
 

 

 

Investigation of Dinoflagellate Plastid Protein Transport 

using Heterologous and Homologous in vivo Systems 

 

 

 

 

 

Dissertation zur Erlangung des Doktorgrades 

der Naturwissenschaften 

(Dr. rer. nat.) 

 

Vorgelegt dem Fachbereich Biologie 

der Philipps-Universität Marburg 

von 

Andrew Scott Bozarth 

aus Columbia, Maryland, USA 

 

Marburg/Lahn 2010 



    

 

 

 

 

 

 

 

 

 

Vom Fachbereich Biologie der Philipps-Universität 

als Dissertation angenommen am 26.07.2010 angenommen. 

 

 

 

Erstgutachter:   Prof. Dr. Uwe-G. Maier 

Zweitgutachter:  Prof. Dr. Klaus Lingelbach 

 

 

Prof. Dr. Andreas Brune 

Prof. Dr. Renate Renkawitz-Pohl 

 

 

 

 

Tag der Disputation am:  11.10.2010



   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Results! Why, man, I have gotten a lot of results.  

I know several thousand things that won’t work!  

-Thomas A. Edison 

       



    

 

 

 

 

 

Publications 

 

Bozarth A, Susanne Lieske, Christine Weber, Sven Gould, and Stefan Zauner (2010) 

Transfection with Dinoflagellate Transit Peptides (in progress). 

 

Bolte K, Bullmann L, Hempel F, Bozarth A, Zauner S, Maier UG (2009) Protein Targeting 

into Secondary Plastids. J. Eukaryot. Microbiol. 56, 9–15. 

 

Bozarth A, Maier UG, Zauner S (2009) Diatoms in biotechnology: modern tools and 

applications. Appl. Microbiol. Biotechnol. 82, 195-201. 

 

Maier UG, Bozarth A, Funk HT, Zauner S, Rensing SA, Schmitz-Linneweber C, Börner T, 

Tillich M (2008) Complex chloroplast RNA metabolism: just debugging the genetic 

programme? BMC Biol. 6, 36. 

 

Hempel F, Bozarth A, Sommer MS, Zauner S, Przyborski JM, Maier UG. (2007) Transport 

of nuclear-encoded proteins into secondarily evolved plastids. Biol Chem. 388, 899-906.



Table of Contents   

   

 i 

TABLE OF CONTENTS 

 

1 INTRODUCTION....................................................................................................................................... 1 

1.1 THE EVOLUTION OF PHOTOSYNTHETIC EUKARYOTES............................................................................... 1 
1.1.1 Primary Endosymbiosis .................................................................................................................. 1 
1.1.2 Protein Targeting to Primary Plastids ........................................................................................... 3 

1.2 SECONDARY ENDOSYMBIOSIS AND THE CHROMALVEOLATE HYPOTHESIS ............................................... 5 
1.3 CONSEQUENCES OF HARBORING EUKARYOTIC ENDOSYMBIONTS ............................................................ 8 

1.3.1 Genomic Reorganization ................................................................................................................ 8 
1.3.2 Protein Transport into Chromist Plastids....................................................................................... 9 

1.4 INFRAKINGDOM ALVEOLATA .................................................................................................................. 11 
1.4.1 Alveolates as Such ........................................................................................................................ 11 
1.4.2 Protein Transport into Apicomplexan Plastids ............................................................................. 12 

1.5 DINOFLAGELLATES ................................................................................................................................. 14 
1.5.1 Features of Dinoflagellate ............................................................................................................ 14 
1.5.2 Ecological Impetus ....................................................................................................................... 16 
1.5.3 Genomic Arrangement of Dinoflagellates .................................................................................... 17 
1.5.4 Protein Targeting in Dinoflagellates ............................................................................................ 19 
1.5.5 Ceratium horridum ....................................................................................................................... 23 
1.5.6 Amphidinium carterae .................................................................................................................. 23 

2 AIMS .......................................................................................................................................................... 25 

3 RESULTS .................................................................................................................................................. 26 

3.1 ANALYSIS OF SYNTHESIZED CERATIUM HORRIDUM ESTS ...................................................................... 26 
3.1.1 Analysis of Ceratium horridum cDNA Library ............................................................................. 26 
3.1.2 C. horridum EST Sequence Homologies ....................................................................................... 27 
3.1.3 C. horridum EST Sequence Functions .......................................................................................... 30 
3.1.4 Determination of Ceratium horridum Plastid-Targeted Proteins ................................................ 32 
3.1.5 Ceratium horridum Transit Peptide Classification ...................................................................... 34 
3.1.6 Ceratium horridum Transit Peptide Variations between Isoforms ............................................... 36 
3.1.7 Comparison of Ceratium horridum Transit Peptides with Those of Other Phototrophs .............. 37 
3.1.8 Statistical Comparative Analysis of Dinoflagellate Transit Peptides ........................................... 40 

3.2 HETEROLOGOUS IN VIVO IMPORT STUDIES ............................................................................................. 43 
3.2.1 Heterologous in vivo Import into the Pisum sativum Chloroplasts using Amphidinium carterae 

PsbO and Prk Transit Peptides ................................................................................................................... 44 
3.2.2 Heterologous in vivo Import into the Pisum sativum Chloroplasts using Chromalveolate PsbO 

and Prk Transit Peptides ............................................................................................................................ 47 
3.3 HETEROLOGOUS IN VIVO PROTEIN IMPORT INTO THE PLASTIDS OF PHAEODACTYLUM TRICORNUTUM 

USING AMPHIDINIUM CARTERAE PSBO AND PRK TARGETING SIGNALS ........................................................... 48 
3.3.1 HETEROLOGOUS IN VIVO PROTEIN IMPORT IN PHAEODACTYLUM TRICORNUTUM USING AMPHIDINIUM 

CARTERAE PSBO AND PRK SIGNAL PEPTIDES .................................................................................................. 48 
3.3.2 HETEROLOGOUS IN VIVO PROTEIN IMPORT IN PHAEODACTYLUM TRICORNUTUM USING AMPHIDINIUM 

CARTERAE PSBO AND PRK SIGNAL, TRANSIT, AND THYLAKOID TARGETING PEPTIDES ................................... 49 
3.4 TRACKING HOMOLOGOUS PROTEIN TARGETING IN AMPHIDINIUM CARTERAE ....................................... 52 
3.4.1 SUCROSE FRACTIONATION OF AMPHIDINIUM CARTERAE ................................................................... 52 
3.4.2 EFFECTS OF BREFELDIN A ON PROTEIN MOBILITY IN SUCROSE GRADIENT FRACTIONATIONS OF 

AMPHIDINIUM CARTERAE ................................................................................................................................ 55 
3.4.3 ELECTRON MICROSCOPIC EXAMINATION OF THE EFFECTS OF BREFELDIN A ON PROTEIN 

LOCALIZATION IN AMPHIDINIUM CARTERAE .................................................................................................... 59 
3.4.3.1 IMMUNOGOLD LABELING WITH Α-PSBO IN AMPHIDINIUM CARTERAE CELLS TREATED WITH 

BREFELDIN A ................................................................................................................................................... 61 
3.4.3.2 IMMUNOGOLD LABELING WITH Α-RBCL IN AMPHIDINIUM CARTERAE CELLS TREATED WITH 

BREFELDIN A ................................................................................................................................................... 63 

4 DISCUSSION ............................................................................................................................................ 66 



    

 
4.1 CERATIUM HORRIDUM EST LIBRARY ..................................................................................................... 66 

4.1.1 General Features .......................................................................................................................... 66 
4.1.2 Gene Transfers ............................................................................................................................. 67 
4.1.3 Plastid Targeting Signals ............................................................................................................. 69 

4.2 HETEROLOGOUS IN VIVO IMPORT ASSAYS USING DINOFLAGELLATE TARGETING SIGNALS .................... 72 
4.2.1 In vivo transfection of Pisum sativum with Amphidinium carterae PsbO and Prk Transit Peptides

 73 
4.2.2 Heterologous in vivo Transfections of Phaeodactylum tricornutum ............................................ 74 
4.2.2.1 Heterologous in vivo Transfections of Phaeodactylum tricornutum with Amphidinium 

carterae Signal Peptides ............................................................................................................................. 75 
4.2.2.2 Heterologous in vivo Transfections of Phaeodactylum tricornutum with Amphidinium 

carterae BTSs .............................................................................................................................................. 75 
4.2.3 Implications of in vivo Transfections ............................................................................................ 78 

4.3 BFA-SENSITIVE AND BFA-INSENSITIVE PROTEIN TRANSPORT IN AMPHIDINIUM CARTERAE .................. 79 
4.4 CONCLUSIONS ......................................................................................................................................... 83 

5 SUMMARY AND OUTLOOK ................................................................................................................ 88 

6 MATERIALS AND METHODS ............................................................................................................. 89 

6.1 MATERIALS ............................................................................................................................................. 89 
6.1.1 Instruments ................................................................................................................................... 89 
6.1.2 Chemicals ..................................................................................................................................... 90 
6.1.3 Antibodies ..................................................................................................................................... 95 
6.1.4 Culture media ............................................................................................................................... 95 

6.2 METHODS ............................................................................................................................................... 98 
6.2.1 Culture Conditions ....................................................................................................................... 98 
6.2.2 Culturing and Preparation of Chemical Competent Top10TM E. coli ......................................... 98 
6.2.3 Sequencing of DNA ....................................................................................................................... 99 
6.2.4 Amplification of Reverse Transcripts and Rapid Amplification of cDNA Ends (RACE) Products

 99 
6.2.5 Acquisition of the C. horridum psbO Sequence with RACE ....................................................... 100 
6.2.6 EST Database ............................................................................................................................. 100 
6.2.7 Acquisition of A. carterae cDNA Sequences ............................................................................... 100 
6.2.8 BLAST Analysis using a Local Database.................................................................................... 101 
6.2.9 Horizontal Gene Transfer Phylogenetic Analyses ...................................................................... 101 
6.2.10 In silico Transit Peptide Analyses .......................................................................................... 102 
6.2.11 Transient Transfection of Pisum sativum Leaves ................................................................... 103 
6.2.12 Stable Transfection of Phaeodactylum tricornutum............................................................... 104 

6.3 PROTEIN STUDIES ................................................................................................................................. 105 
6.3.1 Brefeldin A Radioactive Labeling of Amphidinium carterae Proteins ....................................... 105 
6.3.2 Cell lysis (repeated 3 times): ...................................................................................................... 106 
6.3.3 Semidiscontinuous Sucrose Gradient ......................................................................................... 106 
6.3.4 Fraction Preparation for Immunoprecipitation (IP): ................................................................. 107 
6.3.5 Sepharose A Bead Preparation and Immunoprecipitation ......................................................... 108 
6.3.6 Semi-Dry Western Blot ............................................................................................................... 108 
6.3.7 Immunodetection of Proteins ...................................................................................................... 108 
6.3.8 Stripping Western Blots .............................................................................................................. 109 

6.4 ELECTRON MICROSCOPY ...................................................................................................................... 110 
6.4.1 Freeze Substitution ..................................................................................................................... 110 
6.4.2 Immunogold Labeling ................................................................................................................. 110 

7 APPENDIX .............................................................................................................................................. 112 

7.1 MICROSOFT EXCEL MACRO .................................................................................................................. 112 
7.3 HETEROLOGOUS TRANSFECTION OF PISUM SATIVUM WITH EGFP FUSED N-TERMINALLY TO TRUNCATED 

TPS FROM CERATIUM HORRIDUM PSBO AND PRK N-TERMINAL EXTENSIONS. ............................................... 114 
7.4 1:50 Α-PSBO IMMUNOGOLD LABELING OF UNTREATED AMPHIDINIUM CARTERAE CELLS FIXED VIA 

FREEZE SUBSTITUTION. .................................................................................................................................. 115 



    

 
7.5 1:50 Α-PSBO IMMUNOGOLD LABELING OF AMPHIDINIUM CARTERAE CELLS TREATED WITH 2.5 µG 

BFA/ML AND FIXED VIA FREEZE SUBSTITUTION. .......................................................................................... 116 
7.6 1:2200 Α-RBCL IMMUNOGOLD LABELING OF AMPHIDINIUM CARTERAE UNTREATED CELLS FIXED VIA 

FREEZE SUBSTITUTION. .................................................................................................................................. 117 
7.7 1:2200 Α-RBCL IMMUNOGOLD LABELING OF AMPHIDINIUM CARTERAE CELLS TREATED WITH 2.5 µG 

BFA/ML AND FIXED VIA FREEZE SUBSTITUTION. .......................................................................................... 118 

8 REFERENCES ........................................................................................................................................ 119 

9 ACKNOWLEDGEMENTS.................................................................................................................... 134 

10 CURRICULUM VITAE ......................................................................................................................... 135 

11 ERKLÄRUNG ........................................................................................................................................ 136 

 



Abbreviations and Units   

   

 iv 

Abbreviations: 

 

α anti 

BFA Brefeldin A 

BLAST  Basic local alignment search tool 

Bp  Base pairs 

BTS  Bipartite topogenic signal 

cDNA Complimentary DNA 

cER  Chloroplast ER 

CLSM  Confocal Laser Scanning Microscope 

ddH20  Wasser, demineralized & distilled  

DIC  Differential interference contrast 

Der  Degradation at the ER 

DMSO Dimethylsulfoxide 

DNA  Desoxyribonucleinc acid 

eGFP  Enhanced green fluorescence protein 

EDTA  Ethylenediaminetetraacetic acid 

EGT Endosymbiontic Gene Transfer 

EM Electron Microscope 

ER  Endoplasmatic Reticulum 

ERAD  ER-associated degradation 

EST Expressed SequenceTag 

Gya Giga (billion) years ago 

hr  Hour(s) 

HRP  Horse radish peroxidase 

HGT Horizontal Gene Transfer 

HSP Heat Shock Protein 

IMS  IMS 

IP Immunoprecipitation 

IPTG  Isopropyl-β-D-Thiogalactoside 

kB kilobase pairs 

kDa  Kilo Dalton 

min  Minutes 

MB Megabase 

ML Maximum Likelihood 

Mya Million years ago 

NCBI National Center for Biotechnology Information 

NJ Neighbor Joining 

Nm  Nucleomorph 

Omp85 85 kDa Outer (bacterial) Membrane Protein 

PAGE  Polyacrylamide Gel Electrophoresis 

PBS  Phosphat bufferd saline 

PIC  Proteinase Inhibitor Cocktail 

PPC  Periplastidial Compartment 

PPM  Periplastidial Membrane 

Prk Phosphoribulokinase 

PsbD  Photosystem II Subunit D2 

PsbO Photosystem II Oxygen Evolving Enzyme 

RACE Rapid Amplification of cDNA Ends 

RbcL Rubisco, Large Subunit 

RNA  Ribonucleic Acid 

RT  Reverse Transcriptase 

Rubisco Ribulose-1,5-bisphosphate carboxylase 

oxygenase 

SD Standard Deviation 

SELMA Symbiont-specific ERAD-like machinery 

SL Spliced leader 

SP  Signal Peptide 

STD Stop-transfer Domain 

TP Transit Peptide 

TBS  Tris buffered saline 

TCA  Trichloracetic Acid  

TIC Translocator of Inner Chloroplast membrane 

TL Thylakoid Lumen 

TMHMM Transmembrane helix prediction program 

TOC Translocator of Outer Chloroplast membrane 

TTD Thylakoid Targeting Domain 

TTS Tripartite Targeting Signal 

WGA Wheat Germ Agglutin



Index of Tables and Figures   

 

  

 v 

Index of Figures 

Fig. 1. A Schematic Depiction of Evolution and Protein Transport involved with Primary Endosymbiosis 4 

Fig. 2. A Schematic Depiction of the Evolution of Alveolates and Chromists as per the  

Chromalveolate Hypothesis 6 

Fig. 3. Summary of Plastid Exchanges leading to Complex Plastids as per Modern Molecular Data 7 

Fig. 4. A Schematic Depiction of Protein Transport in Chromists 10 

Fig. 5. A Schematic Depiction of Protein Transport in Apicomplexa 13 

Fig. 6. General Morphological Features of Dinoflagellates 15 

Fig. 7. Schematic Depiction of Class I, II, and III Proteins and Vesicle-Mediated Plastid Protein  

Transport in Dinoflagellates and Euglenophytes 22 

Fig. 8. Differential Interference Light Microscope Image of Ceratium horridum  23 

Fig. 9. Differential Interference Light Microscope of Amphidinium carterae 24 

Fig. 10. Exemplary ClustalX Protein Alignment of ESTs GT59_E7.u and GT61_H9.u 27 

Fig. 11. Comparison of Ceratium horridum EST Contig Homologies to Total Dinoflagellate EST  

Homologies using Local BLAST 28 

Fig. 12. Phylogenetic Relationship of 4 Ceratium horridum Unigenes 30 

Fig. 13. Functional Distribution of Sequenced C. horridum ESTs 32 

Fig. 14. Weblogo of 12 Amino Acids Preceding SignalP Predicted Signal Peptidase Cleavage Site 33 

Fig. 15. Exemplary ClusalX Alignments of High Relative Amino Acid Exchanges in the BTS  

Region of Varying Plastid Protein Isoforms 36 

Fig. 16. Weblogo of Transit Peptides from Ceratium horridum, Total Dinoflagellate, Plants and Diatoms 37 

Fig. 17. Difference between Ceratium horridum Transit Peptides and those of Peridinin Dinoflagellates,  

Diatoms, and Plants   39 

Fig. 18. General Trend in Charge Separation in Ceratium horridum Transit Peptides. 40 

Fig. 19. Web Logo of Occurrence of Charged Amino Acids at Discrete Positions in Transit Peptides 42 

Fig. 20. Schematic Deptiction of PsbO and Prk Sequence Demarcation and Transport 43 

Fig. 21. Initial Transfections of Plants using the pAVA393 Vector 44 

Fig. 22. Topogenic Signals Employed for in vivo Transfection Experiments in Pisum sativum and Construct  

Amino Acid Composition Compared to Plant TP Composition 45 

Fig. 23. Heterologous Transfection of Pisum sativum with eGFP Fused N-terminally to Full-Length and  

Truncated TPs from  Amphidinium carterae PsbO and Prk N-terminal Extensions 46 



Index of Tables and Figures   

 

  

 vi 

Fig. 24. Heterologous Transfection of Pisum sativum with eGFP Fused to Full-lenth Transit Peptides  

from Chromists 47 

Fig. 25. Signal Peptides used for eGFP Constructs for Transfections of Phaeodactylum tricornutum  

from Amphidinium carterae and Phaeodactylum tricornutum 48 

Fig. 26. Transfection of Phaeodactylum tricornutum with eGFP fused to Signal Peptides from  

A. carterae and P. tricornutum  49 

Fig. 27. Schematic Depiction of Amphidinium carterae TTS and BTS from PsbO and Prk used as  

Topogenic Signals for eGFP Import Assays in the Diatom Phaeodactylum tricornutum 50 

Fig. 28. Heterologous Transfection of Phaeodactylum tricornutum with eGFP Fused to C-terminally Truncated  

Topogenic Signals from Amphidinium carterae PsbO and Prk 51 

Fig. 29. Empirical Evaluation of Maximal 35S-Uptake and Incorporation into Amphidinium carterae Protein 52 

Fig. 30. Sucrose Gradient and Fraction Compartment/Organelle Detection of Fractionated Amphidinium  

carterae cells 53 

Fig. 31. ImageJ Quantification of Western Blot Relative Autoradiogram Signal Intensities of 35S-Labelled  

Immunoprecipitated Proteins from Sucrose Gradient Fractionation of Amphidinium carterae 54 

Fig. 32. Relative Autoradiogram Signal Intensities from Immunoprecipitated Proteins from 35S-Labeled  

Amphidinium carterae Cells (BFA Untreated) 55 

Fig. 33. Effect of Brefeldin A on the Location of ER in Sucrose Gradients  56 

Fig. 34. Effect of Brefeldin A on the Location of Golgi Apparatus in Sucrose Gradients 57 

Fig. 35. Relative Autoradiogram Signal Intensities from Immunoprecipitated Proteins from 35S-Labeled  

Amphidinium carterae Cells treated with 7.5 µg BFA/mL 57 

Fig. 36. Relative Autoradiogram Signal Intensities from Immunoprecipitated Proteins from 35S-Labeled  

Amphidinium carterae Cells treated with 5 µg BFA/mL 58 

Fig. 37. Relative Autoradiogram Signal Intensities from Immunoprecipitated Proteins from 35S-Labeled  

Amphidinium carterae Cells treated with 2.5 µg BFA/mL 59 

Fig. 38. Osmium Tetraoxide Contrasted Electron Micrographs of Amphidinium carterae Cells  

(un)treated with 2.5 µg BFA/mL and Fixed via Freeze Substitution 60 

Fig. 39. α-PsbO Immunogold Labeling of Amphidinium carterae Untreated Cells Fixed via Freeze  

Substitution  62 

Fig. 40. α-PsbO Immunogold Labeling of Amphidinium carterae Cells Treated with 2.5 µg BFA/mL  

and Fixed via Freeze Substitution  63 

Fig. 41. α-RbcL Immunogold Labeling of Untreated Amphidinium carterae Fixed via Freeze Substitution  64 

Fig. 42. α-RbcL Immunogold Labeling of Amphidinium carterae Cells Treated with 2.5 µg BFA/mL  

and Fixed via Freeze Substitution 65 



Index of Tables and Figures   

 

  

 vii 

Fig. 43. Signal Peptide Peptidase Cleavage Site in Dinoflagellate BTS as per SignalP 70 

Fig. 44. Model of Dinoflagellate Protein Transport to the Plastids via the Endomembrane System 82 

Fig. 45. Possible Cytosolic and Non-Cytosolic Identities of Intermembrane Compartments in the  

Dinoflagellate Plastid 84 

Fig. 46. Pipetting Scheme for Sucrose Fractionation 107 

 

Index of Supplementary Figures 

Standard deviations (SD) Relative Amino Acid Abundances in Plant and Diatom TPs.   112 

Heterologous Transfection of Pisum sativum with eGFP Fused N-terminally to Truncated TPs from  

Ceratium horridum PsbO and Prk N-terminal Extensions. 114 

1:50 α-PsbO Immunogold Labeling of Untreated Amphidinium carterae Cells Fixed via Freeze Substitution.  115 

1:50 α-PsbO Immunogold Labeling of Amphidinium carterae Cells treated with 2.5 µg BFA/mL and Fixed   

via Freeze Substitution.  116 

1:2200 α-RbcL Immunogold Labeling of Amphidinium carterae Untreated Cells Fixed via Freeze  

Substitution.  117 

1:2200 α-RbcL Immunogold Labeling of Amphidinium carterae Cells treated with 2.5 µg BFA/mL and  

Fixed via Freeze Substitution.  118 

Microsoft Excel Macro. 112 

 

Index of Tables 

Table 1. Ceratium horridum ESTs encoding Proteins involved in Protein Transport and Vesicle Formation. 31 

Table 2. Homologies for 29 of 34 Plastid-Targeted Unigenes. 34 

Table 3. Amino Acid Compositions of Plastid Protein Transit Peptides from 34 Ceratium horridum,  

184 Peridinin Dinoflagellate, 123 Diatom, and 134 Plant Sequences. 38 

Table 4. Charged Amino Acids in the First and Second Halves of Dinoflagellate, Diatom,  

and Plant Transit Peptides.  41 

Table 5. Hydroxylated Amino Acids Content of Transit Peptides in Plastid-Containing Organisms.  71 

 



Abstract   

 

  

 viii 

Abstract 

 

Expressed Sequence Tag (EST) data from Ceratium horridum generated and analyzed 

in this thesis conform to the general parameters of dinoflagellate EST libraries. Comparison 

with diatom and plant transit peptides, revealed that transit peptides from peridinin-

containing dinoflagellate conform to general trends for transit peptides but are relatively 

deficient in hydroxylated amino acids, have a slight net positive charge, and contain N-

terminal basic amino acids among the most N-terminal amino acids. Like transit peptides in 

the alveolate Plasmodium falciparum, dinoflagellate transit peptides contain positively 

charged amino acids, have a depleted acidic residue content, and mostly contain one or more 

chaperone binding sites. The feature of dinoflagellate transit peptides that has gone unnoticed 

heretofore is the low overall positive charge, in addition to the significant division of charge 

between C- and N-termini.  

Despite its overwhelming prominence in dinoflagellate transit peptides, C-terminal 

negative charge clearly had no impact on the import competence of Amphidinium carterae 

targeting signals in heterologous in vivo systems. Based on results from transfections of 

Pisum sativum and Phaeodactylum tricornutum, targeting mediated by transit peptides is not 

merely dependent on net positive charge, N-terminal positive charge, or amino acid content. 

Therefore, it was concluded that plastid transport into plant and diatom plastids also 

depended on sequence-specific patterns or motifs that are not present and/or not identical to 

those in dinoflagellate transit peptides. Based on the partial interchangeability of topogenic 

signals between an alveolate and a chromist but not between an alveolate and a plant – 

despite high homologies in mature protein sequences – it was deduced that plastid targeting 

signals evolve more expediently than the mature protein domains that they intracellularly 

target. 

Analysis of the homologous intracompartmental transport of three Amphidinium 

carterae plastid proteins showed that differing transport routes exist for plastid proteins. 

While PsbO and Prk are transported by a Golgi-mediated route to the plastid, RbcL is 

transported directly from the ER to the plastids. In conclusion, a previously undescribed, 

possibly protein class-dependent, ER-mediated route seems to exist. 
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Zusammenfassung 

 

Die in dieser Arbeit generierten und analysierten Expressed Sequence Tag (EST) 

Daten von Ceratium horridum entsprechen in vielen Hinsichten den allgemeinen Kriterien 

verglichen mit bekannten ESTs aus anderen Dinoflagellaten. Ein Vergleich von 

Transitpeptiden aus Dinoflagellaten mit Transitpeptiden aus Diatomeen und Pflanzen zeigte 

ein vergleichsweise geringeres Vorkommen hydroxylierter Aminosäuren, eine geringere 

positive Gesamtladung und ein vermehrtes Vorkommen basischer Aminosäuren am N-

Terminus. Ähnlich zu den Transitpeptiden des Alveolaten Plasmodium falciparum, sind 

Transitpeptide aus Dinoflagellaten insgesamt positiv geladen, verarmt an sauren 

Aminosäuren und beinhalten zu größten Teilen eine Chaperonbindestelle. Die niedrige 

positive Gesamtladung der Transitpeptide aus Dinoflagellaten sowie eine signifikante 

Trennung dieser Ladung in eine negative C-terminale Hälfte und positive N-terminale Hälfte 

konnten als neue Besonderheiten identifiziert werden.  

Trotz des häufigen Vorkommens der negativen C-terminalen Ladung, hatte dieses 

Merkmal keine eindeutige Wirkung auf die Importkompetenz der topogenen Signale von 

Amphidinium carterae in heterologen in vivo Systemen. Basierend auf den Ergebnissen von 

Transfektionen in Pisum sativum und Phaeodactylum tricornutum, hängt die Information 

eines Transitpeptids weder von der positiven Gesamtladung, noch von der N-terminalen 

positiven Ladung oder der Aminosäurenzusammensetzung ab. Proteinimport in Plastiden von 

Diatomeen und Pflanzen scheint folglich von bislang unidentifizierten sequenzspezifischen 

Mustern oder Motifen abhängig zu sein. Eine partielle Austauschbarkeit von topogenen 

Signalen zwischen einem Dinoflagellaten und einem Chromisten ist trotz hoher Homologien 

der maturen Proteinsequenzen nicht auf Alveolaten und Pflanzen übertragbar. Somit 

scheinen Zielsteuerungssequenzen schneller zu evolvieren als die maturen Proteindomänen. 

Die Untersuchung des homologen intrakompartimentalen Transports dreier 

plastidärer Proteine in Amphidinium carterae zeigte Unterschiede in Bezug auf den 

Transportweg. Während die Proteine PsbO und Prk über einen Golgi-vermittelten Transport 

in die Plastide gelangen, scheint RbcL dieses Kompartiment zu umgehen und direkt über das 

ER in die Plastiden zu gelangen. Daher ist davon auszugehen, daß ein für Dinoflagellaten 

bislang unbekannter, möglicherweise proteinklassenabhängiger Transportweg existiert. 

 



Introduction   

 

    1 

1 INTRODUCTION 
 

1.1 The Evolution of Photosynthetic Eukaryotes 

 

1.1.1 Primary Endosymbiosis 

 

Approximately 5 billion years ago, adverse conditions prevailed upon the surface of 

the earth. Upon the advent of ambient temperatures and liquid oceans, life was cultivated 

from a sea of complex organic compounds over the course of billions of years and is thought 

to have originally been similar to modern archaean chemolithotrophs (Cavalier-Smith 2002; 

Yoon et al. 2004). From these humble beginnings, photosynthetic bacteria are thought to 

have developed oxygenic photosynthesis about 3.8 billion years ago (Gya) (Buick 2008). 

According to the fossil record, cyanobacteria-like organisms then came into existence about 

3.5 Gya (Schopf 1993). By about 2.45 Gya, heterocyst forming cyanobacteria had 

unambiguously come into existence and had given rise to atmospheric oxygen around 2.3 

Gya (Falcon et al. 2010). It was this set of photosynthetic bacteria that brought about the 

oxygen-containing atmosphere that supplied the environmental conditions for aerobic 

respiration to come into existence. 

Eukaryotes came into existence at least 1.45 Gya and had the aptitude to feed on 

chemolithotrophs, heterotrophs, and autophototrophs (Embley and Martin 2006). It was this 

advent of phagotrophy, the feeding of organisms upon one another by engulfment, which 

became a hallmark of eukaryotes, and the progenitor of all eukaryotes may have been the 

result of a symbiotic event between a eubacterial and an archaean cell (Embley and Martin 

2006; Margulis 1996). If this was the case, then host genes would have migrated into the 

symbiont, thus becoming the cell nucleus, and the membranes of the symbiont eventually 

became the nuclear envelope and ER, while the phagotrophic membrane was presumably lost 

(de Duve 2007; Yutin et al. 2009). Hence, the defining fundamental features of the existence 

of eukaryotes could very well have been premised by the capacity to phagocytize and engage 

endosymbiotic gene transfer (EGT).  
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Eukaryotic uptake of an aerobic heterotrophic prokaryote to respire with oxygen was 

probably prefaced by the increasingly aerobic environment on Earth (de Duve 2007), which 

had become increasingly prevalent in the atmosphere and oceans due to oxygenic 

photosynthesis from cyanobacteria (Archibald 2009). The internalized alpha-proteobacterium 

was reduced to the organellar mitochondrion and aerobic respiration generally became its 

primary function. As a result of this endosymbiosis, the three membranes (eukaryotic 

phagosomal membrane, inner/outer bacterial membranes) containing the cytosol of the 

bacteria were reduced to two during the course of evolution, presumably by the loss of the 

phagotrophic vacuole (Cavalier-Smith 2006; Gross and Bhattacharya 2009).  

Reductive evolution of the proteobacterial genome then continued, consolidating it to 

the functions now associated with modern mitochondria, namely: aerobic ATP production 

coupled to electron transport, assembly of iron-sulfur clusters, and translation of 

mitochondrial proteins (Gray et al. 2001; Lill and Muhlenhoff 2008). This streamlining of the 

genome is attributed to mitochondrion-to-nucleus gene transfer, which can leave as few as 3 

genes remaining in the mitochondrial genome, e.g. in dinoflagellates (Slamovits et al. 2007). 

On the other hand, some prokaryotic proteins were apparently substituted by 

phylogenetically unrelated proteins encoded on the eukaryotic nuclear genome and import 

post-translationally (Gray et al. 2001).  

After the acquisition of mitochondrion, the stage was set for another primary 

endosymbiosis: a mitochondrion-containing heterotrophic eukaryote incorporated an 

intracellular cyanobacterium into its corpus, thus obtaining the ability to synthesize many of 

its own organic compounds (e.g., amino acids, heme, fatty acids) and energy 

photoautotophically without having to resort to phagocytosis (Bodyl et al. 2009a; Yoon et al. 

2004). This process of acquiring primary plastids is thought to have occurred for the first 

time about 1.332 Gya (Falcon et al. 2010) and is generally considered to be a monophyletic 

event (Embley and Martin 2006) except in the opisthokont lineage of Paulinella, which 

acquired its primary endosymbiont about 60 million years ago (Mya) (Yoon et al. 2009). 

The initial phagocytized cyanobacterium-like cell was thus transformed from an 

autonomous cell, as first observed by Konstantin Mereschkowsky (Mereschkowsky 1905). 

Like in the case of the mitochondrion, a chimera formed from the initial endosymbiotic 

event. The cyanobacteria-like cell was originally encased in a eukaryotic phagosomal 
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membrane and was gradually transformed into a selectively permeable organelle surrounded 

by two membranes (Bodyl et al. 2009a).  

Again like the mitochondrion, the transformation of the chimera involved massive 

genome reorganization by gene shuffling, elimination, and relocation to the nucleus, leading 

to genomic reduction of the endosymbiont. The majority of its coding capacity waned either 

via gene loss or transfer of genetic material into the nuclear genome (Bolte, Bullmann et al. 

2009). In modern plants, over 90% of cyanobacterial genes were relocated to the nucleus and 

not only encode 98% of plastid proteins but also constitute 20% of the genes in the nuclear 

genome (Martin et al. 2002; Strittmatter et al. 2010). The enslaved phototroph became an 

obligate symbiont when genes were transferred from its genome to the host’s chromosomes 

(Stoebe and Maier 2002), thus sustaining the trend that probably started upon the very 

inception of eukaryotes and continued with the genomic reduction of mitochondria. 

After the monophyletic progenitor of modern photosynthetic eukaryotes established 

the chloroplast as an intracellular organelle, speciation occurred. A broad array of the 

progenitor’s descendants constitutes the group of archaeplastida and came to colonize 

terrestrial and aquatic habitats from the equator to the poles. Members of archaeplastida are 

divided into three phyla: the rhodophytes, the glaucophytes, and the chlorophytes (Adl et al. 

2005; Cavalier-Smith 1998; Reyes-Prieto et al. 2008; Stoebe and Maier 2002; Weber et al. 

2006). Despite their diversity, oceanic phytoplankton primarily consisted of cyanobacteria 

and green algae that were only slightly larger than bacteria until 190 Mya, according to the 

fossil record (Falkowski et al. 2004). 

 

1.1.2 Protein Targeting to Primary Plastids 

 

Gene products with a plastid function and encoded by relocated genes must 

necessarily be redirected back to the primary plastid. Targeting to the plastid has however 

changed since the establishment of the photosynthetic chimera, and multiple models exist to 

explain how protein translocation into primary plastids evolved into being almost exclusively 

mediated by translocators of the chloroplast envelope (Bodyl et al. 2009a; Cavalier-Smith 

2003; Steiner and Loffelhardt 2002). The perhaps most accepted theory of the evolution of 

plastid protein import dictates that the transport systems for proteins and compounds evolved 
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from pre-existing cyanobacterial transport systems (Weber et al. 2006). The chloroplast is 

contained by two envelope membranes, which are orthologous to the outer and inner 

cyanobacterial membranes, whereby the phagosomal membrane is thought to have been 

eliminated early on in evolution (Cavalier-Smith 1987b). 

 

Figure 1. A Schematic Depiction of Evolution and Protein Transport involved with 

Primary Endosymbiosis. Above: A phagotrophic eukaryote ingested a cyanobacterium some 1.3 

Gya, resulting in the three lineages shown: glaucophytes, rhodophytes, and chlorophytes (left to 

right). Below: Depiction of protein transport in each lineage. Cytosolic ribosomes synthesize proteins, 

which are transported across the two plastid envelope membranes by way of Omp85-related/TOC and 

TIC machinery. 

 

Posttranslational protein targeting to and import into the plastid involves cytosolic 

heat shock proteins (Hsp70) that interact with unfolded preproteins. The Hsp70 then interacts 

with the Translocator of the outer chloroplast membrane (TOC) complex, in order to mediate 

transport across the first plastid membrane. The channel protein of Toc is thought to be an 
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ortholog of a cyanobacterial Omp85 protein (Weber et al. 2006). Cytosolic components of 

Toc recognize the plastid-targeting N-terminal extension of the preprotein, which is then 

delegated across the inner envelope membrane by the Translocator of the inner chloroplast 

membrane (TIC) complex.  

Translocator-mediated transport is not the exclusive means of import into plant and 

green algal chloroplasts, as the endomembrane system has been shown to play a role in the 

import of proteins into the plastid stroma (Jarvis 2008). Furthermore, a number of proteins 

have been shown to have Golgi-to-plastid plastid targeting mediated in a signal–dependent 

manner (Hummel et al. 2010; Kitajima et al. 2009). A vesicle transport system to primary 

plastids is thus thought to exist for some proteins. 

 

1.2 Secondary Endosymbiosis and the Chromalveolate Hypothesis 

 

Phagotrophic eukaryotes fed not only on bacteria but also consumed fellow 

eukaryotes – including those with enslaved primary plastids. In a process analogous to 

primary endosymbiosis, phagocytic eukaryotes were able to enslave eukaryotes containing a 

primary symbiont. Multiple secondary endosymbioses are thought to have occurred about 1 

to 1.5 Gya (Archibald 2009; Falkowski et al. 2004; Yoon et al. 2004). The currently 

predominant albeit controversial hypothesis suggests that three main lineages arose: the 

chromalveolates, the euglenoids and chlorarachniophytes, each which resulted from a 

monophyletic secondary endosymbiosis: of a red alga and of green algae, respectively 

(Cavalier-Smith 1999; Delwiche 1999; Keeling 2004; Rogers et al. 2007).  

The chromalveolate hypothesis suggests that there was a single secondary 

endosymbiosis of an engulfed red alga by the putative common ancestor of chromists and 

alveolates (Cavalier-Smith 1999). This postulate stipulates that secondary plastid 

endosymbiosis involves a complex series of evolutionary events that is most easily 

reconciled with a single origin of the chromalveolate plastids (Cavalier-Smith 2002). 

Molecular data from plastid-encoded and plastid-targeted proteins, targeting systems, and 

targeting information have generally bolstered the idea that the successful establishment of a 

secondary endosymbiont is so complex that multiple recurrences of secondary endosymbiosis 

were restricted (Archibald 2009; Keeling 2009). 



Introduction   

 

    6 

Although this monophyletic origin of chromists and alveolates conveniently and 

parsimoniously clarifies both morphological data and the diversity of eukaryotes with 

secondary endosymbionts, the origins of secondary plastids may actually be more complex. 

Recent data from molecular, biochemical, genomic and phylogenomic methods have come to 

light that seemingly contradict the chromalveolate hypothesis. Two of the most important 

observations are that red lineage complex plastids have been spread laterally between 

distantly related groups of eukaryotes on multiple occasions and that green lineage genes 

have been found in diatoms and alveolates currently harboring red algal symbionts 

(Archibald 2009; Elias and Archibald 2009; Funes et al. 2002; Harper et al. 2009; Moustafa 

et al. 2009; Petersen et al. 2006; Stelter et al. 2007; Waller et al. 2006a), as depicted in figure 

3. 

 

Figure 2. A Schematic Depiction of the Evolution of Alveolates and Chromists as per the 

Chromalveolate Hypothesis. A heterotrophic eukaryote phagocytized a red alga and split into two 

lineages of chromalveolates: Alveolates (left) and Chromists (right).  

 

Current data thus implicate eukaryotic hosts as indeed being capable of obtaining new 

endosymbionts and disposing of the old ones, seemingly weakening the theory of a 
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monophyletic origin of secondary endosymbionts for the red lineage – the main tenet of the 

chromalveolate hypothesis (Bodyl et al. 2009b). The clout of the chromalveolate hypothesis 

has also been diminished by highly unstable relationships among heterokont, haptophyte, and 

peridinin-containing dinoflagellate plastids in phylogenetic analyses using nuclear host genes 

and plastid genes (Baurain et al. 2010; Sanchez Puerta and Delwiche 2008). It has even been 

suggested that the endosymbionts in chromalveolates are in fact tertiary endosymbionts that 

arose perhaps on multiple occasions from the engulfment and reduction of hacrobians by 

alveolates and stramenopiles (Archibald 2009; Elias and Archibald 2009; Okamoto et al. 

2009), as seen in figure 3.  

 

 

Figure 3. Summary of Plastid Exchanges leading to Complex Plastids as per Modern 

Molecular Data (modified from Elias and Archibald, 2009). The Chromalveolate theory has come 

under fire due to such incongruencies in molecular data as those shown here. Dashed lines: 

uncertainties in timing and/or directionality of secondary (2°) or tertiary (3°) endosymbiotic events. 

Grey boxes: presence of non-photosynthetic plastid. Dinoflagellates can contain both green and red 

tertiary plastids. 

 

Nonetheless, alveolates and chromists are indubidibly sister groups of photosynthetic 

eukaryotes that often branch together closely in phylogenetic analyses (Bachvaroff et al. 

2005; Cavalier-Smith 1999). Moreover, heterokonts and alveolates have been repeatedly 

documented to be sister groups in multiple phylogenic studies with differing data sets (Fast et 

al. 2002; Harper et al. 2005; Janouskovec et al. 2010; Van de Peer and De Wachter 1997). 

What’s more, phylogenetic studies using genes from the host nuclear genomes shows that 
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alveolates, heterokonts, and members of the supergroup Rhizaria group together (to form the 

SAR supergroup) (Archibald 2009). The latter clade consists mainly of parasitic or free-

living unicellular eukaryotes, thus implicating chromalveolate endosymbiosis involved 

multiple host organisms from the Rhizaria lineage (Burki et al. 2007, Hackett et al. 2007, Not 

et al. 2007). 

 

1.3 Consequences of Harboring Eukaryotic Endosymbionts 

 

1.3.1 Genomic Reorganization 

 

Upon the transition of the enslaved chromalveolate endosymbiont into an obligate 

symbiont, gene transfer occurred from endosymbiont’s genomes to the host’s chromosomes, 

as occurred after the incorporation of primary plastids (Elias and Archibald 2009; Stoebe and 

Maier 2002). In the cases of the cryptophytes and chlorachniophytes, some genes were not 

transferred from the eukaryotic endosymbiont’s nucleus to the host nucleus, resulting in the 

smallest eukaryotic genomes in existence, i.e. the nucleomorph (Archibald and Lane 2009). 

Phylogenetic analyses of the sequence from the Guillardia theta nucleomorph’s three 

chromosomes resulted in a clear association of the sequence with red algal homologs 

(Douglas et al. 2001). The nucleomorph is located in the remnant cytoplasm of the symbiont, 

termed the periplastidial compartment (PPC), which is located between the outer and inner 

pairs of membranes in the secondary plastid (Bolte et al. 2009).  

As in primary plastids, most of the proteome of complex plastids is encoded by the 

host's genome (Armbrust et al. 2004; Douglas et al. 2001; Gilson et al. 2006; Rogers et al. 

2007). Whereas extensive genomic reduction occurred during the confluence of host and 

endosymbiont, the number of membranes surrounding the complex plastid was not reduced 

to the extent found in primary plastids, as three or four membranes still surround complex 

plastids (with the exception of tertiary endosymbionts). Thus, hundreds of proteins encoded 

by the host’s nuclear genome that are necessary for essential plastid functions must cross 

either three or four membranes to reach the plastid stroma. 
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1.3.2 Protein Transport into Chromist Plastids 

 

The chromist plastid came to be fully encased in the endoplasmic reticulum lumen, 

i.e. the chloroplast ER (cER), which is continuous with the rest of the endoplasmic reticulum 

(Gibbs 1979). Reduction of the secondary endosymbiont, however, contrasts from the 

reduction of a primary endosymbiont inasmuch as symbiontic eukaryote membranes, cytosol, 

and nucleus persisted in some cases, thus necessitating a complex targeting strategy for 

proteins encoded by relocated, now nucleus-encoded genes.  

Like for primary plastids, gene transfer to the host nucleus in secondary 

endosymbiosis implicates a mechanism for redirecting plastid proteins back into the 

organelle, and a coevolution of plastid-specific topogenic signals and transport/translocation 

machineries for directing proteins into the plastid (Cavalier-Smith 2003; Steiner and 

Loffelhardt 2002). In organisms with primary endosymbionts, nucleus-encoded proteins with 

plastid destinations require an N-terminal targeting signal, the transit peptide (TP). A number 

of theories exist as to how these N-terminal topogenic signals came into existence, ranging 

frame-shifts in tandem duplicated genes (Ueda et al. 2006) to random mutational acquisition 

(Cavalier-Smith 2003) to spliceosomal introns (Kilian and Kroth 2004) to exon shuffling and 

recruitment of random coding and non-coding sequences (Tonkin et al. 2008a).  

Plastid-targeted proteins encoded by nuclear genes in algae with complex plastids 

require an additional layer of intricacy for targeting that reflects their evolutionary history 

and complex cell biology. To accommodate for differences in the number of plastid 

membranes, nucleus-encoded TPs of plastid-targeted proteins acquired a signal peptide (SP) 

to direct them via the host cell’s endomembrane system. In chromists and apicomplexa, 

plastid protein TPs acquired the capacity to direct proteins across an additional membrane 

than in primary plastids, namely the second outmost plastid membrane, i.e. the former 

plasma membrane of the eukaryotic endosymbiont. The resultant bipartite targeting signal 

(BTS) is composed of a signal and a transit peptide, which consist of specific amino acid 

sequences for ensuring reliable transport. These are cleaved from the N-terminus by an ER 

and a plastid protease, respectively (Bolte et al. 2009).  

Recently, a translocator complex of chromist plastids has been identified. This former 

ER-associated degradation (ERAD) complex originally had a function in the protein quality 

control of the red algal symbiont and is thus called the Symbiont-specific ERAD-Like 
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Machinery (SELMA) (Hempel et al. 2009). The SELMA complex now translocates proteins 

from the ER lumen into the remnant symbiontic cytosol (Periplastidial Compartment or 

PPC), whence proteins can be translocated across the two inner plastid membranes via 

cyanobacterial translocators analogous to TOC and TIC (Bullmann et al. 2010; Hempel et al. 

2007; Sommer et al. 2007).  

 

 

Figure 4. A Schematic Depiction of Protein Transport in Chromists (modified from Bolte 

et al. 2009). Heterokonts, haptophytes, and cryptomonads cotranslationally import proteins into the 

ER lumen by having localized their plastids in the ER lumen. 1
st
, 2

nd
, 3

rd
, 4

th
 refer to the plastid four 

membranes. Nm: cryptomonads have a nucleomorph, the vestigial nucleus of the red algal symbiont, 

which still encodes plastid and periplastidial compartment (PPC) proteins. SELMA complex, 

Omp85-related, and TIC translocators have been identified in heterokonts, haptophytes, and 

cryptophytes (Bullmann et al. 2010). 

 

Despite general traits that have been identified and can be used for in silico 

predictions (Bruce 2001; Emanuelsson et al. 1999), the defining qualities of TPs beyond 

primary structure, e.g. amino acid content, remain elusive (Steiner et al. 2005). For the most 

part, TPs are 20 to 100 amino acids long (Bruce 2001) and contain an elevated level of the 

hydroxylated amino acids (Soll and Schleiff 2004), a net positive charge (Patron and Waller 
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2007), and N-terminal basic amino acids (Tonkin et al. 2006a). A feature unique to chromists 

and dinoflagellates is a phenylalanine at position +1 of TPs (Gould et al. 2006b; Patron et al. 

2005). TPs for transport into secondary plastids are thought to adhere to the same general 

trends as TPs for primary plastids (Wastl and Maier 2000), and have not differentiated so 

significantly during the course of evolution as to eliminate compatibility of TPs among 

chromists (Gould et al. 2006b; Gruber et al. 2007), which could be attributed to the use of the 

same ancestral symbiontic machinery, e.g. the SELMA complex and orthologs of TOC and 

TIC.  

 

1.4 Infrakingdom Alveolata 

 

1.4.1 Alveolates as Such 

 

Dinoflagellates, ciliates, apicomplexans, and various other genera were first grouped 

together based on morphological features based upon such criteria as distinct flagella/cilia, 

tubular cristae of their mitochondria, similar chromosome division, and the system of single-

membrane flattened sacs under the plasma membrane, i.e. alveoli (Cavalier-Smith 1987a; 

Cavalier-Smith 1991; Saldarriaga et al. 2004). Molecular phylogeny using DNA sequences 

further bolstered the grouping of these organisms into the infrakingdom of Alveolata 

(Baldauf et al. 2000; Burki et al. 2007; Keeling et al. 2005; Simpson and Roger 2002), which 

is tremendously important clade in regards to its impact on health, the environment, and 

agriculture.  

All three alveolate subgroups contain predatory and parasitic species. Dinoflagellates 

and the genus Chromera however are the only groups of alveolates known to harbor fully-

integrated, photosynthetic plastids. Alveolate plastids are thought to have arisen from a 

common alveolate progenitor plastid, which was probably most reminiscent of a heterokonts 

(Janouskovec et al. 2010). Of all alveolates, only dinoflagellates are both heterotrophic and 

photoautotrophic (Obornik et al. 2009). Ciliates are a diverse group of aquatic heterotrophs 

commonly covered by short cilia that can only harbor photosynthetic symbionts as 

intermittent kleptoplastids (Johnson et al. 2007). Apicomplexans are intracellular parasites 

that contain an extremely reduced plastid, the function of which seems to be limited to the 
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synthesis of fatty acids (Sato and Wilson 2005). Analogous to their highly variable lifestyles 

and morphologies, alveolates contain alveoli that vary quite significantly in shape, function, 

and arrangement. In apicomplexans, alveoli are vital for the parasite’s gliding motility system 

during host cell invasion (Gaskins et al. 2004; Sibley 2004; Soldati et al. 2004). 

Apicomplexan and ciliate alveoli function in movement and interact with cytoskeletal 

elements at the basal bodies of the cilia but differ in their conjunction with complex cortical 

epiplasm comprising ejectile structures known as extrusomes (Rosati and Modeo 2003). 

Apicomplexans and dinoflagellates were originally grouped together in the 

superphylum miozoa and are considered to be more closely related to each other than to 

ciliates (Cavalier-Smith 1987a). Morphological features confirming this are their common 

possession of a plastid and of an anterior cone of microtubules, which is used for host cell 

invasion in apicomplexa and for prey ingestion in heterotrophic dinoflagellates (Saldarriaga 

et al. 2004). Genera like Oxyrrhis, Colponema, Perkinsus, Parvilucifera, Rastrimonas, and 

the Ellobiopsids are phylogentically related to dinoflagellates and apicomplexa and have thus 

also been classified as miozoa (Hoppenrath and Leander 2009; Saldarriaga et al. 2003; 

Slamovits et al. 2007), especially since their flagellates mostly bear an apical structure 

common to miozoa (Saldarriaga et al. 2004).  

 

1.4.2 Protein Transport into Apicomplexan Plastids 

 

In contrast to chromists, which are embedded in the cER, apicomplexan plastids, i.e. 

apicoplasts, lack bound ribosomes on their surfaces, and there is no connection between their 

outermost plastid membrane and the ER (Bolte et al. 2009). The origin of the four 

membranes surrounding the apicoplast is a point of contention, but generally the outermost 

membrane is considered to be a derivative of the endomembrane system, whereas the second 

outermost membrane known as the periplastidial membrane (PPM) is considered to be the 

remnant of the secondary endosymbiont's plasma membrane (Cavalier-Smith 2003). The 

inner two plastid membranes are considered to correspond to the plastid envelope of the 

primary plastid (Gould et al. 2008). 

Like for all complex plastid proteins, nucleus-encoded apicoplast proteins require a 

BTS, which is necessary and sufficient to mediate transport to the plastid and across all four 

apicoplast membranes into its stroma (Waller et al. 1998). Because the apicoplast is not 
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located within the ER, vesicles must be transported to and fuse with the outermost apicoplast 

membrane. In apicomplexans, it has been ascertained that protein transport is neither affected 

by Brefeldin A – a fungal metabolite known to block Golgi-to-ER retrograde transport in 

model eukaryotic systems (Nebenfuhr et al. 2002) – nor Golgi retention signals, meaning that 

protein transport to the plastid is down-stream of the ER and independent of the Golgi 

(DeRocher et al. 2005; Tonkin et al. 2006b). Like in chromists, apicoplast preproteins are 

recognized in the ER lumen as being plastid-destined by means of their TPs, which mediate 

the rest of the transport to the plastid stroma (Tonkin et al. 2008b). By and large, apicoplast 

TPs are similar to general trends of plastid TPs inasmuch as they vary extensively in length 

and are relatively enriched in hydrophilic and basic amino acids (Ralph et al. 2004).  

 

       

 

Figure 5. A Schematic Depiction of Protein Transport in Apicomplexa. (Agrawal et al. 

2009; Bolte et al. 2009; Bullmann et al. 2010). Apicomplexans transport proteins to their alveolate 

plastids via vesicles, whereafter SELMA complex, Omp85-related, and TIC translocators are thought 

to mediate transport into the apicoplast. 1
st
, 2

nd
, 3

rd
, 4

th
 refer to the four plastid membranes. 
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1.5 Dinoflagellates 

 

1.5.1 Features of Dinoflagellate  

 

Dinoflagellates are primarily unicellular eukaryotes possessing two angular ribbon-

like flagella. One flagellum for lateral movement is located in the cingulum, i.e. the 

circumferential midline groove on the cell surface, and one for linear movement is located in 

a posterior flagellum originating in the sulcus, i.e. the anterior-posterior groove starting at the 

cingulum. A further typical feature of most dinoflagellates’ ultrastructure is the presence of 

the dinokaryon nucleus, which contains fibrillar chromosomes without nucleosomal histones 

that remain condensed even after mitosis (Dodge and Gruet 1987).  

Dinoflagellates’ alveoli define the group, since they consist of cortical flattened 

amphiesmal vesicles immediately underneath the plasma membrane. Dinoflagellate aveoli 

can contain cellulose in the form of armored plates, or theca, which contribute to cellular 

structural integrity (Saldarriaga et al. 2004). In thecate orders (Gonyaulacales, Peridiniales, 

Dinophysiales, Prorocentrales), thecal plate tabulation is well-characterized due to the low 

number of alveoli. In athecate dinoflagellate orders (Gymnodiniales, Syndiniales, 

Noctilucales), the alveoli have no elucidated function and may number in the hundreds, 

making classifications based on homologies and locational relationships exceedingly difficult 

(Dodge and Gruet 1987; Saldarriaga et al. 2004). 

Dinoflagellates are probably some of the most enigmatic organisms. In contrast to the 

obligate phagotrophic lifestyle of ciliates or the obligate parasitic lifestyle of apicomplexans, 

dinoflagellates as a whole can be photosynthetic, mixotrophic, predatory, and parasitic 

(Hackett et al. 2004a). Roughly half of all dinoflagellates contain some sort of plastid and 

rely to some degree on photosynthesis, and although the rest are no longer photosynthetically 

active, they still seemingly retain intact genes for plastid proteins (Sanchez-Puerta et al. 

2007).  
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Figure 6. General Morphological Features of Dinoflagellates: Above: Schematic Composite 

of the Exemplary Dinoflagellate Amphidinium carterae. Common dinoflagellates features include 

constantly condensed nuclear chromosomes, the Golgi apparatus surrounding elongated tubular 

mitochondria, and peripheral alveolae, which are numerous and amorphous in athecate dinoflagellates 

like A. carterae. Below: A Cross-Section of a Horn from the Thecate Dinoflagellate Ceratium 

horridum. 3 alveolae are depicted containing cellulose plates.  
 

A further defining feature of photosynthetic dinoflagellates is their light harvesting 

carotenoid: peridinin. Whereas most photosynthetic dinoflagellates use chlorophyll a, 
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chlorophyll c, and peridinin as the major photosynthetic pigments, an anomalously 

pigmented group of dinoflagellates contain a tertiary haptophytic plastid and utilize 19’-

hexanoyloxy-fucoxanthin and/or 19’-butanoyloxy-fucoxanthin instead of peridinin (Yoon et 

al. 2002). Tertiary symbiosis is best characterized in dinoflagellates: the genuses of 

Dinophysis, Karlodinium/Karenia, and (Krypto)Peridinium resulted from the endosymbioses 

of a cryptophyte, haptophyte, and diatom, respectively (Stoebe and Maier 2002). 

 

1.5.2 Ecological Impetus 

 

Organisms resembling dinoflagellates enter the fossil record during the Silurian 

period about 400 Mya, whereas modern dinoflagellate fossils are found in sediments from the 

late Triassic period from about 200 Mya. Haptophytes and diatoms had already been in 

existence for 20 to 100 million years by the time dinoflagellates became prominent according 

to the fossil record (Armbrust 2009; Morden and Sherwood 2002). These three groups have 

played a very prominent role in the carbon cycle since they came into existence, when they 

replaced cyanobacteria and green algae as the most predominant clades of oceanic 

phytoplankton 190 Mya (Falkowski et al. 2004). The most extreme example of their 

ecological contributions occurred about 100 Mya during the Cretaceous period when they 

sequestered four fifths of atmospheric CO2 into biomass (Armbrust 2009). These three 

chromalveolate groups constitute a great portion of modern oceanic phytoplankton. Diatoms 

and dinoflagellates alone are responsible for roughly half the primary production on earth 

and contribute significantly to carbon cycling (Nassoury et al. 2003).  

Dinoflagellates are considered to be of significant ecological and economic impetus. 

Dinoflagellate blooms, or so-called “red tides”, occur when elevated nutrients, e.g. 

phosphates and nitrates, in coastal waters ameliorate dramatic algal growth that either 

directly or indirectly chokes out other aquatic life. Intense blooms even of non-toxic 

dinoflagellate species can physically clog gills of shellfish and finfish and even suffocate 

them by actually reducing aquatic oxygen levels (Chen and Chou 2001). Bloom-forming 

dinoflagellate species, e.g. Gymnodinium catenatum, Alexandrium minutum, Alexandrium 

tamarense and Alexandrium catenella, lay dormant as cysts in sediments for several years, 

whereupon a favorable environment is sensed. Massive cyst germination and subsequent 
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asexual reproduction then result in an overabundance of free-swimming cells (Bravo et al. 

2010). Cell growth and division can result in rapid albeit short-lived blooms over large areas. 

Cells then reproduce sexually to produce another generation of resting cysts.  

Members of the dinoflagellates genus Symbiodinium lodge themselves within the 

tissues of the host cnidarian and serve as symbionts. This symbiosis results in high levels of 

primary productivity as well as the rapid deposition of CaCO3 that serves as the rock 

substrate of coral reefs. Primary productivity from coral reefs is among the highest in the 

tropical seas, ranging from 300 to 5,000 g Carbon/m
2
/year (compared to 8-50 g 

Carbon/m
2
/year for non-reef tropical marine environments) (Longhurst et al. 1995). 

Dinoflagellate symbionts (zooxanthellae) of corals and other invertebrates are thus vital for 

coral reef survival in that they provide the animal hosts with carbon and energy in otherwise 

depleted tropical waters (Little et al. 2004). Coral bleaching is the disruption of symbiosis 

between the coral host and their dinoflagellate symbionts and has been increasing in 

frequency in the last few decades, resulting in diminished overall coral health (Lukes et al. 

2009). The predominant consensus on the cause of coral bleaching is that high water 

temperatures results in a loss of pigment in the dinoflagellates and/or loss of algae in the 

holobiont (Lajeunesse et al. 2010; Rosenberg et al. 2009). 

 

1.5.3 Genomic Arrangement of Dinoflagellates 

 

Several unique features of genomic organization set dinoflagellates apart from other 

alveolates. For instance, dinoflagellates post-transcriptionally splice a leader sequence to the 

5’-end of many if not all of their mRNA sequences. Spliced leader (SL) trans-splicing has a 

common mechanism in dinoflagellates; a 22-nt sequence is transferred from the 5'-end of a 

non-coding RNA of tandem repeats of SL to the 5'-end of mRNA (Zhang et al. 2007). 

Phylogenetically and ecologically diverse groups of dinoflagellates have been shown to all 

possess SL RNA transcripts of 50–60 nt, implicating the SL tandem repeat RNA as being an 

ancient and widespread feature among dinoflagellates as a whole (Lidie and van Dolah 

2007). Although rampant genomic duplication and recombination continues to cause 

complex and diverse genomic arrangements in dinoflagellate lineages, important features like 

the length and structure of the functional SL RNA varies only slightly (Zhang et al. 2009).  
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Based on the extreme degree of endosymbiont gene transfer (EGT) from the plastid 

and mitochondrial genomes to the nucleus, the sheer size of dinoflagellate nuclear genomes, 

and the puzzling organizations of both nuclear and organelle genomes, it has been suggested 

that dinoflagellates’ genetic material evolves under different constraints than is typical for 

other organisms with smaller, more conventional genomes (McEwan et al. 2008). Many if 

not all genomic coding regions are present as multiple copies that can vary at up to 2.2% of 

the nucleotide sites, which can even lead to changes in the physical properties of encoded 

proteins. Mutations among isoform copies are both as silent and non-silent and may represent 

low level concerted evolution (Reichman et al. 2003).  

Besides ongoing evolution of transcribed sequences, dinoflagellates contain a number 

of characteristics that are unique to their nuclear genomes, including permanently condensed 

chromosomes that vary in number from 4 to 200 and lack both histones and nucleosomes 

(Bhaud et al. 2000). A sequencing survey of over 230 kb of the Heterocapsa triquetra 

nuclear genome demonstrated that about half of the dinoflagellate genome is made up of high 

copy repeated sequences and transposons. Perhaps the most striking result from the survey is 

that ca. 90% of the genomic sequence is apparently random, non-repetitive sequence 

(McEwan et al. 2008). This implicates large portions of the genome as being structural in 

nature, which could explain why dinoflagellates harbor the largest known nuclear genomes. 

Dinoflagellate genomes can be over 75 times the size of the human genome (250 and 3.2 

pg/cell, respectively) (Hackett et al. 2005). The incredible amount of non-coding DNA has 

hampered efforts at genome projects and has thus limited sequence information to Expressed 

Sequence Tag (EST) projects. As of February 2010, 96,036 dinoflagellate ESTs were present 

in the NCBI database, most of which had yet to be annotated. 

A canonical plastid genome is not present in many, if not all, peridinin-containing 

dinoflagellates (henceforth termed peridinin dinoflagellates). Although the typical plastid 

genomes of non-dinoflagellates vary in size and content, they are generally circular 

molecules of about 150 kb, encoding 60–200 genes (Martin and Herrmann 1998). In contrast, 

DNA encoding plastid proteins in dinoflagellates is arranged as several circular plasmid-like 

molecules that typically encode 0, 1, or 2 plastid genes. In at least one dinoflagellate, 

minicircles are located in the nucleus (Laatsch et al. 2004). Fewer than 20 coding genes and 

ESTs for plastid proteins have identified thus far in dinoflagellates, including atpA, atpB, 

petB, petD, psaA, psaB, psbA, psbB, psbC, psbD, psbE, petD, ycf16, ycf24, rpl28, and rpl23 
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(Bachvaroff et al. 2006; Barbrook and Howe 2000; Barbrook et al. 2006; Hiller 2001; 

Laatsch et al. 2004; Nelson et al. 2007; Zhang et al. 1999).  

The guiding principle behind the gene complement encoded by the typical eukaryotic 

autotroph’s plastid genome is still a matter of contention. One hypothesis stipulates that 

properties of the proteins encoded by the plastid genome would hinder their own import if 

they were to be nuclear-encoded (Daley and Whelan 2005; Kugita et al. 2003). Another 

hypothesis dictates that proteins encoded in the plastid must be quickly synthesized and 

regulated in the plastid in order to control the organelle’s redox potential and to avoid the 

formation of oxygen radicals (Allen 2003; Allen 2005). Peridinin dinoflagellates seem to 

have circumvented the evolutionary constraints that led to the retention of genes in the 

plastid, as the “universal” photosynthetic plastid gene set present in all other photosynthetic 

organisms is not present in the dinoflagellate plastid genome and has been at least partially if 

not totally relocated to the nucleus (Bachvaroff et al. 2004). 

In short, dinoflagellates may very well have carried out the most extensive amount of 

endosymbiont gene transfer (EGT) of any photosynthetic organism, and the actual coding 

capacity of the dinoflagellate plastid genome still has yet to be determined. Non-minicircle 

encoded genes for other photosynthetic components are thought to have migrated as single 

gene insertions into the nuclear genome, e.g. in Alexandrium tamarense, Amphidinium 

carterae, and Lingulodinium polyedrum, and to have acquired bipartite targeting sequences 

after their arrival there (Bachvaroff et al. 2004; Hackett et al. 2004b). The mitochondrial 

genome has been found to only contain multiple, redundant copies of cox1, cox3, and cob 

(Nash et al. 2007; Wang et al. 2005).  

 

1.5.4 Protein Targeting in Dinoflagellates 

 

Very little is known about the transport of plastid proteins in dinoflagellates, despite 

the vital role that they play in the survival of dinoflagellates. Because dinoflagellate plastids 

lack bound ribosomes on their surfaces and are external to the ER lumen, a secretory 

pathway vesicle transport system has been suggested in mitigating protein transport to the 

plastid, according the commonly accepted hypothetical model (Nassoury et al. 2003; van 

Dooren et al. 2001).  
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Like other organisms with complex plastids, plastid targeting of dinoflagellate 

proteins is mitigated with the BTS. In contrast to other organisms, dinoflagellate BTSs often 

contain a hydrophobic stop transfer sequence (STD) at the C-terminus of their TPs. Proteins 

containing STDs are classified into two groups: stromal class I proteins and thylakoid 

luminal class III proteins (Durnford and Gray 2006; Patron et al. 2005). According to Patron 

et al. 2005, Class III proteins can also be devoid of STDs, as is the case with stromal class II 

proteins. According to the hypothetical model from van Dooren et al. 2001, the mature 

domains of proteins containing STDs are located outside of the vesicle lumen during 

transport to plastids. 

Regardless of class, proteins transported to the dinoflagellate plastid are thought to be 

trafficked via the Golgi apparatus in a BFA-sensitive manner, unlike vesicle-mediated 

transport in apicomplexans (Nassoury et al. 2005). Dinoflagellate plastid protein transport is 

thus thought to be more similar to vesicle-mediated protein transport to the likewise three-

membraned plastids of the euglenophyte Euglena gracilis, in which fusion of Golgi vesicles 

with the plastid have been shown to occur in vitro (Slavikova et al. 2005; Sulli and 

Schwartzbach 1995). 

Import of nucleus-encoded plastid proteins into dinoflagellate plastids is thought to 

differ from that of apicomplexans and chromists, because dinoflagellate plastids are 

surrounded by three membranes instead of four. Import of dinoflagellate preproteins into 

plastids after vesicle fusion must differ by en large from apicomplexa, because after fusion 

with the outermost plastid membrane of vesicles, the majority of protein precursors, i.e. those 

containing stop transfer domains, remain membrane-anchored with their functional domain 

in the cytosol (Nassoury et al. 2003; van Dooren et al. 2001). It has been postulated that a 

hypothetical translocator exists in the outermost plastid membrane that would facilitate the 

passage of class I and class III preproteins (containing STDs) across the outermost plastid 

membrane (Sulli et al. 1999; van Dooren et al. 2001). This suggested translocation machinery 

could then possibly recruit translocators of the second and third outermost plastid 

membranes. Translocation of soluble class II and class III preproteins (without STDs) across 

the inner two plastid membranes employs as yet unidentified translocators that are not 

necessarily the same ones used for class I and class III membrane-bound proteins. Cleavage 

of remaining targeting signals from the mature protein takes place upon the arrival of the 
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preprotein at its final destination by a compartment-specific protease (Chaal et al. 2003; 

Gomez et al. 2003). 
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Figure 7. Schematic Depiction of Class I, II, and III Proteins and Vesicle-Mediated Plastid 

Protein Transport in Peridinin Dinoflagellates and Euglenophytes (as per van Dooren, 

Schwartzbach et al. 2001). Targeting signals include N-terminally located a signal peptide (red) 

proceeded by a transit peptide (green). In all class I proteins, a hydrophobic domain (orange) is 

located between the transit peptide and the protein functional domain (tan). Class III proteins differ 

from class I and II contain topogenic signals for thylakoid lumen (lilac) and can contain a 

hydrophobic domain. After vesicles fuse to the first plastidial membrane, an hypothetical translocator 

may mediate the transport of class I and III membrane-bound preproteins across plastid membrane 1 

and may then recruit translocators of membranes 2 and 3 (van Dooren et al. 2001). Transport of non-

membrane-bound class II and III proteins across plastid membranes 2 and 3 probably utilizes 

unidentified translocators, albeit not necessarily the same translocators as class I and III membrane-

bound proteins (Bolte et al. 2009). Cleavage of the signal peptide is thought to occur in the ER lumen, 

thus exposing the transit peptide to transport machinery. Remaining targeting signals are cleaved 

from the mature protein when the protein arrives at its final destination. 
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1.5.5 Ceratium horridum 

 

Ceratium horridum is about 230μm–260μm in size. One defining characteristic is its 

three horns, which vary in their length and probably have an impact on its ability to tread 

water (Kofoid 1908). Motility is instilled by one longitudinal flagellum and one transverse 

flagellum, which allow the cell to move at a rate of about 0.03 – 0.12 m/hr (Peters 1929). 

Asexual reproduction is asymmetrical, and both daughter cells have two horns directly after 

mitosis, the third of which grows back over time. One feature that differentiates C. horridum 

from other dinoflagellates is its containing multiple small plastids and not one or two. 

Ceratium horridum minicircles are located in its nucleus, are independent of the 

chromosomes, and either are targeted by alternative means or have yet to acquire a topogenic 

presequence in the coding sequence (Laatsch et al. 2004).  

 

 

Figure 8. Differential Interference Light Microscope Image of Ceratium horridum. Three 

horns protrude from the corpus of the cell. Plastids are on the cell periphery of the cell corpus and 

extend into the horns. The circular structure under the sulcus is the nucleus. 

 

1.5.6 Amphidinium carterae 

 

Amphidinium carterae is one of the best known and researched dinoflagellates. It is 

between 7 and 20μm large and has the capacity to flourish in sea water as well as brackwater 

in axenic culture (Nayak and Karunasagar 1997). Its generation time is about 1½ days and 
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does not possess cellulose theca, but is nonetheless very robust and can survive 

centrifugation (up to 2000 x g). A. carterae only contains one plastid that has many lobes that 

are mainly located at the cell’s periphery. The lobes of the plastid connect to one another at 

the pyrenoid. 

 

 

Figure 9. Differential Interference Light Microscope of Amphidinium carterae. The space 

seen between plastids on the right side of the cell is the nucleus. The circular structure proximal to the 

protrusion on the left is the pyrenoid. Plastids appear as dark organelles with a white periphery. 
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2 Aims 

 

The aims of this doctorate thesis were threefold: 

 

 Acquire novel insights into dinoflagellate plastid targeting sequences by establishing 

an EST library for Ceratium horridum, from which plastid proteins will be identified 

and analyzed. 

 

 Using the trends identified from EST analysis, obtain information about the 

heretofore uncharacterized transport of dinoflagellate class II and III proteins (Prk 

and PsbO) heterologously in the transfectable systems of Phaeodactylum tricornutum 

and Pisum sativum. 

 

 Establish a functional protocol for radioactive labeling of and sucrose fractionation in 

the dinoflagellate Amphidinium carterae, and determine the identity of fractions 

relevant to plastid protein transport by finding suitable markers for ER, Golgi, and 

Plastid fractions. Using this protocol, obtain information about the homologous 

transport of dinoflagellate class I, II, and III proteins (RbcL, Prk, and PsbO).
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3 RESULTS 
 

3.1 Analysis of Synthesized Ceratium horridum ESTs  

 

3.1.1 Analysis of Ceratium horridum cDNA Library  

 

cDNA synthesis was executed according to section 6.2.6, and 1651 sequences were 

acquired for the Ceratium horridum EST library. Clones with the prefix “On” and “Ch” were 

sequenced using the Sanger method for Licor4200 (bidirectional) and ABI sequencing (5’ 

unidirectional). All sequences with the prefix “Gt” signifies that sequencing occurred 

commercially at the Agowa company (now LGC genomics, Berlin). The global G+C content 

of thus acquired ESTs was 54.2%. C. horridum ESTs had an average length of 676 bp. The 

1651 acquired ESTs could be aligned into 222 contigs and 720 singlets, totalling in 922 

unigenes (56% of total EST number), of which 748 (81% of unigenes) contained a spliced 

leader sequence. 

Preliminarily, stringent alignment parameters required a minimum overlap of 100 bp 

and 90% minimum match percentage resulted in the extrapolation of 213 contigs (clusters of 

assembled ESTs), consisting of 913 ESTs (55% of total). Alignment of the 753 remaining 

non-redundant singlet ESTs was performed with less stringent parameters (20 bp overlap, 

70% minimum match). The contig containing the most sequences was by far the peridinin-

chlorophyll binding protein contig, which constituted 148 (9%) of the 1651 clones. A single 

EST and a contig of 21 sequences coding peridinin-chlorophyll binding protein did not align 

with this contig. The sum of ESTs coding peridinin-chlorophyll binding protein was 160 out 

of the 1651 sequences (~10% of total ESTs). The second most abundant EST (2% of total 

ESTs) encoded a 743 bp ORF with no homology to known nucleotide translations. 

Both BLASTX and tBLASTx were employed for EST analysis with an expect value 

cut-off of e
−10

. The 213 contigs consisting of 913 ESTs resulting from the EST stringent 

alignment were found to have homologies with annotated proteins from a wide range of 

organisms as per BLASTX. 46 contigs consisting of 79 ESTs were found to be most 

homologous to dinoflagellate EST translations as per tBLASTx.  
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Of the 700 non-redundant singleton sequences remaining after the stringent EST 

alignment, 20 pairs of ESTs were observed to be most homologous to the same BLASTX hit. 

Of these, 9 pairs were aligned with the less stringent parameters. The 11 pairs of singletons 

remaining after low-stringency alignment were determined by BLAST homologies to encode 

the same region of two genes of analogous function. All such sequence pairs were observed 

to have substantial nucleotide sequence variation, and the proteins they encode were found to 

be divergent yet clearly homologous, as seen in figure 10. Therefore, these singletons encode 

different genes for one protein and are not non-overlapping ESTs of a single gene.  

 
                     *        20         *        40         *        60         *         

GT59_E7.u : MMITIVLVG---TLLSQAIG-VCPPQGFDSVK----EFDLDVFIAGRWYVQEMMEGGLEPSNLFQCQYAEYA :  64 

GT61_H9.u : -MVAVGKAASILTLLAVSLAAECPPSGFDTEAAADGSFDIKWYTSAKWYVQEQMIISYLPADYLRCVTAEYE :  71 

             M6 6       TLL   6   CPP GFD3       FD6  5   4WYVQE M     P 1   C  AEY        

                                                                                           

                  80         *       100         *       120         *       140           

GT59_E7.u : KMEKPNMWGFEIQAHDHIDFYDGSKPMDLHP-CAKIVNASRGKLSVGMCFLPTLLSGPYWVYLHEQTGGYAA : 135 

GT61_H9.u : LLEKPTLLGYDIKVMNHAENKDGKALGPLTTICSQIVNATAGKLKVSPCFLPSFLAGPYWVVAFNKAEGWSL : 143 

             6EKP 6 G5 I   1H    DG     L   C  IVNA3 GKL V  CFLP3 L GPYWV       G5         

                                                                                           

                 *       160         *       180         *       200         *             

GT59_E7.u : VGGGPPSHEFPGGCRTGTGKIGGGLWIFTRQQARDEGVVGSARAALKAQGFDLSALKFVNQTGCPKSQNPPL : 207 

GT61_H9.u : VSGGPPTESGTDGCKTGTGTNDSGLWIFTRKQERDEALVQKIKGIARAKGFDTSVLKSTDQTNCA-----AF : 210 

            V GGPP3     GC4TGTG    GLWIFTR Q RDE 6V   4   4A GFD S LK  1QT C               

                         

             220         

GT59_E7.u : QDVVVV : 213 

GT61_H9.u : SSVVV- : 215 

              VVV        

  
Figure 10. Exemplary ClustalX Protein Alignment of ESTs GT59_E7.u and GT61_H9.u. 

This depiction is a typical representation of the 11 pairs of ESTs encoding protein isoforms, of which 

the nucleotide sequences were not able to be aligned. 

 

3.1.2 C. horridum EST Sequence Homologies  

 

Ceratium horridum sequences were each collated according to the organism with the 

best BLASTX or tBLASTX homology. The most significant EST homologies were observed 

in dinoflagellates (59%), chromists (12%), viridiplantae (9%), and alveolates (8%), as seen in 

figure 11. To determine whether this data set was representative for all dinoflagellates, a 

local BLAST search was extended to include all organisms that were determined to be most 

homologous to C. horridum unigenes for BLAST analysis of all 96,036 known dinoflagellate 

ESTs as of February 2010. The totality of protein sequences for each organism (or most 

related model organism, if adequate sequence information for the BLAST hit was lacking) 

were blasted against concatenated dinoflagellate ESTs. Special emphasis was given to 

including chromalveolate protein sequences in further the BLAST analyses. Thus, all 
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obtainable protein sequences from apicomplexa, oomycete, cryptophyte, haptophyte, and 

ciliates were included in further EST analyses, regardless of whether or not these organisms 

were present in the list of C. horridum EST BLAST hits.  

 

Homology C.h. Dino

Excavata 0.0% 0.2%

Amoebae 1.6% 0.7%

Fungi 2.0% 0.9%

Bacteria 4.7% 2.3%

Animals 3.3% 2.7%

Viridaeplantae 9.1% 3.7%

Chromists 12.0% 13.6%

Alveolates 8.2% 15.4%

Dinoflagellates 59.2% 60.5%
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Figure 11. Comparison of Ceratium horridum EST Contig Homologies to Total 

Dinoflagellate EST Homologies using Local BLAST. All available protein sequences for chromists, 

alveolates, dinoflagellates, and all organisms found to be the best BLASTX hits from C. horridum. 

tBLASTn was used for blasting these sequences against the C. horridum and dinoflagellate EST 

library. Left: Pie diagram of C. horridum and Dinoflagellate EST sequence homologies. Right: 

Percentage of ESTs most homologous to each clade. 

 

Utilizing the downloadable local BLAST program 2.2.22 from NCBI, a local 

database was created from all available dinoflagellate EST sequences available at NCBI 

together with the acquired C. horridum EST unigene library. Protein sequences from 

chromalveolates and all organisms with a C. horridum EST BLASTX hit were blasted 

against the C. horridum and dinoflagellate databases using tBLASTn, after which the 

database was compared to itself with tBLASTX. A macro was written in Microsoft Excel to 

retain only the most homologous BLAST hit for each EST that was not identical to itself. In 

this manner, differences in dinoflagellate and C. horridum EST homologies were 

extrapolated. It was thus determined that the most striking difference between the two data 
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sets is that the C. horridum EST library had markedly fewer homologies (10%) with other 

chromalveolates than other dinoflagellates do. C. horridum however had a comparative 

abundance of ESTs with homologies to viridiplantae, bacteria, animals, and amoebae.  

For a number of BLASTX results, the most homologous hits did not originate from 

members of the chromalveolate superkingdom, which could implicate these unigenes as 

possibly not having chromist or alveolate origins. A list was compiled of C. horridum ESTs 

that had non-chromalveolate BLASTX hits. A list of homologous proteins from throughout 

the tree of life was compiled for phylogenetic analysis. To this end, phylogenetic 

methodology was employed in the exact manner as has been previously demonstrated to 

detect HGTs in dinoflagellates (Nosenko and Bhattacharya 2007; Nosenko et al. 2006), 

which was similar to the methodology for identifying red algal EGTs in Oxyrrhis marina 

(Slamovits and Keeling 2008). Of the initial 88 candidates for HGT, 88 were closely 

homologous to chromist and alveolate sequences and branched with them, whereas 2 clearly 

were and did not. The unigenes gt57c03 and gt62_f11 were identified as being more closely 

related to the green lineage than to chromists.  

The C. horridum EST gt57c03 is most homologous to 57 uncharacterized 

dinoflagellate ESTs (represented in the phylogenetic tree by a single Karlodinium veneficum 

EST). The closest non-dinoflagellate homolog with an identified function was the AMP-

activated protein kinase from Chlamydomonas reinhardtii, as seen in figure 12. Bootstrap 

values of 86% and 100% were obtained from both Neighbor-Joining and Maximum 

Likelihood methods, respectively, in addition to a Bayesian posterior output value of over 

0.95 separate the dinoflagellate sequences from chromist sequences, thus strongly confirming 

that the Gt57c03 and its 57 dinoflagellate homologs are most similar to proteins from 

primary plastid-harboring green algae and plants. 

Gt62_f11 is most homologous to the functionally identified Amphidinium carterae 

UDP-glucose dehydrogenase, which is involved in the reaction UDP-glucose+2NAD
+
+H2O 

to UDP-glucuronate, 2 NADH, and 2H
+
. This enzyme is a central to biosynthesis and energy 

metabolism, and thus plays a role in a number of biochemical pathways like the pentose 

phosphate pathway, glycolysis, and the metabolic pathways for ascorbate, aldarate, starch, 

sucrose, amino sugars, nucleotide sugars, inositol phosphate, and galactose. Phylogenetically, 

dinoflagellate homologs and Gt62_f11 strongly group with plants, cyanobacteria, and green 
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algae, whereas the chromists are clearly the most phylogentically distant group of examined 

organisms. 

 

 

 

Figure 12. Phylogenetic Relationship of 4 Ceratium horridum Unigenes. Bold faced branches 

denote ≥0.9 Bayesian Posterior Output. Numbers above and below each branch denote bootstrap 

values calculated with ML and NJ bootstrap analyses, respectively. The thick branches indicate 0.95 

posterior probability from Bayesian inference. Bar indicates exchanges per position. A.: Calcium-

dependent protein kinase (Gt57c03), B.: UDP-glucose dehydrogenase (Gt62_f11).  

 

3.1.3 C. horridum EST Sequence Functions 

 

All Ceratium horridum ESTs with identified homologies were classified into 

functional groups of four or more unigenes that belong to a single pathway. Enzymes 

catalyzing reactions were categorized according to the most prevalent cellular process or 

metabolic pathway that utilizes the enzymatic reaction product. This resulted in 13 

categories. Gene products with low abundances (<4 unigenes) were grouped into the 

A. 

B. 
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category “other”. The four most represented groups of proteins corresponded to protein 

metabolism (21%), intracellular signaling (15%), photosynthesis (13%), and protein transport 

(9%). 

 

C. horridum EST BLASTX Hit Organism 
E 

value 

on334 ADP-ribosylation factor Pfiesteria piscicida e-108 

GT56c04.M13-21 rab GDP dissociation inhibitor alpha_ putative Toxoplasma gondii ME49 3e-106 

Gt62_C1.u small GTP-binding protein Sar1, putative Toxoplasma gondii ME49 1e-81 

ON563 ADP-ribosylation factor Pfiesteria piscicida 5e-67 

on236 ADP-ribosylation factor family Phytophthora infestans T30-4 e-58 

ON317 adaptin or adaptin-related protein 8 Brugia malayi e-42 

ON373 small GTP-binding protein Sar1 Cryptosporidium hominis 1e-42 

Gt63_H10.u GTP-binding protein, putative Toxoplasma gondii ME49 3e-41 

Gt63_D2 Os06g0342100 signal recognition protein Oryza sativa Japonica Group 3e-26 

on45f 
Sec61-gamma subunit of  

protein translocation complex 
Cryptosporidium parvum Iowa II 7e-25 

Gt58_D3.u vacuolar sorting receptor protein, putative Toxoplasma gondii VEG 6e-22 

GT53c11.F guanine nucleotide exchange family protein 
Ostreococcus lucimarinus 

CCE9901 
3e-20 

on208 FAD-linked sulfhydryl oxidase Erv1p Saccharomyces cerevisiae JAY291 1e-15 

on539 mitochondrial inner membrane protein Theileria annulata strain Ankara 2e-12 

ON575 protein transport protein Sec13, putative Pediculus humanus corporis 3e-11 

GT61_H8.u vesicle-associated membrane protein 4 Danio rerio 4e-08 

Table 1. Ceratium horridum ESTs encoding Proteins involved in Protein Transport and 

Vesicle Formation. All results were determined with BLASTX or tBLASTn with a cut-off of e
-4

. 

 

The categories in which dinoflagellate homologies constituted less than 50% of hits 

were ABC Transporters, Alveolae and Cell Membrane Proteins, RNA Metabolism, “Other”, 

Protein Modifications, and Intracellular Signaling. Whereas 2 of the 4 ABC transporter 

proteins were most similar to fungal sequences, alveolae and cell membrane proteins were 

most homologous to an oomycete, a bacterium, and a fungus. RNA metabolism hits were 

most similar to other alveolates. Hits from the “Other” category were expectedly diverse and 

included BLAST hits from green algae/plants, animals, chromists, bacteria, and fungi. 

BLAST hits for enzymes catalyzing protein modifications originated from an animal, a 
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diatom, and an alveolate. Intracellular signaling homologies included a fungus, a plant, an 

animal, chromists, and bacteria. 

 

 

 

Figure 13. Functional Distribution of Sequenced C. horridum ESTs. ESTs are grouped 

according to biochemical and cellular functions. All components of biochemical pathways have been 

summarized according to the end products they produce, e.g. the category protein metabolism ranges 

from enzymes catalyzing reactions of amino acid anabolism to post-translational modifications. 

 

3.1.4 Determination of Ceratium horridum Plastid-Targeted Proteins 

 

Identification of plastid-associated ESTs was carried out by compiling a list of 

BLASTX hits that play a role in photosynthesis and dark reactions. All sequences encoding 

photosynthetic proteins were considered to contain a BTS, if the 5’ terminus of the unigene 

was fully sequenced, as signified by the presence of a 5’ SL sequence. 17 unigenes with 

functions in the plastid were determined in this manner. 

For unigenes not encoding proteins with a clear plastid function, the longest frame 

was determined, and the first methionine in frame with the coding region after the spliced 

leader sequence was considered to be the start of the coding region. If no spliced leader 

sequence was present, then the first methionine in the sequence was used under the 
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assumption that an ApaI restriction site was present between the coding sequence and the 

spliced leader, which would have truncated the splice leader during cloning (see section 

6.2.6). From this collated list of putative unigenes preprotein coding regions, SignalP was 

employed to determine SP length. SPs determined in this manner were truncated in silico for 

ChloroP analysis.  

Of the 210 signal peptides identified by SignalP, SP lengths were from on average 24 

amino acids long with a maximum length of 55 residues and minimum length of 12 residues. 

Of the 157 sequences determined to have a SP, 15 were determined as containing a plastid 

TP by ChloroP, 7 of which had no homology to any NCBI database entry. Combined with 

sequences identified by plastid-associated function, a total of 34 unigenes consisting of 15 

singlets and 19 contigs (4% of total unigenes) were considered to have a plastid targeting 

presequence. These plastid-targeted proteins had functions related photosynthesis (50%), 

unknown (42%), or related to other plastid-localized reactions (8%).  

The three most abundant amino acids in SPs of the 34 BTSs were alanine (23%), 

leucine (14%), and valine (12%). BTS SPs mostly contained non-polar neutral amino acids 

(72%), had an net positive charge (+1.75), and contained a noteworthy level of hydroxylated 

amino acids (13%). Most of the positive charge is located in the N-terminus of the SP. In 

figure 14, a weblogo of the positions of the SP directly preceding the TP are depicted. From 

this, an AXA-like motif seems to be present to some degree in C. horridum sequences. 

 

 

Figure 14. Weblogo of 12 Amino Acids Preceding the Signal Peptidase Cleavage Site 

Predicted by SignalP. Blue box highlights the AXA motif directly preceding the end of the signal 

peptide. 
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Accession Description 
Total 

score 

Query 

coverage 
E value Organism 

C. horridum 

Clone Reference 

AAX13962.1 chloroplast phosphoribulokinase 401 100% 1.00E-110 Pyrocystis lunula on510 

AAM77465.1 
oxygen evolving enhancer 1 

precursor 
301 90% 1.00E-80 Heterocapsa triquetra psbO_cDNA_contig 

AAW79405.1 unknown protein 226 92% 8.00E-58 Heterocapsa triquetra on590 

ABV22122.1 
chloroplast ATP synthase 

subunit C (AtpH) 
206 99% 9.00E-52 Alexandrium tamarense on303 

AAW79346.1 
chloroplast photosystem I 

subunit XI (PsaL) 
197 98% 3.00E-49 Heterocapsa triquetra Gt58_H5 

EX461188.1 sqb34c1bd9 192 55% 4.00E-15 Alexandrium catenella GT57h05.M13-21 

CF947692.1 UI-D-GC1-aah-e-13-0-UI.s1 187 50% 9.00E-15 Alexandrium tamarense on533 

AAW79342.1 chloroplast cytochrome f 171 48% 2.00E-41 Heterocapsa triquetra GT54a05.F 

Q5ENN5.1 
Ribulose bisphosphate 

carboxylase, chloroplastic 
157 68% 2.00E-17 Heterocapsa triquetra on197 

ABV72565.1 hypothetical protein 146 57% 7.00E-34 Heterocapsa rotundata on73 

AAW79333.1 chloroplast cytochrome c6 145 98% 2.00E-33 Heterocapsa triquetra Gt58_B2.u 

BP743201.1 BP743201 137 54% 8.00E-09 Lingulodinium polyedrum ON327 

AAW79314.1 
chloroplast ferredoxin-NADP{+) 

reductase 
135 86% 2.00E-30 Heterocapsa triquetra Gt58_E7 

AAW79388.1 unknown protein 135 81% 1.00E-30 Heterocapsa triquetra Ch757 

AAN39441.1 
peridinin chlorophyll-a binding 

protein apoprotein precursor 
132 47% 1.00E-15 Symbiodinium kawagutii SZ2 

AAW79343.1 
chloroplast photosystem I 

protein E 
129 99% 8.00E-29 Heterocapsa triquetra on398 

DT381197.1 HTE00008158 124 36% 5.00E-07 Heterocapsa triquetra GT59_A2 

BP743085.1 BP743085 110 34% 8.00E-06 Lingulodinium polyedrum on276 

YP_635799.1 Photosystem I subunit VII 107 48% 4.00E-22 Chara vulgaris ON328 

AAW79348.1 
chloroplast cytochrome b559 

subunit beta 
106 99% 7.00E-22 Heterocapsa triquetra on318 

AAW79333.1 chloroplast cytochrome c6 103 61% 7.00E-21 Heterocapsa triquetra on195 

AAW79349.1 
chloroplast photosystem II 

protein L 
89 99% 1.00E-16 Heterocapsa triquetra on182 

CO061354.1 est_k_brevis923 82 40% 6.00E-16 Karenia brevis GT52f12.F 

ABV72575.1 unknown 55.5 22% 5.00E-06 Heterocapsa rotundata on266 

NP_043691.1 photosystem II protein K 64.7 0.37 0.000000003 Odontella sinensis on269 

AAG37859.1 
Ribulose bisphosphate 

carboxylase, chloroplastic 
50.4 0.2 0.00005 Symbiodinium sp. GT52a12.F 

ZP_01470365.1 
cytochrome b6-f complex 

subunit V 
47.8 0.37 0.0004 

Synechococcus sp. 

RS9916 
on461 

CF948083.1 UI-D-GC1-aah-o-16-0-UI.s1  45.8 0.46 0.00002 Alexandrium tamarense on231.1 

FE865729.1 ZooX20012E21.g_091 43.1 0.29 0.0001 Symbiodinium sp. Gt62_C8.u 

Table 2. BLAST Homologies for 29 of 34 Plastid-Targeted Unigenes. Hits are arranged in 

order of highest to lowest bit score. The homologies up to ABV22122.1 were ascertained by 

utilizing BLASTX and the remaining homologies by tBLASTX. An e value cutoff of e
-4 was 

used. All sequences were most homologous to dinoflagellates except for on328, on461, and 

on269. 5 plastid-targeted unigenes had no homologies to known sequences. 

 

3.1.5  Ceratium horridum Transit Peptide Classification 

 

Classification of TPs took into account whether each sequence contained a 

hydrophobic domain. 23% of the plastid-targeting TPs identified contained a putative 
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membrane-spanning domain that could act as an STD. Of these, one was determined to be a 

class I protein, whereas the rest were class III (containing a putative STD).  

 

Function C. horridum Clone Reference Protein Class 

Ribulose bisphosphate carboxylase, chloroplastic GT54a05.F class I 

peridinin chlorophyll-a binding protein apoprotein precursor SZ2 class II 

Ribulose bisphosphate carboxylase, chloroplastic on197 class II 

chloroplast phosphoribulokinase on523 class II 

chloroplast ferredoxin-NADP{+) reductase Gt58_E7 class III 

oxygen evolving enhancer 1 precursor psbO_cDNA_contig class III 

chloroplast ATP synthase subunit C (AtpH) on318 class III 

chloroplast cytochrome b559 subunit beta ON328 class III 

chloroplast photosystem I protein E on461 class III 

chloroplast cytochrome f GT57h05.M13-21 class III (w/o) 

chloroplast cytochrome c6 Gt58_D12.u class III (w/o) 

chloroplast photosystem I subunit XI (PsaL) Gt58_F10.u class III (w/o) 

chloroplast photosystem II protein L Gt63_B2.u class III (w/o) 

chloroplast cytochrome c6 on182 class III (w/o) 

photosystem II protein K on269 class III (w/o) 

photosystem I subunit VII on398 class III (w/o) 

cytochrome b6-f complex subunit V on510 class III (w/o) 

unknown  on266 class I or III (w/o) 

unknown  on276 class II or III(w/o) 

unknown  ON383 class II or III(w/o) 

unknown  on533 class II or III(w/o) 

unknown  on590 class II or III(w/o) 

unknown  on73 class II or III(w/o) 

unknown  Ch757 class II or III(w/o) 

unknown  on231.1 class II or III(w/o) 

unknown  GT55f09.F class II or III(w/o) 

unknown  Gt58_B2.u class II or III(w/o) 

unknown  Gt58_H5 class II or III(w/o) 

unknown  GT60_F4.u class II or III(w/o) 

unknown  Gt62_C8.u class II or III(w/o) 

Table 3. Classification of Ceratium horridum Plastid-Targeted Proteins. Classification of 

proteins was accomplished by identifying whether TPs potentially contained membrane-spanning 

domains. Class I and III proteins contain putative stop-transfer domains, and class II and III(w/o) 

do not. Without knowing their localization, proper classification was not possible for unknown 

proteins. 

 

Except for one protein with an unknown function, proteins containing hydrophobic 

domains were classified based on the location of their function: class I corresponds to a 

stromal localization and class III indicates a thylakoid lumen localization. 10% of TPs were 
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class II proteins and 27% class III proteins (without putative STDs). Class III proteins (with 

and without STDs) constituted 50% of sequenced unigenes encoding plastid proteins. 40% of 

proteins had unidentified functions and could not be classified.  

 

3.1.6  Ceratium horridum Transit Peptide Variations between Isoforms 

 

Some contigs encoding plastid proteins were noted to have a number of point 

mutations between different contig sequences. Of the 3220 nucleotide positions for contigs 

encoding 7 plastid proteins, 208 nucleotide positions (6%) contained point mutations at 

discreet positions in at least one EST. The majority of mutations (58 %) that led to amino 

acid exchanges or deletions were located in BTSs. Of the remaining 42% of mutations, the 

majority (81%) were silent in the mature sequence. 

 

             
                       *        20         *        40         *        60         *        80         *       100               

Isoform 1  : MAVRRPVVSVAVLAIGGPLWVLHCSFGSYSS-TFTTATSAPALRASSASGNLAGVYSTPEAVRLVALQALPEPRPNDAMLPVELNRTSLYWGLLCILILSVLFSSYFFN :108 

Isoform 2  : MAVRRPVVSVAVLAIA-AIMVLHCSFGSYSSTTFTTATSAPALRASSASGNLAGVYSTPEAVRLVALQALPEPRPNDAMLPVELNRTSLYWGLLCILILSVLFSSYFFN :108  

Isoform 3  : MAVRRPVVSVAVLAIA-AIMVLRCSFGSNSSTTFTTATKAPALRASSTSGNLAGVYGTPEAVRLVALQALPEPRPNDAMLPVELNRTSLYWGLLCILILSVLFSSYFFN :108  

Isoform 4  : MAVRRPVMSVAVLAIA-AILVLRCSFGSYSNTTFTTATSAPAFRASSASGNLAGVYSTPEAVRLVALQALPEPRPNDAMLPVELNRTSLYWGLLCILILSVLFSSYFFN :108  

Isoform 5  : MAVRRPVISVAVLAIA-AILVLRCSFGSYGNTTFTTATSAPAFRASSASGNLAGVYSTPEAVRLVALQALPEPRPNDAMLPVELNRTSLYWGLLCIXILSVLFSSYFFN :108  

Isoform 6  : MAVRRPVVSVAVLAIA-AIMVLRCSFGSYSNTTFTTATPAPVLRASSAGANLAGVYSTPGAVRLVALQALPEPRPNDAMLPVELNRTSLYWGLLCILILSVLFSSYFFN :108  

Isoform 7  : MAARRPVVTVAVLAIV-AIMFLRCSFGSHSSATFTTATSAPALRASSASVNLVGAYNTPEAVRLVALQALPEPRPNDAMLPVELNRTSLYWGLLCILILSVLFSSYFFN :108  

Isoform 8  : MAARRPVVTVAVLAIV-AIMFLRCSFGSHXSATFTTATSAPALRASSASVNLVGAYNTPEAVRLVALQALPEPRPNDAMLPVELNRTSLYWGLLCIXILSVLFSSYFFN :108  

Isoform 9  : MAARRPVVSVAVLAIA-AIMVLRCSFGSYSSATFTTATSSPALRASSAGVNLAGVDSAPKTVRLVALQALPEPRPNDAMLPVELNRTSLYWGLLCILILSVLFSSYFFS :108  

Isoform 10 : MAARRPVVSVAVLAIA-AIMVLRCSFGSYSSATFTTATSSPALRASSAGVNLAGVDSXPKXVRLVALQALPEPRPNDAMLPVELNRTSLYWXLLCILILSVLFSSYFFN :108  

Isoform 11 : MAFRRPVVSVAVLAIA-AIMVLRCSSGSYSSTAFTTATSAPTLRGSSASVNLAGVYSTPEGARLVALQALPEPRPNDAMLPVELNRTSLYWGLLCILILSVLFSSYFFN :108  

Isoform 12 : MAVRRPVVSAAVLAIA-AMMVLRCSFGSYSSTAFTTATSAPALRASSASGNLAGVYSTSEAVRLVALQALPEPRPNDAMLPVELNRTSLYWGLLCIPILSVLFSSYFFN :108  

Isoform 13 : MAVRRPVVSAAVLAIA-AMMVLRCSFGSYSSTAFTTATSAPALRASSASGNLAGVYSTSEAVRLVALQALPEPRPNDAMLPVELNRTSLYWGLLCIPILSVLFSSYFFN :108  

Isoform 14 : MAVRRPMVTIMVLAIA-AVVVLRCSFAASNSGAFTTAASAPSLRTSYSSTNLAGVPDMP--VRLVAMQALPEPRPNDAMLPVELNRTSLYWGLLCILILSVLFSSYFFN :106  

Isoform 15 : MAVRRPMVTIMVLAIA-AVVVLRCSFAASNSGAFTTAASAPSLRTSYSSTNLAGVPDMPEAVRLVAMQALPEPRPNDAMLPVELNRTSLYWGLLCILILSVLFSSYFFN :108  

             MA RRP663 aVLAIa a6 vLrCSfgs  s  FTTAtsaP lRaSs s NLagv   p  vRLVAlQALPEPRPNDAMLPVELNRTSLYWGLLCIlILSVLFSSYFFn       

 

Figure 15. Exemplary ClusalX Alignments of High Relative Amino Acid Exchanges in the 

BTS Region of Varying Plastid Protein Isoforms. The entire coding preprotein coding region of 

Ceratium horridum PsbL isoforms.  

  

ESTs encoding PsbL were sequenced numerous times to acquire the 15 non-

redundant isoforms, displayed in figure 15. In the mature domain of the isoforms, two amino 

acid exchanges were present, which led to exchanges within a biochemical class of amino 

acid (non-polar neutral: leucine-to-proline and polar neutral: serine-to-asparagine). Of the 62 

BTS amino acid positions, 42% differ between isoforms. These exchanges account for 52% 

of SP and 66% of TP amino acid positions. 85% of exchanges in the signal peptide are within 

the same biochemical class, whereas 83% of TP exchanges are from one biochemical group 

to another.  
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Thus, point mutations between C. horridum PsbL isoforms in the SP and mature 

domain of the protein are either silent or result in amino acid exchanges within the same 

biochemical category. Mutations in the TP sequence conversely showed exactly the opposite 

trend: most amino acid exchanges altered the biochemical properties of the TP. 

 

3.1.7  Comparison of Ceratium horridum Transit Peptides with Those 

of Other Phototrophs 

 

A broader spectrum of TPs from plastid-carrying organisms was included to 

approximate whether TP composition was representative for dinoflagellates and whether TPs 

from dinoflagellates and Ceratium horridum differed from one another. To this end no more 

than three non-repetitive sequences from TPs of dinoflagellate isoforms were used in further 

analyses, as not to bias results. Visualization of differences between C. horridum, 

dinoflagellate, diatom, and plant TPs was conducted by producing a weblogo for each data 

set, which included 32 C. horridum TPs, 163 peridinin dinoflagellate TPs, 123 diatom TPs, 

and 134 plant TPs from proteins with a documented plastid function.  

 

Figure 16. Weblogo of Transit Peptides from Ceratium horridum, Total Dinoflagellate, 

Plants and Diatoms. Weblogo of 32 C. horridum TPs, of 163 TPs from isoforms of 124 

dinoflagellate plastid-targeted proteins, of 123 diatom TPs, and of 134 plant TPs. For plant TPs, the 

starting methionine was removed as not to make the other amino acids unreadable. Blue highlighted 

box depicts the first 5 amino acids of the TP, where conserved motifs can be located in TPs. 
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It was observed that an FVAP-related motif was present within 20 amino acids of the 

SignalP signal peptidase cleavage site in the majority (87%) of C. horridum plastid 

preprotein sequences. The FVAP motif is visible in the weblogo of 163 dinoflagellate TPs 

and appears to be more prominent than in C. horridum TP sequences. In contrast to the 

FVAP motif in dinoflagellate sequences, FAP motif is much more prominent in diatom 

sequences. Indeed, bit scores in figure 16 for both C. horridum and other dinoflagellate TPs 

are lower in general than the plant and diatom TPs, indicating more diversity at discreet TP 

positions. 

 

Amino Acid C.h. Dino Diatoms Plant 

Alanine (A) 20% 21% 11% 13% 

Serine (S)  10% 11% 18% 16% 

Threonine (T)  9% 8% 11% 8% 

Proline (P)  9% 8% 7% 8% 

Isoleucine (I)  3% 2% 7% 8% 

Glycine (G)  6% 7% 3% 3% 

Valine (V)  8% 9% 1% 1% 

Methionine (M)  2% 2% 9% 6% 

Leucine (L)  7% 7% 1% 3% 

Glutamine (Q)  4% 4% 4% 5% 

Trypsine (W)  1% 1% 6% 6% 

Phenylalanine (F)  4% 3% 3% 4% 

Histine (H)  2% 2% 3% 5% 

Arginine (R)  4% 5% 1% 2% 

Cysteine (C)  0% 1% 7% 4% 

Lysine (K)  3% 2% 3% 3% 

Glutamate (E)  3% 4% 2% 1% 

Aspartate (D) 2% 2% 2% 2% 

Asparagine (N) 2% 2% 2% 2% 

Tyrosine (Y)  2% 1% 1% 0% 

Non-Polar Neutral 61% 60% 48% 52% 

Hydroxylated 19% 19% 29% 24% 

Polar neutral 6% 6% 13% 11% 

Basic 9% 9% 7% 10% 

Acidic 5% 6% 4% 3% 

Table 4. Amino Acid Compositions of Plastid Protein Transit Peptides from 21 Ceratium 

horridum, 163 Peridinin Dinoflagellate, 123 Diatom, and 134 Plant Sequences. Amino acids 

and amino acid classes are listed from highest to lowest average abundance. Dinoflagellate TPs 

have a relative abundance of non-polar residues and deficiency in hydroxylated residues. 
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 Ceratium horridum TP amino acid compositions were compared to other 

dinoflagellates, to diatoms, and to plants, which revealed multiple differences, as depicted in 

table 4. The features already visible in figure 16 were specified in the numerical analyses: 

hydrophobic amino acids are about 10% more common in the C. horridum and dinoflagellate 

sequences than in diatoms and plants. Furthermore, hydroxylated and polar neutral residues 

are relatively less abundant in dinoflagellate sequences than in TPs from plants and diatoms. 

Also, only plants and diatoms were shown to have a preference for serine over threonine 

(~2:1). Perhaps the most interesting difference is that dinoflagellates have the same relative 

amount of positive charge in their TPs as diatoms and plants, but contain about 1.5 times 

more negative charge. 

The average composition of C. horridum TPs correlates very closely to that of other 

dinoflagellates and falls within the standard deviations (SD) for plant TP amino acids classes 

(see appendix). It does not however fall within the range of SD for most diatom TPs. 

Hydroxylated and polar neutral residues are below the diatom TPs SD, and non-polar amino 

acids are too abundant to fall within the SD of diatom TPs. Altogether, compositions were 

species-specific, as noted by a general lack of variations among TPs within species (≤6% 

SD). 

 
Differences in Transit Peptide Composition in Relation to C. horridum 
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Figure 17. Difference between Ceratium horridum Transit Peptides and those of Peridinin 

Dinoflagellates, Diatoms, and Plants.  Above: x-axis indicates the average composition for given 

amino acid in dinoflagellates, diatoms, or plants. A negative percentage indicates depletion in C. 
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horridum TPs, whereas positive percentage indicates dinoflagellates TPs being replete in the given 

amino acid class.  

 

The majority of C. horridum TPs (75%) contained HSP70 binding sites as determined 

by the PlasmoAP algorithm, but only one half (50.0%) of them were located in TP N-termini 

(Foth et al. 2003). In contrast to the homogenous distribution of HSP70 binding sites, C. 

horridum TPs contained the majority of their negatively charged amino acids (60%) in the 

TP C-termini, although positively charged amino acids were homogenously distributed 

among the N- and C-termini (49% and 51%, respectively), as depicted in figure 18. 

  

 

Figure 18. General Trend in Charge Separation in Ceratium horridum Transit Peptides. 

SP: signal peptide. TP: transit peptide. 

 

3.1.8 Statistical Comparative Analysis of Dinoflagellate Transit Peptides 

 

Analysis of the other 163 peridinin dinoflagellate TPs was performed to identify C-

terminal negative charge using the average length of TPs as a cutoff and including no more 

than three isoforms of each protein, 67% of negatively charged residues were found to reside 

in the C-terminal halves of TPs, while 70% of positively charged residues were concentrated 

in the first N-terminal half of the average dinoflagellate TP. C. horridum thus has 7% less 

negative charge concentrated in the C-terminal TP half and 20% less in the N-terminal half 

of TPs than the average dinoflagellate TP.  

As seen in table 5, the first half of the average dinoflagellate TP was found to have a 

net positively charge of +2.08 more than the second half. The following trend could be 

ascribed to 79% of 184 non-redundant dinoflagellate TPs (now including all C. horridum TP 

sequences): a positive charge from basic amino acids is present in the first half of the TP and 

followed by an acidic patch consisting of the majority of the TP’s negatively charged amino 

acids. Analysis of 123 diatom TPs, and 134 plant TPs in the same manner, led to the 
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observation that this trend is not absolutely absent in diatoms and plants but is much less 

distinct.  

 

 

Dinoflagellates 
N-terminal Charge  

in Relation to  

C-terminal Charge 

Charged Residues 

per TP 

From Acidic AA +0.85 3.01 
From Basic AA +1.23 2.45 

Sum +2.08 5.46 

Diatoms 
N-terminal Charge  

in Relation to  

C-terminal Charge 

Charged Residues 

per TP 

From Acidic AA +0.7 2.43 

From Basic AA +0.73 0.98 

Sum +1.43 3.41 

Plants 
N-terminal Charge  

in Relation to  

C-terminal Charge 

Charged Residues 

per TP 

From Acidic AA +1.26 2.16 

From Basic AA -0.82 7.46 

Sum +0.44 9.62 

Table 5. Charged Amino Acids in the First and Second Halves of Dinoflagellate, Diatom, 

and Plant Transit Peptides. Above: Charged amino acids in the first 50 amino acids of 184 

dinoflagellate TPs. Middle: Charged amino acids in the first 32 amino acids of 123 diatom TPs. 

Below: Charged amino acids in the first 65 amino acids of 134 plant TPs.  

 

The average diatom TP contains the least amount of charge (charged residues per TP), 

followed by dinoflagellates. The average plant TP has by far the most charged residues in 

their TPs, exceeding diatoms by a factor of >2.5 and dinoflagellates by >1.5. Roughly half of 

this charge (45%) is present in the form of arginine, which is consistent with the average 

diatom TP (48%) and in the average N-terminus of dinoflagellate TPs (55%). Of these 

charged amino acids, 78% were positively charged in plants, 71% in diatoms, and 57% in 

dinoflagellates. Dinoflagellate TPs therefore contain ~20% and ~15% more negative charge 

than plants and diatoms, respectively. To illustrate this data, a weblogo was produced as 

before except that all amino acids were omitted, which are not charged at physiological 

conditions. As can be seen in figure 19, the first 25 amino acid positions (half) of the average 

dinoflagellate TP most predominantly contains positive charge in the form of arginine, 

whereas in the second half negative residues predominate, especially glutamate. 
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Figure 19. Web Logo of Occurrence of Charged Amino Acids at Discrete Positions in 

Transit Peptides. Dinoflagellates: First 50 amino acids (average TP length) of 184 peridinin 

dinoflagellate TPs. Diatoms: First 32 amino acids (average TP length) of 123 diatom TPs. Plants: 

First 65 amino acids (average TP length) of 134 plant TPs. General Trend: Format of Charge 

Separation in Dinoflagellate Transit Peptides. SP: signal peptide. TP: transit peptide. 
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3.2 Heterologous in vivo Import Studies  

 

Because a protocol for transfection of dinoflagellates unfortunately does not exist, in 

vivo GFP targeting experiments with dinoflagellate targeting signals could only be performed 

in heterologous systems. In vivo import assays were performed to determine to what degree 

dinoflagellate targeting signals are viable for mediating transport into the ER of diatoms and 

into plant plastids. Because transport of stroma-localized class I proteins had already been 

partially characterized, viable candidates were limited to class II and class III proteins. As a 

stromal protein with no hydrophobic domains, Phosphoribulokinase (Prk) from the 

dinoflagellate Amphidium carterae was chosen to represent class II proteins. As a thylakoid 

luminal protein containing a thylakoid targeting domain (TTD), the A. carterae oxygen-

evolving enzyme of Photosystem II (PsbO) was chosen to represent class III proteins. As 

seen in figure 20, both Prk and PsbO were exemplary proteins for dinoflagellate charge 

separation. 

 

 

Figure 20. Schematic Deptiction of PsbO and Prk Sequence Demarcation and Transport.  

Depictions of A. carterae PsbO and Prk Kyte-Doolittle plots (above, window size = 11) and amino 

acid sequences with charge of N-terminal extensions. Numbers next to Kyte-Doolittle plots indicate 

relative hydrophobicity units (max.: 4.5, min.: -4.5), whereby >1.7 usually indicates a membrane-

spanning domain (Kyte and Doolittle 1982). Red: SP, green: TP, yellow: putative stop-transfer 

domain, and tan: mature protein. 
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3.2.1 Heterologous in vivo Import into the Pisum sativum Chloroplasts using 

Amphidinium carterae PsbO and Prk Transit Peptides 

 

A protocol for the transfection of the plant Pisum sativum was established to 

investigate the in vivo targeting capacity of A. carterae PsbO and Prk TP sequences (section 

6.2.11). Positive and negative controls were first tested using pAVA393 with the PsbO 

targeting signal from Pisum sativum and without a targeting sequence N-terminally fused to 

GFP, as seen in figure 21.  

 

 
Figure 21. Initial Transfections of the Plant Pisum sativum using the pAVA393 Vector.   
Above: Transfection of Pisum sativum PsbO TP N-terminally fused to eGFP served as a positive 

control for further experiments. Below: Transfection of Pisum sativum with empty pAVA vector, 

which served as the negative control in subsequent experiments. From left to right: eGFP 

fluorescence, chloroplast autofluorescence, merge, DIC. Green: eGFP fluorescence, Red: 

Autofluorescence. 

 

For in vivo Pisum sativum transfections, genetic constructs were produced with A. 

carterae TPs N-terminally fused to eGFP. Constructs of A. carterae PsbO and Prk TP 

sequences were devised to be as comparable to one another as possible. The first 19 and 20 

amino acids of respective Prk and PsbO TPs contained the majority of positive charge 

(≥60%) and no negatively charged residues. In order to determine the effect of the C-terminal 

charge of dinoflagellate TPs, the negative C-terminal charge from Prk and PsbO TPs was 

truncated. Truncated construct TPs resembled plant TPs more closely in relative composition 

and charge than full-length A. carterae TPs. Since the hydrophobic domain in the plant PsbO 
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sequence is not present in plant sequence, a construct was produced without this hydrophobic 

domain. As seen in figure 22, features of truncated A. carterae TPs varied . 

 

 

 

Figure 22. Topogenic Signals Employed for in vivo Transfection Experiments in Pisum 

sativum and Construct Amino Acid Composition Compared to Plant TP Composition. psPrk1: 

Prk full length TP sequence, psPrk2: truncated TP sequence fused to eGFP. psPsbO1: Full-length 

PsbO TP sequence containing the hydrophobic TTD, psPsbO2: PsbO TP sequence without the 

hydrophobic domain, psPsbO3: truncated TP sequence fused N-terminally to eGFP. Red: SP, green: 

TP, and yellow: putative stop-transfer domain, tan: mature protein.  

 

Transfection of P. sativum with constructs psPrk1, psPsbO1, and psPsbO2 resulted in 

an eGFP localization outside of the plant’s chloroplasts, as did the corresponding constructs 

containing Prk and PsbO SPs (not shown). Dinoflagellate targeting signals were unable to 

mediate protein import into pea chloroplasts in vivo as noted by the cytosolic eGFP 

localization.  
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Figure 23. Heterologous Transfection of Pisum sativum with eGFP Fused N-terminally to 

Full-Length and Truncated TPs from Amphidinium carterae PsbO and Prk N-terminal 

Extensions. psPsbO1: Transfection of a mesophilic cell with construct. psPsbO2: psPsbO2 

transfection of a mesophilic cell containing a central vacuole. psPrk1: Cytosolic eGFP localization 

seen in an epithelial guard cell with construct psPrk1. psPsbO3: Transfection of a mesophilic cell 

with construct psPsbO3. psPrk2: Cytosolic eGFP localization seen in an epithelial guard cell with 

construct psPrk2. From left to right: eGFP fluorescence, chloroplast autofluorescence, merge, DIC. 

Green: eGFP fluorescence, Red: Autofluorescence. 
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3.2.2 Heterologous in vivo Import into the Pisum sativum Chloroplasts using 

Chromalveolate PsbO and Prk Transit Peptides 

 

To differentiate whether unique features of dinoflagellate TPs influence in vivo 

import competence in P. sativum or whether other chromalveolate sequences also cannot 

mediate transport, chromist TPs were also used for in vivo transfections of P. sativum. To this 

end, the well-characterized AtpC TP from the diatom Phaeodactylum tricornutum as well as 

AtpC and GapC1 TPs from the cryptophyte Guillardia theta were fused to eGFP as above. 

Import of eGFP into the chloroplasts of P. sativum did not occur using any one of these 

constructs, as seen in figure 24.  

 

 

Figure 24. Heterologous Transfection of Pisum sativum with eGFP Fused to Full-lenth 

Transit Peptides from Chromists. Above: Guillardia theta GapC TP. Middle: Guillardia theta 

AtpC TP. Below: Phaeodactylum tricornutum AtpC TP. From left to right: eGFP fluorescence, 

chloroplast autofluorescence, merge, DIC. Green: eGFP fluorescence, Red: Autofluorescence. 
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3.3 Heterologous in vivo Protein Import into the Plastids of 

Phaeodactylum tricornutum using Amphidinium Carterae PsbO and 

Prk Targeting Signals 

 

Although dinoflagellates and diatoms are thought to have a common ancestor 

according to the chromalveolate hypothesis, they have a differing number of membranes 

surrounding their plastids. In both organisms, however, the first membrane that is crossed 

during transport to the plastid is the ER membrane. This translocation is thought to be 

mediated by the signal peptide in both chromists and dinoflagellates. The capacity of 

heterologous signal peptides in mediating in vivo translocation across the first membrane of 

the diatom plastid was tested. Constructs were also tested that contained not only the signal 

peptide but also variations of the transit peptide used for P. sativum transfections.  

 

3.3.1 Heterologous in vivo Protein Import in Phaeodactylum 

tricornutum using Amphidinium Carterae PsbO and Prk Signal 

Peptides 

 

Because no in vivo data exists as to whether dinoflagellate signal peptides can 

mediate import into a heterologous ER lumen, signal peptides from PsbO and Prk were tested 

in the transfectable diatom Phaeodactylum tricornutum. Figure 25 portrays both of the 

Amphidinium carterae SPs used for constructs used in transfections.  

 

 
 

Figure 25. Signal Peptides used for eGFP Constructs for Transfections of Phaeodactylum 

tricornutum from Amphidinium carterae. spPrk: signal peptide from A. carterae 

Phosphoribulokinase fused N-terminally to eGFP. spPsbO: signal peptide from A. carterae Oxygen 

Evolving Enzyme fused N-terminally to eGFP. 
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Signal peptide constructs used to transfect P. tricornutum resulted predominantly in a 

eGFP localization in the periplastidial compartment (PPC) for all constructs. As seen from 

fluorescence in the eGFP channel of figure 26, signal also arose from the ER albeit to a 

significantly lesser degree than the PPC fluorescence. There was however no signal present 

that colocalized with the plastid. 

 

 

Figure 26. Transfection of Phaeodactylum tricornutum with eGFP fused to Signal Peptides 

from A. carterae and P. tricornutum. Above: A. carterae SP from Prk: predominant PPC and lesser 

ER eGFP localization. Below: A. carterae SP from PsbO: predominant PPC and lesser ER eGFP 

localization. From left to right: eGFP fluorescence with increased contrast and brightness to portray 

totality of eGFP signal, plastid autofluorescence, merge, DIC. Green: eGFP fluorescence, Red: 

Autofluorescence. 

 

3.3.2 Heterologous in vivo Protein Import in Phaeodactylum 

tricornutum using Amphidinium Carterae PsbO and Prk Signal, 

Transit, and Thylakoid Targeting Peptides 

 

Of the A. carterae BTS constructs, ptPsbO3 was the only PsbO construct that had a 

sufficient level of basic amino acids to be comparable to diatoms, whereas ptPrk1 was within 

the diatom TP SD, and ptPrk2 was not. Both ptPsbO1, ptPsbO2, and ptPrk1 contained a 

heightened level of acidic amino acids in comparison to diatoms, whereas ptPsbO3 and Prk2 

fell within the range of the diatom TP SD. The most extreme difference noted between A. 

carterae PsbO and Prk constructs and diatom TPs was the lack of hydroxylated residues in 

constructs.  
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Figure 27. Schematic Depiction of Amphidinium carterae TTS and BTS from PsbO and Prk 

used as Topogenic Signals for eGFP Import Assays in the Diatom Phaeodactylum tricornutum. 

Above: Constructs used for transfection. ptPrk1: Prk full length BTS, ptPrk2: BTS sequence with 

TP truncated down to the 20 amino acids containing basic charge. ptPsbO1: PsbO full length TTS, 

ptPsbO2: PsbO BTS (without the hydrophobic domain), ptPsbO3: PsbO BTS with TP truncated to 

the 19 amino acids containing basic charge. Red: SP, green: TP, and yellow: putative stop-transfer 

domain, tan: mature protein.  

 

Like in Pisum sativum, full-length PsbO and Prk targeting signals were unable to 

delegate the fusion proteins into the stroma of the plastid in Phaeodactylum tricornutum 

transformants. A blob-like PPC localization of eGFP fluorescence was observed for the full-

length Prk BTS construct, whereas the construct for the full-length PsbO sequence (ptPsbO1, 

figure 28) resulted in an ER localization of eGFP. Transfection with ptPsbO2 resulted in a 

stromal localization of the eGFP signal. ptPrk1 localization was however not limited to the 

PPC, but also seemed to have a slight partial import into the diatom plastid. As denoted with 

blue arrows in figure 28, eGFP signal emanated to the left and right of the PPC and 

colocalized with plastid autofluorescence.  

 

A. 
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Figure 28. Heterologous Transfection of Phaeodactylum tricornutum with eGFP fused to 

Full-length and Truncated A. carterae Targeting Signals. ptPsbO1: ER localization. ptPsbO2: 

plastid localization; ptPrk1: PPC/plastid localization; ptPsbO3: plastid eGFP localization. ptPrk2: 

PPC/plastid eGFP localization; Blue arrows indicate GFP signal colocalizing with the plastid 

autofluorescence. From left to right: eGFP fluorescence, plastid autofluorescence, merge, DIC. 

Green: eGFP fluorescence, Red: Autofluorescence. 

 

 Truncation experiments were performed to determine whether charge segregation 

plays a role in heterologous targeting in diatoms. Like ptPsbO2, ptPsbO3 was capable of 

fully mediating transport to the stroma of the diatom plastid. Correspondingly truncated Prk 

construct resulted in strong PPC localization of eGFP and a partial stromal localization of 

eGFP in P. tricornutum similar to that from ptPrk1. 

 

 



Results   

 

    52 

3.4 Tracking Homologous Protein Targeting in Amphidinium Carterae  

 

 One of the main focuses of this thesis was to establish and execute a method for 

tracking protein transport in dinoflagellates. This involved radioactively labeled proteins and 

determining location of individual proteins within the cell. To this end, radioactive labeling 

of Amphidinium carterae protein was of paramount importance.  

To this end, an empiric evaluation of conditions for ideal uptake of 
35

S-labeling of 

Amphidinium carterae was undertaken. A paucity of sulfur in a minimal medium was 

ascertained not to ameliorate the uptake of 
35

S-sulfate, 
35

S-methionine, and 
35

S-Metmix and 

only served to decelerate growth and hamper uptake, which was measured according to 

section 6.3.5. In every case, cells were consistently were able to uptake 
35

S-methionine and 

incorporate the amino acid into proteins. Uptake was highly dependent on the age of the 

culture, and it was determined that maximal incorporation of radioactivity occurred after six 

and a half days of growth after 1:5 inoculation with a full-grown culture.  

 

 

Figure 29. Empirical Evaluation of Maximal 
35

S-Uptake and Incorporation into 

Amphidinium carterae Protein. Varying compounds and culturing times were used to achieve 

maximum incorporation of 
35

S into the A. carterae protein, which was highly dependent on the length 

of culture growth and 
35

S-compound used. Red: A. carterae cells were only able to uptake 2% to 18% 

of 
35

S-compounds available in the culture medium. Lilac: 0.1 to 4.1% of 
35

S compounds applied to 

each culture were incorporated into proteins. 

 

3.4.1 Sucrose Fractionation of Amphidinium Carterae  

  



Results   

 

    53 

The detection of plastid protein transport to the plastid necessitated the ability to 

fractionate A. carterae cells. A number of different cell fractionations were attempted with 

differing sucrose gradients, which differed in sucrose percentages and buffering systems (see 

section 6.3.3). Based on previous publications for organisms ranging from algae to plants to 

mammalian cells (Cramm-Behrens et al. 2008; Murata et al. 1979; Slavikova et al. 2005; 

Wagner and Hrazdina 1984; Zerges and Rochaix 1998), a sucrose gradient suitable for A. 

carterae was empirically determined. Culture conditions, harvesting of cells, 
35

S-labeling, 

cell lysis, and sucrose fractionation were performed as noted in sections 6.3.1 to 6.3.3.  

 

  

Figure 30. Sucrose Gradient and Fraction Compartment/Organelle Detection of 

Fractionated Amphidinium carterae cells. Left: Western blots of TCA precipitated fractions from a 

sucrose gradient. Right: Photograph of a sucrose gradient from A. carterae with sucrose 

concentrations. 

 

In order to determine which sucrose gradient fraction corresponds to which 

compartment or organelle in the cell, proteins from each gradient fraction were precipitated, 

separated by SDS-polyacrylamide gel electrophoresis, and Western blotted according to 

sections 6.3.6. Antibodies for the alpha subunit of the mammalian Sec61 were effective in 

identifying the ER in sucrose gradients at the threshold between the 20% and 25% steps of 

semi-discontinuous sucrose gradients. The lectin Wheat Germ Agglutin (WGA) was used to 

detect the Golgi apparatus in gradient fractions. The photosystem II component PsbD was 

chosen to serve as a plastid marker in Western blot analyses.  
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These antibodies were tested via Western blot analysis of sucrose gradient fractions 

according to section 6.3.7. As seen in figure 30, protein from sucrose gradient fractions 

resulted in α-Sec61 signals arising mainly in sucrose fractions 1 to 3 corresponding to 20% - 

25% sucrose. WGA signals arising in fractions 3 to 6, and plastid-specific signals arising in 

fractions 8 to 10. WGA signal also arose in fraction 8, thus colocalizing with plastid-specific 

α-PsbD signal. 
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Figure 31. ImageJ Quantification of Western Blot Relative Autoradiogram Signal 

Intensities of 
35

S-Labelled Immunoprecipitated Proteins from Sucrose Gradient Fractionation 

of Amphidinium carterae. IPs from TCA precipitated fractionations from sucrose gradient were 

blotted 3 times for 3 quantifications with 50, 100, and 200 µm StormJet scanner resolution settings. 

Percentages are a proportion of the total signal detected in the autoradiogram. Error bars indicate 

standard deviation. Fraction 11 originates from pelleting cell debris and intact cells before loading the 

sucrose gradient. 

Using specific antibodies, it was possible to perform immunoprecipitation (IP) to 

obtain and quantify radioactively labeled proteins from sucrose gradients. IP was employed 
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to track the transport of plastid proteins RbcL, Prk, and PsbO which were representative of 

class I, II, and III proteins, respectively. Results from the initial test of protein localization in 

cells not treated with a vesicle inhibitor are summarized in figures 31 and 32.  

 

 

Figure 32. Relative Autoradiogram Signal Intensities from Immunoprecipitated Proteins 

from 
35

S-Labeled Amphidinium carterae Cells (BFA Untreated). Graphic depiction of 

autoradiograph signals quantified with ImageJ, as for figure 31. Little to no signal was located in the 

Golgi fractions (5-6), the plastid fractions (8-9), or the cell debris (10-11). A significant level of Prk 

signal originated from the ER fractions (2-3). 

 

Signals from 
35

S-labeled Cellulase were strongest in fractions 10 and 11, which 

corresponded to the visible cell debris pellet at the bottom of the ultracentrifuge tube and left 

over from cell lysis, respectively. The majority of autoradiograph signals from plastid-

localized proteins were present in the plastid fractions (8-9). The second most prevalent 

cellular location for autoradiogram signals from plastid-localized proteins come from intact 

cell fractions 10 and 11, which can most probably be attributed to incomplete cell lysis. 

Together, the plastid fractions constituted 44% of signals arising from PsbO IPs, 37% of Prk 

IP signals, and 40% of RbcL signals. 15-20% of total signal originated from the ER and 

Golgi fractions, except for Prk IP signal, which was present to a significant extent (~27%) in 

the ER and Golgi.  

3.4.2 Effects of Brefeldin A on Protein Mobility in Sucrose Gradient 

Fractionations of Amphidinium Carterae  

 



Results   

 

    56 

After verifying the viability of tracking protein transport in A. carterae cells, 

Brefeldin A was employed to interrupt vesicle flow to A. carterae plastids. An empiric 

determination of a BFA concentration was necessary to ascertain the lethal dosage. The 

initial concentration of 7.5 µg BFA/mL was determined to be viable based on the retention of 

the secondary metabolic characteristic of motility in approximately 50% of treated cells. At 

this concentration, more than half of the cells were still visibly motile, whereas higher 

concentrations led to cell death.  

 

 

Figure 33. Effect of Brefeldin A on the Location of ER in Sucrose Gradients. α-Sec61 

signals shifted from fraction 1 and 2 in untreated cells to fraction 2 in cells treated with 2.5 µg and 5 

µg BFA per mL. α-Sec61 signals shifted to fraction 3 in cells treated with 7.5 µg BFA/mL. 

 

Because BFA in essence leads to a fusion of ER and Golgi apparatus, it was 

necessary to ascertain if a shift between Golgi and ER density had occurred as a result of 

BFA treatment. To this end, Western blots from fractionated cells treated with BFA were 

compared with the signal from untreated cells. As seen in figure 33, α-Sec61 signals shifted 

from fraction 1 and 2 in untreated cells shifted to fraction 2 with 2.5 µg and 5 µg BFA per 

mL and to fraction 3 in cells treated with 7.5 µg BFA/mL. As seen in figure 34, the 

localization of the Golgi apparatus in the third fraction of the sucrose gradient was not 

dependent on BFA concentration. At the highest BFA concentration, α-Sec61 and α-WGA 

signals overlapped in fraction 3.  
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Figure 34. Effect of Brefeldin A on the Location of Golgi Apparatus in Sucrose Gradients. 
BFA had the effect that WGA signals from fraction 3 and 4 remained unchanged with and without 

BFA. 

 

Radioactive labeling and BFA inhibition experiments were first executed using 7.5 

µg BFA/mL. 50 – 90 % of autoradiograph signals from plastid proteins were observed in the 

ER and Golgi fractions at this concentration. Baseline IP signals were observed to have 

originated from the plastid-containing fractions and cell debris fractions. In addition to 

plastid proteins, Cellulase was also inhibited by the BFA treatment, as seen by the ER 

localization displayed in figure 35. 

 

 

Figure 35. Relative Autoradiogram Signal Intensities from Immunoprecipitated Proteins 

from 
35

S-Labeled Amphidinium carterae Cells treated with 7.5 µg BFA/mL. Signals were 

quantified with ImageJ as above. Little to no signal is located in the Golgi fractions (5-6), the plastid 

fractions (8-9), or the cell debris (10-11), because proteins are virtually exclusive to the ER fractions 

(2-3). 
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In comparison to the 7.5 µg/mL treatment of A. carterae, a concentration of 5 µg 

BFA/mL subsequently resulted in a marked difference. Except for RbcL, virtually all 

autoradiograph signals from examined proteins were located in the endomembrane fractions. 

In contrast to signals from 7.5 µg BFA/mL inhibition, approximately 50% of RbcL 

autoradiograph signals were localized in the plastid and unlysed cell fractions (8-11). The 

rest of RbcL signal arose from the endomembrane fractions. The secretory system was also 

observed to have been inhibited at this BFA concentration, as seen by the ER fraction 

localization of Cellulase autoradiograph signal. 

 

 

Figure 36. Relative Autoradiogram Signal Intensities from Immunoprecipitated Proteins 

from 
35

S-Labeled Amphidinium carterae Cells treated with 5 µg BFA/mL. Signals were quantified 

with ImageJ as above. Little to no signal is located in the Golgi fractions (5-6), the plastid fractions 

(8-9), or the cell debris (10-11), because proteins are virtually exclusive to the ER fractions (2-3). The 

exception to this is displayed by RbcL, which apparently was partially transported to the plastid at 

this BFA concentration. 

 

A comparative increase in RbcL transport, i.e. increase in autoradiogram signal from 

the plastid fractions, was observed in cells treated with 2.5 µg BFA/mL. In comparison to the 

7.5 µg BFA/mL and 5 µg BFA/mL treatments of A. carterae, a substantial shift in RbcL 

localization took place. 92% of RbcL signal arose in from the plastid fractions in this 

experiment. In contrast, 50-70% of autoradioagraph signals from other examined proteins 

were located in the endomembrane fractions. Like at 5µg BFA/mL, RbcL was once again the 

sole protein to have been transported to any substantial degree to the plastids. 
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Figure 37. Relative Autoradiogram Signal Intensities from Immunoprecipitated Proteins 

from 
35

S-Labeled Amphidinium carterae Cells treated with 2.5 µg BFA/mL. Signals were 

quantified with ImageJ as above. Little to no signal is located in the Golgi fractions (5-6), the plastid 

fractions (8-9), or the cell debris (10-11), because proteins are virtually exclusive to the ER fractions 

(2-3). The exception to this is displayed by RbcL, which apparently can be normally transported at 

these BFA concentrations. 

 

To summarize, the homologous transport of 
35

S-labeled plastid-destined proteins in 

Amphidinium carterae is completely inhibited by the effects of Brefeldin A at a 

concentration above 5 µg BFA/mL. Effects of BFA did not diminish by lowering the 

concentration to below half of the lethal dosage, except in the case of Rubisco, for which 

transport is restored to about 50%. Although all other proteins continue to be inhibited by the 

2.5 µg BFA/mL, Rubisco transport is not inhibited at all and even shows an increase in 

plastid localization in comparison with untreated cells, as seen in figure 37.  

 

3.4.3 Electron Microscopic Examination of the Effects of Brefeldin 

A on Protein Localization in Amphidinium carterae  

 

Results from tracking subcellular protein localization with sucrose gradients were 

supplemented with electron microscopy. Freeze substitution was used to fix cells treated with 

2.5 µg BFA/mL and untreated cells for electron micrograph analysis, according to section 

6.4.1. Comparative analysis of electron micrographs led to the conclusion that cells treated 

with BFA did not contain a discernable intact Golgi apparatus or ER. Instead, an increase in 
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centrally located vacuoles (labeled “6” in figure 38) was observed around the pyrenoid in 

BFA-treated cells.  

 

 

 

Figure 38. Osmium Tetraoxide Contrasted Electron Micrographs of Amphidinium carterae 

Cells (un)treated with 2.5 µg BFA/mL and Fixed via Freeze Substitution. Upper micrographs: 

Untreated cells. Lower micrographs: Cells treated with 2.5 µg BFA/mL. Blue arrow denotes the 

Golgi apparatus, 1: Plastid, 2: Cell nucleus containing condensed liquid crystalline chromosomes, 3: 

ER, 4: mitochondria, 5: pyrenoid, and 6: membrane-contained vacuole. Bold red arrows: Denote 

connections between vesicular protrusions of vacuolar system. Bar: 500 nm. 

 

In BFA-untreated cells, internal membranous vacuoles were observed to be not nearly 

as prominent or as fragmented as in BFA-treated cells. In treated cells, the nuclear envelope 
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space was bloated in comparison to untreated cells (nucleus is “2” in figure 38). The 

perimeter of the pyrenoid in BFA-treated cells is veritably littered with interconnected 

vesicular protrusions of the endomembrane system. Markedly more material was located in 

the endomembrane system of BFA-treated cells than of untreated cells. Furthermore, no 

Golgi apparatuses were observed in BFA-treated cells. Although no visible effect resulting 

from BFA treatment was observed in the cells’ pyrenoids, thylakoid stacks within plastids are 

more interspersed and not as uniformly distributed in the plastid in comparison to untreated 

cells. Mitochondria were present in comparable number in treated and untreated cells. The 

pyrenoid and the starch sheath were entirely intact in treated as well as untreated cells. 

 

3.4.3.1 Immunogold Labeling with α-PsbO in Amphidinium carterae Cells 

Treated with Brefeldin A 

 

As seen in figure 37, 2.5 µg/mL BFA treatment led to an inhibition of PsbO transport 

to the plastid and a localization in the endomembrane system. Immunogold labeling of α-

PsbO in correspondingly 2.5 µg BFA/mL-treated and untreated cells was performed 

according to section 6.4.2. Ca. 50 immunogold signals were used for statistical analysis of 

protein localization caused by BFA treatment. Immunogold labeling with the α-PsbO 

antibody in untreated cells resulted in 80% of signals being located in the plastids. 

Immunogold labels that were not located in the plastids were located either directly next to 

the plastid or proximal to an endomembrane in untreated cells. Immunogold labeling with the 

α-PsbO antibody in BFA-treated cells resulted in 74% of signals being located at the 

periphery of the bloated endomembrane vacuoles. No signals were located in the interior of 

the endomembrane vesicles/vacuoles, and 26% of signals were located in thylakoids in BFA-

treated cells.  
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Figure 39. α-PsbO Immunogold Labeling of Amphidinium carterae Untreated Cells and 

Fixed via Freeze Substitution. Green Arrows indicate signal arising from plastids. Red Arrow 

indicates signal arising from the endomembrane system. Blue arrows denote the Golgi apparatus. E: 

Exterior of cell. Bar: 500 nm. 
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Figure 40. α-PsbO Immunogold Labeling of Amphidinium carterae Cells Treated with 2.5 

µg BFA/mL and Fixed via Freeze Substitution. Green Arrows indicate signal arising from the 

periphery of fused endomembrane system. Red Arrows: α-PsbO signals proximal to the membranes 

of the endomembrane system. A large amount of protein was present in vacuoles in comparison to 

figure 39. E: Exterior of cell. Bar: 500 nm. 
 

3.4.3.2 Immunogold Labeling with α-RbcL in Amphidinium carterae Cells 

Treated with Brefeldin A 

 

As seen in figure 37, 2.5 µg/mL BFA treatment did not lead to an inhibition of RbcL 

transport to the plastid, as RbcL autoradiograph signals mainly originated from plastid 

fractions. Immunogold labeling of α-RbcL in correspondingly 2.5 µg BFA/mL-treated and 

untreated cells was performed according to section 6.4.2. Immunogold labeling with the α-

RbcL antibody in untreated cells resulted in 79% of signals being located in the plastids. 

Signals that were not located in the plastids were located in the endomembrane system. 

Immunogold labeling with the α-RbcL antibody in BFA-treated cells resulted in 84% of 

signals being located in the plastids.  
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Figure 41. α-RbcL Immunogold Labeling of Untreated Amphidinium carterae Fixed via 

Freeze Substitution. Green Arrows indicate signal arising from the endomembrane system 

membranes. Red Arrow: α-RbcL signals proximal to the membranes of the endomembrane system. 

E: Exterior of cell. Bar: 500 nm. 
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Figure 42. α-RbcL Immunogold Labeling of Amphidinium carterae Cells Treated with 2.5 

µg BFA/mL and Fixed via Freeze Substitution. Green Arrows: indicate signal arising from the 

periphery of fused endomembrane system. Red Arrow: α-RbcL signal proximal to the membranes of 

the endomembrane system. E: Exterior of cell. Bar: 500 nm. 
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4 DISCUSSION 

 

4.1 Ceratium horridum EST Library 

 

Comparative analyses resulted in the identification of C. horridum plastid proteins 

and topogenic signals. From these analyses, new insights were gained about general features 

of dinoflagellate targeting signals, which were tested in heterologous and homologous 

systems in vivo. 

 

4.1.1 General Features 

 

EST data from Ceratium horridum corresponded to general parameters established 

for other published dinoflagellate EST libraries, such as G+C content, prominent 

constituents, genes transfers from non-dinoflagellates were present, and roughly half of 

homologies were dinoflagellate hits (Bachvaroff et al. 2004; Joseph et al. 2010; Kwok and 

Wong 2010; Tanikawa et al. 2004; Uribe et al. 2008). The ratio of ESTs to unigenes (55%) is 

higher than that reported for other dinoflagellate EST libraries. Similar to other EST libraries, 

genes encoding plastid-targeted products were the third largest constituent represented in the 

data set (13%), which showed little variety (4% of unigenes). Considering the fact that these 

proteins contribute to the cell’s main source of energy, fatty acids, and carbon, this percentile 

is low. 

C. horridum homologies differ slightly from a recently published Perkinsus marinus 

EST library, in which BLAST hits originated mainly from dinoflagellates, followed by 

stramenopiles, viridiplantae and other alveolates (Joseph et al. 2010; Toulza et al. 2010). C. 

horridum EST homologies however differed greatly from those of a recent dinoflagellate 

EST library from Alexandrium catenella, in which EST homologies were disproportionately 

bacterial hits in comparison to C. horridum and other dinoflagellates. Without the use of 

tBLASTX, 62% of C. horridum EST homologies would not have been identified, which was 

similar to the value for the P. marinus EST library (Joseph et al. 2010).  



Discussion   

 

 67 

The lack of BLAST homologies for about half of C. horridum ESTs is quite 

commonplace among dinoflagellate EST libraries (Joseph et al. 2010; Kwok and Wong 

2010; Toulza et al. 2010). Nonetheless, it is noteworthy that – unlike those from any other 

dinoflagellate – the second-most prominent gene cluster in this EST library was a protein of 

unknown function.  

The lack of homologies obtained from dinoflagellate EST libraries can be attributed 

to the fact that many dinoflagellate proteins are simply not present in other clades with 

annotated genomes, as dinoflagellates are known to have unique morphological and 

biochemical traits that set them apart from all other organisms, including other alveolates 

(Kellmann et al. 2010; Kita et al. 2010; Kobayashi and Kubota 2007; Lukes et al. 2009). Of 

the C. horridum unigenes encoding proteins of unknown function, gene products were 

identified with a plastid localization. Analysis of proteins encoded by C. horridum ESTs 

resulted in the identification of gene transfers and of topogenic signals in proteins of 

unknown function as well as proteins with known plastid functions. 

 

4.1.2 Gene Transfers 

 

Whereas endosymbiontic gene transfers (EGTs) like those from the dinoflagellate 

plastid genome to the host genome are fairly common occurrences in eukaryotes, gene 

transfers from sources other than endosymbionts have yet to be actively investigated 

(Richardson and Palmer 2007). Such horizontal gene transfers (HGTs), i.e. transfers of 

genetic material between unrelated species, are much less prevalent than EGTs and typically 

account for only <1% of nuclear genes from eukaryotes in which such genes are identified 

(Andersson, 2005).  

It is thus not unprecedented that 2 of 922 C. horridum unigenes identified by 

phylogenetic analyses arose from organisms outside the red lineage. Like Prk sequences from 

chromists and alveolates that originated from the green lineage (Petersen et al. 2006), robust 

bootstrap and posterior Bayesian position values support gt57c03 and gt62_f11 as having 

been transferred from the green lineage. Based on the present understanding of the evolution 

of chromalveolates, the sources for these green lineage genes in C. horridum could be either 

1) an HGT from an unrelated green plant/algae or 2) an EGT from a green algal 
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endosymbiont that preceded the present red one, as previously suggested (Elias and 

Archibald 2009). The latter posit implicates green lineage genes as having been present in 

alveolates since before the acquisition of their red lineage plastid. This would entail the 

elimination of the majority of green lineage genes from the host’s nuclear genome and their 

replacement with red algal homologs. This posit is bolstered by the presence of numerous 

green lineage genes in the genomes of chromists and alveolates (Archibald 2009; Elias and 

Archibald 2009; Huang et al. 2004; Keeling and Palmer 2008; Moustafa et al. 2009; Nosenko 

and Bhattacharya 2007; Stelter et al. 2007).  

From the data at hand, it cannot be definitively determined whether gt57c03 

(encoding AMP-activated protein kinase) and gt62_f11 (encoding UDP-glucose 

dehydrogenase) are HGTs from the green lineage or whether they arose from a more ancient 

EGT from a former green endosymbiont. It has however been suggested based on whole-

genome phylogenetics of Phaeodactylum trictornutum and Thalassiosira pseudonana that at 

least diatoms may have originally contained a green endosymbiont prior to their present red 

algal endosymbiont (Moustafa et al. 2009). Furthermore, phylogenetic and biochemical 

analyses indicate that apicomplexans contain genes of green lineage origins, despite the 

presence of their current red algal endosymbiont (Funes et al. 2002; Harper et al. 2009; 

Janouskovec et al. 2010; Stelter et al. 2007). In light of these indications that a green 

endosymbiont preceded the present red one in other chromalveolates, it is probably more 

likely that the acquisition of these green lineage genes in C. horridum was the result of an 

EGT than an HGT. 

Acquisitions of proteins like Gt57c03 and Gt62_f11 often entail combining 

phylogenetically unrelated proteins in a single pathway (Elias and Archibald 2009). It is 

unknown what factors play a role in the acquisition, modification, and elimination of genes in 

dinoflagellate genomes (Lukes et al. 2009), so the factors involved in the selection for or 

against either a host gene or a transferred gene after HGT or EGT are likewise unknown. 

Hence, hypotheses as to which genes are retained in the dinoflagellate genome are effectively 

speculative. That being said, it can be inferred that the widespread occurrence of gene 

product hodgepodges from different lineages that interact with each other in identical cellular 

compartments (Elias and Archibald 2009) are an indication either that constructive neutral 

and/or concerted evolution is taking place (Lukes et al. 2009; Reichman et al. 2003) or that 

there is indeed a selective advantage to utilizing proteins from gene transfers. Any number of 
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factors may influence evolutionary selection of genes, including protein architecture for 

protein-protein interaction, biochemical rate-limiting steps influencing positive/negative 

feedback loops, substrate binding coefficients, and the possible presence of moieties for 

biochemical modifications serving in post-translational protein regulation. Only the cross-

species comparison of specific pathways involving HGT and EGT proteins and the 

biochemical characterization thereof will shed light on this issue, such as those already 

performed for Prk (Maberly et al. 2009). 

 

4.1.3 Plastid Targeting Signals 

 

 Topogenic signals encoded by Ceratium horridum ESTs conform to general trends of 

topogenic signals for organisms containing complex plastids and contain dinoflagellate-

specific motifs (Patron et al. 2005). BTSs from C. horridum plastid proteins share some 

characteristics with related organisms. The AXA motif indicative of the signal peptide 

peptidase cleavage site in stramenopiles (Kilian and Kroth 2005) is indicated by the weblogo 

in figure 16. Despite this, it is present only in very few dinoflagellate presequences, as shown 

exemplarily in figure 43. Alanines are some of the most prevalent amino acids in 

dinoflagellate signal and transit peptides (see figure 14 and 16 as well as table 4), thus the 

AXA motif may simply be the result of alanine’s prevalence in the three amino acid positions 

preceding the predicted signal peptide cleave site. 

 Close to the cleavage site predicted by SignalP, the majority of C. horridum signal 

and transit peptides are demarcated by an A^F motif, like in most other red algae with 

secondary endosymbionts. Like other dinoflagellates, this phenylalanine is commonly 

located in the context of a motif that bears similarity to the FAP motif found in chromists 

(Patron et al. 2005). Unlike chromists, the dinoflagellate FVAP motif is usually not at the 

position +1 of the TP predicted by SignalP, and was found in only a third of TPs to be 

located within three amino acids of the signal peptide peptidase site, as seen in figure 43.  

 Unlike the FAP motif in chromist TPs, the FVAP motif is infrequently located 

directly at the N-terminus of dinoflagellate TPs (in 26% of TPs). Thus, the cleavage site 

predicted by SignalP might only roughly correlate to the actual signal peptidase cleavage site 

in dinoflagellates. If this were the case, then these FVAP motifs may indeed be conserved at 

the transition between signal and transit peptides of dinoflagellate BTSs. If SignalP however 
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is correctly predicting the cleavage site, then the positioning of the motif may have a degree 

of flexibility relative to the N-terminus of the TP. 

 

 

Figure 43. Signal Peptide Peptidase Cleavage Site in Dinoflagellate BTS as per SignalP. 
Arrow: signal peptide peptidase cleavage site as per SignalP, Red: Signal Peptide, Green: TP, 

White: FVAP motif, Blue: last three amino acids of signal peptide, if FVAP motif marks the actual 

peptidase cleavage site. 

 

Analysis of C. horridum ESTs supports the conclusion that dinoflagellate TPs 

generally have a positively charged N-terminus and a negatively charged C-terminus. In prior 

examinations of dinoflagellate TP compositions, this trend has gone unnoticed, possibly due 

to a relatively small data set (Patron and Waller 2007). In the present study, sampling was 

broadened to include over three times as many sequences from a broader range of 

dinoflagellates. The overall picture of dinoflagellate TP composition then differs from 

published results. Most dinoflagellate TPs are more negatively charged than described in 

Patron and Waller 2007. Furthermore, the net charge of dinoflagellate TPs is also lower in 

comparison with TPs from many other chromists and alveolates, which may indicate a 

difference in the interaction between dinoflagellate TPs and their homologous protein 

transport machinery. 

The posttranslational orientation of proteins in the ER membrane, in plastid-destined 

vesicles, and in the outermost plastid membrane after vesicle fusion was determined based on 

whether TPs contained putative membrane-spanning domains. In such hydrophobicity-based 

predictions, orientations of class I proteins like RbcL differed from class II proteins like Prk, 

whereas class I proteins and class III proteins like PsbO were extremely similar in their 

predicted orientations. Thus, class III proteins like PsbO were determined to have 
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hydrophobicity profiles indicative of a previously undescribed membrane-spanning domain 

located in the thylakoid targeting domain (TTD). Such hydrophobic membrane-spanning 

domains located in the TPs of plastid-targeted proteins are thought to be stop-transfer 

domains (STDs) (Nassoury et al. 2003; Slavikova et al. 2005; van Dooren et al. 2001). Based 

on the orientation of class I and III preproteins in membranes during transport to the plastid, 

the mature coding sequence of such preproteins has a cytosolic location during and after 

transport to the plastid surface. Contrary to published results on dinoflagellate and Euglena 

gracilis TPs (Durnford and Gray 2006), C. horridum does not have a high level of plastid-

destined TPs containing STDs. 

C. horridum transit peptides were found to contain a slight degree of charge 

separation, as shown in figure 19. Upon comparison of dinoflagellate TPs with those of 

diatoms and plants, this feature was found to be most prominent in dinoflagellate sequences 

and only present to a lesser degree in diatoms and plants. Besides STDs and charge 

separation, there is a notably higher level of hydroxylated amino acids in land plants and 

diatoms than in dinoflagellate TPs.  

In respect to TP hydroxylated amino acid content, C. horridum is very comparable to 

E. gracilis and nucleus-encoded Guillardia theta TPs (Durnford and Gray 2006; Patron and 

Waller 2007; Ralph et al. 2004) yet very different from the published value for 

dinoflagellates and apicomplexans (Patron and Waller 2007; Ralph et al. 2004) and identical 

to the value for the dinoflagellate value found in this study, as seen in table 6.  

 

Source Land Plant 
Euglena 

gracilis 
Diatom 

Guillardia 
 theta,  

nuclear 

Guillardia  
theta, 

nucleomorph 

Ceratium 

horridum 
Dinoflagellate Apicomplexa 

This study 24% - 29% - - 19% 19% - 

Patron & 

Waller 2007 
26% 20% 28% - - - 15% 12% 

Ralph et al. 

2004 
28% - - 21% 10% - - 14% 

Table 6.  Hydroxylated Amino Acids Content of Plastid Transit Peptides in Various 

Organisms. 
 

The lack of hydroxylated amino acids in dinoflagellate transit peptides may 

potentially indicate that they are fundamental different from plant TPs, in which 

hydroxylated residues are necessary for efficient translocation into plant chloroplasts (Soll 
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and Schleiff 2004). Hydroxylated amino acids seem to be replaced by non-polar neutral 

residues in dinoflagellates, which may reflect the occurrence of STDs in class I and III 

dinoflagellate TPs. In comparison to plants, organisms containing complex plastids do not 

need to phosphorylate hydroxylated residues in order to discriminate plastid TPs from 

mitochondrial TPs (Ralph et al. 2004), possibly because transport to complex plastids is 

mediated by the endomembrane system where mitochondrial TPs are not present (Waller et 

al. 2000). Diatoms curiously pose the exception to this line of logic, as they have a level of 

hydroxylated residues in their TPs that is comparable to plant TPs.  

Apicoplast TPs from the genus Plasmodium on the other hand have a much lower 

relative serine/threonine content (ca. 9.5%) than dinoflagellate TPs (Ralph et al. 2004). All 

other discussed non-plant organisms have at least twice this level in nuclear-encoded TPs, so 

the content of hydroxylated amino acids is diminished but not necessarily irrelevant in TPs 

for complex plastids. Therefore, in dinoflagellates and other non-plant organisms (except in 

Plasmodium species), the content of hydroxylated amino acids in TPs may still play a role in 

protein transport that is not necessarily identical to their role in plant TPs.  

 

4.2 Heterologous in vivo Import Assays using Dinoflagellate Targeting 

Signals  

 

Heretofore, the overwhelming majority of hypotheses about dinoflagellate protein 

transport have actually been inferences from chromists and alveolates. To test insights 

obtained from extensive in silico analyses of dinoflagellate TPs, experiments were 

undertaken to confirm and append previous in vitro and in situ results. Because there is no 

transfection protocol for dinoflagellates as yet, in vivo heterologous transfection is the best 

method presently available for shedding light on further aspects of protein transport into 

plastids.  
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4.2.1 In vivo transfection of Pisum sativum with Amphidinium carterae PsbO 

and Prk Transit Peptides  

 

In vivo and in vitro import assays in plants heterologously transfected with transit 

peptides from organisms containing primary and secondary plastids have been performed 

previously to determine the viability of heterologous TPs. In vivo import assays using TPs 

from Guillardia theta preproteins encoded on the nucleomorph genome (originally the 

nucleus of a red alga with a primary endosymbiont) have been shown to be viable in 

Arabidopsis thaliana protoplasts (Hjorth et al. 2005). Moreover, a TP from the free-living red 

alga Porphyra yezoensis was also functional in in vitro import into isolated chloroplasts 

(Chaal and Green 2005). PsbO TPs from the euglenophyte Euglena gracilis, the 

dinoflagellate Heterocapsa triquetra, and the raphidophyte Heterosigma akashiwo have all 

been determined to be viable for in vitro import into isolated pea chloroplasts (Chaal and 

Green 2005; Inagaki et al. 2000). Furthermore, TPs from nucleus-encoded Phaeodactylum 

tricornutum and G. theta proteins were also shown to have mediated import into isolated pea 

chloroplasts in vitro (Lang et al. 1998; Wastl and Maier 2000). From these results, it was 

deduced that the translocation machineries of the plastid envelope may be analogous in all 

plastids examined in this fashion and that TPs are arguably so similar that they may mediate 

transport into most if not all photosynthetic plastids. 

In order to supplement existing in vitro data, in vivo import studies were conducted 

using topogenic signals from dinoflagellates in P. sativum and P. tricornutum, which should 

provide a more accurate determination of whether dinoflagellate presequences can interact 

with a heterologous translocation machinery in its native milieu. Transfection of plants with 

chromist and dinoflagellate TPs were expected to be able to mediate import via the homologs 

of their own Omp85/TOC complexes (Bhattacharya et al. 2007; Bullmann et al. 2010). 

The results depicted in figures 23 do not confirm this expectation, as neither PsbO nor 

Prk constructs allowed for eGFP colocalization with pea chloroplast autofluorescence. These 

in vivo results clearly differ from previous in vitro results. No tested variation of any 

Amphidinium carterae or Ceratium horridum TPs were able to mediate transport into pea 

chloroplasts in vivo (see figures 23 and appendix). For this reason, cryptophyte and diatom 

TPs were added as a positive control. These were also unable to confer eGFP with the 
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capacity for chloroplast import, thus demonstrating that previous results from in vitro import 

assays into isolated chloroplasts may not be accurate. This contradiction of in vivo and in 

vitro results has been addressed in homologous experiments in plants, which led to the 

conclusion that in vitro assays lack native cytosolic factors that confer import stringency 

(Schleiff et al. 2002).  

Because chromalveolate transit peptides were not compatible with the plant 

translocation machinery, their TPs are seemingly clade-specific. This suggests that TPs do 

not have an intrinsic ability to mediate plastid import, which was previously inferred from 

heterologous in vitro import assays into isolated chloroplasts (Chaal and Green 2005; Inagaki 

et al. 2000; Lang et al. 1998).  

 

4.2.2 Heterologous in vivo Transfections of Phaeodactylum tricornutum 

 

 Homologous bipartite signals from P. tricornutum can be used to target eGFP to four 

subcellular destinations that are readily recognized with CLSM and associated with plastid 

transport: the ER, the periplastidial compartment (PPC), the intermembrane space (IMS) 

between the 3
rd

 and 4
th

 outermost plastid membranes, and the stroma (Bullmann et al. 2010; 

Gruber et al. 2007). Heterologous BTSs from nuclear-encoded G. theta proteins have 

mediated transport to all of these destinations except the IMS plastid compartment (Gould et 

al. 2006b), thus demonstrating that BTSs of chromists can be similar enough as to be 

interchangeable. Like the BTSs of P. tricornutum and G. theta, A. carterae BTSs are divided 

into signal and transit peptides. The targeting capacity of dinoflagellate BTSs in P. 

tricornutum could have potentially been incompatible with the diatom’s protein transport 

machinery not only due to differences discussed in section 4.1.3 but also because signals 

within the BTS could have contained information that was specific to the three-membraned 

dinoflagellate plastids and that could have interfered with transport across the diatom’s four 

plastid membranes. 
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4.2.2.1 Heterologous in vivo Transfections of Phaeodactylum tricornutum with 

Amphidinium carterae Signal Peptides 

 

 Although signal peptides (SPs) are often interchangeable in heterologous systems 

(Bhaya and Grossman 1991; Gould et al. 2006a; Howard and Schmidt 1995; Wastl and 

Maier 2000), a test of the viability of A. carterae PsbO and Prk SPs in P. tricornutum was 

undertaken as a control for further experiments with BTSs. As seen in figure 25, PsbO and 

Prk signal peptides were found to be sufficient for transport into the ER.  

 Surprisingly, the SPs also were sufficient for transport into the diatom’s PPC. From 

this, it can be inferred either that this was a byproduct of overexpression or that the SP was 

not cleaved from eGFP in the ER, in which case the SP mediated transport into the PPC. It 

can thus be argued that dinoflagellate SPs contain enough features of a TP as to allow for 

transport across the periplastidial membrane (PPM). Overexpression of the SP constructs 

could have inundated the ER with so much fusion protein that the PPC localization may be 

an artifact. If the SPs mitigated PPC import, then it may have done so merely by containing 

the minimal characteristics of a PPC TP, e.g. positive net charge and hydrophobicity. If this 

were to be the case, then it might indicate that the PPM-resident translocation machinery is 

not highly stringent. 

 

4.2.2.2 Heterologous in vivo Transfections of Phaeodactylum tricornutum with 

Amphidinium carterae BTSs 

 

 As seen in figures 27, PsbO BTSs were able to mediate transfer into the plastid 

stroma, whereas the Prk BTSs could only do so to a lesser degree. This implies that 

dinoflagellate plastid-targeting signals are, at most, only partially attenuated to the 

dinoflagellate transport machinery, although dinoflagellate presequences were previously 

suggested to be modified to accommodate their three-membraned plastids (Nassoury et al. 

2003). Theoretically, this postulated attenuation could have resulted in difficulties in 

mediating transport into the four-membraned P. tricornutum plastid with heterologous 

dinoflagellate topogenic signals. Based on the results shown here, this postulate is partially 

applicable: ptPsbO1 and both Prk constructs did not facilitate full plastid import. 

Nonetheless, like in transfections of P. tricornutum using heterologous BTSs from the fellow 
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chromist Guillardia theta (Gould et al. 2006a; Gould et al. 2006b), dinoflagellate topogenic 

sequences were shown to function in the diatom.  

The ER localization observed with ptPsbO1 indicates that the hydrophobic TTD of 

PsbO may very well act as an STD in vivo. Because STDs have yet to be reported in chromist 

TPs, the P. tricornutum translocation machinery could have been unable to transport the 

putatively membrane-integrated ptPsbO1 fusion protein. Without the hydrophobic domain, 

the PsbO presequence was able to mediate transport into the plastid stroma, so the fusion 

protein probably remained stuck in the ER membrane as a result of being integrated into the 

membrane via the STD. Although the TTD could be hindering transport in another unknown 

fashion, in silico predictions indicate that a membrane helix is present in the TTD, so the ER 

localization of ptPsbO1 and not of ptPsbO2 seen in figures 27 is the first good in vivo 

indication that dinoflagellate TTDs can also act as STDs. Inasmuch as the A. carterae 

ptPsbO1 presequence was not able to facilitate transport into the P. tricornutum plastid, the 

sequence seems to be attenuated to the dinoflagellate transport machinery. Due to the 

prevalence of STDs in dinoflagellate plastid-targeting signals (Durnford and Gray 2006; 

Patron et al. 2005), it can be deduced that the dinoflagellate protein transport machinery and 

not the heterologous diatom machinery has the capacity of dealing with STD-containing class 

I and III proteins.  

In line with the discussion of PPC localization mediated by A. carterae SPs in section 

4.2.2.1, one of the following conclusions may be applicable in explaining the translocation 

into the PPC facilitated by the Prk BTS: 1) the heterologous dinoflagellate Prk signal peptide 

was not cleaved in the ER but nevertheless conferred transport across the PPM or 2) the SP 

was cleaved in the ER lumen and the TP successfully facilitated transport across the PPM. 

Significant homology of the protease cleavage site in both diatoms and dinoflagellates would 

be required to truncate the SP at the correct position and thus expose the TP. Although it is 

possible that the Prk SP mediated transport into the PPC, no partial ER localization resulted 

from ptPrk1 and ptPrk2 and a partial plastid localization occurred, in contrast to spPrk and 

spPsbO (figures 26 and 28). It can hence be concluded that the Prk SP was cleaved and the 

Prk TP was fully compatible with the translocation machinery of the PPM but only partially 

compatible with the machinery at the third outermost membrane. This would again indicate 

that discrimination at the PPM was less stringent than at the third outermost plastid 

membrane. 
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 Despite the net negative charge TPs in constructs ptPsbO2 and ptPrk1, they were 

sufficient to mediate full and partial transport across the diatom PPM, respectively. This 

differs from the in ER and PPC eGFP localizations acquired in P. tricornutum from 

homologous TPs that were mutated to contain a net neutral or negative charge instead of a 

Wt net positive charge (Felsner et al. submitted). Because positive charge was located N-

terminally in the A. carterae TPs, it is plausible that the position of positive charge was more 

important than TP net charge in mediating plastid import, as suggested previously (Foth et al. 

2003; Tonkin et al. 2008a).  

Changes in composition and net charge of A. carterae PsbO and Prk transit peptides 

introduced by truncation had no influence on import into the P. tricornutum plastid, as seen 

in figure 28 for constructs ptPsbO3 and ptPrk2. Conversely, the N-terminal composition of 

Prk, albeit more similar to that of a typical diatom TP, was at best partially sufficient for 

translocation. By identifying charge segregation in dinoflagellate TPs, it was inferred that the 

N-terminal region could potentially mimic the TPs of diatoms and plants due to its overall 

positive charge and higher serine/threonine content. Because important features tend to be 

located in the N-termini of TPs (Patron and Waller 2007), truncation of the Prk BTS could 

potentially have facilitated an improved plastid localization in P. tricornutum or in P. 

sativum. Furthermore, the first ~20 amino acids of the heterologous TPs were apparently 

decisive in conferring plastid import. 

Despite apparently not having influenced transport in heterologous systems, the 

abundance of the negatively charged regions among dinoflagellate TPs implicates the C-

terminus as possibly containing dinoflagellate-specific targeting information that was 

superfluous in the diatom. In conclusion, import into P. tricornutum plastids with 

heterologous TPs was not improved by eliminating regions of net negative charge. Based on 

these results, it can thus be argued that a TP containing positive charge and conforming to 

general TP composition was not of primary importance in mitigating import across the 

plastid envelope, contrary to conclusions reached for apicoplast TPs in Plasmodium 

falciparum (Tonkin et al. 2006a). 
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4.2.3 Implications of in vivo Transfections  

 

Dinoflagellate Prk sequences are known to be homologs transferred from the green 

lineage and most related to the sequence from Euglena gracilis (Petersen et al. 2006). A 

transit peptide from E. gracilis has been shown to be sufficient for import into isolated 

chloroplasts in vitro (Inagaki et al. 2000), so although it could have been expected that the 

dinoflagellate Prk transit peptide could emulate a plant TP in vivo, it did not. Because the 

diatom and the plant translocation machineries of the plastid envelope were partially or 

totally unable to recognize the A. carterae Prk TP, respectively, dinoflagellate transit 

peptides do not necessarily have the capacity to fully interact with the such translocation 

systems, as previously suggested (Patron and Waller 2007).  

Whereas transit peptides among chromists can be uniform enough to be 

interchangeable (Gould et al. 2006b), results from in vivo transfections seen in figures 22, 23, 

26 and 28 suggest that critical changes in TP architecture must have occurred in chromists 

and dinoflagellates after they acquired red algal endosymbionts and that both of these 

superphyla differ markedly from plants. This in turn may implicate the “green” transfer of 

chromist and alveolate Prk as being older than that of the “red” PsbO (Ishida and Green 

2002; Petersen et al. 2006), as neither chromist nor dinoflagellate Prk topogenic signals are 

compatible with the chloroplast import machinery of pea. This would mean that Prk signals 

have had more time to become divergent from plant signals, while becoming more attenuated 

to the dinoflagellate protein transports systems.  

Thus, it is the dichotomy between dinoflagellates and chromists that is most apparent 

from the functionality of the “red” PsbO TP interacting more avidly with the P. tricornutum 

plastid import machinery rather than the “green” Prk. Nonetheless, more similarities are 

present between diatoms and dinoflagellates in respect to their plastid targeting mechanisms 

than between dinoflagellates and plants. This may indicate that coevolving transport 

machineries and transit peptides correspond to phylogenetic divergence. 

Furthermore, because dinoflagellate TPs were completely disjunctive in the plant 

milieu and mostly functional in a diatom milieu, targeting was not solely based on 

phylogenetic homology of mature sequences. This implies that evolution has more rapidly 

influenced TPs than mature protein sequences, because the identity of the latter can still be 
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construed by phylogenetic analyses. This concept is supported by variations in the 

biochemical makeup of TPs for single dinoflagellate isoforms even while the mature protein 

comparatively unscathed (section 3.1.4). In summary, because plastid transit peptides seem 

not to be influenced by the same evolutionary constraints as the mature protein domains that 

they target, the “green” dinoflagellate Prk may be the result of a more ancient gene transfer 

than the “red” PsbO. 

 

4.3 BFA-Sensitive and BFA-insensitive Protein Transport in 

Amphidinium carterae  

 

Prior to this study, the majority of data on protein transport to the plastids of 

dinoflagellates was extrapolated from in silico data and comparisons with data from 

organisms like Euglena gracilis, diatoms, and apicomplexans in which protein transport is 

better understood (Apt et al. 2002; Patron and Waller 2007; Patron et al. 2005; Slavikova et 

al. 2005; Tonkin et al. 2008b). Previous in situ experiments to determine features of plastid 

protein transport in dinoflagellates were limited to immunohybridizations of electron 

microscopic preparations (Nassoury et al. 2003; Nassoury et al. 2005).  

Sucrose gradient fractionation and 
35

S-labeling of A. carterae was methodically 

established, in order to track protein transport to the dinoflagellate plastid. A number of 

different vesicle inhibitors would have been suitable for tracking protein transport, but due to 

its widespread prior use in a large assortment of organisms, Brefeldin A (BFA) was 

considered to be the most viable candidate for halting vesicle transport specifically from the 

Golgi apparatus, as it inhibits COPI vesicle transport between the Golgi apparatus and the ER 

(Nebenfuhr et al. 2002).  

BFA treatment at sublethal dosages resulted in complete inhibition of the secretory 

pathway, as signified by the ER localization of the autoradiograph signals from Cellulase IPs 

(figures 35 – 37). Addition of Brefeldin A (BFA) to the cells caused no shift in the mobility 

of the Golgi apparatus in the sucrose gradients, as seen by the signal from proteins containing 

a Golgi-specific N-acetylglucosamination (figure 34), which is known to localize to the cell 

surface and trans-face of the Golgi apparatus (Iida and Page 1989; Roberts et al. 2006). As 
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seen in figure 34, proteins in the plastid and debris fractions are also labeled by WGA, 

indicating a post-translational modification of plastid proteins at these subcellular locations. 

Further effects of BFA on endomembrane compartments were noted upon scrutiny of 

electron micrographs. A fusion of multiple endomembrane compartments seems to have been 

invoked by BFA, as signified by the increase in interconnected vesicles that seemingly 

cannot bud. Furthermore, the number of large endomembrane vesicles increased in number 

but changed in character: small, circular vesicles of the endomembrane system were replaced 

with large, ovular vesicles with a vesicle-studded periphery, possibly indicating that the 

endomembrane system had collapsed into a single multi-lobed fusion of endomembrane 

compartments. The marked increase of electron dense material in the endomembrane system 

may have been the result of transport-inhibited proteins aggregating there. 

α-PsbO immunogold signals from BFA-treated cells (see figure 40) were spread 

throughout the cell but remained proximal to the periphery of the endomembrane system. 

Signals were thus not limited to the center of the cell near the pyrenoid where the Golgi 

apparatus and ER are typically located in A. carterae (figure 38 and 39) as well as 

Lingulodinium polyedra (Schmitter 1971). This endomembrane ultrastructure determined by 

electron microscopy is dissimilar to that described previously for the BFA treatment of L. 

polyedra. The most prominent feature of BFA treated L. polyedra was the formation of the 

so-called BFA body, which was shown to harbor an amassment of electron dense material, 

containing a large amount of immunogold labeling was observed using an α-Rubisco 

antibody (Nassoury et al. 2005). This BFA body could not be induced in A. carterae with the 

BFA concentrations used in this study.  

Because the epitopes for α-RbcL and α-PsbO antibodies are within the mature portion 

of (pre)proteins, the mature protein was labeled by immunogold localizations. Signals 

observed at the periphery of the endomembrane system in electron micrographs, which is 

consistent with these proteins containing STDs. This is another confirmation of the in silico 

predictions of STDs in PsbO (section 3.2) and RbcL (Patron et al. 2005).  

Whereas RbcL’s transport is unaffected by dosages of BFA below half of the lethal 

dosage, transport of the control protein Cellulase as well as PsbO and Prk are BFA-sensitive 

at all utilized concentrations. The fact that RbcL is relatively BFA-insensitive at a 

concentration that supersedes previous BFA inhibition experiments by a factor of 8 

(Nassoury et al. 2005) indicates that it is transported via a different pathway than PsbO and 
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Prk. In apicomplexa, BFA-insensitivity is indicative of plastid-protein-containing vesicles 

originating from the ER and not the Golgi apparatus (DeRocher et al. 2005). Whereas most if 

not all apicoplast proteins are thought BFA-insensitive, the findings seen in figures 41 and 42 

show that only RbcL was insensitive to BFA inhibition in this dinoflagellate.  

Based on these results, at least two endomembrane transport pathways seem to exist 

side by side in A. carterae, one of which utilizes the Golgi apparatus and one of which does 

not. Perhaps the most elegant explanation for this difference between BFA-insensitive RbcL 

transport and BFA-sensitive PsbO and Prk transport is that plastid protein transport in 

dinoflagellates may be dependent on a protein’s class. Since RbcL is a class I protein, 

proteins of this class may be transported by and large in ER-derived vesicles, whereas class II 

and class III proteins may be mostly transported to the plastid in Golgi-derived vesicles, as 

seen in figure 44. In conclusion, regardless of how it came about, transport of the class I 

protein RbcL to the plastid is mediated by a BFA-insensitive pathway, which was previously 

undescribed in dinoflagellates but similar to the ER-mediated apicomplexan plastid protein 

transport machinery (Tonkin et al. 2008b).  

Plastid protein shuttling in Golgi-derived and ER-derived vesicles in a single 

organism is novel, previously undescribed premise for protein transport to complex plastids. 

The hypothetical model proposed for protein transport to dinoflagellate plastids (van Dooren 

et al. 2001) should thus be revised accordingly to include plastid protein transport via BFA-

insensitive vesicles originating from the ER, as seen in figure 44. Dinoflagellates hence seem 

to have at least two pathways for protein transport to the plastid: 1) class I proteins via the 

ER and 2) class II and class III via the Golgi apparatus. 
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Figure 44. Model of Protein Transport to the Plastids of Peridinin Dinoflagellate via the 

Endomembrane System. Nascent proteins are cotranslationally imported into ER lumen: Red: 

signal peptide, Green: TP, Orange: stop-transfer domain (STD), Yellow: Thylakoid-targeting 

domain, i.e. STD. Tan: Mature protein. ?: Unknown plastid membrane translocators. Class I: 

Proteins like RbcL are transported to the plastids by way of a BFA insensitive pathway via vesicles 

from the ER like the situation in apicomplexa (Tonkin et al. 2008b). Class II: Class II proteins 

(without STDs) like Prk are transported by way of the ER to Golgi and then to the plastids. Class III: 

Class III proteins with STDs like PsbO are transported via the ER to the Golgi and then to the 

plastids. Proteins with STDs must then be removed from the membrane by interaction with channels 

and/or chaperones for further transport (van Dooren et al. 2001). 1
st
, 2

nd
, and 3

rd
: refer to the three 

plastid membranes from outermost to innermost. 
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4.4 Conclusions 

 

Nothing is known about the mechanisms of protein import across dinoflagellate 

plastid membranes after vesicle fusion with the outer plastid membrane of peridinin 

dinoflagellates. The hypothetical model that has been suggested for describing protein 

transport across the three plastid membranes of peridinin dinoflagellates and euglenoids is 

based on inferences from other organisms containing complex plastids. In this model, protein 

transport differs from other models, which describe the comparatively well-characterized 

protein transport across the four membranes of apicomplexan and chromist plastids. 

According to this hypothetical model, an unknown hypothetical translocator complex is 

speculated to be recruited around the membrane-spanning domains of class I and III proteins, 

e.g. RbcL and PsbO, whereafter protein import across the first membrane ensues (Sulli et al. 

1999; van Dooren et al. 2001), as seen in figure 44. In this hypothetical model, the 

translocation machinery of the second and third outermost plastid membranes are 

subsequently recruited by the hypothetical translocator complex, enabling translocation 

across the second and third membrane. This model implicitly suggests that utterly different 

translocation mechanisms exists in peridinin dinoflagellates for translocating membrane-

spanning proteins across the outer plastid membrane than is known from chromists and 

possibly apicomplexans. 

Beyond hypotheses based loosely on data from non-dinoflagellates and in silico data 

from peridinin dinoflagellates, no elucidations have been presented that shed light on the cell 

biological conundrum caused by the dinoflagellate’s three plastid membranes as such. As 

seen in figure 45, there are a number of scenarios that would describe the situation in 

dinoflagellates, but none of them uphold the general rule of cytosolic compartment division, 

which dictates that a cytosolic compartment is invariably divided from a non-cytosolic 

compartment by a biological membrane.  

After fusion of protein-laden vesicles with the outermost plastid membrane of 

peridinin dinoflagellate, the cellular compartmentalization rule dictates that proteins enter a 

non-cytosolic intermembrane space (IMS). Vesicle shuttling is a process that is retrograde as 

well as anterograde, so vesicle shuttling must also occur between the plastid and the Golgi 

and/or ER to replenish membrane lipids, as known in plants and Plasmodium falciparum 

(Benning 2009; Waller and McFadden 2005). In these organisms, the outermost IMS is 
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considered to be a non-cytosolic compartment. Thus, because vesicles shuttle from a non-

cytosolic space, the outer IMS of dinoflagellate plastids is probably also a non-cytosolic 

space, as seen in figure 45a and 45c. 

 

 

Figure 45. Possible Cytosolic and Non-Cytosolic Identities of Intermembrane 

Compartments in the Plastids of Peridinin Dinoflagellates. Possible identities for outermost and 

innermost IMSs between dinoflagellate plastid membranes violate the compartmentalization rule, 

which dictates that biological membranes separate cytosolic spaces from non-cytosolic spaces. A & 

C: Vesicles fuse with the outermost membrane, releasing their non-cytosolic contents into a non-

cytosolic outer IMS. B and D: Non-cytosolic vesicle lumens fuse with a cytosolic space, whereby the 

inner IMS could be either cytosolic or non-cytosolic.  

 

It has been suggested that vesicle transport occurs between the membranes of the 

plant chloroplast in order to replenish lipids of the inner envelope membrane and thylakoid 

membranes (Vothknecht and Soll 2005). If vesicle transport were occurring from the outer 

IMS to the stroma, then transport from a cytosolic space to a cytosolic space must be 

occurring, as the latter is the derivative cytosol of the cyanobacterium. Since the outer IMS 
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should be similar to the non-cytosolic ER or Golgi lumen, this scenario would therefore 

actually entail transport from a non-cytosolic compartment to cystolic compartment. This 

would eventually transform the stroma into a non-cytosolic plasma, and would thus cease to 

be the plastid stroma, which therefore renders this scenario implausible. 

The conundrum deepens upon considering which translocators can exist in the second 

outermost membrane, as no translocators are known to translocate from a cytosolic 

compartment to another cytosolic compartment (figure 45c and 45d). A protein transport 

complex from a cytosolic compartment to another cytosolic compartment is known: the 

nuclear pore. This however is embedded in a double-membraned compartment that contains 

a non-cytosolic space, which is not equivalent with the third plastid membrane. This scenario 

of a cytosolic identity of the inner IMS is therefore not likely, based on present knowledge. 

Of the four possibilities, the only tenable scenario remaining implicates the outer and the 

inner IMSs as being non-cytosolic (figure 45A). 

Parallels have been drawn between the origins of peridinin dinoflagellate and 

apicomplexan plastids, since they are thought to have the same phylogenetic origins 

(Cavalier-Smith 1999; Janouskovec et al. 2010). General consensus stipulates that 

dinoflagellates either lost the periplastidial membrane (PPM) or the perialgal vacuole, while 

retaining the inner two membranes of the former primary plastid. The elimination of the PPM 

is conducive with the outermost IMS having a non-cytosolic identity as discussed above and 

suggested previously for apicoplasts (Tonkin et al. 2008b). Furthermore, translocators from a 

non-cytosolic space to another non-cytosolic space are known to exist: outer membrane 

protein translocators in Gram negative bacteria translocate proteins from their non-cytosolic 

periplasmic space to another non-cytosolic space, namely the surrounding medium. Based on 

these conclusions, of the scenarios displayed in figure 45, it seems most likely that both the 

outer and the inner IMSs are non-cytosolic with protein transport between the two 

compartments being mediated by a translocon derived from a Gram negative bacterial 

homolog (figure 45a). 

The fact that dinoflagellate nuclear genes are known to be most homologous to 

chromists and alveolates (89.5% and 79.4% in dinoflagellates and C. horridum, respectively) 

implies little about the origin of dinoflagellate plastids, because nuclear genes phylogenies do 

not always correspond to endosymbiont phylogenies (Imanian et al. 2010; Moustafa et al. 

2009). This is consistent not only with a peridinin dinoflagellate plastid originating from 
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secondary endosymbiosis but is also consistent with a primary endosymbiotic event. Both of 

these possibilities correlate to the plastid membrane identities discussed above.  

In the case of primary endosymbiotic origins, the primary plastid is still encased in 

the perialgal (former phagotrophic) vacuole. Because dinoflagellates constitute the only 

group that is known to readily supplant their established secondary plastids (Keeling 2009; 

Yoon et al. 2005), they are the most likely candidates to have replaced their secondary plastid 

with a primary endosymbiont. The occurrence of primary endosymbiotic events has 

furthermore been shown to be ongoing (Ikeda-Ohtsubo and Brune 2009; Nowack et al. 2008; 

Prechtl et al. 2004), hence this hypothesis is not a baseless premise.  

In this hypothesis, the primary plastid would be encased in a perialgal vacuole with 

which anterograde protein-containing vesicles from the ER and Golgi fuse and retrograde 

vesicles bud, and lipid recycling would occur in much the same way as for any 

endomembrane compartment or organelle (Benning 2009; Bonifacino and Rojas 2006; 

Cavalier-Smith 1999). In this scenario, protein translocation across the second membrane 

could occur via a protein translocation complex that originated from the endocytosed 

cyanobacterium, e.g. a general secretion pathway (Gsp) complex, an outer membrane protein 

(Omp85) assembly factor, or a Type I secretion outer membrane (TolC) protein described for 

Gram negative bacterial outer membranes (Su et al. 2007). One requirement for such a 

scenario is that the translocator itself be flipped in its topology such that the proteins are no 

longer exported out of the endosymbiont, instead being imported into the plastid. This same 

process is implicit for protein import with Omp85 homologs in plants and other 

chromalveolates. 

Thus in summary, at least two hypotheses can be posited based on the theoretical 

model of protein import into peridinin dinoflagellate plastids with current knowledge of 

topogenic signals and of protein transport mediated by ER and Golgi vesicles: 1) the outer 

IMS is most probably non-cytosolic, and 2) only translocators of the outer membrane of 

Gram negative bacteria are known to mediate transport from a non-cytosolic compartment to 

another non-cytosolic compartment, as suggested here to be the case for the outer and inner 

IMSs of dinoflagellate plastids. Based on these premises, the first dinoflagellate plastid 

membrane could be the remnant of the host’s eukaryotic phagosome membrane, whereas the 

second and third membranes may be either the plastid envelope from a secondary 

endosymbiont or the outer and inner membranes of a primary endosymbiont. Two 
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circumstances could have possibly led to this situation based on this theoretical evolutionary 

heritage of dinoflagellate plastid membranes: 1) the PPM of a secondary red algal 

endosymbiont was eliminated during the course of peridinin dinoflagellate evolution or 2) the 

peridinin dinoflagellate plastid arose via a primary endosymbiotic event upon which the 

secondary endosymbiont was replaced, and the endosymbiont is still encased in a derivative 

of the phagosomal membrane. 
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5 SUMMARY AND OUTLOOK 

 

Analysis of novel cDNA sequences from Ceratium horridum resulted in a previously 

unnoticed characteristic of peridinin dinoflagellate TPs: positive and negative charges are 

separated in the N-terminus and C-terminus, respectively. C-terminal negative charge of 

exemplary TPs from Amphidinum carterae did not influence targeting in heterologous in vivo 

experiments, so this feature may be important only for dinoflagellate plastid targeting 

systems. Homologous transfection of a dinoflagellate with eGFP fusion proteins would 

greatly assist in determining whether the C-terminal negative TP charge is important for 

homologous plastid protein targeting. 

Dinoflagellate TPs were shown here to be able to at least partially facilitate transport 

into the plastid stroma and inhibited by an STD in P. tricornutum. Chromist and 

dinoflagellate TPs were observed to be unable to facilitate transport into a plant chloroplast, 

which contradicts the premise that TPs are universally interchangeable and suggests that 

clade-specific differences in not only TP makeup but also in plastid TP recognition and 

possibly translocation machineries of dinoflagellates, plants, and diatoms. Future 

experiments may identify the dinoflagellate machineries and provide evidence for 

evolutionary identities of dinoflagellate plastid membranes. 

Using Brefeldin A, a novel Golgi-independent route for the transport of the class I 

protein RbcL. In future experiments, transfection and mutational analysis of could be used to 

determine sequence-specific features differentiating the ER-mediated from Golgi-mediated 

pathway to the plastids. Multiple vesicle inhibitors could be employed to determine features 

of plastid protein transport. Tunicamycin and 2-PMPA could be used to determine whether 

protein transport depends on post-translational modifications. From which Golgi face plastid-

bound vesicles originate can be possibly determined with monensin or megalomicin, which 

inhibit vesicle trafficking between the cis- and trans-Golgi cisterns. Chlorpromazine could be 

used to block vesicle trafficking from the trans-Golgi network (Hunt and Marshall-Carlson 

1986; Wang et al. 1993), as sub-nanomolar concentrations cause visible cell death in A. 

carterae within minutes. Furthermore, N-ethylmaleimide is also a promising candidate in 

determining whether vesicle fusion with plastids is SNARE-independent as suggested for 

Euglena gracilis (Slavikova et al. 2005). 
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6 MATERIALS AND METHODS 

 

6.1 Materials  

 

6.1.1 Instruments 

Centrifuges: 

Centrifuge 5417R und 5417C  Eppendorf-Netheler-Hinz, Hamburg 

GP Centrifuge  Beckman Coulter, Fullerton (USA) 

Labofuge 400R  Heraeus Instruments, Hanau 

Sepatech Biofuge 17RS  Heraeus Instruments, Hanau 

Centrikon T-1080  Kontron Instruments, Neufahrn 

TH-641 Rotor for Centrikon T-1080 Sorvall, Braunschweig 

Polyallomer Tubes 11x60 mm, thin-walled Beranek, Weinheim 

Table centrifuge Mini Spin plus  Eppendorf-Netheler-Hinz GmbH, Hamburg 

Cooled Centrifuge 5810R  Eppendorf-Netheler-Hinz GmbH, Hamburg 

PCR-Thermocycler: 

MasterCycler Gradient/ Personal  Eppendorf-Netheler-Hinz GmbH, Hamburg 

Microscopes: 

Transmission Electron Microscope EM902  Zeiss, Oberkochen 

Transmission Electron Microscope EM2100 Jeol, Eching 

Confocal Laser Scan Microscope TCS SP2  Leica, Wetzlar 

Light Field Microscope  Zeiss, Oberkochen 

Sequencing Apparatuses: 

LI-COR 4200  MWG, Ebersberg 

ABI Prism 377  Applied Biosystems (USA) 

Power Sources, Electrophoresis, and Blotting Apparatuses 

Pharmacia LKB GPS 200/400  Pharmacia/Amersham, Munich 

Electrophoresis Power Supply EPS 200/301/601 Pharmacia/Amersham, Munich 

DNA Electrophoresis Chambers Werkstatt, Uni-Marburg FB17 

Geldoc1000  Peqlab, Erlangen 

SDS Gel Chambers Werkstatt, Uni-Marburg FB17 

Poraplot NCP Nitrocellulose Membrane  Macherey-Nagel, Düren 

Amicon Ultra Centrifugal Filter Device  Millipore, Hannover 
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Semidry Transfer Unit TE 77  GE Healthcare, Munich 

Whatman 3MM  Schleicher & Schuell, Dassel 

Photographic Materials:  

X-ray Film Exposition Casette  Appligene, Heidelburg 

Fuji Medical X-ray Film, 30x40 cm Photo  Fuji Film, Düsseldorf 

X-ray Film Developer Kodak, Rochester (USA) 

X-ray Film Fixer Reagent Kodak, Rochester (USA) 

Biolistic transformation: 

Biolistic PDS-1000/He Particle Delivery System  Biorad, Munich 

Spherical gold particles Ø 1.5 to 3 µm   Sigma-Aldrich, Deisenhofen 

M 10 (Ø 0.7 μm) Tungsten-Partikel    Biorad, Munich 

Raputure Disks 1350 psi     Biorad, Munich 

Raputure Disks 900 psi     Biorad, Munich 

Macrocarrier       Biorad, Munich 

Hepta stopping screens     Biorad, Munich 

Climate chamber MLR-350   Sanyo, Bad Nenndorf 

Accessories for Detecting Radioactivity: 

Multi-Purpose Scintillation Counter LS 6500 Beckman Coulter, Krefeld 

Fluorescence Scanner Storm 860  Molecular Dynamics, Freiburg 

Other: 

Thermomixer® Dry Block Heating Shaker Eppendorf-Netheler-Hinz GmbH, Hamburg 

NanoDrop ND – 1000  PEQLAB, Erlangen 

BioRAD GelDoc  BioRad, Munich 

Exposition cassettes  Appligene, Heidelberg 

 GE Healthcare, Munich 

Laboratora 3D rocker  Hecht-Assistant, Sondheim 

Spectralphotometer Ultrospec II  GE Healthcare, Munich 

UV-Table Spectroline® M730 Longlife™  Filter Spectronics Corp. 

Spectral Photometer Ultrospec 2000  GE Healthcare, Munich 

Microwave Oven  Phillips, Münster 

Hybridization Oven 400-HY E  Bachofer, Reutlingen 

Magnetic Stirrer IKAMAG RCT  IK, Staufen 

Fine Scales Sartorius Laboratory, Göttingen 

Roller-Mixer SRT1  Stuart, Staffordshire (UK) 

6.1.2 Chemicals 

Chemicals used fort his thesis were analysis grade. Chemicals were stored and used 

according to the manufacturer’s instructions. 
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Chemical  Manufacturer 

2-Mercaptoethanol  Serva, Heidelberg 

5-Brom-4-chlor-3-inodyl-β-galactoside  Roth, Karlsruhe 

Acetone, CHROMASOLV Sigma-Aldrich, Munich 

Acetone  Roth, Karlsruhe 

Agar Agar Roth, Karlsruhe 

Agarose NEEDO  Roth, Karlsruhe 

Ammoniumpersulfat (APS)  Sigma-Aldrich, Munich 

Ampicilllin Trihydrat (Amp)  Sigma-Aldrich, Munich 

Bacto-Yeast extract  Roth, Karlsruhe 

Bacto-Trypton  Roth, Karlsruhe 

Bisiminotrismethane Bis-Tris  Roth, Karlsruhe 

Blocking Reagent (5%Milchpulverlsg)  Roche, Mannheim 

Boric acid (HBr)  Roth, Karlsruhe 

Bromphenolblue  Biorad, Munich 

Calcium chloride (CaCl2) Roth, Karlsruhe 

Cetyltrimethylammonium bromide (CTAB)  Sigma-Aldrich, Munich 

Chloroform  Merck, Darmstadt 

Diethylpyrocarconate (DEPC)  Roth, Karlsruhe 

Dimethylsulfoxide (DMSO)  Sigma-Aldrich, Munich 

Dinatrium hydrogen phosphate (Na2HPO4) Roth, Karlsruhe 

Dithiolthreitol (DTT) Roth, Karlsruhe 

Ethylendiamintetraacetic acid (EDTA)  Roth, Karlsruhe 

Ethanol (EtOH) Roth, Karlsruhe 

Ethidium bromide (EtBr)  Sigma-Aldrich, Munich 

2 mL 70% Glutaraldehyde Ampules Polysciences, Eppelheim 

Glycerin  Roth, Karlsruhe 

Glycine  Roth, Karlsruhe 

Urea  Roth, Karlsruhe 

Hydrochloric acid (HCl)  Roth, Karlsruhe 

Isopropanol  Roth, Karlsruhe 

Isopropyl-β-D-thiogalactoside (IPTG)  Roth, Karlsruhe 

Luminol  Roth, Karlsruhe 

Magnesium chloride (MgCl2)  Roth, Karlsruhe 

Methanol (MeOH)  Roth, Karlsruhe 

Mineral oil  Sigma-Aldrich, Munich 

Phenol, TE-gepuffert  Roth, Karlsruhe 

Potassium acetate (KAc)  Roth, Karlsruhe 

Protein A Sepharose beads  ThermoScientific, Braunschweig 

Rotiphorese®-Gel 30  Roth, Karlsruhe 

Skim milk powder  Fluka, Karlsruhe 

Sodium acetate (NaAc)  Roth, Karlsruhe 

Sodium chloride (NaCl)  Roth, Karlsruhe 

Sodium dodecylsulfate (SDS)  Roth, Karlsruhe 

Sodium nitrate (NaNO3)  Merck, Mannheim 

Sodium hydroxide (NaOH)  Roth, Karlsruhe 

Spermidine  Sigma-Aldrich, Munich 
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Trichloracetic acid (TCA)  Roth, Karlsruhe 

Trihydroxymethylaminoethane (Tris)  Roth, Karlsruhe 

Trimethylethylene diamine (TEMED)  Sigma-Aldrich, Munich 

Triton X-100 (TX-100)  Roth, Karlsruhe 

Trizol®Reagent  Invitrogen, Karlsruhe  

Tropic marin Sea Salt  Dr. Biener GmbH, Wartenberg 

Tween 20  Sigma-Aldrich, Munich 

Zeocin  Duchefa, Haarlem, Netherlands 

Radioactive chemicals 

For the in vivo radioactive labeling of proteins, 
35

S-sulfate, 
35

S-methionine, and 
35

S-Metmix 

(10 mCi Hartmann Analytical GmbH per L) were used. 

Buffers & Solutions 

All standard buffers were prepared as described in Sambrook et al. (1989), unless otherwise 

indicated. 

Molecular Biological Enzymes and Kits 

All restriction nucleases were purchased from MBI Fermentas (St. Leon-Rot). 

DNA kinase   MBI-Fermentas, St. Leon-Rot 

CloneJetTM PCR Cloning Kit   MBI-Fermentas, St. Leon-Rot 

DYEnamic ET terminator Cycle Sequencing Kit  GE Healthcare, Munich 

JETsorb DNA Extraction Kit   Genomed, St. Lois, USA 

Phusion High-Fidelity PCR Kit   Finnzymes, Espoo 

QIAGEN Plasmid Purification Midi/ Maxi Kit  Qiagen, Hilden 

Qiagen PCR purification kit   Qiagen, Hilden 

Rapid DNA Ligation Kit   MBI-Fermentas 

Superscript® III Reverse Transcriptase   Invitrogen, Karlsruhe 

Superscript® II Reverse Transcriptase   Invitrogen, Karlsruhe 

Taq DNA-Polymerase   Biotools, Madrid 

GeneRacer™ Kit   Invitrogen, Karlsruhe 

DYEnamic ET Terminator Cycle Sequencing Kit  GE-Healthcare, Munich 

 

Oligonucleotides 

All oligonucleotides were either ordered at MWG Biotech (Ebersberg) or Sigma-Aldrich 

(Munich). 

Name  Sequence 5´- 3´ (Restriction sites underlined) 

Sequencing oligonucleotides: 

M13r  CAGGAAACAGCTATGACC 

M13u  TGTAAAACGACGGCCAGT 



Materials and Methods   

 

 93 

T7  TAATACGACTCACTATAGGGC 

pJet fw  GCACAAGTGTTAAAGCAGTT 

pJet rv  CTCTCAAGATTTTCAGGCTGTAT 

pPhaT1 fw  AAGAGTGCTCGTGTTGCTTCG 

pPhaT1 rv  GCGGCACAAATGGGCATCCTTGCTC 

Ceratium horridum Primers for EST database: 

PolyT_not  GGGGCCC[21xT]VNN 

SL_apa  primer  GGGCCCCCGTAGCCATTTTGGCTCAAG 

Ceratium horridum Primers for Constructs involving Isolated Chloroplasts/Thylakoids: 

PsbO_Sig_apa GGGGCCCGGCCTGGGGCACAACCAGTAC 

PsbO_No_TTD_apa GGGGCCCATCCGTCAAAGTTTCAGGTGA 

PsbO_Code_apa2  GGGGCCCATCACAGCTGAACAGTTCAGC 

PsbO_Code_bam   GGGATCCATCACAGCTGAACAGTTCAGC 

Psbo_signal_eco GGAATTCATGGAGGGTGTAAAGCATGCGC 

Psbo_transit_eco

 GGAATTCATGTTCGTTGCTACCCCTGCATCT

TCA 

Ch_TTD GGAATTCATGCGCAGAGGAGTTCTCAGGGG 

Primers used to acquire the A. carterae full-length sequence: 

AC_Prk_3'seq1  GTGGTSGAGATGGACGGTGAGAT 

AC_Prk_3'seq2  GACATGGACAACATGGAGGCGCAG 

AC_Prk_A-3'  GAYGACTACCACACMAAYGACCG 

AC_Prk_A-5'  CGGTCRTTKGTGTGGTAGTCRTC 

AC_Prk_C-3'  AAGTCCACSTTYCTGCGCCGSATC 

AC_Prk_C-5'  GATSCGGCGCAGRAASGTGGACTT 

AC_psbo_atg1_xho              

CCCTCGAGATGAGCAAAGCCATGCGCGGTTTGGTGGCCTTT 

pAVA constructs 

Amphidinium carterae  

AC_sig_pscI  AAACATGTTGCGCGGTTTGGTGGCCTTT 

AC_trans_pscI  AAACATGTTTGTGCAGCTGCCGTCGCAG 

AC_trans_end_pscI  AAACATGTATCGAACCCAAGATCCAGCAT 

AC_code_pscI  AAACATGTTGTTGGCCAAGCCAGAACCCTT 

AC_kurz2_pscI  AAACATGTTTTGGCCGCGGAGACTGGTTCC 

AC_Prk_SP_psc  AAACATGTTTGCCCGATCGCAGTCAGGG 

AC_Prk_TP_psc2  AAACATGTTCGTAGCACCGCGCCTGCCA 

AC_Prk_Trunc2_nco  GCCATGGCACCATAGCGGGCAATGAA 

AC_Prk_COD3psc  AAACATGTCCGCGGCAACACCAATAATCAC 

Pisum sativum 

Pea_OTPend_nco  CCCCATGGAGTAACCTTAGCTCCATAGTG 

Pea_OTP_nco  CCCCATGGACAGCCTCACTTCAAGCA 

Ceratium horridum  

PsbO_start_psc  AAACATGTTTGAGGGTGTAAAGCATGCGC 
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PsbO_TP_psc 

 AAACATGTTCGTTGCTACCCCTGCATCTTCA

C 

PsbO_TTS_psc  AAACATGTTGATTGCACGCACAGGACTGC 

Psbo_BTS_esp

 CCGTCTCAATCCCAAACAGCACAAGGATCC

CG 

Phaeodactylum tricornutum  

Pt_AtpC_5’psc  AAACATGTTCACCACACAGCCAACTTCC 

Pt_AtpC_3’psc AACCATGGCGTTGGCTTTTCCATCCAT 

Guillardia theta  

atpCGFP-for 

 CCATGGCCTTCCAGGCTCCGTTCCTCTCTTC

TTC 

atpCGFP-rev 

 CCATGGTAGGTCCACATGCGCGAGCACGAG

GA 

GapGFP-for 

 CCATGGCCTTCAACCCTGGATCCTCCTTTGT

TCC 

GapGFP-rev 

 CCATGGCCTGCATGGTGGGGCCGGTCATCTT

AG 

Amphidinium carterae pPha contructs 

AC_sig_eco  GGAATTCATGCGCGGTTTGGTGGCCTTT 

AC_eco_OSP

 GGAATTCATGAGCAAAGCCATGCGCGGTTT

GGTGGCCTTTGCCCTTTGCGGCACCTGCTCTGCGATGGTGAGCAAGGGCGAGGA

G 

AC_kurzTP_bam  GGGATCCTTGGCCGCGGAGACTGGTTCC 

AC_trans_end_bam2  GGGATCCGGATCGAACCCAAGATCCAGC 

AC_Ocod2_bam  GGGATCCGTTGGCCAAGCCAGAACCCTT 

AC_Prk_SP_eco  GGAATTCATGGCCCGATCGCAGTCAGGG 

AC_Prkcode_bam  GGGATCCATATTGTAGGAGATCTTCTAG 

AC_Prk_Trunc2_bam  GGGATCCAGCACCATAGCGGGCAATGAA 

Prk-sp 3’blunt GGCAACGCCAGCCAACTGCC 

Plasmids 

Plasmid   Specification     Supplier 

pJET     Ampr, lacZ', P T7, P SP6   Fermentas, St. Leon-Rot 

pBluescript II KS Ampr, lacZ', P T7, P SP6   Fermentas, St. Leon-Rot  

pPha-T1   Ampr, Zeor     see Apt et al. 1996 

pAVA393   Ampr      see Von Arnim et al. 1998 
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Markers 

All markers were purchased at MBI Fermentas (St. Leon-Rot). For DNA electrophoresis the 

GeneRuler™ 1kb DNA Ladder and for protein electrophoresis, the PageRuler™ Prestained 

Protein Ladder was used. 

6.1.3 Antibodies 

All of the antibodies utilized for this thesis were diluted at the following concentrations for 

Western Blots (WB), Immunoprecipitations (IP), and Electron Microscopy (EM): 

Primary Peptide Antibodies from Eurogentec:  

α PsbO: Epitope PSYRTGGFLDPKGRG, WB: 1:1000, IP: 1:10, EM: 1:50 

α Prk: Epitope LDDYHTNDRAGRKAT, WB: 1:1000, IP: 1:10, EM: 1:50 

α Exocellulase: Epitope QQAGSQKQEEHVPLC, WB: 1:500, IP: 1:10 

Commercially Acquired Primary Peptide Antibodies:  

α RbcL (Agrisera, WB: 1:3000, IP: 1:40, EM: 1:1500) 

α PsbD (Agrisera, WB: 1:3000) 

α Sec61 (US Biological #S0580-02, WB: 1:300, EM: 1:10) 

Commercially Acquired Lectins:  

WGA-HRP (Fluka, WB: 1:1000) 

WGA-Gold, 10nm (Gentaur, EM: 1:75) 

Secondary Antibodies:  

α rabbit HRP-coupled (Sigma-Aldrich, WB: 1:10000) 

α goat HRP-coupled (Sigma-Aldrich, WB: 1:10000) 

α rabbit an 30 nm Goldpartikel gekoppelt (Biocell, EM: 1:140) 

Bacterial Strains 

For standard transformation and amplification of plasmids, the TOP10
TM

 Escherichia coli (E. 

coli) strain was used: 

E. coli TOP10 (Invitrogen, Karlsruhe): F-, mcrA, Δ(mrr-hsdRMS-mcrBC), φ80lacZΔM15, 

ΔlacX74, recA1, araD139 Δ(ara-leu)7697, galU, galK, rpsL, endA1, nupG. 

6.1.4 Culture media 

Media for E. coli 

All LB medium ingredients were purchased at Roth chemicals (Karlsruhe).  
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LB Medium (1 L): 
Bacto-Tryptone  10 g 

Bacto-Yeast Extract  5 g 

NaCl  10 g 

For agar plates 15 g/l agar-agar was added prior to autoclaving. For selection, the following 

antibiotics were utilized: Ampicillin (50 μg/ml final concentration). For blue-white screening 

of pBluescript transformants, 60 mg/L β-X-Gal and 1 mM of IPTG was added (final 

concentration).  

Media for C. horridum, A. carterae, G. theta and P. tricornutum 

f/2 Basic Medium: 
Tropic Marine  30 (15 for P. tricornutum) g/l 

Tris/HCl (pH 8) 5    mM 

NaNO3  0.883    mM 

NaH2PO4 x 2H2O  0.036    mM 

pH 6.3 was adjusted with 5M HCl and the medium autoclaved and the stored at 4°C (pH 7.5 

after autoclaving). From vitamin and trace metal solutions, 1 mL/L was added to f/2 basic 

medium. 

 

f/2 Trace Metals: 
FeCl3 x 6 H2O  11.65   mM 

Na2EDTA  11.71   mM 

CuSO4 x 5 H2O  0.039   mM 

ZnSO4 x 7 H2O  0.077  mM 

CoCl2 x 6 H2O  0.042   mM 

MnCl2 x 4 H2O  0.91   mM 

Na2MoO4 x 2 H2O  0.026   mM 

Each substance was fully dissolved before the next was added. 

f/2 Vitamins: 
Biotin  0.0020   mM 

Cyanocobalamin  0.00037  mM 

Thiamine-HCl  0.297   mM 

Vitamins were sterile-filtered and aliquots of 10 ml stored at -20°C. 

ASP-Medium: 
NaCl      400   mM 

MgCl2  6 H2O     60  mM 

CaCl2 2H2O     10   mM 

KCl      10   mM 

NaHCO3     2   mM 

NaNO3      1   mM 

NaH2PO4      0.1   mM 

1 ml/L of vitamin solution was added after autoclaving. The pH of the medium was adjusted 

to 7.3 before autoclaving, which leads to a pH of 7.9 after autoclaving. Cultures were 

constant illuminated at a light intensity at the culture surface of 100 µwatts/cm
2
. 



Materials and Methods   

 

 97 

ASP-Vitamin Solution: 

Substance      Concentration  
H3BO3       12 g/L   

EDTA        11  g/L   

p-aminobenzoic acid     20  g/L    

Ca-pantothenate      0.2  g/L    

Nicotinic acid      0.2  g/L   

Inositol       10  g/L    

Na2EDTA      4.36 g/l   

FeCl3 6 H2O      3.15 g/l   

3.5 mM MnCl2   4 H2O          689 mg/L  

0.8 mM ZnC12  4H2O     186  mg/L   

Co(NO3)2 6H2O             12.2 mg/L   

Thiamin/Hcl (Vit B1)     10  mg/L   

Cu(OAc)2 2H2O       8.6  mg/L   

Na2MoO4 x 2 H2O    6.3 mg/L   

Folic acid      4  mg/L   

Cyanocobalamin (Vit B12)    20  mg/L   

Biotin (Vit H)       20  mg/L   

Computer Hardware and Software 

Data collected during the course of this doctorate thesis was compiled using a standard 

commercially available personal computer. Microsoft Office and other standard programs 

were used to evaluate and present data. Raw sequencing data corrections and aligning was 

performed using Sequencher (GeneCode, Ann Arbor, MI, USA). 

In silico analyses were carried out using algorithms and/or information from the following 

websites: 

BioEdit v7.0.5 http://www.mbio.ncsu.edu/BioEdit/page2.html 

BlastN, BlastP, tBlastX  http://www.ncbi.nlm.nih.gov/cgi-bin/BLAST  

EhuxDBv1.0  http://genome.jgi-psf.org/Emihu1/Emihu1/  

ExPASy  http://www.expasy.ch/tools/pi_tool.html  

Geneious http://www.geneious.com/default,390,plugins.sm 

Guillardia theta Genome Resource http://www.jgi.doe.gov/sequencing/why/50026.html  

Local BLAST v2.2.22 from NCBI

 http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PA

GE_TYPE=BlastNews#1 

NCBI  http://www.ncbi.nlm.nih.gov/  

PhatrDBv2.0  http://genome.jgi-psf.org/Phatr2/  

PHYLIP V3.69 http://evolution.genetics.washington.edu/phylip.html  

PHYML V3.0 http://evolution.genetics.washington.edu/phylip.html 

http://www.mbio.ncsu.edu/BioEdit/page2.html
http://www.ncbi.nlm.nih.gov/cgi-bin/BLAST
http://genome.jgi-psf.org/Emihu1/Emihu1/
http://www.expasy.ch/tools/pi_tool.html
http://www.geneious.com/default,390,plugins.sm
http://www.jgi.doe.gov/sequencing/why/50026.html
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastNews#1
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastNews#1
http://www.ncbi.nlm.nih.gov/
http://genome.jgi-psf.org/Phatr2/
http://evolution.genetics.washington.edu/phylip.html
http://evolution.genetics.washington.edu/phylip.html
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PlasmoDBv6.1  http://plasmodb.org/plasmo/  

SOSUIv1.11  http://bp.nuap.nagoya-u.ac.jp/sosui/  

SYM-BLAST

 http://131.204.120.103/srsantos/symbiodinium/blast/bla

st_cs.html  

ThapsDBv3.0  http://genome.jgi-psf.org/Thaps3/  

TMHMM v2.0  http://www.cbs.dtu.dk/services/TMHMM-2.0/  

WebLogo  http://weblogo.berkeley.edu/  

 http://www.geneious.com/default,28,downloads.sm 

6.2 Methods  

6.2.1 Culture Conditions 

Guillardia theta and Amphidinium carterae cultures were inoculated 1:5 from a full-grown 

culture and grown for 6 days in F/2 medium in a 12:12 light dark cycle. 1 L cultures were 

grown in 3 L Erlenmeyer flasks. All cultures were harvested by centrifugation at 2,000 g for 

5 minutes. 

Ceratium horridum cultures were cultivated at 100 lux in f/2 artificial sea water medium at 

15°C with 12:12 hour light/dark phases. 100 mL cultures were grown in 500 mL Erlenmeyer 

flasks for 8 weeks and harvested via filtration with 50 μm nylon net. Wet cells were then 

scooped off the net and deposited in an Eppendorf reaction tube. 

6.2.2 Culturing and Preparation of Chemical Competent Top10TM E. coli 

A 2 mL overnight culture of Top 10
TM 

(Invitrogen, Karlsruhe) was used to inoculate 100 mL 

LB medium, which was spruced up with 10 mM of MgCl2 and MgSO4 (end concentration). 

The culture was incubated at 37°C with shaking for ca 2.5 hr until an OD600 of ca. 0.6 was 

reached. Cells were cooled on ice for 20 min, whereupon they were centrifuged at 3000 rpm 

for 10 min at 4°C. Cells were resuspended in RF1 with a glass pipette, incubated for a further 

20 min on ice, and then centrifuged as above. Cells were then resuspended in 5 mL RF2 as 

above, incubated for 20 min on ice, aliquoted into 100 µL in Eppendorf tubes, and frozen 

using liquid nitrogen. Chemically competent E. coli Top 10 aliquots were stored at -80°C 

until use. 

 

http://plasmodb.org/plasmo/
http://bp.nuap.nagoya-u.ac.jp/sosui/
http://131.204.120.103/srsantos/symbiodinium/blast/blast_cs.html
http://131.204.120.103/srsantos/symbiodinium/blast/blast_cs.html
http://genome.jgi-psf.org/Thaps3/
http://www.cbs.dtu.dk/services/TMHMM-2.0/
http://weblogo.berkeley.edu/
http://www.geneious.com/default,28,downloads.sm
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RF1:  

Rubidium chloride 100  mM  

Magnesium chloride 50 mM 

Potassium acetate 30 mM 

Calcium chloride dihydrate 10  mM 

Glycerin 15%  w/v 

RF1 was adjusted to pH 5.8 with 0.2 M acetate and 

then sterile filtered. 

 

RF2:  

Rubidium chloride 10  mM  

MOPS 10 mM 

Calcium chloride dihydrate 75  mM 

Glycerin 15%  w/v 

 

RF2 was adjusted to pH 5.8 with NaOH and then sterile 

filtered. 

 

6.2.3 Sequencing of DNA 

DNA Sequencing was performed using DYEnamic ET Terminator Cycle Sequencing Kit 

employing the chain-termination method (Sanger et al. 1977). A 10 µL sequencing reaction 

consisted of 1 μg Plasmid-DNA, 5 pmol sequencing primer, 2 μl ABI-Mix, and ddH2O. The 

standard sequencing reaction was initially 3 min of 95 °C denaturing, followed by 30 cycles 

of  

denaturing (30 sec, 95 °C), primer annealing (30 sec, 50 °C), and elongation (90 sec, 

60 °C). Final elongation was 30 sec at 60 °C. Precipitation of DNA was executed by adding 

26 μl ddH2O and 64 μl absolute EtOH to the reaction mix and incubating for 30 min. DNA 

was centrifuged for 20 min, subsequently washed with 70% EtOH, dried for ca. 5 min at 

50°C, and resuspended in ABI loading dye. Electrophoretic separation ensued using the 

program for the automated ABI377 sequencer. All sequences were analyzed and edited with 

the Sequencher program. 

6.2.4 Amplification of Reverse Transcripts and Rapid Amplification of cDNA 

Ends (RACE) Products 

RNA was prepared using Trizol
TM

  using the manufacturer’s instructions. After DNase I 

treatment, cDNA was synthesized from single-stranded mRNA using SuperScript II reverse 

transciptases and using the polyT_not primer, according to the manufacturer’s instructions. 

In the cases of the Amphidinium carterae Prk and the Ceratium horridum PsbO sequences, 

Superscript III reverse transcriptase was used at 55°C, as these transcripts were not obtained 

at 42°C. From polyT cDNA, RT-PCRs were performed. For non-EST PCRs, Phusion 

polymerase was employed. All PCRs were separated with 1% agarose gels and eluted from 

gels with JETsorb Extraction-Kit or with Wizard®-SV Gel/PCR Clean-Up System. 

Restriction of DNA fragments was carried out in accordance with the guidelines from the 

restriction enzyme manufacturer. 
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6.2.5 Acquisition of the C. horridum psbO Sequence with RACE 

The reverse transcription of C. horridum mRNA for PsbO employed the primer instead of the 

polyT_not primer, using Superscript III generally in accordance with the manufacturer’s 

instructions, except for the fact that the reaction was started directly after the 70°C 

denaturing step without cooling and took place at 57°C for 30 min. RACE was executed 

using the Generacer kit in accordance to the manufacturer’s instuctions.  

6.2.6 EST Database  

For amplification of cDNA for the C. horridum database, Biotools Taq polymerase was used. 

RT-PCR amplification of the resulting template cDNA employed said PolyT_not and SL_apa  

primer, derived from the spliced leader sequence preceding dinoflagellate mRNAs (Zhang et 

al. 2007). PCR fragments were purified from the PCR with Qiagen PCR purification kit and 

then subjected to NotI and ApaI digestion. Fragments ≥500 bp were purified from agarose 

gels with Jetsorb for subsequent ligation with NotI/ApaI digested pBluescript KS+ using T4 

DNA Fast Ligation Kit according to the manufacturer’s instructions for transformation in 

chemically competent Top10 and spread evenly onto an LB Amp50/IPTG/X-Gal plate. Initial 

blue/white screening of colonies was followed by the determination of the average insert size 

as being ≥500 bp in 80% of randomly selected clones, which were ABI sequenced to 

determine if diversity was present among them. Clones from successful transformations were 

used to inoculate 96 well plates filled with Amp50/LB/agar. Sequencing of cloned plasmids 

was performed in Berlin at Agowa GmbH. 

6.2.7 Acquisition of A. carterae cDNA Sequences 

All A. carterae cDNA was synthesized as described above and amplified with Phusion 

polymerase in accordance with the manufacturer’s instructions, using the primer 

AC_psbo_atg1_xho, which was derived from the NCBI database for the PsbO-encoding EST 

EU742854, and PolyT_not to acquire a full length sequence from which all other fragments 

were amplified with Phusion polymerase. The N-terminal prk sequence was acquired from 

nested PCR Phusion polymerase in accordance with the manufacturer’s instructions from 

cDNA with the following degenerate primers for the 3’ end: Prk_C-5’ in the first PCR, 

Prk_A-5’ in the second PCR. The 5’ primer in each PCR was SL_apa.  
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6.2.8 BLAST Analysis using a Local Database 

C. horridum EST sequences were analyzed with BLASTX to determine homologies to 

annotated proteins. For all C. horridum ESTs, tBLASTX from SYM-BLAST (Santos lab, 

Auburn University) was employed to analyze comparison to all other dinoflagellate EST 

data. BLAST hits with the best e-value were evaluated, to acquire a list of organisms with 

which C. horridum sequences are most homologous. For each of these organisms (or most 

related model organism, if adequate sequence information for the BLAST hit was lacking), 

the totality of protein sequences were downloaded in FASTA format. In addition to protein 

sequences from these organisms, special emphasis was put on chromalveolates in that the 

following sequences databases were downloaded for further BLAST analyses: unpublished 

partial genomic sequences from the cryptophyte Guillardia theta (JGI), the published 

proteomes from the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana 

(Armbrust et al. 2004; Bowler et al. 2008), the unpublished proteome from Emiliania huxleyi 

CCMP1516, as well as all NCBI database protein sequences for apicomplexa, oomycetes, 

cryptophytes, haptophytes, and ciliates. 

In order to use be able to compare C. horridum EST homologies to those of the 96,036 other 

dinoflagellate ESTs available as of February 2010, a database of both C. horridum and all 

other dinoflagellate EST sequences were used to make two databases with the downloadable 

local BLAST program 2.2.22 from NCBI. The proteins downloaded from each organism (or 

most related model organism with an annotated genome) from C. horridum BLAST results as 

well as chromalveolate sequences were blasted locally with BLASTN against both the C. 

horridum and dinoflagellate EST databases with an e-value cut-off of e
-10

, output format 9. 

Using a macro written for Microsoft Excel (see Appendix), BLAST results were combined 

by choosing the blast hit for each EST that had the best e-value. In this manner, the best 

homologies were determined for all dinoflagellate and C. horridum ESTs based on the 

annotated proteomes of organisms with the best homology to C. horridum ESTs. 

6.2.9 Horizontal Gene Transfer Phylogenetic Analyses 

Based on the BLAST results for C. horridum sequences excluding other dinoflagellate hits 

(as including them would constitute a search for transfers to the C. horridum genome since 

its speciation), ESTs were chose for horizontal gene transfer (HGT) analysis according to 

their not being most homologous to a chromalveolate protein sequence, whereby published 
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HGTs, e.g. Rubisco, were omitted in these analyses. Amino acid sequences were aligned 

using ClustalW and manually refined under BioEdit. For each data set, a phylogeny was 

reconstructed under maximum likelihood (ML) using the PHYML V3.0 (Felsenstein 1985; 

Guindon and Gascuel 2003) using the Whelan and Goldman (WAG) +  + I evolutionary 

model and tree optimization. The alpha values were calculated using 8 rate categories. 

Stability of monophyletic grouping in ML trees was calculated with PHYML bootstrap (100 

replicates) support values (Felsenstein 1985). Further bootstrap values (500 replications) 

were calculated with the Neighbor-Joining (NJ) method using Jones-Taylor-Thornton + 

distance matrices (PHYLIPV3.69). The NJ analysis was done with randomized taxon 

addition. Bayesian posterior probabilities (BPPs) for nodes in the ML tree were calculated 

using Geneious pro software v4.8.5 with the MrBayes v3.1.2 plugin, for which the WAG + Γ 

model was used starting with a random seed for 1,000,000 generations, from which a tree 

was produced every 1,000 cycles (Huelsenbeck and Ronquist 2001). The initial 20,000 

cycles (200 trees) were discarded as the "burn-in." A consensus tree was made with the 

remaining 800 phylogenies to determine the posterior probabilities at the different nodes. A 

consensus tree from these three different methods was created using Geneious, whereupon 

values from each of the three methods were labeled on the final consensus tree. Trees with 

insignificant differences between chromist and dinoflagellate sequences were disregarded. 

6.2.10 In silico Transit Peptide Analyses 

123 nucleus-encoded diatom sequences for proteins with plastid stroma localization were 

acquired from publications for Phaeodactylum tricornutum and Thalassiosira pseudonana 

(Apt et al. 1996; Bullmann et al. 2010; Gould et al. 2007; Gould et al. 2006b; Gruber et al. 

2007; Hempel et al. 2009; Kilian and Kroth 2004; Kilian and Kroth 2005; Kroth et al. 2008; 

Sommer et al. 2007). 227 nucleus-encoded peridinin dinoflagellate sequences for proteins 

with plastid localization were acquired from EST data at NCBI and those acquired from SL-

PCR amplification as described above (Bachvaroff et al. 2004; Hackett et al. 2005; Kuo et al. 

2004; Nosenko and Bhattacharya 2007; Nosenko et al. 2006; Patron et al. 2005; Sanchez-

Puerta et al. 2007; Slamovits and Keeling 2008; Soares et al. 2009; Tanikawa et al. 2004; 

Uribe et al. 2008; Waller et al. 2006a; Wang et al. 2008).  

134 nucleus-encoded plant sequences for proteins with chloroplast localization were acquired 

from blast results from the plastid-targeted dinoflagellate sequences; BLAST expect value 
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cut-off was set at e
-20

. Signal peptides of dinoflagellate and diatom sequences were truncated 

according to SignalP results.  Alignments of sequences from the other two clades in this 

study were used to determine the beginning of the mature protein, which were then truncated. 

The resulting set of TPs was truncated C-terminally to the average TP length in the clade. 

These sequences were reduced to amino acids that are ionized at a physiological pH by 

replacing all other amino acids with a dash at each non-charged position in order to 

extrapolate a WebLogo depiction. These TPs were then divided into N-terminal half and C-

terminal half (based on the length of the average TP) to determine the charged amino acid 

content of each half.  

6.2.11 Transient Transfection of Pisum sativum Leaves 

pAVA393 was used as the transfection vector for Pisum sativum. All DNA fragments were 

amplified with Phusion polymerase were restricted with NcoI and ligated into NcoI-restricted 

SAP-dephosphorylated vector and sequenced to verify correct orientation. 60mg spherical 

gold carrier particles with a diameter of 1.5 to 3 µm (Sigma-Aldrich, Deisenhofen) were 

suspended in 1 mL 96% ethanol and vortexed for 10 minutes. Particles were then pelleted at 

22 000 x g for 1 min. and the supernatant decanted. Particles were then washed with ddH2O, 

pelleted once more, and frozen in sterile 50% glycerol. The concentration of midi preps of 

constructs was determined photometrically with the Nanodrop (peqlab), using their 

absorbtion at a wavelength of 260 nm. For each construct, 25µL gold particles, 4 µg plasmid, 

20 µL 2.5 M CaCl2, and 8 µL100 mM spermidine were pipetted together and vortexed for 3 

min. and incubated on ice. The loaded particles were then pelleted as before, washed three 

times with 1 mL absolute ethanol, and then resuspended in 37 µL absolute ethanol. 6µL of 

this was used for transfecting each P. sativum leaf with a Biolistic PDS-1000/He Particle 

Delivery System fitted with 900 psi rupture discs. Peas were soaked in water overnight and 

planted in vermiculite. After 10-14 days at room temperature in sunlight, the youngest leaves 

were plucked from seedlings and laid on 1.5% agarose in Petri dishes. Bombarded leaves 

were then incubated in the dark overnight for analysis using a Leica TCS SP2 confocal 

microscope the following day. 
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6.2.12 Stable Transfection of Phaeodactylum tricornutum 

For amplification of A. carterae psbO and prk, Phusion polymerase was used according to 

the manufacturer’s instructions. The vector pPhaT1-eGFP-6xHis was restricted with EcoRI 

and BamHI for in frame insertions of A. carterae DNA encoding N-terminal extension 

fragments of PsbO and Prk. The concentration of midi preps of constructs was determined 

photometrically with the Nanodrop (peqlab), using their absorbtion at a wavelength of 260 

nm. Biorad Biolistic transfection of the diatom Phaeodactylum tricornutum was 

accomplished as previously described (Apt et al. 1996). M 10 (∅ 0.7μm) tungsten particles 

were used as microcarriers and prepared as follows. 60 mg of microcarriers were washed 

with 1 ml 100 % EtOH (HPLC quality) by vortexing for 3 min, whereupon they were 

pelleted and washed twice with 1 ml sterile ddH2O. Carriers were then resuspended in 1 ml 

sterile ddH2O and decanted into 50 μl aliquots. Aliquots were then stored at -20 °C until use.  

Construct DNA was bound to 50 µL microcarriers by adding 5 μg construct, 50 μl 2.5 M 

CaCl2, and 20 μl 0.1 M spermidine. The mixture was then vortexed for 1 min and sedimented 

for 10 min at room temperature. The supernatant was removed, and the particles were 

washed with 250 μl 100 % EtOH (HPLC quality) and vortexed for 30 sec. After 

sedimentation, the pellet was resuspended in 50 μl fresh 100 % EtOH. Biolistic transfection 

was performed with the Biorad Biolistic PDS-1000/He Particle Delivery System. Each 

construct was shot thrice. 10 μl of the microcarrier-DNA suspension was pipetted upon the 

center of the macrocarriers. The macrocarriers were then screwed into place for the shot. 

Biolistic transfection took place in a vacuum of -25 psi. A pressure of 1350 psi was placed on 

the rupture disk.  

A 7-day-old P. tricornutum culture was harvested via centrifugation (5 min, 1500 x g). 10
8
 

cells per transfection were suspended in 100 μl F/2 and spread centrally upon an f/2-plate (∅ 

8,5 cm). Transfected cells were then exposed to light for 24 h (8000 - 11000 Lux) at 22 °C in 

the MLR-350 climate chamber. Cells were then removed from the plates with 1 ml f/2 

medium and distributed evenly among 3 f/2 plates containing 75 µg zeocin/ml, sealed with 

Parafilm and incubated at culturing conditions until colonies were visible. 
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6.3 Protein Studies 

6.3.1 Brefeldin A Radioactive Labeling of Amphidinium carterae Proteins  

Amphidinium carterae cells were inoculated on day 0 with 200 mL fully grown culture (per 

L) at hr 8 of their light phase (12:12) and grown for 5 days in F/2 (30% sea salt) or ASP-

Medium. On day 6, the cells are going through mitosis for the last time before stationary 

phase (Ismael et al. 1999). Due to the fact that differing reports exist as to the circadian 

nature of RbcL, PsbO, and Prk (Mittag et al. 2005; Nassoury et al. 2005; Uribe et al. 2008; 

Wang et al. 2005), cells were synchronized such to allow for application of radioactivity to 

occur one hour before anticipation of the onset of light in the circadian rhythm. 0-7.5 mg 

BFA/L were added from a BFA stock solution (5 mg/mL DMSO) 1 hr before the onset of the 

light phase, as to allow BFA to inhibit and radioactivity to be imported and incorporated into 

proteins that may be expressed at or before the onset of light (Nassoury et al. 2001; Wang et 

al. 2005). The three different 
35

S-labelled radioactive compounds utilized from Hartmann 

Analytic GmbH (Braunschweig, Germany) to determine the maximal absorption and 

incorporation into protein were 
35

S-sulfate, 
35

S-methionine, and 
35

S-Metmix (70% 

Methionine, 25% Cysteine, and 5% other non-radioactive amino acids), based upon prior 

published results concerning the uptake of these substances in various dinoflagellates (Deane 

and O'Brien 1981; Wang et al. 2005). The culture was then divided into 3 x 333 mL cultures 

in 500 mL culture flasks (Sarstedt). 3.3 mCi 
35

S/L (Harmann Analytical) was added per 

culture flask and incubated for 1 hr in the dark, ensued by a 4 hr incubation at 150 lux and 

20°C. BFA concentrations used were 2.5 µg/mL, 5 µg/mL, and 7.5 µg/mL as determined by 

empirical experiments. Cells were harvested, concentrated in 1 mL, and washed three times 

with F/2 containing BFA in accordance with the BFA incubation and then resuspended in 

solubilization buffer containing protease inhibitor cocktail (PIC) and the same BFA 

concentration.  

Protease inhibitor cocktail (PIC): 

Antipain    50 μl (2 mg/ml) 

Chymostatin   20 μl (5 mg/ml) 

Aprotinin   50 μl (2 mg/ml) 

Trypsin-Inhibitor   20 μl (5 mg/ml) 

NaEDTA   50 μl (2 mg/ml) 

Pepstatin    50 μl (2 mg/ml) 

Leupeptin   20 μl (5 mg/ml) 

Elastatinal   100 μl (1 mg/ml) 
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To the list of inhibitors, 140 μl of Hepes-KOH (pH 7.0) was added, so that each inhibitor hada final 

concentration of 200 μg/ml. PIC was used at a concentration of 50 μl/mL. 

6.3.2 Cell lysis (repeated 3 times): 

Cells were pelleted again, the supernatant removed, and pellet lysed by shock freezing with 

liquid nitrogen. Cells were centrifuged at 500 g for 5 min to pellet intact cells. The pellet was 

then shock frozen in a liquid nitrogen bath and a steel ball bearing was inserted. The sample 

was then re-immersed into the liquid nitrogen bath and transported to a bead-beating aperture 

for cell lysis at 30 Hertz for 2.5 min. The Epi was then re-immersed into the nitrogen bath. 

The pellet was washed with the supernatant from before bead-beating, pelleted as before, the 

pellet was shock frozen. This process was repeated 5 times. This extract was cleared of intact 

cells by centrifugation at 500 g for 5 minutes.  

6.3.3 Semidiscontinuous Sucrose Gradient 

Continuous gradients of 20% to 80% sucrose and of 8.5% to 70% sucrose were attempted to 

adequately separate cell compartments. Discontinuous gradients attempted were 25% step on 

a continuous 35% to 55% step, both including and excluding a 70% or 80% step. An 8.5% 

step on a 25% step on a 40% step on a 55% step was also attempted. Cell lysates were also 

varied from 0% to 8.5%. For these gradients, TBS, Solubilization A, and HB-T (10 mM 

Triethanolamine, 1 mM EDTA, 250 mM Saccharose, pH7.4) buffers were attempted.  

The following gradient was chosen. Sucrose solutions of 20%, 30%, 50%, 55%, and 80% 

were dissolved in Solulization Buffer A. A 0.5 mL sucrose step was pipetted upon a 1.5 mL 

80% step. The 30% to 50% continuous gradient was mixed with 20 bubbles in a 10 mL glass 

pipette containing 3 mL 30% layered upon 2.5 mL 50%. A 1.5 mL 20% sucrose step was 

carefully pipetted upon the continuous portion of the gradient in the polyallomer centrifuge 

tube. 1 mL cell extract was carefully pipetted upon the 20% sucrose step. Fractionation then 

took place by overnight centrifugation at 30 000 rpm in a Sorvall TH-641 rotor in a 

Centrikon T-1080 ultracentrifuge: 
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Fraction

1

2

3

4

5

6

7

8

9

10

Extract

1.5 mL 20% Sucrose

30% Sucrose

0.5 mL 55% Sucrose

1.5 mL 80% Sucrose

Total 5.5 mL

50% Sucrose

 

Figure 46. Pipetting Scheme for Sucrose Fractionation. 

 

1 mL Fractions were pipetted from top to bottom of the gradient, scintillized (5µL used), and 

TCA precipitated. The first supernatant from TCA precipitation was scintillized (5µL used) 

to determine what proportion of the radioactivity was actually incorporated into protein and 

how much was present in the cell as free methionine, cysteine, or sulfate.  

Solubilization Buffer A: 

50 mM Imidazol/HCl pH7,5 

50 mM NaCl 

2 mM 6-Amino-Capronsäure 

1 mM EDTA 

6.3.4 Fraction Preparation for Immunoprecipitation (IP): 

Samples were TCA precipitated by adding 150 µL 70% TCA solution to each 1 mL fraction 

and incubating on ice for 10 min, whereupon protein was pelleted for 10 min at 20000x g. 

Protein pellets from each fraction were then washed thrice with ice-cold 80% acetone. The 

pellet was then dried in the Eppendorf Thermomixer at 70°C for ca. 5 min with 1400 rpm 

shaking (as to avoid spontaneous boiling). The dried pellets were then resuspended in 100µL 

Resuspension Buffer (RB), boiled for 10 min with shaking, and dissolved completely with a 

pestle. This solution was then diluted to 1 mL with IP buffer and heated to 70°C for 10 min 

with shaking, allowed to cool, scintillized (5µL used per 1 mL scintillation reagent), and then 

applied to prepared IP beads. 

RB: 

50 mM Tris/HCl, pH7.5 

1 mM EDTA  

1% (w/v) SDS 

 

IP Buffer: 

0.5% (w/v) Tween 20 

50 mM Tris/HCl pH 7.5 

150 mM NaCl 

0.1 mM EDTA 
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6.3.5 Sepharose A Bead Preparation and Immunoprecipitation 

100 μl Sepharose beads were aliquoted, pelleted 10 sec, 6000x g, and washed thrice with 1 

mL PBS. Beads were then resuspended in 100 µL IP buffer containing 5 μg specific primary 

antibody in Eppendorf tubes, which were incubated in a 50 mL Falcon tube at 4°C overnight. 

Beads were washed three times with 1 mL IP buffer. Extracts and beads were incubated 

overnight in Eppendorf tubes in Falcon tubes under constant agitation with a roller mixer. IP 

beads were washed three times with 1 mL TBS-T and then eluted by application of 50 µL 2x 

Laemli SDS sample buffer and incubated at 95°C for 5-10 min. Fractions were then 

electrophoretically separated with 12.5% SDS-polyacrylamide gels (Laemmli 1970). 

6.3.6 Semi-Dry Western Blot 

In order to immobilize proteins for detection, proteins were transferred from the SDS gel to a 

nitrocellulose membrane. 6 pleats of Whatman paper, the SDS gel containing the proteins, as 

well as the nitrocellulose membrane were inundated with Transfer Buffer. Between the anode 

and the cathode, 3 pleats of Whatman paper were laid above and below the gel and 

nitrocellulose membrane. Proteins were immobilized by applying 1 mA/cm
2
 and a maximum 

of 50 V for 1 hr to the sandwiched gel, whereupon proteins migrate away from the negatively 

charge and adhere to the positively charged membrane, where they are exposed sufficiently 

for immunodetection or 4 day incubation for autoradiography development with a StormJet 

scanner. 

Transfer Buffer: 

25 mM Tris/HCl pH 8.4 

192 mM Glycin 

20% (v/v) Methanol 

6.3.7 Immunodetection of Proteins 

Western blotted nitrocellulose membranes were saturated with protein by incubating in 

blocking reagent (5% [w/v] skim milk powder in TBS-T for antibody reactions and 5% [w/v] 

glutamate powder in TBS-T for WGA-HRP) for 1 h at room temperature. Primary antibodies 

were then added to the reagent for overnight incubation at 4°C. Western blots were then 

washed thrice with TBS-T and incubated for 1 hr with the horse radish peroxidase-coupled 

secondary antibody (1:10000) in blocking reagent. Blots were washed thrice with TBS-T, the 

last of which was incubated on the roller mixer for 30 min. Detection took place by 



Materials and Methods   

 

 109 

incubating drip-dry blots for 2 min in 5 mL ECL solution. The membrane was then drip-dried 

and applied to Seran wrap (Dupont, USA), which was then applicated to an X-ray film in an 

X-ray film cassette. X-ray film incubation was dependent on signal intensity, varying as 

much as 5 sec to overnight. Films were developed with Kodak developer solution, washed 

shortly with water, fixed in Kodak fixation solution, and washed in water once more before 

air-drying. 

ECL Solution 

400 μl  250 mM Luminol in DMSO 

178 μl  90 mM Coomaric acid in DMSO 

4 ml  1 M Tris/HCl, pH 8.5 

Ad 20 ml dH2O 

1:1000  30% (v/v) H2O2 (added directly before use) 

 

A commercially available global antibody was obtained for the large subunit of 

Rubisco (RbcL). Antibodies were synthesized against epitopes for Prk and PsbO sequence in 

functional domains of the mature protein that are conserved in all dinoflagellate PsbO and 

Prk sequences. An antibody for the protein Cellulase was likewise synthesized as a marker 

protein for the plasma membrane (Kwok and Wong 2010). With Western blot analyses, 

PsbO, RbcL, Cellulase, and Prk were shown to detect ~30kDa, ~55kDa, ~60kDa, and 

~35kDa proteins, respectively, which were within the expected parameters for these proteins 

based on cDNA sequences.  

6.3.8 Stripping Western Blots 

Western blots allowed for multiple immunodetections using a single blot. In order to 

accomplish this, antibodies were stripped from their epitopes by incubation in 25 mL 

Stripping Reagent at 70°C for 1 hr. The blot was then washed with tap water and blocked 

again with Blocking Reagent and immunodetection reinitiated with another primary 

antibody, as above.  

Stripping Reagent: 

300  mM Tris/HCl, pH 6.7 

2%  (w/v) SDS 

0.7%  (v/v) 2-Mercaptoethanol 
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6.4 Electron Microscopy 

Cells were grown as described above for radioactive labeling. BFA was added at a 

concentration of 2.5 µg/mL for electron microscopic examination of the effects of BFA on 

Amphidinium carterae ultrastructure. 

6.4.1 Freeze Substitution 

A. carterae cells were harvest via centrifugation. Freeze substitution was executed by 

applying cells to a copper wire loop and quickly freezing the cells manually in liquid 

propanol. Cells were then stored in liquid nitrogen until substitution. 0.5% EM grade 

glutaraldehyde from 70% ampule dissolved in 100% Acetone was used to fix cells at -90°C 

over the course of 3 days. The temperature was then raised gradually to -60°C for 8 hrs and 

then -30°C for another 8 hrs. Samples were then washed three times with acetone. Cells were 

then incubated on ice in two hr steps of LR White-to-acetone dilutions of 1:2, 1:1, and 2:1, 

which served to fully and gradually impregnate the cells with polymer. Undiluted LR White 

was then polymerized in indirect sunlight until hardened (4 days), which was finished with 

UV radiation overnight at 4°C. LR White blocks containing freeze-substituted BFA-treated 

and untreated cells were cut into ultrathin slices with a diamond knife (Dupont, USA) on the 

microtome. Slices were then mounted on copper nets and were either labeled with 

immunogold or contrasted with a saturated lead citrate solution followed by a saturated 

uranyl acetate solution and then 1% osmium tetroxide in 0.1 M phosphate buffer, pH 7.4 for 

direct visualization via EM.  

6.4.2 Immunogold Labeling 

Electron micrographs were produced to determine the subcellular localization of proteins 

using primary antibodies detected with secondary antibodies coupled to 30nm gold particles. 

Slices mounted on copper nets were incubated for 15 min in TBS containing 1% BSA. After 

drying, slices were incubated in TBS containing primary antibody for 4 hrs (or in the case of 

RbcL overnight at 4°C in a moisture chamber), whereupon they were washed thrice with 

TBS-T and thrice with ddH2O. Gold-coupled secondary antibody was then applied at 1 to 

140 for 45 min. After washing thrice with ddH2O, slices were contrasted with a saturated 

lead citrate solution, washed thrice with ddH2O, stained with a saturated uranyl acetate 
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solution, then thrice with ddH2O and dried. Slices were then stored dry at 16°C until viewing 

with electron microscope. 
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7 APPENDIX 

7.1 Microsoft Excel Macro 

For section 3.1.2, the following macro was written for Microsoft Excel for use in deleting 

redundant homologies BLAST hits from the NCBI local BLAST program v2.2.22: 

 
Sub blast() 

' 

' blast Makro 

' Makro am 17.02.2010 von Andrew aufgezeichnet 

' 

' Tastenkombination: Strg+ü 

' 

    Columns("C:J").Select 

    Selection.Delete Shift:=xlToLeft 

    Columns("D:D").Select 

    Selection.Delete Shift:=xlToLeft 

    Cells.Select 

    Selection.Sort Key1:=Range("C1"), Order1:=xlAscending, Header:=xlGuess, 

_ 

        OrderCustom:=1, MatchCase:=False, Orientation:=xlTopToBottom, _ 

        DataOption1:=xlSortNormal 

    Range("D1").Select 

    ActiveCell.FormulaR1C1 = "=IF(RC[-1]<0.000000001,RC[-3],"""")" 

    Range("D1").Select 

    Selection.AutoFill Destination:=Columns("D:D") 

    Range("E1").Select 

    ActiveCell.FormulaR1C1 = "=IF(RC[-2]<0.000000001,RC[-3],"""")" 

    Range("E1").Select 

    Selection.AutoFill Destination:=Columns("E:E") 

    Columns("E:E").Select 

    Range("F1").Select 

    ActiveCell.FormulaR1C1 = "=IF(RC[-3]<0.000000001,RC[-3],"""")" 

    Range("F1").Select 

    Selection.AutoFill Destination:=Columns("F:F") 

    Columns("F:F").Select 

    Columns("D:F").Select 

    Selection.Copy 

    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, 

SkipBlanks _ 

        :=False, Transpose:=False 

    Columns("A:C").Select 

    Application.CutCopyMode = False 

    Selection.Delete Shift:=xlToLeft 

    Cells.Select 

    Selection.Sort Key1:=Range("B1"), Order1:=xlAscending, Header:=xlGuess, 

_ 

        OrderCustom:=1, MatchCase:=False, Orientation:=xlTopToBottom, _ 

        DataOption1:=xlSortNormal 

    Selection.Sort Key1:=Range("B1"), Order1:=xlDescending, Header:=xlGuess, 

_ 

        OrderCustom:=1, MatchCase:=False, Orientation:=xlTopToBottom, _ 

        DataOption1:=xlSortNormal 

    Selection.Sort Key1:=Range("B1"), Order1:=xlAscending, Header:=xlGuess, 

_ 

        OrderCustom:=1, MatchCase:=False, Orientation:=xlTopToBottom, _ 

        DataOption1:=xlSortNormal 
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    Range("D2").Select 

    ActiveCell.FormulaR1C1 = "=IF(RC[-2]=R[-1]C[-2],"""",RC[-3])" 

    Range("E2").Select 

    ActiveCell.FormulaR1C1 = "=IF(RC[-3]=R[-1]C[-3],"""",RC[-3])" 

    Range("F2").Select 

    ActiveCell.FormulaR1C1 = "=IF(RC[-4]=R[-1]C[-4],"""",RC[-3])" 

    Range("D2:F2").Select 

    Selection.AutoFill Destination:=Range("D2:F65536"), Type:=xlFillDefault 

    Range("D2:F65536").Select 

    Columns("D:F").Select 

    Range("D65486").Activate 

    Selection.Copy 

    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, 

SkipBlanks _ 

        :=False, Transpose:=False 

    Columns("A:C").Select 

    Range("A65486").Activate 

    Application.CutCopyMode = False 

    Selection.Delete Shift:=xlToLeft 

    Cells.Select 

    Range("A65486").Activate 

    Selection.Sort Key1:=Range("C1"), Order1:=xlAscending, Header:=xlGuess, 

_ 

        OrderCustom:=1, MatchCase:=False, Orientation:=xlTopToBottom, _ 

        DataOption1:=xlSortNormal 

    Range("E34").Select 

End Sub 

 

7.2 Standard deviations (SD) Relative Amino Acid Abundances in Plant and 

Diatom TPs.  
 

These standard deviations were used in the discussion of figure 17. 

 

Amino Acid Type Basic Acidic Hydroxylated 
Polar 

neutral 
Non-polar Neutral 

Dinoflagellate SD 5% 3% 5% 5% 6% 

Plants SD 3% 3% 6% 5% 9% 

Diatoms SD 3% 5% 2% 5% 8% 
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7.3 Heterologous Transfection of Pisum sativum with eGFP Fused N-

terminally to Truncated TPs from Ceratium horridum PsbO and Prk N-

terminal Extensions.  

These results are an addendum to section 3.2.1. Top: eGFP fluorescence from eGFP fused 

N-terminally to the full-length PsbO TP. Middle: eGFP fluorescence from eGFP fused N-

terminally to the PsbO TP without the hydrophobic thylakoid targeting domain. Bottom: 

eGFP fluorescence from eGFP fused N-terminally to the full-length Prk TP. From left to 

right: eGFP fluorescence, chloroplast autofluorescence, merge, DIC. Green: eGFP 

fluorescence, Red: Autofluorescence. 
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7.4 1:50 α-PsbO Immunogold Labeling of Untreated Amphidinium carterae 

Cells Fixed via Freeze Substitution.  

This is a supplement to figure 39. Green Arrows: indicate signal arising from the plastids. 

Red Arrows: indicate signal arising from the endomembrane system. Bar: 500 nm. 
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7.5 1:50 α-PsbO Immunogold Labeling of Amphidinium carterae Cells 

treated with 2.5 µg BFA/mL and Fixed via Freeze Substitution.  

This is a supplement to figure 40. Green Arrows: indicate signal arising from the plastids. 

Red Arrows: indicate signal arising from the periphery of fused endomembrane system. 

Bar: 500 nm. 
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7.6 1:2200 α-RbcL Immunogold Labeling of Amphidinium carterae 

Untreated Cells Fixed via Freeze Substitution.  

This is a supplement to figure 41. Green Arrows: indicate signal arising from the plastids. 

Red Arrows: indicate signal arising from the periphery of fused endomembrane system. E: 

external to cell. Bar: 500 nm. 
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7.7 1:2200 α-RbcL Immunogold Labeling of Amphidinium carterae Cells 

treated with 2.5 µg BFA/mL and Fixed via Freeze Substitution.  

This is a supplement to figure 42. Green Arrows: indicate signal arising from the plastids. 

Red Arrows: indicate signal arising from the periphery of fused endomembrane system. E: 

external to cell. Bar: 500 nm. 

 



References   

 

 119 

8 References 

Adl, S. M., A. G. Simpson, et al. (2005). "The New Higher Level Classification of Eukaryotes with 

Emphasis on the Taxonomy of Protists." J Eukaryot Microbiol 52(5): 399-451. 
 
Agrawal, S., G. G. van Dooren, et al. (2009). "Genetic Evidence That an Endosymbiont-Derived 

Endoplasmic Reticulum-Associated Protein Degradation (Erad) System Functions in Import 

of Apicoplast Proteins." J Biol Chem 284(48): 33683-91. 
 
Allen, J. F. (2003). "Why Chloroplasts and Mitochondria Contain Genomes." Comp Funct Genomics 

4(1): 31-6. 
 
Allen, J. F. (2005). "Photosynthesis: The Processing of Redox Signals in Chloroplasts." Curr Biol 

15(22): R929-32. 
 
Apt, K. E., P. G. Kroth-Pancic, et al. (1996). "Stable Nuclear Transformation of the Diatom 

Phaeodactylum Tricornutum." Mol Gen Genet 252(5): 572-9. 
 
Apt, K. E., L. Zaslavkaia, et al. (2002). "In Vivo Characterization of Diatom Multipartite Plastid 

Targeting Signals." J Cell Sci 115(Pt 21): 4061-9. 
 
Archibald, J. M. (2009). "The Puzzle of Plastid Evolution." Curr Biol 19(2): R81-8. 
 
Archibald, J. M. and C. E. Lane (2009). "Going, Going, Not Quite Gone: Nucleomorphs as a Case 

Study in Nuclear Genome Reduction." J Hered 100(5): 582-90. 
 
Armbrust, E. V. (2009). "The Life of Diatoms in the World's Oceans." Nature 459(7244): 185-92. 
 
Armbrust, E. V., J. A. Berges, et al. (2004). "The Genome of the Diatom Thalassiosira Pseudonana: 

Ecology, Evolution, and Metabolism." Science 306(5693): 79-86. 
 
Bachvaroff, T. R., G. T. Concepcion, et al. (2004). "Dinoflagellate Expressed Sequence Tag Data 

Indicate Massive Transfer of Chloroplast Genes to the Nuclear Genome." Protist 155(1): 65-

78. 
 
Bachvaroff, T. R., M. V. Sanchez-Puerta, et al. (2006). "Rate Variation as a Function of Gene Origin 

in Plastid-Derived Genes of Peridinin-Containing Dinoflagellates." J Mol Evol 62(1): 42-52. 
 
Bachvaroff, T. R., M. V. Sanchez Puerta, et al. (2005). "Chlorophyll C-Containing Plastid 

Relationships Based on Analyses of a Multigene Data Set with All Four Chromalveolate 

Lineages." Mol Biol Evol 22(9): 1772-82. 
 
Baldauf, S. L., A. J. Roger, et al. (2000). "A Kingdom-Level Phylogeny of Eukaryotes Based on 

Combined Protein Data." Science 290(5493): 972-7. 
 
Barbrook, A. C. and C. J. Howe (2000). "Minicircular Plastid DNA in the Dinoflagellate 

Amphidinium Operculatum." Mol Gen Genet 263(1): 152-8. 
 



References   

 

 120 

Barbrook, A. C., S. Visram, et al. (2006). "Molecular Diversity of Dinoflagellate Symbionts of 

Cnidaria: The Psba Minicircle of Symbiodinium." Protist 157(2): 159-71. 
 
Baurain, D., H. Brinkmann, et al. (2010). "Phylogenomic Evidence for Separate Acquisition of 

Plastids in Cryptophytes, Haptophytes and Stramenopiles." Mol Biol Evol. 
 
Benning, C. (2009). "Mechanisms of Lipid Transport Involved in Organelle Biogenesis in Plant 

Cells." Annu Rev Cell Dev Biol 25: 71-91. 
 
Bhattacharya, D., J. M. Archibald, et al. (2007). "How Do Endosymbionts Become Organelles? 

Understanding Early Events in Plastid Evolution." Bioessays 29(12): 1239-46. 
 
Bhaud, Y., D. Guillebault, et al. (2000). "Morphology and Behaviour of Dinoflagellate Chromosomes 

During the Cell Cycle and Mitosis." J Cell Sci 113 ( Pt 7): 1231-9. 
 
Bhaya, D. and A. Grossman (1991). "Targeting Proteins to Diatom Plastids Involves Transport 

through an Endoplasmic Reticulum." Mol Gen Genet 229(3): 400-4. 
 
Bodyl, A., P. Mackiewicz, et al. (2009a). "Early Steps in Plastid Evolution: Current Ideas and 

Controversies." Bioessays 31(11): 1219-32. 
 
Bodyl, A., J. W. Stiller, et al. (2009b). "Chromalveolate Plastids: Direct Descent or Multiple 

Endosymbioses?" Trends Ecol Evol 24(3): 119-21; author reply 121-2. 
 
Bolte, K., L. Bullmann, et al. (2009). "Protein Targeting into Secondary Plastids." J Eukaryot 

Microbiol 56(1): 9-15. 
 
Bonifacino, J. S. and R. Rojas (2006). "Retrograde Transport from Endosomes to the Trans-Golgi 

Network." Nat Rev Mol Cell Biol 7(8): 568-79. 
 
Bowler, C., A. E. Allen, et al. (2008). "The Phaeodactylum Genome Reveals the Evolutionary History 

of Diatom Genomes." Nature 456(7219): 239-44. 
 
Bravo, I., R. I. Figuero, et al. (2010). "The Intricacies of Dinoflagellate Pellicle Cysts: The Example 

of Alexandrium Minutum Cysts from a Bloom-Recurrent Area (Bay of Baiona, Nw Spain)." 

Deep Sea Research Part II: Topical Studies in Oceanography 57(3-4): 166-174. 
 
Bruce, B. D. (2001). "The Paradox of Plastid Transit Peptides: Conservation of Function Despite 

Divergence in Primary Structure." Biochim Biophys Acta 1541(1-2): 2-21. 
 
Buick, R. (2008). "When Did Oxygenic Photosynthesis Evolve?" Philos Trans R Soc Lond B Biol Sci 

363(1504): 2731-43. 
 
Bullmann, L., R. Haarmann, et al. (2010). "Filling the Gap, Evolutionarily Conserved Omp85 in 

Plastids of Chromalveolates." J Biol Chem 285(9): 6848-56. 
 
Burki, F., K. Shalchian-Tabrizi, et al. (2007). "Phylogenomics Reshuffles the Eukaryotic 

Supergroups." PLoS One 2(8): e790. 
 



References   

 

 121 

Cavalier-Smith, T. (1987a). "The Origin of Eukaryotic and Archaebacterial Cells." Ann N Y Acad 

Sci 503: 17-54. 
 
Cavalier-Smith, T. (1987b). "The Simultaneous Symbiotic Origin of Mitochondria, Chloroplasts, and 

Microbodies." Ann N Y Acad Sci 503: 55-71. 
 
Cavalier-Smith, T. (1991). "Cell Diversification in Heterotrophic Flagellates." The Biology of Free-

living Heterotrophic Flagellates.(Oxford (UK):Clarendon Press): 113–131. 
 
Cavalier-Smith, T. (1998). "A Revised Six-Kingdom System of Life." Biol Rev Camb Philos Soc 

73(3): 203-66. 
 
Cavalier-Smith, T. (1999). "Principles of Protein and Lipid Targeting in Secondary Symbiogenesis: 

Euglenoid, Dinoflagellate, and Sporozoan Plastid Origins and the Eukaryote Family Tree." J 

Eukaryot Microbiol 46(4): 347-66. 
 
Cavalier-Smith, T. (2002). "The Phagotrophic Origin of Eukaryotes and Phylogenetic Classification 

of Protozoa." Int J Syst Evol Microbiol 52(Pt 2): 297-354. 
 
Cavalier-Smith, T. (2003). "Genomic Reduction and Evolution of Novel Genetic Membranes and 

Protein-Targeting Machinery in Eukaryote-Eukaryote Chimaeras (Meta-Algae)." Philos 

Trans R Soc Lond B Biol Sci 358(1429): 109-33; discussion 133-4. 
 
Cavalier-Smith, T. (2006). "Origin of Mitochondria by Intracellular Enslavement of a Photosynthetic 

Purple Bacterium." Proc Biol Sci 273(1596): 1943-52. 
 
Chaal, B. K. and B. R. Green (2005). "Protein Import Pathways in 'Complex' Chloroplasts Derived 

from Secondary Endosymbiosis Involving a Red Algal Ancestor." Plant Mol Biol 57(3): 333-

42. 
 
Chaal, B. K., K. Ishida, et al. (2003). "A Thylakoidal Processing Peptidase from the Heterokont Alga 

Heterosigma Akashiwo." Plant Mol Biol 52(2): 463-72. 
 
Chen, C. and H. Chou (2001). "Ichthyotoxicity Studies of Milkfish Chanos Chanos Fingerlings 

Exposed to a Harmful Dinoflagellate Alexandrium Minutum." J Exp Mar Bio Ecol 262(2): 

211-219. 
 
Cramm-Behrens, C. I., M. Dienst, et al. (2008). "Apical Cargo Traverses Endosomal Compartments 

on the Passage to the Cell Surface." Traffic 9(12): 2206-20. 
 
Daley, D. O. and J. Whelan (2005). "Why Genes Persist in Organelle Genomes." Genome Biol 6(5): 

110. 
 
de Duve, C. (2007). "The Origin of Eukaryotes: A Reappraisal." Nat Rev Genet 8(5): 395-403. 
 
Deane, E. M. and R. W. O'Brien (1981). "Uptake of Sulphate, Taurine, Cysteine and Methionine by 

Symbiotic and Free-Living Dinoflagellates." Archives of Microbiology 128: 311-319. 
 
Delwiche, C. F. (1999). "Tracing the Thread of Plastid Diversity through the Tapestry of Life." Am 

Nat 154(S4): S164-S177. 



References   

 

 122 

 
Delwiche, C. F. and J. D. Palmer (1996). "Rampant Horizontal Transfer and Duplication of Rubisco 

Genes in Eubacteria and Plastids." Mol Biol Evol 13(6): 873-82. 
 
DeRocher, A., B. Gilbert, et al. (2005). "Dissection of Brefeldin a-Sensitive and -Insensitive Steps in 

Apicoplast Protein Targeting." J Cell Sci 118(Pt 3): 565-74. 
 
Dodge, J. and C. Gruet (1987). "Dinoflagellate Ultrastructure and Complex Organelles. ." The 

biology of dinoflagellates. : Boston (MA): Blackwell. pp. 92–142. 
 
Douglas, S., S. Zauner, et al. (2001). "The Highly Reduced Genome of an Enslaved Algal Nucleus." 

Nature 410(6832): 1091-6. 
 
Durnford, D. G. and M. W. Gray (2006). "Analysis of Euglena Gracilis Plastid-Targeted Proteins 

Reveals Different Classes of Transit Sequences." Eukaryot Cell 5(12): 2079-91. 
 
Elias, M. and J. M. Archibald (2009). "Sizing up the Genomic Footprint of Endosymbiosis." 

Bioessays 31(12): 1273-9. 
 
Emanuelsson, O., H. Nielsen, et al. (1999). "Chlorop, a Neural Network-Based Method for Predicting 

Chloroplast Transit Peptides and Their Cleavage Sites." Protein Sci 8(5): 978-84. 
 
Embley, T. M. and W. Martin (2006). "Eukaryotic Evolution, Changes and Challenges." Nature 

440(7084): 623-30. 
 
Falcon, L. I., S. Magallon, et al. (2010). "Dating the Cyanobacterial Ancestor of the Chloroplast." 

ISME J. 
 
Falkowski, P. G., M. E. Katz, et al. (2004). "The Evolution of Modern Eukaryotic Phytoplankton." 

Science 305(5682): 354-60. 
 
Fast, N. M., L. Xue, et al. (2002). "Re-Examining Alveolate Evolution Using Multiple Protein 

Molecular Phylogenies." J Eukaryot Microbiol 49(1): 30-7. 
 
Felsenstein, J. (1985). "Confidence Limits on Phylogenies: An Approach Using the Bootstrap." 

Evolution 39: 783-791. 
 
Felsner, G., M. S. Sommer, et al. (submitted). "The Physical and Functional Borders of Transit 

Peptide-Like Sequences in Secondary  

Endosymbionts." BMC Plant Biology. 
 
Foth, B. J., S. A. Ralph, et al. (2003). "Dissecting Apicoplast Targeting in the Malaria Parasite 

Plasmodium Falciparum." Science 299(5607): 705-8. 
 
Funes, S., E. Davidson, et al. (2002). "A Green Algal Apicoplast Ancestor." Science 298(5601): 

2155. 
 
Gaskins, E., S. Gilk, et al. (2004). "Identification of the Membrane Receptor of a Class Xiv Myosin in 

Toxoplasma Gondii." J Cell Biol 165(3): 383-93. 
 



References   

 

 123 

Gibbs, S. P. (1979). "The Route of Entry of Cytoplasmically Synthesized Proteins into Chloroplasts 

of Algae Possessing Chloroplast Er." J Cell Sci 35: 253-66. 
 
Gilson, P. R., V. Su, et al. (2006). "Complete Nucleotide Sequence of the Chlorarachniophyte 

Nucleomorph: Nature's Smallest Nucleus." Proc Natl Acad Sci U S A 103(25): 9566-71. 
 
Gomez, S. M., K. Y. Bil, et al. (2003). "Transit Peptide Cleavage Sites of Integral Thylakoid 

Membrane Proteins." Mol Cell Proteomics 2(10): 1068-85. 
 
Gould, S. B., E. Fan, et al. (2007). "Translocation of a Phycoerythrin Alpha Subunit across Five 

Biological Membranes." J Biol Chem 282(41): 30295-302. 
 
Gould, S. B., M. S. Sommer, et al. (2006a). "Protein Targeting into the Complex Plastid of 

Cryptophytes." J Mol Evol 62(6): 674-81. 
 
Gould, S. B., M. S. Sommer, et al. (2006b). "Nucleus-to-Nucleus Gene Transfer and Protein 

Retargeting into a Remnant Cytoplasm of Cryptophytes and Diatoms." Mol Biol Evol 23(12): 

2413-22. 
 
Gould, S. B., R. F. Waller, et al. (2008). "Plastid Evolution." Annu Rev Plant Biol 59: 491-517. 
 
Gray, M. W., G. Burger, et al. (2001). "The Origin and Early Evolution of Mitochondria." Genome 

Biol 2(6): REVIEWS1018. 
 
Gross, J. and D. Bhattacharya (2009). "Mitochondrial and Plastid Evolution in Eukaryotes: An 

Outsiders' Perspective." Nat Rev Genet 10(7): 495-505. 
 
Gruber, A., S. Vugrinec, et al. (2007). "Protein Targeting into Complex Diatom Plastids: Functional 

Characterisation of a Specific Targeting Motif." Plant Mol Biol 64(5): 519-30. 
 
Guindon, S. and O. Gascuel (2003). "A Simple, Fast, and Accurate Algorithm to Estimate Large 

Phylogenies by Maximum Likelihood." Syst Biol 52(5): 696-704. 
 
Hackett, J. D., D. M. Anderson, et al. (2004a). "Dinoflagellates: A Remarkable Evolutionary 

Experiment." American Journal of Botany 91: 1523-1534. 
 
Hackett, J. D., T. E. Scheetz, et al. (2005). "Insights into a Dinoflagellate Genome through Expressed 

Sequence Tag Analysis." BMC Genomics 6(1): 80. 
 
Hackett, J. D., H. S. Yoon, et al. (2004b). "Migration of the Plastid Genome to the Nucleus in a 

Peridinin Dinoflagellate." Curr Biol 14(3): 213-8. 
 
Harper, J. D., J. Thuet, et al. (2009). "Proteins Related to Green Algal Striated Fiber Assemblin Are 

Present in Stramenopiles and Alveolates." Protoplasma 236(1-4): 97-101. 
 
Harper, J. T., E. Waanders, et al. (2005). "On the Monophyly of Chromalveolates Using a Six-Protein 

Phylogeny of Eukaryotes." Int J Syst Evol Microbiol 55(Pt 1): 487-96. 
 
Hempel, F., A. Bozarth, et al. (2007). "Transport of Nuclear-Encoded Proteins into Secondarily 

Evolved Plastids." Biol Chem 388(9): 899-906. 



References   

 

 124 

 
Hempel, F., L. Bullmann, et al. (2009). "Erad-Derived Preprotein Transport across the Second 

Outermost Plastid Membrane of Diatoms." Mol Biol Evol 26(8): 1781-90. 
 
Hiller, R. G. (2001). "'Empty' Minicircles and Petb/Atpa and Psbd/Psbe (Cytb559 Alpha) Genes in 

Tandem in Amphidinium Carterae Plastid DNA." FEBS Lett 505(3): 449-52. 
 
Hjorth, E., K. Hadfi, et al. (2005). "Unique Genetic Compartmentalization of the Suf System in 

Cryptophytes and Characterization of a Sufd Mutant in Arabidopsis Thaliana." FEBS Lett 

579(5): 1129-35. 
 
Hoppenrath, M. and B. S. Leander (2009). "Molecular Phylogeny of Parvilucifera Prorocentri 

(Alveolata, Myzozoa): Insights into Perkinsid Character Evolution." J Eukaryot Microbiol 

56(3): 251-6. 
 
Howard, R. F. and C. M. Schmidt (1995). "The Secretary Pathway of Plasmodium Falciparum 

Regulates Transport of P82/Rap1 to the Rhoptries." Mol Biochem Parasitol 74(1): 43-54. 
 
Huang, J., N. Mullapudi, et al. (2004). "A First Glimpse into the Pattern and Scale of Gene Transfer 

in Apicomplexa." Int J Parasitol 34(3): 265-74. 
 
Huelsenbeck, J. P. and F. Ronquist (2001). "Mrbayes: Bayesian Inference of Phylogenetic Trees." 

Bioinformatics 17(8): 754-5. 
 
Hummel, E., A. Osterrieder, et al. (2010). "Inhibition of Golgi Function Causes Plastid Starch 

Accumulation." J Exp Bot. 
 
Hunt, R. C. and L. Marshall-Carlson (1986). "Internalization and Recycling of Transferrin and Its 

Receptor. Effect of Trifluoperazine on Recycling in Human Erythroleukemic Cells." J Biol 

Chem 261(8): 3681-6. 
 
Iida, H. and E. Page (1989). "Localization of Wheat-Germ Agglutinin-Binding Sites in the Golgi 

Complex of Cultured Rat Atrial Myocytes." Cell Tissue Res 257(2): 325-31. 
 
Ikeda-Ohtsubo, W. and A. Brune (2009). "Cospeciation of Termite Gut Flagellates and Their 

Bacterial Endosymbionts: Trichonympha Species and 'Candidatus Endomicrobium 

Trichonymphae'." Mol Ecol 18(2): 332-42. 
 
Imanian, B., J. F. Pombert, et al. (2010). "The Complete Plastid Genomes of the Two 'Dinotoms' 

Durinskia Baltica and Kryptoperidinium Foliaceum." PLoS One 5(5): e10711. 
 
Inagaki, J., Y. Fujita, et al. (2000). "Protein Translocation within Chloroplast Is Similar in Euglena 

and Higher Plants." Biochem Biophys Res Commun 277(2): 436-42. 
 
Ishida, K. and B. R. Green (2002). "Second- and Third-Hand Chloroplasts in Dinoflagellates: 

Phylogeny of Oxygen-Evolving Enhancer 1 (Psbo) Protein Reveals Replacement of a 

Nuclear-Encoded Plastid Gene by That of a Haptophyte Tertiary Endosymbiont." PNAS 

99(14): 9294–9299. 
 



References   

 

 125 

Ismael, A., Y. Halim, et al. (1999). "Optimum Growth Conditions for Amphidinium Carterae Hulburt 

from Eutrophic Waters in Alexandria (Egypt) and Its Toxicity to the Brine Shrimp Artemia 

Salina." Grana 38(2): 179-185. 
 
Janouskovec, J., A. Horak, et al. (2010). "A Common Red Algal Origin of the Apicomplexan, 

Dinoflagellate, and Heterokont Plastids." Proc Natl Acad Sci U S A. 
 
Jarvis, P. (2008). "Targeting of Nucleus-Encoded Proteins to Chloroplasts in Plants." New Phytol 

179(2): 257-85. 
 
Johnson, M. D., D. Oldach, et al. (2007). "Retention of Transcriptionally Active Cryptophyte Nuclei 

by the Ciliate Myrionecta Rubra." Nature 445(7126): 426-8. 
 
Joseph, S. J., J. A. Fernandez-Robledo, et al. (2010). "The Alveolate Perkinsus Marinus: Biological 

Insights from Est Gene Discovery." BMC Genomics 11(1): 228. 
 
Keeling, P. (2004). "A Brief History of Plastids and Their Hosts." Protist 155(1): 3-7. 
 
Keeling, P. J. (2009). "Chromalveolates and the Evolution of Plastids by Secondary Endosymbiosis." 

J Eukaryot Microbiol 56(1): 1-8. 
 
Keeling, P. J., G. Burger, et al. (2005). "The Tree of Eukaryotes." Trends Ecol Evol 20(12): 670-6. 
 
Keeling, P. J. and J. D. Palmer (2008). "Horizontal Gene Transfer in Eukaryotic Evolution." Nat Rev 

Genet 9(8): 605-18. 
 
Kellmann, R., A. Stuken, et al. (2010). "Biosynthesis and Molecular Genetics of Polyketides in 

Marine Dinoflagellates." Mar Drugs 8(4): 1011-48. 
 
Kilian, O. and P. G. Kroth (2004). "Presequence Acquisition During Secondary Endocytobiosis and 

the Possible Role of Introns." J Mol Evol 58(6): 712-21. 
 
Kilian, O. and P. G. Kroth (2005). "Identification and Characterization of a New Conserved Motif 

within the Presequence of Proteins Targeted into Complex Diatom Plastids." Plant J 41(2): 

175-83. 
 
Kita, M., O. Ohno, et al. (2010). "Bioactive Secondary Metabolites from Symbiotic Marine 

Dinoflagellates: Symbiodinolide and Durinskiols." Chem Rec. 
 
Kitajima, A., S. Asatsuma, et al. (2009). "The Rice Alpha-Amylase Glycoprotein Is Targeted from 

the Golgi Apparatus through the Secretory Pathway to the Plastids." Plant Cell 21(9): 2844-

58. 
 
Kobayashi, J. and T. Kubota (2007). "Bioactive Macrolides and Polyketides from Marine 

Dinoflagellates of the Genus Amphidinium." J Nat Prod 70(3): 451-60. 
 
Kofoid, C. A. (1908). "Exuviation, Autotomy and Regeneration in Ceratium." Univ. Calif. Publ. Zool. 

4(345-386). 
 



References   

 

 126 

Kroth, P. G., A. Chiovitti, et al. (2008). "A Model for Carbohydrate Metabolism in the Diatom 

Phaeodactylum Tricornutum Deduced from Comparative Whole Genome Analysis." PLoS 

One 3(1): e1426. 
 
Kugita, M., A. Kaneko, et al. (2003). "The Complete Nucleotide Sequence of the Hornwort 

(Anthoceros Formosae) Chloroplast Genome: Insight into the Earliest Land Plants." Nucleic 

Acids Res 31(2): 716-21. 
 
Kuo, J., M. C. Chen, et al. (2004). "Comparative Gene Expression in the Symbiotic and 

Aposymbiotic Aiptasia Pulchella by Expressed Sequence Tag Analysis." Biochem Biophys 

Res Commun 318(1): 176-86. 
 
Kwok, A. C. and J. T. Wong (2010). "The Activity of a Wall-Bound Cellulase Is Required for and Is 

Coupled to Cell Cycle Progression in the Dinoflagellate Crypthecodinium Cohnii." Plant 

Cell. 
 
Kyte, J. and R. F. Doolittle (1982). "A Simple Method for Displaying the Hydropathic Character of a 

Protein." J Mol Biol 157(1): 105-32. 
 
Laatsch, T., S. Zauner, et al. (2004). "Plastid-Derived Single Gene Minicircles of the Dinoflagellate 

Ceratium Horridum Are Localized in the Nucleus." Mol Biol Evol 21(7): 1318-22. 
 
Laemmli, U. K. (1970). "Cleavage of Structural Proteins During the Assembly of the Head of 

Bacteriophage T4." Nature 227(5259): 680-5. 
 
Lajeunesse, T. C., R. Smith, et al. (2010). "Host-Symbiont Recombination Versus Natural Selection 

in the Response of Coral-Dinoflagellate Symbioses to Environmental Disturbance." Proc Biol 

Sci. 
 
Lang, M., K. E. Apt, et al. (1998). "Protein Transport Into "Complex" Diatom Plastids Utilizes Two 

Different Targeting Signals." J Biol Chem 273(47): 30973-8. 
 
Lidie, K. B. and F. M. van Dolah (2007). "Spliced Leader Rna-Mediated Trans-Splicing in a 

Dinoflagellate, Karenia Brevis." J Eukaryot Microbiol 54(5): 427-35. 
 
Lill, R. and U. Muhlenhoff (2008). "Maturation of Iron-Sulfur Proteins in Eukaryotes: Mechanisms, 

Connected Processes, and Diseases." Annu Rev Biochem 77: 669-700. 
 
Little, A. F., M. J. van Oppen, et al. (2004). "Flexibility in Algal Endosymbioses Shapes Growth in 

Reef Corals." Science 304(5676): 1492-4. 
 
Longhurst, A., S. Sathyendranath, et al. (1995). "An Estimate of Global Primary Production in the 

Ocean from Satellite Radiometer Data." Journal of Plankton Research 17(6): 1245-1271. 
 
Lukes, J., B. S. Leander, et al. (2009). "Cascades of Convergent Evolution: The Corresponding 

Evolutionary Histories of Euglenozoans and Dinoflagellates." Proc Natl Acad Sci U S A 106 

Suppl 1: 9963-70. 
 



References   

 

 127 

Maberly, S. C., C. Courcelle, et al. (2009). "Phylogenetically-Based Variation in the Regulation of the 

Calvin Cycle Enzymes, Phosphoribulokinase and Glyceraldehyde-3-Phosphate 

Dehydrogenase, in Algae." J Exp Bot 61(3): 735-45. 
 
Margulis, L. (1996). "Archaeal-Eubacterial Mergers in the Origin of Eukarya: Phylogenetic 

Classification of Life." Proc Natl Acad Sci U S A 93(3): 1071-6. 
 
Martin, W. and R. G. Herrmann (1998). "Gene Transfer from Organelles to the Nucleus: How Much, 

What Happens, and Why?" Plant Physiol 118(1): 9-17. 
 
Martin, W., T. Rujan, et al. (2002). "Evolutionary Analysis of Arabidopsis, Cyanobacterial, and 

Chloroplast Genomes Reveals Plastid Phylogeny and Thousands of Cyanobacterial Genes in 

the Nucleus." Proc Natl Acad Sci U S A 99(19): 12246-51. 
 
McEwan, M., R. Humayun, et al. (2008). "Nuclear Genome Sequence Survey of the Dinoflagellate 

Heterocapsa Triquetra." J Eukaryot Microbiol 55(6): 530-5. 
 
Mereschkowsky, C. (1905). "Über Natur Und Ursprung Der Chromatophoren Im Pflanzenreiche." 

Bio. Zentralbl. 25(593-604). 
 
Mittag, M., S. Kiaulehn, et al. (2005). "The Circadian Clock in Chlamydomonas Reinhardtii. What Is 

It For? What Is It Similar To?" Plant Physiol 137(2): 399-409. 
 
Morden, C. W. and A. R. Sherwood (2002). "Continued Evolutionary Surprises among 

Dinoflagellates." Proc Natl Acad Sci U S A 99(18): 11558-60. 
 
Moustafa, A., B. Beszteri, et al. (2009). "Genomic Footprints of a Cryptic Plastid Endosymbiosis in 

Diatoms." Science 324(5935): 1724-6. 
 
Murata, N., N.-A. Kume, et al. (1979). "Preparation of Girdle Lamella-Containing Chloroplasts from 

the Diatom Phaeodactylum Tricornutum." Plant & Cell Physiol. 20(6): 1047-1053. 
 
Nash, E. A., A. C. Barbrook, et al. (2007). "Organization of the Mitochondrial Genome in the 

Dinoflagellate Amphidinium Carterae." Mol Biol Evol 24(7): 1528-36. 
 
Nassoury, N., M. Cappadocia, et al. (2003). "Plastid Ultrastructure Defines the Protein Import 

Pathway in Dinoflagellates." J Cell Sci 116(Pt 14): 2867-74. 
 
Nassoury, N., L. Fritz, et al. (2001). "Circadian Changes in Ribulose-1,5-Bisphosphate 

Carboxylase/Oxygenase Distribution inside Individual Chloroplasts Can Account for the 

Rhythm in Dinoflagellate Carbon Fixation." Plant Cell 13(4): 923-34. 
 
Nassoury, N., Y. Wang, et al. (2005). "Brefeldin a Inhibits Circadian Remodeling of Chloroplast 

Structure in the Dinoflagellate Gonyaulax." Traffic 6(7): 548-61. 
 
Nayak, B. B. and I. Karunasagar (1997). "Influence of Bacteria on Groth and Hemolysin Production 

by the Marine Dinoflagellate Amphidinium Carterae." Marine Biology 130: 35-39. 
 
Nebenfuhr, A., C. Ritzenthaler, et al. (2002). "Brefeldin A: Deciphering an Enigmatic Inhibitor of 

Secretion." Plant Physiol 130(3): 1102-8. 



References   

 

 128 

 
Nelson, M. J., Y. Dang, et al. (2007). "Identification and Transcription of Transfer Rna Genes in 

Dinoflagellate Plastid Minicircles." Gene 392(1-2): 291-8. 
 
Nosenko, T. and D. Bhattacharya (2007). "Horizontal Gene Transfer in Chromalveolates." BMC Evol 

Biol 7: 173. 
 
Nosenko, T., K. L. Lidie, et al. (2006). "Chimeric Plastid Proteome in the Florida "Red Tide" 

Dinoflagellate Karenia Brevis." Mol Biol Evol 23(11): 2026-38. 
 
Nowack, E. C., M. Melkonian, et al. (2008). "Chromatophore Genome Sequence of Paulinella Sheds 

Light on Acquisition of Photosynthesis by Eukaryotes." Curr Biol 18(6): 410-8. 
 
Obornik, M., J. Janouskovec, et al. (2009). "Evolution of the Apicoplast and Its Hosts: From 

Heterotrophy to Autotrophy and Back Again." Int J Parasitol 39(1): 1-12. 
 
Okamoto, N., C. Chantangsi, et al. (2009). "Molecular Phylogeny and Description of the Novel 

Katablepharid Roombia Truncata Gen. Et Sp. Nov., and Establishment of the Hacrobia Taxon 

Nov." PLoS One 4(9): e7080. 
 
Patron, N. J. and R. F. Waller (2007). "Transit Peptide Diversity and Divergence: A Global Analysis 

of Plastid Targeting Signals." Bioessays 29(10): 1048-58. 
 
Patron, N. J., R. F. Waller, et al. (2005). "Complex Protein Targeting to Dinoflagellate Plastids." J 

Mol Biol 348(4): 1015-24. 
 
Peters, N. (1929). "Orts- Und Geisselbewegung Bei Marinen Dinoflagellaten." Protistenk. 67: 291-

321. 
 
Petersen, J., R. Teich, et al. (2006). "A "Green" Phosphoribulokinase in Complex Algae with Red 

Plastids: Evidence for a Single Secondary Endosymbiosis Leading to Haptophytes, 

Cryptophytes, Heterokonts, and Dinoflagellates." J Mol Evol 62(2): 143-57. 
 
Prechtl, J., C. Kneip, et al. (2004). "Intracellular Spheroid Bodies of Rhopalodia Gibba Have 

Nitrogen-Fixing Apparatus of Cyanobacterial Origin." Mol Biol Evol 21(8): 1477-81. 
 
Ralph, S. A., B. J. Foth, et al. (2004). "Evolutionary Pressures on Apicoplast Transit Peptides." Mol 

Biol Evol 21(12): 2183-94. 
 
Reichman, J. R., T. P. Wilcox, et al. (2003). "Pcp Gene Family in Symbiodinium from Hippopus 

Hippopus: Low Levels of Concerted Evolution, Isoform Diversity, and Spectral Tuning of 

Chromophores." Mol Biol Evol 20(12): 2143-54. 
 
Reyes-Prieto, A., A. Moustafa, et al. (2008). "Multiple Genes of Apparent Algal Origin Suggest 

Ciliates May Once Have Been Photosynthetic." Curr Biol 18(13): 956-62. 
 
Richardson, A. O. and J. D. Palmer (2007). "Horizontal Gene Transfer in Plants." J Exp Bot 58(1): 1-

9. 
 



References   

 

 129 

Roberts, E. C., M. V. Zubkov, et al. (2006). "Cell Surface Lectin-Binding Glycoconjugates on Marine 

Planktonic Protists." FEMS Microbiol Lett 265(2): 202-7. 
 
Rogers, M. B., P. R. Gilson, et al. (2007). "The Complete Chloroplast Genome of the 

Chlorarachniophyte Bigelowiella Natans: Evidence for Independent Origins of 

Chlorarachniophyte and Euglenid Secondary Endosymbionts." Mol Biol Evol 24(1): 54-62. 
 
Rosati, G. and L. Modeo (2003). "Extrusomes in Ciliates: Diversification, Distribution, and 

Phylogenetic Implications." J Eukaryot Microbiol 50(6): 383-402. 
 
Rosenberg, E., A. Kushmaro, et al. (2009). "The Role of Microorganisms in Coral Bleaching." ISME 

J 3(2): 139-46. 
 
Saldarriaga, J. F., M. L. McEwan, et al. (2003). "Multiple Protein Phylogenies Show That Oxyrrhis 

Marina and Perkinsus Marinus Are Early Branches of the Dinoflagellate Lineage." Int J Syst 

Evol Microbiol 53(Pt 1): 355-65. 
 
Saldarriaga, J. F., F. J. Taylor, et al. (2004). "Molecular Data and the Evolutionary History of 

Dinoflagellates." European Journal of Protistology 40(1): 85-111. 
 
Sanchez-Puerta, M. V., J. C. Lippmeier, et al. (2007). "Plastid Genes in a Non-Photosynthetic 

Dinoflagellate." Protist 158(1): 105-17. 
 
Sanchez Puerta, M. V. and C. F. Delwiche (2008). "A Hypothesis for Plastid Evolution in 

Chromalveolates." Journal of Phycology 44: 1097-1107. 
 
Sanger, F., S. Nicklen, et al. (1977). "DNA Sequencing with Chain-Terminating Inhibitors." Proc 

Natl Acad Sci U S A 74(12): 5463-7. 
 
Sato, S. and R. J. Wilson (2005). "The Plastid of Plasmodium Spp.: A Target for Inhibitors." Curr 

Top Microbiol Immunol 295: 251-73. 
 
Schleiff, E., M. Motzkus, et al. (2002). "Chloroplast Protein Import Inhibition by a Soluble Factor 

from Wheat Germ Lysate." Plant Mol Biol 50(2): 177-85. 
 
Schmitter, R. E. (1971). "The Fine Structure of Gonyaulax Polyedra, a Bioluminescent Marine 

Dinoflagellate." J Cell Sci 9(1): 147-73. 
 
Schopf, J. W. (1993). "Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity 

of Life." Science 260: 640-6. 
 
Sibley, L. D. (2004). "Intracellular Parasite Invasion Strategies." Science 304(5668): 248-53. 
 
Simpson, A. G. and A. J. Roger (2002). "Eukaryotic Evolution: Getting to the Root of the Problem." 

Curr Biol 12(20): R691-3. 
 
Slamovits, C. H. and P. J. Keeling (2008). "Plastid-Derived Genes in the Nonphotosynthetic 

Alveolate Oxyrrhis Marina." Mol Biol Evol 25(7): 1297-306. 
 



References   

 

 130 

Slamovits, C. H., J. F. Saldarriaga, et al. (2007). "The Highly Reduced and Fragmented 

Mitochondrial Genome of the Early-Branching Dinoflagellate Oxyrrhis Marina Shares 

Characteristics with Both Apicomplexan and Dinoflagellate Mitochondrial Genomes." J Mol 

Biol 372(2): 356-68. 
 
Slavikova, S., R. Vacula, et al. (2005). "Homologous and Heterologous Reconstitution of Golgi to 

Chloroplast Transport and Protein Import into the Complex Chloroplasts of Euglena." J Cell 

Sci 118(Pt 8): 1651-61. 
 
Soares, M. B., M. de Fatima Bonaldo, et al. (2009). "Expressed Sequence Tags: Normalization and 

Subtraction of Cdna Libraries Expressed Sequence Tags\ Normalization and Subtraction of 

Cdna Libraries." Methods Mol Biol 533: 109-22. 
 
Soldati, D., B. J. Foth, et al. (2004). "Molecular and Functional Aspects of Parasite Invasion." Trends 

Parasitol 20(12): 567-74. 
 
Soll, J. and E. Schleiff (2004). "Protein Import into Chloroplasts." Nat Rev Mol Cell Biol 5(3): 198-

208. 
 
Sommer, M. S., S. B. Gould, et al. (2007). "Der1-Mediated Preprotein Import into the Periplastid 

Compartment of Chromalveolates?" Mol Biol Evol 24(4): 918-28. 
 
Steiner, J. M. and W. Loffelhardt (2002). "Protein Import into Cyanelles." Trends Plant Sci 7(2): 72-

7. 
 
Steiner, J. M., F. Yusa, et al. (2005). "Homologous Protein Import Machineries in Chloroplasts and 

Cyanelles." Plant J 44(4): 646-52. 
 
Stelter, K., N. M. El-Sayed, et al. (2007). "The Expression of a Plant-Type Ferredoxin Redox System 

Provides Molecular Evidence for a Plastid in the Early Dinoflagellate Perkinsus Marinus." 

Protist 158(1): 119-30. 
 
Stoebe, B. and U. G. Maier (2002). "One, Two, Three: Nature's Tool Box for Building Plastids." 

Protoplasma 219(3-4): 123-30. 
 
Strittmatter, P., J. Soll, et al. (2010). "The Chloroplast Protein Import Machinery: A Review." 

Methods Mol Biol 619: 307-21. 
 
Su, E. C., H. S. Chiu, et al. (2007). "Protein Subcellular Localization Prediction Based on 

Compartment-Specific Features and Structure Conservation." BMC Bioinformatics 8: 330. 
 
Sulli, C., Z. Fang, et al. (1999). "Topology of Euglena Chloroplast Protein Precursors within 

Endoplasmic Reticulum to Golgi to Chloroplast Transport Vesicles." J Biol Chem 274(1): 

457-63. 
 
Sulli, C. and S. D. Schwartzbach (1995). "The Polyprotein Precursor to the Euglena Light-Harvesting 

Chlorophyll a/B-Binding Protein Is Transported to the Golgi Apparatus Prior to Chloroplast 

Import and Polyprotein Processing." J Biol Chem 270(22): 13084-90. 
 



References   

 

 131 

Tanikawa, N., H. Akimoto, et al. (2004). "Expressed Sequence Tag Analysis of the Dinoflagellate 

Lingulodinium Polyedrum During Dark Phase." Photochem Photobiol 80: 31-5. 
 
Tonkin, C. J., B. J. Foth, et al. (2008a). "Evolution of Malaria Parasite Plastid Targeting Sequences." 

Proc Natl Acad Sci U S A 105(12): 4781-5. 
 
Tonkin, C. J., M. Kalanon, et al. (2008b). "Protein Targeting to the Malaria Parasite Plastid." Traffic 

9(2): 166-75. 
 
Tonkin, C. J., D. S. Roos, et al. (2006a). "N-Terminal Positively Charged Amino Acids, but Not Their 

Exact Position, Are Important for Apicoplast Transit Peptide Fidelity in Toxoplasma Gondii." 

Mol Biochem Parasitol 150(2): 192-200. 
 
Tonkin, C. J., N. S. Struck, et al. (2006b). "Evidence for Golgi-Independent Transport from the Early 

Secretory Pathway to the Plastid in Malaria Parasites." Mol Microbiol 61(3): 614-30. 
 
Toulza, E., M. S. Shin, et al. (2010). "Gene Expression in Proliferating Cells of the Dinoflagellate 

Alexandrium Catenella (Dinophyceae)." Appl Environ Microbiol. 
 
Ueda, M., M. Fujimoto, et al. (2006). "Evidence for Transit Peptide Acquisition through Duplication 

and Subsequent Frameshift Mutation of a Preexisting Protein Gene in Rice." Mol Biol Evol 

23(12): 2405-12. 
 
Uribe, P., D. Fuentes, et al. (2008). "Preparation and Analysis of an Expressed Sequence Tag Library 

from the Toxic Dinoflagellate Alexandrium Catenella." Mar Biotechnol (NY) 10(6): 692-700. 
 
Van de Peer, Y. and R. De Wachter (1997). "Evolutionary Relationships among the Eukaryotic 

Crown Taxa Taking into Account Site-to-Site Rate Variation in 18s Rrna." J Mol Evol 45(6): 

619-30. 
 
van Dooren, G. G., S. D. Schwartzbach, et al. (2001). "Translocation of Proteins across the Multiple 

Membranes of Complex Plastids." Biochim Biophys Acta 1541(1-2): 34-53. 
 
Vothknecht, U. C. and J. Soll (2005). "Chloroplast Membrane Transport: Interplay of Prokaryotic and 

Eukaryotic Traits." Gene 354: 99-109. 
 
Wagner, G. J. and G. Hrazdina (1984). "Endoplasmic Reticulum as a Site of Phenylpropanoid and 

Flavonoid Metabolism in Hippeastrum." Plant Physiol 74(4): 901-906. 
 
Waller, R. F., P. J. Keeling, et al. (1998). "Nuclear-Encoded Proteins Target to the Plastid in 

Toxoplasma Gondii and Plasmodium Falciparum." Proc Natl Acad Sci U S A 95(21): 12352-

7. 
 
Waller, R. F. and G. I. McFadden (2005). "The Apicoplast: A Review of the Derived Plastid of 

Apicomplexan Parasites." Curr Issues Mol Biol 7(1): 57-79. 
 
Waller, R. F., N. J. Patron, et al. (2006a). "Phylogenetic History of Plastid-Targeted Proteins in the 

Peridinin-Containing Dinoflagellate Heterocapsa Triquetra." Int J Syst Evol Microbiol 56(Pt 

6): 1439-47. 
 



References   

 

 132 

Waller, R. F., M. B. Reed, et al. (2000). "Protein Trafficking to the Plastid of Plasmodium Falciparum 

Is Via the Secretory Pathway." EMBO J 19(8): 1794-802. 
 
Waller, R. F., C. H. Slamovits, et al. (2006b). "Lateral Gene Transfer of a Multigene Region from 

Cyanobacteria to Dinoflagellates Resulting in a Novel Plastid-Targeted Fusion Protein." Mol 

Biol Evol 23(7): 1437-43. 
 
Wang, L. H., K. G. Rothberg, et al. (1993). "Mis-Assembly of Clathrin Lattices on Endosomes 

Reveals a Regulatory Switch for Coated Pit Formation." J Cell Biol 123(5): 1107-17. 
 
Wang, Y., L. Jensen, et al. (2005). "Synthesis and Degradation of Dinoflagellate Plastid-Encoded 

Psba Proteins Are Light-Regulated, Not Circadian-Regulated." Proc Natl Acad Sci U S A 

102(8): 2844-9. 
 
Wang, Y., S. Joly, et al. (2008). "Phylogeny of Dinoflagellate Plastid Genes Recently Transferred to 

the Nucleus Supports a Common Ancestry with Red Algal Plastid Genes." J Mol Evol 66(2): 

175-84. 
 
Wastl, J. and U. G. Maier (2000). "Transport of Proteins into Cryptomonads Complex Plastids." J 

Biol Chem 275(30): 23194-8. 
 
Weber, A. P., M. Linka, et al. (2006). "Single, Ancient Origin of a Plastid Metabolite Translocator 

Family in Plantae from an Endomembrane-Derived Ancestor." Eukaryot Cell 5(3): 609-12. 
 
Yoon, H. S., J. D. Hackett, et al. (2002). "A Single Origin of the Peridinin- and Fucoxanthin-

Containing Plastids in Dinoflagellates through Tertiary Endosymbiosis." Proc Natl Acad Sci 

U S A 99(18): 11724-9. 
 
Yoon, H. S., J. D. Hackett, et al. (2004). "A Molecular Timeline for the Origin of Photosynthetic 

Eukaryotes." Mol Biol Evol 21(5): 809-18. 
 
Yoon, H. S., J. D. Hackett, et al. (2005). "Tertiary Endosymbiosis Driven Genome Evolution in 

Dinoflagellate Algae." Mol Biol Evol 22(5): 1299-308. 
 
Yoon, H. S., T. Nakayama, et al. (2009). "A Single Origin of the Photosynthetic Organelle in 

Different Paulinella Lineages." BMC Evol Biol 9: 98. 
 
Yutin, N., M. Y. Wolf, et al. (2009). "The Origins of Phagocytosis and Eukaryogenesis." Biol Direct 

4: 9. 
 
Zerges, W. and J. D. Rochaix (1998). "Low Density Membranes Are Associated with Rna-Binding 

Proteins and Thylakoids in the Chloroplast of Chlamydomonas Reinhardtii." J Cell Biol 

140(1): 101-10. 
 
Zhang, H., D. A. Campbell, et al. (2009). "Dinoflagellate Spliced Leader Rna Genes Display a 

Variety of Sequences and Genomic Arrangements." Mol Biol Evol 26(8): 1757-71. 
 
Zhang, H., Y. Hou, et al. (2007). "Spliced Leader Rna Trans-Splicing in Dinoflagellates." Proc Natl 

Acad Sci U S A 104(11): 4618-23. 
 



References   

 

 133 

Zhang, Z., B. R. Green, et al. (1999). "Single Gene Circles in Dinoflagellate Chloroplast Genomes." 

Nature 400(6740): 155-9. 
 

 
 



Acknowledgements   

 

 134 

9 Acknowledgements 

"It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of 

foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of 

Light, it was the season of Darkness, it was the spring of hope, it was the winter of despair, 

we had everything before us, we had nothing before us, we were all going direct to heaven, 

we were all doing direct the other way." --Charles Dickens, A Tale of Two Cities 

 

I utterly treasured the elation of research, and really never tired of the most banal of 

successes. I have always enjoyed theoretical conversations and have always thought of 

myself as being a boon to those who wish to discuss the theoretical aspects of evolution and 

biochemistry. Despite having always kept the fire of ardor alit, the tinge of disappointment 

was never far away. Disgust and despair were constantly my cerebral enemies, during the 

duration of any experiment that went awry, and as any scientist will tell you, the successes 

are usually dwarfed by experiments that did not turn out. Altogether it was a time of soaring 

thoughts, modest success, laced with relentless doubt.  

 

I would like to thank my wife for having the patience to help me through the trying ordeal of 

my doctorate thesis. Thanks also to my kids, Emma and Luke have always been able to 

distract me from the frustrations of failed clonings, so I am thankful to them...they are always 

able to put a smile on my face. Thanks also are due to my parents-in-law, who helped our 

family get through tough times. 

 

Special thanks go out to Dr. Kathrin Bolte for having helped me in lab, for the dedicated 

work on the electron microscope, and for always having been willing to lend an ear and a 

piece of advice, like no one else was able to. 

 

I would like to thank Uwe Maier for having given me the opportunity to be in the the Intra- 

and Intercellular Transport and Communication Graduate College. Thanks to Stefan Zauner 

for having advised me on this thesis. Without their involvement, my doctorate would never 

haver reached fruitione. 

 

Thanks to Dr. Erhard Möschel and Marriane Johannsen for the discussions touching on 

Nor’deutchland to Denver to electron microscopy to dinoflagellates to the hot barracks of the 

Bundeswehr in the fifties. 

 

Thanks to Heidi Thierfelder for her constant willingness to lend a hand and an ear. Thanks to 

Lucette Claudet for her friendliness and dedication to detail...and for her patience when I 

came with an urgent order at 3:45 p.m. on Friday when she was packing her bag to go home. 

 

Thanks to my diploma student Susanne Lieske and Bachelor’s student Christine Weber for 

the assistance. Thanks to Jan Wilhelm and Christopher Grosche for assistance with 

experiments and stimulating conversation. 

 

Thanks to all the students of AG Maier for the help in lab and the good times. 



Curriculum vitae   

 

 135 

10 Curriculum vitae 

 

Personal Data: 

 

Name  Andrew Bozarth 

Born October 21, 1980 

In Columbia, MD, USA  

Wife (as of April 12, 2007) Katja Miriam Bozarth (maiden name: Junker) 

Children Emma Jean Bozarth, born 5/23/2007 

 Lucas Liam Bozarth, born 12/26/2008 

Education 

 

September, 1994 – June, 1998  Secondary education at Elizabethtown Area  

 High School 

 

September, 1997 – June, 1998 Exchange Student at Professor Hofmann  

 Gymnasium Kölleda 

 

June, 1998 High School Diploma 

 

August, 1998 – May, 2002  Biology and German Bachelor Studies at 

 Elizabethtown College 

 

May, 2002 Biology B.Sc. and German B.A. 

 

September, 2000 – July, 2001 Exchange Student at Philipps University of Marburg 

  

October, 2002 – February, 2003 Human Biology Studies at Philipps University of 

Marburg  

 

April, 2003 – March, 2006  Biology Studies at Philipps-University of Marburg in 

 the subjects of Microbiology, Biochemistry and 

Developmental Biology 

 

March, 2006  German Diploma in Microbiology at Philipps  

University of Marburg “Examination of a Common 

Nicotinate Metabolism in Proteobacteria” 

 

Ph. D. Studies 

April, 2006 – July, 2010 Philipps University of Marburg 

 Biology Department, Cell Biology 

Ph.D. thesis in the lab of Prof. Dr. Uwe G. Maier 

“Investigation of Dinoflagellate Plastid Protein 

Transport using Heterologous and Homologous in vivo 

Systems” 



Erklärung   

 

 136 

11 Erklärung 

Ich versichere, dass ich meine Dissertation 

 

„Investigation of Dinoflagellate Plastid Protein Transport  

using Heterologous and Homologous in vivo Systems“ 

 

selbständig, ohne unerlaubte Hilfe angefertigt und mich dabei keiner anderen 

als der von mir ausdrücklich bezeichneten Quellen und Hilfen bedient habe. 

Die Dissertation wurde in der jetzigen oder einer ähnlichen Form noch bei 

keiner anderen Hochschule eingereicht und hat noch keinen sonstigen 

Prüfungszwecken gedient. 

 

 

 

 

 

Marburg, den 7. Juni 2010      Andrew Scott Bozarth 


