Publikationsserver der Universitätsbibliothek Marburg

Titel:Eine Frage der Form: Mechanismen morphologischer Differenzierung in Bakterien
Autor:Kühn, Juliane
Weitere Beteiligte: Thanbichler, Martin (Jun.-Prof.)
Veröffentlicht:2010
URI:https://archiv.ub.uni-marburg.de/diss/z2010/0491
URN: urn:nbn:de:hebis:04-z2010-04914
DOI: https://doi.org/10.17192/z2010.0491
DDC:570 Biowissenschaften, Biologie
Titel (trans.):A matter of shape: mechanisms of morphological differentiation in bacteria
Publikationsdatum:2010-10-13
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Polymere Proteine, Bakterien, Zellskelett, Caulobacter crescentus, Filament, Cytoskeleton, Polymeric proteins, Zytoskelett

Zusammenfassung:
Prokaryoten weisen eine Vielzahl unterschiedlicher Formen und Lebensstile auf, wobei aber die dieser Vielfalt zugrunde liegenden Mechanismen zum Großteil unbekannt sind. Ziel der hier vorgelegten Arbeit war die Identifikation neuer Faktoren, die in Bakterien an der Ausprägung der Zellform beteiligt sind. Dafür wurde das α-Proteobakterium Caulobacter crescentus als Modellorganismus gewählt, da der Organismus genetisch zugänglich ist und zellzyklus-abhängige und durch Umwelteinflüsse bedingte Änderungen der Zellform in diesem Bakterium beschrieben wurden. Die morphologischen Veränderungen während der Entwicklung einer beweglichen Schwärmerzelle zur sessilen Stielzelle waren Ausgangspunkt für die Suche nach Proteinen, die an der Modellierung des Zellpols oder der Biogenese der Prostheka beteiligt sind. Hier konnte auf Microarray-Analysen zur Transkriptionsregulation während des Zellzyklus zurückgegriffen werden. Eine nähere Untersuchung der zu diesem Zeitpunkt induzierten Gene führte zur Identifikation von bacA und bacB in C. crescentus. In weiteren Experimenten konnte die Lokalisation der entsprechenden Proteine zum bestielten Pol sowie ihre Fähigkeit zur Ausbildung polymerer Strukturen nachgewiesen werden. Es konnte gezeigt werden, dass in E. coli produzierte und über chromatographische Methoden aufgereinige Proteine ohne Zusatz von Co-Faktoren polymerisieren. Mittels Co-Immunpräzipitation wurde die Interaktion von BacA und BacB mit der Peptidoglykansynthase PbpC nachgewiesen. Ebenso wurden zu BacAB homologe Proteine aus anderen Bakterienspezies untersucht, wobei für diese ein ähnliches Polymerisationsverhalten gezeigt werden konnte. Um die Genregulation bei einem Mangel an Phosphat in C. crescentus analysieren zu können, wurden Microarray-Analysen verschiedener Stämme, angezogen in Komplexmedium oder phosphatfreiem Minimalmedium, erstellt. Durch Vergleich der erhaltenen Daten konnte das Pho-Regulon in Caulobacter näher bestimmt und der Einfluss eines MarR-ähnlichen Transkriptionsfaktors während der Reaktion auf eine Verknappung an Phosphat gezeigt werden.

Bibliographie / References

  1. U. K. Laemmli (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227:680–5.
  2. A. Briegel, D. P. Dias, Z. Li, R. B. Jensen, A. S. Frangakis, and G. J. Jensen (2006) Multiple large filament bundles observed in Caulobacter crescentus by electron cryoto- mography. Mol Microbiol, 62:5–14.
  3. S. Vaughan, B. Wickstead, K. Gull, and S. G. Addinall (2004) Molecular evolution of FtsZ protein sequences encoded within the genomes of archaea, bacteria, and eukaryota. J Mol Evol, 58:19–29.
  4. T. L. Bailey and C. Elkan (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol, 2:28–36.
  5. R. D. Finn, J. Tate, J. Mistry, P. C. Coggill, S. J. Sammut, H. R. Hotz, G. Ceric, K. Forslund, S. R. Eddy, E. L. Sonnhammer, and A. Bateman (2008) The Pfam protein families database. Nucleic Acids Res, 36:D281–8.
  6. C. Lu, M. Reedy, and H. P. Erickson (2000) Straight and curved conformations of FtsZ are regulated by GTP hydrolysis. J Bacteriol, 182:164–70.
  7. P. Cohen, H. Hachler, and S. B. Levy (1993) Genetic and functional analysis of the multiple antibiotic resistance (mar) locus in Escherichia coli. J Bacteriol, 175:1484–92.
  8. C. Jacobs, I. J. Domian, J. R. Maddock, and L. Shapiro (1999) Cell cycle-dependent polar localization of an essential bacterial histidine kinase that controls DNA replication and cell division. Cell, 97:111–20.
  9. M. T. Cabeen, G. Charbon, W. Vollmer, P. Born, N. Ausmees, D. B. Weibel, and C. Jacobs-Wagner (2009) Bacterial cell curvature through mechanical control of cell growth. EMBO J.
  10. S. Thanedar and W. Margolin (2004) FtsZ exhibits rapid movement and oscillation waves in helix-like patterns in Escherichia coli. Curr Biol, 14:1167–73.
  11. R. C. Gayda, M. C. Henk, and D. Leong (1992) C-shaped cells caused by expression of an ftsA mutation in Escherichia coli. J Bacteriol, 174:5362–70.
  12. D. H. Edwards and J. Errington (1997) The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division. Mol Microbiol, 24:905–15.
  13. N. W. Goehring and J. Beckwith (2005) Diverse paths to midcell: assembly of the bacterial cell division machinery. Curr Biol, 15:R514–26.
  14. H. Lam, W. B. Schofield, and C. Jacobs-Wagner (2006) A landmark protein essential for establishing and perpetuating the polarity of a bacterial cell. Cell, 124:1011–23.
  15. S. Justice, D. A. Hunstad, L. Cegelski, and S. J. Hultgren (2008) Morphological plasticity as a bacterial survival strategy. Nat Rev Microbiol, 6:162–8.
  16. I. Chen and D. Dubnau (2004) DNA uptake during bacterial transformation. Nat Rev Microbiol, 2:241–9.
  17. S. Wu, J. Wu, and D. Kaiser (1997) The Myxococcus xanthus pilT locus is required for social gliding motility although pili are still produced. Mol Microbiol, 23:109–21.
  18. P. Youderian, N. Burke, D. J. White, and P. L. Hartzell (2003) Identification of genes required for adventurous gliding motility in Myxococcus xanthus with the transposable element mariner. Mol Microbiol, 49:555–70.
  19. I. Letunic and P. Bork (2007) Interactive Tree Of Life (iTOL): an online tool for phy- logenetic tree display and annotation. Bioinformatics, 23:127–8. Letunic, Ivica Bork, Peer England Bioinformatics (Oxford, England) Bioinformatics. 2007 Jan 1;23(1):127-8. Epub 2006 Oct 18.
  20. M. Thanbichler, A. A. Iniesta, and L. Shapiro (2007) A comprehensive set of plasmids for vanillate-and xylose-inducible gene expression in Caulobacter crescentus. Nucleic Acids Res, 35:–.
  21. J. F. da Silva Neto, V. S. Braz, V. C. Italiani, and M. V. Marques (2009) Fur controls iron homeostasis and oxidative stress defense in the oligotrophic alpha-proteobacterium Caulobacter crescentus. Nucleic Acids Res, 37:4812–25.
  22. R. Gu, S. Fonseca, L. G. Puskas, J. Hackler, L., A. Zvara, D. Dudits, and M. S. Pais (2004) Transcript identification and profiling during salt stress and recovery of Populus euphratica. Tree Physiol, 24:265–76.
  23. M. J. Kuehn and N. C. Kesty (2005) Bacterial outer membrane vesicles and the host- pathogen interaction. Genes Dev, 19:2645–55.
  24. K. Radhakrishnan, M. Thanbichler, and P. H. Viollier (2008) The dynamic interplay between a cell fate determinant and a lysozyme homolog drives the asymmetric division cycle of Caulobacter crescentus. Genes Dev., 22:212–225.
  25. K. Makino, M. Amemura, S. K. Kim, A. Nakata, and H. Shinagawa (1993) Role of the sigma 70 subunit of RNA polymerase in transcriptional activation by activator protein PhoB in Escherichia coli. Genes Dev, 7:149–60.
  26. G. E. Crooks, G. Hon, J. M. Chandonia, and S. E. Brenner (2004) WebLogo: a sequence logo generator. Genome Res, 14:1188–90.
  27. H. Stahlberg, E. Kutejova, K. Muchova, M. Gregorini, A. Lustig, S. A. Muller, V. Olivi- eri, A. Engel, A. J. Wilkinson, and I. Barak (2004) Oligomeric structure of the Bacillus subtilis cell division protein DivIVA determined by transmission electron microscopy. Mol Microbiol, 52:1281–90.
  28. P. Aldridge, R. Paul, P. Goymer, P. Rainey, and U. Jenal (2003) Role of the GGDEF regulator PleD in polar development of Caulobacter crescentus. Mol Microbiol, 47:1695– 708.
  29. U. Jenal and L. Shapiro (1996) Cell cycle-controlled proteolysis of a flagellar motor protein that is asymmetrically distributed in the Caulobacter predivisional cell. EMBO J, 15:2393–406.
  30. L. Sogaard-Andersen (2004) Cell polarity, intercellular signalling and morphogenetic cell movements in Myxococcus xanthus. Curr Opin Microbiol, 7:587–93.
  31. T. Kruse, J. Bork-Jensen, and K. Gerdes (2005) The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane-bound complex. Mol Microbiol, 55:78– 89.
  32. J. H. Baek and S. Y. Lee (2006) Novel gene members in the Pho regulon of Escherichia coli. FEMS Microbiol Lett, 264:104–9.
  33. T. den Blaauwen, M. A. de Pedro, M. Nguyen-Disteche, and J. A. Ayala (2008) Mor- phogenesis of rod-shaped sacculi. FEMS Microbiol Rev, 32:321–44.
  34. M. P. Molloy (2008) Isolation of bacterial cell membranes proteins using carbonate extraction. Methods Mol Biol, 424:397–401.
  35. J. K. Wagner, S. Setayeshgar, L. A. Sharon, J. P. Reilly, and Y. V. Brun (2006) A nutrient uptake role for bacterial cell envelope extensions. Proc Natl Acad Sci U S A, 103:11772–7.
  36. G. Raghava (2002) APSSP2: A combination method for protein secondary structure prediction based on neural network and example based learning. CASP5. A-132.
  37. M. M. Lleo, P. Canepari, and G. Satta (1990) Bacterial cell shape regulation: testing of additional predictions unique to the two-competing-sites model for peptidoglycan assembly and isolation of conditional rod-shaped mutants from some wild-type cocci. J Bacteriol, 172:3758–71.
  38. G. Charbon, M. T. Cabeen, and C. Jacobs-Wagner (2009) Bacterial intermediate fila- ments: in vivo assembly, organization, and dynamics of crescentin. Genes Dev, 23:1131– 44.
  39. W. Weidel and H. Pelzer (1964) Bagshaped Macromolecules -a New Outlook on Bac- terial Cell Walls. Adv Enzymol Relat Areas Mol Biol, 26:193–232.
  40. C. Gram (1884) Über die isolierte Färbung der Schizomyceten in Schnitt-und Trocken- präparaten. Fortschritte der Medizin, 2:185–189.
  41. H. N. Schulz and B. B. Jorgensen (2001) Big bacteria. Annu Rev Microbiol, 55:105–37.
  42. J. S. Poindexter (1964) Biological Properties and Classification of the Caulobacter Group. Bacteriol Rev, 28:231–95.
  43. M. Sandkvist (2001) Biology of type II secretion. Mol Microbiol, 40:271–83.
  44. E. M. Quardokus, N. Din, and Y. V. Brun (2001) Cell cycle and positional constraints on FtsZ localization and the initiation of cell division in Caulobacter crescentus. Mol Microbiol, 39:949–59.
  45. J. M. Skerker and M. T. Laub (2004) Cell-cycle progression and the generation of asymmetry in Caulobacter crescentus. Nat Rev Microbiol, 2:325–337.
  46. E. D. Goley, A. A. Iniesta, and L. Shapiro (2007) Cell cycle regulation in Caulobacter: location, location, location. J Cell Sci, 120:3501–3507.
  47. J. Stove and R. Stanier (1962) Cellular differentiation in stalked bacteria. Nature, 196:1189–1192.
  48. C. d'Enfert, A. Ryter, and A. P. Pugsley (1987) Cloning and expression in Escherichia coli of the Klebsiella pneumoniae genes for production, surface localization and secretion of the lipoprotein pullulanase. EMBO J, 6:3531–8.
  49. L. J. Jones, R. Carballido-Lopez, and J. Errington (2001) Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell, 104:913–22.
  50. M. S. Rappé, S. A. Connon, K. L. Vergin, and S. J. Giovannoni (2002) Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature, 418:630–3.
  51. H. Barreteau, A. Kovac, A. Boniface, M. Sova, S. Gobec, and D. Blanot (2008) Cyto- plasmic steps of peptidoglycan biosynthesis. FEMS Microbiol Rev, 32:168–207.
  52. P. L. Graumann (2007) Cytoskeletal elements in bacteria. Annu Rev Microbiol, 61:589– 618.
  53. R. T. Wheeler and L. Shapiro (1999) Differential localization of two histidine kinases controlling bacterial cell differentiation. Mol Cell, 4:683–94.
  54. J. S. Poindexter (2006) Dimorphic prosthecate bacteria: the genera Caulobacter, Astic- cacaulis, Hyphomicrobium, Pedomicrobium, Hyphomonas, and Thiodendron. The Pro- karyotes, 5:72–90.
  55. A. Mukherjee and J. Lutkenhaus (1998) Dynamic assembly of FtsZ regulated by GTP hydrolysis. EMBO J, 17:462–9.
  56. H. J. Defeu Soufo and P. L. Graumann (2006) Dynamic localization and interaction with other Bacillus subtilis actin-like proteins are important for the function of MreB. Mol Microbiol, 62:1340–56.
  57. D. RayChaudhuri and J. T. Park (1992) Escherichia coli cell-division gene ftsZ encodes a novel GTP-binding protein. Nature, 359:251–4.
  58. M. L. Summers, J. G. Elkins, B. A. Elliott, and T. R. McDermott (1998) Expression and regulation of phosphate stress inducible genes in Sinorhizobium meliloti. Mol Plant Microbe Interact, 11:1094–101.
  59. H. Paerl (1982) Factors limiting productivity of freshwater ecosystems. Adv. Microb. Ecol, 6:75–110.
  60. A. Möll and M. Thanbichler (2009) FtsN-like proteins are conserved components of the cell division machinery in proteobacteria. Mol Microbiol, 72:1037–53.
  61. E. F. Bi and J. Lutkenhaus (1991) FtsZ ring structure associated with division in Escherichia coli. Nature, 354:161–4.
  62. B. Ely (1991) Genetics of Caulobacter crescentus. Methods Enzymol, 204:372–384.
  63. J. Hodgkin and D. Kaiser (1979) Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): two gene systems control movement. Mol Gen Genet, 171:177–191.
  64. M. Thanbichler and L. Shapiro (2008) Getting organized -how bacterial cells move proteins and DNA. Nat Rev Microbiol, 6:28–40.
  65. M. T. Laub, H. H. McAdams, T. Feldblyum, C. M. Fraser, and L. Shapiro (2000) Global analysis of the genetic network controlling a bacterial cell cycle. Science, 290:2144–8.
  66. S. E. Chuang, D. L. Daniels, and F. R. Blattner (1993) Global regulation of gene expression in Escherichia coli. J Bacteriol, 175:2026–36.
  67. J. V. Höltje (1998) Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev, 62:181–203.
  68. A. Torriani (1960) Influence of Inorganic Phosphate in the Formation of Phosphatases by Escherichia coli. Biochimi Biophys Acta, 38:460–469.
  69. M. R. Stapleton, V. A. Norte, R. C. Read, and J. Green (2002) Interaction of the Salmonella typhimurium transcription and virulence factor SlyA with target DNA and identification of members of the SlyA regulon. J Biol Chem, 277:17630–7.
  70. H. Herrmann and U. Aebi (2004) Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular Scaffolds. Annu Rev Biochem, 73:749–89.
  71. A. C. Meisenzahl, L. Shapiro, and U. Jenal (1997) Isolation and characterization of a xylose-dependent promoter from Caulobacter crescentus. J Bacteriol, 179:592–600.
  72. P. Wilkinson and A. Grove (2006) Ligand-responsive transcriptional regulation by members of the MarR family of winged helix proteins. Curr Issues Mol Biol, 8:51–62.
  73. M. Russel (1998) Macromolecular assembly and secretion across the bacterial cell enve- lope: type II protein secretion systems. J Mol Biol, 279:485–99.
  74. N. N. Rao and A. Torriani (1990) Molecular aspects of phosphate transport in Escheri- chia coli. Mol Microbiol, 4:1083–90.
  75. J. Sambrook, E. Fritsch, and T. Maniatis (1989) Molecular Cloning. A Laboratory Ma- nual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  76. R. M. Figge, A. V. Divakaruni, and J. W. Gober (2004) MreB, the cell shape- determining bacterial actin homologue, co-ordinates cell wall morphogenesis in Cau- lobacter crescentus. Mol Microbiol, 51:1321–32.
  77. S. Eisenbeis, S. Lohmiller, M. Valdebenito, S. Leicht, and V. Braun (2008) NagA- dependent uptake of N-acetyl-glucosamine and N-acetyl-chitin oligosaccharides across the outer membrane of Caulobacter crescentus. J Bacteriol, 190:5230–8.
  78. I. Kulaev, V. Vagabov, and T. Kulakovskaya (1999) New aspects of inorganic polyphos- phate metabolism and function. J Biosci Bioeng, 88:111–29.
  79. P. M. Santos, I. Di Bartolo, J. M. Blatny, E. Zennaro, and S. Valla (2001) New broad- host-range promoter probe vectors based on the plasmid RK2 replicon. FEMS Microbiol Lett, 195:91–6.
  80. B. G. Spratt and A. B. Pardee (1975) Penicillin-binding proteins and cell shape in E. coli. Nature, 254:516–7.
  81. W. Vollmer, D. Blanot, and M. A. de Pedro (2008) Peptidoglycan structure and archi- tecture. FEMS Microbiol Rev, 32:149–67.
  82. B. L. Wanner (1996) Phosphorus assimilation and control of the phosphate regulon. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger, editors, Escherichia coli and Salmonella: cellular and molecular biology, volume 1. ASM Press, Washington D. C., 2nd edition.
  83. K. Venkateswaran, D. P. Moser, M. E. Dollhopf, D. P. Lies, D. A. Saffarini, B. J. Mac- Gregor, D. B. Ringelberg, D. C. White, M. Nishijima, H. Sano, J. Burghardt, E. Stacke- brandt, and K. H. Nealson (1999) Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol, 49 Pt 2:705–24.
  84. C. L. White, A. Kitich, and J. W. Gober (2010) Positioning cell wall synthetic complexes by the bacterial morphogenetic proteins MreB and MreD. Mol Microbiol.
  85. T. Ueki, S. Inouye, and M. Inouye (1996) Positive-negative KG cassettes for construction of multi-gene deletions using a single drug marker. Gene, 183:153–7.
  86. F. Harada and S. Nishimura (1972) Possible anticodon sequences of tRNA His , tRNA Asm , and tRNA Asp from Escherichia coli B. Universal presence of nucleoside Q in the first position of the anticondons of these transfer ribonucleic acids. Biochemistry, 11:301–8.
  87. J. Kahnt, B. Buchenau, F. Mahlert, M. Kruger, S. Shima, and R. K. Thauer (2007) Post- translational modifications in the active site region of methyl-coenzyme M reductase from methanogenic and methanotrophic archaea. FEBS J, 274:4913–21.
  88. M. M. Ireland, J. A. Karty, E. M. Quardokus, J. P. Reilly, and Y. V. Brun (2002) Proteomic analysis of the Caulobacter crescentus stalk indicates competence for nutrient uptake. Mol Microbiol, 45:1029–41.
  89. S. Ben-Yehuda, D. Z. Rudner, and R. Losick (2003) RacA, a bacterial protein that anchors chromosomes to the cell poles. Science, 299:532–6.
  90. M. Osawa, D. E. Anderson, and H. P. Erickson (2008) Reconstitution of contractile FtsZ rings in liposomes. Science, 320:792–4.
  91. E. Frixione (2000) Recurring views on the structure and function of the cytoskeleton: a 300-year epic. Cell Motil Cytoskeleton, 46:73–94.
  92. S. H. Lee, D. L. Hava, M. K. Waldor, and A. Camilli (1999) Regulation and temporal expression patterns of Vibrio cholerae virulence genes during infection. Cell, 99:625–34.
  93. K. Makino, H. Shinagawa, M. Amemura, S. Kimura, A. Nakata, and A. Ishihama (1988) Regulation of the phosphate regulon of Escherichia coli: Activation of pstS transcription by PhoB protein in vitro. J Mol Biol, 203:85–95.
  94. V. Chapon-Herve, M. Akrim, A. Latifi, P. Williams, A. Lazdunski, and M. Bally (1997) Regulation of the xcp secretion pathway by multiple quorum-sensing modulons in Pseu- domonas aeruginosa. Mol Microbiol, 24:1169–78.
  95. J. Poindexter (1984) Role of prostheca development in oligotrophic aquatic bacteria. Curr perspect microb ecol. ASM Press, 33–40.
  96. F. Ausubel, R. Brent, R. Kingston, D. Moore, J. Seidman, J. Smith, and K. Struhl (2002). Short protocols in molecular biology: A Compendium of methods from current protocols in molecular biology.
  97. G. Landt, E. Abeliuk, P. T. McGrath, J. A. Lesley, H. H. McAdams, and L. Shapiro (2008) Small non-coding RNAs in Caulobacter crescentus. Mol Microbiol.
  98. L. M. Mashburn-Warren and M. Whiteley (2006) Special delivery: vesicle trafficking in prokaryotes. Mol Microbiol, 61:839–46.
  99. P. M. Blumberg and J. L. Strominger (1972) Five penicillin-binding components occur in Bacillus subtilis membranes. J Biol Chem, 247:8107–13.
  100. R. Koebnik, K. P. Locher, and P. Van Gelder (2000) Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol, 37:239–53.
  101. J. Pogliano (2008) The bacterial cytoskeleton. Curr Opin Cell Biol, 20:19–27.
  102. N. Ausmees, J. R. Kuhn, and C. Jacobs-Wagner (2003) The bacterial cytoskeleton: an intermediate filament-like function in cell shape. Cell, 115:705–13.
  103. R. Carballido-Lopez and J. Errington (2003) The bacterial cytoskeleton: in vivo dyna- mics of the actin-like protein Mbl of Bacillus subtilis. Dev Cell, 4:19–28.
  104. A. Frost, V. M. Unger, and P. De Camilli (2009) The BAR domain superfamily: membrane-molding macromolecules. Cell, 137:191–6.
  105. A. V. Divakaruni, C. Baida, C. L. White, and J. W. Gober (2007) The cell shape proteins MreB and MreC control cell morphogenesis by positioning cell wall synthetic complexes. Mol Microbiol, 66:174–88.
  106. M. N. Alekshun, S. B. Levy, T. R. Mealy, B. A. Seaton, and J. F. Head (2001) The crystal structure of MarR, a regulator of multiple antibiotic resistance, at 2.3 Å resolution. Nat Struct Biol, 8:710–4.
  107. J. M. Schmidt and R. Y. Stanier (1966) The development of cellular stalks in bacteria. J Cell Biol, 28:423–36.
  108. P. de Boer, R. Crossley, and L. Rothfield (1992) The essential bacterial cell-division protein FtsZ is a GTPase. Nature, 359:254–6.
  109. M. Desvaux, N. J. Parham, A. Scott-Tucker, and I. R. Henderson (2004) The general secretory pathway: a general misnomer? Trends Microbiol, 12:306–9.
  110. C. Weibull (1953) The isolation of protoplasts from Bacillus megaterium by controlled treatment with lysozyme. J Bacteriol, 66:688–95.
  111. S. Koyasu, A. Fukuda, and Y. Okada (1980) The penicillin-binding proteins of Caulob- acter crescentus. J Biochem, 87:363–6.
  112. V. Rajagopala, B. Titz, J. Goll, J. R. Parrish, K. Wohlbold, M. T. McKevitt, T. Palz- kill, H. Mori, J. Finley, R. L., and P. Uetz (2007) The protein network of bacterial motility. Mol Syst Biol, 3:128.
  113. M. Aaron, G. Charbon, H. Lam, H. Schwarz, W. Vollmer, and C. Jacobs-Wagner (2007) The tubulin homologue FtsZ contributes to cell elongation by guiding cell wall precursor synthesis in Caulobacter crescentus. Mol Microbiol, 64:938–52.
  114. S. Lohmiller, K. Hantke, S. I. Patzer, and V. Braun (2008) TonB-dependent maltose transport by Caulobacter crescentus. Microbiology, 154:1748–54.
  115. J. M. Skerker, M. S. Prasol, B. S. Perchuk, E. G. Biondi, and M. T. Laub (2005) Two- component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis. PLoS Biol, 3:e334.
  116. M. Sandkvist (2001) Type II secretion and pathogenesis. Infect Immun, 69:3523–35.
  117. N. P. Cianciotto (2005) Type II secretion: a protein secretion system for all seasons. Trends Microbiol, 13:581–8.
  118. M. Letek, E. Ordonez, J. Vaquera, W. Margolin, K. Flärdh, L. M. Mateos, and J. A. Gil (2008) DivIVA is required for polar growth in the MreB-lacking rod-shaped actinomycete Corynebacterium glutamicum. J Bacteriol, 190:3283–92.
  119. A. M. Hempel, S. B. Wang, M. Letek, J. A. Gil, and K. Flärdh (2008) Assemblies of DivIVA mark sites for hyphal branching and can establish new zones of cell wall growth in Streptomyces coelicolor. J Bacteriol, 190:7579–83.
  120. K. Flärdh (2003) Essential role of DivIVA in polar growth and morphogenesis in Strep- tomyces coelicolor A3(2). Mol Microbiol, 49:1523–36.
  121. L. J. Wu and J. Errington (2003) RacA and the Soj-Spo0J system combine to effect polar chromosome segregation in sporulating Bacillus subtilis. Mol Microbiol, 49:1463–75.
  122. U. Bertsche, T. Kast, B. Wolf, C. Fraipont, M. E. Aarsman, K. Kannenberg, M. von Rechenberg, M. Nguyen-Disteche, T. den Blaauwen, J. V. Holtje, and W. Vollmer (2006) Interaction between two murein (peptidoglycan) synthases, PBP3 and PBP1B, in Esche- richia coli. Mol Microbiol, 61:675–90.
  123. L. West, D. Yang, and C. Stephens (2002) Use of the Caulobacter crescentus genome sequence to develop a method for systematic genetic mapping. J Bacteriol, 184:2155–66.
  124. A. K. Hottes, M. Meewan, D. Yang, N. Arana, P. Romero, H. H. McAdams, and C. Ste- phens (2004) Transcriptional profiling of Caulobacter crescentus during growth on com- plex and minimal media. J Bacteriol, 186:1448–61.
  125. Z. Gitai, N. A. Dye, A. Reisenauer, M. Wachi, and L. Shapiro (2005) MreB actin- mediated segregation of a specific region of a bacterial chromosome. Cell, 120:329–41.
  126. N. Iwai, K. Nagai, and M. Wachi (2002) Novel S-benzylisothiourea compound that induces spherical cells in Escherichia coli probably by acting on a rod-shape-determining protein(s) other than penicillin-binding protein 2. Biosci Biotechnol Biochem, 66:2658– 62.
  127. R. J. Penfold and J. M. Pemberton (1992) An improved suicide vector for construction of chromosomal insertion mutations in bacteria. Gene, 118:145–6.
  128. T. Gristwood, P. C. Fineran, L. Everson, N. R. Williamson, and G. P. Salmond (2009) The PhoBR two-component system regulates antibiotic biosynthesis in Serratia in re- sponse to phosphate. BMC Microbiol, 9:112.
  129. E. G. Biondi, S. J. Reisinger, J. M. Skerker, M. Arif, B. S. Perchuk, K. R. Ryan, and M. T. Laub (2006) Regulation of the bacterial cell cycle by an integrated genetic circuit. Nature, 444:899–904.
  130. R. Hengge (2009) Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol, 7:263–73.
  131. D. W. Adams and J. Errington (2009) Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nat Rev Microbiol, 7:642–53.
  132. P. Awram and J. Smit (1998) The Caulobacter crescentus paracrystalline S-layer protein is secreted by an ABC transporter (type I) secretion apparatus. J Bacteriol, 180:3062–9.
  133. B. Ely, T. W. Ely, J. Crymes, W. B., and S. A. Minnich (2000) A family of six flagellin genes contributes to the Caulobacter crescentus flagellar filament. J Bacteriol, 182:5001– 4.
  134. M. P. Williamson (1994) The structure and function of proline-rich regions in proteins. Biochem J, 297 ( Pt 2):249–60.
  135. J. L. Ramos, M. Martinez-Bueno, A. J. Molina-Henares, W. Teran, K. Watanabe, X. Zhang, M. T. Gallegos, R. Brennan, and R. Tobes (2005) The TetR family of trans- criptional repressors. Microbiol Mol Biol Rev, 69:326–56.
  136. X. Li, D. A. Rasko, C. V. Lockatell, D. E. Johnson, and H. L. Mobley (2001) Repression of bacterial motility by a novel fimbrial gene product. EMBO J, 20:4854–62.
  137. N. E. Allenby, N. O'Connor, Z. Pragai, A. C. Ward, A. Wipat, and C. R. Harwood (2005) Genome-wide transcriptional analysis of the phosphate starvation stimulon of Bacillus subtilis. J Bacteriol, 187:8063–80.
  138. N. A. Dye, Z. Pincus, J. A. Theriot, L. Shapiro, and Z. Gitai (2005) Two independent spiral structures control cell shape in Caulobacter. Proc Natl Acad Sci U S A, 102:18608– 13.
  139. A. V. Divakaruni, R. R. Loo, Y. Xie, J. A. Loo, and J. W. Gober (2005) The cell-shape protein MreC interacts with extracytoplasmic proteins including cell wall assembly com- plexes in Caulobacter crescentus. Proc Natl Acad Sci U S A, 102:18602–7.
  140. O. Esue, D. Wirtz, and Y. Tseng (2006) GTPase activity, structure, and mechanical properties of filaments assembled from bacterial cytoskeleton protein MreB. J Bacteriol, 188:968–76.
  141. R. D. Monds, P. D. Newell, J. A. Schwartzman, and G. A. O'Toole (2006) Conservation of the Pho regulon in Pseudomonas fluorescens Pf0-1. Appl Environ Microbiol, 72:1910– 24.
  142. M. M. Babu, M. L. Priya, A. T. Selvan, M. Madera, J. Gough, L. Aravind, and K. Sanka- ran (2006) A database of bacterial lipoproteins (DOLOP) with functional assignments to predicted lipoproteins. J Bacteriol, 188:2761–73.
  143. P. Youderian and P. L. Hartzell (2006) Transposon insertions of magellan-4 that impair social gliding motility in Myxococcus xanthus. Genetics, 172:1397–410.
  144. P. H. Tsang, G. Li, Y. V. Brun, L. B. Freund, and J. X. Tang (2006) Adhesion of single bacterial cells in the micronewton range. Proc Natl Acad Sci U S A, 103:5764–8.
  145. B. S. Goldman, W. C. Nierman, D. Kaiser, S. C. Slater, A. S. Durkin, J. A. Eisen, C. M. Ronning, W. B. Barbazuk, M. Blanchard, C. Field, C. Halling, G. Hinkle, O. Iartchuk, Literaturverzeichnis H. S. Kim, C. Mackenzie, R. Madupu, N. Miller, A. Shvartsbeyn, S. A. Sullivan, M. Vau- din, et al. (2006) Evolution of sensory complexity recorded in a myxobacterial genome. Proc Natl Acad Sci U S A, 103:15200–5.
  146. S. DebRoy, J. Dao, M. Soderberg, O. Rossier, and N. P. Cianciotto (2006) Legionella pneumophila type II secretome reveals unique exoproteins and a chitinase that promotes bacterial persistence in the lung. Proc Natl Acad Sci U S A, 103:19146–51.
  147. L. M. Guzman, D. Belin, M. J. Carson, and J. Beckwith (1995) Tight regulation, mo- dulation, and high-level expression by vectors containing the arabinose P BAD promoter. J Bacteriol, 177:4121–30.
  148. R. A. VanBogelen, E. R. Olson, B. L. Wanner, and F. C. Neidhardt (1996) Global analysis of proteins synthesized during phosphorus restriction in Escherichia coli. J Bacteriol, 178:4344–66.
  149. M. Reddy (2007) Role of FtsEX in cell division of Escherichia coli: viability of ftsEX mutants is dependent on functional SufI or high osmotic strength. J Bacteriol, 189:98– 108.
  150. K. C. Quon, B. Yang, I. J. Domian, L. Shapiro, and G. T. Marczynski (1998) Negative control of bacterial DNA replication by a cell cycle regulatory protein that binds at the chromosome origin. Proc Natl Acad Sci U S A, 95:120–5.
  151. R. Carballido-Lopez (2006) The bacterial actin-like cytoskeleton. Microbiol Mol Biol Rev, 70:888–909.
  152. A. Varma, M. A. de Pedro, and K. D. Young (2007) FtsZ directs a second mode of peptidoglycan synthesis in Escherichia coli. J Bacteriol, 189:5692–704.
  153. M. T. Cabeen and C. Jacobs-Wagner (2007) Skin and bones: the bacterial cytoskeleton, cell wall, and cell morphogenesis. J Cell Biol, 179:381–7.
  154. M. Lindeberg and A. Collmer (1992) Analysis of eight out genes in a cluster required for pectic enzyme secretion by Erwinia chrysanthemi: sequence comparison with secretion genes from other gram-negative bacteria. J Bacteriol, 174:7385–97.
  155. P. Vats and L. Rothfield (2007) Duplication and segregation of the actin (MreB) cy- toskeleton during the prokaryotic cell cycle. Proc Natl Acad Sci U S A, 104:17795–800.
  156. Z. Li, M. J. Trimble, Y. V. Brun, and G. J. Jensen (2007) The structure of FtsZ filaments in vivo suggests a force-generating role in cell division. EMBO J, 26:4694–708.
  157. H. Matsuzawa, S. Asoh, K. Kunai, K. Muraiso, A. Takasuga, and T. Ohta (1989) Nucleo- tide sequence of the rodA gene, responsible for the rod shape of Escherichia coli: rodA and the pbpA gene, encoding penicillin-binding protein 2, constitute the rodA operon. J Bacteriol, 171:558–60.
  158. M. Wachi, M. Doi, Y. Okada, and M. Matsuhashi (1989) New mre genes mreC and mreD, responsible for formation of the rod shape of Escherichia coli cells. J Bacteriol, 171:6511–6.
  159. T. Mohammadi, A. Karczmarek, M. Crouvoisier, A. Bouhss, D. Mengin-Lecreulx, and T. den Blaauwen (2007) The essential peptidoglycan glycosyltransferase MurG forms a complex with proteins involved in lateral envelope growth as well as with proteins involved in cell division in Escherichia coli. Mol Microbiol, 65:1106–21.
  160. J. S. Poindexter and J. G. Hagenzieker (1982) Novel peptidoglycans in Caulobacter and Asticcacaulis spp. J Bacteriol, 150:332–47.
  161. M. Evinger and N. Agabian (1977) Envelope-associated nucleoid from Caulobacter cre- scentus stalked and swarmer cells. J Bacteriol, 132:294–301.
  162. A. C. Burchard, R. P. Burchard, and J. A. Kloetzel (1977) Intracellular, periodic struc- tures in the gliding bacterium Myxococcus xanthus. J Bacteriol, 132:666–72.
  163. J. S. Poindexter and J. T. Staley (1996) Caulobacter and Asticcacaulis stalk bands as indicators of stalk age. J Bacteriol, 178:3939–48.
  164. H. C. Jones and J. M. Schmidt (1973) Ultrastructural study of crossbands occurring in the stalks of Caulobacter crescentus. J Bacteriol, 116:466–70.
  165. J. A. Lesley and L. Shapiro (2008) SpoT regulates DnaA stability and initiation of DNA replication in carbon-starved Caulobacter crescentus. J Bacteriol, 190:6867–80.
  166. D. Shiomi, M. Sakai, and H. Niki (2008) Determination of bacterial rod shape by a novel cytoskeletal membrane protein. EMBO J, 27:3081–91.
  167. N. Buddelmeijer, M. Krehenbrink, F. Pecorari, and A. P. Pugsley (2009) Type II secre- tion system secretin PulD localizes in clusters in the Escherichia coli outer membrane. J Bacteriol, 191:161–8.
  168. S. A. Alyahya, R. Alexander, T. Costa, A. O. Henriques, T. Emonet, and C. Jacobs- Wagner (2009) RodZ, a component of the bacterial core morphogenic apparatus. Proc Natl Acad Sci U S A, 106:1239–44.
  169. F. O. Bendezú, C. A. Hale, T. G. Bernhardt, and P. A. de Boer (2008) RodZ (YfgA) is required for proper assembly of the MreB actin cytoskeleton and cell shape in E. coli. EMBO J.
  170. C. R. Stewart, O. Rossier, and N. P. Cianciotto (2009) Surface translocation by Legio- nella pneumophila: a form of sliding motility that is dependent upon type II protein secretion. J Bacteriol, 191:1537–46.
  171. Bagchi, H. Tomenius, L. M. Belova, and N. Ausmees (2008) Intermediate filament-like proteins in bacteria and a cytoskeletal function in Streptomyces. Mol Microbiol.
  172. A. Varma and K. D. Young (2009) In Escherichia coli, MreB and FtsZ direct the synthesis of lateral cell wall via independent pathways that require PBP 2. J Bacteriol.
  173. K. S. Ramamurthi and R. Losick (2009) Negative membrane curvature as a cue for subcellular localization of a bacterial protein. Proc Natl Acad Sci U S A, 106:13541–5.
  174. G. R. Bowman, L. R. Comolli, J. Zhu, M. Eckart, M. Koenig, K. H. Downing, W. E. Moerner, T. Earnest, and L. Shapiro (2008) A polymeric protein anchors the chromo- somal origin/ParB complex at a bacterial cell pole. Cell, 134:945–55.
  175. J. Kühn, A. Briegel, E. Mörschel, J. Kahnt, K. Leser, S. Wick, G. J. Jensen, and M. Thanbichler (2010) Bactofilins, a ubiquitous class of cytoskeletal proteins mediating polar localization of a cell wall synthase in Caulobacter crescentus. EMBO J, 29:327–39.
  176. C. N. Takacs, S. Poggio, G. Charbon, M. Pucheault, W. Vollmer, and C. Jacobs-Wagner (2010) MreB drives de novo rod morphogenesis in Caulobacter crescentus via remodeling of the cell wall. J Bacteriol, 192:1671–84.
  177. J. Lassak, A. L. Henche, L. Binnenkade, and K. M. Thormann (2010) ArcS is the cognate sensor kinase in an atypical Arc system of Shewanella oneidensis MR-1. Appl Environ Microbiol, 76:3263–74.
  178. K. R. Ryan, J. A. Taylor, and L. M. Bowers (2010) The BAM complex subunit BamE (SmpA) is required for membrane integrity, stalk growth and normal levels of outer membrane beta-barrel proteins in Caulobacter crescentus. Microbiology, 156:742–56.
  179. L. K. Sycuro, Z. Pincus, K. D. Gutierrez, J. Biboy, C. A. Stern, W. Vollmer, and N. R. Salama (2010) Peptidoglycan Crosslinking Relaxation Promotes Helicobacter pylori's Helical Shape and Stomach Colonization. Cell, 141:822–833.
  180. Eisen, J. F. Heidelberg, M. R. Alley, N. Ohta, J. R. Maddock, I. Potocka, W. C. Nelson, A. Newton, C. Stephens, N. D. Phadke, B. Ely, R. T. DeBoy, R. J. Dodson, A. S. Durkin, M. L. Gwinn, et al. (2001) Complete genome sequence of Caulobacter crescentus. Proc Natl Acad Sci U S A, 98:4136–41.
  181. Q. Hua, C. Yang, T. Oshima, H. Mori, and K. Shimizu (2004) Analysis of gene expression in Escherichia coli in response to changes of growth-limiting nutrient in chemostat cultures. Appl Environ Microbiol, 70:2354–66.
  182. D. Kaiser (1979) Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc Natl Acad Sci U S A, 76:5952–6.
  183. Z. Gitai, N. Dye, and L. Shapiro (2004) An actin-like gene can determine cell polarity in bacteria. Proc Natl Acad Sci U S A, 101:8643–8.
  184. J. Hodgkin and D. Kaiser (1977) Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus. Proc Natl Acad Sci U S A, 74:2938–2942.
  185. D. Bramhill and C. M. Thompson (1994) GTP-dependent polymerization of Escherichia coli FtsZ protein to form tubules. Proc Natl Acad Sci U S A, 91:5813–7.
  186. W. C. Nierman, D. DeShazer, H. S. Kim, H. Tettelin, K. E. Nelson, T. Feldblyum, R. L. Ulrich, C. M. Ronning, L. M. Brinkac, S. C. Daugherty, T. D. Davidsen, R. T. Deboy, G. Dimitrov, R. J. Dodson, A. S. Durkin, M. L. Gwinn, D. H. Haft, H. Khouri, J. F. Kolonay, R. Madupu, et al. (2004) Structural flexibility in the Burkholderia mallei genome. Proc Natl Acad Sci U S A, 101:14246–51.
  187. J. K. Wagner, C. D. Galvani, and Y. V. Brun (2005) Caulobacter crescentus requires RodA and MreB for stalk synthesis and prevention of ectopic pole formation. J Bacteriol, 187:544–53.
  188. A. T. Henrici and D. E. Johnson (1935) Studies of Freshwater Bacteria: II. Stalked Bacteria, a New Order of Schizomycetes. J Bacteriol, 30:61–93.
  189. M. E. Scott, Z. Y. Dossani, and M. Sandkvist (2001) Directed polar secretion of protease from single cells of Vibrio cholerae via the type II secretion pathway. Proc Natl Acad Sci U S A, 98:13978–83.
  190. N. A. Hay, D. J. Tipper, D. Gygi, and C. Hughes (1999) A novel membrane protein influencing cell shape and multicellular swarming of Proteus mirabilis. J Bacteriol, 181:2008–16.
  191. M. Gonin, E. M. Quardokus, D. O'Donnol, J. Maddock, and Y. V. Brun (2000) Regulati- on of stalk elongation by phosphate in Caulobacter crescentus. J Bacteriol, 182:337–47.
  192. H. Antelmann, C. Scharf, and M. Hecker (2000) Phosphate starvation-inducible proteins of Bacillus subtilis: proteomics and transcriptional analysis. J Bacteriol, 182:4478–90.
  193. I. J. Domian, K. C. Quon, and L. Shapiro (1997) Cell type-specific phosphorylation and proteolysis of a transcriptional regulator controls the G1-to-S transition in a bacterial cell cycle. Cell, 90:415–24.
  194. G. Ebersbach, A. Briegel, G. J. Jensen, and C. Jacobs-Wagner (2008) A self-associating protein critical for chromosome attachment, division, and polar organization in Caulo- bacter. Cell, 134:956–68.
  195. R. Lenarcic, S. Halbedel, L. Visser, M. Shaw, L. J. Wu, J. Errington, D. Marenduzzo, and L. W. Hamoen (2009) Localisation of DivIVA by targeting to negatively curved membranes. EMBO J, 28:2272–2282.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten