Die invasive Front von Plattenepithelkarzinomen des oberen Aerodigestivtraktes exprimiert MMP-9 und ist eine bevorzugte Lokalisation von Tumorstammzellkandidaten

Inaugural-Dissertation zur Erlangung des Doktorgrades der gesamten Humanmedizin dem Fachbereich Medizin der Philipps-Universität Marburg vorgelegt von

Carolina Sterz
aus Darmstadt

Marburg, 2011
Meinen Eltern

In Liebe und Dankbarkeit
3.1.5 Ermittlung der Zellzahl... 29
3.2 Herstellung von Zelllysaten.. 29
3.3 Proteinbestimmung nach Bradford.. 30
3.4 SDS-Polyacrylamid Gelelektrophorese (SDS-PAGE)......................... 31
3.5 Western Blot Analyse.. 32
3.6 Zymographie.. 33
 3.6.1 Auswertung der Zymographie.. 34
3.7 Immunhistochemie.. 35
 3.7.1 Fixierung und Einbettung von Gewebe 35
 3.7.2 Immunhistochemische Färbungen.. 35
3.8 Immunzytochemische Färbungen nach Co-Kultur von Tumorzellen und
 Fibroblasten.. 36
3.9 Statistische Auswertung.. 37
4 ERGEBNISSE ... 38
 4.1 Untersuchung stammzelltypischer Marker in normaler Mukosa und HNSCC
 Tumorgeweben.. 38
 4.1.1 Stammzellmarker in normaler Mukosa...................................... 38
 4.1.2 Stammzellmarker in Tumorgewebe.. 39
 4.1.3 Expression des Basalmembran-typischen Kollagen-IV................. 40
 4.2 Kolokalisation von CD44 und MMP-9 bei Tumorzellen der invasiven Front... 41
 4.2.1 Vergleich Immunhistochemischer Färbungen für CD44 und MMP-9.... 41
 4.2.2 Immunfluoreszenz Färbung... 42
 4.3 Koexpression von CD44 und MMP-9 in HNSCC Gewebeproben.............. 44
 4.4 Gelatinolytische Aktivität in HNSCC Gewebeproben............................ 45
 4.4.1 Gelatin Zymographie.. 45
 4.4.2 MMP-9 aber nicht MMP-2 korreliert mit der gelatinolytischen Aktivität... 46
 4.5 Expression und Lokalisation von MMP-9 und NGAL.......................... 47
 4.5.1 Korrelation der MMP-9 und NGAL Proteinexpression.................. 48
 4.5.2 Kolokalisation von NGAL und MMP-9 im Bereich der Tumorfront.... 48
 4.5.3 Immunfluoreszenz Doppelfärbung auf MMP-9 und NGAL nach
 Kokultur von Fibroblasten und Tumorzellen.................................. 50
 4.6 Vergleich des Invasivitätsverhaltens in vivo versus in vitro.................. 52
5 DISKUSSION .. 53
 5.1 Die Tumorstammzell Hypothese.. 53
 5.2 Tumorstammzellen in HNSCC Tumoren.. 54
 5.3 CD44 positive Tumorstammzellen im Bereich der invasiven Tumorfront.... 57
 5.4 Kolokalisation von CD44 und MMP-9 im Bereich der Tumor-Stroma-Grenze.... 57
 5.5 Zusammenhang zwischen gelatinolytischer Aktivität und MMP Expression.... 59
5.6 Analyse von MMP-9 Banden... 60
5.7 NGAL als regulierender Faktor von MMP-9 in HNSCC Tumoren 61
5.8 Unterschiede zwischen HNSCC Geweben und Zelllinien................................. 61
5.9 Therapeutische Aussichten... 62

6 ZUSAMMENFASSUNG... 64

7 LITERATURANGABEN ... 66

8 ANHANG.. 81
 8.1 Stadien und TNM Einteilung von HNSCC Tumoren ... 81
 8.2 Abkürzungsverzeichnis ... 83
 8.3 Abbildungsverzeichnis ... 85
 8.4 Tabellenverzeichnis ... 86
 8.5 Vorträge und Publikationen.. 87
 8.6 Verzeichnis der akademischen Lehrer .. 88
 8.7 Danksagung... 89
1 EINLEITUNG

1.1 Plattenepithelkarzinome des oberen Aerodigestivtraktes

Karzinome des Kopf- und Halsbereiches gehören mit über 500.000 Neuerkrankungen im Jahr weltweit zu den fünf häufigsten Malignomerkrankungen (Parkin et al. 1999). Die Inzidenz der Erkrankung ist in Deutschland steigend (Gellrich et al. 2004).

Der Erkrankungsgipfel liegt zwischen dem 50. und 65. Lebensjahr, wobei Männer wesentlich häufiger betroffen sind als Frauen (Gellrich et al. 2004). Neben regionalen Unterschieden in der Prävalenz von Plattenepithelkarzinomen, sind je nach Land auch unterschiedliche Inzidenzen zu verzeichnen. Im Allgemeinen steigt die Zahl der Neuerkrankungen in Ländern wie Zentral- und Osteuropa, Skandinavien, Kanada, Japan und Australien an, während in Indien, Hong Kong, Brasilien und bei weißen US Amerikanern fallende Zahlen beobachtet werden (Sankaranarayanan et al. 1998).
Einleitung

1.2 Allgemeine Tumorbiologie

Einleitung

Pathologisch birgt unkontrollierte Zellvermehrung eine große Gefahr für den Organismus. Wenn einzelne Zellen ihre eigentliche Funktion verlieren, oder sich die genetische Sequenz einer Zelle verändert, können diese mutierten Genotypen zu neuen, abnormen Phänotypen führen. Dies kann eine Veränderung oder einen Verlust der eigentlichen Zellfunktion mit sich bringen, der oft mit der gewöhnlichen Gewebefunktion nicht mehr vereinbar ist. Liegen zusätzlich Veränderungen im Zellzyklus und im Wachstumsablauf vor, kann es zu unkontrollierter und ungehemmter Zellproliferation kommen. Tumorzellen haben zudem die besondere Eigenschaft, sich vor Zellen des Immunsystems zu verstecken bzw. Schutzmechanismen gegen diese zu entwickeln, sodass sie in ihrer Proliferation ungestört sind. Es handelt sich also bei Tumorzellen um Zellen, die aggressiver und invasiver wachsen als normale Zellen, die jedoch in der Regel nicht fähig sind, die physiologische Zellfunktion des Ursprungsgewebes auszuführen.

1.3 Stammzellen

In Bezug auf zellbiologische Eigenschaften von tumorösem Gewebe hat sich im Laufe der letzten Jahre eine neue Hypothese durchgesetzt, welche die Existenz so genannter Tumorstammzellen (Cancer Stem Cells - CSCs) postuliert. Analog zu hämatologischen Stammzellen des Knochenmarks kannte man von normalem, gesundem Gewebe, dass auch hier Zellen mit Stammzell Eigenschaften zu finden sind. Diese besitzen die Fähigkeit zur Selbsterneuerung, wobei sich jede der Stammzellen zu unterschiedlichen Zellarten ausdifferenzieren kann. Interessanterweise hat sich diese Stammzellhypothese nicht nur bei gesunden Geweben durchgesetzt, sondern wurde auch auf maligne entartete Gewebe ausgedehnt. Es ist bekannt, dass in
verschiedenen Gewebetumoren ebenfalls Zellen mit Stammzelleigenschaften zu finden sind, welche fähig sind den Phänotyp des ursprünglichen Tumors reproduzieren zu können.

Die Gesamtheit der sogenannten Tumorstammzellen stellt mit weniger als zehn Prozent der Gesamttumorzahl nur eine kleine Population dar, sie scheint jedoch für zahlreiche Invasions- und Wachstumsprozesse sowie für Chemotherapieresistenzen von entscheidender Bedeutung zu sein.

1.3.1 Die Tumorstammzell Hypothese

Abbildung 1. Die Tumor Stammzell Hypothese schematisch
In diesem vereinfachten Schema wird die Fähigkeit von Tumorstammzellen zur Selbstreproduktion und Tumorformation aus einzelnen Zellen veranschaulicht. Tumorzellen ohne Stammzelleigenschaften sind hierzu nicht in der Lage.

1.3.2 Eigenschaften von Tumorstammzellen

1.3.3 Tumorstammzell Marker

Gesteigertes Interesse an CD44 kam auf, als eine verstärkte CD44 Expression mit Tumorwachstum und Metastasierung in Verbindung gebracht wurde und man einen Zusammenhang zwischen CD44 und Tumorstammzellen aufdeckte. Die CD44 gesteuerte Tumorprogression kommt über Aktivierung bestimmter Signaltransduktionswege zustande, die für das Überleben der Zelle wichtig sind (Bourguignon et al. 2003).

1.4 Metastasierung

Die einzelnen Schritte einer Tumorzelle auf dem Weg vom Primärtumor bis zur Gründung einer neuen Zellkolonie in entfernt liegenden Geweben, können nach Fidler in der sogenannten Invasions-Metastasierungs-Kaskade zusammengefasst werden (Fidler 2003).

Abbildung 2. Invasions-Metastasierungs-Kaskade

Am Anfang steht hierbei der Durchbruch durch die Basalmembran und damit die Verwandlung eines In situ Karzinoms in einen invasiv wachsenden, malignen Tumor. Anschliessend treten die Tumorzellen durch Intravasation in Blutgefäße ein und können

1.5 Matrix Metalloproteininasen (MMPs)

Tabelle 1. Übersicht über die MMP Familie

Die Tabelle zeigt alle 28 bis heute bekannten vertebraten MMP, sowie ihre entsprechenden Substrate (modifiziert nach Sommerville et al. 2003).

<table>
<thead>
<tr>
<th>Name</th>
<th>Synonym</th>
<th>Mw latent</th>
<th>Mw aktiv</th>
<th>Substrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMP-1</td>
<td>Kollagenase-1</td>
<td>55</td>
<td>43</td>
<td>Typ I-, II-, III-, VII-, VIII-, XI-Kollagen, Gelatine, Aggrecan, Casein, Nidogen, Serpin, Versican, Perlecan, Tenascin-C, Proteoglykan</td>
</tr>
<tr>
<td>MMP-3</td>
<td>Stromelysin-1</td>
<td>57</td>
<td>43; 45</td>
<td>Typ II-, IV-, IX-, X-Kollagen, Gelatine, Aggrecan, Casein, Decorin, Elastin, Fibronektin, Laminin, Nidogen, Perlecan, Proteoglykan, Versican</td>
</tr>
<tr>
<td>MMP-7</td>
<td>Matrilysin-1</td>
<td>28</td>
<td>19</td>
<td>Typ I-, II-, III-, V-, IX-, X-Kollagen, Aggrecan, Casein, Elastin, Enactin, Laminin, Proteoglykan</td>
</tr>
<tr>
<td>MMP-8</td>
<td>Kollagenase-2</td>
<td>75</td>
<td>58</td>
<td>Typ I-, II-, III-, IV-, VII-, VIII-, X-Kollagen, Gelatine, Aggrecan, Laminin, Nidogen</td>
</tr>
<tr>
<td>MMP-9</td>
<td>Gelatinase-B</td>
<td>92</td>
<td>86</td>
<td>Typ IV-, V-, VII-, X-, XIV-Kollagen, Gelatine, Fibronektin, Laminin, Nidogen, Proteoglykan, Versican</td>
</tr>
<tr>
<td>MMP-10</td>
<td>Stromelysin-2</td>
<td>57</td>
<td>44</td>
<td>Typ III-, IV-, V-Kollagen, Gelatine, Fibronektin, Laminin, Nidogen</td>
</tr>
<tr>
<td>MMP-11</td>
<td>Stromelysin-3</td>
<td>51</td>
<td>44</td>
<td>Laminin</td>
</tr>
<tr>
<td>MMP-12</td>
<td>Makrophagen</td>
<td>54</td>
<td>45, 22</td>
<td>Elastin</td>
</tr>
<tr>
<td>MMP-13</td>
<td>Kollagenase-3</td>
<td>60</td>
<td>48</td>
<td>Typ I-, II-, III-, IV-, V-, IX-, X-Kollagen, Gelatine, Aggrecan, Fibronektin, Laminin, Perlecan, Tenascin, Vitronectin</td>
</tr>
<tr>
<td>MMP-14</td>
<td>MT1-MMP</td>
<td>66</td>
<td>56</td>
<td>Typ I-, II-, III-, Kollagen, Gelatine, Aggrecan, Proteoglykan, Fibrin,Fibronektin, Laminin, Nidogen, Perlecan, Tenascin, Vitronectin</td>
</tr>
<tr>
<td>MMP-15</td>
<td>MT2-MMP</td>
<td>72</td>
<td>60</td>
<td>Typ I-, III-Kollagen, Gelatine, Aggrecan, Casein, Fibronektin, Laminin, Perlecan, Vitronectin</td>
</tr>
<tr>
<td>MMP-16</td>
<td>MT3-MMP</td>
<td>64</td>
<td>52</td>
<td>Typ I-, III-Kollagen, Gelatine, Aggrecan, Casein, Fibronektin, Laminin, Perlecan, Vitronectin</td>
</tr>
<tr>
<td>MMP-17</td>
<td>MT4-MMP</td>
<td>57</td>
<td>53</td>
<td>Gelatine, Fibrin, Fibronektin</td>
</tr>
<tr>
<td>MMP-18</td>
<td>Kollagenase-4</td>
<td></td>
<td></td>
<td>Typ I – Kollagen</td>
</tr>
<tr>
<td>MMP-19</td>
<td>RASI-I</td>
<td>54</td>
<td>45</td>
<td>Typ I-, IV-Kollagen, Gelatine, Aggrecan, Casein, Fibronektin, Laminin, Nidogen, Tenascin</td>
</tr>
<tr>
<td>MMP-20</td>
<td>Enamelysin</td>
<td>54</td>
<td>22</td>
<td>Aggrecan, Amelogenin</td>
</tr>
<tr>
<td>MMP-21</td>
<td>Xenopus MMP</td>
<td></td>
<td></td>
<td>Nicht bekannt</td>
</tr>
<tr>
<td>MMP-23</td>
<td>CA-MMP</td>
<td></td>
<td></td>
<td>Nicht bekannt</td>
</tr>
<tr>
<td>MMP-24</td>
<td>MT5-MMP</td>
<td>63</td>
<td>29</td>
<td>Gelatine, Fibronektin</td>
</tr>
<tr>
<td>MMP-25</td>
<td>MT6-MMP</td>
<td>34</td>
<td>28</td>
<td>Typ IV-Kollagen, Gelatine</td>
</tr>
<tr>
<td>MMP-26</td>
<td>Matrilysin-2</td>
<td></td>
<td></td>
<td>Typ IV-Kollagen, Gelatine, Casein, Fibrinogen, Fibronektin</td>
</tr>
<tr>
<td>MMP-28</td>
<td>Epielysin</td>
<td></td>
<td></td>
<td>Casein</td>
</tr>
</tbody>
</table>
1.5.1 Physiologische Bedeutung der MMPs

Die meisten MMPs können nicht nur ein bestimmtes, sondern verschiedene Substrate umsetzen, weshalb zwischen den einzelnen Substratgebieten der MMPs vielseitige Überschneidungen existieren. Diese oft nicht ganz eindeutige Zuordnung erklärt Unklarheiten, die in Anbetracht vieler pathologischer Prozesse MMPs betreffend heute noch vorliegen. So kursieren bezüglich vieler Prozesse, sowohl onkologischer als auch nicht onkologischer Natur, widersprüchliche Aussagen über die Bedeutung der jeweiligen MMPs.

1.5.2 Struktureller Aufbau der MMPs

Allen MMPs gemeinsam ist ein aktives, katalytisches Zentrum in welchem sich ein ionisiertes Zink Atom befindet (Nelson et al. 2000). Des Weiteren fallen zwei wichtige Domänen auf, eine Prä- sowie eine Pro-Region, die für Sekretion und Aktivität wichtig sind. Die Prä-Region ist eine hydrophobe Domäne am N-terminalen Ende des Proteins, welche normalerweise direkt nach ihrer Synthese abgespalten wird und für die Sekretion von Bedeutung ist. Bis auf einige Ausnahmen werden die meisten MMPs als latente Pro-Enzyme sezerniert und durch Abspaltung der Pro-Region extrazellulär aktiviert.

Abbildung 3. Grundstruktur aller MMPs

Minimale Struktur der MMPs, mit Prä-, Pro-Region, katalytischem Zentrum, einer SH-Gruppe sowie einem Zink Atom. Diese Grundstruktur ist bei allen MMPs zu finden und ist bei allen Isoformen, außer bei MMP-7 und -26, durch zusätzliche Domänen erweitert.

Neben Prä- und Pro-Region hat die Mehrheit der MMP Unterklassen zusätzliche Domänen, wie zum Beispiel eine Hämopexin- oder Fibronektin-Region, die für die Substrat Erkennung und damit für die Spezifität entscheidend sind. Einige MMPs - die membrangebundenen Matrix Metalloproteasen (MT-MMP) - werden nach ihrer Synthese, noch bevor sie die Zelloberfläche zur Sekretion erreichen, durch Serin-Proteasen bereits intrazellulär aktiviert (Sternlicht und Werb 2001) und bleiben
anschließend über ihre transmembranöse Domäne auf der Zelloberfläche verankert. Bei dieser transmembranösen Domäne handelt es sich entweder um ein kurzes cytoplasmatisches, c-terminales Ende, wie im Falle von MMP-14, -15, -16 und -24 oder wie bei MMP-17 und-25 um einen c-terminalen GPI-(Glykosylphosphatidylinositol-)Anker (Sternlicht und Werb 2001).

Die Gelatinasen MMP-2 und -9

Abbildung 4. Proteinstruktur von Gelatinasen
Struktur der Gelatinasen MMP-2 und -9 mit cysteinstrukturenen Verbindungen in der katalytischen Domäne.

In der Extrazellulären Matrix spielen sich die wesentlichen Schritte zur Regulation der Zellaktivität und des Zellzyklus ab. Moleküle der ECM können an bestimmte in der Membran der Zellen verankerte Rezeptoren, die so genannten Integrine, binden und über die entstandene Brücke zwischen Extrazellulärer Matrix und Zytoskelett auch im Inneren der Zelle interagieren. Über Integrin-vermittelte Signalwege haben extrazelluläre Moleküle Einfluss auf Zellwachstum und Zell differenzierung, Apoptose, Zellmigration

1.5.3 Regulation der MMP Aktivität

Die Expression und Aktivität der MMPs hängen unter anderem von Interaktionen mit spezifischen und unspezifischen Inhibitoren der Metalloproteinasen ab. Neben weniger spezifischen Inhibitoren, wie α2-Makroglobulin oder α1-Antiprotease, haben spezifische Inhibitoren, wie die Tissue Inhibitors of Matrix Metalloproteinases (TIMPs), einen hohen Stellenwert (Kahari et al. 1999). Bis heute sind vier TIMPs (TIMP-1 bis -4) bekannt, die gemeinsame strukturelle Eigenschaften mit MMPs teilen (siehe Tabelle 2).

Einleitung

MMP-Proformen können allein oder als Komplex gebunden auftreten und durch Abspaltung der Pro-Region durch Trypsin 2 (Sorsa et al. 1997), Cathepsine, Elastase oder Plasmin aktiviert werden (Tyagi et al. 1997). Die Hemmung der aktiven und inaktiven MMP Form kann durch die oben genannten Inhibitoren (TIMPs) erfolgen.

Tabelle 2. Übersicht über die Familie der Tissue Inhibitors of Matrix Metalloproteinases (TIMPs) (modifiziert nach Birkedal-Hansen et al. 1993)

<table>
<thead>
<tr>
<th>Name</th>
<th>Molekulargewicht (kDa)</th>
<th>Assoziierte Proteine</th>
<th>Typisches Vorkommen</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIMP-1</td>
<td>28</td>
<td>proMMP-9</td>
<td>Ovar, Knochen</td>
</tr>
<tr>
<td>TIMP-2</td>
<td>21</td>
<td>proMMP-2</td>
<td>Plazenta</td>
</tr>
<tr>
<td>TIMP-3</td>
<td>24</td>
<td>ECM</td>
<td>Nieren, Gehirn</td>
</tr>
<tr>
<td>TIMP-4</td>
<td>22</td>
<td>nicht bekannt</td>
<td>Herz</td>
</tr>
</tbody>
</table>

1.5.4 Neutrophil Gelatinase-Associated Lipocalin (NGAL)

Einleitung

monomerer als auch in dimerer Form nachgewiesen werden und wurde in seltenen Fällen sogar als Trimer beobachtet (Axelsson et al. 1995). Die genaue Bedeutung der Interaktion von MMP-9 und NGAL ist bis heute weitgehend unklar.

1.5.5 Pathophysiologische Bedeutung von MMPs

III Studien getestet. Es scheint demnach einen deutlichen Zusammenhang von MMPs und TIMPs mit Malgnität, Invasivität und Metastasierung zu geben. Der genaue Mechanismus zwischen einer Beteiligung ganz bestimmter MMPs an der Entstehung der entsprechenden Tumore bleibt jedoch auf Grund der Fülle der Literatur und oft widersprüchlicher Aussagen unklar und wird kontrovers diskutiert.

1.5.6 MMP-2 und -9 in Plattenepithelkarzinomen des oberen Aerodigestivtraktes

1.6 Zielsetzung

2 MATERIAL

2.1 Zelllinien

Die UM-SCC und die UT-SCC Zelllinien wurden freundlicherweise von Dr. Thomas E. Carey (University of Michigan, MI, USA) und Dr. Reidar Grénman (University of Turku, Finnland) zur Verfügung gestellt (Lansford et al. 1999). Die verwendeten Zelllinien sind in der nachfolgenden Tabelle dargestellt.

<table>
<thead>
<tr>
<th>Name</th>
<th>TNM</th>
<th>Grading</th>
<th>Lokalisation</th>
<th>Herkunft</th>
<th>Geschlecht</th>
<th>Alter</th>
</tr>
</thead>
<tbody>
<tr>
<td>UM-SCC-1</td>
<td>T2N0M0</td>
<td>G2</td>
<td>Mundboden</td>
<td>R</td>
<td>m</td>
<td>73</td>
</tr>
<tr>
<td>UM-SCC-2</td>
<td>T2N0M0</td>
<td>G1</td>
<td>Alveolarkamm</td>
<td>R</td>
<td>w</td>
<td>63</td>
</tr>
<tr>
<td>UM-SCC-3</td>
<td>T1N0M0</td>
<td>G1-G2</td>
<td>Nasencolumna</td>
<td>LKM</td>
<td>w</td>
<td>73</td>
</tr>
<tr>
<td>UM-SCC-4</td>
<td>T3N2aM0</td>
<td>G4</td>
<td>Tonsille</td>
<td>PT</td>
<td>w</td>
<td>47</td>
</tr>
<tr>
<td>UM-SCC-9</td>
<td>T2N0M0</td>
<td>G1</td>
<td>vordere Zunge</td>
<td>PT</td>
<td>w</td>
<td>71</td>
</tr>
<tr>
<td>UM-SCC-11B</td>
<td>T2N2aM0</td>
<td>unbekannt</td>
<td>Larynx</td>
<td>PT</td>
<td>m</td>
<td>65</td>
</tr>
<tr>
<td>UM-SCC-14A</td>
<td>T1N0M0</td>
<td>G2-G3</td>
<td>Mundboden</td>
<td>R</td>
<td>w</td>
<td>58</td>
</tr>
<tr>
<td>UM-SCC-14C</td>
<td>T1N0M0</td>
<td>G3</td>
<td>Mundboden</td>
<td>R</td>
<td>w</td>
<td>58</td>
</tr>
<tr>
<td>UM-SCC-22B</td>
<td>T2N1M0</td>
<td>G2</td>
<td>Hypopharynx</td>
<td>M</td>
<td>w</td>
<td>58</td>
</tr>
<tr>
<td>UM-SCC-27</td>
<td>T1N0M0</td>
<td>unbekannt</td>
<td>vordere Zunge</td>
<td>PT</td>
<td>m</td>
<td>62</td>
</tr>
<tr>
<td>UMB-SCC-745</td>
<td>T4 N2 M0</td>
<td>G2</td>
<td>Oropharynx</td>
<td>PT</td>
<td>m</td>
<td>48</td>
</tr>
<tr>
<td>UMB-SCC-969</td>
<td>T2 N2 M0</td>
<td>G2</td>
<td>Zunge</td>
<td>PT</td>
<td>m</td>
<td>59</td>
</tr>
<tr>
<td>UT-SCC-10</td>
<td>T1N1M0</td>
<td>G2</td>
<td>Zunge</td>
<td>PT</td>
<td>m</td>
<td>62</td>
</tr>
<tr>
<td>UT-SCC-12A</td>
<td>T2N0M0</td>
<td>G1</td>
<td>Cutis nasi</td>
<td>PT</td>
<td>w</td>
<td>81</td>
</tr>
<tr>
<td>UT-SCC-12B</td>
<td>rT0N1M0</td>
<td>G2</td>
<td>Cutis nasi</td>
<td>M</td>
<td>w</td>
<td>81</td>
</tr>
<tr>
<td>UT-SCC-16A</td>
<td>T3N0M0</td>
<td>G3</td>
<td>Zunge</td>
<td>PT</td>
<td>w</td>
<td>77</td>
</tr>
<tr>
<td>UT-SCC-16B</td>
<td>T3N0M0</td>
<td>G3</td>
<td>Zunge</td>
<td>M</td>
<td>w</td>
<td>77</td>
</tr>
<tr>
<td>UT-SCC-19A</td>
<td>T4N0M0</td>
<td>G2</td>
<td>Larynx</td>
<td>PT</td>
<td>m</td>
<td>44</td>
</tr>
<tr>
<td>UT-SCC-54B</td>
<td>T2N0M0</td>
<td>G2</td>
<td>Wangenschleimhaut</td>
<td>R</td>
<td>w</td>
<td>58</td>
</tr>
<tr>
<td>UT-SCC-60A</td>
<td>T4N1M0</td>
<td>G1</td>
<td>Tonsille</td>
<td>PT</td>
<td>m</td>
<td>59</td>
</tr>
<tr>
<td>UT-SCC-60B</td>
<td>T4N1M0</td>
<td>G1</td>
<td>Tonsille</td>
<td>M</td>
<td>M</td>
<td>59</td>
</tr>
<tr>
<td>UT-SCC-74A</td>
<td>T3N1M0</td>
<td>G1-G2</td>
<td>Zunge</td>
<td>PT</td>
<td>M</td>
<td>31</td>
</tr>
<tr>
<td>UT-SCC-74B</td>
<td>rN2</td>
<td>G2</td>
<td>Halsmetastase</td>
<td>M</td>
<td>M</td>
<td>31</td>
</tr>
</tbody>
</table>

m = männlich, w = weiblich, PT = Primärtumor, M = Metastase, LKM = Lymphknotenmetastase, R = Rezidiv
2.2 Gewebeproben

Eine Auflistung der verwendeten Gewebeproben ist in der nachfolgenden Tabelle zu sehen (Tabelle 4). Als negative Kontrolle sowohl für die Zymographien, als auch bei der Western Blot Analyse wurde normale Schleimhaut verwendet.

Tabelle 4. Gewebeproben

<table>
<thead>
<tr>
<th>Gewebe</th>
<th>Gewebeart</th>
<th>TNM</th>
<th>Grading</th>
<th>Lokalisation</th>
<th>Geschlecht</th>
<th>Alter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1152</td>
<td>Sinusitis</td>
<td>T4N2M0</td>
<td>G2</td>
<td>Larynx, supraglottisch</td>
<td>M</td>
<td>44</td>
</tr>
<tr>
<td>1164</td>
<td>Plattenepithel CA</td>
<td>T3N1M0</td>
<td>G2</td>
<td>Larynx</td>
<td>M</td>
<td>72</td>
</tr>
<tr>
<td>1166</td>
<td>Tonsillitis</td>
<td>T3N0M0</td>
<td>G3</td>
<td>Hypopharynx</td>
<td>M</td>
<td>54</td>
</tr>
<tr>
<td>1172</td>
<td>Plattenepithel CA</td>
<td>T1N0M0</td>
<td>G3</td>
<td>Sinus piriformis</td>
<td>M</td>
<td>61</td>
</tr>
<tr>
<td>1194</td>
<td>Plattenepithel CA</td>
<td>T2N2M0</td>
<td>G2</td>
<td>Sinus piriformis</td>
<td>M</td>
<td>50</td>
</tr>
<tr>
<td>1195</td>
<td>Plattenepithel CA</td>
<td>T3N1M0</td>
<td>G2</td>
<td>Larynx</td>
<td>M</td>
<td>66</td>
</tr>
<tr>
<td>1202</td>
<td>Plattenepithel CA</td>
<td>T3N2M0</td>
<td>G2</td>
<td>Hypopharynx</td>
<td>M</td>
<td>67</td>
</tr>
<tr>
<td>1208</td>
<td>Plattenepithel CA</td>
<td>T4N2M0</td>
<td>G2</td>
<td>Oropharynx</td>
<td>M</td>
<td>68</td>
</tr>
<tr>
<td>1237</td>
<td>Plattenepithel CA</td>
<td>T3N1M0</td>
<td>G3</td>
<td>Sinus piriformis</td>
<td>M</td>
<td>51</td>
</tr>
<tr>
<td>1248</td>
<td>Plattenepithel CA, Rezidiv</td>
<td>T2N2M0</td>
<td>G2</td>
<td>Zungengrund</td>
<td>W</td>
<td>52</td>
</tr>
<tr>
<td>1261</td>
<td>Plattenepithel CA</td>
<td>T2N1M0</td>
<td>G2</td>
<td>Sinus piriformis</td>
<td>W</td>
<td>69</td>
</tr>
<tr>
<td>1266</td>
<td>Basaloides CA</td>
<td>T2N1M0</td>
<td>G2</td>
<td>Oropharynx</td>
<td>M</td>
<td>61</td>
</tr>
<tr>
<td>1270</td>
<td>Plattenepithel CA</td>
<td>T2N2M0</td>
<td>G2</td>
<td>Larynx, supraglottisch</td>
<td>W</td>
<td>68</td>
</tr>
<tr>
<td>1303</td>
<td>cutane Metastase</td>
<td>T3N1M0</td>
<td>G2</td>
<td>Haut prästernal</td>
<td>M</td>
<td>42</td>
</tr>
<tr>
<td>1327</td>
<td>Plattenepithel CA</td>
<td>T4N2M0</td>
<td>G2</td>
<td>Oropharynx</td>
<td>M</td>
<td>51</td>
</tr>
<tr>
<td>1379</td>
<td>Plattenepithel CA</td>
<td>T2N0M0</td>
<td>G2</td>
<td>Hypopharynx</td>
<td>M</td>
<td>64</td>
</tr>
<tr>
<td>1389</td>
<td>Plattenepithel CA</td>
<td>T4N2M0</td>
<td>G3</td>
<td>Hypopharynx</td>
<td>M</td>
<td>51</td>
</tr>
<tr>
<td>1397</td>
<td>Plattenepithel CA</td>
<td>T2N1M0</td>
<td>G2</td>
<td>Hypopharynx</td>
<td>M</td>
<td>55</td>
</tr>
<tr>
<td>1409</td>
<td>Plattenepithel CA</td>
<td>T2N2M0</td>
<td>G2</td>
<td>Hypopharynx</td>
<td>M</td>
<td>56</td>
</tr>
<tr>
<td>1410</td>
<td>Plattenepithel CA</td>
<td>T2N1M0</td>
<td>G2</td>
<td>Nasopharynx</td>
<td>W</td>
<td>65</td>
</tr>
<tr>
<td>1414</td>
<td>Plattenepithel CA</td>
<td>T2N2M0</td>
<td>G2</td>
<td>Larynx, supraglottisch</td>
<td>W</td>
<td>65</td>
</tr>
<tr>
<td>1433</td>
<td>Plattenepithel CA</td>
<td>T2N1M0</td>
<td>G3</td>
<td>Hypopharynx</td>
<td>M</td>
<td>68</td>
</tr>
</tbody>
</table>

$m = männlich, w = weiblich$
2.3 Antikörper und Standards

2.3.1 Primäre Antikörper für immunologische Nachweisverfahren

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Beschreibung</th>
<th>Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-MMP-2</td>
<td>Monoklonaler Maus AK</td>
<td>Abcam, Cambridge, UK</td>
</tr>
<tr>
<td>Anti-MMP-9</td>
<td>Polyklonaler Kaninchen AK</td>
<td>Abcam, Cambridge, UK</td>
</tr>
<tr>
<td>Anti-MMP-9</td>
<td>Polyklonaler Ziegen AK</td>
<td>Biozol, Deutschland</td>
</tr>
<tr>
<td>Anti-ß-Actin</td>
<td>Monoklonaler Maus AK</td>
<td>Sigma, Sant Louis, USA</td>
</tr>
<tr>
<td>Anti-NGAL</td>
<td>Monoklonaler Ratten AK</td>
<td>SCBT, Santa Cruz, California, USA</td>
</tr>
<tr>
<td>Anti-NGAL</td>
<td>Monoklonaler Maus AK</td>
<td>Dianova, Hamburg, Deutschland</td>
</tr>
<tr>
<td>Anti-CD44</td>
<td>Monoklonaler Ratten AK</td>
<td>HCAM, Santa Cruz, USA</td>
</tr>
<tr>
<td>Anti CK14</td>
<td>Monoklonaler Maus AK</td>
<td>Biodesign International, Portland, USA</td>
</tr>
<tr>
<td>Anti Kollagen IV</td>
<td>Polyklonaler Kanninchen AK</td>
<td>Abcam, Cambridge, UK</td>
</tr>
<tr>
<td>Anti ALDH-1</td>
<td>Monoklonaler Maus AK</td>
<td>SCBT, Santa Cruz, California, USA</td>
</tr>
</tbody>
</table>

2.3.2 Sekundäre Antikörper

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Beschreibung</th>
<th>Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>goat anti mouse</td>
<td>HRP gekoppelt oder biotinyliert</td>
<td>SCBT, Santa Cruz, California, USA</td>
</tr>
<tr>
<td>mouse anti goat</td>
<td>HRP gekoppelt oder biotinyliert</td>
<td>SCBT, Santa Cruz, California, USA</td>
</tr>
<tr>
<td>goat anti rabbit</td>
<td>HRP gekoppelt oder biotinyliert</td>
<td>SCBT, Santa Cruz, California, USA</td>
</tr>
<tr>
<td>donkey anti rat</td>
<td>HRP gekoppelt, human adsorbed</td>
<td>SCBT, Santa Cruz, California, USA</td>
</tr>
<tr>
<td>chicken anti rabbit</td>
<td>IgG-TR</td>
<td>SCBT, Santa Cruz, California, USA</td>
</tr>
<tr>
<td>cow anti goat</td>
<td>IgG-FITC</td>
<td>SCBT, Santa Cruz, California, USA</td>
</tr>
</tbody>
</table>

-19-
2.3.3 Standards

Precision Plus Protein Standard Bio Rad, München

2.4 Medien

2.4.1 Medien für die Zellkultur

<table>
<thead>
<tr>
<th>Volumen</th>
<th>MLS</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>500ml</td>
<td>DMEM Medium</td>
<td></td>
</tr>
<tr>
<td>50ml</td>
<td>10% fötäles Kälberserum (FCS)</td>
<td></td>
</tr>
<tr>
<td>5ml</td>
<td>L-Glutamin 200mM (100x)</td>
<td></td>
</tr>
<tr>
<td>2,5ml</td>
<td>Penicillin/Streptomycin (100x)</td>
<td></td>
</tr>
<tr>
<td>0,5ml</td>
<td>Amphotericin (5mg/20ml)</td>
<td></td>
</tr>
</tbody>
</table>

2.5 Allgemeine Puffer und Lösungen

Trenngel der Gelelektrophorese (10%): Für 4 Gele, Dicke 1,5mm

<table>
<thead>
<tr>
<th>Volumen</th>
<th>MLS</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,9ml</td>
<td>H2O</td>
<td></td>
</tr>
<tr>
<td>6,7ml</td>
<td>Acrylamid mix (30%)</td>
<td></td>
</tr>
<tr>
<td>5ml</td>
<td>1,5M Tris (pH 8,8)</td>
<td></td>
</tr>
<tr>
<td>0,2ml</td>
<td>SDS (10%)</td>
<td></td>
</tr>
<tr>
<td>0,2ml</td>
<td>APS (10%)</td>
<td></td>
</tr>
<tr>
<td>0,02ml</td>
<td>TEMED</td>
<td></td>
</tr>
</tbody>
</table>
Trenngel der Zymographie (10%): Für 2 Gele, Dicke 1,5mm

<table>
<thead>
<tr>
<th>Menge</th>
<th>Zutat</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,9ml</td>
<td>H₂O</td>
</tr>
<tr>
<td>6,7ml</td>
<td>Acrylamid mix (30%)</td>
</tr>
<tr>
<td>5ml</td>
<td>1,5M Tris (pH 8,8)</td>
</tr>
<tr>
<td>0,2ml</td>
<td>SDS (10%)</td>
</tr>
<tr>
<td>0,2ml</td>
<td>APS (10%)</td>
</tr>
<tr>
<td>0,002ml</td>
<td>TEMED</td>
</tr>
<tr>
<td>2ml</td>
<td>Gelatine stock solution (0,1%)</td>
</tr>
</tbody>
</table>

Sammelgel der Gelelektrophorese: Für 4 Gele, Dicke 1,5mm

<table>
<thead>
<tr>
<th>Menge</th>
<th>Zutat</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,4ml</td>
<td>H₂O</td>
</tr>
<tr>
<td>2,0ml</td>
<td>Acrylamid mix (30%)</td>
</tr>
<tr>
<td>2,3ml</td>
<td>1,0M Tris (pH 6,8)</td>
</tr>
<tr>
<td>0,1ml</td>
<td>SDS (10%)</td>
</tr>
<tr>
<td>0,1ml</td>
<td>APS (10%)</td>
</tr>
<tr>
<td>0,001ml</td>
<td>TEMED</td>
</tr>
</tbody>
</table>

SDS – Probenpuffer, reduzierend (2x):

<table>
<thead>
<tr>
<th>Menge</th>
<th>Zutat</th>
</tr>
</thead>
<tbody>
<tr>
<td>2ml</td>
<td>SDS 20%</td>
</tr>
<tr>
<td>4ml</td>
<td>Glycerin</td>
</tr>
<tr>
<td>2ml</td>
<td>B-Mercaptoethanol</td>
</tr>
<tr>
<td>1,25ml</td>
<td>Tris 2,0M pH 6,8</td>
</tr>
<tr>
<td>0,4ml</td>
<td>Bromphenolblau 0,1%</td>
</tr>
</tbody>
</table>
SDS – Probenpuffer, nicht reduzierend (2x):

- 4,0ml SDS 10% (w/v)
- 2,0ml Glycerin
- 2,5ml 0,5M Tris-HCl, pH 6,8
- 0,5ml Bromphenolblau 0,1%

mit aqua dest. auf 10,0ml auffüllen

Laufpuffer der SDS-PAGE (10x Elektrophorese-Puffer):

- 60,4g Tris Base
- 376g Glycin
- 20g SDS

mit aqua dest. auf 2l auffüllen

Transferpuffer Naß-Blot (pH 8,5):

- 25mM Tris Base
- 0,2M Glycin
- 20% Methanol

TBS (10 x) für 1l:

- 80g NaCl
- 24,2g Tris Base

mit HCl auf pH 7,6 einstellen
1. Antikörper-Verdünnungs-Lösung (für 60ml):

6ml TBS (10x)
54ml H$_2$O
60µl Tween-20
3g BSA

Block-Puffer:

1l TBS 1x
1000µl Tween-20
50g Magermilchpulver
mit aqua dest. auf 1l auffüllen

Lysispuffer-NP 40:

20mM Tris-Cl pH 7,5
137mM NaCl
10% Glycerin
2mM EDTA
1% Nonidet P 40

Renaturing-Puffer (10x):

25ml Triton X-100, 25% (v/v)
75ml H$_2$O
Developing Puffer (1x):

- 1,21g Tris Base
- 6,3g Tris-HCl
- 11,7g NaCl
- 0,98g CaCl$_2$
- 0,2g Brij 35

mit aqua dest. auf 1l auffüllen

Coomassie R-250 Färbe Lösung, 0,5%:

- 500ml Methanol
- 100ml Essigsäure
- 400ml H$_2$O
- 5g Coomassie R-250

Coomassie R-250 Entfärbe Lösung:

- 500ml Methanol
- 100ml Essigsäure
- 400ml H$_2$O
2.6 Verwendete Chemikalien

- Aceton
- Acrylamid 30% ratiophores Gel 30
- Agarose (Electrophoresis grade)
- Ammoniumperoxiddisulfat (APS)
- Amphotericin B
- Biotinylerte Peroxidase B (K0377)
- Bovines Serum Albumin (BSA)
- Bromophenol
- Calciumchlorid
- 3,3’-Diminobenzidine Tabletten
- Dimethylsulfoxid (DMSO)
- Dithiothreitol (DTT)
- Dulbecco’s Minimal Essential Medium (DMEM)
- ECL (Western blotting detection reagens)
- Eisessig
- Epinephrinhydrochlorid
- Ethanol
- Ethylendiamintetraacetat (EDTA)
- Ethidiumbromid
- Fluorescent Mounting Medium
- Formaldehyd
- Glycerin
- Glycin
- Hematoxylin Lösung
- Isopropanol
- Kaliumacetat
- Kaliumchlorid
- L-Glutamin
- Magermilchpulver
- Magnesiumchlorid
- Magnesiumsulfat
- Mayer’s Hemalum Lösung
- β-Mercaptoethanol
- Methanol
- N,N,N’,N’-tetramethylethylenediamine

Merck, Darmstadt
Roth, Karlsruhe
Invitrogen Life Technologies, Karlsruhe
BioRad Laboratories GmbH, München
Bristol-Myers Squibb, München
Dako, Denmark
Sigma-Aldrich, St.Louis, Mo, USA
Roth, Karlsruhe
Merck, Darmstadt
Sigma, Steinheim
Merck, Darmstadt
BioTech, St. Leon-Rot
Bio Whittaker, Verviers, Belgium
Amersham Bioscience, Buckinghamshire, England
Merck, Darmstadt
Aventis, Frankfurt
Schmidt Chemikalien, Dillenburg
Roth, Karlsruhe
Sigma, München
DakoCytomation, Carpinteria, USA
Merck, Darmstadt
Roth, Karlsruhe
Sigma, Seelze
Fluka, Steinheim
Merck, Darmstadt
Riedel-de Haen, Seelze
Merck, Darmstadt
Gibco BRL, Eggenstein
Merck, Darmstadt
Sigma, München
Merck, Darmstadt
Merck, Darmstadt
Schmidt Chemikalien, Dillenburg
Roth, Karlsruhe
Natriumacetat Merck, Darmstadt
Natriumazid Sigma, München
Natriumchlorid Roth, Karlsruhe
Natriumdihydrogenphosphat Merck, Darmstadt
Natriumdodecylsulfat (SDS) Roth, Karlsruhe
Natriumhydrogenphosphat Merck, Darmstadt
di-Natriumhydrogenphosphat Merck, Darmstadt
Natriumhydroxid Merck, Darmstadt
Natriumpyruvat Gibco BRL, Eggenstein
Nonidet P-40 Fulka, Steinheim
Penicillin / Streptomycin-Gemisch Invitrogen Life Technologies, Karlsruhe
Phenol Sigma, München
Phosphatase Inhibitor Cocktail II Sigma,USA
Phosphate buffered saline (PBS) Biochrom KG, Berlin
Polyacrylamid Serva, Heidelberg
2-Propanol Merck, Darmstadt
Propidiumiodid Sigma, München
Protease Inhibitor Cocktail Sigma,USA
Puffer Lösung (PH 4,00) Merck, Darmstadt
Puffer Lösung (PH 7,00) Merck, Darmstadt
Rabbit serum (normal) Dako, Denmark
Refobacin Merck, Darmstadt
Roti-Histol Roth, Karlsruhe
Saccharose (Sucrose) Merck, Darmstadt
Salzsäure Merck, Darmstadt
Sodium-dodecyl-sulphate (SDS) Serva, Heidelberg
TEMED Sigma, München
Tri-Natriumcitrat Dihydrat Roth, Karlsruhe
Tris-Base Sigma, Steinheim
Tris-Cl Roth, Karlsruhe
Tris-(hydroxymethyl)-aminomethan (Tris) Sigma, München
Trypsin BioChrom, Berlin
Tween 20 (Polyoxyethylensorbitanmonolaurat) Carl Roth, Karlsruhe
Wasserstoffperoxid (30%) Merck, Darmstadt
2.7 Geräte und Materialien

<table>
<thead>
<tr>
<th>Gerätetyp</th>
<th>Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bench Herasafe</td>
<td>Kendro, Rodenbach</td>
</tr>
<tr>
<td>Bio-Photometer</td>
<td>Eppendorf, Hamburg</td>
</tr>
<tr>
<td>Brutschrank, Heraeus Instruments</td>
<td>Kendro, Langenselbold</td>
</tr>
<tr>
<td>Confocal laser scanning microscope</td>
<td>Olympus Deutschland GmbH, Hamburg</td>
</tr>
<tr>
<td>(Leica TCS SP2)</td>
<td></td>
</tr>
<tr>
<td>Elektrophoresekammer (Bio-Rad Power Pac 300)</td>
<td>Bio Rad, USA</td>
</tr>
<tr>
<td>Entwicklungsmaschine Optimax Typ TR</td>
<td>MS Laborgeräte, Wiesloch</td>
</tr>
<tr>
<td>GelDoc 2000</td>
<td>Bio Rad, USA</td>
</tr>
<tr>
<td>Freezing Container „Mr. Frosty“</td>
<td>Nalgene, Dänemark</td>
</tr>
<tr>
<td>Immunoblotkammer</td>
<td>Bio Rad, USA</td>
</tr>
<tr>
<td>Mikroskop (binokulares Lichtmikroskop)</td>
<td>Zeiss, Jena</td>
</tr>
<tr>
<td>Mikroskop (Talaval 31)</td>
<td>Zeiss, Jena</td>
</tr>
<tr>
<td>Mikrotom S35</td>
<td>Feather, Japan</td>
</tr>
<tr>
<td>Schwenkbrett (Heidolph Instruments Duomax 1030)</td>
<td>Kobe, Japan</td>
</tr>
<tr>
<td>Wärmekammer für Tubes, HLC HBT 130</td>
<td>Kobe, Japan</td>
</tr>
<tr>
<td>Zellkulturschrank</td>
<td>Kendro, Heraeus</td>
</tr>
<tr>
<td>Zentrifuge (Labofuge 400R)</td>
<td>Medifuge Heraeus, Hanau</td>
</tr>
<tr>
<td>Zentrifuge Universal (30 RF)</td>
<td>Hettich, Tuttlingen</td>
</tr>
</tbody>
</table>
3 METHODEN

3.1 Zellkultur

3.1.1 Allgemeine Zellkulturbedingungen

3.1.2 Passagieren von Zellen (Splitting)

3.1.3 Einfrieren von Zellen

Um Zellen langfristig zu lagern, werden diese in flüssigen Stickstoff (LN₂) (-196°C) überführt. Um ein zu schnelles Einfrieren und die Ausbildung von Eiskristallen, welche zellschädigende Eigenschaften aufweisen, zu vermeiden, wird DMSO-haltiges Einfriermedium (10% DMSO/DMEM) verwendet, in welchem die Zellen langsam auf die Zieltemperatur abgekühlt werden können („Mr. Frosty“). Nach Trypsinisierung
Methoden

(Trypsin/EDTA) werden die Zellen dazu suspendiert und bei 1500g für 5 Minuten zentrifugiert. Das entstandene Zellpellet wird in eisgekühltes Gefriermedium aufgenommen und in vorbereitete Kryoröhrchen überführt. Die Abfüllung erfolgt mittels eines Freezing Containers.

3.1.4 Auftauen von Zellen

Die Zellen werden in einem Wasserbad (37°C) aufgetaut und in Röhrchen mit frischem, vorgewärmtem Medium überführt. Anschliessend erfolgt eine Zentrifugation bei 1500g für 5 Minuten und Entfernung des Überstandes. Nach Resuspendierung des Zellpellets in frischem Medium wird die Zellsuspension in neue Kulturschalen ausgesät.

3.1.5 Ermittlung der Zellzahl

Zur Bestimmung der genauen Zellzahl wird eine Neubauer-Zählkammer verwendet. Frisch trypsinisierte Zellen werden in einem definierten Volumen Medium resuspendiert und mittels einer Pasteurpipette zwischen Zählkammer und Deckglas gebracht. Die Zellzahl wird anschliessend in einer definierten Anzahl von Quadraten (2 große Quadrate) ausgezählt und durch Multiplikation mit dem Faktor 10.000 die Zellzahl pro 1ml Medium errechnet:

Zellzahl pro 1 ml Medium = (gezählte Zellen / Anzahl ausgezählter Quadrate) x 10.000

3.2 Herstellung von Zelllysaten

Lysat aus Zelllinien

Minuten Lyse (4°C) werden die Eppendorftubes bei 4°C für 10 Minuten bei 13.000 Umdrehungen/min zentrifugiert. Während sich nach Zentrifugation die meisten Zellen und Proteine im klaren Überstand befinden, enthält das Zell pellet Zellkerne, Membranen und Zellabfälle, welche verworfen werden. Der Überstand wird in neue Eppendorftubes überführt und die Proteinkonzentration bestimmt (Bradford) (siehe 3.3).

Lysat aus Gewebeproben

3.3 Proteinbestimmung nach Bradford

<table>
<thead>
<tr>
<th>Tabelle 5. Proteinbestimmung nach Bradford</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leerwert</td>
</tr>
<tr>
<td>Bio-Rad (1:5) (ml)</td>
</tr>
<tr>
<td>BSA (µl)</td>
</tr>
<tr>
<td>Lysis-Puffer (µl)</td>
</tr>
<tr>
<td>Probenextrakt (µl)</td>
</tr>
</tbody>
</table>
3.4 SDS-Polyacrylamid Gelelektrophorese (SDS-PAGE)

95°C auf dem Heizblock denaturiert. Es werden je 35µg Protein geladen und auf jedem Gel zusätzlich ein Standard (BioRad, 5µl) zur späteren Bestimmung des Molekulargewichts aufgetragen. Zunächst erfolgt die Fokussierung der Proben bei einer angelegten Spannung von 75 V im Sammelgel, anschliessend werden die Proben bei einer konstanten Spannung von 100V für circa zwei Stunden im SDS-Gel aufgetrennt.

3.5 Western Blot Analyse

Abbildung 5. Schematischer Versuchsaufbau Western Blot

3.6 Zymographie

3.6.1 Auswertung der Zymographie

3.7 Immunhistochemie

3.7.1 Fixierung und Einbettung von Gewebe

Um frische Gewebeproben zu fixieren, werden diese direkt nach Entnahme für 24 Stunden in Formalin (4%) fixiert. Anschließend erfolgt die Inkubation der Gewebe für je 30 Minuten in einer aufsteigenden Alkoholreihe (70%, 90%, 100%) und in Roti-Histol. Die Gewebeproben werden dann für weitere 24 Stunden in flüssiges Paraffin gegeben und anschließend in vorgefertigten Formen zu Blöcken gegossen. Das Aushärten der Blöcke erfolgt bei 4°C im Kühlschrank.

3.7.2 Immunhistochemische Färbungen

3.8 Immunzytochemische Färbungen nach Co-Kultur von Tumorzellen und Fibroblasten

Nagellack fixiert. Die Gewebeschnitte bzw. die Co-Kulturen werden dann mit einem konfokalen Laser-Scanning-Mikroskop (Olympus, Hamburg) untersucht. Die Aufbewahrung der Objekträger erfolgt abgedunkelt bei 4°C.

3.9 Statistische Auswertung

4 ERGEBNISSE

4.1 Untersuchung stammzelltypischer Marker in normaler Mukosa und HNSCC Tumorgeweben

Um die Expression der Stammzellmarker CD44, ALDH-1 und CK14 in gesundem sowie maligenem Gewebe zu untersuchen, erfolgt die immunhistochemische Anfärbung von normaler Mukosa und Tumorgewebsproben.

4.1.1 Stammzellmarker in normaler Mukosa

Abbildung 6 stellt die Expression potentieller Stammzellmarker sowie MMP-9 in normaler Mukosa dar. Es zeigt sich eine Expression von CD44 (A), ALDH-1 (B) und CK14 (C) in Basalzellen, wobei sich die oberen Epithelschichten negativ darstellen. Diese Beobachtung ist in Einklang mit der etablierten Ansicht, dass die epitheliale Basalzellenschicht Stammzellen beherrscht. Weder Basalzellen noch höher differenzierte Zellschichten normaler Mukosa sind hingegen positiv für MMP-9 (D).

Abbildung 6. Expression Stammzelltypischer Marker im Epithel normaler Mukosa

Expression der Stammzellmarker CD44 (A), ALDH-1 (B), CK14 (C) in Basalzellen normaler Mukosa. Es zeigt sich keine wesentliche MMP-9 Expression (D).
4.1.2 Stammzellmarker in Tumorgewebe

In den Tumorgewebeproben kann, wie auch in normaler Mukosa, eine CD44, CK14 sowie ALDH-1 Expression nachgewiesen werden. Diese Expression zeigt sich in Zellen, welche an Basalzellen normaler Mukosa erinnern und sich bevorzugt im Bereich der invasiven Front des Tumors befinden, die wiederum in direktem Kontakt zum umliegenden Stroma steht. Mehr zentral gelegene Anteile des Tumors erscheinen dagegen negativ für alle drei Zellmarker. Im Gegensatz zu normaler Mukosa zeigt sich in HNSCC Tumorgeweben auch eine positive Färbung für MMP-9. Besonders deutlich ist dies an der invasiven Front.

Abbildung 7. Immunhistochemische Färbung von Tumorgewebe zum Nachweis möglicher Tumorstammzellkandidaten

Im Gegensatz zu normaler Mukosa zeigt sich im Tumorgewebe nicht nur eine Expression der Stammzellmarker CD44 (A), ALDH-1 (B) und CK14 (C), sondern auch eine MMP-9 (D) Expression bei Zellen der invasiven Tumorfront.
4.1.3 Expression des Basalmembran-typischen Kollagen-IV

Abbildung 8. Immunhistochemische Färbung zum Kollagen IV Nachweis

Es zeigt sich sowohl bei normaler Mukosa (obere Reihe), als auch in HNSCC Tumoren (untere Reihe) ein schmaler, zur Basalmembran passender Kollagen IV Saum. Die Vergrößerung zeigt, dass diese genau an den Stellen durchbrochen ist, an denen die Tumorzapfen in das gesunde Gewebe vordringen.
4.2 Kolokalisation von CD44 und MMP-9 bei Tumorzellen der invasiven Front

4.2.1 Vergleich Immunhistochemischer Färbungen für CD44 und MMP-9

Da CD44 bei HNSCC Tumoren als einer der wichtigsten Tumorstammzellmarker angesehen wird (Prince et al. 2007), erfolgt zunächst die Darstellung dieses Markers. Um einen möglichen Zusammenhang zwischen Tumorstammzellen und der Invasivität von HNSCC Tumoren nachzuweisen, werden die immunhistochemischen Färbungen für CD44 mit denen für MMP-9 verglichen. Hierbei zeigt sich, dass der Bereich in dem CD44 verstärkt exprimiert wird ebenfalls eine starke MMP-9 Expression aufweist (Abbildung 9). Insbesondere kann eine Kolokalisation von CD44 und MMP-9 in Zellen der Tumor-Stroma Grenze gezeigt werden. Betrachtet man die inneren Bereiche der Tumorinseln, so fällt auf, dass hier sowohl die CD44, als auch die MMP-9 Expression wesentlich schwächer ausfallen.
Abbildung 9. Vergleich der Immunhistochemischen Färbungen von HNSCC Gewebeproben auf CD44 und MMP-9

(A) Verstärkte MMP-9 Expression an der Übergangszone zwischen Tumor und Stromabereichen. (B) CD44 Expression in Bereichen, in denen auch eine verstärkte MMP-9 Expression vorliegt.

4.2.2 Immunfluoreszenz Färbung

Bei der Immunfluoreszenzfärbung wird eine Kolokalisation von CD44 und MMP-9 im Bereich der invasiven Tumorfront deutlich. Hierbei zeigt sich auch, dass CD44 eher an der Plasmamembran exprimiert wird, wohingegen MMP-9 vorwiegend zytoplasmatisch nachweisbar ist.
Abbildung 10. Kolokalisation von CD44 und MMP-9 in HNSCC Gewebeproben

Die Immunfluoreszenz Doppelfärbung Formalin-fixierter Paraffinschnitte zeigt eine Kolokalisation von MMP-9 (rot, TR) (A) und CD44 (grün, FITC) (B). Insbesondere bei der Überlagerung beider Signale (C) wird diese Kolokalisation an der Tumor (T) Stroma (S) Grenze (Pfeile) deutlich. In der rechten Spalte sind die entsprechenden Negativkontrollen abgebildet (IgG) Asteriske markieren auto-fluoreszierende Erythrozyten.
4.3 Koexpression von CD44 und MMP-9 in HNSCC Gewebeproben

Die Proteinexpression von CD44 und MMP-9 in HNSCC Gewebeproben wird mittels Western Blot Analyse untersucht. Es zeigt sich in der überwiegenden Zahl der untersuchten Proben eine sichtbare Korrelation zwischen CD44 und MMP-9. Als interne Kontrolle wird β-Aktin mitgeführt. Interessanterweise stellt sich normale Mukosa (Abbildung 11 #1152) positiv für CD44 jedoch negativ für MMP-9 dar, was mit den Ergebnissen der Immunhistochemie vereinbar ist.

Abbildung 11. Gelatinolytische Aktivität und MMP-9 und CD44 Expression in HNSCC Gewebeproben

Mittels Zymographie wird die gelatinolytische Aktivität von HNSCC Geweben bestimmt und mit den Ergebnissen der Western Blot Analyse für MMP-9 und CD44 verglichen. Zusätzlich wird die Western Blot Analyse für MMP-9 unter nicht reduzierenden Bedingungen durchgeführt, um das Vorliegen möglicher Komplexen einzuschätzen (2. Tafel von oben).
4.4 Gelatinolytische Aktivität in HNSCC Gewebeproben

4.4.1 Gelatin Zymographie

Um vergleichend zur MMP-9 Protein Expression die Quantität der MMP-9 Aktivität einzuschätzen, werden HNSCC Gewebeproben mittels Gelatin Zymographie beurteilt und die Ergebnisse mit den Western Blot Ergebnissen von MMP-9 der gleichen Tumorproben verglichen.

Abbildung 11 zeigt, dass die Expression von CD44 und MMP-9 miteinander korreliert und dass MMP-9 hauptverantwortlich ist für die gelatinolytische Aktivität. Es zeigt sich, dass Gewebe, die eine starke Gelatinase Aktivität aufweisen, auch eine starke MMP-9 Expression zeigen (Abbildung 11, #1179, 1194, 1248, 1261), wohingegen Gewebe mit schwacher Gelatinase Aktivität auch nur schwache MMP-9 Expression aufweisen (Abbildung 11, #1152, 1364). Normale Mukosa diente als eine normale Kontrolle und zeigte im Gegensatz zu den Tumorgewebe keine wesentliche MMP-9 Expression oder Aktivität (Abbildung 11, #1152). Um die Ergebnisse der Zymographie mit den Ergebnissen der Western Blot Analyse vergleichen zu können, werden die Proben unter exakt den gleichen Bedingungen behandelt. So wird auch für die Western Blot Analyse analog zur Zymographie, ein nicht reduzierender Puffer verwendet, wobei die Proben nicht denaturiert, sondern 10 Minuten bei Raumtemperatur inkubiert werden. Dadurch kann die MMP Aktivität aufrechterhalten und ein Zerfall möglicher Komplexe verhindert werden.

Um die Signifikanz der Korrelation zwischen MMP-9, CD44 und der gelatinolytischen Aktivität zu zeigen, werden die Ergebnisse quantifiziert und mittels der Pearson Korrelations Analyse beurteilt. Die Ergebnisse sind in Abbildung 12 dargestellt. Eine hoch signifikante Korrelation (p=0,001) zeigt sich zwischen MMP-9 und der gelatinolytischen Aktivität, sowie zwischen der Expression von CD44 und MMP-9 (p=0,0047). Weiter zeigt sich eine Assoziation zwischen CD44 und der gelatinolytischen Aktivität an, die jedoch keine Signifikanz erreicht.

In der Western Blot Analyse sowie der Zymographie können drei Banden nachgewiesen werden. Die unterste auf einer Höhe von ca 90 kDa (α), die mittlere bei ca. 140 kDa (β) und die höchste bei >250 kDa (γ). Die Positionen der MMP-9 spezifischen Banden sind vergleichbar mit der Lokalisation der gelatinolytischen Aktivität, wohingegen die Lage von MMP-2 nicht mit den gelatinolytischen Banden im Zymogramm übereinstimmt.

4.4.2 MMP-9 aber nicht MMP-2 korreliert mit der gelatinolytischen Aktivität

Da gelatinolytische Aktivität nicht ausschließlich von MMP-9, sondern ebenfalls von MMP-2 ausgehen kann, werden die gleichen Proben im Western Blot auf die beiden Gelatinasen getestet und diese Ergebnisse mit denen der Zymographie verglichen.
Ergebnisse

Abbildung 13. Gelatinase Aktivität und MMP-2 bzw. -9 Expression

Die MMP-2 spezifischen Banden sind mit einem Molekulargewicht von 66 kDa passend zur aktiven Form und mit 72 kDa zur Pro-Form von MMP-2.

4.5 Expression und Lokalisation von MMP-9 und NGAL

Die Höhe der mittleren (b) MMP-9 Banden ist vereinbar mit einer Komplexbildung zwischen MMP-9 und NGAL (Zhang et al. 2007). Um diese Annahme weiter bestätigen bzw. verwerfen zu können, erfolgen die weiterführenden Untersuchungen.
4.5.1 Korrelation der MMP-9 und NGAL Proteinexpression

Die Expression von NGAL und MMP-9 wird in HNSCC Gewebeproben mittels Western Blot beurteilt und miteinander verglichen.

Abbildung 14. NGAL Expression in HNSCC Gewebeproben

In HNSCC Gewebeproben wurde die NGAL Expression untersucht und mit der von MMP-9 verglichen. Aktin diente als interne Kontrolle.

Die Western Blotuntersuchungen werden unter nicht-reduzierenden Bedingungen durchgeführt, um einer Dissoziation möglicher Komplexe entgegen zu wirken. Die nachgewiesenen NGAL Banden liegen bei 23 bzw. 46 kDa und sind mit der monomeren bzw. dimeren Form von NGAL vereinbar. Mit den in Abbildung 11 und 13 beobachteten MMP-9 Banden sind sie nicht vereinbar.

4.5.2 Kolokalisation von NGAL und MMP-9 im Bereich der Tumorfront

Abbildung 15. Verstärkte NGAL Expression in den Randbereichen des Tumorgewebes
B-E zeigen eine verstärkte NGAL Expression am Übergang zwischen Tumor und Stroma.
(A: Negativkontrolle).

Weiterhin zeigten sich die inneren Anteile der Tumorzellnester häufig ebenfalls positiv für NGAL (Abbildung 16).
4.5.3 Immunfluoreszenz Doppelfärbung auf MMP-9 und NGAL nach Kokultur von Fibroblasten und Tumorzellen

In der Immunfluoreszenz Färbung zeigt sich nach Co-Kultur von Fibroblasten und der HNSCC Zelllinie UM-SCC-2 eine mäßige NGAL Expression in Tumorzellen (B), wohingegen Fibroblasten kaum sichtbar NGAL exprimieren (F). Die MMP-9 Expression ist sowohl in Tumorzellen (A), als auch in Fibroblasten (D) deutlich zu erkennen.
Abbildung 17. MMP-9 und NGAL Expression im Bereich der Tumor Stroma Grenze

Vergleich der MMP-9 Expression in Tumorzellen (A) und Fibroblasten (B) mit der NGAL Expression in Tumorzellen (C) bzw. Fibroblasten (D). (E) und (F) zeigen jeweils die Überlagerung.
Einzelne Zellen zeigen eine Koexpression von MMP-9 und NGAL.

(A) MMP-9 Expression, (B) NGAL Expression, (C) Überlagerung

4.6 Vergleich des Invasivitätsverhaltens in vivo versus in vitro

Die gelatinolytische Aktivität wurde in Zell lysaten getestet und mit der in Gewebeproben verglichen. Dabei zeigen HNSCC Zelllinien eine deutlich geringere Gelatinase Aktivität als HNSCC Gewebe.
5 DISKUSSION

5.1 Die Tumorstammzell Hypothese

Die in den letzten Jahren zunehmend diskutierte Tumorstammzell Hypothese bringt viele neuartige Überlegungen und Forschungsansatzpunkte mit sich (Kuhn und Tuan 2010). Es konnte in letzter Zeit nicht nur für maligne hämatologische Erkrankungen sondern zunehmend auch für solide Tumore die Existenz von Tumorstammzellkandidaten nachgewiesen werden. Geht man davon aus, dass der größte Teil des malignen Potentials eines Tumors von eben diesen Zellen ausgeht, so hat dies weitreichende Konsequenzen. Es scheint daher weniger die zahlenmässig dominierende Menge an stärker differenzierten Tumorzellen, sondern vielmehr die in viel geringerer Anzahl vorhandenen Zellen mit Stammzell Eigenschaften zu sein, welche die Fähigkeit zur Selbsterneuerung besitzt und damit in der Lage ist, den Tumorphänotyp zu reproduzieren.

Die Frage mit welchen Oberflächenmarkern Tumorstammzellen am Besten zu identifizieren sind, wird kontrovers diskutiert. So scheinen bestimmte Marker in manchen Tumorarten von größerer, in anderen hingegen von geringerer Bedeutung zu sein.

5.2 Tumorstammzellen in HNSCC Tumoren

bekannterweise in normalen Stammzellen der Basalzellschicht exprimiert und als zusätzlicher Marker für Tumorstammzellen diskutiert (Prince et al. 2007).

In der vorliegenden Arbeit wurden die genannten potentiellen Tumorstammzellmarker sowohl in normaler Mukosa, als auch in Tumorgewebe untersucht. Hierbei zeigte sich in normaler Mukosa eine deutliche Expression aller drei Stammzellmarker (CD44, ALDH1, CK14) in der Basalzellschicht des Epithels. Höher gelegene, besser differenzierte Zellschichten waren hingegen negativ für diese Marker, was vereinbar mit der angenommenen Basalmembran-nahen Lokalisation von Stammzellen in normalem Epithel ist. Die immunhistochemische Färbung des Tumorgewebes zeigt interessanterweise eine Expression der drei Stammzellmarker in Tumorzellen an der Tumor-Stroma-Grenze, also im Bereich der invasiven Front des Tumors. Überraschenderweise zeigen eben diese Areale an der invasiven Tumorfront auch eine vermehrte Expression von MMP-9, welche in der CD44+/ALDH1+/CK14+-Basalzellschicht normaler Mukosa nicht nachweisbar ist.

Abbildung 20. Schematische Darstellung der Tumorzell Invasion

Im Inneren des Tumors finden sich höherdifferenzierte (CD44-, ALDH1-, CK14-, MMP-9-) Tumorzellen. Einzelne Tumorzellen oder -zellhaufen lösen sich von der Invasionsfront und können Blut- oder Lymphgefäße infiltrieren.

-56-
5.3 **CD44 positive Tumorstammzellen im Bereich der invasiven Tumorfront**

Die invasive Front des Tumors, der Grenzbereich zwischen Tumor und Stroma stellt den Bereich des Tumors dar, in dem Proliferation und Invasivität besonders stark ausgeprägt sind. Während seines Wachstumsprozesses muss der Tumor also in eben diesem Bereich über Mechanismen verfügen, mit denen er die Extrazelluläre Matrix zerstören und in umliegendes Gewebe eindringen kann.

Da CD44 bei HNSCC Tumoren als Marker für Zellen mit Stammzelleigenschaften gilt, wurde bei den weiterführenden Untersuchungen CD44 stellvertretend für die übrigen Stammzellmarker betrachtet, insbesondere da Prince et al. in ihrer Arbeit zeigen konnten, dass eine Selektion von CD44 positiven HNSCC Zellen zu einer starken Anreicherung von Tumorzellen mit Stammzelleigenschaften führt (Prince et al. 2007).

5.4 **Kolokalisation von CD44 und MMP-9 im Bereich der Tumor-Stroma-Grenze**

In den durchgeführten Western Blot Analysen zeigte sich passend zu den Ergebnissen der Immunhistochemie ebenfalls eine signifikante Korrelation zwischen CD44 und MMP-9. Interessanterweise ist auch hier normale Mukosa CD44 positiv,
jedoch MMP-9 negativ. Dies unterstützt die Annahme, dass auch in normaler Mukosa Stammzellen vorhanden sind, welche jedoch nicht invasiv sind, da sie kein MMP-9 exprimieren.

Die Ergebnisse der Immunfluoreszenz Doppelfärbung bestätigen die oben beschriebenen Beobachtungen. Es zeigte sich hierbei eine deutliche Kolokalisation von CD44 und MMP-9 im Bereich der invasiven Tumorfront. Es fällt dabei auf, dass CD44 deutlich an der Plasmamembran, MMP-9 dagegen eher im cytoplasmatischen Zellkompartment nachzuweisen ist.

5.5 Zusammenhang zwischen gelatinolytischer Aktivität und MMP Expression

Es wird ausserdem deutlich, dass nicht nur die Höhen der MMP-9 Banden mit denen der gelatinolytischen Aktivität korrelieren, sondern auch die Stärke der Aktivität mit dem Grad der Expression übereinstimmt. Es ist bekannt, dass MMP-9 sowohl als Monomer gelatinolytisch als auch in dimerer und sogar trimorer Form aktiv sein kann (Björklund, Koivunen 2005). Zu berücksichtigen ist ausserdem, dass verschiedene
Proteine und Moleküle die Aktivität von MMP-9 durch Komplexbildung und Interaktion beeinflussen.

5.6 Analyse von MMP-9 Banden

Ausgehend von den drei im Western Blot und in der Zymographie beobachteten Banden (250, 130, 85 kDa) wurde untersucht, wodurch diese drei Banden gebildet werden. Es ging darum zu klären, in welcher Form MMP-9 in den einzelnen Fällen gelatinolytisch aktiv ist und ob eine mögliche Komplexbildung mit anderen Proteinen vorliegt.

5.7 NGAL als regulierender Faktor von MMP-9 in HNSCC Tumoren

5.8 Unterschiede zwischen HNSCC Geweben und Zelllinien

Es kann also angenommen werden, dass tatsächlich die gelatinolytische Aktivität ausschlaggebend ist für den invasiven Charakter dieser Tumore. Eine eindeutige statistisch gesicherte Korrelation zwischen Tumorstadien der einzelnen Gewebeproben und der gelatinolytischen Aktivität bzw. CD44 oder MMP-9 Expression konnte nicht gefunden werden. Jedoch zeigen sich deutliche Tendenzen, dass die Fälle mit starker gelatinolytischer Aktivität und starker Expression der beiden Proteine CD44 und MMP-9 auch einen aggressiven klinischen Verlauf zeigen. So handelt es sich bei den meisten dieser Gewebeproben um G3 Tumore oder Tumore, die bereits Lymphknoten- oder sogar periphere Fernmetastasen gebildet haben und damit einem N+ bzw M1 Stadium entsprechen.

5.9 Therapeutische Aussichten

Wenn man die Bedeutung der Tumorstammzellen für die Onkogenese eines malignen Tumors sieht, wird schnell ersichtlich, dass ein wichtiger Ansatzpunkt einer kurativen Krebstherapie die Tumorstammzellen sein sollten. Wenn Tumorstammzellen gezielt ausgeschaltet werden, geht damit das ungehinderte Proliferationspotential des Tumors verloren und nur die weniger aggressiven Karzinomzellen verbleiben.

Dazu ist es von herausragender Bedeutung, die exakten Mechanismen auf dem Weg der Entartung der Stammzellen zu verstehen. Erst wenn genaue Unterschiede definiert werden können, die eine Tumorstammzelle von Stammzellen normalen Gewebes unterscheiden und die Resistenzmechanismen genau nachvollzogen sind, die in Tumorstammzellen vorzuliegen scheinen, können effektive Therapiestrategien entwickelt werden.

Im Laufe der letzten Jahre konnten im Bezug auf die Tumorstammzell Hypothese viele neue Erkenntnisse gewonnen werden. So hat sich weitestgehend die Ansicht durchgesetzt, dass es für eine erfolgreiche Therapie vor allem nötig ist die Tumorstammzellen zu eliminieren (Dingli und Michor 2006). Tumorstammzellen gelten nicht nur als Ziel der primären Therapie, sondern werden ausserdem für Resistzen gegenüber Chemotherapien und Therapieversagen verantwortlich gemacht (Milas und Hittleman 2009, Baumann et al. 2008).

Um diese Ansätze zu spezifizieren und weiterführende Strategien zu entwickeln, sind weiterführende Untersuchungen auf diesem Gebiet erforderlich.
6 ZUSAMMENFASSUNG

Zymographische Untersuchungen in Verbindung mit Western blot Analysen von HNSCC Gewebe und normaler Mukosa zeigten, dass Matrix Metalloproteinase 9 (MMP-
9) für die in HNSCC Tumoren beobachtete hohe Gelatinaseaktivität verantwortlich ist ($p=0,0010$). In der immunhistochemischen Untersuchung zeigte sich eine deutliche Kolokalisation von MMP-9 und CD44. Die mittels Western Blot quantifizierte Expression beider Marker ergab eine signifikante Korrelation ($p=0,0047$). Normale Kontroll-Mukosa hingegen war negativ für aktives MMP-9.

Abschliessend kann gesagt werden, dass Zellen der invasiven Front von HNSCC Tumoren positiv sind für die basalzelltypischen Stammzellmarker CD44, ALDH1 und CK14 aber im Gegensatz zur nichtinvasiven Basalzellschicht normaler Mukosa zusätzlich auch positiv sind für aktives MMP9, welches die gelatinolytische Aktivität von HNSCC Tumoren vermittelt. Diese Beobachtungen weisen auf ein Modell hin, wobei sich Zellen der invasiven Front in HNSCC Tumoren von der Basalzellschicht normaler Mukosa ableiten (basal cell like cell layer, BCLC) und die Tumorstammzell Nische beherbergen. Weiterführende Untersuchungen sollten daher auf Tumorzellen der BCLC Schicht fokussieren, da anzunehmen ist, dass Tumorrezidive sowie Resistenzenentwicklungen von diesen Zellen ihren Ausgang nehmen.
7 LITERATURANGABEN

ANHANG

8.1 Stadien und TNM Einteilung von HNSCC Tumoren

Tabelle 6. TNM-Klassifikation von Plattenepithelkarzinomen des Kopf-Hals-Bereiches

<table>
<thead>
<tr>
<th>Primärtumor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>T0</td>
<td>keine Evidenz für einen Primärtumor</td>
</tr>
<tr>
<td>T1, T2, T3, T4</td>
<td>Evidenz zunehmender Größe des Primärtumors</td>
</tr>
<tr>
<td>Tx</td>
<td>Die Minimalerfordernisse zur Beurteilung des Sitzes oder Ausbreitungsgrades des Primärtumors liegen nicht vor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>regionäre Lymphknoten</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>N0</td>
<td>keine Evidenz für einen Befall regionärer Lymphknoten</td>
</tr>
<tr>
<td>N1, N2, N3</td>
<td>Evidenz zunehmenden Befalls regionärer Lymphknoten</td>
</tr>
<tr>
<td>N4</td>
<td>Evidenz des Befalls juxtaregionärer Lymphknoten</td>
</tr>
<tr>
<td>Nx</td>
<td>Die Minimalerfordernisse zur Beurteilung der regionären Lymphknoten liegen nicht vor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fernmetastasen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>M0</td>
<td>keine Evidenz für Fernmetastasen</td>
</tr>
<tr>
<td>M1</td>
<td>Evidenz für Fernmetastasen</td>
</tr>
<tr>
<td>Mx</td>
<td>Die Minimalerfordernisse zur Beurteilung des Vorhandenseins von Fernmetastasen liegen nicht vor</td>
</tr>
</tbody>
</table>
Tabelle 7. Stadieneinteilung von Plattenepithelkarzinomen (UICC 2002) AJCC

<table>
<thead>
<tr>
<th>Stadium</th>
<th>Zugehöriges TNM Stadium</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T0 N0 M0</td>
</tr>
<tr>
<td>I</td>
<td>T1 N0 M0</td>
</tr>
<tr>
<td>II</td>
<td>T2 N0 M0</td>
</tr>
<tr>
<td>III</td>
<td>T1 N1 M0</td>
</tr>
<tr>
<td></td>
<td>T2 N1 M0</td>
</tr>
<tr>
<td></td>
<td>T3 N0 M0</td>
</tr>
<tr>
<td></td>
<td>T3 N1 M0</td>
</tr>
<tr>
<td>IV</td>
<td>T4 jedes N M0 oder jedes T jedes N M1</td>
</tr>
</tbody>
</table>
8.2 Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABEK</td>
<td>Avidin-Biotin-Komplex</td>
</tr>
<tr>
<td>aq, aqua</td>
<td>aqua destillata</td>
</tr>
<tr>
<td>bFGF</td>
<td>basic Fibroblast Growth Factor</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumine</td>
</tr>
<tr>
<td>CA</td>
<td>Carcinom</td>
</tr>
<tr>
<td>CLSM</td>
<td>Confocal Laser Scanning Mikroskopie</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s Modified Eagle Medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>ECL</td>
<td>Enhanced Chemiluminescence</td>
</tr>
<tr>
<td>ECM</td>
<td>Extracellular Matrix</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylendiaminotetraacetat</td>
</tr>
<tr>
<td>EGF</td>
<td>Epidermale Growth Factor</td>
</tr>
<tr>
<td>EGFR</td>
<td>Epidermale Growth Factor Receptor</td>
</tr>
<tr>
<td>FCS</td>
<td>Fetal Calf Serum</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluoreszeinthiocyanat</td>
</tr>
<tr>
<td>HNSCC</td>
<td>Head and Neck Squamous Cell Carcinoma</td>
</tr>
<tr>
<td>HRP</td>
<td>Horseradish Peroxidase</td>
</tr>
<tr>
<td>IU</td>
<td>International Unit</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilo Dalton</td>
</tr>
<tr>
<td>LK</td>
<td>Lymphknotenmetastase</td>
</tr>
<tr>
<td>LW</td>
<td>Leerwert</td>
</tr>
<tr>
<td>MMP</td>
<td>Matrix Metalloproteinase</td>
</tr>
<tr>
<td>mRNA</td>
<td>Mitochondrial Ribonuleic acid</td>
</tr>
<tr>
<td>MT-MMP</td>
<td>Membrangebundene MMP</td>
</tr>
<tr>
<td>MW</td>
<td>Molecular Weight</td>
</tr>
<tr>
<td>NGAL</td>
<td>Neutrophil Gelatinase Associated Lipocalin</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline</td>
</tr>
<tr>
<td>SCC</td>
<td>Squamous Cell Carcinoma</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodiumdodecylsulfate</td>
</tr>
<tr>
<td>ST</td>
<td>Standard</td>
</tr>
<tr>
<td>TGF</td>
<td>Transforming Growth Factor</td>
</tr>
<tr>
<td>TIMP</td>
<td>Tissue Inhibitor of Matrix Metalloproteinase</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumor Nekrose Faktor</td>
</tr>
</tbody>
</table>

-83-
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNM</td>
<td>Tumor-Node-Metastasis</td>
</tr>
<tr>
<td>UICC</td>
<td>Union Internationale Contre le Cancer</td>
</tr>
<tr>
<td>UM</td>
<td>University of Michigan</td>
</tr>
<tr>
<td>UMB</td>
<td>University of Marburg</td>
</tr>
<tr>
<td>UT</td>
<td>University of Turku</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular Endothelial Growth Factor</td>
</tr>
<tr>
<td>WB</td>
<td>Western Blot</td>
</tr>
</tbody>
</table>
8.3 Abbildungsverzeichnis

Abbildung 1. Die Tumor Stammzell Hypothese schematisch .. 5
Abbildung 2. Invasions-Metastasierungs-Kaskade .. 7
Abbildung 3. Grundstruktur aller MMPs .. 11
Abbildung 4. Proteinstruktur von Gelatinasen ... 12
Abbildung 5. Schematischer Versuchsaufbau Western Blot ... 32
Abbildung 6. Expression Stammzelltypischer Marker im Epithel normaler Mukosa........ 38
Abbildung 7. Immunhistochemische Färbung von Tumorgewebe zum Nachweis möglicher Tumorstammzellkandidaten ... 39
Abbildung 8. Immunhistochemische Färbung zum Kollagen IV Nachweis 40
Abbildung 9. Vergleich der Immunhistochemischen Färbungen von HNSCC Gewebeproben auf CD44 und MMP-9 .. 42
Abbildung 10. Kolokalisation von CD44 und MMP-9 in HNSCC Gewebeproben 43
Abbildung 11. Gelatinolytische Aktivität und MMP-9 und CD44 Expression in HNSCC Gewebeproben ... 44
Abbildung 12. Korrelation von gelatinolytischer Aktivität, CD44 und MMP-9 46
Abbildung 13. Gelatinase Aktivität und MMP-2 bzw. -9 Expression 47
Abbildung 14. NGAL Expression in HNSCC Gewebeproben ... 48
Abbildung 15. Verstärkte NGAL Expression in den Randbereichen des Tumorgewebes .. 49
Abbildung 16. NGAL positive Zellen im Inneren der Tumorinseln 50
Abbildung 17. MMP-9 und NGAL Expression im Bereich der Tumor Stroma Grenze ... 51
Abbildung 18. Immunfluoreszenz Färbung einer Tumorzelle nach Co-Kultur mit Fibroblasten ... 52
Abbildung 19. Untersuchung der Gelatinase Aktivität in Zelllysat 52
Abbildung 20. Schematische Darstellung der Tumorzell Invasion 56
8.4 Tabellenverzeichnis

Tabelle 1. Übersicht über die MMP Familie ... 9
Tabelle 2. Übersicht über die Familie der Tissue Inhibitors of Matrix Metalloproteinases (TIMPs) (modifiziert nach Birkedal-Hansen et al. 1993) .. 14
Tabelle 3. Zelllinien ... 17
Tabelle 4. Gewebeproben .. 18
Tabelle 5. Proteinbestimmung nach Bradford .. 30
Tabelle 6. TNM-Klassifikation von Plattenepithelkarzinomen des Kopf-Hals-Bereiches .. 81
Tabelle 7. Stadieneinteilung von Plattenepithelkarzinomen (UICC 2002) AJCC 82
8.5 Vorträge und Publikationen

Vorträge und Poster:

- Wiegand S, Sterz C, Kulle C, Werner JA, Mandic R: The level of MMP-2 and -9 expression in HNSCC tissues does not necessarily correlate with the activity of these proteases. 5th International Symposium on Advances in Head and Neck Cancer - Basic and Clinical Research - 01.-03. Februar 2007, Marburg.

Publikationen:

8.6 **Verzeichnis der akademischen Lehrer**

Meine akademischen Lehrer waren die Damen und Herren

- der Universität Marburg:
 Adamkiewicz, Aumüller, Barth, Basler, Baum, Baumann, Czubayko, Daut, Dettmeyer, Eilers, Feuser, Fuchs-Winkelmann, Gerdes, Grundmann, Grzeschik, Herrmann-Lingen, Hertl, Hilt, Höffken, Jungclas, Klose, Koolmann, Krieg, Kroll, Lang, Lenz, Lill, Lohoff, Maier, Mandic, Mandrek, Martin, Moll, Mueller, Müller-Brüsselbach, Mutters, Neubauer, Oertel, Opitz, Plant, Renz, Richter, Röper, Schade, Schäfer, Schmidt, Schofer, Schrader, Steiniger, Tibesku, Vogelmeier, Wagner, Waldegger, Werner, Westermann, Wulf

- der Universidad de Barcelona:
 Blanca Coll, Cuchi, Gomez, Navarro González, Martí, Soto, Tolosa

- der Universidad del Ecuador:
 Gordillo, Moyano, Naranjo, Salgado

- der Universität Bern:
 Amman, Hirt, Schöni
8.7 Danksagung

Mein Dank gilt auch Herrn Prof. Dr. A. J. Werner, der mir als Direktor der Klinik für Hals- Nasen- und Ohrenheilkunde der Philipps-Universität Marburg nicht nur die Mittel zur Durchführung der Arbeit zur Verfügung gestellt hat, sondern mich auch sonst in allen Belangen unterstützt hat.

Den beiden MTAs Frau R. Peldszus und Frau G. Sadowski danke ich nicht nur für die Einarbeitung in die Laborarbeit, sondern auch für die Unterstützung bei der Vorbereitung und Durchführung der Experimente.

Meinen Mitdoktorandinnen danke ich ganz herzlich für die gegenseitige Unterstützung und die Kollegialität.

Herrn PD Dr. M. Bette vom Institut für Anatomie und Zellbiologie Marburg danke ich für die Benutzung des Olympus Mikroskops zur Durchführung der Immunhistochemie.

Ganz besonders möchte ich meinen Eltern für die ausdauernde Unterstützung danken, nicht nur bei der Fertigstellung der Promotion, sondern auch während des gesamten Studiums. Nicht zuletzt danke ich meinen beiden Schwestern, Florian Roßwog und meinen Freunden für die Begleitung auf dem Weg zur Promotion und für all die aufmunternde Unterstützung in schwierigen Zeiten.