V.: Power-limiting mechanisms in VECSELs. In: Enabling Photonics Technologies for Defense, Security, and Aerospace Applications Bd. 5814, 2005 (Procee- dings of the Society of Photo-Optical Instrumentation Engineers (SPIE)), S. 199
  115. RUBEL, O. ; GALLUPPI, M. ; BARANOVSKII, S. D. ; VOLZ, K. ; GEELHAAR, L. ; RIECHERT, H. ; THOMAS, P. ; STOLZ, W.: Quantitative description of disorder parame- ters in (GaIn)(NAs) quantum wells from the temperature-dependent photoluminescence spectroscopy. In: Journal of Applied Physics 98 (2005), S. 063518
  116. C. Bückers, E. Kühn, C. Schlichenmaier, S. Imhof, A. Thränhardt, J. Hader, J. V. Moloney, O. Rubel, W. Zhang, T. Ackemann und S. W. Koch: Quantum modeling of semiconductor gain materials and vertical-external-cavity surface-emitting laser systems. In: Physica Status Solidi B 247 (2010), S. 789, eingeladener Beitrag
  117. KLAR, P. J.: Recent developments in metastable dilute-N III–V semiconductors. In: Progress in Solid State Chemistry 31 (2003), S. 301
  118. NAHORY, R. E. ; SHAY, J. L.: Reflectance modulation by the surface field in GaAs. In: Physical Review Letters 21 (1968), S. 1569
  119. CARDONA, M. ; CHRISTENSEN, N. E. ; FASOL, G.: Relativistic band structure and spin- orbit splitting of zinc-blende-type semiconductors. In: Physical Review B 38 (1988), S. 1806
  120. RAJA, M. Y. A. ; BRUECK, S. R. J. ; OSINSKI, M. ; SCHAUS, C. F. ; MCINERNEY, J. G. ; BRENNAN, T. M. ; HAMMONS, B. E.: Resonant Periodic Gain Surface-Emitting Semiconductor Lasers. In: IEEE Journal of Quantum Electronics 25 (1989), S. 1500
  121. KIM, J. G. ; SHTERENGAS, L. ; MARTINELLI, R. U. ; BELENKY, G. L. ; GARBUZOV, D. Z. ; CHAN, W. K.: Room-temperature 2.5 µm InGaAsSb/AlGaAsSb diode lasers emit- ting 1 W continuous waves. In: Applied Physics Letters 81 (2002), S. 3146
  122. LE, H. Q. ; DI CECCA, S. ; MOORADIAN, A.: Scalable high-power optically pumped GaAs laser. In: Applied Physics Letters 58 (1991), S. 1967
  123. ALBERS, W. A.: Screening of bound-state excitons in modulated reflectance. In: Physical Review Letters 23 (1969), S. 410
  124. AGRAWAL, G. P.: Semiconductor Lasers: Past, Present and Future. American Institut of Physics Press Woodbury New York, 1995
  125. MADELUNG, O.: Semiconductors -Basic Data (2nd ed.). Springer Berlin Heidelberg New York, 1996
  126. HUANG, S. H. ; BALAKRISHNAN, G. ; KHOSHAKHLAGH, A. ; JALLIPALLI, A. ; DAWSON, L. R. ; HUFFAKER, D. L.: Strain relief by periodic misfit arrays for low defect density GaSb on GaAs. In: Applied Physics Letters 88 (2006), S. 131911
  127. FERHAT, M. ; ZAOUI, A.: Structural and electronic properties of III-V bismuth com- pounds. In: Physical Review B 73 (2006), S. 115107
  128. HADER, J. ; MOLONEY, J. V. ; KOCH, S. W.: Supression of carrier recombination in semiconductor lasers by phase-space filling. In: Applied Physics Letters 87 (2005), S. 201112
  129. HANGLEITER, A. ; HITZEL, F. ; NETZEL, C. ; FUHRMANN, D. ; ROSSOW, U. ; ADE, G. ; HINZE, P.: Supression of Nonradiative Recombination by V-Shaped Pits in GaInN/GaN Quantum Wells Produces a Large Increase in the Light Emission Efficiency. In: Physical Review Letters 95 (2005), S. 127402
  130. CASSIDY, D. T.: Technique for measurement of the gain spectra of semiconductor diode lasers. In: Journal of Applied Physics 56 (1984), S. 3096
  131. HADER, J. ; MOLONEY, J. V. ; KOCH, S. W.: Temperature Dependence of Radiative and Auger Losses in Quantum Wells. In: IEEE Journal of Quantum Electronics 44 (2008), S. 185
  132. VARSHNI, Y. P.: Temperature dependence of the energy gap in semiconductors. In: Physica 34 (1967), S. 149
  133. ROTHMAN, L. S. ; RINSLAND, C. P. ; GLODMAN, A. ; MASSIE, S. T. ; EDWARDS, D. P. ; FLAUD, J.-M. ; PERRIN, A. ; CAMY-PEYRET, C. ; DANA, V. ; MANDIN, J.-Y. ; SCHROEDER, J. ; MCCANN, A. ; GAMACHE, R. R. ; WATTSON, R. B. ; YOSHINO, K. ; CHANCE, K. V. ; JUCKS, K. W. ; BROWN, L. R. ; NEMTCHINOV, V. ; VARANASI, P.: The Hitran Molecular Spectroscopic Database and Hawks (Hitran Atmospheric Workstation): 1996 Edition. In: Journal of Quantitative Spectroscopy and Radiative Transfer 60 (1998), S. 665
  134. SHANTHARAMA, L. G. ; ADAMS, A. R. ; AHMAD, C. N. ; NICHOLAS, R. J.: The k · p interaction on InP and GaAs from the band-gap dependence of the effective mass. In: Journal of Physics C: Solid State Physics 17 (1984), S. 4429
  135. C. Bückers, S. Imhof, A. Thränhardt, S. W. Koch, B. Metzger, S. Chatterjee, J. Hader, J. V. Moloney, M. Rattunde, N. Schulz, J. Wagner, D. L. Huffaker, G. Balakrishnan, T. J. Rotter und R. Bedford, Theoretical modeling and experimental analysis of bandstructure and gain in long-wavelength heterostructres, Advanced Semiconductor Materials Workshop, Tucson (Ari- zona, USA), Februar 2008 (Vortrag)
  136. JANOTTI, A. ; WEI, S.-H. ; ZHANG, S. B.: Theoretical study of the effects of isovalent coalloying of Bi and N in GaAs. In: Physical Review B 65 (2002), S. 115203
  137. KENT, P. R. C. ; ZUNGER, A.: Theory of electronic structure evolution in GaAsN and GaPN alloys. In: Physical Review B 64 (2001), S. 115208
  138. HJALMARSON, H. P. ; VOGL, P. ; WOLFORD, D. J. ; DOW, J. D.: Theory of Substitutional Deep Traps in Covalent Semiconductors. In: Physical Review Letters 44 (1980), S. 810
  139. O'REILLY, E. P. ; LINDSAY, A. ; FAHY, S.: Theory of the electronic structure of dilute nitride alloys: beyond the band-anti-crossing model. In: Journal of Physics: Condensed Matter 16 (2004), S. 3257
  140. GEHRSITZ, S. ; REINHART, F. K. ; GOURGON, C. ; HERRES, N. ; VONLANTHEN, A. ; SIGG, H.: The refractive index of Al x Ga 1−x As below the band gap: Accurate determina- tion and empirical modeling. In: Journal of Applied Physics 87 (2000), S. 7825
  141. KEMP, A. J. ; VALENTINE, G. J. ; HOPKINS, J.-M. ; HASTIE, J. E. ; SMITH, S. A. ; CALVEZ, S. ; DAWSON, M. D. ; BURNS, D.: Thermal management in vertical-external- cavity surface-emitting lasers: finite-element analysis of a heatspreader approach. In: IEEE Journal of Quantum Electronics 41 (2005), S. 148
  142. ASPNES, D. E.: Third-derivative modulation spectroscopy with low-field electroreflec- tance. In: Surface Science 37 (1973), S. 418
  143. O'REILLY, E. P. ; LINDSAY, A. ; TOMITOMI´ TOMI´C, S. ; KAMAL-SAADI, M.: Tight-binding and k · p models for the electronic structure of Ga(In)NAs and related alloys. In: Semiconductor Science and Technology 17 (2002), S. 870
  144. MIKHAILOVA, M. P. ; TITKOV, A. N.: Type II heterojunctions in the GaInAsSb/GaSb system. In: Semiconductor Science and Technology 9 (1994), S. 1279
  145. SCHLICHENMAIER, C. ; GRÜNING, H. ; TRÄNHARDT, A. ; KLAR, P. J. ; KUNERT, B. ; VOLZ, K. ; STOLZ, W. ; HEIMBRODT, W. ; MEIER, T. ; KOCH, S. W. ; HADER, J. ; MOLONEY, J. V.: Type I-type II transition in InGaAs–GaNAs heterostructures. In: Applied Physics Letters 86 (2005), S. 081903
  146. ALBERI, K. ; WU, J. ; WALUKIEWICZ, W. ; YU, K. M. ; DUBON, O. D. ; WATKINS, S. P. ; WANG, C. X. ; LIU, X. ; CHO, Y.-J. ; FURDYNA, J.: Valence-band anticrossing in mismatched III-V semiconductor alloys. In: Physical Review B 75 (2007), S. 045203
  147. RATTUNDE, M.: Infrarot-Diodenlaser auf der Basis der III-V-Antimonide, Albert- Ludwigs-Universität Freiburg i. Br., Dissertation, 2003
  148. SCHULZ, N. ; HOPKINS, J.-M. ; RATTUNDE, M. ; BURNS, D. ; WAGNER, J.: High- brightness long-wavelength semiconductor disk lasers. In: Laser & Photonics Reviews 2 (2008), S. 160
  149. ZAKHARIAN, A. R. ; HADER, J. ; MOLONEY, J. V. ; KOCH, S. W. ; BRICK, P. ; LUTGEN, S.: Experimental and theoretical analysis of optically pumped semiconductor disk lasers. In: Applied Physics Letters 83 (2003), S. 1313
  150. E. Kühn, A. Thränhardt, C. Bückers, S. W. Koch, J. Hader und J. V. Moloney: Numerical study of the influence of an antireflection coating on the operating properties of vertical-external-cavity surface-emitting lasers. In: Journal of Applied Physics 106 (2009), S. 063105
  151. CALVEZ, S. ; HASTIE, J. E. ; GUINA, M. ; OKHOTNIKOV, O. G. ; DAWSON, M. D.: Semiconductor disk lasers for the generation of visible and ultraviolet radiation. In: Laser & Photonics Reviews 3 (2009), S. 407
  152. ZHANG, W. ; MCDONALD, A. ; ACKEMANN, T. ; RIIS, E. ; MCCONNELL, G.: Femto- second synchronously in-well pumped vertical-external-cavity surface-emitting laser. In: Optics Express 18 (2010), S. 187
  153. ZHANG, W. ; ACKEMANN, T. ; MCGINILY, S. ; SCHMID, M. ; RIIS, E. ; FERGUSON, A. I.: Operation of an optical in-well-pumped vertical-external-cavity surface-emitting laser. In: Applied Optics 45 (2006), S. 7729
  154. HASTIE, J. E. ; HOPKINS, J. M. ; CALVEZ, S. ; JEON, C. W. ; BURNS, D. ; ABRAM, R. ; RIIS, E. ; FERGUSON, A. I. ; DAWSON, M. D.: 0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser. In: IEEE Photonics Technology Letters 15 (2003), S. 894
  155. HASTIE, J. E. ; CALVEZ, S. ; DAWSON, M. D. ; LEINONEN, T. ; LAAKSO, A. ; LYYTIKÄINEN, J. ; PESSA, M.: High power CW red VECSEL with linearly polarized TEM 00 output beam. In: Optics Express 13 (2005), S. 77
  156. HASTIE, J. E. ; MORTON, L. G. ; KEMP, A. J. ; DAWSON, M. D. ; KRYSA, A. B. ; ROBERTS, J. S.: Tunable ultraviolet output from an intracavity frequency-doubled red [55] MCGINILY, S. J. ; ABRAM, R. H. ; GARDNER, K. S. ; RIIS, E. ; FERGUSON, A. I. ; ROBERTS, J. S.: Novel Gain Medium Design for Short-Wavelength Vertical-External- Cavity Surface-Emitting Laser. In: IEEE Journal of Quantum Electronics 43 (2007), S. 445
  157. IGA, K.: Surface-Emitting Laser — Its Birth and Generation of New Optoelectronic Field. In: IEEE Journal on Selected Topics in Quantum Electronics 6 (2000), S. 1201
  158. KIRA, M. ; JAHNKE, F. ; HOYER, W. ; KOCH, S. W.: Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures. In: Progress in Quantum Electronics 23 (1999), S. 189
  159. HAUG, H. ; KOCH, S. W.: Quantum Theory of the Optical and Electronic Properties of Semiconductors (4th ed.). World Scientific Singapore, 2004
  160. C. Bückers, S. W. Koch, J. Hader, J. V. Moloney, B. Kunert, S. Liebich, K. Volz, W. Stolz, N. Koukourakis, N. C. Gerhardt und M. R. Hofmann, Laser gain in dilute nitride Ga(NAsP) semiconductor quantum well structures on silicon substrate -a microscopic analysis, Inter- national Conference on Optical and Optoelectronic Properties of Materials and Applications (ICOOPMA), Budapest (Ungarn), August 2010 (Vortrag)


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten