Publikationsserver der Universitätsbibliothek Marburg

Titel:Biogenesis of peroxisomes in mammalian cells: Characterization of the Pex11 proteins and their role in peroxisomal growth and division
Autor:Delille, Hannah Katharina
Weitere Beteiligte: Jacob, Ralf (Prof. Dr. )
Veröffentlicht:2011
URI:https://archiv.ub.uni-marburg.de/diss/z2011/0009
URN: urn:nbn:de:hebis:04-z2011-00093
DOI: https://doi.org/10.17192/z2011.0009
DDC: Medizin
Titel (trans.):Peroxisomale Biogenese in Säugerzellen: Charakterisierung der Pex11-Proteine und deren Rolle in Wachstum und Teilung von Peroxisomen
Publikationsdatum:2011-01-20
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Fis1, Peroxisom, Peroxisomal biogenesis, Pex19, Pex11-Proteine, Biogenese, Fis1, Pex19, Pex11 proteins, Peroxisome

Summary:
Peroxisomes are multifunctional organelles involved in various metabolic processes. Peroxisomal malfunctions lead to numerous mostly severe disorders, rendering perox-isomes essential for human health and development. Peroxisomal abundance can be adjusted to the cellular needs, since peroxisomes have the capacity to proliferate or to be degraded. Peroxisomes multiply by growth and division, but can also form de novo via the endoplasmic reticulum. Peroxisomal growth and division is a multistep process involving peroxisome elongation, constriction and final fission. The molecular components and mechanisms mediating the formation, growth, division and dynamics of peroxisomes are far from being understood. Pex11pβ, DPL1 and hFis1 were previously identified as the first molecular components involved in proliferation and division of peroxisomes in mammals. Pex11pβ mediates peroxisome elongation, while hFis1 serves as membrane adaptor for DLP1 responsible for division of the organelles. Surprisingly, DLP1 and hFis1 are involved in both mitochondrial and peroxisomal division. Aim of this study was to further reveal the molecular mechanisms of peroxisomal proliferation and division. First, the dual targeting of hFis1, a tail-anchored protein, was studied. It was demon-strated for the first time that peroxisomal but not mitochondrial targeting of hFis1 de-pends on Pex19p, a peroxisomal import factor. An essential binding region for Pex19p was located within the last 26 C-terminal amino acids of hFis1. The basic amino acids in the very C-terminus are not essential for Pex19p binding and peroxisomal targeting but are instead required for mitochondrial targeting. Since overexpression of Pex19p alone was not sufficient to shift the targeting of hFis1 to peroxisomes, further regulative mechanisms are likely to be involved. The findings indicate that targeting of hFis1 to peroxisomes and mitochondria are independent events and support a direct, Pex19p-dependent targeting of peroxisomal tail-anchored proteins. Furthermore, Pex11pβ and its isoforms Pex11pα and Pex11pγ have been studied. Pex11 proteins are the only proteins known to induce peroxisome elongation and proliferation in mammals, and it is assumed that they are key components in the regulation of peroxisome abundance. In this study, a comparative characterization of the Pex11p isoforms was performed for the first time. Differently tagged and truncated versions were generated and alterations of peroxisome formation and division were monitored. Interestingly, it was shown that the Pex11 proteins have (only) partially overlapping functions. Pex11pβ expression is known to induce formation of tubular peroxisomes, followed by segmentation of the tubules before they are divided by the division machinery. It was demonstrated here that Pex11pγ promotes tubulation of peroxisomes similar to Pex11pβ, but does not induce subsequent segmentation of the peroxisomal tubules. Pex11pα, on the other hand, induces only a segregation of peroxisomal proteins. Thus, Pex11pα and Pex11pγ appear to fulfil different functions, which are combined in Pex11pβ. Furthermore, the Pex11 proteins show different sensitivities to the detergent Triton-X 100, which is likely to be related with different lipid binding properties, which might in turn explain their capacities to deform membranes. Several signals inducing peroxisome elongation (e.g. microtubule depolymerisation) were examined, and it was demonstrated that multiple simultaneous stimuli result in hypertubulation of peroxisomes. The hypertubulation was not mediated by transcriptional upregulation of the Pex11 proteins. This additive effect indicates that complex regulation and activation mechanisms of the Pex11 proteins exist (e.g. post-translational modifications), and/or that other effectors than Pex11pβ are able to mediate elongation of peroxisomal membranes. Moreover, it was discovered that a Pex11pβ-YFP fusion protein can be used as a specific tool to further dissect the growth and division process at early time points. Pex11pβ-YFP inhibits peroxisomal segmentation and division, but instead results in formation of pre-peroxisomal membrane structures composed out of globular domains and tubular extensions. These structures were characterized in detail. Interestingly, peroxisomal matrix and membrane proteins were targeted to distinct regions of the peroxisomal structures. Performing time-course and import assays, it was shown that Pex11pβ-mediated membrane formation was initiated at the pre-existing peroxisome. This indicates that growth and division of peroxisomes follows a multistep maturation pathway and that formation of mammalian peroxisomes is more complex than simple division of a pre-existing organelle. In this study, the early steps of the peroxisomal growth and division process have been characterized in detail for the first time. The findings give new insights into the general processes of peroxisome formation by growth and division, and indicate the involvement of new, not yet characterized processes (e.g. in protein sorting) at the peroxisomal membrane.

Bibliographie / References

  1. Voncken F, van Hellemond JJ, Pfisterer I, Maier A, Hillmer S & Clayton C. (2003) Depletion of GIM5 causes cellular fragility, a decreased glycosome number, and reduced levels of ether-linked phospholipids in trypanosomes. J Biol Chem. 278(37): 35299- 35310. Epub 32003 Jun 35226.
  2. Snyder WB, Koller A, Choy AJ & Subramani S. (2000) The peroxin Pex19p interacts with multiple, integral membrane proteins at the peroxisomal membrane. J.Cell Biol. 149(6): 1171-1178. REFERENCES | 195
  3. Smith JJ, Marelli M, Christmas RH, et al. (2002) Transcriptome profiling to identify genes involved in peroxisome assembly and function. J Cell Biol 158(2): 259-271.
  4. van Roermund CW, Tabak HF, van Den Berg M, Wanders RJ & Hettema EH. (2000) Pex11p plays a primary role in medium-chain fatty acid oxidation, a process that affects peroxisome number and size in Saccharomyces cerevisiae. J Cell Biol 150(3): 489-498.
  5. Sacksteder KA, Jones JM, South ST, Li X, Liu Y & Gould SJ. (2000) PEX19 binds multiple peroxisomal membrane proteins, is predominantly cytoplasmic, and is required for peroxisome membrane synthesis. J Cell Biol 148(5): 931-944.
  6. South ST, Sacksteder KA, Li X, Liu Y & Gould SJ. (2000) Inhibitors of COPI and COPII do not block PEX3-mediated peroxisome synthesis. J Cell Biol 149(7): 1345-1360.
  7. South ST & Gould SJ. (1999) Peroxisome synthesis in the absence of preexisting peroxisomes. J Cell Biol 144(2): 255- 266.
  8. Schnell DJ & Hebert DN. (2003) Protein translocons: multifunctional mediators of protein translocation across membranes. Cell 112(4): 491-505.
  9. Li X & Gould SJ. (2002) PEX11 promotes peroxisome division independently of peroxisome metabolism. J Cell Biol 156(4): 643-651.
  10. Gorgas K, Teigler A, Komljenovic D & Just WW. (2006) The ether lipid-deficient mouse: tracking down plasmalogen functions. Biochim Biophys Acta 1763(12): 1511-1526.
  11. Stamer K, Vogel R, Thies E, Mandelkow E & Mandelkow EM. (2002) Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol. 156(6): 1051-1063. Epub 2002 Mar 1018.
  12. Woodward AW & Bartel B. (2005) The Arabidopsis peroxisomal targeting signal type 2 receptor PEX7 is necessary for peroxisome function and dependent on PEX5. Mol Biol Cell 16(2): 573-583.
  13. McNew JA & Goodman JM. (1994) An oligomeric protein is imported into peroxisomes in vivo. J Cell Biol 127(5): 1245- 1257.
  14. Rottensteiner H, Stein K, Sonnenhol E & Erdmann R. (2003b) Conserved function of pex11p and the novel pex25p and pex27p in peroxisome biogenesis. Mol Biol Cell 14(10): 4316-4328.
  15. Los GV, Encell LP, McDougall MG, et al. (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3(6): 373-382. REFERENCES | 187
  16. Nito K, Kamigaki A, Kondo M, Hayashi M & Nishimura M. (2007) Functional classification of Arabidopsis peroxisome biogenesis factors proposed from analyses of knockdown mutants. Plant Cell Physiol 48(6): 763-774.
  17. Stefanovic S & Hegde RS. (2007) Identification of a targeting factor for posttranslational membrane protein insertion into the ER. Cell 128(6): 1147-1159.
  18. Waterham HR, Koster J, van Roermund CW, Mooyer PA, Wanders RJ & Leonard JV. (2007) A lethal defect of mitochondrial and peroxisomal fission. N Engl J Med 356(17): 1736- 1741.
  19. Wanders RJ & Waterham HR. (2006a) Peroxisomal disorders: the single peroxisomal enzyme deficiencies. Biochim Biophys Acta 1763(12): 1707-1720.
  20. Schrader M & Fahimi HD. (2008) The peroxisome: still a mysterious organelle. Histochem Cell Biol 129(4): 421-440.
  21. Shen YQ & Burger G. (2009) Plasticity of a key metabolic pathway in fungi. Funct Integr Genomics 9(2): 145-151.
  22. Tsien RY. (1998) The green fluorescent protein. Annu Rev Biochem 67: 509-544.
  23. Karnik SK & Trelease RN. (2007) Arabidopsis peroxin 16 trafficks through the ER and an intermediate compartment to pre-existing peroxisomes via overlapping molecular targeting signals. J Exp Bot 58(7): 1677-1693.
  24. Schluter A, Fourcade S, Ripp R, Mandel JL, Poch O & Pujol A. (2006) The evolutionary origin of peroxisomes: an ER-peroxisome connection. Mol Biol Evol 23(4): 838-845.
  25. Zhang X-C & Hu J-P. (2008) FISSION1A and FISSION1B Proteins Mediate the Fission of Peroxisomes and Mitochondria in Arabidopsis. Mol Plant 1(6): 1036-1047.
  26. Schluter A, Real-Chicharro A, Gabaldon T, Sanchez-Jimenez F & Pujol A. (2010) PeroxisomeDB 2.0: an integrative view of the global peroxisomal metabolome. Nucleic Acids Res 38(Database issue): D800-805.
  27. Nito K, Yamaguchi K, Kondo M, Hayashi M & Nishimura M. (2001) Pumpkin peroxisomal ascorbate peroxidase is localized on peroxisomal membranes and unknown membranous structures. Plant Cell Physiol 42(1): 20-27.
  28. Jedd G & Chua NH. (2002) Visualization of peroxisomes in living plant cells reveals acto-myosin-dependent cytoplasmic streaming and peroxisome budding. Plant Cell Physiol. 43(4): 384-392.
  29. Moody DE, Reddy JK, Lake BG, Popp JA & Reese DH. (1991) Peroxisome proliferation and nongenotoxic carcinogenesis: commentary on a symposium. Fundam Appl Toxicol 16(2): 233-248.
  30. Hinshaw JE. (2000) Dynamin and its role in membrane fission. Annu Rev Cell Dev Biol. 16: 483-519.
  31. Hogenboom S, Tuyp JJ, Espeel M, Koster J, Wanders RJ & Waterham HR. (2004) Mevalonate kinase is a cytosolic enzyme in humans. J Cell Sci 117(Pt 4): 631-639.
  32. Stojanovski D, Koutsopoulos OS, Okamoto K & Ryan MT. (2004) Levels of human Fis1 at the mitochondrial outer membrane regulate mitochondrial morphology. J Cell Sci 117(Pt 7): 1201-1210.
  33. Yu T, Fox RJ, Burwell LS & Yoon Y. (2005) Regulation of mitochondrial fission and apoptosis by the mitochondrial outer membrane protein hFis1. J Cell Sci 118(Pt 18): 4141-4151.
  34. Lingard MJ & Trelease RN. (2006) Five Arabidopsis peroxin 11 homologs individually promote peroxisome elongation, division without elongation, or aggregation. J. Cell Sci. 119: 1961-1972.
  35. Matsuzono Y, Matsuzaki T & Fujiki Y. (2006) Functional domain mapping of peroxin Pex19p: interaction with Pex3p is essential for function and translocation. J.Cell Sci. 119(Pt 17): 3539-3550.
  36. Rucktaschel R, Thoms S, Sidorovitch V, et al. (2009) Farnesylation of pex19p is required for its structural integrity and function in peroxisome biogenesis. J Biol Chem 284(31): 20885-20896.
  37. Nguyen T, Bjorkman J, Paton BC & Crane DI. (2006) Failure of microtubule-mediated peroxisome division and trafficking in disorders with reduced peroxisome abundance. J Cell Sci. 119(Pt 4): 636-645.
  38. Rehling P, Skaletz-Rorowski A, Girzalsky W, Voorn-Brouwer T, Franse MM, Distel B, Veenhuis M, Kunau WH & Erdmann R. (2000) Pex8p, an intraperoxisomal peroxin of Saccharomyces cerevisiae required for protein transport into peroxisomes binds the PTS1 receptor pex5p. J Biol Chem 275(5): 3593- 3602.
  39. Veenhuis M, Salomons FA & Van Der Klei IJ. (2000) Peroxisome biogenesis and degradation in yeast: a structure/function analysis. Microsc Res Tech. 51(6): 584-600.
  40. van der Klei IJ & Veenhuis M. (2006b) Yeast and filamentous fungi as model organisms in microbody research. Biochim Biophys Acta 1763(12): 1364-1373.
  41. van der Klei IJ & Veenhuis M. (2006a) PTS1-independent sorting of peroxisomal matrix proteins by Pex5p. Biochim Biophys Acta 1763(12): 1794-1800.
  42. Meijer WH, van der Klei IJ, Veenhuis M & Kiel JA. (2007) ATG genes involved in non-selective autophagy are conserved from yeast to man, but the selective Cvt and pexophagy pathways also require organism-specific genes. Autophagy 3(2): 106-116.
  43. Zutphen T, Veenhuis M & van der Klei IJ. (2008) Pex14 is the sole component of the peroxisomal translocon that is required for pexophagy. Autophagy 4(1): 63-66.
  44. Saraya R, Cepinska MN, Kiel JA, Veenhuis M & van der Klei IJ. (2010) A conserved function for Inp2 in peroxisome inheritance. Biochim Biophys Acta In Press.
  45. Curriculum vitae
  46. Wanders RJA & Waterham HR. (2006b) Biochemistry of mammalian peroxisomes revisited. Annu. Rev. Biochem. 75: 295-332.
  47. van Leyen K, Duvoisin RM, Engelhardt H & Wiedmann M. (1998) A function for lipoxygenase in programmed organelle degradation. Nature 395(6700): 392-395.
  48. Kassmann CM, Lappe-Siefke C, Baes M, et al. (2007) Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes. Nat Genet 39(8): 969-976.
  49. Hulshagen L, Krysko O, Bottelbergs A, et al. (2008) Absence of functional peroxisomes from mouse CNS causes dysmyelination and axon degeneration. J Neurosci 28(15): 4015-4027.
  50. Islinger M, Luers GH, Li KW, Loos M & Volkl A. (2007) Rat liver peroxisomes after fibrate treatment. A survey using quantitative mass spectrometry. J Biol Chem 282(32): 23055-23069.
  51. Woudenberg J, Rembacz KP, van den Heuvel FA, et al. (2010) Caveolin-1 is enriched in the peroxisomal membrane of rat hepatocytes. Hepatology 51(5): 1744-1753.
  52. Opperdoes FR. (1988) Glycosomes may provide clues to the import of peroxisomal proteins. Trends Biochem.Sci. 13(7): 255-260.
  53. Snapp EL, Hegde RS, Francolini M, Lombardo F, Colombo S, Pedrazzini E, Borgese N & Lippincott-Schwartz J. (2003) Formation of stacked ER cisternae by low affinity protein interactions. J Cell Biol 163(2): 257-269.
  54. Rapp S, Saffrich R, Anton M, Jakle U, Ansorge W, Gorgas K & Just WW. (1996) Microtubule-based peroxisome movement. J Cell Sci 109(Pt 4): 837-849.
  55. Schrader M, King SJ, Stroh TA & Schroer TA. (2000) Real time imaging reveals a peroxisomal reticulum in living cells. J Cell Sci 113(Pt 20): 3663-3671.
  56. Voeltz GK, Prinz WA, Shibata Y, Rist JM & Rapoport TA. (2006) A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 124(3): 573-586.
  57. Issemann I & Green S. (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature. 347(6294): 645-650.
  58. Titorenko VI, Nicaud JM, Wang H, Chan H & Rachubinski RA. (2002) Acyl-CoA oxidase is imported as a heteropentameric, cofactor-containing complex into peroxisomes of Yarrowia lipolytica. J Cell Biol 156(3): 481-494.
  59. Schewe T, Halangk W, Hiebsch C & Rapoport SM. (1975) A lipoxygenase in rabbit reticulocytes which attacks phospholipids and intact mitochondria. FEBS Lett 60(1): 149-152.
  60. Jansen GA & Wanders RJ. (2006) Alpha-oxidation. Biochim Biophys Acta 1763(12): 1403-1412.
  61. Wessel D & Flugge UI. (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal.Biochem. 138(1): 141-143.
  62. Jedd G & Chua NH. (2000) A new self-assembled peroxisomal vesicle required for efficient resealing of the plasma membrane. Nat.Cell Biol. 2(4): 226-231.
  63. Fujimoto M, Arimura S, Mano S, et al. (2009) Arabidopsis dynamin-related proteins DRP3A and DRP3B are functionally redundant in mitochondrial fission, but have distinct roles in peroxisomal fission. Plant J 58(3): 388- 400.
  64. Zaar K, Volkl A & Fahimi HD. (1987) Association of isolated bovine kidney cortex peroxisomes with endoplasmic reticulum. Biochim Biophys Acta 897(1): 135-142.
  65. van den Bosch H, Schutgens RB, Wanders RJ & Tager JM. (1992) Biochemistry of peroxisomes. Annu Rev Biochem 61: 157-197.
  66. Delille HK, Alves R & Schrader M. (2009) Biogenesis of peroxisomes and mitochondria: linked by division. Histochem Cell Biol 131(4): 441-446.
  67. Rabu C, Schmid V, Schwappach B & High S. (2009) Biogenesis of tail-anchored proteins: the beginning for the end? J Cell Sci 122(Pt 20): 3605-3612.
  68. Reddy JK & Lalwani ND. (1983) Carcinogenesis by hepatic peroxisome proliferators: Evaluation of the risk of hypolipidemic drugs and industrial plasticizers to humans. CRC Critical Rev. Tox. 12: 1- 58.
  69. Delille HK, Guimaraes SC, Gomez-Lazaro M, Cardoso MJ, Rinn C & Schrader M. (2010) Comparative analysis of Pex11p alpha, beta and gamma. (in Vorbereitung)
  70. Hoepfner D, Schildknegt D, Braakman I, Philippsen P & Tabak HF. (2005) Contribution of the endoplasmic reticulum to peroxisome formation. Cell 122(1): 85-95.
  71. Rhodin J. (1954) Correlation of ultrastructural organization and function in normal experimentally changed convoluted tubule cells of the mouse kidney. Ph. D. thesis. Stockholm, Aktiebolaget Godvil.
  72. Yokota S & Fahimi HD. (2009) Degradation of excess peroxisomes in mammalian liver cells by autophagy and other mechanisms. Histochem Cell Biol 131(4): 455-458.
  73. Yokota S. (2003) Degradation of normal and proliferated peroxisomes in rat hepatocytes: regulation of peroxisomes quantity in cells. Microsc Res Tech 61(2): 151-160.
  74. Singh AK, Dhaunsi GS, Gupta MP, Orak JK, Asayama K & Singh I. (1994) Demonstration of glutathione peroxidase in rat liver peroxisomes and its intraorganellar distribution. Arch Biochem Biophys 315(2): 331-338.
  75. Shibata H, Kashiwayama Y, Imanaka T & Kato H. (2004) Domain architecture and activity of human Pex19p, a chaperone-like protein for intracellular trafficking of peroxisomal membrane proteins. J.Biol.Chem. 279(37): 38486- 38494.
  76. Kaur N & Hu J. (2009) Dynamics of peroxisome abundance: a tale of division and proliferation. Curr Opin Plant Biol 12(6): 781-788. REFERENCES | 185
  77. Jourdain I, Sontam D, Johnson C, Dillies C & Hyams JS. (2008) Dynamin-dependent biogenesis, cell cycle regulation and mitochondrial association of peroxisomes in fission yeast. Traffic 9(3): 353-365.
  78. Yang X, Purdue PE & Lazarow PB. (2001) Eci1p uses a PTS1 to enter peroxisomes: either its own or that of a partner, Dci1p. Eur J Cell Biol 80(2): 126-138.
  79. Iwata J, Ezaki J, Komatsu M, Yokota S, Ueno T, Tanida I, Chiba T, Tanaka K & Kominami E. (2006) Excess peroxisomes are degraded by autophagic machinery in mammals. J Biol Chem 281(7): 4035-4041.
  80. Schrader M, Reuber BE, Morrell JC, Jimenez-Sanchez G, Obie C, Stroh TA, Valle D, Schroer TA & Gould SJ. (1998b) Expression of PEX11beta mediates peroxisome proliferation in the absence of extracellular stimuli. J Biol Chem 273(45): 29607-29614.
  81. Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML & Lukyanov SA. (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17(10): 969-973.
  82. Ito S & Karnovsky MJ. (1968) Formaldehyde-glutaraldehyde fixatives containing trinitro compunds. J Cell Biol 39: 168- 169 (abstract).
  83. van Kuppeveld FJ, van der Logt JT, Angulo AF, van Zoest MJ, Quint WG, Niesters HG, Galama JM & Melchers WJ. (1992) Genus-and species-specific identification of mycoplasmas by 16S rRNA amplification. Appl Environ Microbiol 58(8): 2606-2615.
  84. Schrader M & Fahimi HD. (2006b) Growth and division of peroxisomes. Int Rev Cytol 255: 237-290.
  85. Roux A, Uyhazi K, Frost A & De Camilli P. (2006) GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature 441(7092): 528-531.
  86. Reddy JK, Warren JR, Reddy MK & Lalwani ND. (1982) Hepatic and renal effects of peroxisome proliferators: biological implications. Ann N Y Acad Sci 386: 81-110.
  87. Schrader M, Baumgart E, Volkl A & Fahimi HD. (1994) Heterogeneity of peroxisomes in human hepatoblastoma cell line HepG2. Evidence of distinct subpopulations. Eur J Cell Biol 64(2): 281-294.
  88. Islinger M, Li KW, Seitz J, Volkl A & Luers GH. (2009) Hitchhiking of Cu/Zn superoxide dismutase to peroxisomes--evidence for a natural piggyback import mechanism in mammals. Traffic 10(11): 1711-1721.
  89. Delille HK, Bonekamp NB, Pinho S & Schrader M. (2010) Hypertubulation of peroxisomes by multiple stimuli. (in Vorbereitung) Reviews:
  90. Reddy JK, Azarnoff DL & Hignite CE. (1980) Hypolipidaemic hepatic peroxisome proliferators form a novel class of chemical carcinogens. Nature 283(5745): 397-398. REFERENCES | 191
  91. Soukupova M, Sprenger C, Gorgas K, Kunau WH & Dodt G. (1999) Identification and characterization of the human peroxin PEX3. Eur J Cell Biol 78(6): 357- 374.
  92. Schroder LA, Glick BS & Dunn WA. (2007) Identification of pexophagy genes by restriction enzyme-mediated integration. Methods Mol Biol 389: 203-218.
  93. Fujiki Y, Matsuzono Y, Matsuzaki T & Fransen M. (2006) Import of peroxisomal membrane proteins: The interplay of Pex3p-and Pex19p- mediated interactions. Biochim Biophys Acta 1763(12): 1639-1646.
  94. Yokota S, Haraguchi CM & Oda T. (2008) Induction of peroxisomal Lon protease in rat liver after di-(2-ethylhexyl)phthalate treatment. Histochem Cell Biol 129(1): 73-83.
  95. Schrader M, Wodopia R & Fahimi HD. (1999) Induction of tubular peroxisomes by UV irradiation and reactive oxygen species in HepG2 cells. J Histochem Cytochem 47(9): 1141-1148.
  96. Schrader M, Burkhardt JK, Baumgart E, Luers G, Spring H, Volkl A & Fahimi HD. (1996) Interaction of microtubules with peroxisomes. Tubular and spherical peroxisomes in HepG2 cells and their alterations induced by microtubule-active drugs. Eur J Cell Biol 69(1): 24-35.
  97. Urquhart AJ, Kennedy D, Gould SJ & Crane DI. (2000) Interaction of Pex5p, the type 1 peroxisome targeting signal receptor, with the peroxisomal membrane proteins Pex14p and Pex13p. J Biol Chem 275(6): 4127-4136.
  98. Steinberg S, Jones R, Tiffany C & Moser A. (2008) Investigational methods for peroxisomal disorders. Curr Protoc Hum Genet Chapter 17: Unit 17.16.
  99. Matsuzono Y & Fujiki Y. (2006) In vitro transport of membrane proteins to peroxisomes by shuttling receptor Pex19p. J Biol Chem 281(1): 36-42.
  100. Geuze HJ, Murk JL, Stroobants AK, Griffith JM, Kleijmeer MJ, Koster AJ, Verkleij AJ, Distel B & Tabak HF. (2003) Involvement of the endoplasmic reticulum in peroxisome formation. Mol Biol Cell 14(7): 2900-2907.
  101. Glebov OO & Nichols BJ. (2004) Lipid raft proteins have a random distribution during localized activation of the T-cell receptor. Nat Cell Biol 6(3): 238-243.
  102. Schrader M & Fahimi HD. (2004) Mammalian peroxisomes and reactive oxygen species. Histochem Cell Biol 122(4): 383- 393.
  103. Singh I. (1996) Mammalian peroxisomes: metabolism of oxygen and reactive oxygen species. Ann N Y Acad Sci 804: 612-627.
  104. Hu J, Shibata Y, Voss C, Shemesh T, Li Z, Coughlin M, Kozlov MM, Rapoport TA & Prinz WA. (2008) Membrane proteins of the endoplasmic reticulum induce high-curvature tubules. Science 319(5867): 1247-1250.
  105. Schrader M & Yoon Y. (2007) Mitochondria and peroxisomes: Are the 'Big Brother' and the 'Little Sister' closer than assumed? Bioessays 29(11): 1105-1114.
  106. Yoon Y & McNiven MA. (2001) Mitochondrial division: New partners in membrane pinching. Curr Biol 11(2): R67-70.
  107. White AL, Modaff P, Holland-Morris F & Pauli RM. (2003) Natural history of rhizomelic chondrodysplasia punctata. Am J Med Genet A 118A(4): 332-342.
  108. Suzuki M, Neutzner A, Tjandra N & Youle RJ. (2005) Novel structure of the N terminus in yeast Fis1 correlates with a specialized function in mitochondrial fission. J Biol Chem 280(22): 21444-21452. REFERENCES | 197
  109. Camoes F, Bonekamp NA, Delille HK & Schrader M. (2009) Organelle dynamics and dysfunction: A closer link between peroxisomes and mitochondria. J Inherit Metab Dis 32(2): 163-180.
  110. Immenschuh S & Baumgart-Vogt E. (2005) Peroxiredoxins, oxidative stress, and cell proliferation. Antioxid Redox Signal 7(5-6): 768- 777.
  111. Reddy JK & Hashimoto T. (2001) Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system. Annu Rev Nutr. 21: 193-230.
  112. Wanders RJ & Waterham HR. (2005) Peroxisomal disorders I: biochemistry and genetics of peroxisome biogenesis disorders. Clin Genet. 67(2): 107-133.
  113. Platta HW & Erdmann R. (2007) Peroxisomal dynamics. Trends Cell Biol 17(10): 474-484.
  114. Santos MJ, Imanaka T, Shio H, Small GM & Lazarow PB. (1988) Peroxisomal membrane ghosts in Zellweger syndrome--aberrant organelle assembly. Science 239(4847): 1536-1538.
  115. Voorn-Brouwer T, Kragt A, Tabak HF & Distel B. (2001) Peroxisomal membrane proteins are properly targeted to peroxisomes in the absence of COPI-and COPII-mediated vesicular transport. J Cell Sci 114(Pt 11): 2199-2204.
  116. Schrader M, Thiemann M & Fahimi HD. (2003) Peroxisomal motility and interaction with microtubules. Microsc Res Tech 61(2): 171- 178.
  117. Santos MJ, Quintanilla RA, Toro A, Grandy R, Dinamarca MC, Godoy JA & Inestrosa NC. (2005) Peroxisomal proliferation protects from beta-amyloid neurodegeneration. J Biol Chem. 280(49): 41057-41068.
  118. Girzalsky W, Saffian D & Erdmann R. (2010) Peroxisomal protein translocation. Biochim Biophys Acta In Press.
  119. Gatto GJJ, Geisbrecht BV, Gould SJ & Berg JM. (2000) Peroxisomal targeting signal-1 recognition by the TPR domains of human PEX5. Nat.Struct.Biol. 7(12): 1091-1095.
  120. Veenhuis M, Kiel JA & Van Der Klei IJ. (2003) Peroxisome assembly in yeast. Microsc Res Tech. 61(2): 139-150.
  121. Purdue PE & Lazarow PB. (2001) Peroxisome biogenesis. Annu Rev Cell Dev Biol 17: 701-752.
  122. Lazarow PB. (2003) Peroxisome biogenesis: advances and conundrums. Curr Opin Cell Biol 15(4): 489-497.
  123. Steinberg SJ, Dodt G, Raymond GV, Braverman NE, Moser AB & Moser HW. (2006) Peroxisome biogenesis disorders. Biochim Biophys Acta 1763(12): 1733-1748.
  124. Huybrechts SJ, Van Veldhoven PP, Brees C, Mannaerts GP, Los GV & Fransen M. (2009) Peroxisome dynamics in cultured mammalian cells. Traffic 10(11): 1722-1733.
  125. Rao MS & Reddy JK. (1987) Peroxisome proliferation and hepatocarcinogenesis. Carcinogenesis 8(5): 631-636.
  126. Peters JM, Cheung C & Gonzalez FJ. (2005) Peroxisome proliferator-activated receptor-alpha and liver cancer: where do we stand? J Mol Med. 83(10): 774-785.
  127. Schrader M & Fahimi HD. (2006a) Peroxisomes and oxidative stress. Biochim Biophys Acta 1763(12): 1755-1766.
  128. Michels PA, Moyersoen J, Krazy H, Galland N, Herman M & Hannaert V. (2005) Peroxisomes, glyoxysomes and glycosomes. Mol Membr Biol 22(1-2): 133-145.
  129. Wanders RJ, Ferdinandusse S, Brites P & Kemp S. (2010) Peroxisomes, lipid metabolism and lipotoxicity. Biochim Biophys Acta 1801(3): 272-280. REFERENCES | 199
  130. Sinclair AM, Trobacher CP, Mathur N, Greenwood JS & Mathur J. (2009) Peroxule extension over ER defined paths constitutes a rapid subcellular response to hydroxyl stress. Plant J 59(2): 231-242.
  131. Williams C, van den Berg M, Geers E & Distel B. (2008) Pex10p functions as an E3 ligase for the Ubc4p-dependent ubiquitination of Pex5p. Biochem Biophys Res Commun 374(4): 620-624.
  132. Li X, Baumgart E, Dong GX, Morrell JC, Jimenez-Sanchez G, Valle D, Smith KD & Gould SJ. (2002a) PEX11alpha Is Required for Peroxisome Proliferation in Response to 4-Phenylbutyrate but Is Dispensable for Peroxisome Proliferator-Activated Receptor Alpha-Mediated Peroxisome Proliferation. Mol Cell Biol 22(23): 8226-8240.
  133. Li X, Baumgart E, Morrell JC, Jimenez-Sanchez G, Valle D & Gould SJ. (2002b) PEX11 beta deficiency is lethal and impairs neuronal migration but does not abrogate peroxisome function. Mol Cell Biol 22(12): 4358-4365.
  134. Williams C & Distel B. (2006) Pex13p: docking or cargo handling protein? Biochim Biophys Acta 1763(12): 1585-1591.
  135. Toro AA, Araya CA, Cordova GJ, et al. (2009) Pex3p-dependent peroxisomal biogenesis initiates in the endoplasmic reticulum of human fibroblasts. J Cell Biochem 107(6): 1083-1096.
  136. Sakai Y, Oku M, van der Klei IJ & Kiel JA. (2006) Pexophagy: Autophagic degradation of peroxisomes. Biochim Biophys Acta 1763(12): 1767-1775.
  137. Reumann S & Weber AP. (2006) Plant peroxisomes respire in the light: Some gaps of the photorespiratory C(2) cycle have become filled-Others remain. Biochim Biophys Acta 1763(12): 1496-1510.
  138. Pyper SR, Viswakarma N, Yu S & Reddy JK. (2010) PPARalpha: energy combustion, hypolipidemia, inflammation and cancer. Nucl Recept Signal 8: e002.
  139. Prasher DC, Eckenrode VK, Ward WW, Prendergast FG & Cormier MJ. (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111(2): 229- 233.
  140. Veenhuis M, Mateblowski M, Kunau WH & Harder W. (1987) Proliferation of microbodies in Saccharomyces cerevisiae. Yeast 3(2): 77-84.
  141. Publizierte Abstracts:
  142. Zaar K, Volkl A & Fahimi HD. (1991) Purification of marginal plates from bovine renal peroxisomes: identification with L- alpha-hydroxyacid oxidase B. J Cell Biol 113(1): 113-121. REFERENCES | 201
  143. Rokka A, Antonenkov VD, Soininen R, et al. (2009) Pxmp2 is a channel-forming protein in Mammalian peroxisomal membrane. PLoS One 4(4): e5090.
  144. Schrader M. (2006) Shared components of mitochondrial and peroxisomal division. Biochim Biophys Acta 1763(5-6): 531-541.
  145. Lefebvre P, Chinetti G, Fruchart JC & Staels B. (2006) Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis. J Clin Invest 116(3): 571-580.
  146. Titorenko VI & Rachubinski RA. (2009) Spatiotemporal dynamics of the ER-derived peroxisomal endomembrane system. Int Rev Cell Mol Biol 272: 191-244.
  147. Lippincott-Schwartz J, Snapp E & Kenworthy A. (2001) Studying protein dynamics in living cells. Nat Rev Mol Cell Biol 2(6): 444-456.
  148. Wattenberg B & Lithgow T. (2001) Targeting of C-terminal (tail)-anchored proteins: understanding how cytoplasmic activities are anchored to intracellular membranes. Traffic 2(1): 66-71.
  149. Van Ael E & Fransen M. (2006) Targeting signals in peroxisomal membrane proteins. Biochim Biophys Acta 1763(12): 1629-1638.
  150. Yan M, Rayapuram N & Subramani S. (2005) The control of peroxisome number and size during division and proliferation. Curr Opin Cell Biol 17: 376-383.
  151. Li X & Gould SJ. (2003) The dynamin-like GTPase DLP1 is essential for peroxisome division and is recruited to peroxisomes in part by PEX11. J Biol Chem 278(19): 17012-17020.
  152. Novikoff AB & Shin WY. (1964) The endoplasmic reticulum in the Golgi zone and its relations to microbodies, Golgi apparatus, and autophagic vacuoles in rat liver cells. J Microscopy 3: 187-206.
  153. Sacksteder KA & Gould SJ. (2000) The genetics of peroxisome biogenesis. Annu Rev Genet 34: 623-652.
  154. Rayapuram N & Subramani S. (2006) The importomer--a peroxisomal membrane complex involved in protein translocation into the peroxisome matrix. Biochim Biophys Acta 1763(12): 1613-1619.
  155. Lazarow PB. (2006) The import receptor Pex7p and the PTS2 targeting sequence. Biochim Biophys Acta 1763(12): 1599-1604.
  156. Otera H, Harano T, Honsho M, Ghaedi K, Mukai S, Tanaka A, Kawai A, Shimizu N & Fujiki Y. (2000) The mammalian peroxin Pex5pL, the longer isoform of the mobile peroxisome targeting signal (PTS) type 1 transporter, translocates the Pex7p.PTS2 protein complex into peroxisomes via its initial docking site, Pex14p. J Biol Chem 275(28): 21703-21714.
  157. Honsho M, Hiroshige T & Fujiki Y. (2002) The membrane biogenesis peroxin Pex16p. Topogenesis and functional roles in peroxisomal membrane assembly. J.Biol.Chem. 277(46): 44513-44524.
  158. Yang F, Moss LG & Phillips GN, Jr. (1996) The molecular structure of green fluorescent protein. Nat Biotechnol 14(10): 1246-1251.
  159. Issemann I, Prince RA, Tugwood JD & Green S. (1993) The peroxisome proliferator-activated receptor:retinoid X receptor heterodimer is activated by fatty acids and fibrate hypolipidaemic drugs. J Mol Endocrinol 11(1): 37-47.
  160. Yang YS & Strittmatter SM. (2007) The reticulons: a family of proteins with diverse functions. Genome Biol 8(12): 234.
  161. van der Zand A, Braakman I, Geuze HJ & Tabak HF. (2006) The return of the peroxisome. J Cell Sci. 119(Pt 6): 989-994.
  162. Yokota S, Oda T & Fahimi HD. (2001) The role of 15-lipoxygenase in disruption of the peroxisomal membrane and in programmed degradation of peroxisomes in normal rat liver. J Histochem Cytochem. 49(5): 613-622.
  163. Lazarow PB. (1987) The role of peroxisomes in mammalian cellular metabolism. J Inherit Metab Dis 10(Suppl 1): 11-22.
  164. Suzuki M, Jeong SY, Karbowski M, Youle RJ & Tjandra N. (2003) The solution structure of human mitochondria fission protein Fis1 reveals a novel TPR- like helix bundle. J Mol Biol 334(3): 445-458.
  165. Yamamoto K & Fahimi HD. (1987) Three-dimensional reconstruction of a peroxisomal reticulum in regenerating rat liver: evidence of interconnections between heterogeneous segments. J Cell Biol 105(2): 713- 722.
  166. Schrader M, Krieglstein K & Fahimi HD. (1998a) Tubular peroxisomes in HepG2 cells: selective induction by growth factors and arachidonic acid. Eur J Cell Biol 75(2): 87-96.
  167. Hruban Z & Swift H. (1964) Uricase: Localization in Hepatic Microbodies. Science 146: 1316-1318.
  168. Novikoff AB & Goldfischer S. (1969) Visualization of peroxisomes (microbodies) and mitochondria with diaminobenzidine. J Histochem Cytochem 17(10): 675-680.
  169. Moser HW, Mahmood A & Raymond GV. (2007) X-linked adrenoleukodystrophy. Nat Clin Pract Neurol 3(3): 140-151.
  170. Poirier Y, Antonenkov VD, Glumoff T & Hiltunen JK. (2006) Peroxisomal beta-oxidation--a metabolic pathway with multiple functions. Biochim Biophys Acta 1763(12): 1413-1426.
  171. High S & Abell BM. (2004) Tail-anchored protein biosynthesis at the endoplasmic reticulum: the same but different. Biochem.Soc.Trans. 32(Pt 5): 659-662.
  172. Yoon Y, Pitts KR & McNiven MA. (2001) Mammalian dynamin-like protein DLP1 tubulates membranes. Mol Biol Cell 12(9): 2894- 2905.
  173. Praefcke GJ & McMahon HT. (2004) The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 5(2): 133-147.
  174. Titorenko VI & Rachubinski RA. (1998) Mutants of the yeast Yarrowia lipolytica defective in protein exit from the endoplasmic reticulum are also defective in peroxisome biogenesis. Mol Cell Biol 18(5): 2789-2803.
  175. Lorenz P, Maier AG, Baumgart E, Erdmann R & Clayton C. (1998) Elongation and clustering of glycosomes in Trypanosoma brucei overexpressing the glycosomal Pex11p. Embo J 17(13): 3542-3555.
  176. Huber CM, Saffrich R, Ansorge W & Just WW. (1999) Receptor-mediated regulation of peroxisomal motility in CHO and endothelial cells. Embo J 18(20): 5476-5485.
  177. Gotte K, Girzalsky W, Linkert M, Baumgart E, Kammerer S, Kunau WH & Erdmann R. (1998) Pex19p, a farnesylated protein essential for peroxisome biogenesis. Mol.Cell Biol. 18(1): 616-628.
  178. Miyata N & Fujiki Y. (2005) Shuttling mechanism of peroxisome targeting signal type 1 receptor Pex5: ATP- independent import and ATP-dependent export. Mol Cell Biol 25(24): 10822-10832.
  179. Rapaport D. (2003) Finding the right organelle. Targeting signals in mitochondrial outer-membrane proteins. EMBO Rep 4(10): 948-952.
  180. Honsho M, Tamura S, Shimozawa N, Suzuki Y, Kondo N & Fujiki Y. (1998) Mutation in PEX16 is causal in the peroxisome-deficient Zellweger syndrome of complementation group D. Am J Hum Genet. 63(6): 1622-1630.
  181. Ghaedi K, Tamura S, Okumoto K, Matsuzono Y & Fujiki Y. (2000) The peroxin pex3p initiates membrane assembly in peroxisome biogenesis. Mol Biol Cell 11(6): 2085-2102.
  182. Yoon Y, Krueger EW, Oswald BJ & McNiven MA. (2003) The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol 23(15): 5409- 5420.
  183. Setoguchi K, Otera H & Mihara K. (2006) Cytosolic factor-and TOM-independent import of C-tail-anchored mitochondrial outer membrane proteins. Embo J 25(24): 5635-5647.
  184. Orth T, Reumann S, Zhang X, Fan J, Wenzel D, Quan S & Hu J. (2007) The PEROXIN11 protein family controls peroxisome proliferation in Arabidopsis. Plant Cell 19(1): 333-350.
  185. Platta HW, El Magraoui F, Schlee D, Grunau S, Girzalsky W & Erdmann R. (2007) Ubiquitination of the peroxisomal import receptor Pex5p is required for its recycling. J Cell Biol 177(2): 197-204.
  186. Motley AM & Hettema EH. (2007) Yeast peroxisomes multiply by growth and division. J Cell Biol 178(3): 399-410.
  187. Leighton F, Coloma L & Koenig C. (1975) Structure, composition, physical properties, and turnover of proliferated peroxisomes. A study of the trophic effects of Su-13437 on rat liver. J Cell Biol 67(2PT.1): 281-309.
  188. Moody DE & Reddy JK. (1976) Morphometric analysis of the ultrastructural changes in rat liver induced by the peroxisome proliferator SaH 42-348. J Cell Biol 71(3): 768-780.
  189. Staubli W, Schweizer W, Suter J & Weibel ER. (1977) The proliferative response of hepatic peroxidomes of neonatal rats to treatment with SU- 13 437 (nafenopin). J Cell Biol 74(3): 665-689.
  190. Gould SG, Keller GA & Subramani S. (1987) Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase. J Cell Biol 105(6 Pt 2): 2923-2931.
  191. Gould SJ, Keller GA, Hosken N, Wilkinson J & Subramani S. (1989) A conserved tripeptide sorts proteins to peroxisomes. J.Cell Biol. 108(5): 1657-1664. REFERENCES | 181
  192. Motley A, Hettema E, Distel B & Tabak H. (1994) Differential protein import deficiencies in human peroxisome assembly disorders. J Cell Biol 125(4): 755-767.
  193. Wiemer EA, Wenzel T, Deerinck TJ, Ellisman MH & Subramani S. (1997) Visualization of the peroxisomal compartment in living mammalian cells: dynamic behavior and association with microtubules. J Cell Biol 136(1): 71-80.
  194. Sakai Y, Koller A, Rangell LK, Keller GA & Subramani S. (1998) Peroxisome degradation by microautophagy in Pichia pastoris: identification of specific steps and morphological intermediates. J Cell Biol 141(3): 625-636.
  195. Yoon Y, Pitts KR, Dahan S & McNiven MA. (1998) A novel dynamin-like protein associates with cytoplasmic vesicles and tubules of the endoplasmic reticulum in mammalian cells. J Cell Biol 140(4): 779-793.
  196. Passreiter M, Anton M, Lay D, Frank R, Harter C, Wieland FT, Gorgas K & Just WW. (1998) Peroxisome biogenesis: involvement of ARF and coatomer. J Cell Biol 141(2): 373-383.
  197. Hoepfner D, van den Berg M, Philippsen P, Tabak HF & Hettema EH. (2001) A role for Vps1p, actin, and the Myo2p motor in peroxisome abundance and inheritance in Saccharomyces cerevisiae. J Cell Biol 155(6): 979-990.
  198. Schneiter R, Brugger B, Sandhoff R, et al. (1999) Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane. J Cell Biol 146(4): 741-754. REFERENCES | 193
  199. Jones JM, Morrell JC & Gould SJ. (2004) PEX19 is a predominantly cytosolic chaperone and import receptor for class 1 peroxisomal membrane proteins. J Cell Biol 164(1): 57-67.
  200. Gandre-Babbe S & van der Bliek AM. (2008) The Novel Tail-anchored Membrane Protein Mff Controls Mitochondrial and Peroxisomal Fission in Mammalian Cells. Mol Biol Cell 19(6): 2402-2412.
  201. Shibata Y, Voss C, Rist JM, Hu J, Rapoport TA, Prinz WA & Voeltz GK. (2008) The reticulon and DP1/Yop1p proteins form immobile oligomers in the tubular endoplasmic reticulum. J Biol Chem 283(27): 18892-18904.
  202. Lingard MJ, Gidda SK, Bingham S, Rothstein SJ, Mullen RT & Trelease RN. (2008) Arabidopsis PEROXIN11c-e, FISSION1b, and DYNAMIN-RELATED PROTEIN3A Cooperate in Cell Cycle-Associated Replication of Peroxisomes. Plant Cell 20(6): 1567-1585.
  203. Raychaudhuri S & Prinz WA. (2008) Nonvesicular phospholipid transfer between peroxisomes and the endoplasmic reticulum. Proc Natl Acad Sci U S A 105(41): 15785-15790.
  204. Pitts KR, Yoon Y, Krueger EW & McNiven MA. (1999) The dynamin-like protein DLP1 is essential for normal distribution and morphology of the endoplasmic reticulum and mitochondria in mammalian cells. Mol Biol Cell 10(12): 4403-4417.
  205. Motley AM, Ward GP & Hettema EH. (2008) Dnm1p-dependent peroxisome fission requires Caf4p, Mdv1p and Fis1p. J Cell Sci 121(Pt 10): 1633-1640. REFERENCES | 189
  206. Serasinghe MN & Yoon Y. (2008) The mitochondrial outer membrane protein hFis1 regulates mitochondrial morphology and fission through self-interaction. Exp Cell Res 314(19): 3494-3507.
  207. Delille HK & Schrader M. (2008) Targeting of hFis1 to peroxisomes is mediated by Pex19p. Eur J Cell Biol 87S1 (Suppl. 58) MS4-6
  208. Matsuzono Y, Kinoshita N, Tamura S, et al. (1999) Human PEX19: cDNA cloning by functional complementation, mutation analysis in a patient with Zellweger syndrome, and potential role in peroxisomal membrane assembly. Proc Natl Acad Sci U S A. 96(5): 2116-2121.
  209. Platta HW, El Magraoui F, Baumer BE, Schlee D, Girzalsky W & Erdmann R. (2009) Pex2 and pex12 function as protein-ubiquitin ligases in peroxisomal protein import. Mol Cell Biol 29(20): 5505-5516.
  210. Roux A, Koster G, Lenz M, Sorre B, Manneville JB, Nassoy P & Bassereau P. (2010) Membrane curvature controls dynamin polymerization. Proc Natl Acad Sci U S A.
  211. Zhang X & Hu J. (2010) The Arabidopsis chloroplast division protein DYNAMIN-RELATED PROTEIN5B also mediates peroxisome division. Plant Cell 22(2): 431-442.
  212. Walton PA, Hill PE & Subramani S. (1995) Import of stably folded proteins into peroxisomes. Mol.Biol.Cell 6(6): 675-683.
  213. Wells RC, Picton LK, Williams SC, Tan FJ & Hill RB. (2007) Direct binding of the dynamin-like GTPase, Dnm1, to mitochondrial dynamics protein Fis1 is negatively regulated by the Fis1 N-terminal arm. J Biol Chem 282(46): 33769- 33775.
  214. Delille HK, Agricola B, Guimaraes SC, Borta H, Lüers GH, Fransen M, & Schrader M. (2010) Pex11pβ-mediated growth and division of mammalian peroxisomes follows a maturation pathway. J Cell Sci (in press)
  215. Vizeacoumar FJ, Torres-Guzman JC, Bouard D, Aitchison JD & Rachubinski RA. (2004) Pex30p, Pex31p, and Pex32p form a family of peroxisomal integral membrane proteins regulating peroxisome size and number in Saccharomyces cerevisiae. Mol Biol Cell 15(2): 665-677.
  216. Johnson LV, Walsh ML & Chen LB. (1980) Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci U S A 77(2): 990-994.
  217. Delille HK, Bonekamp NA & Schrader M. (2006) Peroxisomes and disease -an overview. Int J Biomed Sci 2(4): 308-314.
  218. Schumann U & Subramani S. (2008) Special delivery from mitochondria to peroxisomes. Trends Cell Biol 18(6): 253-256.
  219. Towbin H, Staehelin T & Gordon J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76(9): 4350-4354.
  220. Rottensteiner H, Kal AJ, Filipits M, Binder M, Hamilton B, Tabak HF & Ruis H. (1996) Pip2p: a transcriptional regulator of peroxisome proliferation in the yeast Saccharomyces cerevisiae. Embo J. 15(12): 2924-2934.
  221. Glover JR, Andrews DW & Rachubinski RA. (1994) Saccharomyces cerevisiae peroxisomal thiolase is imported as a dimer. Proc Natl Acad Sci U S A 91(22): 10541-10545.
  222. Rottensteiner H, Kramer A, Lorenzen S, Stein K, Landgraf C, Volkmer-Engert R & Erdmann R. (2004) Peroxisomal membrane proteins contain common Pex19p-binding sites that are an integral part of their targeting signals (mPTS). Mol Biol Cell 15: 3406-3417.
  223. Hwang YT, Pelitire SM, Henderson MP, Andrews DW, Dyer JM & Mullen RT. (2004) Novel targeting signals mediate the sorting of different isoforms of the tail-anchored membrane protein cytochrome b5 to either endoplasmic reticulum or mitochondria. Plant Cell 16(11): 3002-3019.
  224. Tugwood JD, Issemann I, Anderson RG, Bundell KR, McPheat WL & Green S. (1992) The mouse peroxisome proliferator activated receptor recognizes a response element in the 5' flanking sequence of the rat acyl CoA oxidase gene. EMBO J 11(2): 433-439.
  225. Smirnova E, Griparic L, Shurland DL & van der Bliek AM. (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12(8): 2245-2256.
  226. South ST, Baumgart E & Gould SJ. (2001) Inactivation of the endoplasmic reticulum protein translocation factor, Sec61p, or its homolog, Ssh1p, does not affect peroxisome biogenesis. Proc Natl Acad Sci U S A 98(21): 12027-12031.
  227. Rottensteiner H, Wabnegger L, Erdmann R, Hamilton B, Ruis H, Hartig A & Gurvitz A. (2003c) Saccharomyces cerevisiae PIP2 mediating oleic acid induction and peroxisome proliferation is regulated by Adr1p and Pip2p-Oaf1p. J Biol Chem. 278(30): 27605-27611. Epub 22003 May 27614.
  228. Rottensteiner H, Hartig A, Hamilton B, Ruis H, Erdmann R & Gurvitz A. (2003a) Saccharomyces cerevisiae Pip2p-Oaf1p regulates PEX25 transcription through an adenine-less ORE. Eur J Biochem. 270(9): 2013-2022.
  229. Platta HW, Grunau S, Rosenkranz K, Girzalsky W & Erdmann R. (2005) Functional role of the AAA peroxins in dislocation of the cycling PTS1 receptor back to the cytosol. Nat Cell Biol 7(8): 817-822.
  230. Pinto MP, Grou CP, Alencastre IS, Oliveira ME, Sa-Miranda C, Fransen M & Azevedo JE. (2006) The import competence of a peroxisomal membrane protein is determined by Pex19p before the docking step. J Biol Chem 281(45): 34492-34502.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten