Publikationsserver der Universitätsbibliothek Marburg

Titel:Die Rolle von Striatum und Hippocampus im sequentiellen Lernen: Interaktion, Dissoziation oder Konkurrenz?
Autor:Eckart, Moritz Thede
Weitere Beteiligte: Schwarting, Rainer (Prof. Dr.)
Veröffentlicht:2010
URI:https://archiv.ub.uni-marburg.de/diss/z2010/0489
DOI: https://doi.org/10.17192/z2010.0489
URN: urn:nbn:de:hebis:04-z2010-04893
DDC:150 Psychologie
Titel (trans.):The role of striatum and hippocampus in sequential learning: interaction, dissociation or competition?
Publikationsdatum:2010-10-13
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Sequential learning, Tiermodell, Sequentielles lernen, Striatum, Corpus striatum, Hippocampus, Animal model, Hippocampus

Zusammenfassung:
Gängigerweise wird das Gedächtnis bei Säugetieren in zwei Kategorien unterteilt: das dekla-rative Gedächtnis, das semantische und episodische Inhalte enkodiert und für dessen Konsoli-dierung der Hippocampus eine zentrale Rolle spielt. Daneben das nichtdeklarative Gedächt-nis, das sich in weitere Unterkategorien mit unterschiedlichen neuronalen Korrelaten untertei-len lässt. Eine dieser Unterkategorien bildet das prozedurale Gedächtnis, das für den Erwerb motorischer und kognitiver Fertigkeiten [skills] eine entscheidende Rolle spielt und vor allem mit striatalen Prozessen assoziiert ist. Ziel der vorliegenden Arbeit ist es, die neuronalen Grundlagen sequentiellen Lernens – einer Unterkategorie prozeduralen Lernens – im Rattenmodell zu untersuchen. In Humanex-perimenten wird sequentielles Lernen in der Regel über sogenannte serielle Reaktionszeitauf-gaben [serial reaction time task (SRTT)] operationalisiert. In der vorliegenden tierexperimen-tellen Arbeit kam daher eine Nagerversion des SRTT zur Anwendung. In den ersten zwei Experimenten der vorliegenden Arbeit (STUDIE I & II) über die Rol-le des Striatums im sequentiellen Lernen zeigte sich, dass dopaminerge Läsionen im dorsalen Striatum zu Defiziten im sequentiellen Lernen führen, wohingegen dopaminerge Läsionen im ventralen Striatum/Nucleus accumbens einen Einfluss auf instrumentelles Konditionieren haben, nicht jedoch auf sequentielles Lernen. Die Frage, welche Rolle der Hippocampus bei nichtdeklarativen Gedächtnisfunktionen spielt, ist aufgrund von widersprüchlichen Ergebnissen aus Tier- und Humanstudien strittig. Es gibt Befunde, die für eine Dissoziation beider Systeme, einer Interaktion oder aber auch einer Konkurrenz sprechen. In dem dritten Experiment der vorliegenden Arbeit (STUDIE III) zeigte sich in dem Ratten-SRTT bei dorsal-hippocampal lädierten Ratten eine deutliche Verbesserung im in-strumentellen wie auch beim sequentiellen Lernen, wobei nicht eindeutig unterschieden wer-den kann, ob die Läsionen einen direkten Einfluss auf sequentielles Lernen hatten oder nur indirekt über verbesserte Leistungen im instrumentellen Lernen. Zusammenfassend werden die Ergebnisse dieser drei Experimente dahingehend disku-tiert, dass eine Konkurrenz zwischen striatalen und hippocampalen Prozessen im instrumen-tellen und sequentiellen Lernen besteht. Eine mögliche Erklärung für diese Konkurrenz ist die gleichzeitige Projektion beider Strukturen in den frontalen Kortex. Da der Hippocampus bei Nagern insbesondere im räumlichen Lernen eine Rolle spielt, kann es bei Tests, in denen räumliche Informationen irrelevant sind, zu einer Interferenz zwischen Striatum und Hippo-campus kommen. Nach hippocampalen Läsionen muss der frontale Kortex, der als zentrale Exekutive arbeitet, keine Ressourcen auf die Verarbeitung räumlicher Informationen aufwen-den, wodurch in Tests mit minimalen räumlichen Anforderungen prozedurale striatale Lern-vorgänge effizienter ablaufen können.

Bibliographie / References

  1. Owen, A. M. (2004). Cognitive dysfunction in Parkinson's disease: the role of frontostriatal circuitry. Neuroscientist, 10(6), 525-537.
  2. Postuma, R. B., & Dagher, A. (2006). Basal ganglia functional connectivity based on a meta- analysis of 126 positron emission tomography and functional magnetic resonance im- aging publications. Cereb Cortex, 16(10), 1508-1521.
  3. Shohamy, D., Myers, C. E., Grossman, S., Sage, J., & Gluck, M. A. (2005). The role of do- pamine in cognitive sequence learning: evidence from Parkinson's disease. Behav Brain Res, 156(2), 191-199.
  4. Moss, M., Mahut, H., & Zola-Morgan, S. (1981). Concurrent discrimination learning of mon- keys after hippocampal, entorhinal, or fornix lesions. J Neurosci, 1(3), 227-240.
  5. Smith, J., Siegert, R. J., McDowall, J., & Abernethy, D. (2001). Preserved implicit learning on both the serial reaction time task and artificial grammar in patients with Parkinson's disease. Brain Cogn, 45(3), 378-391.
  6. Doyon, J., Penhune, V., & Ungerleider, L. G. (2003). Distinct contribution of the cortico- striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia, 41(3), 252-262.
  7. Kennerley, S. W., Sakai, K., & Rushworth, M. F. (2004). Organization of action sequences and the role of the pre-SMA. J Neurophysiol, 91(2), 978-993.
  8. Wilkinson, L., Khan, Z., & Jahanshahi, M. (2009). The role of the basal ganglia and its corti- cal connections in sequence learning: Evidence from implicit and explicit sequence learning in Parkinson's disease. Neuropsychologia.
  9. Kelly, S. W., Jahanshahi, M., & Dirnberger, G. (2004). Learning of ambiguous versus hybrid sequences by patients with Parkinson's disease. Neuropsychologia, 42(10), 1350-1357.
  10. Kwok, S. C., & Buckley, M. J. (2009). Fornix transected macaques make fewer perseverative errors than controls during the early stages of learning conditional visuospatial dis- criminations. Behav Brain Res, 205(1), 207-213.
  11. Sommer, M., Grafman, J., Clark, K., & Hallett, M. (1999). Learning in Parkinson's disease: eyeblink conditioning, declarative learning, and procedural learning. J Neurol Neuro- surg Psychiatry, 67(1), 27-34.
  12. Hornykiewicz, O. (2008). Basic research on dopamine in Parkinson's disease and the discov- ery of the nigrostriatal dopamine pathway: the view of an eyewitness. Neurodegener Dis, 5(3-4), 114-117.
  13. Dominey, P. F., & Jeannerod, M. (1997). Contribution of frontostriatal function to sequence learning in Parkinson's disease: evidence for dissociable systems. Neuroreport, 8(5), iii-ix.
  14. Werheid, K., Zysset, S., Muller, A., Reuter, M., & von Cramon, D. Y. (2003b). Rule learning in a serial reaction time task: an fMRI study on patients with early Parkinson's disease. Brain Res Cogn Brain Res, 16(2), 273-284.
  15. Gheysen, F., Van Opstal, F., Roggeman, C., Van Waelvelde, H., & Fias, W. (2010). Hippo- campal contribution to early and later stages of implicit motor sequence learning. Exp Brain Res, 202(4), 795-807.
  16. Teather, L. A., Packard, M. G., Smith, D. E., Ellis-Behnke, R. G., & Bazan, N. G. (2005). Differential induction of c-Jun and Fos-like proteins in rat hippocampus and dorsal striatum after training in two water maze tasks. Neurobiol Learn Mem, 84(2), 75-84.
  17. Eckart MT, Huelse MC, McDonald RS, Schwarting RKW (2010). 6- Hydroxydopamine Lesions in the Rat Neostriatum Impair Sequential Learning in a Se- rial Reaction Time Task. Neurotoxiticity Research Volume 17, Issue 3, Page 287-98.
  18. Eckart MT, Huelse MC, Loer D, Schwarting RKW (2010). Acquisition and perform- ance in a rat sequential reaction time task is not affected by subtotal ventral striatal 6- OHDA lesions. Neuroscience Letters, 476(1), 27-31.
  19. Dickinson, A. (1985). Actions and Habits: the Development of Behavioural Autonomy. Phil. Trans. R. Soc. Lond, 308, 67-78.
  20. DeCoteau, W. E., & Kesner, R. P. (2000). A double dissociation between the rat hippocampus and medial caudoputamen in processing two forms of knowledge. Behav Neurosci, 114(6), 1096-1108.
  21. Rossato, J. I., Zinn, C. G., Furini, C., Bevilaqua, L. R., Medina, J. H., Cammarota, M., et al. (2006). A link between the hippocampal and the striatal memory systems of the brain. An Acad Bras Cienc, 78(3), 515-523.
  22. Dombrowski PA, Carvalho M, Miyoshi E, Correia D, Bortolanza M, Santos LM, Eckart MT, Schwarting RKW, Brandão ML, Da Cunha C. A microdialysis study of the release of dopamine in the striatum in conscious MPTP-hemilesioned rats chal- lenged with apomorphine and amphetamine. Behavioural Brain Research (akzeptiert).
  23. Dominey, P. F., Ventre-Dominey, J., Broussolle, E., & Jeannerod, M. (1997). Analogical transfer is effective in a serial reaction time task in Parkinson's disease: evidence for a dissociable form of sequence learning. Neuropsychologia, 35(1), 1-9.
  24. Schendan, H. E., Searl, M. M., Melrose, R. J., & Stern, C. E. (2003). An fMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning. Neuron, 37(6), 1013-1025. LITERATURVERZEICHNIS 139
  25. Reed, J., Johnson, P. (1994). Assessing Implicit Learning With Indirect Tests: Determinating What Is Learned About Sequence Structure. J Exp Psych: Lerning Memory Cogn, 20(3), 585-594.
  26. Nissen, M. J., Bullemer, P. (1987). Attentional Requirements of Learning: Evidence from Performance Measures. Cognitive Psychology, 19, 1-32.
  27. Mink, J. W. (1999). Basal Ganglia. In M. J. Zigmond, Bloom, F.E., Landis, S.C., Roberts, J.L., Squire, L.R. (Ed.), Fundamental Neuroscience: Academic Press.
  28. Graybiel, A. M. (1991). Basal ganglia--input, neural activity, and relation to the cortex. Curr Opin Neurobiol, 1(4), 644-651.
  29. Perez-Costas, E., Melendez-Ferro, M., & Roberts, R. C. (2010). Basal ganglia pathology in schizophrenia: dopamine connections and anomalies. J Neurochem, 113(2), 287-302.
  30. Gerfen, C. R. (2004). Basal Ganglia. In G. Paxinos (Ed.), The Rat Nevous System. London, San Diego: Elsevier.
  31. Schwabe, K., Klein, S., & Koch, M. (2006). Behavioural effects of neonatal lesions of the medial prefrontal cortex and subchronic pubertal treatment with phencyclidine of adult rats. Behav Brain Res, 168(1), 150-160.
  32. Rauch, S. L., Wright, C. I., Savage, C. R., Martis, B., McMullin, K. G., Wedig, M. M., et al. (2007b). Brain activation during implicit sequence learning in individuals with trichotillomania. Psychiatry Res, 154(3), 233-240.
  33. Godsil, B. P., Stefanacci, L., & Fanselow, M. S. (2005). Bright light suppresses hyperactivity induced by excitotoxic dorsal hippocampus lesions in the rat. Behav Neurosci, 119(5), 1339-1352.
  34. Nagy, H., Keri, S., Myers, C. E., Benedek, G., Shohamy, D., & Gluck, M. A. (2007). Cogni- tive sequence learning in Parkinson's disease and amnestic mild cognitive impairment: Dissociation between sequential and non-sequential learning of associations. Neuro- psychologia, 45(7), 1386-1392.
  35. Eckart MT, Huelse MC, McDonald RS, Loer D, Schwarting RKW (2010). Competi- tive Functions of the Rat Striatum and Hippocampus in Sequential Learning, IBNS Meeting, (Sardinia).
  36. component of a memory system independent of the hippocampal memory sys- tem. Neurobiol Learn Mem, 79(3), 236-242.
  37. – 18.07.2008 " Computational Neuroscience " , Prof. Dr. Michael Wenger (Penn State University), Gießen
  38. Vandenbossche, J., Deroost, N., Soetens, E., & Kerckhofs, E. (2009). Does implicit learning in non-demented Parkinson's disease depend on the level of cognitive functioning? Brain Cogn, 69(1), 194-199.
  39. Eckart MT, Huelse MC, Loer D, Schwarting RKW. Dorsal hippocampal lesions boost performance in the rat sequential reaction time task (in Vorbereitung).
  40. Gomez-Beldarrain, M., Garcia-Monco, J. C., Rubio, B., & Pascual-Leone, A. (1998). Effect of focal cerebellar lesions on procedural learning in the serial reaction time task. Exp Brain Res, 120(1), 25-30.
  41. Domenger, D., & Schwarting, R. K. (2008). Effects of neostriatal 6-OHDA lesion on per- formance in a rat sequential reaction time task. Neurosci Lett, 444(3), 212-216.
  42. Wirth, S., Ferry, B., & Di Scala, G. (1998). Facilitation of olfactory recognition by lateral entorhinal cortex lesion in rats. Behav Brain Res, 91(1-2), 49-59.
  43. Saint-Cyr, J. A. (2003). Frontal-striatal circuit functions: context, sequence, and consequence. J Int Neuropsychol Soc, 9(1), 103-127.
  44. Doyon, J., Owen, A. M., Petrides, M., Sziklas, V., & Evans, A. C. (1996). Functional anat- omy of visuomotor skill learning in human subjects examined with positron emission tomography. Eur J Neurosci, 8(4), 637-648.
  45. Rauch, S. L., Wedig, M. M., Wright, C. I., Martis, B., McMullin, K. G., Shin, L. M., et al. (2007a). Functional magnetic resonance imaging study of regional brain activation during implicit sequence learning in obsessive-compulsive disorder. Biol Psychiatry, 61(3), 330-336.
  46. Stark, C. (2007). Functional Role of the Hippocampus. In M. Anderson, Amaral, Bliss & O´Keefe (Ed.), The Hippocampus Book. New York: Oxford.
  47. Holzkamp, K. (1985). Grundlegung der Psychologie. Frankfurt/Main; New York: Campus Verlag.
  48. Witter, M. P., Amaral, D.G. (2004). Hippocampal Formation. In G. Paxinos (Ed.), The Rat Nervous System. London, San Diego: Elsevier.
  49. Gill, K. M., Bernstein, I. L., & Mizumori, S. J. (2007). Immediate early gene activation in hippocampus and dorsal striatum: effects of explicit place and response training. Neurobiol Learn Mem, 87(4), 583-596.
  50. Ogura, T., Ogata, M., Akita, H., Jitsuki, S., Akiba, L., Noda, K., et al. (2005). Impaired acqui- sition of skilled behavior in rotarod task by moderate depletion of striatal dopamine in a pre-symptomatic stage model of Parkinson's disease. Neurosci Res, 51(3), 299-308.
  51. Smith, J. G., & McDowall, J. (2004). Impaired higher order implicit sequence learning on the verbal version of the serial reaction time task in patients with Parkinson's disease. Neuropsychology, 18(4), 679-691.
  52. BETREUTE DIPLOMARBEITEN: Rebecca S. McDonald (2009). Impaired Sequential Learning in a Preclinical Rodent Model of Parkinson's Disease.
  53. Westwater, H., McDowall, J., Siegert, R., Mossman, S., & Abernethy, D. (1998). Implicit learning in Parkinson's disease: evidence from a verbal version of the serial reaction time task. J Clin Exp Neuropsychol, 20(3), 413-418.
  54. Goldman, B. L., Martin, E. D., Calamari, J. E., Woodard, J. L., Chik, H. M., Messina, M. G., et al. (2008). Implicit learning, thought-focused attention and obsessive-compulsive disorder: a replication and extension. Behav Res Ther, 46(1), 48-61.
  55. Eckart MT, Huelse-Matia MC, McDonald RS & Schwarting RKW (2009). Implicit memory and dopaminergic basal ganglia processes: a new rat model, Tagung der Neu- rowissenschaftlichen Gesellschaft, Göttingen.
  56. Packard, M. G., & McGaugh, J. L. (1996). Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neuro- biol Learn Mem, 65(1), 65-72.
  57. Grossman, R., Shohami, E., Alexandrovich, A., Yatsiv, I., Kloog, Y., & Biegon, A. (2003). Increase in peripheral benzodiazepine receptors and loss of glutamate NMDA recep- tors in a mouse model of closed head injury: a quantitative autoradiographic study. Neuroimage, 20(4), 1971-1981.
  58. Siegert, R. J., Taylor, K. D., Weatherall, M., & Abernethy, D. A. (2006). Is implicit sequence learning impaired in Parkinson's disease? A meta-analysis. Neuropsychology, 20(4), 490-495.
  59. Packard, M. G., & Knowlton, B. J. (2002). Learning and memory functions of the Basal Gan- glia. Annu Rev Neurosci, 25, 563-593.
  60. Deroost, N., Kerckhofs, E., Coene, M., Wijnants, G., & Soetens, E. (2006). Learning se- quence movements in a homogenous sample of patients with Parkinson's disease. Neu- ropsychologia, 44(10), 1653-1662.
  61. de Hoz, L., Knox, J., & Morris, R. G. (2003). Longitudinal axis of the hippocampus: both septal and temporal poles of the hippocampus support water maze spatial learning de- pending on the training protocol. Hippocampus, 13(5), 587-603.
  62. Squire, L. R. (1992). Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev, 99(2), 195-231.
  63. Teng, E., & Squire, L. R. (1999). Memory for places learned long ago is intact after hippo- campal damage. Nature, 400(6745), 675-677.
  64. White, N. M., & McDonald, R. J. (2002). Multiple parallel memory systems in the brain of the rat. Neurobiol Learn Mem, 77(2), 125-184.
  65. Trepel, M. (2004). Neuroanatomie. München: Urban & Fischer. LITERATURVERZEICHNIS 140 V:
  66. VORTRÄGE: Eckart MT (2009). Neuropsychologische Grundlagenforschung am Beispiel eines Na- germodells zu dopaminergen Prozessen bei sequentiellem Lernen, Vortrag auf Einla- dung der " Gesellschaft für subjektwissenschaftliche Forschung & Praxis " , FU Berlin.
  67. Gawrys, L., Szatkowska, I., Jamrozik, Z., Janik, P., Friedman, A., & Kaczmarek, L. (2008). Nonverbal deficits in explicit and implicit memory of Parkinson's disease patients. Acta Neurobiol Exp (Wars), 68(1), 58-72.
  68. McDonald, A. J. (1991). Organization of amygdaloid projections to the prefrontal cortex and associated striatum in the rat. Neuroscience, 44(1), 1-14.
  69. Zola, S. M., & Mahut, H. (1973). Paradoxical facilitation of object reversal learning after transection of the fornix in monkeys. Neuropsychologia, 11(3), 271-284. ANHANG 141
  70. Schulz, J. B. (2007). Parkinson heißt mehr als motorische Defizite. der Neurologe & Psychia- ter, 12/07, 43-45.
  71. Lang, A. E., & Lozano, A. M. (1998a). Parkinson's disease. First of two parts. N Engl J Med, 339(15), 1044-1053.
  72. Lang, A. E., & Lozano, A. M. (1998b). Parkinson's disease. Second of two parts. N Engl J Med, 339(16), 1130-1143.
  73. Gallagher, M., & Holland, P. C. (1992). Preserved configural learning and spatial learning impairment in rats with hippocampal damage. Hippocampus, 2(1), 81-88.
  74. Knopman, D., & Nissen, M. J. (1991). Procedural learning is impaired in Huntington's dis- ease: evidence from the serial reaction time task. Neuropsychologia, 29(3), 245-254.
  75. Kandel, E. R. (2008). Psychiatrie, Psychoanalyse und die neue Biologie des Geistes. Frank- furt am Main: Suhrkamp.
  76. Schwarting, R. K. (2008). Rodent models of serial reaction time tasks and their implementa- tion in neurobiological research. Behav Brain Res, 199(1), 76-88.
  77. Dominey, P. F., & Georgieff, N. (1997). Schizophrenics learn surface but not abstract struc- ture in a serial reaction time task. Neuroreport, 8(13), 2877-2882.
  78. Dirnberger, G., Novak, J., Nasel, C., & Zehnter, M. (in press). Separating coordinative and executive dysfunction in cerebellar patients during motor skill acquisition. Neuropsy- chologia, 48(5), 1200-1208.
  79. Hopkins, R. O., Waldram, K., & Kesner, R. P. (2004). Sequences assessed by declarative and procedural tests of memory in amnesic patients with hippocampal damage. Neuropsy- chologia, 42(14), 1877-1886.
  80. Domenger, D., & Schwarting, R. K. (2005). Sequential behavior in the rat: a new model using food-reinforced instrumental behavior. Behav Brain Res, 160(2), 197-207.
  81. Domenger, D., & Schwarting, R. K. (2007). Sequential behavior in the rat: role of skill and attention. Exp Brain Res, 182(2), 223-231.
  82. POSTER: [1] Eckart MT, Huelse Matia MC, McDonald RS, Domenger D & Schwarting RKW (2008). Sequential behaviour: effects of striatal dopamine depletions in rats acquiring a Serial Reaction Time Task, Tagung experimentell arbeitender Psychologen, Mar- burg.
  83. Eckart MT (2009). Sequential Learning and Dopaminergic Lesions, Vortrag am Fach- bereich Biologie der Universidade Federal do Paraná, Curitiba, Brasilien.
  84. Eckart MT, Huelse-Matia MC, McDonald RS & Schwarting RKW (2009). Sequential learning and performance in a rat model of Parkinson's disease, 6. Parkinson Kon- gress, Marburg.
  85. PUBLIKATIONEN (KOAUTORENSCHAFT & ABSTRACTS): [1] Huelse-Matia MC, Eckart MT, Loer D & Schwarting RKW (2009). Sequential Learn- ing in a Rat Model of the SRTT: Distinct Roles of Dorsal and Ventral Striatum. Jour- nal of Molecular Neuroscience.
  86. Eckart MT (2009). Sequentielles Lernen und dopaminerge Prozesse: Effekte striataler Dopaminläsionen in einem Rattenmodell der "Seriellen Reaktionszeitaufgabe", 35. Arbeitstagung Psychophysiologie und Methodik, Leipzig.
  87. Jackson, G. M., Jackson, S. R., Harrison, J., Henderson, L., & Kennard, C. (1995). Serial re- action time learning and Parkinson's disease: evidence for a procedural learning defi- cit. Neuropsychologia, 33(5), 577-593.
  88. AUSZEICHNUNGEN & FÖRDERUNGEN: Studienstipendium der Rosa-Luxemburg-Stiftung Posterpreis des 6. Parkinson-Kongress (2009), Marburg DAAD Stipendium für zweimonatigen Forschungsaufenthalt in Curitiba, Brasilien (April/Mai 2009)
  89. Robbins, T. W. (2002). The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology (Berl), 163(3-4), 362-380.
  90. Peleg-Raibstein, D., Yee, B. K., Feldon, J., & Hauser, J. (2009). The amphetamine sensitiza- tion model of schizophrenia: relevance beyond psychotic symptoms? Psychopharma- cology (Berl), 206(4), 603-621.
  91. Kandel, E. R., Schwartz, J.H., Jessell, T.M. (2000). The Basal Ganglia. In Principles of Neu- ral Science (4. ed.).
  92. Graybiel, A. M. (1998). The basal ganglia and chunking of action repertoires. Neurobiol Learn Mem, 70(1-2), 119-136.
  93. Graybiel, A. M. (2005). The basal ganglia: learning new tricks and loving it. Curr Opin Neurobiol, 15(6), 638-644.
  94. Dere, E., Kart-Teke, E., Huston, J. P., & De Souza Silva, M. A. (2006). The case for episodic memory in animals. Neurosci Biobehav Rev, 30(8), 1206-1224.
  95. Procyk, E., Ford Dominey, P., Amiez, C., & Joseph, J. P. (2000a). The effects of sequence structure and reward schedule on serial reaction time learning in the monkey. Brain Res Cogn Brain Res, 9(3), 239-248.
  96. Smith, J. G., & McDowall, J. (2006). The implicit sequence learning deficit in patients with Parkinson's disease: a matter of impaired sequence integration? Neuropsychologia, 44(2), 275-288.
  97. Moriah C. Hülse-Matia & David Loer (2010). The Neurological Basis of the Rodent Serial Reaction Time Task – the Role of the Nuccleus Accumbens.
  98. Morris, R. G. (2007). Theories on Hippocampal Function. In M. Anderson, Amaral, Bliss & O´Keefe (Ed.), The Hippocampus Book. New York: Oxford University Press.
  99. Paxinos, G. (2004). The Rat Nervous System (Vol. 3). San Diego: Elsevier.
  100. Yin, H. H., & Knowlton, B. J. (2006). The role of the basal ganglia in habit formation. Nat Rev Neurosci, 7(6), 464-476.
  101. Robertson, E. M. (2007). The serial reaction time task: implicit motor skill learning? J Neuro- sci, 27(38), 10073-10075.
  102. Domenger, D., & Schwarting, R. K. (2006). The serial reaction time task in the rat: effects of D1 and D2 dopamine-receptor antagonists. Behav Brain Res, 175(2), 212-222.
  103. Schwarting, R. K., & Huston, J. P. (1996a). The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. Prog Neurobiol, 50(2-3), 275-331.
  104. Rao V.L., D. A., Bowen K.K., Dempsey R.J. (2000). Traumatic brain injury leads to in- creased expression of peripheral-type benzodiazepine receptors, neuronal death, and activation of astrocytes and microglia in rat thalamus. Experimental Neurology, 161, 102-114.
  105. Schwarting, R. K., & Huston, J. P. (1996b). Unilateral 6-hydroxydopamine lesions of meso- striatal dopamine neurons and their physiological sequelae. Prog Neurobiol, 49(3), 215-266.
  106. Jarrard, L. E. (2002). Use of excitotoxins to lesion the hippocampus: update. Hippocampus, 12(3), 405-414.
  107. Howard, D. V., & Howard, J. H., Jr. (2001). When it does hurt to try: adult age differences in the effects of instructions on implicit pattern learning. Psychon Bull Rev, 8(4), 798- 805.
  108. Del Tredici, K., Rub, U., De Vos, R. A., Bohl, J. R., & Braak, H. (2002). Where does parkin- son disease pathology begin in the brain? J Neuropathol Exp Neurol, 61(5), 413-426.
  109. Külz GB, Eckart MT, Wöhr M, Schwarting RKW (2009). Will you still come if I call you?, Tagung der Neurowissenschaftlichen Gesellschaft, Göttingen.
  110. Good, M. A., & Hale, G. (2007). The "Swedish" mutation of the amyloid precursor protein (APPswe) dissociates components of object-location memory in aged Tg2576 mice.
  111. Procyk, E., Tanaka, Y. L., & Joseph, J. P. (2000b). Anterior cingulate activity during routine and non-routine sequential behaviors in macaques. Nat Neurosci, 3(5), 502-508.
  112. Doyon, J., Song, A. W., Karni, A., Lalonde, F., Adams, M. M., & Ungerleider, L. G. (2002). Experience-dependent changes in cerebellar contributions to motor sequence learning. Proc Natl Acad Sci U S A, 99(2), 1017-1022.
  113. Packard, M. G. (1999). Glutamate infused posttraining into the hippocampus or caudate- putamen differentially strengthens place and response learning. PNAS, 96(22), 12881- 12886.
  114. Lee, A. S., Duman, R. S., & Pittenger, C. (2008). A double dissociation revealing bidirec- tional competition between striatum and hippocampus during learning. Proc Natl Acad Sci U S A, 105(44), 17163-17168.
  115. Lee, T., Jarome, T., Li, S. J., Kim, J. J., & Helmstetter, F. J. (2009). Chronic stress selectively reduces hippocampal volume in rats: a longitudinal magnetic resonance imaging study. Neuroreport, 20(17), 1554-1558.
  116. Marvel, C. L., Turner, B. M., O'Leary, D. S., Johnson, H. J., Pierson, R. K., Ponto, L. L., et al. (2007). The neural correlates of implicit sequence learning in schizophrenia. Neuro- psychology, 21(6), 761-777.
  117. Hirshler, Y. K., Polat, U., & Biegon, A. (2010). Intracranial electrode implantation produces regional neuroinflammation and memory deficits in rats. Exp Neurol, 222(1), 42-50.
  118. Davidson, T. L., Kanoski, S. E., Chan, K., Clegg, D. J., Benoit, S. C., & Jarrard, L. E. (2010). Hippocampal lesions impair retention of discriminative responding based on energy state cues. Behav Neurosci, 124(1), 97-105.
  119. Ross, R. S., Brown, T. I., & Stern, C. E. (2009). The retrieval of learned sequences engages the hippocampus: Evidence from fMRI. Hippocampus, 19(9), 790-799.
  120. Leh, S. E., Petrides, M., & Strafella, A. P. The neural circuitry of executive functions in healthy subjects and Parkinson's disease. Neuropsychopharmacology, 35(1), 70-85.
  121. Stocco, A., Lebiere, C., & Anderson, J. R. Conditional routing of information to the cortex: a model of the basal ganglia's role in cognitive coordination. Psychol Rev, 117(2), 541- 574.
  122. de Hoz, L., Martin, S. J., & Morris, R. G. (2004). Forgetting, reminding, and remembering: the retrieval of lost spatial memory. PLoS Biol, 2(8), E225.
  123. McDonald, R. J., & White, N. M. (1994). Parallel information processing in the water maze: evidence for independent memory systems involving dorsal striatum and hippocam- pus. Behav Neural Biol, 61(3), 260-270.
  124. Helmuth, L. L., Mayr, U., & Daum, I. (2000). Sequence learning in Parkinson's disease: a comparison of spatial-attention and number-response sequences. Neuropsychologia, 38(11), 1443-1451.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten