Publikationsserver der Universitätsbibliothek Marburg

Titel:Eigenschaften und Funktionen des humanen monothiol Glutaredoxin 3
Autor:Haunhorst, Petra
Weitere Beteiligte: Lillig, Christopher Horst (Dr.)
Veröffentlicht:2010
URI:https://archiv.ub.uni-marburg.de/diss/z2010/0624
URN: urn:nbn:de:hebis:04-z2010-06244
DOI: https://doi.org/10.17192/z2010.0624
DDC: Biowissenschaften, Biologie
Titel (trans.):Properties and functions of the human monothiol Glutaredoxin 3
Publikationsdatum:2010-10-26
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Glutaredoxin, Herzhypertrophie, Fe/S-center, Homöostase, Lokalisation, Zellskelett, Eisenschwefelzentrum

Zusammenfassung:
Glutaredoxine (Grx’e) als Proteine der Thioredoxin (Trx)-Familie sorgen für ein reduzierendes Milieu in Säugerzellen. Die Familie der Glutaredoxine teilt sich in Monothiol-Grx’e (Grx3 und Grx5) und Dithiol- Grx’e (Grx1 und Grx2) auf, die im Nukleus, im Zytoplasma oder in den Mitochondrien lokalisiert sind. Grx’e sind an einer Vielzahl von biologischen Prozessen, wie beispielsweise der Signaltransduktion, beteiligt. Im Rahmen dieser Arbeit wurde das bisher kaum beschriebene monothiol Glutaredoxin 3 detaillierter untersucht und biochemisch charakterisiert. Darüber hinaus wurden mögliche Funktionen von Grx3 in vivo untersucht. In den Datenbanken fanden sich zwei homologe Grx3-Sequenzen. Eine in silico-Analyse zeigte, dass es sich bei der einen Sequenz um die eines Pseudogens und bei der anderen um das codierende Gen handelte. In einer phylogenetischen Stammbaumanalyse stellte sich heraus, dass Grx3 ein hochkonserviertes Protein war. In Lokalisationsstudien wurde Grx3 als zytosolisches und nukleäres ubiquitär exprimiertes Protein identifiziert. In den letzten Jahren wurde ein Zusammenhang zwischen Grx’en und Fe/S-Zentren beschrieben. In dieser Dissertation wurde erstmals die Koordination eines Fe/S-Zentrums für das humane Grx3 gezeigt. Tatsächlich zeigten biochemische Analysen, dass durch Grx3 2[2Fe-2S]-Zentren in vitro und in vivo koordiniert werden. Ferner zeigte sich, dass zwei Grx3-Moleküle durch die beiden Fe/S-Zentren dimerisierten. Funktionell wurde Grx3 in der Literatur bisher als Protein zum Schutz vor einer Hypertrophie des Herzens beschrieben. Auch wurden Grx3 Funktionen in der Immunzellaktivierung zugeschrieben. Im Rahmen dieser Arbeit wurden Hinweise für weitere Funktionen von Grx3 in der Zelle ermittelt. In der Analyse der differentiellen Genexpression in HeLa-Zellen nach Stimulation mit Phorbolester (PMA) deutete sich ein Einfluss von Grx3 auf zytoskeletale Prozesse an. Eine Untersuchung des Migrationsverhaltens von Grx3 zeigte, dass HeLa-Zellen in Abwesenheit von Grx3 schneller migrierten. Durch seine exklusive Expression in den Germinativen Zentren von Lymphknoten und in der T-Zell-Zone der Milz könnte Grx3 eine Funktion in der inflammatorischen Antwort einnehmen. Der wohl deutlichste Effekt von Grx3 auf der Ebene zellulärer Prozesse konnte in der Verteilung von Eisen in der Zelle beschrieben werden. Eine Reduktion des endogenen Grx3-Levels durch siRNA resultierte in Defekten in der Übertragung von Fe/S-Zentren auf Zielproteine und in einem für Eisenmangel typischen Phänotyp in HeLa-Zellen. Diese Resultate könnten bei der Aufklärung von bisher kaum beschriebenen Prozessen des zellulären Eisenmetabolismus helfen, wie z. B. der Verteilung von Eisen vom „freien“ Eisenpool auf Proteine. Ein zentraler Punkt in diesen zukünftigen Studien würde in der Aufklärung der durch das Fe/S-Zentrum vermittelten Funktionen des Grx3-Dimers liegen.

Bibliographie / References

  1. Lämmli, U. K. Cleavage of structural proteins during the assembly of the head of bac- teriophage T4. Nature 227(259), 680–685 (1970).
  2. Camaschella, C., Campanella, A., de Falco, L., Boschetto, L., Merlini, R., Silvestri, L., Levi, S., Iolascon, A. The human counterpart of zebrafish shiraz shows sideroblastic-like microcytic anemia and iron overload. Blood 110(4), 1353–1358 (2007).
  3. Ide, T., Tsutsui, H., Kinugawa, S., Suematsu, N., Hayashidani, S., Ichikawa, K., Utsumi, H., Machida, Y., Egashira, K., Takeshita, A. Direct evidence for increased hydroxyl radicals originating from superoxide in the failing myocardium. Circ. Res. 86, 152–157
  4. Lodi, R., Rajagopalan, B., Blamire, A. M., Cooper, J. M., Davies, C. H., Bradley, J. L., Styles, P., Schapira, A. H. V. Cardiac energetics are abnormal in Friedreich ataxia patients in the absence of cardiac dysfunction and hypertrophy: An in vivo 31P magnetic resonance spectroscopy study. Cardiovasc. Res. 52, 111–119 (2001).
  5. Godoy, J., Funke, M., Ackermann, W., Haunhorst, P., Oesteritz, S., Capani, F., Elsässer, H. P., Lillig, C. H. Redox atlas of the mouse: Immunohistochemical detection of glutaredoxin-, peroxiredoxin-, and thioredoxin-family proteins in various tissues of the laboratory mouse. Biochim. Biophys. Acta doi:10.1016/j.bbagen.2010.05.006 (2010).
  6. Xu, X. M., Müller, S. G. Iron-Sulfur Cluster Biogenesis Systems and their Crosstalk. ChemBioChem 9(15), 2355–2362 (2008).
  7. Vilella, F., Alves, R., Rodriguez-Manzaneque, M. T., Belli, G., Swaminathan, S., Sun- nerhagen, P., Herrero, E. Evolution and cellular function of monothiol glutaredoxins: involvement in iron-sulphur cluster assembly. Comp. Funct. Genomics 5(4), 328–341
  8. Haunhorst, P., Berndt, C., Eitner, S., Godoy, J. R., Lillig, C. H. Characterization of the human monothiol glutaredoxin 3 (PICOT) as iron-sulfur protein. Biochim. Biophys.
  9. Agar, J., Krebs, C., Frazzon, J., Huynh, B. H., Dean, D. R., Johnson, M. K. IscU as a scaffold for iron-sulfur cluster biosynthesis: sequential assembly of [2Fe-2S] and [4Fe-4S] clusters in IscU. Biochemistry 39(27), 7856–7862 (2000).
  10. Martelli, A., Wattenhofer-Donze, M., Schmucker, S., Bouvet, S., Reutenauer, L., Puccio, H. Frataxin is essential for extramitochondrial Fe-S cluster proteins in mammalian tissues. Hum. Mol. Genet. 16, 2651–2658 (2007).
  11. Condò, I., Malisan, F., Guccini, I., Serio, D., Rufini, A., Testi, R. Molecular control of the cytosolic aconitase/IRP1 switch by extramitochondrial frataxin. Hum. Mol. Genet. 19(7), 1221–1229 (2010).
  12. Pujol-Carrion, N., Belli, G., Herrero, E., Nogues, A., de la Torre-Ruiz, M. A. Gluta- redoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae. J. Cell. Sci. 119, 4554–4564 (2006).
  13. Cheng, N. H., Liu, J. Z., Brock, A., Nelson, R. S., Hirschi, K. AtGRXcp, an Arabidopsis chloroplastic Glutaredoxin, is critical for protection against protein oxidative damage. J. Biol. Chem. 281(36), 26280–26288 (2006).
  14. Molina, M. M., Bellí, G., de la, M. A. T., Rodríguez-Manzaneque, M. T., Herero, E. Nuclear monothiol glutaredoxins of Saccharomyces cerevisiae can function as mitochon- drial glutaredoxins. J. Biol. Chem. 279(50), 51923–51930 (2004).
  15. Ponka, P., Lok, C. N. The transferrin receptor: role in health and disease. Int. J. Biochem. Cell Biol. 31, 1111–1137 (1999).
  16. Bertini, I., Cowan, J. A., Bianco, C. D., Luchinat, C., Mansy, S. S. Thermatoga maritima IscU. Structural characterization and dynamics of a new class of metallochaperone. J. Mol. Biol. 331(4), 907–924 (2003).
  17. Campuzano, V., Montermini, L., Molto, M. D., Pianese, L., Cossee, M., et al., F. C. Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271(5254), 1423–1427 (1996).
  18. Cossee, M., Durr, A., Schmitt, M., Dahl, N., Trouillas, P., Allinson, P., et al. Fried- reich's ataxia point mutations and clinical presentation of compound heterozygotes. Ann. Neurol. 45(2), 200–206 (1999).
  19. Verbeek, M. M., Westphal, J. R., Ruiter, D. J., de Waal, R. M. T lymphocyte adhesion to human brain pericytes is mediated via very late antigen 4/vascular cell adhesion molecule-1 interactions. J. Immunol. 154, 5876–5884 (1995).
  20. Wagener, F. A. D. T. G., Feldman, E., de Witte, T., Abraham, N. G. Heme induces the expression of adhesion molecules ICAM-1, VCAM-1, and E Selectin in vascular endothelial cells. Proc. Soc. Exp. Biol. Med. 216(3), 456–463 (1997).
  21. Müllner, E. W., Neupert, B., Kühn, L. C. A specific mRNA binding factor regulates the iron-dependent stability of cytoplasmic transferrin receptor mRNA. Cell 58, 373–382 (1989).
  22. Pierik, A. J., Hagen, W. R., Redeker, J. S., Wolbert, R. B., Boesma, M., Verhagen, M. F., Grande, H. J., Veeger, C., Mutsaers, P. H., Sands, R. H., Dunham, W. R. Redox properties of the iron-sulfur clusters in activated Fe-hydrogenase from Desulfovibrio vulgaris (Hildenborough). Eur. J. Biochem. 209, 63–72 (1992).
  23. Kuster, G. M., Pimental, D. R., Adachi, T., Ido, Y., Brenner, D. A., Cohen, R. A., Liao, R., Siwik, D. A., Colucci, W. Alpha-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes is mediated via thioredoxin-1-sensitive oxidative modification of thiols on ras. Circulation 111(9), 1192–1198 (2005).
  24. Lopreiato, R. Analysis of the interaction between piD261/Bud32, an evolutionarily con- served protein kinase of Saccharomyces ceriviseae, and the Grx4 glutaredoxin. Biochem.
  25. Zhou, G., Broyles, S. S., Dixon, J. E., Zalkin, H. Avian glutamine phosphoribosyl- pyrophosphate amidotransferase propeptide processing and activity are dependent upon essential cysteine residues. J. Biol. Chem. 267(11), 7936–7942 (1992).
  26. Hentze, M. W., Muckenthaler, M. U., Andrews, N. C. Balancing Acts: Molecular control of mammalian iron metabolism. Cell 117, 285–297 (2004).
  27. Werlen, G., Jacinto, E., Xia, Y., Karin, M. Calcineurin preferentially synergizes with PKC-θ to activate JNK and IL-2 promotor in T-Lymphocytes. EMBO J 17(11), 3101– 3111 (1998).
  28. Picciocchi, A., Saguez, C., Boussac, A., Cassier-Chauvat, C., Chauvat, F. CGFS-type monothiol glutaredoxins from the cyanobacterium Synechocystis PCC6803 and other evolutionary distant model organisms possess a glutathione-ligated [2Fe-2S] cluster. Bio- chemistry 46, 15018–15026 (2007).
  29. Hudemann, C., Lönn, M. E., Godoy, J. R., Avval, F. Z., Capani, F., A., H., H., L. C. Identification, expression pattern and characterization of mouse glutaredoxin 2 isoforms. Antioxid. Redox Signal. 11(1), 1–14 (2009).
  30. Mühlenhoff, U., Gerber, J., Richardt, N., Lill, R. Components involved in assembly and dislocation of iron-sulfur clusters on the scaffold Isu1p. EMBO J. 22(18), 4815–4825 (2003).
  31. Bilder, P. W., Ding, H., Newcomer, M. E. Crystal Structure of the ancient, Fe-S scaffold IscA reveals a novel protein fold. Biochemistry 43(1), 133–139 (2004).
  32. Cotran, R. S., Pober, J. Cytokine-endothelial interactions in inflammation, immunity, and vascular injury. J. Am. Soc. Nephrol. 1, 225–235 (1990).
  33. Mühlenhoff, U., Molik, S., Godoy, J. R., Uzarska, M. A., Richter, N., Seubert, A., Zhang, Y., Stubbe, J., Pierrel, F., Herrero, E., Lillig, C. H., Lill, R. Cytosolic monothiol glutaredoxins function in intrazellular iron sensing and trafficking via their bound iron- sulfur cluster. Cell Metab. accepted (2010).
  34. Levine, B., Kalman, J., Mayer, L., Fillit, H. M., Packer, M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N. Engl. J. Med. 323, 236–341 (1990).
  35. Bevilacqua, M. P. Endothelial-leukocyte adhesion molecules. Annu. Rev. Immunol. 1, 767–804 (1993).
  36. Theil, E. C., Matzapetakis, M., Liu, X. Ferritins: iron/oxygen biominerals in protein nanocages. J. Biol. Inorg. Chem. 11, 803–810 (2006).
  37. Rouhier, N., Unno, H., Bandyopadhyay, S., Masip, L., Kim, S. K., Hirasawa, M., Gual- berto, J. M., Lattard, V., Kusunoki, M., Knaff, D. B., Georgiou, G., Hase, T., Johnson, M. K., Jacquot, J. P. Functional, structural, and spectroscopic characterization of a glutathione-ligated [2Fe-2S] cluster in poplar glutaredoxin C1. Proc. Natl. Acad. Sci.
  38. Bharat, S., Hsu, M., Kaur, D., Rajagopalan, S., Andersen, J. K. Glutathione, iron and Parkinson´s disease. Biochem. Pharmacol. 64, 1037–1048 (2002).
  39. Willis, D., Moore, A. R., Frederick, R., Willoughby, D. A. Heme oxygenase: A novel target for the modulation of inflammatory response. Nat. Med. 2, 87–93 (1996).
  40. Jeong, W., Yoon, H., Lee, S., Rhee, S. Identification and characterization of TRP14, a thioredoxin-related protein of 14 kDa. New insights into the specificity of thioredoxin function. J. Biol. Chem. 279(5), 3142–3150 (2004).
  41. Huber, H. E., Russel, M., Model, P., Richardson, C. C. Interaction of mutant thiore- doxins of Escherichia coli with the gene 5 protein of Phage T7. The redox capacity of thioredoxin is not required for stimulation of DNA-Polymerase activity. J. Biol. Chem. 261(32), 15006–15012 (1986).
  42. Hoff, K. G., Culler, S. J., Nguyen, P. Q., McGuire, R. M., Silberg, J. J., Smolke, C. D. In vivo fluorescent detection of Fe-S clusters coordination by human Grx2. Chemistry and Biology 16(12), 1299–1308 (2009).
  43. Kato, J., Kobune, M., Ohkubo, S., Fujikawa, K., Tanaka, M., Takimoto, R., Takada, K., Takahari, D., Kawano, Y., Kohgo, Y., Niitsu, Y. Iron/IRP-1-dependent regulation of mRNA expression for transferrin receptor, DMT1 and ferritin during human erythroid differentiation. Exp. Hematol. 35, 879–887 (2007).
  44. Mansy, S. S., Wu, G., Surerus, K. K., Cowan, J. A. Iron-Sulfur Cluster Biosynthesis: Thermotoga maritima IscU is a structured Iron-Sulfur Cluster Assembly Protein. J. Biol. Chem. 277(24), 21397–21404 (2002).
  45. Braun, V. Iron uptake by Escherichia coli. Front. Biosci. 8, 1409–1421 (2003).
  46. Sumagin, R., Lomakina, E., Sarelius, I. H. Leukocyte-endothelial cell interaction are linked to vascular permeability via ICAM-1-mediated signaling. Am. J. Physiol. Heart Circ. Physiol. 295(3), H926–H927 (2008).
  47. Ahsan, M. K., Masutani, H., Yamaguchi, Y., Kim, Y. C., Nosaka, K., Matsuoka, M., Nishinaka, Y., Maeda, M., Yodoi, J. Loss of interleukin-2-dependency in HTLV-1- infected T cells on gene silencing of thioredoxin-binding protein-2. Oncogene 25, 2181– 2191 (2006).
  48. Nishinaka, Y., Nishiyama, A., Masutani, H., Oka, S., Ahsan, K., Nakayama, Y., Ishii, Y., Nakamura, H., Maeda, M., Yodoi, J. Loss of thioredoxin-binding protein-2/vitamin D3 up-regulated protein 1 in human T-cell leukemia virus type I-dependent T-cell trans- formation: implications for adult T-cell leukemia leukemogenesis. Cancer Res. 64, 1287– 1292 (2004).
  49. Lill, R., Kispal, G. Maturation of cellular Fe–S proteins: an essential function of mit- ochondria. Trends Biochem. Sci. 25, 352–356 (2000).
  50. Fazilleau, N., McHeyzer-Williams, L., Rosen, H., McHeyzer-Williams, M. The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding. Nat. Immunol 10(4), 375–384 (2009).
  51. Gozzelino, R., Jeney, V., Soares, M. P. Mechanisms of cell protection by Heme Oxygenase-1. Annu. Rev. Pharmacol. Toxicol. 50, 323–354 (2010).
  52. Driest, S. L. V., Gakh, O., Ommen, S. R., Isaya, G., Ackerman, M. J. Molecular and functional characterization of a human frataxin mutation found in hypertrophy cardiomyopathy. Mol. Gen. Metab. 85, 280–285 (2005).
  53. J. Sambrook, T. Maniatis, E. F. F. Molecular cloning a laboratory manual. Cold Spring Harbour Laboratory Press, Cold Spring Harbour New York 1–3 (1989).
  54. Baier, G., Telford, D., Giampa, L., Coggeshall, K. M., Baier-Bitterlich, G., Isakov, N., Altman, A. Molecular cloning and characterization of PKC-θ, a novel member of the Protein Kinase C (PKC) gene family expressed predominantly in hematopoietic cells.
  55. Strell, C., Lang, K., Niggemann, B., Zaenker, K. S., Entschladen, F. Neutrophil grano- lucytes promote the migration activity of MDA-MB-468 human breast carcinoma cells via ICAM-1. Exp. Cell Res. 316(1), 138–148 (2010).
  56. Häberlein, I., Würfel, M., Follmann, H. Non-redox protein interactions in the thioredoxin activation of chloroplast enzymes. Biochim. Biophys. Acta 1121(3), 293–296 (1992).
  57. Shioji, K., Kishimoto, C., Nakamura, H., Masutani, H., Yuan, Z., Oka, S. I., Yodoi, J. Overexpression of Thioredoxin-1 in transgenic mice attenuates adriamycin-induced cardiotoxicity. Circulation 106, 1403–1409 (2002).
  58. Griendling, K. K., Fitzgerald, G. A. Oxidative stress and cardiovascular injury. Part I: basic mechanisms and in vivo monitoring of ROS. Circ 108, 1912–1916 (2003).
  59. Francis, G. S. Pathophysiology of chronic heart failure. Am. J. Med. 110, 37S–46S (2001).
  60. Alves, R., Herrero, E., Sorribas, A. Predictive reconstruction of the mitochondrial iron- sulfur cluster assembly metabolism: II. Role of glutaredoxin Grx5. Proteins 57, 481–492 (2004).
  61. Ghaffari-Tabrizi, N., Bauer, B., Altman, A., Utermann, G., Uberall, F., Baier, G. Pro- tein kinase C-θ, a selective upstream regulator of JNK/SAPK and IL-2 promotor acti- vation in Jurkat T cells. Eur. J. Immunol. 29(1), 132–142 (1999).
  62. [167] Baier-Bitterlich, G., ¨ Uberall, F., Bauer, B., Fresser, F., Wachter, H., Grünicke, H., Uter- mann, G., Altman, A., Baier, G. Protein Kinase C-θ Isoenzyme selective stimulation of the transcription factor complex AP-1 in T-Lymphocytes. Mol. Cell. Biol. 16(4), 1842–1850 (1996).
  63. Broderick, J. B., Henshaw, T. F., Cheek, J., Wojtuszewik, K., Smith, S. R., Trojan, M. R., McGhan, R. M., Kopf, M., Kibbey, M., Broderick, W. E. Pyruvate formate- Lyase-Activating Enzyme: Strictly anaerobic isolation yields active enzyme containing a [3Fe-4S] + Cluster. Biochem. Biophys. Res. Comm. 269(2), 451–456 (2000).
  64. Fish, W. W. Rapid colorimetric micromethod for the quantitation of complexed iron in biological samples. Meth. Enzymol. 158, 357–364 (1988).
  65. Horton, R. M., Pease, L. R. Recombination and mutagenesis of DNA using PCR. Direct Mutagenesis, ed. by Mc Phearson, M.J. IRL Press, Oxford 217–247 (1991).
  66. Johansson, C., Kavanagh, K. L., Gileadi, O., Oppermann, U. Reversible sequestration of active site cysteines in a 2F-2S-bridging dimer provides a mechanism for glutaredoxin 2 regulation in human mitochondria. J. Biol. Chem. 282(5), 3077–3082 (2007).
  67. Ojeda, L., Keller, G., Mühlenhoff, U., Rutherford, J. C., Lill, R., Winge, D. R. Role of Glutaredoxin–3 and Glutaredoxin–4 in the iron regulation of the Aft1 Transcriptional activator in Saccharomyces cerevisiae. J. Biol. Chem. 281(26), 17661–17669 (2006).
  68. Monks, C. R. F., Kupfer, H., Tamir, I., Barlow, A., Kupfer, A. Selective modulation of protein kinase C-θ during T-cell activation. Nature 385, 83–86 (1997).
  69. Beinert, H. Semi-micro-Methods for analysis of labile sulfides and of labile sulfide plus sulfane sulfur in unusually stable iron-sulfur proteins. Anal. Biochem. 131, 373–378 (1983).
  70. Kishimoto, C., Shioji, K., et al Nakamura, H. Serum thioredoxin (TRX) levels in patients with heart failure. Jpn. Circ. J. 65, 491–494 (2001).
  71. Ho, S. N., Hunt, H. D., Horton, R., Pullen, J., Pease, L. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59 (1989).
  72. Mullis, K., Faloona, F., Saiki, R., Horn, G., Ehrlich, H. Specific enzymatic amplification of DNA in vitro: The polymerase chain reaction. Cold Spring Harb. Symp. Quant. Biol. 51, 263–273 (1986).
  73. Chen, E., Ekker, S. C. Structural and functional characterization of the mutant Esche- richia coli glutaredoxin (C14S) and its mixed disulfide with glutathione. Curr Pharm Biotechnol 5, 409–413 (2004).
  74. Mebius, M. R., Kraal, G. Structure and function of the spleen. Nat. Rev. Immunol. 5, 606–616 (2005).
  75. Jeffrey, K. L., Camps, M., Rommel, C., Mackay, C. R. Targeting dual-specificity phos- phatases: manipulating MAP kinase signalling and immune response. Nature Reviews 6, 391–403 (2007).
  76. Hanahan, D. Techniques for transformation. In: DNA–cloning Vol. 1, ed. by Glover, D.M., IRL Press, Oxford, 109–135 (1985).
  77. Masutani, H., Ueda, S., Yodoi, J. The thioredoxin system in retroviral infection and apoptosis. Cell Death Differ. 12, 991–998 (2005).
  78. Li, H., Mapolelo, D. T., Dingra, N. N., Naik, S. G., Lees, N. S., Hoffmann, B. M., et al. The yeast iron regulatory proteins Grx3/4 and Fra2 from heterodimeric complexes containing a [2Fe-2S] cluster with cysteinyl and histidyl ligation. Biochemistry 48, 9569–9581 (2009).
  79. Thioltransferase (glutaredoxin) is detected within HIV-1 and can regulate the activity of glutathionylated HIV-1 protease in vitro. J. Biol. Chem. 272(41), 25935–42590 (1997).
  80. Yoshioka, J., Schulze, C., Cupesi, M., Sylvan, J. D., MacGillivray, C., Gannon, J., Huang, H., Lee, R. T. Thioredoxin-interacting protein controls cardiac hypertrophy through regulation of thioredoxin activity. Circulation 109, 2581–2586 (2004).
  81. Dunon, D., Piali, L., Imhof, B. A. To stick or not to stick: The new leukocyte homing paradigm. Curr. Opin. Cell. Biol. 8, 714–723 (1996).
  82. Wang, Y., de Keulenaer, G. W., Lee, R. T. Vitamin D(3)-up-regulated protein-1 is a stress-responsive gene that regulates cardiomyocyte viability through interaction with thioredoxin. J. Biol. Chem. 277, 26496–26500 (2002).
  83. Pantopoulos, K. Iron metabolism and the IRE/IRP regulatory system: an update. Ann. N. Y. Acad. Sci. 1012, 1–13 (2004).
  84. Kaplan, C. D., Kaplan, J. Iron acquisition and transcriptional regulation. Chem. Rev. 109, 4536–4552 (2009).
  85. Rouault, T. A. The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat. Chem. Biol. 2(8), 406–414 (2006).
  86. Biederbick, A., Stehling, O., Rösser, R., Niggemeyer, B., Nakai, Y., Elsässer, H. P., Lill, R. Role of human mitochondrial Nfs1 in cytosolic iron-sulfur protein biogenesis and iron regulation. Mol. Cell. Biol. 26, 5675–5687 (2006).
  87. Iron, copper, and iron regulatory protein 2 in Alzheimer´s disease and related dementias. Neurosci. Lett. 418(1), 72–76 (2007).
  88. Philpott, C., Protchenko, O. Response to iron deprivation in Saccharomyces cerevisiae. Eukaryot. Cell 7, 20–27 (2008).
  89. Yamamoto, M., Yang, G., Hong, C., Liu, J., Holle, E., Yu, X., Wagner, T., Vatner, S. F., Sadoshima, J. Inhibition of endogenous thioredoxin in the heart increases oxidative stress and cardiac hypertrophy. J. Clin. Invest. 112(9), 1395–13406 (2003).
  90. Bandyopadhyay, S., Gama, F., Molina-Navarro, M. M., Gualberto, J. M., Claxton, R., Naik, S. G., Huynh, B. H., Herrero, E., Jacqout, J. P., Johnson, M. K., Rouhier, N. Chloroplast monothiol glutaredoxins as scaffold proteins for the assembly and delivery of [2Fe-2S] clusters. EMBO J. 27, 1122–1133 (2008).
  91. Kumánovics, A., Chen, O. S., Li, L., Bagley, D., Adkins, E. M., Lin, H., Dingra, N. N., Outten, C. E., Keller, G., Winge, D., Ward, D. M., Kaplan, J. Identification of Fra1 and Fra2 as genes involved in regulating the yeast iron regulon in response to decreased mitochondrial iron-sulfur cluster synthesis. J. Biol. Chem. 283(16), 10276–10286 (2008).
  92. Rutherford, J. C., Bird, A. J. Metal-responsive transcription factors that regulate iron, zinc, and copper homeostasis in eukaryotic cells. Eukaryotic Cell 3(1), 1–13 (2004).
  93. Chu, G., Hayakawa, H., Berg, P. Electroporation for the efficient transfection of mam- malian cells with DNA. Nucleic Acids Res. 15(3), 1311–1326 (1987).
  94. Tagaya, Y., Maeda, Y., Mitsui, A., Kondo, N., Matsui, H., Hamuro, J., Brown, N., Arai, K., Yokota, T., Wagasugi, H., Yodoi, J. ATL-derived factor (ADF) an IL-2 re- ceptor/Tac inducer homologous to thioredoxin, possible involvement of dithiol-reduction in the IL-2 receptor induction. EMBO J. 8, 757–764 (1989).
  95. Siegel, L. M. A direct microdetermination for sulfide. Anal. Biochem. 11, 126–132 (1965).
  96. Kaplan, J., Ward, D. M. V., Crisp, R. J., Philpott, C. C. Iron-dependent metabolic remodeling in S. cerevisiae. Biochim. Biophys. Acta 1763, 646–651 (2006).
  97. Adlard, P. A., Bush, A. I. Metals and Alzheimer's disease. J. Alzheimers Dis. 10(2–3), 145–163 (2006).
  98. Fontecave, M. Mechanisms of iron-sulfur cluster assembly: the SUF machinery. J. Biol. Inorg. Chem. 10, 713–721 (2005).
  99. Balk, J., Pierik, A. J., Aguilar Netz, D. J., Mühlenhoff, U., Lill, R. Nar1p, a conserved eukaryotic protein with similarity to Fe-only hydrogenases, functions in cytosolic iron- sulphur protein biogenesis. Biochem. Soc. Trans. 33, 86–89 (2005).


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten