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Abstract 

 
Recent advances in the development of sequencing technologies have enabled the identification of a multitude of 

bacterial gene clusters, putatively involved in the biosynthesis of nonribosomal peptides (NRPs). Peptides of 

nonribosomal origin constitute a class of structurally and functionally diverse natural products, which are 

assembled by multimodular nonribosomal peptide synthetases (NRPSs). These compounds exhibit a broad 

pharmacological spectrum, ranging from antibacterial‐ to immunosuppressive properties. Understanding the 

assembly mechanisms in combination with rational genome mining approaches will provide opportunities for the 

discovery of new bioactive natural products.  

Within this study one approach was utilized to generate thiocoraline analogs via chemoenzymatic synthesis and the 

second strategy focused on the de novo natural product discovery via genome mining. 

Thiocoraline represents a pseudosymmetrical chromophore‐capped octathiodepsipeptide, in which the 

symmetrical halves are linked via thioester bonds. In this study, the cyclodimerization potential of the thioesterase 

domain of the thiocoraline biosynthetic machinery (TioS PCP‐TE) was investigated to obtain further insights into the 

iterative assembly of chromodepsipeptides. To address this objective, the recombinant enzyme was incubated with 

synthetically derived tetrapeptidyl substrates, resembling thiocoraline precursors. It was shown that the enzyme 

catalyzes the cyclodimerization of linear precursor molecules and an unprecedented macrothiolactonization. 

Evaluation of the biocombinatorial potential established the thioesterase as a robust and versatile catalyst for the 

generation of chromodepsipeptide analogs, harbouring thioester‐ or ester‐linkages. As thiocoraline attains its 

antitumor activity from DNA‐bisintercalation, the chemoenzymatically generated macrocycles were isolated and 

investigated towards DNA‐bisintercalation activity in vitro.  

In the second part of this study, bioinformatic analysis of the 8.2 Mb Saccharopolyspora erythraea genome 

revealed two cryptic NRPS gene clusters related to hydroxamate‐type siderophore biosynthesis. Detailed analysis of 

adenylation domain substrate‐specificity and module organization enabled the establishment of a highly selective 

and sensitive radio‐LCMS‐guided genome mining approach. Application of this approach resulted in the discovery 

of the siderophore erythrochelin. Structure elucidation of erythrochelin was accomplished via NMR‐ and MSn‐

analysis and revealed the sequence of the tetrapeptide siderophore to be: α‐N‐acetyl‐δ‐N‐acetyl‐δ‐N-hydroxy‐D‐

ornithine‐D‐serine‐cyclo(δ‐N-hydroxy‐L‐ornithine‐δ‐N‐acetyl‐δ‐N-hydroxy‐L‐ornithine).  

Erythrochelin assembly requires the proliferation of δ‐N-hydroxy‐L‐ornithine (L‐hOrn) and δ‐N‐acetyl‐δ‐N-hydroxy‐

L‐ornithine (L‐haOrn). The corresponding modifying enzymes, the FAD‐dependent monooxygenases EtcB and 

Sace_1309 together with the bifunctional malonyl‐CoA decarboxylase/N‐acetyltransferase were identified and 

biochemically characterized. In vitro studies revealed EtcB and Sace_1309 to exclusively catalyze the δ‐N‐

hydroxylation of free L‐ornithine. The second tailoring enzyme, Mcd, was shown to catalyze malonyl‐CoA 

decarboxylation and subsequent acetyltransfer onto the δ‐hydroxamino group of L‐hOrn, affording 

 L‐haOrn. Based on the elucidation of precursor biosynthesis (L‐haOrn), a model for the entire erythrochelin 

assembly is presented.  
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Zusammenfassung 

 
Die Entwicklung neuartiger Sequenzierungstechnologien ermöglicht die Identifizierung einer Vielzahl von 

kryptischen bakteriellen Genclustern, welche an der Biosynthese nichtribosomaler Peptide (NRPs) beteiligt sind. 

Peptide nichtribosomalen Ursprungs konstituieren eine Klasse strukturell diverser Naturstoffe, welche durch 

multimodulare Peptidsynthetasen (NRPSs) assembliert werden. Nichtribosomale Peptide weisen ein breites 

pharmakologisches Spektrum als Antitumor‐Wirkstoffe, Antibiotika oder Immunosuppressiva auf. Das eingehende 

Verständnis der nichtribosomalen Assemblierungsmechanismen, in Kombination mit rationalem genomischen 

Mining ermöglicht die Identifizierung neuartiger, bioaktiver Verbindungen. 

Die vorliegende Arbeit umfasst neben der chemoenzymatischen Synthese von Thiocoralin‐Analoga die de novo 

Identifizierung neuer Naturstoffe durch genomisches Mining.  

Thiocoralin stellt ein makrozyklisches Oktathiodepsipeptid dar, in welchem die mit exozyklischen Chromophoren 

funktionalisierten Oligopeptide über zwei Thioesterbindungen verbunden sind. In dieser Arbeit wurde das 

Zyklodimerisierungspotential der Thiocoralin Thioesterase‐Domäne (TioS PCP‐TE) untersucht, um ein genaueres 

Verständnis der iterativen Assemblierung  der Chinolin‐ und Chinoxalinchromodepsipeptide zu erhalten. Hierzu 

wurde das Enzym rekombinant produziert und mit synthetischen, linearen Peptidylsubstratanaloga inkubiert. TioS 

PCP‐TE katalysierte die Zyklodimerisierung der linearen Tetrapeptidylsubstrate unter Ausbildung verschiedener 

Makrothiolaktone. Die Evaluierung des biokombinatorischen Potentials ergab eine relaxierte Substratspezifität des 

Enzyms und ermöglichte die Generierung von Chromodepsipeptid‐Analoga. Die chemoenzymatisch generierten 

makrozyklischen Laktone oder Thiolaktone wurden isoliert und auf ihre DNA‐Bisinterkalationsaktivität hin 

untersucht. 

Im zweiten Teil dieser Arbeit resultierte die bioinformatische Analyse des 8.2 Mb umfassenden Genoms von 

Saccharopolyspora erythraea in der Identifizierung von zwei kryptischen Hydroxamat‐Siderophor NRPS 

Genclustern. Die Analyse der Adenylierungs‐Domänen Substratspezifität und der modularen Organisation 

ermöglichte die Etablierung eines hochselektiven und hochsensitiven Radio‐LCMS‐geleiteten genomischen Mining 

Ansatzes. Die Anwendung dieses Ansatzes resultierte in der Entdeckung des Siderophors Erythrochelin. Die 

strukturelle Charakterisierung von Erythrochelin wurde mittels NMR‐spektroskopischen sowie 

massenspektrometrischen Studien realisiert und ergab für die Sequenz des Tetrapeptid‐Siderophors:  α‐N‐Acetyl‐δ‐

N‐acetyl‐δ‐N-hydroxy‐D‐Ornithin‐D‐Serin‐zyklo(δ‐N-Hydroxy‐L‐Ornithin‐δ‐N‐Acetyl‐δ‐N-hydroxy‐L‐Ornithin). 

Die Assemblierung von Erythrochelin erfordert die Synthese von δ‐N-Hydroxy‐L‐Ornithin (L‐hOrn) und  

δ‐N‐Acetyl‐δ‐N-hydroxy‐L‐Ornithin (L‐haOrn). Zur Untersuchung der korrespondierenden Biosynthesen wurden die 

FAD‐abhängigen Monooxygenasen EtcB und Sace_1309, sowie die bifunktionelle Malonyl‐CoA Decarboxylase/N‐

Acetyltransferase Mcd, identifiziert und biochemisch charakterisiert. Mittels in vitro‐Studien wurde gezeigt, dass 

EtcB und Sace_1309 ausschließlich die δ‐N-Hydroxylierung von freiem L‐Ornithin katalysieren. Mcd katalysierte die 

Decarboxylierung von Malonyl‐CoA und einen anschließenden Acetyltransfer auf die δ‐Hydroxamino Funktionalität 

von L‐hOrn unter Bildung von L‐haOrn. Die Aufklärung der Biosynthese des Vorläufermoleküls L‐haOrn resultierte in 

der Postulierung eines umfassenden Modells für die Assemblierung von Erythrochelin.   
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Abbreviations 
 
3HQA   3‐hydroxy‐quinaldic acid 
A‐domain   adenylation domain 
aa   amino acid 
ACE   angiotensin converting enzyme 
ac‐haOrn  α‐N‐acetly‐δ‐N‐acetyl‐δ‐N‐hydroxy‐L‐ornithine 
ACP    acyl carrier protein 
ACT   Artemis Comparison Tool 
α‐KG    α‐ketoglutarate 
AMP    adenosine monophosphate 
AT   acetyltransferase 
ATP    adenosine‐5'‐triphosphate 
BLAST    Basic Local Alignment Search Tool 
Boc    tert‐butoxycarbonyl 
bp   base pairs 
C‐domain   condensation domain 
Cy‐domain   heterocyclization domain 
CAS   chromazurol S 
CDA    calcium‐dependent antibiotic 
CDS   coding sequence 
CoA    coenzyme A 
COSY   correlation spectroscopy 
DA   dalton 
DCM   dichloromethane 
DHB    2,3‐dihydroxybenzoic acid  
DIPEA    N,N‐diisopropylethylamine  
DKP    diketopiperazine 
DMF    dimethyl formamide 
DMSO   dimethylsulfoxide 
DNA    deoxyribonucleic acid 
DQF   double quantum filtering 
E‐domain   epimerization domain 
EDA    ethylenediamine 
EDC    N‐(3‐dimethylaminopropyl)‐N'‐ethylene carbodiimide hydrochloride 
EDTA    ethylenediaminetetraacetic acid 
EIC    extracted ion chromatogram 
ESI    electron‐spray ionization 
F‐domain   N‐formylation domain 
Fl‐CoA   fluoresceinyl‐CoA 
FT‐ICR    fourier transform ion cyclotron resonance 
FP‐TAMRA   fluorophosphonate‐N,N,N´,N´-tetramethylrhodamine 
FA   fatty acid 
FAD    flavin adenine dinucleotide 
FDAA    [N‐α‐(2,4‐dinitro‐5‐fluorophenyl)‐L‐alaninamide] 
FMOC    fluorenylmethyloxycarbonyl 
FPLC    fast protein liquid chromatography 
haOrn   δ‐N‐acetyl‐δ‐N‐hydroxy‐L‐ornithine 
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HBTU    O‐Benzotriazole‐N,N,N’,N’‐tetramethyl‐uronium‐hexafluoro‐phosphate 
HEPES    4‐(2‐hydroxyethyl)‐1‐piperazine ethanesulfonic acid 
HHL   N‐hippuryl‐L‐histidyl‐L‐leucine 
Hip   hippuric acid 
HL   L‐histidyl‐L‐leucine 
HMBC   heteronuclear multiple bond coherence 
HOAt    1‐hydroxy‐7‐azabenzotriazol 
HOBt    hydroxybenzotriazole 
hOrn   δ‐N-hydroxy‐L‐ornithine 
HPLC    high performance liquid chromatography 
HRMS   high resolution mass spectrometry 
HSQC   heteronuclear single‐quantum correlation spectroscopy 
IPTG    isopropyl‐β‐D‐thiogalactopyranoside 
kbp   kilo base pairs 
kDa    kilo Dalton 
lac    lactose 
MT‐domain   methyltransferase domain 
mbp   mega base pairs 
MDa    mega Dalton 
MeCN    acetonitrile 
MIC    minimum inhibitory concentration 
MOPS   3‐(N‐morpholino)propanesulfonic acid 
mRNA    messenger ribonucleic acid 
MRSA    methicillin‐resistant Staphylococcus aureus 

MS    mass spectrometry 
NDP    nucleoside diphosphate 
NIS   NRPS independent siderophore  
NOE   nuclear Overhauser effect 
NRP    nonribosomal peptide 
NRPS    nonribosomal peptide synthetase 
NTA    nitrilotriacetic acid 
Ox‐domain  oxidation domain 
OD   optical density 
ORF    open reading frame 
PCP    peptidyl‐carrier‐protein  
PCR    polymerase chain reaction 
PDB    protein data bank 
PK    polyketide 
PKS    polyketide synthase 
ppan    4’‐phosphopantetheine 
PPAT    phosphopantetheine adenosine transferase 
PPi    inorganic pyrophosphate 
PPTase    4’‐phosphopantetheine transferase 
PyBop    benzotriazol‐1‐yl‐oxytripyrrolidinophosphonium hexafluorophosphate 
QA   quinaldic acid 
QTOF    quadrupole time‐of‐flight 
QX   quinoxaline‐2‐carboxylic acid 
R‐domain   reductase domain 
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RNA    ribonucleic acid 
RP    reversed‐phase 
RT    room temperature 
SAM    S‐adenosylmethionine 
SDS    sodium dodecyl sulfate 
SDS‐PAGE   sodium dodecyl sulfate polyacrylamide gel electrophoresis 
SIC   selected ion chromatogram 
SNAC   N‐acetylcysteamine 
sp.    species 
str.   strain 
TCEP   tris‐(carboxyethyl)‐phosphine 
TE    thioesterase domain 
TEII    type II thioesterase 
TES    triethyl silane 
TFA    trifluoroacetic acid 
TFE   trifluoroethanol 
TIC    total ion chromatogram 
TIPS    triisopropylsilane 
TOCSY   total correlation spectroscopy 
tR    retention time in minutes 
TRIS    tris‐(hydroxymethyl)‐aminomethane 
Trt   trityl 
tRNA    transfer ribonucleic acid 
VRE    vancomycin‐resistant Enterococci 
w/o   without 

 
Table 1: Overview of the proteinogenic amino acids. The three‐ and one‐letter codes are given for each amino 

acid as well as the molecular weight.   

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

amino acid  three letter code one letter code MW (Da) 

    
alanine Ala A 89 
arginine Arg R 174 

asparagine Asn N 132 
aspartic acid Asp D 133 

cysteine Cys C 121 
glutamic acid Glu E 147 

glutamine Gln Q 146 
glycine Gly G 75 

histidine His H 155 
isoleucine Ile I 131 

leucine Leu L 131 
lysine Lys K 146 

methionine Met M 149 
phenylalanine Phe F 165 

proline Pro P 115 
serine Ser S 105 

threonine Thr T 119 
tryptophan Trp W 204 

tyrosine Tyr Y 181 
valine Val V 117 



 Table of Contents  

XI 

Abstract  V 

Abstract (German) VI 

Publications VII 

Abbreviations VIII 

Table of Contents  XI 

Table of Contents (German) XV 

1. INTRODUCTION 1 

1.1 The Nonribosomal Assembly of Peptides 3 

     1.1.1 The Essential Domains 4 

          1.1.1.1 The Adenylation (A)‐Domain 5 

          1.1.1.2 The Peptidyl‐Carrier‐Protein (PCP) 5 

          1.1.1.3 The Condensation (C)‐Domain 6 

          1.1.1.4 Termination Strategies of Nonribosomal Peptide Assembly 7 

1.2 In Cis Operating Optional Domains 8 

     1.2.1 The Epimerization (E)‐Domain 8 

     1.2.2 The Methylation (MT)‐Domain 8 

     1.2.3 The Formylation (F)‐Domain 9 

     1.2.4 The Cyclization (Cy)‐Domain 9 

1.3 Tailoring and Modification of NRPS Building Blocks 9 

     1.3.1 Methylation 10 

     1.3.2 Halogenation 11 

     1.3.3 Hydroxylation 12 

1.4 Classification of Nonribosomal Assembly Line Logic 14 

     1.4.1 Linear NRPS‐Assembly Line Logic (Type A) 14 

     1.4.2 Iterative NRPS‐Assembly Line Logic (Type B) 14 

     1.4.3 Nonlinear NRPS‐Assembly Line Logic (Type C) 16 

1.5 Iterative Termination Strategies During Nonribosomal Peptide Assembly 16 

     1.5.1 The Thioesterase – Structural and Mechanistic Aspects 17 

     1.5.2 Iterative Termination Strategies 18 

1.6 Chromodepsipeptides and Siderophores – Peptides of Nonribosomal Origin   21 

     1.6.1 Thiocoraline – A Member of the Macrocyclic Quinoline‐ and Quinoxaline Chromodepsipeptides 21 

     1.6.2 Biosynthesis of Thiocoraline 23 

     1.6.3 Mode of Action of Thiocoraline 26 

     1.6.4 Bacterial Siderophores 27 

     1.6.5 Biosynthesis of NRPS‐Depedent and NRPS‐Independent Siderophores 28 

1.7 Rational Strategies for the Generation of Structural Diversity 32 

     1.7.1 Chemoenzymatic Synthesis of NRP Derivatives 32 

     1.7.2 Natural Product Discovery via Genome Mining 33 

2. OBJECTIVES OF THIS STUDY 37 

 



 Table of Contents  

XII 

3. MATERIALS 38 

3.1 Chemicals, Enzymes, General Materials and Consumables 38 

3.2 Equipment  39 

3.3 Plasmid Vectors 40 

     3.3.1 pQE60 40 

     3.3.2 pET28a(+) 40 

     3.3.3 pCB28a(+) 41 

     3.3.4 pREP4 41 

3.4 Oligonucleotides 42 

3.5 Microorganisms 42 

     3.5.1 E. coli XL1‐Blue 42 

     3.5.2 E. coli TOP10 42 

     3.5.3 E. coli M15/pREP4 43 

     3.5.4 E. coli BL21 (DE3) 43 

     3.5.5 Micromonospora sp. L13‐ACM2‐092 43 

     3.5.6 Saccharopolyspora erythraea NRRL 23338  43 

3.6 Culture Media 44 

     3.6.1 LB Medium 44 

     3.6.2 Medium 65 44 

     3.6.3 Micromonospora Medium  45 

     3.6.4 SCM Medium 45 

     3.6.5 M9 Minimal Medium 45 

4. METHODS 46 

4.1. Molecular Biology Methods 46 

     4.1.1 Cultivation of Micromonospora sp.  L13‐ACM2‐092 46 

     4.1.2 Cultivation of Saccharopolyspora erythraea NRRL 23338 46 

     4.1.3 Preparation of Genomic DNA 46 

     4.1.4 Preparation of Plasmid DNA 47 

     4.1.5 Construction of Expression Plasmids  47 

4.2 Protein Purification and Analysis Methods 49 

     4.2.1 Protein Expression 49 

           4.2.1.1 Expression of pQE60 Constructs 49 

           4.2.1.2 Expression of pET28a(+) and pCB28a(+) Constructs 49 

     4.2.2 Protein Purification  49 

     4.2.3 Size‐Exclusion Chromatography (SEC) 50 

     4.2.4 Protein Concentration Determination  50 

4.3 Analytical Methods 51 

     4.3.1 MALDI‐TOF‐MS 51 

     4.3.2 RP‐HPLC and LCMS 51 

     4.3.3 HRMS and MS/MS‐Fragmentation Analysis 52 

     4.3.4 Peptide Mass Fingerprinting 52 



 Table of Contents  

XIII 

4.4 Spectroscopic Methods 52 

     4.4.1 UV/Vis‐Spectroscopy 52 

     4.4.2 CD‐Spectroscopy 53 

     4.4.3 NMR‐Spectroscopy and Structure Elucidation  53 

4.5 Chemical Synthesis 54 

     4.5.1 Solid‐Phase Peptide Synthesis of Tetrapeptidyl Substrates 54 

     4.5.2 Synthesis of Tetrapeptidyl‐SNAC Substrates 55 

4.6 Biochemical Methods 56 

     4.6.1 Fluoresceinyl‐CoA Phosphopantetheinylation Assay 56 

     4.6.2 Activity‐Based Fluorescence Labeling Assay 57 

     4.6.3 TioS PCP‐TE‐Catalyzed Macrocyclization Assay 57 

     4.6.4 Monooxygenase‐Mediated Hydroxylation Assay 58 

     4.6.5 Mcd‐Mediated Acetylation Assay 59 

     4.6.6 Coupled Hydroxylation and Acetylation Assay  59 

4.7 Radio-LCMS-Guided Genome Mining  60 

4.8 Natural Product Isolation 60 

     4.8.1 Isolation of Chemoenzymatically Generated Thiocoraline Analogs 60 

     4.8.2 Isolation of Native Thiocoraline from Micromonospora sp.  61 

     4.8.3 Isolation of Erythrochelin from SCM Medium 61 

     4.8.4 Large‐Scale Purification of Erythrochelin from M9 Medium 62 

4.9 Methods for Stereochemical Analysis 62 

     4.9.1 Stereochemical Analysis of Erythrochelin via FDAA‐Derivatization 62 

     4.9.2 Determination of Erythrochelin Amino Acid Connectivity  63 

4.10 Bioactivity Assays 64 

     4.10.1 DNA‐Bisintercalation Activity Assay 64 

     4.10.2 ACE Inhibition Assay 65 

4.11 Bioinformatic Methods 66 

5. RESULTS 67 

5.1 TE-Mediated Iterative Assembly of Chromodepsipeptides 67 

     5.1.1 Recombinant Expression and Isolation of TioS PCP‐TE as an Active Apo‐Protein 68 

     5.1.2 Substrate Specificity of TioS PCP‐TE 69 

     5.1.3 Biocombinatorial Evaluation of TioS PCP‐TE 72 

     5.1.4 Temperature Dependence of Cyclodimerization Reactions 74 

     5.1.5 DNA‐Bisintercalation Activities 76 

5.2 Erythrochelin – a Hydroxamate-Type Siderophore Predicted from the Genome of S. erythraea 78 

     5.2.1 Bioinformatic Identification of Two Siderophore Biosynthetic Gene Glusters in S. erythraea 78 

     5.2.2 Identification and Isolation of Erythrochelin via Radio‐LCMS‐Guided Genome Mining 83 

     5.2.3 NMR‐Based Structure Elucidation of Erythrochelin  85 

     5.2.4 Mass Spectrometric‐ and Stereochemical Analysis of Erythrochelin  87 

     5.2.5 Physicochemical Properties of Erythrochelin 90 

     5.2.6 ACE‐Inhibition Studies with Erythrochelin 91 



 Table of Contents  

XIV 

5.3 Biosynthesis of the δδδδ-N-Hydroxy-L-Ornithine Residue of Erythrochelin 94 

     5.3.1 Recombinant Expression and Isolation of EtcB as an Active Holo‐Protein 94 

     5.3.2 Biochemical Characterization of EtcB  95 

5.4 Acetylation of δδδδ-N-Hydroxy-L-Ornithine During Erythrochelin Biosynthesis 97 

     5.4.1 Bioinformatic Identification of the Bifunctional Enzyme Mcd  98 

     5.4.2 Recombinant Expression and Isolation of Sace_1309 as an Active Holo‐Protein 100 

     5.4.3 Biochemical Characterization of Sace_1309 100 

     5.4.4 Recombinant Expression and Isolation of Mcd 101 

     5.4.5 Biochemical Characterization of the Bifunctional Enzyme Mcd 102 

     5.4.6 Consecutive Enzymatic Synthesis of δ‐N‐Acetyl‐δ‐N-Hydroxy‐L‐Ornithine 105 

6. DISCUSSION AND OUTLOOK 107 

6.1 Iterative Assembly of Chromodepsipeptide Derivatives 107 

     6.1.1 TioS PCP‐TE‐Mediated Dimerization and Macrothiolactonization 107 

     6.1.2 Biocombinatorial Potential of TioS PCP‐TE 111 

     6.1.3 Concepts for the Improvement of Cyclization Yields 112 

     6.1.4 DNA‐Bisintercalative Activity of Thiocoraline Analogs 115 

6.2 Erythrochelin – a Hydroxamate-Type Siderophore Discovered via Genome Mining 117 

     6.2.1 Natural Product Discovery via Radio‐LCMS‐Guided Genome Mining 117 

     6.2.2 Physicochemical Properties of Erythrochelin 120 

6.3 Biosynthesis of the Modified Ornithine Residues in Erythrochelin 122 

      6.3.1 Biochemical Characterization of Ornithine δ‐N‐Hydroxylation 122 

          6.3.1.1 Bioinformatic Analysis of the FAD‐Dependent Monooxygenases EtcB and Sace_1309 122 

          6.3.1.2 Substrate Specificity and Kinetic Parameters of the Monooxygenases 124 

     6.3.2 Biochemical Characterization of Hydroxyornithine δ‐N‐Acetylation 126 

          6.3.2.1 Bioinformatic Analysis of the Bifunctional Enzyme Mcd 126 

          6.3.2.2 The Bifunctional Enzyme Mcd Mediates Decarboxylation and Acetylation 129 

6.4 Biosynthesis of Erythrochelin Requires NRPS Crosstalk 131 

6.5 Biosynthetic Model for Erythrochelin Assembly  132 

7. REFERENCES 136 

8. SUPPLEMENTARY SECTION  144 

8.1 Supplementary Figures 144 

8.2 Supplementary Tables 149 

ACKNOWLEDGEMENTS 152

 

 

 

 

 

  



 Inhaltsverzeichnis  

XV 

Zusammenfassung (Englisch) V 

Zusammenfassung VI 

Publikationen VII 

Abkürzungen VIII 

Inhaltsverzeichnis (Englisch) XI 

Inhaltsverzeichnis XV 

1. EINLEITUNG 1 

1.1 Die Nichtribosomale Assemblierung von Peptiden 3 

     1.1.1 Die Essentiellen Domänen 4 

          1.1.1.1 Die Adenylierungs (A)‐Domäne  5 

          1.1.1.2 Das Peptidyl‐Carrier‐Protein (PCP) 5 

          1.1.1.3 Die Kondensations (C)‐Domäne 6 

          1.1.1.4 Terminationsstrategien während der Nichtribosomalen Assemblierung von Peptiden 7 

1.2 In Cis Operierende Optionale Domänen 8 

     1.2.1 Die Epimerisierungs (E)‐Domäne 8 

     1.2.2 Die Methylierungs (MT)‐Domäne 8 

     1.2.3 Die Formylierungs (F)‐Domäne 9 

     1.2.4 Die Zyklisierungs (Cy)‐Domäne 9 

1.3 Modifikationen von NRPS Syntheseeinheiten 9 

     1.3.1 Methylierung 10 

     1.3.2 Halogenierung 11 

     1.3.3 Hydroxylierung 12 

1.4 Klassifizierung der Nichribosomalen Peptidsynthese-Systeme 14 

     1.4.1 Lineare NRPS‐Systeme (Typ A) 14 

     1.4.2 Iterative NRPS‐Systeme (Typ B) 14 

     1.4.3 Nichtlineare NRPS‐Systeme (Typ C) 16 

1.5 Iterative Terminationsstrategien der Nichtribosomalen Peptidassemblierung 16 

     1.5.1 Die Thioesterase – Strukturelle und Mechanistische Aspekte 17 

     1.5.2 Iterative Terminationsstrategien 18 

1.6 Chromodepsipeptide und Siderophore – Peptide Nichtribosomalen Ursprungs  21 

     1.6.1 Thiocoralin – Ein Vertreter der Makrozyklischen Chinolin‐ und Chinoxalin Chromodepsipeptide  21 

     1.6.2 Die Biosynthese von Thiocoralin 23 

     1.6.3 Wirkungsmechanismus von Thiocoralin 26 

     1.6.4 Bakterielle Siderophore 27 

     1.6.5 Die Biosynthese NRPS‐Abhängiger und NRPS‐Unabhängiger Siderophore 28 

1.7 Rationale Strategien zur Generierung Struktureller Diversität 32 

     1.7.1 Chemoenzymatische Synthese von NRP‐Derivativen 32 

     1.7.2 Naturstoffisolierung mittels Genomischen Minings 33 

2. AUFGABENSTELLUNG 37 

 



 Inhaltsverzeichnis  

XVI 

3. MATERIAL 38 

3.1 Chemikalien, Enzyme, Verbrauchsmaterialien 38 

3.2 Geräte  39 

3.3 Plasmid Vektoren 40 

     3.3.1 pQE60 40 

     3.3.2 pET28a(+) 40 

     3.3.3 pCB28a(+) 41 

     3.3.4 pREP4 41 

3.4 Oligonukleotide 42 

3.5 Mikroorganismen 42 

     3.5.1 E. coli XL1‐Blue 42 

     3.5.2 E. coli TOP10 42 

     3.5.3 E. coli M15/pREP4 43 

     3.5.4 E. coli BL21 (DE3) 43 

     3.5.5 Micromonospora sp. L13‐ACM2‐092 43 

     3.5.6 Saccharopolyspora erythraea NRRL 23338  43 

3.6 Kulturmedien 44 

     3.6.1 LB Medium 44 

     3.6.2 Medium 65 44 

     3.6.3 Micromonospora Medium  45 

     3.6.4 SCM Medium 45 

     3.6.5 M9 Minimal Medium 45 

4. METHODEN 46 

4.1. Molekularbiologische Methoden 46 

     4.1.1 Kultivierung von Micromonospora sp. L13‐ACM2‐092 46 

     4.1.2 Kultivierung von Saccharopolyspora erythraea NRRL 23338 46 

     4.1.3 Präparation von Genomischer DNA 46 

     4.1.4 Preparation von Plasmid DNA 47 

     4.1.5 Konstruktion der Expressionsplasmide  47 

4.2 Proteinchemische Methoden 49 

     4.2.1 Genexpression 49 

          4.2.1.1 Expression der pQE60 Konstrukte 49 

          4.2.1.2 Expression der pET28a(+) und pCB28a(+) Konstrukte 49 

     4.2.2 Proteinreinigung 49 

     4.2.3 Gelfiltrationschromatographie  50 

     4.2.4 Bestimmung der Proteinkonzentration  50 

4.3 Analytische Methoden 51 

     4.3.1 MALDI‐TOF‐MS 51 

     4.3.2 RP‐HPLC und LCMS 51 

     4.3.3 HRMS und MS/MS‐Fragmentierungs Analyse 52 

     4.3.4 Peptidmassenfingerabdruck 52 



 Inhaltsverzeichnis  

XVII 

4.4 Spektroskopische Methoden 52 

     4.4.1 UV/Vis‐Spektroskopie 52 

     4.4.2 CD‐Spektroskopie 53 

     4.4.3 NMR‐Spektroskopie und Strukturaufklärung 53 

4.5 Chemische Synthesen 54 

     4.5.1 Festphasensynthese der Tetrapeptidyl Substrate 54 

     4.5.2 Synthese der Tetrapeptidyl‐SNAC Substrate 55 

4.6 Biochemische Methoden 65 

     4.6.1 Fluoresceinyl‐CoA Phosphopantetheinylierungsassay 56 

     4.6.2 Aktivitäts‐Basierter Fluoreszenz‐Labelingassay 57 

     4.6.3 TioS PCP‐TE‐Katalysierter Makrozyklisierungsassay 57 

     4.6.4 Monooxygenasen‐Katalysierter Hydroxylierungsassay 58 

     4.6.5 Mcd‐Vermittelter Acetylierungsassay 59 

     4.6.6 Gekoppelter Hydroxylierungs‐ und Acetylierungsassay  59 

4.7 Radio-LCMS-Geleitetes Genomisches Mining  60 

4.8 Naturstoffisolierung 60 

     4.8.1 Isolierung der Chemoenzymatisch Generierten Thiocoralin Analoga 60 

     4.8.2 Isolierung von Nativem Thiocoralin aus Micromonospora sp. Kulturen 61 

     4.8.3 Isolierung von Erythrochelin aus SCM Medien 61 

     4.8.4 Isolierung von Erythrochelin aus M9 Medien 62 

4.9 Stereochemische Analysemethoden 62 

     4.9.1 Stereochemische Analyse von Erythrochelin mittels FDAA‐Derivatisierung 62 

     4.9.2 Aminosäure‐Verknüpfungsbestimmung von Erythrochelin  63 

4.10 Bioaktivitätsassays 64 

     4.10.1 DNA‐Bisinterkalations Aktivitätsassay  64 

     4.10.2 ACE Inhibitionsassay  65 

4.11 Bioinformatische Methoden 66 

5. ERGEBNISSE 67 

5.1 TE-Vermittelte Iterative Assemblierung der Chromodepsipeptide 67 

     5.1.1 Rekombinante Expression and Isolierung von TioS PCP‐TE als Aktives Apo‐Protein 68 

     5.1.2 Substratspezifität von TioS PCP‐TE 69 

     5.1.3 Biokombinatorische Evaluierung von TioS PCP‐TE 72 

     5.1.4 Temperaturabhängigkeit der Zyklodimerisierungsreaktion  74 

     5.1.5 DNA‐Bisinterkalationsaktivitäten 76 

5.2 Charakterisierung des Hydroxamat Siderophors Erythrochelin aus S. erythraea  78 

     5.2.1 Bioinformatische Identifizierung von Siderophor Biosynthese Genclustern in S. erythraea  78 

     5.2.2 Identifizierung und Isolierung von Erythrochelin mittels Radio‐LCMS‐Geleitetem Genomischen Minings 83 

     5.2.3 NMR‐Basierte Strukturelle Aufklärung von Erythrochelin 85 

     5.2.4 Massenspektrometrische und Stereochemische Analyse von Erythrochelin  87 

     5.2.5 Physikochemische Eigenschaften von Erythrochelin 90 

     5.2.6 ACE‐Inhibitionsstudien mit Erythrochelin 91 



 Inhaltsverzeichnis  

XVIII 

5.3 Biosynthese der δδδδ-N-Hydroxy-L-Ornithin Einheiten von Erythrochelin 94 

     5.3.1 Rekombinante Expression and Isolierung von EtcB als Aktives Holo‐Protein 94 

     5.3.2 Biochemische Charakterisierung von EtcB  95 

5.4 Acetylierung von δδδδ-N-Hydroxy-L-Ornithin während der Erythrochelin Biosynthese 97 

     5.4.1 Bioinformatische Identifizierung des Bifunktionalen Enzyms Mcd  98 

     5.4.2 Rekombinante Expression und Isolierung von Sace_1309 als Aktives Holo‐Protein 100 

     5.4.3 Biochemische Charakterisierung von Sace_1309 100 

     5.4.4 Rekombinante Expression und Isolierung von Mcd 101 

     5.4.5 Biochemische Charakterisierung des Bifunktionalen Enzyms Mcd 102 

     5.4.6 Gekoppelte Enzymatische Synthese von δ‐N‐Acetyl‐δ‐N-Hydroxy‐L‐Ornithin 105 

6. DISKUSSION UND AUSBLICK 107 

6.1 Iterative Assemblierung von Chromodepsipeptid-Derivaten 107 

     6.1.1 TioS PCP‐TE‐Vermittelte Dimerisierung und Makrothiolaktonisierung 107 

     6.1.2 Biokombinatorisches Potential von TioS PCP‐TE 111 

     6.1.3 Konzepte zur Verbesserung der Zyklisierungsausbeuten 112 

     6.1.4 DNA‐Bisinterkalationsaktivität der Thiocoralin Analoga 115 

6.2 Erythrochelin – ein mittels Genomischen Minings Identifiziertes Hydroxamat Siderophor 117 

     6.2.1 Naturstoffindung mittels Radio‐LCMS‐Geleitetem Genomischen Minings 117 

     6.2.2 Physikochemische Eigenschaften von Erythrochelin 120 

6.3 Biosynthese der Modifizierten Ornithin Einheiten in Erythrochelin 122 

     6.3.1 Biochemische Charakterisierung der δ‐N‐Hydroxylierung von Ornithin 122 

          6.3.1.1 Bioinformatische Analyse der FAD‐Abhängigen Monooxygenasen EtcB und Sace_1309 122 

          6.3.1.1 Substratspezifität und Kinetische Parameter der Monooxygenasen 124 

     6.3.2 Biochemische Charakterisierung der δ‐N‐Acetylierung von Hydroxyornithin 126 

          6.3.2.1 Bioinformatische Analyse des Bifunktionalen Enzyms Mcd  126 

          6.3.2.2 Mcd‐Vermittelte Malonyl‐CoA Decarboxylierung und Acetyltransfer 128 

6.4 Die Biosynthese von Erythrochelin erfordert NRPS-Gencluster Kreuzkommunikation  131 

6.5 Das Erythrochelin Biosynthesemodell  132 

7. BIBLIOGRAPHIE 136 

8. ANHANG 144 

8.1 Abbildungen 144 

8.2 Tabellen 149 

DANKSAGUNG 152 



 Introduction  

‐ 1 ‐ 

1. Introduction 

 

The discovery of natural products as biologically active drugs had a drastic impact on fatality rates and 

gave rise to a variety of drug classes for the treatment of a multitude of diseases.1 Compounds derived 

from the secondary metabolism of bacteria and fungi therefore represent a rich resource of 

pharmacologically relevant natural products.2  

It is assumed that immobile microorganisms which do not possess the evolutionary potential to develop 

physical defense mechansims are the most promising candidates for the discovery of bioactive 

secondary metabolites.3 The selection pressure these microorganisms are subjected to led to the 

directed evolution of natural products that are optimized for chemical defense or inter‐ or intra‐species 

communication and convey evolutionary advantages over competing organisms in the natural habitat. 

Compounds targeting enzymes, receptors or membranes, which exhibit highly conserved structural or 

chemical properties, are potential candidates for the development of novel therapeutics or therapies.4 

The compounds isolated from prokaryotes or eukaryotes comprise peptides, polyketides, steroids, 

glycosphingolipids and terpenes exhibiting a broad pharmacological and chemical spectrum.5 Among 

those compounds the class of biologically active peptides represents a rich resource for the discovery of 

novel bioactive agents. The biosynthesis of the oligopeptides can be either carried out via a ribosomal 

strategy, as in the case of capistruin and patellamide or via a template‐directed manner by multimodular 

nonribosomal peptide synthetases (NRPSs).6‐8 Peptides of nonribosomal origin display a remarkable 

structural and functional diversity arising from biosynthetic mechanisms employed in the assembly of 

the oligopeptides as well as from the over 500 currently known building blocks (Figure 1.1). 

Nonribosomal peptides (NRPs) exhibit a broad range of biological activities ranging from antitumor‐ 

(bleomycin), antibacterial‐ (gramicidin S) or immunosuppressive‐activities (cyclosporine).9‐11 The US Food 

and Drug Administration (FDA)‐approval of numerous NRPS‐derived compounds confirms the 

pharmacological potential of this intriguing peptide class (Table S1‐ Supplementary Section).  

A main drawback of the extensive treatment of bacterial infections is the rapid bacterial acquisition of 

resistance to conventional antibiotics, representing an increasing challenge in treating infections with 

the contemporary drug‐arsenal. Especially the rise of drug‐resistant Gram‐positive pathogens, 

exemplified by methicillin‐resistant Staphylococcus aureus (MRSA) or vancomycin‐resistant Enterococci 

(VRE), underlines the urgent demand for NRPS‐derived antibiotics with alternative modes of action.12 

Although the effort for the identification of new bioactive NRPs has drastically increased in the past 
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decades, only three new antibacterial classes have been approved by the Food and Drug Administration 

(FDA) since the 1970s.13  

 

Figure 1.1: Selection of nonribosomally assembled and biologically active natural products. The structural 

diversity is a result of the biosynthetic mechanism of NRP assembly and the incorporation of over 500 unique 

building blocks. A structural key feature is the macrocyclic core of the NRP, conveying protection against 

proteolytic degradation. NRPs shown are: viomycin (Streptomyces sp. strain ATCC 11861), surfactin (Bacillus 

subtilis), tyrocidine (Bacillus brevis), syringomycin (Pseudomonas syringaea), nostocyclopeptide (Nostoc sp. 

ATCC 53789) and the tallysomycins (Streptoalloteichus hidustanus E465‐94 ATCC 31158).14‐19 

 

In the course of this work two strategies were applied for the enhancement of structural and functional 

diversity among nonribosomal peptides. The first part describes the chemoenzymatic synthesis of 

derivatives of thiocoraline (Micromonospora ML‐1), an antitumor compound currently undergoing 

preclinical trials phase II.20 The second part focuses on the discovery of natural products via rational 

genome mining strategies, resulting in the detection of the hydroxamate‐type siderophore erythrochelin 

(Saccharopolyspora erythraea NRRL 23338).21 Understanding the ribosome‐independent assembly of 

biologically active natural products in combination with rational genome mining approaches will provide 

opportunities for the generation of NRP‐derivatives or lead to the discovery of novel natural products for 

potential clinical applications.   
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1.1 The Nonribosomal Assembly of Peptides 

 

In contrast to the ribosomal assembly of peptides in which the mRNA serves as a template, the NRPS 

represents template and biosynthetic machinery at once. Genetic and biochemical characterization of 

the NRPS enzymes revealed a multiple‐carrier‐thiotemplate mechanism for oligopeptide assembly.22‐24 

According to this model, the NRPSs represent megaenzymes which can be subdivided into modules and 

domains.25 Each module contains all catalytic units for the specific recognition, activation, covalent 

binding and incorporation of a building block into the oligopeptide chain and can be dissected into 

individual domains.26 The identification of highly conserved core motifs within the specific domains 

allows the definition of domain borders and facilitates primary sequence prediction of the product. In 

NRPS‐systems following a linear logic of oligopeptide assembly, the number of building blocks found in 

the product directly correlates with the number of modules. Exceptions to this assembly mechanism are 

discussed in detail (Chapter 1.4).27 A minimal module consists of the essential domains adenylation  

(A)‐domain, condensation (C)‐domain and peptidyl‐carrier‐protein (PCP) and contains all catalytic units 

required for peptide‐bond formation and translocalization of peptidyl intermediates. Recently, the three‐

dimensional structure of an entire NRPS‐module was elucidated, granting insights into unique inter‐

domain communications.28 The C‐domain and the Acore‐domain constitute a catalytic platform on which 

the PCP and the C‐terminal Asub‐domain are located. In addition, the crystal structure revealed the 

thioesterase (TE)‐domain, responsible for macrocyclization or hydrolytic product release, to be 

associated with the PCP via a short linker region (Figure 1.2).  

 

 

 

 

 

 

 

 

 

Figure 1.2: The three‐dimensional structure of the SrfA‐C termination module (C‐A‐PCP‐TE) involved in 

surfactin biosynthesis (PDB code: 2VSQ). The C‐domain (grey) with the active‐site His147‐residue is connected 

to the Acore‐domain (red) in which a Leu‐residue is bound to the active‐site. The N‐terminal Asub‐domain 

(brown) is connected to the PCP (green) in which the serine of the core‐T motif is substituted with alanine. 

The TE‐domain (orange) is linked to the PCP via a short linker‐region. Linker regions are accentuated in blue.  
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The PCP has to be posttranslationally modified in order to serve as the universal transporter unit of the 

assembly line. This modification is catalyzed by phosphopantetheinyl‐transferases (PPtases), converting 

the apo‐PCP to holo‐PCP by transfer of the phosphopantetheine‐cofactor (ppan) to a highly conserved 

serine residue.29  

In cis acting modifying domains which are integrated into the NRPS or tailoring enzymes operating in 

trans contribute to the vast structural diversity of NRPs.30‐31 A mechanistic overview of peptide bond 

formation catalyzed by a minimal NRPS‐system is given in Figure 1.3. 

 

Figure 1.3: Mechanistic overview of NRPS‐catalyzed peptide bond formation by the essential domains of the 

synthetase. Conversion of the apo‐NRPS to the holo‐form is catalyzed by PPtases under the consumption of 

CoA. Subsequently, amino acid substrates are specifically recognized and activated by the corresponding  

A‐domains as aminoacyl adenylates. This reactive species is then transferred and immobilized on the  

PCP‐bound ppan cofactor. C‐domain‐mediated condensation of the template bound substrates affords a 

dipeptidyl intermediate which can be furthermore elongated and released from the synthetase, ultimately 

leading to the assembled NRP.     

 

1.1.1 The Essential Domains 

 

Domains required for the elongation of the oligopeptide during nonribosomal assembly are considered 

essential. These domains are the adenylation (A)‐domain, the condensation (C)‐domain and the peptidyl‐

carrier‐protein (PCP). A minimal module consisting of one of each essential domain is capable of 

elongating the oligopeptide by one unit. The following chapter gives a more concise description of each 

domain.  
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1.1.1.1 The Adenylation (A)-Domain 

 

The adenylation domain is responsible for substrate recognition and activation. The high degree of 

selectivity of this class of enzymes defines the primary sequence of the readily assembled oligopeptide.32 

After specific recognition of an amino acid or carboxylic acid, the A‐domain catalyzes the formation of a 

reactive aminoacyl adenylate in the presence of Mg2+ and ATP.33 This reaction is analogous to the 

activation of amino acids by aminoacyl‐tRNA synthetases during the ribosomal assembly of peptides. 

Although both enzymes catalyze the same reaction they do not exhibit any structural or sequential 

homology.34 

A‐domains represent autonomous catalytic units that maintain their activity when separated from the 

enzymatic template and display a higher degree of substrate tolerance compared to aminoacyl‐tRNA 

synthetases due to the lack of proof‐reading‐mechanisms.35 This relaxed substrate specificity can result 

in the assembly of differing NRPs by the same NRPS machinery. A‐domains usually consist of ∼550 aa and 

can be subdivided into the N‐terminal core domain (Acore ∼450 aa) and a smaller C‐terminal subdomain 

(Asub ∼100 aa). Structural analysis of the PheA A‐domain, dissected from the gramicidin S‐synthetase 

GrsA soaked with the cognate substrate and ATP, gave insights into the relative position of the active‐

site and the residues responsible for the recognition of the substrate.36  In combination with biochemical 

and bioinformatic analysis of a set of A‐domains, the specificity‐conferring code of A‐domains was 

established. The ten amino acids constituting this code are responsible for substrate binding within the 

active‐site. Application of this code for the bioinformatic analysis of A‐domains allows the prediction of 

the putative substrates activated by the corresponding A‐domains. This approach is currently applied in 

the prediction and isolation of NRPS‐derived products via genome mining methods.37‐39  

 
1.1.1.2 The Peptidyl-Carrier-Protein (PCP) 

 
The peptidyl‐carrier‐protein (PCP) represents the universal transporter unit within modular NRPSs and is 

usually located C‐terminally of A‐domains. It is responsible for the covalent tethering of monomeric 

building blocks or peptidyl intermediates and translocation of the growing NRP chain.40 The substrates or 

intermediates are covalently immobilized on the sulfhydryl‐group of a phosphopantetheine cofactor 

(ppan) which is attached to the highly conserved serine residue of the core‐T motif (GGxS). Conversion of 

the inactive apo‐PCP to the holo‐PCP results from a posttranslational modification of the PCP, mediated 

by phosphopantetheinyl‐transferases (PPtases).29,41 PPtases catalyze the nucleophilic attack of the 

hydroxyl‐group of a serine residue onto the β‐phosphate group of coenzyme A, releasing  

3’,5’‐adenosinediphosphate (3’,5’‐ADP). PCPs share a high degree of sequential and structural homology 
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to acyl‐carrier‐proteins (ACP) found in fatty acid synthases (FASs) and polyketide synthases (PKSs) and 

are designated aryl‐carrier‐proteins (ArCP) when the cognate substrates are aryl acids as found in the 

biosynthesis of triostin A.42 NMR structural studies of TycC3‐PCP revealed the PCP to adopt three 

different and slowly converting conformations:  the apo (A), the A/H and the holo (H) state.43 When the 

PCP is in the apo‐state, both the A and the A/H state coexist whereas in the case of holo‐PCP the H and 

the A/H state coexist. These dynamic conformational changes enable the interaction of the ppan‐bound 

substrates and intermediates with neighbouring domains. An additional finding of this study was that the 

ppan cofactor of holo‐PCP and especially the terminal sulfhydryl‐group is able to move approximately  

16 Å, which confirmed the postulated swinging mode of the ppan prosthetic group.  

 

1.1.1.3 The Condensation (C)-Domain 

 
The condensation (C)‐domain, which comprises ∼450 aa, is an additional essential domain within the 

multimodular NRPS template.44 C‐domains catalyze peptide bond formation between an electrophilic 

PCP‐bound donor substrate presented from the N‐terminal side of the synthetase and a nucleophilic 

PCP‐bound acceptor substrate. The formation of the peptide bond is initiated by the nucleophilic attack 

of the α‐amino group of the acceptor substrate onto the peptidyl‐S‐PCP thioester of the donor 

substrate.45‐47 The elongated peptide is subsequently located on the downstream PCP‐domain and can 

be subjected to further elongation‐ and translocalization‐steps. All condensation domains have been 

found to operate unidirectional by translocalizing the elongation product towards the C‐terminal 

termination module.The number of C‐domains located within the synthetase usually correlates with the 

number of peptide bonds found in the readily assembled product. This model implies that NRPS‐based 

assembly follows a linear logic. In the case of nonlinearly operation NRPSs, exemplified by CchH involved 

in coelichelin biosynthesis, C‐domains have to exhibit other mechanisms of inter‐domain 

communication.38 Structural and bioinformatic analysis of C‐domains identified a highly conserved 

catalytic His‐residue located in the C3‐core motif (MHHxxxDG(WV)S).48 Mutational studies of the TycC6 

 PCP‐C didomain suggest that the second histidine of the HHxxxDG motif may catalyze the deprotonation 

of the α‐ammonium group of the acceptor substrate to enhance the nucleophilicity for the nucleophilic 

attack onto the donor substrate thioester, but the exact mechanism remains to be elucidated.49  

C‐domains are functionally diverse catalysts that are involved in various biosynthetic processes. In the 

case of arthrofactin biosynthesis, a dual condensation/epimerization‐domain could be identified which 

epimerizes the upstream aminoacyl/peptidyl moiety before condensation when the condensation 

domain is simultaneously presented with the L‐aminoacyl‐S‐pantetheinyl acceptor.50 The C‐domain 
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located at the N‐terminus of the SrfA‐A synthetase, generally designated CIII‐domain, was recently shown 

to be involved in the initiation of surfactin biosynthesis.(Femke Kraas, Philipps‐University Marburg, 

unpublished results).51 

 

1.1.1.4 Termination of Nonribosomal Peptide Assembly 

 
Termination of NRP biosynthesis is achieved by the catalytic or autocatalytic cleavage of the assembled 

oligopeptide from the enzymatic template. A variety of release mechanisms has evolved, contributing to 

the structural diversity of NRPs. The most commonly found release strategy in NRP biosynthesis is 

mediated by thioesterase (TE)‐domains located at the C‐terminus of the synthetase. This class of 

enzymes displays a high degree of sequential and structural homology to α/β‐hydrolases.52 Depending 

on the nature of the nucleophile that is employed in the TE‐mediated release, linear, cyclic or branched 

cyclic peptides result. TE‐domains can catalyze the macrocyclization of NRPs through the intramolecular 

nucleophilic attack of a side‐chain nucleophile onto the acyl‐O‐TE‐oxoester intermediate.53 As this 

macrocyclization strategy is a major part of the work presented herein, it is discussed in detail in chapter 

1.5. The hydrolytic release of the template‐bound NRP represents an alternative release strategy, 

catalyzed by hydrolyzing TE‐domains. This hydrolytic release results in a linear peptide and has been 

observed during the biosynthesis of vancomycin, complestatin or yersiniabactin.54‐56 In addition, in trans 

acting TE‐domains were postulated to be involved in mannopeptimycin and coelichelin biosynthesis.38,57 

The reduction of the C‐terminal carboxyl group to afford the corresponding aldehyde or aminoalcohol 

represents an additional release strategy that has been observed during nostocyclopeptide and linear 

gramicidin biosynthesis.58‐59 This reduction is catalyzed by C‐terminally located reductase (R)‐domains in 

a NAD(P)H‐dependent manner. In the case of the macrocyclic nostocyclopeptide, reductive release of 

the linear peptide aldehyde triggers macrocyclization via an intramolecular imination.59 In several NRPSs, 

the C‐terminal TE‐ or R‐domain is replaced by a condensation domain that is postulated to mediate the 

cyclorelease of the PCP‐bound peptide. These C‐terminal C‐domains were identified in the biosynthetic 

gene clusters responsible for the assembly of cyclosporine or the DKP‐containing toxins thaxtomin and 

fumitremorgin.60‐62 
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1.2 In Cis Operating Optional Domains  

 

In addition to the essential core domains, further domains could be identified and biochemically 

characterized which are responsible for the in cis modification of the peptidic backbone and contribute 

to the structural and functional diversity of NRPS‐derived natural products.  

 

1.2.1 The Epimerization (E)-Domain 

 

A key feature of NRPs is the incorporation of D‐configured amino acids in the peptidic backbone. The 

presence of D‐configured amino acids can be observed in numerous NRPS‐derived compounds,  

e.g. vancomycin or daptomycin.54,63 D‐isomers of amino acids not only affect the bioactivity of the 

compound but also prevent the proteolytic degradation of the peptide.23 The conversion of the L‐amino 

acid to the D‐isomer is generally mediated by epimerization (E)‐domains, comprising ∼450 aa, located 

downstream of adjacent PCPs. E‐domains epimerize the L‐configured substrate after immobilization as 

an aminoacyl‐S‐PCP intermediate. E‐domains located in initiation modules generate a mixture of 

PCP‐S‐L,D‐monomers with the downstream C‐domain selecting the D‐isomer for the initiation of peptide 

assembly. E‐domains embedded in elongation modules were shown to catalyze the epimerization of the 

peptidyl‐S‐PCP intermediate prior to translocalization.64 C‐domains located downstream of such E‐

domains are also specific for the D‐configured substrate and assure a selective incorporation of the D‐

isomer into the product.44  Bioinformatic analysis of E‐domains revealed the presence of a catalytically 

active His‐residue located in the E3‐motif (HHxxxDG) which is believed to mediate base‐catalyzed Cα 

epimerization.51  

 

1.2.2 The Methylation (MT)-Domain 

 
Methylation (MT)‐domains, also termed methyltransferases, catalyze the transfer of a methyl group 

from the methyl group donor S‐adenosylmethionine to carbon, nitrogen or oxygen atoms of NRPs in cis. 

MT‐domains can be distinguished by the site of methylation and are designated as C‐MT, N‐MT or O‐MT, 

respectively.65 Methylation can be observed in a set of NRPS‐derived products such as pristinamycin, 

actinomycin or thiocoraline.66‐68 MT‐domains comprise ∼420 aa and have a didomain structure with the 

N‐terminal domain containing the SAM‐binding site and the C‐terminal domain being responsible for 

substrate binding. MT‐domains are usually inserted into the C‐terminal region of A‐domains and contain 

at least three highly conserved motifs.65 N‐methylation of the aminoacyl‐S‐PCP intermediate occurs prior 

to condensation as observed during the characterization of actinomycin or cyclosporin biosynthesis.67,69 
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1.2.3 The Formylation (F)-Domain 

 

N‐formylation of NRPs has only been observed during the biosynthesis of linear gramicidin by LgrA 

(Bacillus brevis ATCC 8185) and during anabaenopeptilide assembly by ApdA (Anabaena str. 90).70‐71 

Formylation of the N‐terminal α‐amino group is catalyzed by the formylation domain, which is located at 

the N‐terminus of the corresponding synthetase and comprises ∼200 aa. The formylation domain 

catalyzes formyl group transfer from formyltetrahydrofolate (fH4F) onto the α‐amino functionality of the 

amino acid using both cofactors (N10‐ and N5‐fH4F). The in vitro characterization of the LgrA F‐domain 

revealed the enzyme to catalyze α‐N‐formylation of PCP‐bound L‐Val or L‐Ile. In addition, the necessity of 

the formylated starter unit for the initiation of gramicidin biosynthesis was observed.70
 

 

1.2.4 The Cyclization (Cy)-Domain 

 
Heterocyclization of cysteine, serine or threonine residues to the corresponding five‐membered 

thiazoline, oxazoline or methyloxazoline heterocycles is a structural feature found in several NRPs. The 

introduction of these structures increases the diversity of the natural product and furthermore rigidifies 

the peptide backbone. The enzymes mediating this heterocyclization are modified C‐domains that 

catalyze peptide bond formation and a subsequent nucleophilic attack of hydroxyl‐ or sulfhydryl‐side 

chains onto the peptide bond.72 The dehydratation of the resulting intermediary structure gives rise to 

the corresponding heterocycle.73 Heterocycles can be found in yersiniabactin, bleomycin and bacitracin 

and are often essential for the chelation of iron.73‐75 Cy‐domains can be associated with oxidation  

(Ox)‐domains, catalyzing the FMN‐dependent two‐electron‐oxidation of dihydroaromatic thiazolines or 

oxazolines to thermodynamically more stable thiazoles or oxazoles.72,76 Reduction of thiazolines or 

oxazolines to afford tetrahydrated thiazolidines or oxazolidines is mediated by in trans operating 

reductases. These NAD(P)H‐dependent enzymes recognize and directly reduce the PCP‐bound 

substrate.77  

 

1.3 Tailoring and Modification of NRPS Building Blocks 

 
The structural diversity of NRPS‐derived products arises not only from modifications in cis, but also from 

modifying enzymes generating unusual building blocks or mediating postsynthetic modifications of the 

natural product (Figure 1.4).78‐79 Unusual building blocks often represent tailored proteinogenic amino 

acids that are recognized and activated by the corresponding A‐domains.80 An alternative mechanism 

arises from the online‐modification of the PCP‐bound building block by in trans operating tailoring 
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enzymes.30 Postsynthetic modifications can result from decoration with sugar moieties by 

glycosyltransferases (Gtfs), which in the case of the anti‐tumor agent bleomycin contribute to the DNA‐

binding specificity (Figure 1.4). The following chapter gives a concise overview of common modifications 

found in NRPs and focuses on the enzymes mediating these modifications.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: Examples for the structural diversity of peptides of nonribosomal origin. Modifications of the 

peptidic backbone include methylations, hydroxylations, halogenations, glycosylations and formylations. The 

peptides shown are vancomycin, mannopeptimycin A, coelichelin and the bleomycins. Modifications are 

accentuated in different colors.38,79,81‐82 

 
1.3.1 Methylation 

 

Methylations are generally governed by S‐adenosylmethionine (SAM)‐dependent methyltransferases.83 

In addition to SAM, methyltransferases can also employ the cosubstrate methyl‐tetrahydrofolate as the 

cognate methyl group donor.84  Methyltransferases catalyze the methylation of carbon, nitrogen, oxygen 

or sulphur‐atoms, converting SAM to S‐adenosylhomocysteine (AdoHCy). In addition to in cis acting 

methyltransferases, a set of in trans acting SAM‐dependent methyltransferases could be identified and 

characterized. These methyltransferases were shown to be involved in the biosynthesis of unnatural 

building blocks required for the assembly of NRPs. One of the first methyltransferases to be 

biochemically characterized in vitro was GlmT, encoded in the CDA biosynthetic gene cluster 

(Streptomyces coelicolor A3(2)) (Figure 1.5 A).85‐86 Intriguingly, GlmT did not catalyze the methylation of 

Glu directly. Instead, the substrate for GlmT‐mediated methyltransfer was shown to be α‐ketoglutarate  

(α‐KG), leading to 3‐methyl‐2‐oxoglutarate. Subsequently, an additional transamination step is required 
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for the conversion of 3‐methyl‐2‐oxoglutarate to 3‐methyl‐L‐glutamate (MeGlu). A branched‐chain 

aminotransferase from the primary metabolism of S. coelicolor A3(2) was demonstrated to catalyze this 

reaction with L‐Val being the amino group donor. Recently, the methyltransferase MppJ, encoded in the 

mannopeptimycin (Streptomyces hygroscopicus) gene cluster, was characterized in vitro.82,87  

(Figure 1.5 B) It was shown that the cognate substrate for Cβ‐methylation is phenylpyruvate instead of  

L‐Phe. The methylation mechanism is analogous to GlmT‐mediated methylation of α‐ketoglutarate. 

Interestingly, the methylation and subsequent transamination of phenylpyruvate generated two 

diastereomers, (2S,3R)‐ and (2S,3S)‐3‐methyl‐phenylalanine although solely the latter is found in 

mannopeptimycin.82 

 

 

 

 

 

 

 

Figure 1.5: Examples for the modification of free precursors by SAM‐dependent methyltransferases. The 

methyl group donor SAM is converted to the corresponding AdoHCy. A) GlmT‐mediated methylation of α‐KG 

as a key step of the biosynthetic route for the generation of the 3‐methyl‐L‐glutamate residue found in CDA. 

B) MppJ‐mediated methylation of phenylpyruvate during mannopeptimycin biosynthesis.  

 

1.3.2 Halogenation 

 

Halogenases catalyze the functionalization of carbon atoms and can be subdivided into four classes: 

FADH2‐ and nonheme Fe(II)/α‐KG‐dependent halogenases employ molecular oxygen for the oxidation of 

the halogen, whereas vanadium‐ and heme‐iron‐dependent halogenases employ hydrogenperoxide for 

the generation of the reactive halogen species.88 Common halogenations are chlorination, bromination 

or iodination, but fluorination has also been observed in the biosynthesis of 5'‐fluoro‐5'‐

deoxyfluoroadenosine (5'‐FDA).89 Examples for halogenated NRPS‐derived natural products are 

chondramide, syringomycin and the kutznerides. In the case of the highly cyctotoxic chondramide 

(Chondromyces crocatus Cm c5), the FADH2‐dependent halogenase CmdE catalyzes chlorination of free  

L‐Trp to generate 2‐chloro‐L‐Trp (Figure 1.6 A).90 An alternative halogenation mechanism is employed 

during the biosynthesis of syringomycin (Pseudomonas syringaea). The nonheme Fe(II)/α‐KG‐dependent 

halogenase SyrB2 catalyzes the chlorination of PCP‐bound L‐Thr, which is subsequently participating in 

peptide elongation steps (Figure 1.6 C).91 Halogenation of a PCP‐bound L‐Ile has also been shown to be 

essential for the biosynthesis of (1S,2R)‐allocoronamic acid, an unnatural monomer found in the 
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kutznerides (Kutzneria sp. 744).92‐93 The nonheme Fe(II)‐dependent halogenase KtzD was demonstrated 

to catalyze the formation of a PCP‐bound γ‐chloroisoleucyl intermediate, which is cyclized to the final 

product by KtzA (Figure 1.6 B).93   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6: Examples for the modification of free precursors or PCP‐bound substrates by FADH2‐ and nonheme 

Fe(II)/α‐KG‐dependent halogenase during the biosynthesis of NRPs. A) The FAD‐dependent halogenase CmdE 

mediates chlorination of free L‐Trp during chondramide biosynthesis. B) The nonheme Fe(II)/α‐KG‐dependent 

halogenase KtzD governs γ‐chlorination of PCP‐bound L‐Ile in trans. In a second reaction the acyl‐CoA 

dehydrogenase‐like flavoprotein KtzA catalyzes cyclization to afford the final product. 

C) SyrB2‐mediated chlorination of PCP‐bound L‐Thr during syringomycin biosynthesis. 

 

1.3.3 Hydroxylation 

 

Hydroxylation reactions are generally mediated by three enzyme classes: FAD‐dependent 

monooxygenases, nonheme Fe(II)‐oxygenases and heme Fe(II)‐oxygenases. The class of FAD‐dependent 

monooxygenases catalyzes a broad variety of oxygenations, including epoxidations.94‐95 These enzymes 

require the reduced FAD‐cofactor for catalysis with the electrons for cofactor reduction usually supplied 

by NADH or NADPH. This class of FAD‐dependent monooxygenases is designated external flavoprotein 

monooxygenases. The enzymes are termed internal flavoprotein monooxygenases if cofactor reduction 

is mediated by the cognate substrate.94 Alike the FAD‐dependent monooxygenases the nonheme Fe(II)‐

oxygenases catalyze a broad spectrum of oxygenations. Nonheme Fe(II)/α‐KG‐dependent 

monooxygenases represent the largest subgroup of the aforementioned oxygenases and couple the 

oxidative conversion of the substrate with the decarboxylation of the cosubstrate α‐ketoglutarate to 

succinate and carbon dioxide.96‐97 
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In trans hydroxylation reactions for the generation of unnatural monomers during nonribosomal 

assembly of natural products have been observed for FAD‐dependent monooxygenases and nonheme 

Fe(II)/αKG‐dependent monooxygenases. FAD‐dependent monooxygenases are often involved in the 

biosynthesis of hydroxamate‐type siderophores. The hydroxylase CchB was shown to catalyze  

δ‐N-hydroxylation of L‐ornithine for the generation of δ‐N‐hydroxy‐L‐ornithine (hOrn) during coelichelin 

biosynthesis (Streptomyces coelicolor A3(2)) and IucD was demonstrated to be involved in the generation 

of ε‐N‐hydroxy‐L‐lysine (hLys) during aerobactin biosynthesis (E. coli K‐12) (Figure 1.7 A/B).98‐99  

Nonheme Fe(II)/α‐KG‐dependent monooxygenases involved in the Cβ‐hydroxylation of either free amino 

acids or PCP‐bound substrates were identified in the biosynthetic pathways of CDA, viomycin and the 

kutznerides. The monooxygenase AsnO catalyzes the regio‐ and stereospecific hydroxylation of free  

L‐Asn during CDA biosynthesis, whereas VioC catalyzes the specific Cβ‐hydroxylation of L‐arginine in 

viomycin biosynthesis (Streptomyces sp. strain ATCC 11861) (Figure 1.7 D/E).100‐101 In constrast, KtzO and 

KtzP, involved in the biosynthesis of the kutznerides, only modify PCP‐bound L‐Glu substrates. KtzO 

mediates the generation of the threo diastereomer of β‐hydroxy‐glutamate, whereas KtzP catalyzes the 

generation of the erythro diastereomer.102  

 
Figure 1.7: Examples for the modification of free building blocks or PCP‐bound substrates by FAD‐ and 

nonheme Fe(II)/α‐KG‐dependent monooxygenases during the biosynthesis of NRPs. A) The FAD‐dependent 

monooxygenase CchB mediates δ‐N‐hydroxylation of L‐Orn during coelichelin biosynthesis. B) IucD catalyzes 

the hydroxylation of L‐Lys during aerobactin assembly. C) Hydroxylation of PCP‐bound L‐Glu by the nonheme 

Fe(II)/α‐KG‐dependent monooxygenases KtzO and KtzP in trans. D) Cβ‐hydroxylation of L‐Asn by AsnO.  

E) Viomycin biosynthesis requires the hydroxylation of L‐Arg by VioC.   
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1.4 Classification of Nonribosomal Assembly Line Logic 

 

NRPS assembly lines can be subdivided into three groups based on the specific use of domain order and 

the multimodular template which are discussed in detail in the following chapter.   

 

1.4.1 Linear NRPS-Assembly Line Logic (Type A) 

 

The most extensively characterized NRPS‐system is the linearly operating assembly line (type A). The 

common domain and module organization corresponds to the minimal module (C‐A‐PCP), which is 

responsible for the incorporation of one building block into the growing peptide chain. The order of 

elongation modules and the number of adenylation‐domains directly correlates with the primary 

sequence of the assembled oligopeptide. Product release is commonly catalyzed by a C‐terminal  

TE‐domain which catalyzes hydrolytic release or macrocyclization. Examples for NRPs derived from  

type A NRPS assembly lines are surfactin, tyrocidine, cyclomarazines or daptomycin.36,103‐105 Assembly of 

daptomycin follows a linear logic, involves in trans operating modifying enzymes for the generation of 

unnatural building blocks and serves as an example for the linear biosynthetic logic (Figure 1.8).86,106 

 

1.4.2 Iterative NRPS-Assembly Line Logic (Type B) 

 

In contrast to type A NRPSs, the iteratively operating NRPS assembly lines (type B) use their enzymatic 

template more than once for the biosynthesis of the corresponding product. The module and domain 

organization is analogous to type A NRPS‐systems. A key feature of type B assembly lines is the 

termination module which is responsible for the covalent connection of the repetitive units and 

subsequent product release. Examples for iteratively assembled NRPs are the siderophore enterobactin, 

which is a cyclic trimer consisting of 2,3‐DHB‐seryl‐subunits, the macrocyclic decapeptide gramicidin, the 

macrolactone enniatin or the chromodepsipeptide triostin A.58,107‐109 The mechanism of iterative NRP 

biosynthesis is discussed in detail (Chapter 1.5).  
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Figure 1.8: The assembly of daptomycin is governed by the three linearly operating nonribosomal peptide 

synthetases DptA, DptBC and DptD, comprising 43 catalytic domains. Initiation of daptomycin biosynthesis is 

mediated by DptE (acyl‐CoA ligase) and DptF (ACP), both responsible for the activation and incorporation of 

the fatty acid (FA) moiety. In this model the N‐terminal CIII‐domain of DptA catalyzes the transfer of the DptF‐

bound FA onto the α‐amino group of Trp1. The synthesis of the MeGlu12 residue is carried out by the SAM‐

dependent methyltransferase DptI and a currently unknown aminotransferase (AT). Cyclorelease is mediated 

by the C‐terminal thioesterase domain of DptD. The cyclization position is accentuated in grey.  
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1.4.3 Nonlinear NRPS-Assembly Line Logic (Type C) 

 

Nonlinear NRPSs (type C) differ in their organization of modules and domains from type A and type B 

NRPSs. Domain organization within a module does not follow a (C‐A‐PCP) logic and the number and 

organization of modules or domains does not reflect the primary sequence of the assembled product. In 

addition, lone‐standing individual domains are often involved in product assembly. The prediction of 

secondary metabolite structure is often impeded by the nonlinearity of type C assembly lines.  

A prominent example of a nonlinear type C NRPS‐system is the Cgc assembly line responsible for the 

production of the pyrrole‐amide antibiotic congocidin (Streptomyces ambofaciens). Within the operon 

only one modular NRPS, Cgc18 (A‐PCP‐C), is encoded but congocidin consists of four building blocks. 

Additional condensation steps are putatively carried out by lone‐standing C‐domains (Figure 1.9).110   

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.9: The postulated mechanism for the nonlinear assembly of the pyrrole‐amide antibiotic congocidin. 

Peptide bond formation is mediated by the modular NRPS Cgc18 and the lone‐standing C‐domains Cgc2 and 

Cgc16.  

 

1.5 Iterative Termination Strategies During Nonribosomal Peptide Assembly 

 

The key step in iterative NRP assembly is the termination reaction in which repetitive units are covalently 

linked and released from the enzymatic template. This cyclodimerization or cyclotrimerization is usually 

governed by iteratively operating thioesterase (TE)‐domains in bacterial systems.111‐112 In contrast, fungal 

systems often employ C‐terminal C‐domains instead of TE‐domains for the catalysis of the cyclization 

reaction. As a major part of the work presented herein focuses on the biochemical characterization of an 

iteratively acting TE‐domain derived from the thiocoraline biosynthetic pathway, the following chapters 

give a concise overview of mechanistic and structural aspects of TE‐domains.    
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1.5.1 The Thioesterase – Structural and Mechanistic Aspects 

 

TE‐domains found in NRPSs are structural representatives of the α/β‐hydrolase superfamily which share 

a common fold, but exhibit a variety of activities.113 The common fold consists of a core of eight mainly 

parallel oriented β‐sheets, which are flanked by one α‐helical segment each on the  

N‐ or C‐terminal side (Figure 1.10 A).  

NRPS‐derived TE‐domains are characterized by an insertion of three α‐helices which together constitute 

a lid‐region putatively involved in substrate recognition.114 Based on the three‐ dimensional structure of 

the TE‐domain involved in surfactin biosynthesis, it was postulated that the  

lid‐region experiences a conformational change upon binding of the substrate, resulting in either an 

opened‐ or closed‐state.114 In contrast, the TE‐domain involved in fengycin biosynthesis contains a 

canyon‐like active site.115    

The tertiary structure of NRPS TE‐domains induces the formation of an active site, in which the 

catalytically active serine of the GxSxG core motif is located (Figure 1.10 B). The formation of a catalytic 

triad consisting of Ser‐His‐Asp(Glu) leads to the deprotonation of the active‐site serine and generates a 

highly reactive oxyanion species. TE‐mediated cyclization is initiated by the nucleophilic attack of the 

serine oxyanion onto the adjacent PCP‐bound peptidyl thioester leading to the conversion of the 

peptidyl thioester to an acyl‐O‐TE oxoester intermediate.116  The coordination of this peptidyl oxoester 

results in the spatial proximity of an internal nucleophile and the carbonyl group of the acyl‐O‐TE. A 

subsequent intramolecular nucleophilic attack of the nucleophile gives rise to a negative tetrahedral 

transition state. The tetrahedral transition state is stabilized by interaction of the oxyanion with the 

amide backbone of adjacent amino acids. This structural component is designated oxyanion hole and 

was initially postulated for the serine protease class of α/β‐hydrolases.117  
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Figure 1.10: The three‐dimensional structure of the SrfA‐C TE‐domain (PDB code: 1JMK). A) The α/β‐

hydrolase fold is characterized by eight mainly parallel oriented β‐sheets, which are flanked by one α‐helical 

segment each on the N‐ or C‐terminal side. B) The catalytic triad consisting of Ser80, His207 and Asp107.   

 

NRPS thioesterases (cyclases) have been shown to catalyze macrolactamization and macrolactonization 

affording both cyclic and branched cyclic products.118‐119 Macrolactonization requires a hydroxyl group 

provided either by Ser, Thr or Tyr residues or by hydroxylated fatty acid residues.53,116,120 In contrast, 

macrolactamization requires amino groups provided by the α‐amino group of the N‐terminal amino acid, 

Lys, Orn or diaminopropionate (Dap) residues.121‐122 An unprecedented macrocyclization variant is 

macrothiolactonization resulting in thioester‐linked natural products. Only two NRPS‐derived natural 

products with thioester linkage have been identified: the anti‐tumor compound thiocoraline and BE‐

22179, both members of the macrocyclic chromodepsipeptides.68,123 The intrinsic pseudosymmetry of 

these natural products arises from a repetitive head‐to‐tail macrocyclization putatively mediated by 

iteratively operating thioesterases which is addressed in the following chapter.    

   
1.5.2 Iterative Termination Strategies 

 

The number of modules defining an iteratively operating NRPS‐system does not correlate with the 

primary sequence of the assembled product. Biosynthesis of these natural products therefore requires 

the iterative use of the corresponding template and dimerization or trimerization of the individual units. 

The general catalyst for this combined ligation and cyclization reaction was identified to be the  

C‐terminal TE‐domain located in the termination module of the NRPS.    

This iterative termination strategy has been observed and characterized in enterobactin biosynthesis  

(E. coli) and in gramicidin S biosynthesis (Bacillus brevis).111‐112 The first results that confirmed the 

iterative assembly of a NRP were obtained during the mass spectrometry based analysis of enterobactin 
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biosynthesis (Figure 1.11). Enterobactin is a trilactone siderophore that consists of three identical  

2,3‐DHB‐seryl units. The macrocyclic structure arises from three ester bonds between the side‐chain 

hydroxyl group of serine and the carboxyl group of a second monomer.107 Generation of an EntF TE‐

mutant in which the His‐residue participating in the catalytic triad was substituted by Ala led to the 

deceleration of enterobactin biosynthesis.111 MS‐analysis revealed the presence of TE‐bound monomeric 

and dimeric units. It was postulated that the synthetase presents a monomer to the TE‐domain which is 

subsequently transferred onto the active‐site serine. The monomer remains TE‐bound until a second 

monomer is presented on the adjacent PCP. TE‐mediated ligation affords the TE‐bound dimer and a third 

ligation reaction gives rise to the TE‐bound trimer which is cyclized and released from the enzymatic 

template.  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.11: The postulated mechanism for enterobactin assembly. The lone‐standing AMP‐ligase EntB 

activates 2,3‐DHB which is transferred to the synthetase EntF by the ArCP EntE. Assembly of the trilactone 

enterobactin is realized by iterative dimerization and trimerization of the monomeric units. Macrocyclization 

ultimately leads to the formation of enterobactin. The monomeric units are accentuated in black, red and 

blue.    

 

The in vitro‐characterization of the TE‐domain involved in the assembly of the macrolactam decapeptide 

gramicidin S granted further insights into the iterative mechanism.112 To analyze the combined ligation 

and cyclization reaction a set of pentapeptidyl‐substrates, resembling cognate monomeric units, was 

synthesized via solid‐phase peptide synthesis (SPPS) and C‐terminally activated as thioesters  

(Chapter 1.7.1). The C‐terminal SNAC activation mimicked the naturally occurring ppan cofactor of the 
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PCP‐bound peptidyl substrate. Incubation of the substrates with the recombinant GrsB TE gave rise to 

macrocyclic gramicidin S derivatives. The detection of a C‐terminally activated linear decapeptide led to 

the postulation of two unique elongation mechanisms. The forward mechanism is characterized by the 

nucleophilic attack of a TE‐bound pentapeptidyl intermediate onto the thioester of the PCP‐bound 

pentapeptide. The resulting TE‐bound linear decapeptide is subsequently cyclized and released from the 

synthetase. In contrast, the backward mechanism comprises an additional step. In the first reaction the 

α‐amino group of the PCP‐tethered pentapeptide attacks the acyl‐O‐TE oxoester of the TE‐bound 

pentapeptide, resulting in a PCP‐bound linear decapeptide (Figure 1.12). This intermediate is 

subsequently transferred onto the active‐site serine and macrocyclized. The detection of the  

C‐terminally activated decapeptide, resembling the PCP‐bound decapeptide of the native system, 

confirms iteratively operating TE‐domains to follow a backward mechanism logic.112  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.12: Iterative biosynthesis of the decapeptide gramicidin S by GrsA and GrsB. Termination of NRP 

assembly follows the backward mechanism and combines a ligation and cyclization reaction. The PCP‐bound 

pentapeptide (accentuated in blue) conducts a nucleophilic attack onto the acyl‐O‐TE oxoester of the  

TE‐bound pentapeptide resulting in a PCP‐bound linear decapeptide. Subsequent TE‐mediated cyclization 

affords the macrolactam gramicidin S.  
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1.6 Chromodepsipeptides and Siderophores – Peptides of Nonribosomal Origin   

 

Nonribosomally assembled compounds represent a natural product class with a remarkable structural 

and pharmacological spectrum. As a result, several NRPs have been approved by the FDA as 

antibacterial, antifungal, antitumor or immunosuppressive agents (Table S1). The macrocyclic 

chromodepsipeptides are a class of NRPs that are extensively investigated due to their  

DNA‐bisintercalative properties, which predestine them as antitumor agents.124 The following chapter 

describes the structural features of chromodepsipeptides, their biosynthesis and the proposed mode of 

action of thiocoraline.   

Bacteria produce and secrete small, iron‐scavenging compounds in response to iron starvation. These 

compounds, designated siderophores, display a high affinity for the chelation of iron and are assembled 

in NRPS‐dependent or NRPS‐independent manners. Since siderophores often function as virulence 

factors in pathogens, the interest in the structural and functional characterization of these compounds is 

growing and may result in the synthesis of specific inhibitors based on the structure of the pathogen 

siderophore.125 The following chapter gives insights into the structural and functional properties of 

siderophores and the biosynthetic mechanisms yielding these products.  

 

1.6.1 Thiocoraline – A Member of the Macrocyclic Quinoline- and Quinoxaline Chromodepsipeptides 

 

Among the iteratively assembled nonribosomal peptides the class of chromodepsipeptides encompasses 

a broad variety of structurally and functionally diverse compounds (Figure 1.13). These peptides were 

shown to bind to duplex DNA through a mechanism known as bisintercalation mediated by the twin 

chromophores attached to the macrocyclic molecule.124,126‐128 Chromodepsipeptides share a common 

peptidic scaffold and a pseudosymmetrical structure resulting from the condensation of two symmetrical 

halves. This class can be subdivided into two main groups – the quinoxalines and the quinolines ‐ 

depending on the chromophore moiety bound to the N‐termini of each oligopeptide chain. Prominent 

members of the quinoxaline‐group of chromodepsipeptides are echinomycin (antitumor) and triostin A 

(antitumor) which have been isolated from Streptomyces lasaliensis and Streptomyces triostinicus, 

respectively.109,129 These compounds bind specifically to DNA via the insertion of the planar chromophore 

quinoxaline‐2‐carboxylic acid (QX), inhibiting transcription and replication that has led to the progression 

of echinomycin into clinical antitumor trials. Based on the intramolecular connectivity of these 

compounds, which results from either a disulfide bridge or a thioacetal linkage, these natural products 

can be furthermore classified as triostins (disulfide) or quinomycins (thioacetal). This rigidification of the 

macrocyclic core is contributing to the selectivity of the compound concerning DNA‐binding as triostin A 
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and echinomycin share the same peptidic backbone but bind to different DNA‐sequences.130 The group 

of quinoline‐chromodepsipeptides encompasses the natural products sandramycin (anti‐HIV), 

luzopeptine A (anti‐HIV), BE‐22179 (antibiotic) and the recently discovered SW‐163C (antitumor) isolated 

from Nocardioides sp. ATCC 39419, Actinomadura luzonensis nov. sp., Streptomyces sp. A22179 and 

Streptomyces sp. SNA15896.123,131‐133 The structural diversity among these compounds is furthermore 

increased by the incorporation of the unusual building blocks 4‐hydroxy‐2,3,4,5‐tetrahydropiperazine‐3‐

carboxylic acid (HTP), N‐methyl‐3‐hydroxyvaline (NMeHV) and 3‐hydroxy‐6‐methoxyquinoline‐2‐

carboxylic acid (3HMQA) in the case of luzopeptine, N‐methylnorcoronamic acid (MNCA) found in  

SW‐163 or pipecolate (Pip) found in sandramycin.    

 

Figure 1.13: The class of chromodepsipeptides subdivided into the groups of quinoxalines and quinolines 

sharing a common peptidic scaffold and a pseudosymmetrical structure. The classification is based on the  

N‐terminally attached chromophore moiety. Quinoxalines: echinomycin and triostin A. Quinolines: SW‐163C,  

BE‐22179, luzopeptine A and sandramycin. Intramolecular crossbridges, e.g. disulfide‐ and thioacetal‐linkages, 

are accentuated in grey.  

 

Thiocoraline itself is a twofold‐symmetric bicyclic octathiodepsipeptide in which the N‐termini of the two 

oligopeptide chains are capped with the chromophore moiety 3‐hydroxyquinoline‐2‐carboxylic acid 

(3HQA) acting as an intercalating group (Figure 1.14 A).68,134 Thiocoraline has been isolated from cultures 

of Micromonospora sp. L13‐ACM2‐092 and Micromonospora ML1, collected from the Mozambique 

strait.68 The two symmetrical halves consisting of 3HQA‐D‐Cys1‐Gly2‐N‐Me‐L‐Cys3‐N,S‐dimethyl‐L‐Cys4 are 

linked together through two thioester bonds between the N‐terminal D‐Cys1 residue of one tetrapeptide 

and the N,S‐dimethyl‐L‐Cys4 of the tetrapeptide. An intramolecular disulfide crossbridge from L‐Cys3 

residues leads to a further structural rigidification of this unique macrothiolactone. Thiocoraline shares 
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the D‐configured N‐terminal amino acid involved in macrocyclization with all known 

chromodepsipeptides, whilst the thioester bond is unique to thiocoraline and BE‐22179, representing a 

novel class of thioesterase‐mediated side‐chain linkage.20,135 The crystal structure of thiocoraline reveals 

the molecules to be docked in pairs with the quinoline moieties of the neighbouring units being stacked 

due to π‐π interactions. The thiocoraline dimers form infinite columns, adopting an antiparallel helix‐like 

orientation which resembles the mode of DNA‐bisintercalation (Figure 1.14 B).134   

 

 

 

 

 

 

 

 

Figure 1.14: Structural analysis of the macrocyclic chromodepsipeptide thiocoraline. A) Chemical structure of 

thiocoraline. The symmetrical chromophore‐capped tetrapeptides are linked together via two thioester 

bonds. The intramolecular disulfide bridge enhances the structural rigidity of the macrocyclic peptide.  

B) Crystal structure of a stacked pair of thiocoraline molecules in the asymmetric unit of the unit cell  

(CIF code: 629608). π‐π interactions of the chromophore moieties induce an antiparallel helix‐like 

conformation and lead to the reciprocal docking of two molecules. Oxygen, nitrogen and sulphur atoms are 

accentuated in red, green and yellow, respectively.  

  

1.6.2 Biosynthesis of Thiocoraline 

 
The initial identification of a gene cluster required for the biosynthesis of thiocoraline was based on 

insertional activation of NRPS adenylation domains in the genome of Micromonospora sp. ML1.136 Two 

inactivations generated thiocoraline nonproducing mutants, indicating that these A‐domains are 

involved in thiocoraline assembly. Sequencing of the thiocoraline gene cluster revealed a 64.9 kbp 

region, harbouring 36 CDS (Figure 1.15). Within the thiocoraline operon two dimodular NRPSs,  

TioR (277 kDa) and TioS (346 kDa) are encoded which mediate oligopeptide assembly. TioR contains an 

E‐domain responsible for the epimerisation of the N‐terminal L‐Cys residue. TioS contains two  

N‐methyltransferase (MT) domains catalyzing the N‐methylation of L‐Cys3 and L‐Cys4 as well as a  

C‐terminal thioesterase domain. Analysis of the specificity‐conferring residues revealed the first 

adenylation domain to putatively activate L‐Ser. A2 is predicted to activate Gly and the cognate subtrate 

for A3 is predicted to be L‐Cys. The fourth adenylation domain A4 is proposed to activate L‐Val. The two 
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additional modular NRPSs, TioY and TioZ are postulated to assemble a tripeptide which might be 

involved in quorum sensing regulation of thiocoraline biosynthesis or interspecies communication during 

pathogen‐host relations in aquatic ecosystems.137‐138 Mutational inactivation of TioY and TioZ, resulting in 

thiocoraline nonproducing mutants, confirmed both synthetases to be essential for thiocoraline 

production.  

 

 

 

 

 

 

 

 

 

Figure 1.15: Schematic overview of the thiocoraline biosynthetic gene cluster. Putative functions of the 

proteins encoded within the operon are based on BLAST‐analysis and are given in the figure. The NRPSs TioR 

and TioS are responsible for the assembly of thiocoraline and the genes accentuated in green are predicted to 

be involved in the biosynthesis of the chromophore moiety 3HQA.  Additional genes encode proteins involved 

in thiocoraline secretion and regulation of secondary metabolite biosynthesis.  

 

Initiation of thiocoraline biosynthesis is most likely to be carried out by the lone‐standing 3HQA‐AMP 

ligase TioJ, which activates 3HQA as an AMP‐derivative which is transferred onto the ppan cofactor of 

the lone‐standing ArCP TioO (Figure 1.16). Condensation of the ArCP bound 3HQA and L‐Cys1 is 

subsequently mediated by the N‐terminal C‐domain of the initiation module of TioR and chain 

elongation is commenced. Bioinformatic analysis of the gene cluster revealed a set of five genes 

tioF/L/G/H/I to encode enzymes associated with the biosynthesis of the chromophore moiety 3HQA 

starting from L‐Trp. The first enzyme of this putative pathway to be characterized biochemically in vitro 

was the tryptophan‐2,3‐dioxygenase TioF which was shown to irreversibly catalyze the conversion of  

L‐Trp to N‐formylkynurenine.139 Apart from core‐elements required for the NRPS‐based assembly of 

thiocoraline, two ABC‐type transporters TioC/D, a set of regulatory proteins TioA/B/E/T/U/V/W and two 

lone‐standing thioesterases TioP/Q are encoded within the cluster. Initially, it was proposed that the 

enzyme encoded by tioX is involved in the S‐methylation of the N,S‐dimethyl‐L‐Cys4 residue as it shares 

39% sequential identity to type I glyoxylases. This hypothesis was recently disproved and it was shown by 
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crystal structure analysis that TioX shares the bleomycin resistance protein fold and is involved in 

thiocoraline resistance and secretion.140 

Due to the fact that the number of amino acids found within the product does not correlate with the 

total number of adenylation domains, an iterative mechanism of biosynthesis, following the described 

backward logic is proposed (Figure 1.16).112 This mechanism requires the modular template to be used 

twice and the C‐terminal TE‐domain (TioS TE) to catalyze the cyclodimerization of two symmetrical 

tetrapeptidyl‐substrates. In the first step the PCP‐bound tetrapeptide is transferred onto the active‐site 

serine of TioS TE, converting the energetically labile thioester to a more stable oxoester. The 

tetrapeptide remains bound to the TE as an acyl‐O‐TE oxoester until a second tetrapeptidyl‐substrate is 

immobilized on the adjacent PCP. Following the backward mechansism, the D‐Cys1 sulfhydryl‐group of 

the PCP‐bound intermediate performs a nucleophilic attack onto the acyl‐O‐TE oxoester, resulting in a 

PCP‐bound linear octathiodepsipeptide. This intermediate is subsequently transferred to the active‐site 

serine of the C‐terminal TE‐domain, cyclized and released from the enzymatic template as a 

macrothiolactone.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.16: Nonribosomal assembly of thiocoraline by the tetramodular assembly line consisting of TioR and 

TioS. Initiation of thiocoraline biosynthesis is mediated by TioJ and TioO. As the number of amino acids found 

in the assembled product does not correlate with the four adenylation domains found in the two peptide 

synthetases, an iterative mechanism for thiocoraline biosynthesis is proposed. The modular template is used 

twice and the C‐terminal thioesterase is mediating ligation and subsequent macrothiolactonization of two 

identical linear chromophore‐capped tetrapeptides. In this model the transport of thiocoraline is mediated by 

TioC/D/X. The timing of disulfide formation remains to be elucidated.   
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1.6.3 Mode of Action of Thiocoraline 

 

Thiocoraline is licenced to the pharmaceutical company PharmaMar (Tres Cantos, Spain) and is currently 

undergoing preclinical trials phase II. Thiocoraline shows potent antibacterial activity against Gram‐

positive bacteria and a wide spectrum of antiproliferative activity against various cancer cell lines in 

vitro.141‐142 Incubation of LoVo‐ and SW620 human colon cancer cells with thiocoraline induces an 

inhibition of cell‐cycle progression and causes cell‐stasis in the G1 phase of the native cell‐cycle. In 

addition, thiocoraline decelerates the transition from the S‐phase to the G2/M‐phase. The 

pharmaceutical interest is mainly focused on the antiproliferative activity of thiocoraline towards colon 

cancer and metastased non‐small cell lung cancer.143 Based on the structure of thiocoraline it was 

postulated that intercalation into duplex DNA causes DNA topoisomerase II to induce duplex DNA 

breakage. DNA‐unwinding assays in the presence of DNA topoisomerase II disproved this mode of action 

(MOA) as neither inhibition of the enzyme nor DNA breakage could be observed. In contrast, primer‐

extension assays confirmed the inhibition of DNA replication by DNA‐polymerase α in vitro. It was 

postulated that thiocoraline intercalates into specific sequences of duplex DNA and induces the 

dissociation of DNA‐polymerase α from the primer/template complex leading to the termination of DNA  

replication.141 The DNA‐intercalative properties of the macrocyclic product have been confirmed via 

DNA‐melting assays and it was shown that duplex DNA is stabilized upon incubation with thiocoraline.134  

Recently, a structural basis for the mode of action of thiocoraline has been established through 

molecular dynamics simulation of thiocoraline bisintercalating into duplex DNA.134 Thiocoraline is shown 

to adopt a U‐shaped conformation and to bind to the minor groove of GC‐rich sequences, especially 

those encompassing a central CpG step presumably leading to an inhibition of DNA polymerase α. The 

planar chromophore moiety 3HQA ensures a tricyclic hydrogen‐bonded conformation and facilitates 

DNA‐bisintercalation. In addition, hydrogen‐bonds are formed between the NH‐ and carbonyl groups of 

glycine and the N3 and exocyclic amino group of guanine.134    

A main drawback of thiocoraline is its half‐life and the immediate metabolization of the compound in 

human serum.144 Organic synthesis of the aza‐ and oxathiocoraline‐class has led to compounds with 

increased physico‐chemical stability and an increased half‐life in human plasma from currently 4 h to 

clinically applicable time spans.145 The development of in vitro‐approaches to obtain analogues of 

thiocoraline with improved physico‐chemical stability and to circumvent low yield organic synthesis is 

crucial for the generation of potential therapeutic applications based on this class of compounds. 
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1.6.4 Bacterial Siderophores 

 

Bacterial growth is strongly influenced by the availability of iron as an essential trace element employed 

as cofactor.146 The fact that the bioavailability of iron is challenging for most microorganisms, since it is 

mostly found in the insoluble Fe(III) (ferric iron) redox state, forming insoluble Fe(OH)3 complexes, has 

led to the evolutionary development of highly efficient iron uptake systems. In response to iron 

starvation many microorganisms produce and secrete iron‐scavenging compounds (generally < 1 kDa) 

termed siderophores, with a high affinity for ferric iron (Kf = 1022 ‐1049 M‐1).147 Most siderophores 

coordinate iron via six donor atoms as octahedral complexes in an ferric iron:siderophore‐ratio of 1:1. 

But also ligand:iron‐ratios of 3:2, as in the case of rhodoturolic acid or 2:1, in the case of pyochelin, have 

been reported if the coordination sphere of the ligand:iron‐complex exhibits unoccupied coordination 

sites.148‐149 These sites can be either occupied by alternative oxygen donors such as water molecules or 

by additional ligands. The siderophore‐based iron acquisition is distributed widely among different 

genera of prokaryotic and eukaryotic microbes and is also employed by fungi (e.g. Ustilago maydis).150 

After extracellular binding of iron the siderophores are reimported into the cell after recognition by 

specific receptors and iron is released from the chelator‐complex to be subsequently channelled to the 

intracellular targets.151‐153 Siderophores are structurally diverse natural products and several hundred 

members have been isolated from microbial and fungal sources. Siderophores can be subdivided into 

three main classes, depending on the chemical nature of iron‐chelating moieties required for octahedral 

coordination of iron. These can either be catecholates (phenolates), hydroxamates, (α‐hydroxy‐

)carboxylates or combinations hereof in mixed‐type siderophores. The most commonly known 

catecholate siderophores are the triscatecholate siderophores enterobactin, bacillibactin and the 

glucosylated salmochelin, all containing three 2,3‐DHB‐moities for ferric iron chelation  

(Figure 1.17).154‐156 Triscatecholate siderophores exhibit the highest stability constants for the 

siderophor:metal complex with Fe(enterobactin)3‐ at 1049 M‐1 and Fe(bacillibactin)3‐ at 1047 M‐1.157 

Trishydroxamate siderophores contain hydroxamic acid moieties for iron chelation usually consisting of 

hydroxylated and/or formylated and acetylated lysine or ornithine residues. An increasing number of 

marine amphiphilic siderophores exemplified by the group of amphibactins and aquachelins has been 

isolated, containing these functional groups (Figure 1.17).158‐159  Carboxylate‐type siderophores generally 

utilize α‐hydroxycarboxylic acid as bidentate chelating group for the coordination of ferric iron. In the 

case of staphyloferrin A two citrate groups provide the α‐hydroxycarboxylates for iron coordination 

(Figure 1.17).160 A representative overview of the different siderophore classes based on the functional 

groups involved in the chelation of iron is given in Figure 1.17.  
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Figure 1.17: Structures of representative siderophores. The classification is based on the functional groups 

involved in octahedral coordination of ferric iron. Siderophores are: salmochelin (Salmonella enterica), 

yersiniabactin (Yersinia pestis), staphyloferrin A (Staphylococcus spp.), amphibactin D (Vibrio sp. R‐10), 

fuscachelin A (Thermobifida fusca YX), petrobactin (Bacillus anthracis), aerobactin (Shigella flexneri 5 str. 

8401) and mycobactin J (Mycobacterium tuberculosis).37,161‐163 

 

1.6.5 Biosynthesis of NRPS-Depedent and NRPS-Independent Siderophores 

 

In addition to the functional groups involved in iron chelation, siderophores can also be classified based 

on their biosynthetic origin. The first and most extensively studied class of siderophores is produced by 

NRPSs following linear, nonlinear and iterative assembly logics. The second class is known as  

NRPS‐independent siderophores (NIS) and involves a novel family of synthetases, represented by IucA 

and IucC, responsible for aerobactin (Escherichia coli K‐12, Shigella flexneri 5 str. 8401) biosynthesis.99,165 

Siderophores of NRPS‐independent origin encompass desferrioxamine E (Streptomyces coelicolor M145), 

putrebactin (Shewanella putrefaciens) and further compounds.166‐167 In both cases the biosynthetic genes 



 Introduction  

‐ 29 ‐ 

of these secondary metabolites are usually clustered within one operon showing coordinated 

transcriptional regulation.168   

Nonribosomal assembly of siderophores and modification of amino acids by tailoring enzymes is 

exemplified by the synthesis of the trishydroxamate‐type siderophore coelichelin, isolated from cultures 

of S. coelicolor A3(2) (Figure 1.18). Initiation of coelichelin biosynthesis is mediated by the FAD‐

dependent monooxygenase CchB, which catalyzes the hydroxylation of L‐ornithine.98 This hydroxylation 

of the δ‐amino group is common to a variety of NRPS‐derived natural products and is usually catalyzed 

by external FAD‐dependent monooxygenases. The most recently characterized FAD‐dependent 

monooxygenases involved in the generation of building blocks for NRPS‐derived siderophores are PvdA 

(Pseudomonas aeruginosa) and CchB (S. coelicolor A3(2)), encoded in the gene clusters responsible for 

pyoverdine or coelichelin biosynthesis.98,169 δ‐N‐hydroxy‐L‐ornithine is either directly incorporated into 

the oligopeptide by the third module of the synthetase CchH or formylated at the δ‐amino group by the 

putative formyltransferase CchA. δ‐amino group formylation is also observed during the synthesis of 

pyoverdine and it is assumed that enzymes sharing a high degree of sequential identity with methionyl‐

tRNA‐formyltransferases catalyze this modification. The cognate formyl‐group donor is postulated to be 

N
10‐formyltetrahydrofolate (N10‐fH4F). Coelichelin assembly, catalyzed by the trimodular NRPS CchH 

follows a nonlinear logic due to the presence of four amino acids within the readily synthesized 

siderophore. It is postulated that the first step of coelichelin biosynthesis is the activation and covalent 

tethering of δ‐N-formyl-δ‐N‐hydroxy‐L‐ornithine (hfOrn) by the first module of CchH. In the next step 

hfOrn1 is condensed with Thr2. Subsequently, the dipeptide is connected to hOrn3 via isopeptide linkage. 

In the ultimate step the α‐amino group of hOrn3 attacks the PCP‐bound hfOrn4 in a nucleophilic manner. 

It is postulated that the PCP‐bound tetrapeptide is hydrolytically released from the enzymatic template 

by the α/β‐hydrolase‐type enzyme CchJ, as no TE‐domain could be identified within the synthetase 

CchH.   
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Figure 1.18: The postulated model for the nonlinear nonribosomal assembly of the tetrapeptide siderophore 

coelichelin. The FAD‐dependent monooxygenase CchB provides hOrn which is either formylated by the 

putative formyltransferase CchA or directly activated by module 3 of the synthetase CchH. Hydrolytic release 

of the tetrapeptide is catalyzed by CchJ.  

 

The second class of siderophores is synthesized following a NRPS‐independent pathway. The first NIS to 

be discovered was the mixed citrate/hydroxamate‐type siderophore aerobactin, which is produced in 

response to iron‐starvation by several Gram‐negative bacteria including E. coli, Shigella, Yersinia and 

Salmonella species.170‐171 The gene cluster governing aerobactin assembly is comprised of four genes and 

was initially identified on the pColV‐K30 plasmid of E. coli (Figure 1.19).171‐172 Analysis of the cluster 

revealed iucD to encode a FAD‐dependent monooxygenase that catalyzes ε‐amino group hydroxylation 

of L‐lysine residues in analogy to CchB, catalyzing the δ‐amino group hydroxylation of L‐ornithine.173 

Aerobactin biosynthesis requires an additional tailoring step for the generation of ε‐N‐acetyl‐ε‐N‐L‐

hydroxylysine (haLys). This acetylation of ε‐N‐L‐hydroxylysine (hLys) is mediated by the acetyltransferase 

IucB, which catalyzes acetyl‐transfer from acetyl‐CoA to the hydroxylamino group.174 It was shown that 

IucB transfers the acetyl‐moiety of acetyl‐CoA to a variety of hydroxylamines with hLys being the 

preferred substrate. In a biosynthetic model for aerobactin production based on genetic studies, it is 

postulated that the synthetase IucA mediates the acylation of the α‐amino group of haLys with a 

prochiral carboxyl group of citric acid. Subsequently, the synthetase IucC catalyzes a second acylation of 

citric acid with haLys to give rise to aerobactin (Figure 1.19). It is assumed that the IucA‐ and  
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IucC‐mediated acylations of citric acid require nucleotide triphosphates (NTPs) as cosubstrates for the 

activation of carboxyl groups. Recently, isolated and biochemically characterized NIS synthetases were 

shown to require ATP for the generation of desferrioxamines or putrebactin and it is expected that 

IucA/IucD utilize ATP as cosubstrates as well.165,175 IucA and IucC are considered the founding members 

of NIS synthetases as every NIS biosynthetic pathway involves at least one synthetase with a high degree 

of sequential identity to IucA/IucC.176  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.19: The postulated pathway for aerobactin biosynthesis. The FAD‐dependent monooxygenase IucD 

mediates ε‐amino group hydroxylation of L‐Lys. Acetylation of hLys is carried out by the acetyltransferase IucB 

and gives rise to haLys, which is subsequently condensed with a carboxyl group of citric acid by the NIS 

synthetase IucA. IucC catalyzes a second condensation reaction that ultimately affords the siderophore 

aerobactin.  
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1.7 Rational Strategies for the Generation of Structural Diversity 

 

The prevalence of bacterial resistance to contemporary antibiotics represents a challenge, which has to 

be addressed by the constant development of novel antibiotics. Three main strategies have been 

developed over the last centuries for the generation of structural and functional diversity of natural 

products: total organochemical synthesis of pharmacologically active compounds, semi‐synthetic 

approaches for the generation of derivatives based on bioactive lead structures or the identification and 

isolation of novel natural products. Within this chapter two main strategies are addressed:  

I) Chemoenzymatic synthesis of NRP analogues based on the original lead structure 

II) Natural product discovery via genome mining  

 

1.7.1 Chemoenzymatic Synthesis of NRP Derivatives 

 

Insights into the nonribosomal biosynthesis of peptides enabled a chemoenzymatic approach for the 

generation of NRP analogues by combining organic synthesis and enzymatic mechanisms. The catalytic 

unit utilized in this approach is the TE‐domain usually located in the C‐terminal module of the ultimate 

NRPS. TE‐domains remain catalytically active units when separated from the enzymatic template and can 

be incubated with synthetic substrates for the evaluation of their inherent biocombinatorial potential.118 

These substrates are synthesized via solid‐phase peptide synthesis (SPPS), substituting the entire 

enzymatic machinery.119,177 Recognition and cyclization of the synthetic substrate requires the C‐terminal 

activation of the oligopeptide as a thioester, imitating the physiological situation of the naturally 

occurring PCP‐ppan‐bound substrate.178  N‐acetylcysteamine (SNAC) activation proved to be 

advantageous for this biomimetic approach but thiophenol‐ or CoA‐activations have also been 

successfully applied.118,179 The incubation of the SrfA‐C TE or the Tyc TE with SNAC‐activated 

peptidylthioesters afforded chemoenzymatically generated surfactin‐ or tyrocidine‐analogues  

in vitro.53,177 A limiting factor of the biomimetic approach results from the leaving group tolerance of 

several TE‐domains. The apo‐PCP‐TE‐didomain of the fengycin system had to be posttranslationally 

converted into the corresponding holo‐PCP‐TE with peptidyl‐CoA substrates. Incubation of the 

recombinant Fen PCP‐TE with peptidyl‐CoA substrates and the PPtase Sfp (Bacillus subtilis) gave rise to 

macrocyclic products.179 As the PCP‐domain remains in the holo‐form after in vitro 

phosphopantetheinylation, this method is constricted to a single turnover mechanism. More recent 

studies focused on the generation of daptomycin and A54145 derivatives and hybrid molecules through 

enzymatic cyclization of linear thioesters by the TE‐domains from A54145 and daptomycin NRPSs 

 (Figure 1.20).180 Structure‐activity‐relationship (SAR) studies were conducted with a set of daptomycin 
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analogues including an alternative macrolactam to evaluate the importance of several residues of the 

ten‐membered macrocyclic ring. Summarizing this chemoenzymatic approach, it can be stated that this 

method offers the possibility to rapidly construct NRP analogues that can be investigated towards SAR. 

As the main drawback of this method in vitro is the low quantity of derivatives generated, scientists of 

the post‐genomic era set out to exploit the known biosynthetic machinery in vivo and to discover new 

natural product biosynthetic chemistry by genome mining.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.20: A) In vitro‐chemoenzymatic synthesis of daptomycin derivatives employing linear, C‐terminally 

activated peptidyl thioesters substituting the entire assembly line. The catalytic unit responsible for 

macrolactonization is the DptD TE‐domain, dissected from the enzymatic template. The modified residue is 

accentuated in green. B) Chemical structures of the C‐terminal leaving groups.   

 

1.7.2 Natural Product Discovery via Genome Mining 

 

Natural product discovery is traditionally based on bioassay‐guided fractionation of extracts from natural 

sources and subsequent isolation of the bioactive compound leading to the identification of a multitude 

of antibacterial, antifungal, anticancer and immunosuppressive agents.2 One of the first rational 

strategies for the discovery of natural products was the systematic cultivation of one organism under 

several conditions giving rise to the one strain/many compounds (OSMAC) approach.181 It was shown 

that the environment and the cultivation conditions strongly influence the secondary metabolome of the 

target strain, revealing the potential of the strain to produce natural products. Application of this 

approach to Streptomyces sp. Gö40/10 led to the discovery of various compounds upon systematic 

variation of the cultivation parameters.181 With the advance in sequencing technologies, coming from 



 Introduction  

‐ 34 ‐ 

whole genome shotgun sequencing to high‐throughput pyrosequencing proliferating over 1000 

sequenced and annotated microbial genomes, a multitude of gene clusters related to natural product 

biosynthesis was revealed (source: Genomes Online Database ‐ GOLD).182‐183 This quantity of information 

in combination with a substantial increase in the understanding of natural product biosynthetic 

mechanisms has paved the way for the mining of genomes for bioactive compounds.25 Genome mining 

describes a methodology for the isolation of natural products predicted solely from the genome 

sequence of the target organism.  As many microbial natural products, e.g. polyketides (PKs) and NRPs, 

are assembled by multimodular synthases and synthetases, bioinformatic sequence analysis tools have 

been developed for the prediction of module organization and substrate specificity.25,184‐185 The first 

microbial organism to be extensively analyzed towards the production of unknown secondary 

metabolites was Streptomyces coelicolor A3(2)186. Within the genome of S. coelicolor A3(2), several gene 

clusters were identified encoding biosynthetic pathways for natural product assembly.187 Many of these 

clusters are considered cryptic as they are not associated with known metabolites. Mining of the  

S. coelicolor genome led to the discovery of several novel compounds now associated with formerly 

cryptic gene clusters.38,188‐190 Throughout the years, several concepts for the mining of microbial 

genomes have been developed combining the bioinformatic analysis of the sequenced genome, 

identification of cryptic gene clusters and identification of conditions leading to gene cluster expression 

either in the original strain or a heterologous host. One approach solely relies on the prediction of the 

physico‐chemical properties of the target compound, including bioactivity, and has been successfully 

applied for the identification of salinilactam A (Salinispora tropica).191 Sequence analysis of Salinispora 

tropica revealed a modular PKS gene cluster putatively encoding a lysine‐primed polyene macrolactam. 

Subsequently, salinilactam A was identified based on the characteristic polyene UV‐absorption 

properties and structurally elucidated via NMR and MS analysis (Figure 1.21 A). An alternative approach 

is represented by the in vitro reconstitution of natural product biosynthesis. This tedious approach 

circumvents the problem of gene clusters not expressed in vivo, as it uncouples the biosynthetic 

enzymes from native regulatory mechanisms, and requires the recombinant production of all 

biosynthetic enzymes and the corresponding cofactors and predicted substrates. Application of this 

method led to the discovery of the two‐component lantibiotic haloduracin (Bacillus halodurans C‐125) by 

incubation of the biosynthetic enzymes with the ribosomally synthesized substrates in vitro.192   
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Figure 1.21: Genome mining strategies applied for the discovery of salinilactam A and coelichelin. A) Outline 

of the genome mining concept relying on the prediction of the physico‐chemical properties (e.g. molecular 

mass, UV‐absorption or bioactivity) of the cryptic natural product. B) The gene knockout/comparative 

metabolic profiling concept. Genes located in the cryptic gene cluster are inactivated and the cryptic natural 

product is identified via HPLC‐comparison of the wild‐type and mutant metabolome.  

 

The comparative metabolomic profiling approach has been applied for the identification of genes 

responsible for the biosynthesis of natural products, but it can also be carried out for natural product 

discovery (Figure 1.21 B). The inactivation of genes located in cryptic gene clusters and subsequent 

comparative metabolome studies of the wild‐type and the mutant strain by LCMS can result in the 

identification of cryptic metabolites and has been successfully applied for the discovery of the 

hydroxamate‐type siderophore coelichelin.38 In summary, this method represents an effective tool for 

natural product discovery as it does not require secondary metabolite structure prediction but is limited 

by the genetic accessibility of the target strain. An additional limitation is the quantity of cryptic natural 

product produced, as the change in the metabolite profile of the mutant and the wild‐type strain has to 

be detectable. 

A genome mining concept similar to the comparative metabolomic profiling approach involves the 

heterologous expression of cryptic biosynthetic gene clusters in combination with metabolome profiling. 

This method requires the insertion of the cryptic gene cluster into the genome of a nonproducing host 

organism via recombination techniques or the transformation of the host with the plasmid‐ or cosmid‐

encoded cryptic gene cluster. Comparison of the metabolite profiles of the host containing the gene 

cluster with the wild‐type host affords the identification of the cryptic natural product as it is absent in 

cultures of the wild‐type strain. Application of this concept has led to the discovery of methylenomycin 

furans (S. coelicolor).189 The expression of a biosynthetic gene cluster in a heterologous host offers the 
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opportunity to perform pathway engineering in vivo for the generation of natural product derivatives or 

for the functional investigation of the biosynthetic enzymes. Transformation of E. coli with the cosmid‐

encoded andrimid or echinomycin biosynthetic gene clusters resulted in the heterologous production of 

the antibiotic andrimid or the antibiotic compound echinomycin and granted insights into the 

biosynthetic mechanisms leading to these compounds.193‐195  

A more general strategy for natural product discovery is designated genomisotopic approach, which has 

been successfully applied for the identification and isolation of the NRPS‐derived cyclolipopeptide 

orfamide A (Pseudomonas fluorescens Pf‐5).196 The genomisotopic method combines bioinformatic 

prediction of substrate specificity for the biosynthetic pathway with the incorporation of a stable‐isotope 

labeled precursor into the assembled product (Figure 1.22). In the course of orfamide A isolation, the 

NRPS‐catalyzed incorporation of four L‐Leu residues into the lipopeptide was postulated based on  

A‐domain specificity prediction. In order to identify the cryptic product, 15N‐labeled L‐Leu was fed to 

cultures of Pseudomonas fluorescens Pf‐5 and culture extracts and HPLC fractions were subjected to  

1H‐15N‐HMBC NMR experiments for the identification of metabolites containing the isotope label. 

 
 
 
 
 
 
 

 

Figure 1.22: The genomisotopic approach for the identification of the cryptic NRPS‐derived cyclic lipopeptide 

orfamide A. Bioinformatic analysis of A‐domain specificities predicted the incorporation of four L‐Leu residues 

into the octapeptide. 15N‐L‐Leu was fed to the cultures of Pseudomonas fluorescens Pf‐5 and subsequent 1H‐
15N‐HMBC NMR analysis led to the identification and isolation of the target compound. Potential 

incorporation sites of the isotope‐label are accentuated in red.  

 
The accurate prediction of substrate specificity was found to be crucial for successful mining and 

structural prediction and is the basis of the genomisotopic methodology.196 In addition, the time and 

amount of precursor feeding has to be optimized for the sufficient incorporation of the label for NMR 

experiments. In the course of the study presented herein, the genomisotopic approach was improved by 

combining transcriptome analysis of the target strain, bioinformatic A‐domain specificity prediction and 

an unprecedented radio‐LCMS setup for the establishment of a highly sensitive genome mining method 

for NRPS‐derived natural product discovery.   
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2. Objectives of this Study 
 

In order to obtain insights into the biosynthetic origin of chromodepsipeptides, the biochemical 

characterization of the thioesterase domain derived from the thiocoraline NRPS TioS was one objective 

of this study. To address this objective, suitable tetrapeptidyl thioesters, resembling the repetitive 

building blocks of thiocoraline, should be synthesized via solid‐phase peptide synthesis (SPPS) to 

investigate the unprecedented macrothiolactonization reaction and the substrate specificity. The 

biocombinatorial potential of TioS PCP‐TE should be evaluated for the generation of 

chromodepsipeptide analogs with altered chemical structures. These chemoenzymatically generated 

macrocycles should be isolated and investigated towards DNA‐bisintercalation activity. Within this 

context, a DNA‐bisintercalation assay should be established to compare DNA‐stabilization induced by the 

analogs with DNA‐stabilization induced by authentic thiocoraline.  

A second objective of this study was the development of a general genome mining strategy for the 

discovery of cryptic NRPS‐derived natural products. This radio‐LCMS‐guided genome mining approach 

should be applied to the sequenced and annotated strain Saccharopolyspora erythraea NRRL 23338. 

Prior to application of the genome mining approach, bioinformatic analysis of the annotated genome 

should be carried out to identify potential NRPS gene clusters to be targeted with the developed 

methodology. The newly identified natural product should then be isolated in sufficient amounts for 

structure elucidation via NMR‐ and MSn‐based analytical methods and for the determination of 

additional physicochemical properties.  

The biochemical characterization of erythrochelin biosynthesis in vitro was the third objective of this 

thesis. Erythrochelin represents a hydroxamate‐type siderophore, discovered via radio‐LCMS‐guided 

genome mining of cultures of S. erythraea, containing two unusual δ‐N‐acetyl‐δ‐N-hydroxy‐L‐ornithine  

(L‐haOrn) residues. Bioinformatic analysis of the S. erythraea genome should be applied for the 

identification of genes encoding the enzymes involved in L‐haOrn biosynthesis. The corresponding 

enzymes should be heterologously produced and biochemically characterized in vitro. Evaluation of 

substrate specificities and kinetic parameters should result in a singular biosynthetic route for the 

generation of L‐haOrn and enable the establishment of a biosynthetic model for erythrochelin assembly.  
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3. Materials 
 

3.1 Chemicals, Enzymes, General Materials and Consumables 

 

Chemicals and products not listed below were purchased from Sigma‐Aldrich (Steinheim, Germany) in 

p.a. grade and were used without further purification unless noted otherwise.  

 

Table 3.1: Chemicals, enzymes, general materials and consumables.  

 

 

manufacturer (site)   product 
  
Agilent Technologies (Böblingen, Germany) MALDI‐TOF DHB‐matrix 
AnaSpec (Fremont, USA) Fmoc‐L‐Cys‐OH 
AppliChem (Darmstadt, Germany) ampicillin, kanamycin, media components 
ARS (Peoria, USA) Saccharopolyspora  erythraea NRRL 23338 

Bachem (Weil am Rhein, Germany) 
Hip‐His‐Leu‐substrate, Nα‐Fmoc‐protected amino acids, Nα‐Boc‐protected 
amino acids 

Biomol (Ilvesheim, Germany) DTT 
Brand (Wertheim, Germany) Plastbrand PS cuvettes 
CECT (Valencia, Spain) Micromonospora sp. L13‐ACM2‐092 
Eppendorf (Hamburg, Germany) 1.5 and 2.0 mL reaction tubes 
Eurofins MWG Operon (Ebersberg, Germany) oligonucleotides 
Eurogentech (Seraing, Belgium) agarose, electroporation cuvettes 
EZBiolabs (Westfield, USA) pBluescriptIISK(+)(tioS PCP-TE)  
Fermentas (St. Leon-Rot, Germany) protein size markers 
Finnzymes (Espoo, Finnland) Phusion DNA‐polymerase 
GATC (Konstanz, Germany) DNA sequencing 

GE Healthcare (Freiburg, Germany) 
Coomassie Brilliant blue G and R250, Hi‐Trap desalting columns,  illustra 
NAP‐10 columns, IPTG, size exclusion chromatography columns, yeast 
extract 

Hartmann Analytic (Braunschweig, Germany) 14C‐L‐ornithine 
Invitrogen (Karlsruhe, Germany) E. coli strains (BL21, TOP10) 
Iris Biotech (Marktredwitz, Germany) Nα‐Fmoc‐protected amino acids 
Macherey & Nagel (Düren, Germany) C8/C18 HPLC columns (Nucleosil, Nucleodur) 
Merck4Biosciences (Nottingham, UK) 2‐chlorotrityl resin, HBTU, HOBt, pet28a(+)‐vector, PyBOP 
Millipore (Schwalbach, Germany) dialysis membranes (pore size: 0.025 μM), Amicon Ultra‐15 concentrators 

New England Biolabs (Ipswitch, USA) 
Desoxyribonucleotides (dATP, dTTP, dGTP, dCTP), DNA ladders, protein 
size markers, restriction endonucleases 

Novabiochem (Bad Soden, Germany) Nα‐Fmoc‐protected amino acids, 
Oxoid (Cambridge, UK) Agar Nr. 1, tryptone 
Phenomenex (Torrance, USA) Synergi Fusion RP‐80 HPLC column 

QIAgen (Hilden, Germany) 
E. coli M15/pREP4, QIAprep Miniprep kit, QIAquick gel extraction kit, 
QIAquick‐spin PCR purification kit, Ni‐NTA‐IMAC‐resin, Genomic tip‐20/G 
columns 

Roth (Karlsruhe, Germany) acrylamide solution, β‐mercaptoethanol, ethidium bromide, piperidine   
Sarstedt (Nümbrecht, Germany) pipette tips, Falcon tubes (15 and 20 mL) 
Serva (Heidelberg, Germany) Bromophenol blue, Triton X‐100 
Stratagene (La Jolla, USA) E. coli XL1‐Blue, PfuTurbo DNA polymerase 

Sigma‐Aldrich (Steinheim, Germany) 
ACE, acetyl‐CoA, FDAA, glycerol,malonyl‐CoA, N‐acetylcysteamin, 
oligonucleotides, SDS, TCEP, TEMED, XAD16 resin 

Thermo Scientific (Waltham, USA) Hypercarb HPLC column 
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3.2 Equipment  

 
 Table 3.2: The equipment used in the course of this project. 

 
 

 

 

device manufacturer and type 

  
autoclave Tuttnauer 5075 ELV, Fedegari Autoclavi SPA FVA3/A1 
CD‐spectrometer Jasco J‐810 

centrifuges 
Eppendorf 5415D, Eppendorf 5702R, Eppendorf 5810R, Heraeus 
Biofuge pico, Sorvall RC 5B Plus (SS‐34, SLC‐300, SLC‐4000 
rotors), VWR Galaxy microcentrifuge 16 

clean bench Antair BSK 
documentation system for DNA‐agarose gels Cybertech CS1 camera, Mitsubishi video copy thermo printer 

electrophoresis  
agarose gel chambers manufactured in‐house (PUM, Marburg), 
Bio‐Rad Mini‐PROTEAN 3 gel chamber 

electroporation‐pulser Bio‐Rad gene pulser and pulse‐controller 

Fast protein liquid chromatography (FPLC) 

Amersham Pharmacia FPLC system 250: 
gradient programmer GP‐250, pump P‐500, Uvicord optical 

device UV‐1 (λ = 280 nm), Uvicord control element UV‐1injection 
valve V‐7, 2‐channel printer REC‐101, 3‐way valve PSV‐100, 
fraction collector FRAC‐100 
Amersham Pharmacia Biotech Äktaprime 

fluidizer Avestin EmulsiFlex‐C5 

french‐press 
SLM Aminco french‐pressure cell version 5.1 
20k Rapid‐fill cell (35 mL) 

HPLC fraction collector Agilent AnalytFC 
HRMS system Thermo Fischer Scientific LTQ‐FT / Agilent  1100 HPLC system 
incubators Köttermann 2736 

LC‐MS system 
Agilent series 1100 HPLC‐system with DAD‐ and ESI‐Quad‐MS‐
detection, vacuum degasser, quarternary pump, auto sampler , 
HP‐ChemStation software, optional Agilent 1100 FLD 

lyophilization Christ Alpha 2‐4 LSC 
MALDI‐TOF Bruker BiFlex III 
NMR  Bruker AV600 
peptide synthesizer Advanced ChemTech Apex 396 synthesizer 
pH meter Schott CG 840 
photometers PEQLab Nanodrop ND‐1000; Pharmacia Ultrospec 3000 
Q‐TOF MS Applied Biosystems API QStar Pulsar i 
radioactivity flow‐through detector Berthold FlowStar LB513 / YG‐40‐U5M microbore cell 
pipettes Eppendorf Research series, Abimed Labmate 
spectropolarimeter Jasco J‐810 
spectrophotometer Beckmann Coulter DU‐800 / peltier temperature controller 
speed‐Vac Uniequip Univapo 150H 
thermal cycler Eppendorf Mastercycler Personal 
thermomixer Eppendorf Thermomixer comfort 
vortexer Scientific Industries VortexGenie2 
water deionizer Seral Seralpur Pro90CN 
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3.3 Plasmid Vectors 

 

3.3.1 pQE60 

 

The pQE60 vector (QIAgen), belonging to the QIAExpressionist system, 

was used for the cloning and expression of tioS PCP-TE.  The vector 

sequence appends a C‐terminal His6‐tag upon translation, allowing the 

isolation of the corresponding protein via Ni‐NTA affinity 

chromatography. The vector carries two lac‐operator recognition 

sequences in the promoter region enabling IPTG‐induced expression of 

the target gene. The promoter and terminator sequence is specific for 

the T5 RNA polymerase. The bla‐gene confers resistance to ampicillin 

up to a final concentration of 100 μg/mL.                                                

                                    Figure 3.1: Physical map of pQE60. 

 

3.3.2 pET28a(+) 

 

The pET28a(+) expression vector (Novagen) was employed as a 

general vector for the production of recombinant proteins. The 

vector introduces a N‐ or C‐terminal His6‐tag upon in–frame ligation 

of the gene of interest, enabling Ni‐NTA affinity chromatography 

based protein purification. Transcription of the cloned gene is 

carried out by the T7 RNA polymerase and is induced upon IPTG‐

mediated dissociation of the lac‐repressor from the lac‐operator 

sequence.                                                                                                                                    

                 Figure 3.2: Physical map of pET28a(+). 
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3.3.3 pCB28a(+) 

 

The pCB28a(+) vector is a derivatized pET28a(+) vector (Novagen) 

with a modified multiple cloning site. The vector appends a N‐ or 

C‐terminal His6‐tag upon in‐frame ligation of the targeted gene 

and allows purification of the recombinant protein via Ni‐NTA 

affinity chromatography. The translation of the gene of interest is 

dependent on the T7 RNA polymerase and is induced upon 

addition of IPTG.  

        Figure 3.3: Physical map of pCB28a(+). 

 

3.3.4 pREP4 

 

The pREP4 plasmid (Stratagene) is commonly used in combination 

with the pQE expression system. It encodes for the lac‐repressor, 

which binds to the lac‐operator sequences on pQE vectors, giving 

rise to an IPTG‐inducible expression system. The plasmid‐borne 

neo‐gene confers resistance to kanamycin up to a final 

concentration of 50 µg/mL.   

 

    Figure 3.4: Physical map of pREP4.  
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3.4 Oligonucleotides 

 

The oligonucleotides listed below were used for the PCR‐based amplification of target genes. All primers 

were purchased from Sigma‐Aldrich (Steinheim, Germany) or Eurofins MWG Operon (Ebersberg, 

Germany).  

 

Table 3.3: Oligonucleotides utilized for the amplification of target genes. Restriction sites required for the 

subsequent construction of expression vectors are highlighted in red.   

 
 

3.5 Microorganisms 

 

3.5.1 E. coli XL1-Blue 

 

This genetically optimized strain (Stratagene) was used for cloning and sequencing purposes only. The 

genotype is as follows: endA1 gyrA96 hsdR17 recA1 relA1 supE44 thi‐1 lac F´[proAB+ lacI
q lacZΔM15 

Tn10(Tetr)]. 

 

3.5.2 E. coli TOP10 

 

E. coli TOP10 (QIAgen) was used as a general host for subcloning. The genetically optimized genotype is 

as follows: F‐ mcrA (mrr‐hsdRMS‐mcrBC) 80lacZ.M15lacX74 deoR recA1 araD139 (ara-leu)7697 galU galK 

rpsL (StrR) endA1 nupG. 

 

 

oligonucleotide  sequence (5’→3’) 
restriction 

enzyme  
vector gene 

     
5’‐etcB GGAATTCCATATGACGCGGTATGACGACTCGAA NdeI 

3’‐etcB TTTTAAGCTTCTACTGCGCCACGCGCAGC HindIII 
pCB28a(+) etcB 

5’‐mcd TTTTTGCTAGCATGGCGGGCGACGTGGAACTC NheI 

3’‐mcd TTTTTCTCGAGTCAGACCCGGGAGAAGACCATCAGA XhoI 
pET28a(+) mcd 

5’‐sace_1309  TTTTTGCTAGCATGCACGACATCATCGGCATCGGGT NheI 

3’‐sace_1309 TTTTTCTCGAGTCAGCTCCCGCTGAGCGCGTAG XhoI 
pET28a(+) sace_1309 

5’‐etcC TTTTTGCTAGCGGGGGCGGCGCGTCCTCCGG NheI 

3’‐etcC TTTTTCTCGAGCTACCGGGCCGGTCGCGCGAGCT XhoI 
pET28a(+) etcC 

5’‐etcD PCP-C4 TTTCTAGCTAGCGGCGACGACCGGCCGGCCACCGC NheI 

3’‐etcD PCP-C4 TTTTCTCGAGTCACCAGGTCCTCCTAGGCGGATC XhoI 
pET28a(+) PCP‐C4 of etcD 
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3.5.3 E. coli M15/pREP4 

 

E. coli M15/pREP4 (Invitrogen) was used as a host for the heterologous production of TioS PCP‐TE. The 

lack of the Ion‐ and the membrane‐associated OmpT‐protease increases the half‐life of heterologously 

produced proteins. The plasmid pREP4, which confers Kan‐resistance, contains the Lac‐repressor 

encoding gene lacI, enabling the controlled expression of pQE‐constructs via IPTG‐mediated induction. 

The genotype is given as follows: nals strs rifs thi lac ara gal recA uvr mtl lon F-. 

 

3.5.4 E. coli BL21 (DE3) 

 

E. coli BL21 (DE3) (Invitrogen) served as a general host for the expression of T7 promotor‐based vectors. 

The lack of the Ion‐ and the OmpT‐protease increases protein expression yields, due to reduced 

proteolytic degradation. The insertion of the IPTG‐inducible T7 RNA polymerase after lacZ and the 

promoter lacUV5 on a λ‐prophage enables T7 promotor driven expression. The genotype is as follows: F– 

ompT gal dcm lon hsdSB(rB
‐ mB

‐) λ(DE3 [lacI lacUV5‐T7 gene 1 ind1 sam7 nin5]). 

 

3.5.5 Micromonospora sp. L13-ACM2-092 

 

Micromonospora sp. L13‐ACM2‐092 (CECT 3326) represents an aerobic Gram‐positive, mesophilic 

actinomycete, which was isolated from a marine environment and was obtained from the Spanish Type 

Culture Collection (Colleción Española de Cultivos Tipo ‐ CECT). The genome of the patented strain is not 

sequenced. The microorganism was cultivated for the isolation of the chromodepsipeptide thiocoraline 

and for the preparation of genomic DNA.  

 

3.5.6 Saccharopolyspora erythraea NRRL 23338  

 

The aerobic mesophilic Gram‐positive filamentous actinomycete Saccharopolyspora erythraea NRRL 

23338 is the natural producing strain of the macrolide polyketide antibiotic erythromycin and was 

obtained from the Agricultural Research Service (ARS).  The recently annotated genome comprises  

8.21 mega base pairs (Mbp) and contains at least 25 biosynthetic operons for the production of known 

or predicted secondary metabolites (GenBank accession number: AM420293). The strain was cultivated 

for the radio‐LCMS‐guided isolation of novel natural products and for the retrieval of genomic DNA.  
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3.6 Culture Media 

 

The following media were used for the cultivation and fermentation of the microorganisms given above. 

For cultivation of the microorganisms on solid agar slants Agar No. 1 was added to a final concentration 

of 1.2% (w/v) to the corresponding medium. All media were autoclaved prior to inoculation (121°C,  

1.5 bar, 20 min). Sterile glucose solution, starch, thiamin and biotin were added after autoclaving. 

Selection antibiotics were added to the autoclaved medium in the following concentrations: ampicillin 

100 µg/mL, kanamycin 50 µg/mL or 25 µg/mL (E. coli M15/pREP4). 

 

3.6.1 LB Medium 

 

All E. coli strains were grown in LB‐medium (pH 7.5) 

 

 

 

 

 

3.6.2 Medium 65 

 
Medium 65 was used for the initial cultivation of the lyophilized Micromonospora sp. L13‐ACM2‐092 

strain. The pH was adjusted to 7.2 with potassium hydroxide solution.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LB medium 

    component         quantity (g/L)     
tryptone 10 
yeast extract 5 
sodium chloride 5 

Medium 65 

    component        quantity (g/L)     
malt extract 10 
yeast extract 4 
glucose 4 
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3.6.3 Micromonospora Medium  

 

This medium was used for the fermentation of Micromonospora sp. L13‐ACM2‐092 and for the 

subsequent extraction and purification of native thiocoraline.  

 

 

 

 
 
 
 
 
 
 
 
 
3.6.4 SCM Medium 

 

The SCM medium was used for the cultivation of Saccharopolyspora erythraea NRRL 23338. 

Furthermore, radiolabeling experiments and supernatant extractions were carried out employing this 

medium.  

 
 
 
 
 
 
3.6.5 M9 Minimal Medium 

 

The modified M9 minimal medium was used for the fermentative production and isolation of 

erythrochelin from cultures of S. erythraea. In addition, radiolabeling experiments were performed using 

this medium. Biotin (50 µg/L) and thiamin (200 µg/L) were added after autoclaving.  

 
 
 
 
 
 
 
 
 

Micromonospora medium 

          component                      quantity (g/L)     
malt extract 10 
beef extract 5 
yeast extract 5 
glucose 5 
starch 20 
tryptone 5 
sodium chloride 4 
calcium carbonate 4 
sodium sulfate 1 
potassium chloride 0.5 
dipotassium phosphate 0.5 
magnesium chloride 2 

SCM medium 

    component             quantity (g/L)     
yeast extract 1.5 
starch 10 
soytone 20 
MOPS 10.5 
calcium  chloride 0.1 

M9 minimal medium 

                 component                                                      quantity (g/L)     
potassium dihydrogen phosphate 3 
disodium phosphate  6.78 
glucose 2 
sodium chloride 0.5 
ammonium chloride 1.2 
magnesium sulfate 0.12 
calcium chloride 0.01 
glycerol 0.1 
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4. Methods 
 

4.1. Molecular Biology Methods 

 

4.1.1 Cultivation of Micromonospora sp.  L13-ACM2-092 

 

The lyophilized cell culture of Micromonospora sp. L13‐ACM2‐092, as supplied by CECT, was incubated 

with 5 mL of Medium 65 (30 min, 25°C). Subsequently 200 mL of Medium 65 were inoculated with  

250 µL of this solution. The cell cultures were grown for two days (28°C, 250 rpm) in baffled shaker 

flasks. Liquid cell cultures were utilized for the preparation of genomic DNA (see 4.1.3) or stocked as 

glycerol solutions (20% (v/v), ‐80°C). Medium‐term cultivation of the actinomycete was carried out on 

Medium 65 solid agar slants.  

 

4.1.2 Cultivation of Saccharopolyspora erythraea NRRL 23338 

 

Saccharopolyspora erythraea NRRL 23338 spore stocks were obtained from the ARS culture collection 

and were initially incubated with 5 mL of SCM medium (30 min, 25°C). The rehydrated spores were 

transferred into 30 mL of SCM medium.  The cultures were grown for five days (30°C, 250 rpm) in baffled 

shaker flasks. Liquid cell cultures were utilized for the preparation of genomic DNA (see 4.1.3) or stocked 

as glycerol solutions (20% (v/v), ‐80°C). Medium‐term cultivation of the actinomycete was carried out on 

SCM solid agar slants. 

 

4.1.3 Preparation of Genomic DNA 

 

Liquid cell cultures of either Micromonospora sp. or S. erythraea (5 mL) were harvested by centrifugation 

(13,000 rpm, 3 min). Cell pellets were washed with water (1 mL) and resuspended in 500 µL lysis buffer 

(100 mM TRIS pH 8.0, 50 mM EDTA, 1% (w/v) SDS). Acid‐washed glass beads were added to the 

suspension to obtain a final volume of 1.25 mL. The suspension was vortexed for 2 min and the liquid 

was separated from the glass beads. Subsequently, 275 µL of 7 M ammonium acetate solution (pH 7.0) 

were added and the solution was incubated for 5 min at 65°C. After 5 min incubation on ice, 500 µL of 

chloroform were added and the solution was shaken gently. Centrifugation (13,000 rpm, 5 min) allowed 

the transfer of the aqueous phase to a new reaction tube. The genomic DNA was precipitated by 

addition of 1 mL isopropyl alcohol and incubation at RT for 5 min. The DNA pellet obtained by 

centrifugation (13,000, 5 min) was washed twice (200 µL, 70% EtOH (v/v)), dried for 5 min at RT and 

solubilized in 200 µL ddH2O. Genomic DNA was stored at 4°C. 
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4.1.4 Preparation of Plasmid DNA 

 
4 mL of LB medium were inoculated with a single colony of the target strain and incubated over night 

(37°C, 250 rpm). 2 mL of cell culture were transferred into a 2 mL reaction tube and centrifuged  

(13,000 rpm, 3 min). The cell pellet was resuspended in 300 µL of buffer P1 (50 mM TRIS pH 8.0, 10 mM 

EDTA, RNase A 100 μg/mL). 300 µL of buffer P2 (0.2 M aq. NaOH, 1% (w/v) SDS) were added and the 

mixture was shaken gently and incubated at RT for 5 min. Subsequently, 300 µL of buffer P3 (2.55 M aq. 

KOAc, pH 4.8) were added and the reaction tube was incubated for 5 min on ice. Cell debris was 

removed form the mixture by centrifugation (13,000 rpm, 30 min) and the supernatant was transferred 

to a 1.5 mL reaction tube. 700 µL of cold isopropyl alcohol (4°C) were added and the plasmid DNA was 

precipitated by centrifugation (13,000, 4°C, 30 min). The supernatant was discarded and the DNA pellet 

was washed (200 µL, 70% EtOH (v/v)). Centrifugation (13,000 rpm, 4°C, 30 min) afforded the plasmid 

DNA pellet, which was dried (45°C, 15 min) and resolubilized in 40 µL of ddH2O. Plasmid DNA was stored 

at ‐20°C.  

 

4.1.5 Construction of Expression Plasmids  

 
The amplification of target genes or gene fragments was carried out by polymerase chain reaction (PCR) 

with the Phusion Polymerase (New England Biolabs) with minor modifications to the manufacturers 

protocol. The DMSO concentration was 5% v/v and PCR reaction mixtures, all supplemented with GC 

buffer for amplification of GC‐rich templates, were incubated at 98°C for 1 min prior to the addition of 

the polymerase. Purification of the PCR‐products was performed with the QIAquick PCR purification kit 

(QIAgen). Digestion of the PCR‐products and the corresponding plasmids with restriction endonucleases 

and ligation was carried out according to the manufacturers protocol (New England Biolabs). Ligations 

were transformed into E. coli TOP10 or XL‐1 Blue cells via electroporation (2.5 kV). Transformants were 

plated on LB‐agar slants supplemented with the corresponding antibiotic. The resulting plasmids were 

isolated as described above (4.1.4) or alternatively by utilization of the QIAprep Miniprep kit (QIAgen). 

Isolated restriction plasmids were verified by restriction mapping and dideoxy sequencing (GATC). 

Transformation of either E. coli M15/pREP4 with plasmids containing tioS PCP-TE or E. coli BL21 (DE3) 

with plasmids encoding S. erythraea genes was carried out according to the protocol supplied by the 

manufacturer (Invitrogen).  

 
Construction of pQE60(tioS PCP-TE) The tioS PCP-TE gene fragment, encoding the PCP‐TE didomain of 

TioS, was synthesized by EZBiolabs (Westfield, USA) and supplied as pBluescriptIISK(+)(tioS PCP-TE). 
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Codon usage was optimized for expression in E. coli. The gene was obtained by digestion of the vector 

with BamHI and NcoI and cloned into the appropriate restriction sites of pQE60 (3.3.1).  

 

Construction of pCB28a(+)(etcB) The gene etcB, encoding the FAD‐dependent monooxygenase EtcB, was 

amplified from genomic DNA of S. erythraea by PCR employing the oligonucleotide primers listed in 

Table 3.3. The amplicon was digested with the corresponding restriction endonucleases and 

subsequently cloned into the appropriate restriction sites of pCB28a(+) (3.3.3).   

 
Construction of pET28a(+)(mcd) The gene mcd, encoding the bifunctional malonyl‐CoA 

decarboxylase/acetyltransferase Mcd, was amplified from genomic DNA of S. erythraea by PCR 

employing the oligonucleotide primers listed in Table 3.3. The amplicon was digested with the 

corresponding restriction endonucleases and subsequently cloned into the appropriate restriction sites 

of pET28a(+) (3.3.2).   

 
Construction of pET28a(+)(sace_1309) The gene sace_1309, encoding the FAD‐dependent 

monooxygenase Sace_1309, was amplified from genomic DNA of S. erythraea by PCR employing the 

oligonucleotide primers listed in Table 3.3. The amplicon was digested with the corresponding restriction 

endonucleases and subsequently cloned into the appropriate restriction sites of pET28a(+) (3.3.2).   

 

Construction of pET28a(+)(etcD PCP-C5) The gene fragment etcD PCP-C5, encoding the C‐terminal PCP‐C 

didomain of EtcD, was amplified from genomic DNA of S. erythraea by PCR employing the 

oligonucleotide primers listed in Table 3.3. The amplicon was digested with the corresponding restriction 

endonucleases and subsequently cloned into the appropriate restriction sites of pET28a(+) (3.3.2).   

 

Construction of pET28a(+)(etcC) The gene fragment etcC, encoding the periplasmic binding protein EtcC, 

putatively mediating erythrochelin uptake, was amplified from genomic DNA of S. erythraea by PCR 

employing the oligonucleotide primers listed in Table 3.3. The amplicon was digested with the 

corresponding restriction endonucleases and subsequently cloned into the appropriate restriction sites 

of pET28a(+) (3.3.2).   
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4.2 Protein Purification and Analysis Methods 

 
DNA‐agarose gel analysis, SDS‐PAGE and standard protein analysis methods were carried out according 

to established protocols.197‐198 

 
4.2.1 Protein Expression 

 

4.2.1.1 Expression of pQE60 Constructs 

 

Expression of the pQE60(tioS PCP-TE) construct was performed by inoculating 500 mL of prewarmed 

(37°C) LB medium, supplemented with ampicillin (100 µg/mL) and kanamycin 

(25 µg/mL)  in a 2 L baffled shaker flask with 5 mL of an overnight culture of the E. coli M15/pREP4. The 

cells were grown to an optical density (OD) of 0.6 (λ = 600 nm) at 37°C and 250 rpm, induced with  

0.1 mM isopropyl‐β‐D‐thiogalactopyranoside (IPTG) and cultivated for an additional 5 h at 20°C. The cells 

were harvested by centrifugation (6000 rpm, 4°C, 30 min), resuspended in 40 mL buffer (50 mM HEPES, 

250 mM NaCl, pH 7.5) and either directly processed or stored at ‐20°C.  

 
4.2.1.2 Expression of pET28a(+) and pCB28a(+) Constructs 

 

Expression of the pET28a(+) or pCB28a(+) constructs was carried out by inoculating 500 mL of 

prewarmed (37°C) LB medium, supplemented with kanamycin (50 µg/mL) in a 2 L baffled shaker flask 

with 5 mL of an overnight culture of the E. coli BL21 (DE3). The cells were grown to an optical density 

(OD) of 0.6 (λ = 600 nm) at 37°C and 250 rpm, induced with 0.1 mM IPTG and cultivated for ∼ 18 h at 

20°C. The cells were harvested by centrifugation (6000 rpm, 4°C, 30 min), resuspended in 40 mL buffer 

(50 mM HEPES, 250 mM NaCl, pH 7.5) and either directly processed or stored at ‐20°C.  

 

4.2.2 Protein Purification  

 
The purification of recombinant His6‐tagged proteins was initiated by disruption of the cells using either 

an EmulsiFlex‐C5 High Pressure Homogenizer (Avestin) or a French Pressure Cell (SLM Aminco). Cell 

debris and insoluble components were precipitated by centrifugation (17,000 rpm, 4°C, 30 min), the 

supernatant conztaining the protein was separated and the protein was purified by Ni‐NTA (QIAgen) 

affinity chromatography using either a FPLC system 250 (Amersham Pharmacia Biotech) or an Äkta prime 

system (Amersham Pharmacia Biotech). The column was equilibrated with buffer A (50 mM HEPES, 250 

mM NaCl, pH 7.5).  The supernatant was applied onto the column with a flow‐rate of 0.7 mL/min until 

the absorption of the flowthrough at 280 nm (A280) reached baseline level. Selective elution of the 
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immobilized protein was performed by application of following solvent gradient of buffer A and buffer B 

(50 mM HEPES, 250 mM NaCl, 250 mM imidazole, pH 7.5) at a flow rate of 1 mL/min: linear increase 

from 0% to 50% B within 35 min followed by a linear increase to 95% B in 5 min, holding B for an 

additional 5 min. The wavelength chosen for detection of the protein was 280 nm and the fraction size 

was 2 mL. Protein‐containing fractions were identified via qualitative Bradford assays and analyzed by 

SDS‐PAGE.197,199 Fractions containing the recombinant protein were combined, concentrated with 

Amicon Ultra‐15 concentrators (Millipore) and subjected to buffer exchange utilizing HiTrap Desalting 

columns (GE Healthcare). Buffers for recombinant EtcB and Sace_1309 were supplemented with glycerol 

(20% (v/v), pH 8.0). Protein solutions were subsequently aliquoted, flash‐frozen in liquid nitrogen and 

stored at ‐80°C.  

 
4.2.3 Size-Exclusion Chromatography (SEC) 

 
 Size‐exclusion chromatography (SEC) was employed as a second purification step to obtain the 

periplasmic binding protein EtcC in high purity. Gelfiltration enables the fractionation of proteins based 

on their relative size, which directly correlates with the diffusion behaviour in a gel‐matrix. The column 

used was a 16/60 Superdex G75 prep grade (Amersham Biosciences) gelfiltration column and was 

equilibrated with two column volumes of buffer (25 mM Hepes, 50 mM NaCl, pH 7.0). Subsequently, the 

protein solution was applied onto the column at a flow rate of 1 mL/min. Elution was performed with a 

flow rate of 1 mL/min and the wavelength chosen for detection of the protein was 280 nm. The fraction 

size was 2 mL and protein containing fractions were identified via qualitative Bradford assays and 

analyzed by SDS‐PAGE.197,199 Fractions containing the recombinant protein were combined, concentrated 

with Amicon Ultra‐15 concentrators (Millipore), aliquoted, flash‐frozen in liquid nitrogen and stored at  

‐80°C.  

 
4.2.4 Protein Concentration Determination  

 
 Protein concentrations were determined spectrophotometrically using calculated extinction coefficients 

after thawing of the corresponding protein solution. The coefficients were calculated by analysis of the 

primary sequence with Protean (DNAstar). The determination was carried out on a Nanodrop ND‐1000 

(PEQLab) spectrophotometer (λ = 280 nm). 
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Table 4.1: The calculated molar extinction coefficients (λ = 280 nm).  The corresponding mass is given for each 

protein.  

 
 

 

 

 

 

 

 

 

4.3 Analytical Methods 

 

4.3.1 MALDI-TOF-MS 

 

Matrix assisted laser desorption/ionization mass spectrometry (MALDI‐MS) represents a mass 

spectrometric method for the determination of the molecular mass of ionized compounds in high 

vacuum. Ionization of the analyte is achieved by excitation of a matrix in which the analyte is embedded 

with distinct laser pulses. The energy of the laser is gently transferred to the analyte, circumventing 

fragmentation processes and enabling analysis of high molecular weight samples. The mass 

spectrometer used is most commonly a TOF (time of flight) spectrometer equipped with an ion mirror 

for increased resolution. Samples were prepared by mixing 0.5 µL of analyte with 0.5 µL of DHB matrix 

solution (Agilent Technologies). The mixture was subsequently transferred onto a metallic target and 

incubated at 37°C for 15 min. After evaporation of the solvent the sample was measured on a Bruker 

BiFlex III MALDI‐TOF system.  

 

4.3.2 RP-HPLC and LCMS 

 

Liquid chromatography mass spectrometry (LCMS) was used as a standard method for the 

characterization of substrates and products based on retention time on a chromatography column and 

by mass spectrometric analysis. Reversed‐phase (RP) columns were routinely employed and retained the 

compounds due to hydrophobic interactions of the analyte with the non‐polar stationary phase. 

Stationary phases consisted of carbon or of hydrophobic alkyl chains (C18, C8 or C4) immobilized on silica 

gel. Residual silanols were endcapped by the modification with trimethylchlorosilane (TMS) in the case of 

ec‐columns. Elution of the compounds was performed with acetonitrile or methanol, which compete 

with the analyte for non‐covalent interaction with the column material. The mobile phases were 

supplemented with 0.1% TFA (trifluoroacetic acid), 0.05% formic acid or 20 mM nonafluoropentanoic 

protein  
calculated extinction coefficient  

(M
-1 

cm
-1

 10
3
)

  MW (kDa) 

   
TioS PCP‐TE 46.5 38.4 
EtcB 41.8 51.3 
Mcd 64.3 48.4 
Sace_1309 33.9 40.9 
EtcC 46.4 36.1 
EtcD PCP‐C5 52.0 58.3 
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acid (NFPA) as ion pair reagents and enabled ionization. The retention time of the compound was 

monitored by UV/Vis‐ or fluorescence‐detection. The electrospray ionization mass detector allowed 

ionization and mass detection at atmospheric pressure. General experiments were carried out on a 

Agilent 1100 system. Peptide mass fingerprinting analysis was carried out on a quadrupole time‐of‐flight 

(QTOF) instrument.   

 

4.3.3 HRMS and MS/MS-Fragmentation Analysis 

 

High resolution mass spectrometric characterization and MS/MS‐fragmentation analysis of products of 

enzymatic reactions, erythrochelin and ferri‐erythrochelin was performed with an LTQ‐FT instrument 

(Thermo Fisher Scientific) connected to a microbore Agilent 1100 HPLC system. The compounds were 

analyzed on a Nucleodur C18(ec) 125 x 2 mm column utilizing the following solvent gradient: 0‐30 min, 

0%‐100% acetonitrile into water, both supplemented with 0.1% TFA. The column temperature was 45°C 

and the flow‐rate was 0.3 mL min‐1. CID fragmentation studies within the linear ion trap were done using 

online LCMS. 

 

4.3.4 Peptide Mass Fingerprinting 

 

Peptide mass fingerprinting (PMF) was utilized to validate the identity of the isolated recombinant 

proteins. Gel bands of the correct size were excised from the gel after SDS‐PAGE and incubated with 

wash solution (200 μL, 200 mM NH4HCO3, 50% v/v MeCN) for 30 min at 37°C. The solvent was removed 

to complete dryness in a speed‐vac manifold (37°C, 30 min). In‐band tryptic digestion was carried out by 

addition of trypsin solution (20 μL, 0.02 μg/μL trypsin, 10% NH4HCO3, 10% (v/v) MeCN, pH 8.1) to the 

dried gel bands. Excess trypsin solution was removed after initial incubation at 37°C for 45 min, followed 

by incubation for an additional 16 h. Peptide fragments derived from proteolytic cleavage were eluted 

with diffusion solution (25 μL, 1% (v/v) TFA, 10% (v/v) MeCN, pH 8.1) in parallel to sonication (45 min, 

RT). The samples were analyzed by the mass spectrometry facility (Department of Chemistry, Philipps‐

University Marburg) on a nano spray‐HPLC‐QTOF‐MS system. Peptide mass fingerprint comparison with 

the MASCOT database enabled protein identification.  

 

4.4 Spectroscopic Methods 

 

4.4.1 UV/Vis-Spectroscopy 

 

UV/Vis‐spectra were recorded on an Ultrospec 3000 (Pharmacia) spectrophotometer. Wavescan 

measurements were performed within a wavelength range of 200‐800 nm and a scan rate of  
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750 nm/min. Absorption spectra of erythrochelin and ferri‐erythrochelin were recorded in water. Ferri‐

erythrochelin was obtained by incubating erythrochelin (400 µM) with increasing amounts of aqeous 

FeCl3 for 10 min at RT prior to the scan. Absorption spectra of EtcB and Sace_1309 (50 µM) were 

recorded to analyze the cofactor content of the recombinant proteins.  

 

4.4.2 CD-Spectroscopy 

 

CD spectra were recorded to investigate the native fold of recombinant TioS PCP‐TE. The recombinant 

thioesterase GrsB TE served as a control for the comparison of the spectra. CD spectra were recorded on 

a J‐810 spectropolarimeter (Jasco) with a final concentration of 5 μM TioS PCP‐TE or GrsB TE at 20 °C 

with 20 nm/min, response of 2 s and a bandwidth of 1 nm in 10 mM Na2HPO4 buffer (pH  7.0). Far‐UV‐CD 

spectra were recorded in a wavelength range of 180‐280 nm. The data presented is an accumulation of 

ten scanning cycles. Mean residue weight ellipticity ([Θ]MRW) was calculated from the measured ellipticity 

(Θ) according to the following equation (1‐1).    

 

                  (1‐1) 
  

      

[Θ]MRW mean residue weight ellipticity (deg cm2 dmol‐1) 
Θ measured ellipticity (mdeg) 
c protein concentration (M) 
d light path (cm) 
NAA amino acid residues 
 

4.4.3 NMR-Spectroscopy and Structure Elucidation  

 

NMR‐spectroscopic structure elucidation of erythrochelin was performed in cooperation with Dr. Xiulan 

Xie (Department of Chemistry, Philipps‐University Marburg). All spectra were recorded on an AV600‐

spectrometer (Bruker) to elucidate the structure of erythrochelin. 16 mg of the title compound was 

dissolved in 0.7 ml DMSO‐d6. Measurements were carried out with an inverse broadband probe installed 

with z gradient. The one‐dimensional spectra 1H and 13C, the homonuclear two‐dimensional spectra DQF‐

COSY, TOCSY, NOESY, and ROESY, the 1H– 13C HSQC and HMBC, and the 1H–15N HSQC spectra were 

recorded at room temperature with standard pulse programs.200 Phase‐sensitive HMBC spectrum 

focused on the carbonyl region with high resolution in 13C dimension was recorded by using a pulse 

program with a semi‐selective 13C pulse built in an HMBC experiment with sensitivity enhancement.201‐202 

The TOCSY spectrum was recorded with a mixing time of 200 ms, while NOESY and ROESY spectra were 

taken at 150 and 300 ms mixing times. The one‐ dimensional spectra were acquired with 65536 data 
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points, while two‐dimensional spectra were collected using 4096 points in the F2 dimension and 512 

increments in the F1 dimension. For two‐dimensional spectra 16 ‐ 32 transients were used. Relaxation 

delay was 2.5 s. Chemical shifts of 1H and 13C were referenced to the solvent signals, while that of 15N 

was referenced externally to the urea signal. All recorded spectra were processed with Bruker Topspin 

2.1. 

 
4.5 Chemical Synthesis 

 

4.5.1 Solid-Phase Peptide Synthesis of Tetrapeptidyl Substrates 

 

Tetrapeptidyl substrates employed in macrocyclization assays were obtained by solid‐phase peptide 

synthesis (SPPS) on an APEX 396 synthesizer (Advanced ChemTech) (0.1 mmol scale) with 2‐chlorotrityl 

resin as solid support, employing Fmoc‐protective group strategy (Figure 4.1). The reaction chamber was 

vortexed after each reaction step and remaining solvents were removed by applying a pressure of  

62 kPa. In the first step of a typical SPPS‐cycle the amino acid was loaded onto the solid support and the 

Fmoc‐group, protecting the α‐NH2 group, was cleaved with piperidine. Subsequently, elongation was 

initiated by addition of DIPEA, the coupling reagent HBTU, the additive HOBt and the N‐terminally 

protected amino acid. The assembled oligopeptide was cleaved from the resin by incubation with 

cleavage solution (AcOH:TFE:DCM, 1:2:7 (v/v)). The acidic components of the cleavage solution were 

removed azeotropically with hexane and the peptide was used without further purification for the 

preparation of C‐terminally activated macrocyclization substrates.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1: Solid‐phase peptide synthesis (SPPS) of the linear tetrapeptidyl substrate. The synthesis is initiated 

by the immobilization of the first amino acid on the solid support. Consecutive deprotection and coupling 

reactions result in the resin‐bound tetrapeptide. Prior to the cleavage of the assembled peptide, a last SPPS 

cycle caps the N‐terminus of the peptide with the chromophore moiety QA or QX.  
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4.5.2 Synthesis of Tetrapeptidyl-SNAC Substrates 

 

C‐terminal activation of the tetrapeptidyl substrates as SNAC‐thioesters was carried out chemically on a 

50 µmol‐scale. The protected peptide (0.05 mmol, 1.0 eq.) was dissolved in dichloromethane (4 mL) and 

stirred with PyBOP (31.2 mg, 0.06 mmol, 1.2 eq.) and N‐acetylcysteamine (14.3 mg, 0.12 mmol, 2.4 eq.) 

at RT for 5 min. Subsequently, DIPEA (10.4 µL, 0.06 mmol, 1.2 eq.) was added and the solution was 

stirred for 2 h (Figure 4.2). Side‐chain deprotection (Boc, Trt) was carried out by addition of cleavage 

solution (4 mL, TFA:TIPS:ddH2O, 95:2.5:2.5 (v/v)) and stirring for an additional 2 h. The reaction mixture 

was poured into diethylether (42 mL, ‐20°C) and the peptide precipitated over night at ‐20°C. The solvent 

was removed after centrifugation (4000 rpm, 4°C, 10 min).  The crude product was dissolved in 10% 

MeCN and subsequently applied onto a RP‐HPLC preparative Nucleodur C18(ec) 250 × 21 mm column 

(Macherey & Nagel) combined with an Agilent HPLC‐system. Elution was performed by application of the 

following solvent gradient of water/0.1% TFA (solvent A) and acetonitrile/0.1% TFA (solvent B) at a flow 

rate of 16 mL/min: linear increase from 10% to 95% B within 45 min, holding B for an additional 5 min. 

Retention times were monitored at 215 nm and 280 nm. Product identity was confirmed by MALDI‐TOF‐

MS and LCMS (Table 4.2). Product containing fractions were combined and lyophilized. Peptides were 

solubilized in dimethylsulfoxide (DMSO) to a final concentration of 20 mM and stored at ‐20°C.  

 
 
 
 
 
 
 
 
 
 
 
Figure 4.2: Synthesis of the activated tetrapeptidyl‐substrates exemplified by activation and deprotection of 

substrate TL1: In the first step of the reaction the carboxyl group is activated by the coupling reagent PyBOP 

and thioesterified with N‐acetylcysteamin. Removal of acid labile side‐chain protecting groups affords the 

activated and deprotected substrate for macrocyclization studies.   
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Table 4.2: ESI‐MS identification of the and C‐terminally activated tetrapeptidyl thioesters.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.6 Biochemical Methods 

 

4.6.1 Fluoresceinyl-CoA Phosphopantetheinylation Assay 

 

The PCP‐domain is converted from inactive apo‐ to active holo‐PCP by transfer of the ppan group onto 

the core‐T motif serine, which is mediated by PPtases. The extensively characterized PPtase Sfp 

(Bacillus subtilis) displays a high degree of substrate tolerance and can catalyze the transfer of  

CoA‐derivatized substrates onto the PCP in vitro.203 The fluoresceinyl‐CoA phoshopantetheinylation assay 

was carried out to ensure the possibility to posttranslationally load synthetic CoA‐substrates onto the 

PCP‐domain of EtcD PCP‐C5 (Figure 4.3). 

Fluorescence labeling was achieved by incubating the recombinant protein EtcD PCP‐C4 (50 µM) with 

fluoresceinyl‐CoA (300 µM), Sfp (5 µM) and Mg2+ (50 µM) in buffer (20 mM TRIS, 100 mM NaCl, pH 7.0) 

for 30 min at 25°C. The control lacked the PPtase Sfp. Labeled protein was visualized on a  

UV‐screen (λ = 312 nm) after SDS‐PAGE. The gel was subsequently stained with Coomassie Brilliant Blue 

R250 for comparison of the labeled and unlabeled samples.  

 

 

 

 

 

 

Figure 4.3: A) Chemical structure of fluoresceinyl‐CoA. B) Sfp‐mediated labeling of recombinant PCP with 

fluoresceinyl‐CoA: The fluorescent probe is transferred onto the conserved core‐T motif serine in the 

presence of Mg2+. 

 

compound sequence species (m/z) observed mass (calculated mass) 

    
TL1 QA‐D‐Cys1‐Gly2‐L‐Cys3‐L‐Cys4‐SNAC [M+H]+ 641.1 (641.1) 
TL2 QA‐D‐Cys1‐Gly2‐L‐Cys3‐S‐Me‐L‐Cys4‐SNAC [M+H]+ 655.2 (655.1) 
TL3 QA‐D‐Cys1‐Gly2‐L‐Ala3‐S‐Me‐L‐Cys4‐SNAC [M+H]+ 623.2 (623.2) 
TL4 QA‐D‐Cys1‐Gly2‐L‐Ala3‐L‐Met4‐SNAC [M+H]+ 637.3 (637.2) 
TL5 QA‐D‐Cys1‐Gly2‐L‐Cys3‐L‐Met4‐SNAC [M+H]+ 669.3 (669.2) 
TL6 QA‐L‐Cys1‐Gly2‐L‐Ala3‐L‐Met4‐SNAC [M+H]+ 637.2 (637.2) 
TL7 QA‐D‐Ser1‐Gly2‐L‐Cys3‐L‐Cys4‐SNAC [M+H]+ 625.1 (625.2) 
TL8 QA‐D‐Ser1‐Gly2‐L‐Cys3‐S‐Me‐L‐Cys4‐SNAC [M+H]+ 639.3 (639.2) 
TL9 QA‐D‐Ser1‐Gly2‐L‐Ala3‐S‐Me‐L‐Cys4‐SNAC [M+H]+ 607.3 (607.2) 

TL10 QA‐D‐Ser1‐Gly2‐L‐Ala3‐L‐Met4‐SNAC [M+H]+ 621.3 (621.2) 
TL11 QX‐D‐Cys1‐Gly2‐L‐Ala3‐S‐Me‐L‐Cys4‐SNAC [M+H]+ 624.3 (624.2) 
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4.6.2 Activity-Based Fluorescence Labeling Assay 

 

Activity‐based protein profiling represents an approach for the identification and isolation of enzymes 

from a complex proteome based on their specific activity. The serine protease superfamily was the first 

enzyme class to be analyzed employing this method. The activity‐based probe (ABP) of choice was FP‐

TAMRA (fluorophosphonate‐N,N,N´,N´-tetramethylrhodamine) which reacts with the active‐site serine of 

the catalytic triad consisting of Ser‐His‐Asp.204 The nucleophilic oxyanion of the serine side chain attacks 

the fluorophosphonate group under the release of fluoride, leading to covalent labelling of the target 

protein (Figure 4.4).  

The activity‐based fluorescence labeling assay was carried out to confirm the functionality of the 

catalytic triads of TioS PCP‐TE, GrsB PCP‐TE and GrsB TE. Covalent labeling was achieved by incubating 

the corresponding thioesterase (10 µM) with FP‐TAMRA (30 µM) in buffer (25 mM NaCl, 50 mM HEPES, 

pH 7.0) in a total volume of 50 µL for 45 min at 25°C. Control samples were denatured at 95°C for 15 min 

prior to labelling. Labeled proteins were visualized on a UV‐screen (λ = 312 nm) after SDS‐PAGE. The gels 

were subsequently stained with Coomassie Brilliant Blue R250 for comparison of the labeled and 

unlabeled samples.  

 

 

 

 

 

Figure 4.4: The chemical structure of the activity‐based probe FP‐TAMRA. The active‐site serine of a 

thioesterase reacts with the fluorophosphonate group under the release of fluoride, resulting in a covalently 

labeled serine protease.   

 

4.6.3 TioS PCP-TE-Catalyzed Macrocyclization Assay 

 

The thioesterase TioS PCP‐TE catalyzes the cyclodimerization of C‐terminally SNAC activated 

tetrapeptidyl substrates. To investigate the macrocyclization potential of TioS PCP‐TE, the recombinant 

enzyme was incubated with corresponding substrates.  

Macrocyclization assays were carried out in a total volume of 50 μL in assay buffer (25 mM HEPES, 50 

mM NaCl, pH 6.0) at 25°C. For temperature dependence evaluation of macrocycle formation the 

temperature was altered to 15°C or 37°C, respectively. Final concentration of substrate was 300 μM and 

total concentration of DMSO was 8% (v/v). The assays were initiated by the addition of 10 μM TioS PCP‐



 Methods  

‐ 58 ‐ 

TE and quenched after 2 h by the addition of 10 μL 4% (v/v) TFA. Reduction of oxidatively formed 

disulfide‐bonds was accomplished by the addition of 300 μM tris‐(carboxyethyl)‐phosphine (TCEP) in 

DMSO. Assays were analyzed by RP‐LCMS (Agilent) on a Nucleodur C18(ec) 125 × 2 mm column 

(Macherey & Nagel) utilizing the following solvent gradient of water/0.1% TFA (solvent A) and 

acetonitrile/0.1% TFA (solvent B) at a flow rate of 0.2 mL/min: linear increase from 20%  to 80% B within 

50 min followed by a linear increase to 95% B in 5 min, holding B for an additional 5 min. The wavelength 

chosen for detection was 210 nm and the column temperature was 45°C. Identities of the products were 

confirmed by LCMS. Kinetics of total substrate turnover were performed by determining initial rates of 

nine substrate concentrations, using three time points at each concentration within the linear region of 

the reaction. The concentration of linear tetrapeptidyl‐thioester substrates was calculated on the basis 

of experimentally determined absorption values at a wavelength of 210 nm. Assays were analyzed by  

RP‐LCMS as stated above and the kinetic parameters were determined with the Enzyme Kinetics Module 

for SigmaPlot 8.0 (Systat Software Inc.). 

 

4.6.4 Monooxygenase-Mediated Hydroxylation Assay 

 

The FAD‐dependent monooxygenases EtcB and Sace_1309 catalyze the hydroxylation of the δ‐amino 

functionality of L‐ornithine in presence of the cosubstrate NADPH.  

Hydroxylation assays were carried out by incubating recombinant EtcB or Sace_1309 (20 µM) with  

L‐ornithine (1 mM), the cosubstrate NADPH (1 mM) and the cofactor FAD (20 µM) in assay buffer  

(20 mM TRIS, 100 mM NaCl, pH 8.0) for 4‐8 h at 25°C. The reactions were stopped by addition of 10 μL  

4% (v/v) TFA. Hydroxylation assays were analyzed by RP‐HPLC (Agilent) on a Hypercarb 100 x 2.1 mm 

column (Thermo) utilizing the following solvent gradient of solvent A (20 mM NFPA) and solvent B 

(acetonitrile) at a flow rate of 0.4 mL/min: linear increase from 0% to 15% B within 20 min followed by a 

linear increase to 100% B in 2 min, holding B for an additional 5 min. The wavelength chosen for 

detection was 215 nm and the column temperature was 20°C. Substrate specificity assays were 

performed by employing the same conditions stated above with different amino acids as substrates and 

an incubation time of 8 h. Specificity assays were analyzed by RP‐LCMS (Agilent) on a Nucleodur C18(ec) 

125 × 2 mm column (Macherey & Nagel) utilizing the following solvent gradient of water/0.1% TFA 

(solvent A) and acetonitrile/0.1% TFA (solvent B) at a flow rate of 0.2 mL/min: linear increase from 0% to 

100% B within 30 min holding B for an additional 5 min. The wavelength chosen for detection was 210 

nm and the column temperature was 45°C. Reaction kinetics were determined spectrophotometrically 

on an Ultrospec 3100 pro spectrophotometer (Amersham Biosciences). Concentration of L‐Orn was 
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varied between 75 µM and 20 mM. Calculation of initial reaction rates was based on the decrease of 

NADPH absorbance (ε = 6300 M‐1 cm‐1) and the determination of kinetic parameters was carried out with 

the Enzyme Kinetics Module for SigmaPlot 8.0 (Systat Software Inc.).  

 

4.6.5 Mcd-Mediated Acetylation Assay 

 

Acetylation of the δ‐amino functionality of L‐hOrn is mediated by the bifunctional malonyl‐CoA 

decarboxylase/acetyltransferase Mcd encoded in the nrps1 gene cluster, as shown via in vitro‐

acetylation assays.    

Acetylation assays were carried out by incubating recombinant Mcd (50 µM) with  

δ‐N-hydroxy‐L‐ornithine (1 mM) and the cosubstrates malonyl‐CoA (1 mM) or acetyl‐CoA (1 mM) in assay 

buffer (20 mM TRIS, 100 mM NaCl, pH 7.0) for 4‐8 h at 25°C. The reaction was stopped by addition of  

10 μL 4% (v/v) TFA. Acetylation assays were analyzed by RP‐HPLC (Agilent) on a Hypercarb 100 x 2.1 mm 

column (Thermo) utilizing the following solvent gradient of solvent A (20 mM NFPA) and solvent B 

(acetonitrile) at a flow rate of 0.4 mL/min: linear increase from 0% to 15% B within 20 min followed by a 

linear increase to 100% B in 2 min, holding B for an additional 5 min. The wavelength chosen for 

detection was 215 nm and the column temperature was 20°C. Substrate specificity assays were 

performed by employing the same conditions stated above with different amino acids as substrates and 

an incubation time of 8 h. Specificity assays were analyzed by RP‐LCMS (Agilent) on a Nucleodur C18(ec) 

125 × 2 mm column (Macherey & Nagel) utilizing the following solvent gradient of water/0.1% TFA 

(solvent A) and acetonitrile/0.1% TFA (solvent B) at a flow rate of 0.2 mL/min: linear increase from 0% to 

100% B within 30 min holding B for an additional 5 min. The wavelength chosen for detection was 210 

nm and the column temperature 45°C. Time‐course experiments to monitor the conversion rate of  

L‐hOrn to L‐haOrn was accomplished by incubating recombinant Mcd (1 µM) with L‐hOrn (1 mM) and the 

cosubstrates malonyl‐CoA (1 mM) or acetyl‐CoA (1 mM) in assay buffer (20 mM TRIS, 100 mM NaCl,  

pH 7.0) for 4 h at 25°C. Samples were taken each 30 min and analyzed via LCMS as described above.  

 

4.6.6 Coupled Hydroxylation and Acetylation Assay  

 

Coupled hydroxylation and acetylation assays were carried out to establish a biosynthetic route for the 

generation of δ‐N‐acetyl‐δ‐N-hydroxy‐L‐ornithine.   

Coupled assays were conducted by incubating recombinant EtcB or Sace_1309 (20 µM), Mcd (50 µM),  

L‐ornithine (1 mM), the cosubstrates NADPH (1 mM), malonyl‐CoA (1 mM) or acetyl‐CoA (1 mM) and the 
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cofactor FAD (20 µM) in assay buffer (20 mM TRIS, 100 mM NaCl, pH 7.0) for 4‐8 h at 25°C. The reaction 

was quenched by addition of 10 μL 4% (v/v) TFA. Product identities were analyzed by RP‐HPLC (Agilent) 

on a Hypercarb 100 x 2.1 mm column (Thermo) utilizing the following solvent gradient of solvent A  

(20 mM NFPA) and solvent B (acetonitrile) at a flow rate of 0.4 mL/min: linear increase from 0% to 15% B 

within 20 min followed by a linear increase to 100% B in 2 min, holding B for an additional 5 min. The 

wavelength chosen for detection was 215 nm and the column temperature was 20°C. 

 

4.7 Radio-LCMS-Guided Genome Mining  

 

In an attempt to substitute the traditional activity assay‐guided isolation of novel secondary metabolites 

a dedicated radio‐LCMS‐methodology to identify NRPs of cryptic gene clusters in cultures of S. erythraea 

was established. Radiolabeling studies were performed by cultivating S. erythraea in 100 mL of SCM 

medium (Chapter 3.6.4) or iron‐deficient M9 medium (Chapter 3.6.5). 5 μCi of L‐ornithine (Hartmann 

Analytic) were added after 48 h of growth. The supernatants were extracted with XAD16 resin after two 

additional days of growth. The dried eluate was dissolved in 10% methanol and analyzed on a Nucleodur 

C18(ec) column 125 x 2 mm (Macherey & Nagel) combined with an Agilent 1100 HPLC‐system (Agilent) 

connected to a FlowStar LB513 radioactivity flow‐through detector (Berthold) equipped with a YG‐40‐

U5M solid microbore cell and a QStar Pulsar i (Applied Biosystems) utilizing the following solvent 

gradient: water/0.05% formic acid (solvent A) and methanol/0.05% formic acid (solvent B) at a flow rate 

of 0.3 mL/min: linear increase from 0% to 50% B within 20 min followed by a linear increase to 95% B in  

5 min, holding B for an additional 5 min. This gradient was also used to analyze comparative extractions 

of S. erythraea cultures and erythrochelin and ferri‐erythrochelin. 

 

4.8 Natural Product Isolation 

 

4.8.1 Isolation of Chemoenzymatically Generated Thiocoraline Analogs 

 

For the isolation of macrocycles produced in vitro, the corresponding tetrapeptidyl‐thioesters were 

incubated with the recombinant protein under standard assay conditions (Chapter 4.6.3) except for the 

formation of Cy8SS lacking TCEP. For maximum cyclization yields the experimentally determined optimal 

temperature was chosen. Enzymatic assays were analyzed and separated by RP‐HPLC (Agilent) and 

product fractions were collected using a AnalytFC fraction collector (Agilent). Product yield and identity 

were determined by RP‐HPLC (Agilent) on a Nucleodur C18(ec) 125 × 2 mm column (Macherey & Nagel) 

utilizing the following solvent gradient of water/0.1% TFA (solvent A) and acetonitrile/0.1% TFA  
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(solvent B) at a flow rate of 0.2 mL/min: linear increase from 20% to 80% B within 50 min followed by a 

linear increase to 95% B in 5 min, holding B for an additional 5 min. The wavelength chosen for detection 

was 210 nm and the column temperature 45°C. Product fractions were lyophilized (Alpha 2‐4 GSC, 

Christ), resolubilized in DMSO to a final concentration of 5 mM and stored at ‐20°C.  

 

4.8.2 Isolation of Native Thiocoraline from Micromonospora sp.  

 

Micromonospora L13‐ACM2‐092 (Chapter 3.5.5) was cultivated in Micromonospora medium (Chapter 

3.6.3) under the conditions described earlier.142 Cells were harvested by centrifugation and the mycelial 

cake and the supernatant were extracted with ethylacetate (EtOAc) twice. The combined organic layers 

were dessicated over MgSO4 and evaporated to dryness. The crude extract was dissolved in 20% MeCN 

and subsequently applied onto a RP‐HPLC preparative Nucleodur C18(ec) 250 × 21 mm column (Macherey 

& Nagel) combined with an Agilent HPLC‐system. Elution was performed by application of the following 

solvent gradient of water/0.1% TFA (solvent A) and acetonitrile/0.1% TFA (solvent B) at a flow rate of 16 

mL/min: linear increase from 20% to 80% B within 50 min followed by a linear increase to 95% B in 5 

min, holding B for an additional 5 min. Product identity was confirmed by LCMS and fluorescence 

detection (Agilent 1100 FLD; excitation 365 nm, emission 540 nm) according to established protocols. 

The retention time of thiocoraline was 42.3 min. Total yield was 1.6 mg thiocoraline/L culture.   

 

4.8.3 Isolation of Erythrochelin from SCM Medium 

 

Saccharopolyspora erythraea NRRL 23338 (3.5.6) maintained on SCM‐agar slants, was used to inoculate 

30 mL of SCM liquid culture (3.6.4).  The cells were grown for 4 d at 30°C and 250 rpm and subsequently 

used to inoculate 1 L of SCM‐medium. The cells were grown for 5 d at 30°C. The production phase of the 

strain was monitored via LCMS and the CAS assay.205 The culture supernatant was extracted with XAD16 

resin (4.0 g/L). The resin was collected by filtration, washed twice with water and the absorbed 

compounds were eluted with methanol. The eluate was evaporated to dryness, dissolved in 10% 

acetonitrile and applied onto a RP‐HPLC preparative Nucleodur C18(ec) 250 × 21 mm column combined 

with an Agilent 1100 HPLC‐system. Elution was performed by application of the following solvent 

gradient of water/0.05% formic acid (solvent A) and methanol/0.05% formic acid (solvent B) at a flow 

rate of 16 mL/min: linear increase from 0% to 50% B within 50 min followed by a linear increase to 95% B 

in 5 min, holding B for an additional 5 min. The wavelengths chosen for detection were 215 nm and  
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280 nm, respectively. Siderophore containing fractions were confirmed by using the CAS‐liquid assay and 

subjected to LCMS‐analysis.  

 

4.8.4 Large-Scale Purification of Erythrochelin from M9 Medium 

 

S. erythraea, maintained on SCM‐agar slants, was used to inoculate 30 mL of SCM liquid culture  

(Chapter 3.6.4). The cells were grown for 4 d at 30°C and 250 rpm. The cells were exchanged from the 

SCM‐medium into the iron‐deficient M9 medium (Chapter 3.6.5) by repeated centrifugation and 

resuspension of the cells in the target medium. Subsequently, the cells were used to inoculate 5 L of 

iron‐deficient M9 medium in PC‐flasks to a final optical density (λ = 600 nm) of 0.01. After 4 d of 

cultivation the cells were harvested by centrifugation at 6000 rpm and 4°C for 30 min. The supernatant 

was separated from the cell pellet and incubated with XAD16 resin (4.0 g/L). The resin was collected by 

filtration, washed twice with water and the absorbed compounds were eluted with methanol. The eluate 

was evaporated to dryness, dissolved in 10% acetonitrile and applied onto a RP‐HPLC preparative 

Nucleodur C18(ec) 250 × 21 mm column combined with an Agilent 1100 HPLC‐system.  Elution was 

performed by application of following solvent gradient of water/0.05% formic acid (solvent A) and 

methanol/0.05% formic acid (solvent B) at a flow rate of 16 mL/min: linear increase from 0% to 50% B 

within 50 min followed by a linear increase to 95% B in 5 min, holding B for an additional 5 min. The 

wavelengths chosen for detection were 215 nm and 280 nm, respectively. Siderophore containing 

fractions were confirmed by using the CAS‐assay. Positive fractions were lyophilized and subjected to 

further analysis. The retention time of erythrochelin was 30.7 min.  

 

4.9 Methods for Stereochemical Analysis 

 

4.9.1 Stereochemical Analysis of Erythrochelin via FDAA-Derivatization 

 

Derivatization of amino acids with Marfey’s reagent (FDAA) [N‐α‐(2,4‐dinitro‐5‐fluorophenyl)‐L‐

alaninamide] allows the discrimination between L‐ and D‐isomers due to altered retention times  

(Figure 4.5). FDAA derivatives of D‐amino acids exhibit strong intramolecular bonding which reduces 

their polarity relative to the corresponding L‐amino acids. Consequently, the D‐derivatives are selectively 

retained on RP columns. FDAA‐derivatization of erythrochelin hydrolysate was conducted to elucidate 

the stereochemical properties of the single amino acids. 

Five hundred micrograms of erythrochelin were completely hydrolyzed by addition of 400 μL of 6 N HCl 

and incubation at 110°C for 24 h. The solution was lyophilized and the remaining residue dissolved in  
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10 μL of 1 M NaHCO3. 170 μL of 1% FDAA in acetone were added and the solution was heated at 37°C for 

1 h. The derivatization reaction was terminated by addition of 20 μL 1 N HCl. After lyophilization the 

derivatized amino acids were resolubilized by addition of 1:1 water:acetonitrile solution and 0.1% TFA to 

obtain a final volume of 400 μL. Products of derivatization were analyzed by RP‐LCMS on a Synergi 

Fusion‐RP 80 250 x 2.0 mm column (Phenomenex) utilizing the following solvent gradient of buffer A  

(10 mM ammonium formate, 1% methanol, 5% acetonitrile, pH 5.2) and buffer B (10 mM ammonium 

formate, 1% methanol, 60% acetonitrile, pH 5.2) at a flow rate of 0.3 mL/min: linear increase from 0% to 

30% B within 30 min followed by a linear increase to 95% B in 2 min, holding B for an additional 5 min. 

The wavelength chosen for detection was 340 nm and the column temperature was 20°C.206 10 μL of 

sample was added to 90 μL of water prior to injection of 10 μL. To determine the stereochemistry of the 

present amino acids, amino acid standards (D/L‐Ser and L‐hOrn) were prepared to compare retention 

times, MS‐spectra and to perform coelution experiments. The FDAA‐derivatized amino acids were 

synthesized by incubation of 25 μL 50 mM amino acid in water, 50 μL 1% FDAA in acetone and 10 μL of  

1 M NaHCO3 at 37°C for 1 h. The solution was lyophilized, and the dried products resolubilized in 1:1 

water:acetonitrile solution and 0.1% TFA to obtain 200 μL. L‐hOrn was synthesized chemically according 

to an established protocol.207 Coelution experiments were conducted by mixing 10 μL of derivatized 

erythrochelin hydrolysate with 1 μL of derivatized D‐Ser amino acid standard and 3 μL of derivatized  

L‐hOrn standard. RP‐LCMS analysis was performed as described above.  

 

 

 

 

 

Figure 4.5: FDAA‐derivatization of D/L‐configured amino acids: The base assisted nucleophilic attack of the  

α‐NH2 group of the amino acids onto the fluorinated aryl moiety results in DNAP‐modified diastereomers 

which can be subsequently separated on RP columns.   

 

4.9.2 Determination of Erythrochelin Amino Acid Connectivity  

 

The determination of erythrochelin amino acid connectivity together with the results obtained from 

amino acid stereochemistry analysis establishes the overall stereochemistry of erythrochelin. This 

approach took advantage of the C‐terminal dipeptide consisting of two modified ornithines solely, which 

could be generated, isolated, hydrolyzed and derivatized.    
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3 mg of erythrochelin were partially hydrolyzed in 200 μL of 6 N HCl at 110°C for 20 min. The resulting 

solution was lyophilized and resolubilized in 1:1 water:acetonitrile solution and 0.1% TFA to a final 

volume of 200 μL and analyzed via an LTQ‐FT instrument to a microbore Agilent 1100 HPLC system. 

Products were analyzed on a Nucleodur C18(ec) 125 x 2 mm column, utilizing the following solvent 

gradient: 0‐30 min, 0%‐100%  acetonitrile into water, both supplemented with 0.1% TFA and holding 

100% acetonitrile for an additional 5 min. The column temperature was 45°C and the flow‐rate was  

0.3 mL/min. CID fragmentation studies within the linear ion trap were done using online LCMS. The 

target fragment was isolated from the mixture with an Agilent 1100 HPLC‐system connected to an 

AnalytFC fraction collector (Agilent) on a Hypercarb 100 x 2.1 mm column (Thermo) utilizing the 

following solvent gradient of buffer A (10 mM ammonium formate, 1% methanol, 5% acetonitrile,  

pH 5.2) and buffer B (10 mM ammonium formate, 1% methanol, 60% acetonitrile, pH 5.2) at a flow rate 

of 0.3 mL/min: linear increase from 0% to 30% B within 30 min followed by a linear increase to 95% B in  

2 min, holding B for an additional 5 min. The wavelength chosen for detection was 340 nm and the 

column temperature was 20°C.206 Product containing fractions were identified by RP‐LCMS. Positive 

fractions were lyophilized, hydrolyzed and derivatized with FDAA as described above. Analysis of the 

derivatized amino acids was performed via RP‐LCMS.  

 

4.10 Bioactivity Assays 

 

4.10.1 DNA-Bisintercalation Activity Assay 

 

The DNA‐bisintercalation activity assay is based on the capability of specific natural products to 

intercalate into duplex DNA. This intercalation leads to a stabilization which affects the melting 

temperature (Tm) of duplex DNA which can be measured spectrophotometrically. To investigate the 

intercalative properties of thiocoraline and its chemoenzymatically generated analogues, a set of 

oligonucleotides was synthesized (Table 4.3). The sequences of the utilized oligonucleotides were based 

on results obtained earlier.134  Annealing of each 5’‐oligonucleotide with its complementary 3’‐

oligonucleotide at a final duplex concentration of 2 μM in 10 μL phosphate buffer (10 mM 

sodiumphosphate, 100 mM NaCl, pH 7.0) was accomplished in a standard thermocycler (Eppendorf) by 

heating the solution to 95°C for 5 min and gradually cooling to 20°C at a rate of 1°C/min. Samples were 

incubated with authentic thiocoraline or the isolated macrocycles at a final concentration of 2 μM 

bisintercalator in 5 μL DMSO for 1 h at 37°C. Subsequently, phosphate buffer was added to a final 

volume of 200 μL and the mixture was transferred into a UV‐cuvette and overlaid with silicon oil. DNA‐
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melting experiments were carried out on a DU‐800 spectrophotometer (BeckmannCoulter). The initial 

temperature of 25°C was gradually increased by a ramp rate of 1°C/min to a final temperature of 95°C. 

Consecutively, a reverse experiment was conducted by decreasing the temperature from 95°C to 25°C 

utilizing the same temperature gradient. Throughout the process absorption at 260 nm was measured. 

The midpoint of the transition (Tm) was calculated and compared to a control lacking the bisintercalator. 

Based upon these results the stabilization of duplex DNA (ΔTm) was calculated. 

 

Table 4.3: The utilized oligonucleotides for the evaluation of DNA‐bisintercalation activity of thiocoraline and 

the chemoenzymatically generated analogues. Putative intercalation sites are accentuated in red.  

 

 

 

 

 

 

 

 

 

 

4.10.2 ACE Inhibition Assay 

 

The determination of ACE inhibition by erythrochelin and ferri‐erythrochelin was carried out according to 

established protocols.208 ACE catalyzes the proteolytic cleavage of the synthetic substrate HHL which 

represents an analogue of the natural substrate angiotensin I (Figure  4.6). Products of proteolysis are 

hippuric acid (Hip) (λmax = 228 nm) and L‐histidyl‐L‐leucine (HL). ACE inhibition assays were carried out by 

incubating 50 µL of HHL solution (5 mM) and 12.5 µL of inhibitor in buffer (50 mM HEPES, 300 mM NaCl, 

pH 8.3) at 37°C for 10 min. Subsequently, 10 µL of ACE solution (0.05 U/mL ddH2O) were added and the 

mixture was incubated at 37°C for 2 h. The reaction was stopped by addition of  

62.5 µL of 1 N HCL. The assays were analyzed by RP‐LCMS on a Nucleodur C18(ec) 125 × 2 mm column 

(Macherey & Nagel) utilizing the following solvent gradient of water/0.1% TFA (solvent A) and 

acetonitrile/0.1% TFA (solvent B) at a flow rate of 0.2 mL/min: linear increase from 0% to 95% B within 

20 min holding B for an additional 5 min. The wavelength chosen for detection of released hippuric acid 

was 228 nm and the column temperature was 20°C.208 

oligonucleotide  sequence (5’→3’) 

  
5’‐AT CAATTAAATATAAC 

3’‐AT GTTATATTTAATTG 

5’‐AS AATATACGTTCGATTAA 

3’‐AS TTAATCGAACGTATATT 

5’‐GC GCGCGGCGTCCGGGCC 

3’‐GC GGCCCGGACGCCGCGC 

5’‐TCGA AATATAAATCGATAAATTAA 

3’‐TCGA TTAATTTATCGATTTATATT 

5’‐GCGG AATATAAAGCGGTAAATTAA 

3’‐GCGG TTAATTTATCCGCTTTATATT 
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Figure 4.6: ACE‐mediated proteolytic cleavage of the synthetic substrate HHL giving rise to the corresponding 

dipeptide (HL) and hippuric acid (Hip).  

 

4.11 Bioinformatic Methods 

 
Genome analysis and operon visualization was performed with Artemis, as provided by the Sanger 

Institute.209 Adenylation domain specificity prediction of NRPSs was carried out with the NRPSpredictor, 

an online bioinformatic analysis tool.185 The tool extracts the residues defining the active site of 

adenylation domains and compares the found specificity motif with known and characterized 

adenylation domains. In addition to analysis of the ten amino acid code defined by Stachelhaus et al., 

residues that are positioned 8 Å around the substrate are also identified, leading to a more precise 

specificity prediction.210 Genome‐genome BLAST comparison was conducted with the Artemis 

Comparison Tool (ACT) using the tBLASTx algorithm with the E‐value set to 10.0 and a BLOSUM62 scoring 

matrix.211 Genome comparisons were calculated with DoubleACT using the annotated genomes of S. 

erythraea NRRL 23338 and Shigella flexneri 5 str. 8401 (Microbial Genome Center of ChMPH, GenBank 

accession number: CP000266) and a tBLASTx algorithm.212 GeneMarkS, developed at the Georgia 

Institute of Technology (Atlanta, Georgia, USA), served as the general platform for additional genome 

annotation.213  
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5. Results 
 

5.1 TE-Mediated Iterative Assembly of Chromodepsipeptides 

 

The class of biologically active peptides is a rich resource for the discovery of novel bioactive agents. 

Among this class, peptides of nonribosomal origin represent structurally and functionally diverse natural 

products with a broad pharmacological spectrum, that are applied as antineoplastic agents (bleomycin), 

antibacterial compounds (daptomycin) or immunosuppressants (cyclosporine) (Table S1). This structural 

diversity is a result of building block variety and biosynthetic logic being either linear, nonlinear or 

iterative. Iterative assembly of NRPs is generally mediated by C‐terminal thioesterase domains capable of 

oligomerizing linear peptidyl substrates and the modular template that is used repeatedly. In this study 

the cyclodimerization potential of the thioesterase domain of the thiocoraline biosynthetic machinery 

was investigated to obtain further insights into the iterative assembly of quinoline‐ and quinoxaline‐type 

chromodepsipeptides (Figure 5.1). The biocombinatorial potential of the recombinant enzyme as well as 

the substrate specificity of TioS PCP‐TE were determined and macrocyclization reactions were optimized 

to obtain maximum yields.  Chemoenzymatically generated macrocycles were isolated, investigated 

towards DNA‐bisintercalation activity and compared to native thiocoraline. In summary, TioS PCP‐TE 

represents a robust and versatile catalyst for the generation of chromodepsipeptide analogs with 

potentially improved pharmacological properties.* 

Figure 5.1: Chemoenzymatic approach for the generation of thiocoraline analogues based on C‐terminal 

SNAC‐activated tetrapeptidyl thioesters and the recombinant cyclase TioS PCP‐TE. Solid‐phase peptide 

synthesis (SPPS) affords the peptide subtrates whereas the thioesterase mediates ligation and subsequent 

cyclization of the substrate in vitro.  

     
 

* The work described in chapter 5.1.1, in particular the expression and preliminary characterization of TioS PCP‐TE 
as an active apo‐form protein was to some extent published previously in the diploma thesis: L. Robbel, In vitro‐
Charakterisierung der Makrothiolaktonisierung von substratanalogen Peptidylthioestern durch die rekombinante 
Thioesterasedomäne aus der nichtribosomalen Thiocoralin Synthetase TioS, Marburg 2007. Some parts presented 
in the following paragraph might therefore be redundant to equivalent parts of the diploma thesis. The paragraphs 
were included to improve overall clarity and to present a comprehensive characterization of TioS PCP‐TE.   
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5.1.1 Recombinant Expression and Isolation of TioS PCP-TE as an Active Apo-Protein 

 

The gene fragment tioS PCP-TE was synthesized by EZBiolabs with codon usage optimization for 

heterologous production in E. coli. The fragment encoded the excised C‐terminal PCP‐TE didomain of the 

thiocoraline synthetase TioS, covering the N‐terminal 40 aa upstream of the core‐T motif GGSSL. TioS 

PCP-TE was cloned into the pQE60 vector and heterologously expressed in E. coli M15/pREP4 cells and 

isolated as a C‐terminally His6‐tagged apo‐form protein (Figure 5.2 A) as described in the Methods 

section (4.2.2). Final protein yield per liter culture after concentration and dialysis was 8.0 mg. The 

inclusion of the adjacent PCP‐domain is assumed to ensure the correct N‐terminal fold of the protein. 

Overall α‐helical protein fold, as predicted for α/β‐hydrolases, was confirmed via CD spectropolarimetric 

analysis (4.4.2) (Figure 5.2 B). The iteratively working thioesterase GrsB TE, which exhibits an analogous 

structural fold, served as a control (Figure 5.2 C).  

 

Figure 5.2: A) SDS‐PAGE of purified recombinant TioS PCP‐TE (38.5 kDa). Protein Marker (M) was Fermentas 

PageRuler. B/C) CD‐spectra of TioS PCP‐TE (B) and GrsB TE (C) as iteratively working representatives of the 

α/β‐hydrolase family. Minima at 209 nm and 223 nm as well as the maximum at 195 nm indicate a clear 

overall α‐helical fold of the protein being in full agreement with the proposed fold of the α/β‐hydrolases.  

 

To confirm the functionality of the catalytic triad consisting of Ser‐His‐Asp, which results in a 

deprotonated active‐site serine, the activity‐based fluorescence labeling assay was carried out. The 

recombinant proteins TioS PCP‐TE, GrsB PCP‐TE and GrsB TE were incubated with the activity‐based 

probe FP‐TAMRA (4.6.2). Controls were heat‐denatured prior to the assay to exclude unspecific labeling 

of the proteins. Native proteins displayed fluorescence, due to covalent modification of the active‐site 

serine with the fluorescent probe, whereas the denatured thioesterases were not labeled (Figure 5.3).  
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Figure 5.3: A) SDS‐PAGE analysis of GrsB TE, GrsB PCP‐TE and TioS PCP‐TE after FP‐TAMRA labeling studies.  

B) SDS‐PAGE analysis of labeled proteins prior to Coomassie staining on an UV‐screen (λ = 312 nm). Labeled 

proteins that contain an active‐site serine display fluorescence due to covalent modification with the 

fluorescent probe. Native thioesterases are indicated with (+) and denatured thioesterases with (‐). The 

protein marker was Fermentas PageRuler.  

 

 

5.1.2 Substrate Specificity of TioS PCP-TE 

 

To evaluate the biocombinatorial potential and to investigate the combined ligation and 

macrocyclization mechanism of the excised TE‐domain TioS PCP‐TE, a set of tetrapeptidyl‐thioesters was 

synthesized and incubated with the recombinantly generated protein (10 µM) (4.5.1). The sequences of 

the tetrapeptidyl‐substrates were initially based on the primary amino acid sequence of the linear 

thiocoraline tetrapeptidyl‐precursor (Figure 5.4). To overcome the lack of synthetically demanding 

building blocks for solid phase peptide synthesis (SPPS) and to allow the generation of novel thiocoraline 

analogs, naturally occurring modified amino acids were substituted with commercially available ones. 

The utilized substrates lacked N‐methylation of the C‐terminal cystein‐residues and the  

3‐hydroxyfunctionality of the chromophore moiety 3‐hydroxy‐quinaldic acid (3HQA), whereas 

stereochemical information was conserved throughout the oligopeptide chain. For stability reasons the 

tetrapeptidyl substrates were C‐terminally activated as SNACs circumventing thiophenol‐activation 

(4.5.2). Furthermore, synthetically demanding synthesis of the octapeptidyl‐precursors was 

circumvented by the ligation capability of TioS PCP‐TE resulting in the utilization of  

tetrapeptidyl‐precursors. 
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Figure 5.4: The chemical structures and sequences of the synthesized tetrapeptidyl SNAC‐thioesters. The 

native thiocoraline tetrapeptide (TC) is given. All substrates employed throughout the studies lacked the 

hydroxylation of the chromophore moiety and N‐methylations of the peptidic backbone (accentuated in red).  

 

All assays were analyzed via RP‐LCMS methods. Incubation of recombinantly produced TioS PCP‐TE with 

TL1, resembling the most native substrate based on NRPS A‐domain specificity prediction, revealed 

solely hydrolytically cleaved linear tetrapeptide (4.6.3). After 1 h total substrate hydrolysis was detected. 

This result indicated that the steric demand or the polarity of the C‐terminal amino acid is essential for 

recognition of the substrate and subsequent ligation and macrocyclization. In addition, it was speculated 

that S‐Me‐L‐Cys4 is incorporated into the oligopeptide chain instead of L‐Cys4. This model of biosynthesis 

would require S‐methylation prior to cyclization in vivo. Substitution of L‐Cys4 with the sterically more 

demanding S‐Me‐L‐Cys4 (TL2) also led to the exclusive formation of hydrolytically cleaved linear 

tetrapeptide. Based on these result,s L‐Cys3 was replaced with L‐Ala3 (TL3) in order to maintain 

stereochemical information and to minimize electrostatic repulsion effects between sulfhydryl groups in 

close proximity. HPLC‐MS‐analysis of the assay revealed the formation of macrothiolactone Cy3  

(tR = 27.3) with a hydrolysis (Hy3, tR = 12.1) to cyclization‐ratio of 12:1 and total substrate conversion 

after 2 h at 25°C (Figure 5.5).  
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Figure 5.5: Cyclization of substrate TL3 mediated by TioS PCP‐TE. A) The HPLC traces correspond to the 

incubation of TL3 (300 μM) with TioS PCP‐TE at specific temperatures for 2 h. The blue HPLC trace 

corresponds to the control lacking the enzyme. Enzymatic conversion of TL3 leads to the hydrolytically 

cleaved tetrapeptide Hy3 at tR = 12.1 and the macrothiolactone Cy3 at tR = 27.3. B) Cyclization to hydrolysis‐

ratios depending on the reaction temperature and the chemical structure of Cy3. Ratios are based on  

HPLC‐MS‐analyses of the assays after 2 h incubation at the specified temperature.  

 

Encouraged by the results obtained and to investigate the mechanism of macrocyclization, the steric 

demand of the C‐terminal amino acid was further increased by the incorporation of  L‐Met4 (TL4) 

showing an improved hydrolysis to cyclization‐ratio of 1:2 (Hy4, tR = 14.2; Cy4, tR = 24.7). Additionally, the 

formation and accumulation of the linear octapeptidyl‐SNAC (Lig4, tR = 24.1) was observed representing 

the main product. In total, substrate TL4 was converted at a ratio of 1:4:2 (Hy4/Lig4/Cy4) (Figure 5.6). 

The steric demand of the C‐terminal L‐Met4 led to the covalent trapping of the ligation product and 

abolished complete macrocyclization. To corroborate the result that L‐Cys3 strongly affects 

macrothiolactonization, TL5 was synthesized showing a mixed substitution pattern of L‐Cys3 and L‐Met4. 

Analogously to the results obtained with TL2, TioS PCP‐TE is not capable of catalyzing ligation or 

macrothiolactonization. Total substrate turnover is accomplished after 2 h resulting in complete 

hydrolytic cleavage of the thioester. 
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Figure 5.6: Cyclization and ligation of substrate TL4 mediated by TioS PCP‐TE. A) The red HPLC trace 

corresponds to the incubation of TL4 (300 μM) with TioS PCP‐TE at 25°C for 2 h. The blue HPLC trace 

corresponds to the control lacking the enzyme. Enzymatic conversion of TL4 leads to the hydrolytically 

cleaved tetrapeptide Hy4 at tR = 14.2 and the macrothiolactone Cy4 at tR = 24.7. The sterical demand of the  

C‐terminal L‐Met residue gives rise to the formation of the ligation product (Lig4, tR = 24.1) B) MS‐spectra and 

chemical structures of the products: Cy4 ([M+H]+ = 1035.3, [M+Na]+ = 1057.3), Lig4 ([M+H]+ = 1154.4,  

[M+Na]+ = 1176.2). 

 

All chromodepsipeptides share a D‐configured amino acid in position 1, responsible for the nucleophilic 

attack of the side chain onto the acyl‐O‐TE oxoester intermediate. To prove the significance of this 

stereoinformation substrate TL6 was synthesized harboring L‐Cys1 instead of D‐Cys1. Using the linear 

tetrapeptidyl substrate solely hydrolysis was detected confirming the necessity of the N‐terminal 

stereogenic center. 

 

5.1.3 Biocombinatorial Evaluation of TioS PCP-TE 

 

In order to generate novel chromodepsipeptides with improved physico‐chemical stability based on the 

structure of thiocoraline, an alternative set of subtrates was synthesized carrying D‐Ser1 instead of D‐Cys1 

as the cyclization‐mediating nucleophile. Employment of TL7, the serine‐substituted analogue of TL1, 

showed macrocylization at a hydrolysis to cyclization‐ratio of 5:1. Products were assigned to the 

hydrolysis product (Hy7), the macrolactone (Cy7) and a macrolactone with intramolecular disulfide 

connectivity (Cy7SS). Consecutively, TL8 was incubated with TioS PCP‐TE. After 60 min complete 

substrate conversion was detected with a hydrolysis (Hy8, tR = 11.2) to cyclization (Cy8, tR = 30.2)‐ratio of 

2:1 (Figure 5.7). Autoxidation of Cy8 gives rise to the disulfide‐bridged macrolactone Cy8SS (tR = 32.7). 

Additionally, side‐product formation could be assigned to a four residue macrolactone Cy8/4 resulting 
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from an intramolecular attack of the side chain nucleophile of D‐Ser1 onto the acyl‐O‐TE oxoester  

(Cy8/4 tR = 20.5) (Figure S1).  

 

Figure 5.7: Cyclization and ligation of substrate TL8 mediated by TioS PCP‐TE. A) The red HPLC trace 

corresponds to the incubation of TL8 (300 μM) with TioS PCP‐TE at 25°C for 1 h and the green trace for the 

same reaction for 2 h. The blue HPLC trace corresponds to the control lacking the enzyme. Enzymatic 

conversion of TL8 leads to the hydrolytically cleaved tetrapeptide Hy8 at tR = 11.2 and the macrolactone Cy8 

at tR = 30.2. Oxidative formation of an intramolecular disulfide bridge gives rise to macrolactone Cy8SS. In 

addition, side‐product formation of Cy8/4 at tR = 30.2 was observed. B) MS‐spectra and the chemical 

structures of the products: Cy8 ([M+H]+ = 1039.1, [M+Na]+ = 1061.2), Cy8SS ([M+H]+ = 1037.4,  

[M+Na]+ = 1059.4). 

 

MS‐fragmentation studies strongly support the identity of the four residue macrolactone and exclude 

the formation of an alternative two residue macrothiolactone, due to the detection of intense fragments 

containing dehydro‐alanine, which are characteristic for gas‐phase fragmentations of lactones  

(Figure S1).214 Macrocyclization of the linear tetrapeptidyl‐SNAC was exclusively limited to substrate TL8.  

Substitution of L‐Cys3 with L‐Ala3 and subsequent incubation of substrate TL9 with TioS PCP‐TE led to a 

hydrolysis (Hy9 tR = 7.5) to cyclization (Cy9 tR = 27.5)‐ratio of 8:1 at 25°C (Figure 5.8). Based on the results 

obtained with TL4, the analogous substrate TL10 was synthesized. HPLC‐MS analysis revealed the 

formation of the macrocycle Cy10 at a hydrolysis‐to‐cyclization‐ratio of 8:1. Additionally, the formation 

of the linear octapeptidyl‐SNAC Lig10 was detected, reflecting the steric demand of L‐Met4. To 

investigate the influence of the chromophore moiety on cyclization‐efficiency and to establish TioS PCP‐

TE as a general catalyst for the ligation and cyclization of the quinoline‐ and quinoxaline‐type class of 

chromodepsipeptides, TL11 was synthesized. The primary sequence was based on TL3 with the 

exception of the chromophore moiety quinaldic acid (QA), which was substituted with quinoxaline‐2‐
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carboxylic acid (QX), the chromophore found in echinomycin and triostin A. The cyclization reaction 

profile revealed a hydrolysis‐to‐cyclization‐ratio of 8:1 in analogy to substrate conversion of TL3. 

Substrate conversion was completed after 1 h of incubation at 25°C. This result in general indicates the 

relaxed substrate specificity of the cyclase towards the N‐terminal chromophore and implies that TioS 

PCP‐TE can serve as a prototypical TE for the assembly of quinoline or quinoxaline carrying compounds. 

 

5.1.4 Temperature Dependence of Cyclodimerization Reactions 

 
Enzymes influence the kinetic properties of the catalyzed reaction but thermodynamic parameters 

remain unaffected. The formation of the macrocyclic lactone from two thioester‐activated building 

blocks represents an energetically favored reaction, from a thermodynamic point of view, resulting in a 

+M‐stabilized structure. In contrast, the macrothiolactone represents a thermodynamically instable 

product due to the low bond dissociation energy, which is the result of the missing resonance 

stabilization of the S‐C‐bond. To analyze if the formation of macrolactones and the energetically 

unfavored macrothiolactones can be influenced by altering the thermodynamics of the enzymatic 

reaction, varying temperatures were employed when conducting the assays. In order to improve the 

cyclization yields and to decrease the hydrolytic release of the linear peptidyl‐precursor, the substrates 

TL3 and TL9, both differing only in the nature of the cyclization‐mediating nucleophile (D‐Cys1 or D‐Ser1) 

were analyzed towards varying assay temperatures. The temperatures chosen were 15°C, 25°C and 37°C 

respectively. TL3 showed an improved hydrolysis to cyclization‐ratio of 3:1 at 15°C compared to a ratio of 

12:1 (Hy3/Cy3) at 25°C. The best macrothiolactone (Cy3, tR = 27.3) yields were obtained at 37°C with an 

altered reaction profile revealing a low flux towards hydrolysis (Hy3, tR = 12.1) and a shifted hydrolysis to 

cyclization‐ratio of 1:7 (Figure 5.5). Kinetic parameters were determined for total substrate conversion at 

37°C revealing a kcat of 5.26 ± 0.64 min‐1. In contrast, TL9 was cyclized more efficiently at low 

temperatures. An improved hydrolysis to cyclization‐ratio of 4:1 was observed at 15°C compared to a 

ratio of 8:1 at 25°C (Hy9, tR = 7.5; Cy9, tR = 27.3) (Figure 5.8). Interestingly, cyclization was completely 

abolished at 37°C. Solely the formation of the linear tetrapeptide (Hy9) was detected. Additionally, 

substrate TL8 was examined towards temperature dependence of macrolactonization. Best 

macrocyclization yields were obtained at 15°C with a hydrolysis to cyclization‐ratio of 1:4 compared to a 

ratio of 2:1 at 25°C (Hy8, tR = 11.2; Cy8, tR = 30.2) (Figure 5.7). At 37°C cyclization yields were reduced, 

consistent with the results obtained with TL9, to a ratio of 9:1 towards hydrolysis. Kinetic parameters 

were determined for TL8 at 15°C resulting in a kcat of 8.92 ± 1.2 min‐1.  



 Results  

‐ 75 ‐ 

The data obtained clearly demonstrates the applicability of this approach which allows the improvement 

of the investigated cyclodimerizations for maximum macrocycle yield by altering reaction temperatures.  

 

Figure 5.8: Cyclization of substrate TL9 mediated by TioS PCP‐TE. A) The HPLC traces correspond to the 

incubation of TL9 (300 μM) with TioS PCP‐TE at specific temperatures for 2 h. The blue HPLC trace 

corresponds to the control lacking the enzyme. Enzymatic conversion of TL9 leads to the hydrolytically 

cleaved tetrapeptide Hy9 at tR = 7.5 and the macrolactone Cy9 at tR = 27.3. B) Cyclization to hydrolysis‐ratios 

depending on the reaction temperature and the chemical structure of Cy9. Ratios are based on HPLC‐MS‐

analyses of the assays after 2 h incubation at the specified temperature 
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5.1.5 DNA-Bisintercalation Activities 

 
Thiocoraline and analogous natural products attain their bioactivity as antiproliferative agents from 

DNA‐bisintercalation properties. In order to evaluate the DNA‐bisintercalative properties of the 

chemoenzymatically generated thiocoraline analogues and to elucidate structural features contributing 

to DNA‐insertion, a DNA‐bisintercalation assay was established (4.10.1). Initially, a set of five 

oligonucleotides (Table 4.3) was analyzed for the native Tm based on UV‐absorption (Figure 5.9).134  

 

 

 

 

 

 

 

 

 

Figure 5.9: A) UV‐absorption profiles of the investigated oligonucleotides at 260 nm. The midpoint of 

transition (Tm) was calculated for the forward and the reverse experiment, which was conducted by 

decreasing the temperature from 95°C to 25°C utilizing the same temperature gradient. B) The calculated 

reverse and forward Tm‐values for the corresponding oligonucleotides.   

 

To compare the bisintercalation properties of the novel analogues with known intercalation agents, 

native thiocoraline was isolated and subjected to the DNA‐melting assay (4.8.2). Incubation of the 

oligonucleotides with thiocoraline and subsequent DNA‐melting experiments resulted in melting curves 

showing a hysteresis shape characteristic for DNA‐bisintercalators. All nucleotides experienced 

thiocoraline‐induced duplex‐stabilization at a concentration of 2 µM, proving the applicability of the 

established system for the investigation of natural product DNA‐bisintercalation activity (Figure 5.10). 

The oligonucleotide AS displayed the highest degree of stabilization (∆Tm = 15.9°C) and was chosen for 

subsequent experiments employing the chemoenzymatically generated macrocycles. To elucidate 

structural features contributing to DNA‐insertion, four tetrapeptidyl thioesters were synthesized. In 

accordance with the previously discussed results the macrocyclization assays were carried out under 

optimal conditions. Isolation of the corresponding macrocycles (Cy3/Cy8/Cy8SS/Cy9/Cy11) was achieved 

by RP‐HPLC separation (4.8.1). Incubation of AS with the isolated macrolactones and macrothiolactones 
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led only to a marginal stabilization of 0.1‐0.2°C, suggesting that substitutions within the peptide 

backbone strongly influence macrocycle‐DNA interactions (data not shown).  

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.10: A) UV‐absorption profiles of the investigated oligonucleotides at 260 nm after incubation with  

2 µM thiocoraline. Duplex stabilization by thiocoraline resulted in typical hysteresis shaped melting curves, 

characteristic for DNA‐bisintercalators. B) The calculated reverse and forward Tm‐values for the stabilized 

oligonucleotides compared to the control lacking thiocoraline show the degree of stabilization.  
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5.2 Erythrochelin – a Hydroxamate-Type Siderophore Predicted from the Genome of S. erythraea 

 

Advances in sequencing technologies gave rise to a plethora of sequenced and annotated microbial 

genomes. Bioinformatic analysis of these microbial DNA sequences revealed a multitude of cryptic gene 

clusters, demonstrating a tremendous potential for the discovery of natural products. The isolation of 

the corresponding products of these cryptic clusters is challenging due to either a low rate of production 

or unknown conditions for secondary metabolite biosynthesis. In addition, bioactivity‐guided natural 

product isolation is often impeded by unpredictable biological activities of the target compounds and the 

lack of appropriate screening‐methods. To circumvent the problem of a low rate of biosynthesis and 

unknown biological activity, a genome mining approach relying on bioinformatic genome analysis and 

transcriptome data combined with radiolabeled precursor feeding studies for NRPS‐derived natural 

products was carried out. In this methodology transcriptome‐analysis provides information on the 

growth conditions leading to gene cluster expression, whereas A‐domain specificity prediction defines 

the radiolabeled precursor. This approach led to the discovery of erythrochelin, a hydroxamate‐type 

siderophore, isolated from cultures of the actinomycete S. erythraea. Production conditions were 

optimized to obtain sufficient amounts for the structural and functional characterization of the 

compound, which relied on NMR‐ and MSn‐analysis. The overall stereochemistry was determined via 

derivatization and LCMS‐analysis of the single amino acids and the functional properties of erythrochelin 

acting as an iron‐chelating compound and potential inhibitor of ACE were investigated. In summary, the 

radio‐LCMS‐guided genome mining proved to be advantageous for the initial detection of NRPS‐derived 

natural products due to the sensitivity of radioactivity detection and the sophisticated analytical 

separation.  

 

5.2.1 Bioinformatic Identification of Two Siderophore Biosynthetic Gene Glusters in S. erythraea 

 

Analysis of the sequenced and annotated genome of S. erythraea led to the discovery of two NRPS‐gene 

clusters linked to siderophore biosynthesis and transport.215 While one of the two was predicted to 

encode for a mixed hydroxamate/catecholate‐type siderophore (nrps3), the second operon was 

envisaged to encode a tetramodular NRPS putatively capable of assembling a hydroxamate‐type 

siderophore (etc). Both biosynthetic gene clusters are located in the noncore region of the S. erythraea 

genome, which is housing the majority of secondary metabolite operons.215 
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The etc operon contains 11 CDSs which are clustered in a region covering 28.8 kb with an average GC‐

content of 71.2% (Figure 5.11). The NRP synthetase encoded by etcD (sace_3035) comprises four 

modules, each containing the essential condensation (C), adenylation (A) and peptidyl carrier protein 

(PCP) domains. In addition, module 1 and module 2 contain an epimerisation (E) domain each, 

responsible for stereoconversion of the accepted L‐amino acids to the D‐isomer, indicating the presence 

of two D‐configured residues in the assembled product.  

 

 

 

 

 

 

 

 

 

 

Figure 5.11: Schematic overview of the etc gene cluster. Putative functions of the proteins encoded within the 

operon are based on BLAST‐analysis and are given in the figure. Apart from the core components for 

siderophore biosynthesis, genes encoding for exporters and importers of the siderophore as well as typical 

transcriptional regulators for secondary metabolism are found, determining the boundaries of the cluster. 

 

The N‐terminal region of module 1 shares a high degree of homology to condensation domains 

suggesting the function of an initiation module mediating the condensation of an external building block 

with the PCP‐tethered substrate. Module 4 contains a C‐terminal C‐domain instead of a thioesterase 

(TE)‐domain commonly responsible for product release through hydrolytic cleavage or 

macrocyclization.216 Upstream of etcD, a gene with high sequence homology to characterized L‐ornithine 

hydroxylases is located. EtcB shares 64% sequential identity and 78% sequential similarity with CchB, the 

hydroxylase required for coelichelin biosynthesis.98 Based on the proposed function of EtcB, the 

incorporation of δ‐N-hydroxy‐L‐ornithine residues into the readily assembled oligopeptide was predicted. 

Furthermore, genes present in the cluster code for proteins typically associated with secondary 

metabolite biosynthesis and siderophore transport: a transcriptional regulator (etcA), an MbtH‐like 

protein (etcE) and proteins for siderophore export and uptake (etcCFGK). EtcC is proposed to be a 

membrane‐anchored ferric‐siderophore binding protein involved in siderophore uptake similar to the 
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periplasmic binding protein CchF, putatively mediating coelichelin uptake.38 The upstream edge of the 

etc cluster is defined by etcA, which encodes a regulatory protein of the LysR‐family, whereas the 

downstream edge is defined by etcK, encoding a dicarboxylate carrier protein. In addition, a CoA‐

transferase (EtcI) and a hydroxymethylglutaryl‐CoA ligase (EtcJ) are encoded within the cluster. A 

comprehensive bioinformatic analysis of the proteins encoded within the etc gene cluster is given in 

Table S2. The amino acid specificity of the synthetase EtcD was predicted by using a methodology 

comparing active‐site residues of known NRPS adenylation domains with the adenylation domains found 

in EtcD (Table 5.1).185,210,217 The first adenylation domain (A1) is predicted to activate L‐arginine but shows 

only 70% identity of the residues determining the specificity to MycC, suggesting the activation of a 

structurally analogous building block. MycC itself represents a NRPS‐termination module involved in the 

assembly of microcystin by Microcystis aeruginosa PCC7806, predicted to activate L‐arginine.218 A2 and A3 

are predicted to activate L‐serine and δ‐N-hydroxy‐L‐ornithine (L‐hOrn), respectively, as found in the 

assembly of enterobactin (EntF) and coelichelin (CchH).38,219 The C‐terminal adenylation domain A4 again 

is predicted to activate L‐arginine, displaying 60% identity to the characterized A‐domain of MycC. 

Interestingly, A1 and A4 feature a highly identical (90%) specificity determining residue pattern, leading to 

the assumption that both activate the same substrate. Based on the bioinformatic analysis of the etc 

gene cluster it was predicted that the assembled tetrapeptide consists of L‐hOrn, L‐Ser and two building 

blocks analogous to L‐Arg.  

 

Table 5.1: Comparison of the extracted active‐site residues determining the adenylation domain specificity of 

EtcD with known adenylation domains. Variations in the residue pattern are highlighted in red. The substrate 

prediction for each A‐domain as well as the product of the NRPS is given. MycC, microcystin synthetase; EntF, 

enterobactin synthetase; CchH, coelichelin synthetase. 

 

 

 

 

 

 

 

 

 

predicted adenylation domain specificity 

A domain active site residues substrate product 

A1 D V W A L G A V N K   
MycC D V W T I G A V D K 

 
L‐Arg microcystin 

A2 D V W H F S L V D K   
EntF D V W H F S L V D K L‐Ser enterobactin 

 
A3 D M E N L G L I N K   

CchH‐A3 D M E N L G L I N K 
 

L‐hOrn coelichelin 

A4 D V F A L G A V N K   
MycC D V W T I G A V D K L‐Arg microcystin 
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The nrps3 biosynthetic operon contains 12 CDSs which are clustered in a region covering 25.5 kb with an 

average GC‐content of 71.4%. It encompasses three nonribosomal peptide synthetases (sace_2693, 

sace_2695, sace_2696) which together consist of four individual modules, each containing all essential 

domains for peptide elongation (Figure 5.12). The N‐terminal region of the first synthetase Sace_2693 

shares a high degree of homology to PCP‐domains and is putatively involved in the initiation of 

siderophore biosynthesis. In this model, the 2,3‐DHB AMP‐ligase Sace_2694, which is homologous to 

DhbE, catalyzes the activation of 2,3‐DHB as an AMP‐derivative.220 This intermediate is subsequently 

transferred onto the 4’‐ppan group of Sace_2693 and initiates tetrapeptide assembly. An E‐domain 

located at the C‐terminus of Sace_2695 is postulated to mediate the conversion of the initially‐activated 

L‐amino acid to the D‐isomer. The dimodular NRPS Sace_2696 is proposed to be involved in the assembly 

and subsequent release of the tetrapeptide by the TE‐domain located at the C‐terminus of the 

synthetase.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12: Schematic overview of the nrps3 gene cluster. Putative functions of the proteins encoded within 

the operon are based on BLAST‐analysis and are given in the figure. Apart from the core components for 

siderophore biosynthesis, genes encoding for exporters and importers of the siderophore as well as typical 

transcriptional regulators for secondary metabolism are found. The boundaries are determined by a gene 

encoding a putative formyltransferase and a gene encoding an ABC‐type transporter.  

 

The upstream edge of the cluster is defined by sace_2691, encoding a methionyl‐tRNA 

formyltransferase. A common modification of hydroxamate‐type siderophores is the formylation of 

hydroxylated lysine or ornithine residues that is belived to be carried out by formyltransferases utilizing 
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the cosubstrate N10‐fH4F.221‐222 The presence of a formyltransferase in the biosynthetic cluster indicates 

the incorporation of a formylated building block into the tetrapeptide sequence.  Additional structural 

diversity is putatively introduced by O‐methylation of specific residues, mediated by the  

O‐methyltransferase Sace_2700.223 The downstream edge of the gene cluster is defined by the ABC‐type 

exporter encoding genes sace_2701 and sace_2702. Further genes located within the cluster code for a 

MbtH‐like protein (sace_2692), a periplasmic siderophore binding protein (sace_2797) and a lone‐

standing type II thioesterase (sace_2699). 

Analysis of the specificity‐conferring residues was conducted utilizing the methods mentioned above 

(Table 5.2).185,210,217 The first adenylation domain is predicted to activate L‐Orn as it shows 70% identity to 

the specificity motif of FxbC‐A1, involved in exochelin assembly.224 A2 is predicted to activate L‐Asn and 

the cognate subtrate for A3 is predicted to be L‐Thr as found in the calcium‐dependent antibiotic 

(CDA).187 The fourth adenylation domain A4 is proposed to activate L‐hfOrn and contains a specificity 

determining residue pattern which is identical to CchH‐A1, responsible for coelichelin biosynthesis.38 The 

incorporation of L‐hfOrn is in full agreement with the formyltransferase Sace_2691, encoded in the nrps3 

gene cluster. Based on the analysis of A‐domain specificities and the putative functions of the enzymes 

encoded within the cluster, it is predicted that the hydroxamate/catecholate‐type siderophore consists 

of L‐Orn, D‐Asn, L‐Thr and L‐hfOrn. The N‐terminus of the tetrapeptide is capped with the catecholate 

moiety 2,3‐DHB, which also participates in iron‐chelation.146 

 

Table 5.2: Comparison of the extracted active‐site residues determining the adenylation domain specificity of 

Sace_2693, Sace_2695 and Sace_2696 with known adenylation domains. Variations in the residue pattern are 

highlighted in red. The substrate prediction for each A‐domain as well as the product of the NRPS is given. 

FxbC, exochelin synthetase; CDA PSII‐I, CDA synthetase; CchH, coelichelin synthetase.  

 

 

 

 

 

 

 

 

 

 

 

 

 

predicted adenylation domain specificity 

A domain active site residues substrate product 

A1 D L F N L G L I H K   
FxbC‐A1 D M E N L G L I N K 

 
L‐Orn exochelin 

A2 D F T K V A E V G K   
CDA PSII‐A3 D L T K V G E V G K L‐Asn CDA 

 
A3 D F W N V G M V H K   

CDA PSI‐A2 D F W N V G M V H K 
 

L‐Thr CDA 

A4 D I N Y W G G I G K   
CchH‐A1 D I N Y W G G I G K L‐hfOrn coelichelin 
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5.2.2 Identification and Isolation of Erythrochelin via Radio-LCMS-Guided Genome Mining 

 

Transcriptome data of S. erythraea using GeneChip DNA microarrays, collected by De Bellis and 

coworkers, indicates up‐regulation of gene expression associated with the etc and the nrps3 gene 

clusters under specific conditions.225 It was shown that gene expression of nrps3 was  

upregulated in growth phase B (30‐50 h) and etc gene cluster expression was upregulated in the 

transition phase B/C (45‐65 h). To identify and isolate the putative siderophores, cultures of S. erythraea 

were grown under the same conditions as employed for collection of transcriptome data and growth 

phase was monitored by LCMS‐analysis using erythromycin production as the indicator of the growth 

phase. An extraction of the SCM‐medium supernatant after 4 d of growth, subsequent preparative HPLC 

fractionation and CAS‐liquid assay analysis of the fractions revealed a CAS‐reactive compound  

(Chapter 4.8.3) (Figure 5.13).205 The coelution of a multitude of compounds in the CAS‐assay positive 

fraction impeded the direct MS‐based detection and isolation of the siderophore due to media 

complexity. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.13: A preparative HPLC‐profile of a XAD16 resin extraction of SCM‐supernatants after 96 h growth of 

S. erythraea. The CAS‐liquid assay positive fraction is indicated by brackets. The UV‐absorption profiles clearly 

show the coelution of several compounds in the CAS‐positive fraction due to high media complexity. 

 

Bioinformatic analysis of the etc and the nrps3 gene clusters led to the prediction of L‐ornithine as a 

common building block putatively incorporated into both oligopeptides. In order to perform 

radiolabeling studies which target both compounds, a radio‐LCMS‐guided genome mining approach was 

applied by feeding the nonproteinogenic amino acid 14C‐L‐ornithine to cultures of S. erythraea.225 The 
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experimental setup consisted of a HPLC‐system coupled to a radioactivity flow‐through detector and a  

Q‐TOF mass spectrometer to directly link the radioactivity signal to a mass signal, leading to the 

identification of the target compound. 14C‐L‐Orn was added to the cultures prior to expression of the 

corresponding gene clusters (etc/nrps3) to ensure both the presence of the biosynthetic machinery and 

the incorporation of the radiolabel into the target compound (Chapter 4.7). Cultures of S. erythraea, 

supplemented with 14C‐L‐Orn, were grown for 96 h and extraction of the supernatant followed by radio‐

LCMS analysis revealed the radiolabeling of a compound with a measured m/z of 604.27 [M+H]+  

(Figure 5.14 A). The incorporation of radiolabeled L‐Orn was determined to be 2% of the total amount of 

radioactivity fed to the cultures employing the SCM‐medium. To reduce media complexity and to 

facilitate the isolation procedure, a radiolabeling experiment was carried out in iron‐deficient M9 

minimal medium. The incorporation of the radiolabel increased from 2% to 4% (Figure 5.14 B), whereas 

coeluting compounds were reduced as seen in the total ion chromatogram (TIC).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14: Radio‐LCMS‐profiles of radiolabeling experiments employing nonproteinogenic 14C‐L‐Orn.  

A) LCMS‐trace of an extraction of SCM‐medium. B) LCMS‐trace of an extraction of iron‐depleted M9 medium. 

In both cases the incorporation of the radiolabel occurred (red trace) and the compound eluting at tR = 10.5 

displayed a discrete m/z = 604.27 ([M+H]+) in the extracted ion chromatogram (EIC).  
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To isolate the siderophore in sufficient amounts for NMR‐structure elucidation, a large‐scale cultivation 

of S. erythraea in iron‐deficient modified M9 medium was carried out, giving rise to siderophore 

production of 10.2 mg/L culture (Chapter 4.8.4). The physiological function of the siderophore for iron 

uptake was confirmed by comparing supernatant extractions of S. erythraea cultures grown in absence 

or presence of iron. The presence of iron in the medium completely suppressed siderophore production, 

whereas the absence of iron in the medium induced the production of the target compound which 

elutes at tR = 13.2 (Figure 5.15). 

 

 

 

 

 

 

 

 

 

 
Fugure 5.15: LCMS‐traces of XAD16 extractions of S. erythraea cultures grown in iron‐depleted (blue trace) 

and iron‐rich (red trace, 100 μM FeCl3) M9 medium. The absence of iron clearly induces the production of the 

target compound which elutes at tR = 13.2 and shows the aforementioned m/z‐ratios ([M+H]+ = 604.4, 

[M+Na]+ = 626.4, [M+K]+ = 642.4), whereas the presence of iron completely supresses biosynthesis of the 

target compound. 

 

5.2.3 NMR-Based Structure Elucidation of Erythrochelin  

 

The structure of the target compound that was isolated from cultures of S. erythraea grown in M9 

minimal medium was determined using NMR‐methodology (Chapter 4.4.3) (Figure 5.16). The  

1H spectrum revealed the presence of four amide protons at 7.96, 7.74, 8.08, and 8.12 ppm (Figure S2). 

Four cross peaks were observed in the 1H‐15N HSQC (heteronuclear single‐quantum correlation 

spectroscopy) spectrum, which verified the presence of four amino acids in the sequence. The  

15N chemical shifts determined by cross peaks in the 1H‐15N HSQC spectrum are listed in Table S5. TOCSY 

(total correlation spectroscopy) cross peaks confirmed the presence of three ornithines and one serine in 

the compound. Two strong singlets at 1.84 and 1.96 ppm for three and six protons, respectively, 

revealed the presence of three acetyl groups, of which two are attached to very similar amino acids in 

the sequence. The observed long‐range 1H‐13C correlations showed the two acetyl groups to be 
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connected to the δ‐amino group of two δ‐N-hydroxy ornithines, respectively, while the third one is 

attached to the α‐amino group of one of the δ‐N‐acetyl‐δ‐N-hydroxyornithine (haOrn) residues, resulting 

in α‐N‐acetyl‐δ‐N‐acetyl‐δ‐N-hydroxy‐L‐ornithine (ac‐haOrn) (Figure 5.16). Three sequential NOE (nuclear 

Overhauser effect) contacts were observed, one revealing a connection between the terminal ac‐haOrn1 

and the Ser2, while the other two were for a sequential connection between a δ‐N-hydroxyornithine and 

a δ‐N‐acetyl‐δ‐N-hydroxyornithine residue and its reverse, respectively. Such double sequential 

connections can only be established through a diketopiperazine (DKP) unit, which is composed of a hOrn 

and a haOrn moiety. Furthermore, a long‐range 1H–13C correlation was detected between the carbonyl 

carbon of the serine and the δ‐CH2 of the hOrn, which constitutes the DKP. Analysis of the long‐range 

connections enables the establishment of a structure for the tetrapeptide siderophore as shown in 

Figure 5.16. The assigned 1H, 13C and 15N chemical shifts are listed in Tables S3‐S5. The observed NOE 

contacts and the long‐range 1H‐13C correlations verified the structure and are listed in Tables S6 and S7. 

Based on the results obtained by NMR the determined sequence for the peptide is ac‐haOrn1‐Ser2‐

cyclo(hOrn3‐haOrn4). The corresponding DQF‐COSY (double quantum filtering‐correlation spectroscopy),  

1H–15N HSQC, HMBC (heteronuclear multiple‐bond correlation spectroscopy) and ROESY (rotating frame 

overhauser effect spectroscopy) spectra of erythrochelin are shown in Figures S3‐S7.  

 

 

Figure 5.16: The structure of erythrochelin as determined by NMR. NMR‐contacts are indicated by arrows. 

Blue arrows indicate intra‐residue contacts; red arrows indicate long‐range inter‐residue contacts. A) Long‐

range 1H–13C correlations observed in DMSO (300K). B) NOE contacts observed in DMSO (300K). Sequential 

NOE contacts observed between hOrn3 and haOrn4 confirm the presence of a DKP‐moiety.  
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5.2.4 Mass-Spectrometric- and Stereochemical Analysis of Erythrochelin  

 
On the basis of the observed NMR‐spectra the presence and connectivity of δ‐N‐acetyl‐δ‐N‐

hydroxyornithine, δ‐N‐hydroxyornithine and serine in the sequence was determined. Erythrochelin itself 

shows an exact m/z‐ratio of 604.2938 ([M+H]+, calculated 604.2937) and a molecular formula of 

C24H41N7O11 (Chapter 4.3.3). To confirm the structural assignment obtained by NMR, MSn‐fragmentation 

studies were conducted (Figure 5.17). An intense fragment with an m/z‐ratio of 390.1979 ([M+H]+, 

calculated 390.1983) corresponded to the C‐terminal tripeptide comprised of serine and the DKP‐moiety 

built up by hOrn and haOrn residues (Figure 5.17 A). The loss of the N‐terminal serine residue gave rise 

to a dipeptidyl DKP‐fragment with an m/z‐ratio of 303.1662 ([M+H]+, calculated 303.1663). This fragment 

was furthermore subjected to MS3‐fragmentation (Figure 5.17 B). The resulting fragments revealed the 

presence of hydroxylated and acetylated ornithine residues. In addition, an intense fragment with an 

m/z of 145.0869 ([M+H]+, calculated 145.0971) was observed. This result gave strong evidence for the 

presence of the DKP‐moiety since such fragmentation behaviour is characteristic for DKP‐containing 

compounds and has been detected during fragmentation of an albonoursin intermediate (inset Figure 

5.17 B).226 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17: MS/MS‐fragmentation studies of erythrochelin. A) MS2‐fragmentation of the title compound. The 

fragment displaying an m/z‐ratio of 390.1979 ([M+H]+, calculated 390.1983) corresponds to the  

C‐terminal tripeptide (accentuated in red). Gas‐phase fragmentation also results in the loss of the N‐terminal 

serine‐residue (accentuated in blue). The dipeptidyl fragment displays an m/z‐ratio of 303.1662 ([M+H]+, 

calculated 303.1663). B) MS3‐fragmentation pattern of the C‐terminal DKP‐moiety m/z = 303.1662 ([M+H]+). 

Characteristic fragments resulting from DKP‐fragmentation are accentuated in blue (Fragment I,  

m/z: 173.1215 ([M+H]+, calculated 173.0920) or in red (Fragment II, m/z: 145.0869 ([M+H]+, calculated 

145.0971). Calculated and observed m/z‐ratios for additional fragments are given.  
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Determination of overall stereochemistry of erythrochelin was carried out utilizing Marfey’s reagent.206
 

After the acid induced total hydrolysis of erythrochelin and subsequent lyophilization, a RP‐LCMS 

analysis of the resulting products was carried out (Chapter 4.9.1). The HPLC‐trace revealed the complete 

breakdown of erythrochelin and the loss of all δ‐N‐acetyl functionalities. Apart from serine and N‐

hydroxyornithine species no further compounds were detected. Based on these results the FDAA‐

derivatization procedure was carried out, employing the erythrochelin hydrolysate, the D/L‐Ser and L‐

hOrn standards. Interestingly, the derivatization reaction of L‐hOrn with FDAA in acetone led to the 

formation of a compound which did not show the expected mass of DNAP‐L‐hOrn. FT‐MS data and MS2‐

fragmentation proved the compound to be a nitrone species of L‐hOrn. MS‐data confirmed this result in 

both the derivatized standard as well as in the hydrolyzed erythrochelin sample. Therefore, the detected 

DNAP‐hOrn compounds are designated DNAP‐hOrn*. These results were also obtained during the 

synthesis of ε‐N‐acetyl‐ε‐N‐hydroxy‐L‐lysine and involve a nucleophilic attack of the hydroxylated side‐

chain amino group onto acetone.227 After having established a methodology for the separation of the 

derivatized amino acid standards, the method was applied for the derivatized erythrochelin hydrolysate 

(Figure 5.18). The HPLC‐chromatogram revealed the presence of D‐configured serine and L‐configured  

N‐hydroxyornithine species. In addition, a third compound was detected showing the same MS‐spectrum 

as DNAP‐L‐hOrn*. This signal was assigned to DNAP‐D‐hOrn*. Derivatization of the L‐hOrn standard led 

solely to the formation of a monosubstituted DNAP‐L‐hOrn*, excluding the formation of a δ‐N-modified 

hOrn and clearly confirming the presence of D‐hOrn in erythrochelin. Furthermore, the comparison of 

the UV/Vis‐signal integrals, which show a ratio of 2:1 (L‐hOrn:D‐hOrn) gives strong evidence for the 

proposed structure and stereoconfiguration of erythrochelin. Coelution experiments, in which the 

derivatized erythrochelin hydrolysate was supplemented with synthetic standards, confirmed the 

previous observation (data not shown).  
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Figure 5.18: A) RP‐LCMS traces of derivatized amino acid standards and the derivatization products of 

erythrochelin hydrolysis. The blue trace shows the derivatized erythrochelin hydrolysate. The signal observed 

at tR = 18.1 corresponds to derivatized DNPA‐L‐Ser as it coelutes with the DNPA‐L‐Ser standard (red trace). The 

signal observed at tR = 22.1 represents DNPA‐L‐hOrn* as it coelutes with the DNPA‐L‐hOrn* standard (green 

trace) and displays the same MS‐spectrum. In addition to the amino acids D‐Ser and L‐hOrn a third building 

block (tR = 26.6) is present in erythrochelin showing the same MS‐spectrum as DNPA‐L‐hOrn*. This signal was 

assigned to DNPA‐D‐hOrn*. B) The chemical structures and the observed MS‐spectra of the derivatized amino 

acid standards and the derivatized products of erythrochelin hydrolysis. 

 

In order to determine the connectivity of the amino acids as well as their stereoconfiguration resulting in 

the knowledge of the overall structure of erythrochelin, a partial hydrolysis‐derivatization method was 

carried out (Chapter 4.9.2). Based on bioinformatic analysis of erythrochelin biosynthesis and the 

previous results obtained by FDAA‐derivatization of the erythrochelin hydrolysate, it was proposed that 

the C‐terminal DKP‐moiety consists of two L‐configured hOrn residues. To confirm this model, hydrolysis 

conditions were optimized towards the generation of the target fragment and the partially hydrolyzed  

C‐terminal fragment was isolated. HRMS‐analysis confirmed the identity of the isolated dipeptide  

(Figure 5.19 A). After isolation, the C‐terminal fragment was hydrolyzed and derivatized. Analysis of the  

FDAA‐derivatized amino acids confirmed the presence of solely L‐configured hOrn residues  

(Figure 5.19 B). In addition to the MS‐spectra and elution times compared to a synthetic DNAP‐L‐hOrn* 

standard, a coelution experiment was conducted, confirming the stereochemistry to be in full agreement 

with the proposed biosynthetic model. Taking all results together, the sequence of the tetrapeptide 
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siderophore erythrochelin was determined to be α‐N‐acetyl‐δ‐N‐acetyl‐δ‐N-hydroxy‐D‐ornithine‐D‐

serine‐cyclo(δ‐N-hydroxy‐L‐ornithine‐δ‐N‐acetyl‐δ‐N-hydroxy‐L‐ornithine). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19: A) HRMS‐analysis of the C‐terminal fragment obtained after partial hydrolysis of erythrochelin. 

Calculated and observed m/z‐ratios for the fragment are given. B) RP‐LCMS traces of the hydrolyzed and 

derivatized C‐terminal fragment and the DNAP‐L‐hOrn* standard. The hydrolysate alone is shown in blue 

whereas coelution with a synthetic DNAP‐L‐hOrn* standard is shown in red. The DNPA‐L‐hOrn* standard is 

shown in green. The signal observed at tR = 22.4 represents DNPA‐L‐hOrn* as it coelutes with the  

DNPA‐L‐hOrn* standard.  

 

5.2.5 Physicochemical Properties of Erythrochelin 

 

Siderophores represent iron‐scavenging compounds (generally < 1 kDa) with a high affinity for ferric iron 

(Kf = 1022 ‐1049 M‐1) which form octahedral ferri‐siderophore complexes.146 To determine if erythrochelin 

inherits a physiological function as an iron‐chelating compound, it was incubated with ferric iron in a 

 1:1‐ratio and subjected to HRMS‐analysis revealing a m/z of 657.2056 ([M+H]+, calculated 657.2051) for 

the loaded ferri‐erythrochelin. Analysis of ferri‐erythrochelin via RP‐LCMS revealed the lack of skimmer 

fragmentation as observed during analysis of apo‐erythrochelin, indicating that the chelation of iron 

induces a structurally more rigid conformation which is less prone to fragmentation  

(Figure 5.20 A). MS‐analysis furthermore confirmed the stoichiometry of the Fe(III):siderophore‐complex 

to be 1:1, proving the presence of six Fe(III)‐coordinating groups. As the binding of iron alters the 

spectrochemical properties of the siderophore by which the siderophore‐types (e.g. hydroxamate, 

catecholate) can be distinguished corresponding spectra were recorded. UV/Vis‐spectra of  
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ferri‐erythrochelin compared to the unloaded apo‐form show the typical absorption spectrum for 

hydroxamate‐type siderophores (λmax = 440 nm), furthermore confirming the iron‐chelating function of 

the product (Figure 5.20 B).  

 

 

 

 

 

 

 

 

 

Figure 5.20: A) ESI‐MS‐analysis of ferri‐erythrochelin tR = 13.3, m/z = 657.1 ([M+H]+ , calculated 657.2). 

Skimmer fragmentation was completely abolished when analyzing ferri‐erythrochelin (red), being indicative of 

a structurally rigid conformation induced upon iron‐chelation. MS‐analysis of erythrochelin is accentuated in 

blue. B) UV/Vis‐absorption spectra of erythrochelin (400 μM) incubated with increasing concentrations of 

Fe(III). The absorption spectra are typical for hydroxamate‐type siderophores with λmax = 440 nm. Incubation 

of erythrochelin with excess ferric iron exceeding 400 µM does not lead to a further increase in the 

absorption at λ = 440 nm, confirming the stochiometry of the Fe(III):siderophore‐complex to be 1:1. 

 

5.2.6 ACE-Inhibition Studies with Erythrochelin 

 

The angiotensin‐converting enzyme (ACE) is an exopeptidase, which is a central component of the renin‐

angiotensin system (RAS), found in higher eukaryotes, as it mediates extracellular volume and arterial 

vasoconstriction (Figure 5.21).228 The RAS is initiated by the production of the protease renin in the 

kidneys in response to low blood pressure. Renin subsequently converts the 452 aa angiotensinogen to 

the decapeptide angiotensin I. ACE converts the decapeptide angiotensin I to the octapeptide 

angiotensin II through cleavage of the two C‐terminal residues His9 and Leu10 (HL). The peptide hormone 

angiotensin II subsequently induces vasoconstriction and the rise of blood pressure.     
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Figure 5.21: Overview of the renin‐angiotensin system and the affected functions of the organism. The 

protease renin proteolytically cleaves the 452 aa angiotensinogen yielding in angiotensin I. Angiotensin I is 

subsequently converted into angiotensin II by the metalloprotease ACE. Angiotensin II then induces 

vasoconstriction and the rise of blood pressure (accentuated in red).  

 

Erythrochelin shares a high degree of structural similarity to the siderophore foroxymithine isolated from 

cultures of Streptomyces nitrosporeus.229‐231 In contrast to erythrochelin the δ‐amino groups of ac‐hOrn1 

and hOrn4 are formylated and all amino acids within the peptide chain show L‐configuration. 

Foroxymithine has been reported as an inhibitor of ACE with an IC50‐value of 7 µg/mL.229 Due to the 

structural similarities between foroxymithine and erythrochelin, the ACE‐inhibitory effect of 

erythrochelin was investigated in vitro to evaluate the potential of the compound as a hypertension 

reducing agent (Chapter 4.10.2). In the assay the native substrate for ACE was substituted with the 

artificial tripeptide HHL (Figure 4.6). ACE‐mediated proteolytic cleavage of the substrate leads to the 

release of hippuric acid, which can be detected via RP‐LCMS.208
 A standard curve for the determination 

of hippuric acid release was obtained by using stock solutions and measuring the absorption at 228 nm 

(Figure 5.22 A). Assay solutions were incubated with increasing amounts of erythrochelin (5 ‐ 250 µM) 

and ferri‐erythrochelin (5 ‐ 250 µM) and analyzed via RP‐LCMS. Throughout the assays no inhibition of 

ACE could be observed as the release of hippuric acid corresponded to the control lacking erythrochelin  

(Figure 5.22 B). The lack of ACE inhibition confirmed the structural features of foroxymithine to be 

essential for interaction with the metalloprotease.  
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Figure 5.22: A) The hippuric acid (Hip) standard curve for the determination of HHL cleavage by the ACE.  

B) HPLC‐traces of the in vitro ACE‐inhibition assays with increasing concentrations of erythrochelin (5 – 250 

µM) (tR = 8.7). The release of hippuric acid (tR = 10.1) from the artificial substrate HHL (tR = 12.9) results from 

proteolytic activity of the ACE. The control lacking erythrochelin is accentuated in red. As increasing 

concentrations of the potential inhibitor do not decrease the degree of hippuric acid release, it is proposed 

that the structure of erythrochelin impedes inhibition of the ACE. C) The observed ESI‐MS‐spectra of hippuric 

acid (Hip) and HHL. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Results  

‐ 94 ‐ 

5.3 Biosynthesis of the δδδδ-N-Hydroxy-L-Ornithine Residue of Erythrochelin 

 
Erythrochelin is a hydroxamate‐type tetrapeptide siderophore assembled by a nonribosomal machinery 

capable of chelating iron with high affinity. It contains three ornithine residues of which two are  

δ‐N acetylated and δ‐N hydroxylated and one is solely δ‐N hydroxylated. These groups contribute to the 

iron‐chelating properties of erythrochelin and are involved in the octahedral coordination of ferric iron. 

A‐domain specificity prediction resulted in δ‐N‐hydroxy‐L‐ornithine (hOrn) being the substrate for the 

third adenylation domain found in the NRPS EtcD (Table 5.1). In addition, bioinformatic analysis of the 

etc gene cluster revealed the gene etcB to encode a FAD‐dependent monooxygenase putatively involved 

in the generation of hOrn from L‐ornithine (Figure 5.11). It shows 64% sequential identity and 78% 

similarity to the characterized FAD‐dependent monooxygenase CchB from S. coelicolor, involved in 

coelichelin biosynthesis.98 To gain further insights into the biosynthesis of erythrochelin, EtcB was 

recombinantly produced and isolated. Hydroxylation assays employing the recombinant enzyme, the 

cosubstrates and L‐Orn gave rise to the building block δ‐N‐hydroxy‐L‐ornithine, which represents a 

branching point in erythrochelin biosynthesis (Chapter 5.4). The substrate specificity of EtcB and the 

kinetic parameters of the hydroxylation reaction were determined, proving EtcB to be a typical member 

of the FAD‐dependent monooxygenase family.  

 

5.3.1 Recombinant Expression and Isolation of EtcB as an Active Holo-Protein 

 

EtcB was amplified from the chromosomal DNA of Saccharopolyspora erythraea NRRL 23338 and cloned 

into the pCB28a(+) vector. It was heterologously expressed in E. coli BL21(DE3) cells (Chapter 4.1.5) and 

isolated as a C‐terminally His6‐tagged holo‐protein (Figure 5.23 A) as described in the Methods section 

(Chapter 4.2.1.1). Final protein yield per liter culture after concentration and dialysis was 6.6 mg.  

UV/Vis‐spectroscopic analysis confirmed the recombinant protein to be loaded with the proposed 

cofactor FAD (Figure 5.23 B).  
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Figure 5.23: A) SDS‐PAGE of purified recombinant EtcB (51.3 kDa). Protein Marker (M) was Broad Range 

Protein Marker P7702 (NEB). B) UV/Vis‐spectrum of EtcB (red) compared to the absorption spectrum of FAD 

alone (black).  Absorption maxima at 370 nm and 450 nm indicate the presence of an enzyme‐bound FAD‐

cofactor.  

 

5.3.2 Biochemical Characterization of EtcB  

 

Sequence analysis and alignments showed that EtcB is a FAD‐dependent monooxygenase, which requires 

NADPH as the reducing cosubstrate and molecular oxygen to mediate δ‐N‐hydroxylation of L‐ornithine. 

To investigate if EtcB is catalyzing δ‐N‐hydroxylation of L‐ornithine, it was incubated with the substrate  

L‐Orn and the corresponding cosubstrates (Chapter 4.6.4). RP‐LCMS analysis of the assays after 4 h 

revealed 50% conversion of L‐ornithine (tR = 4.8, m/z = 133.0 [M+H]+ observed, m/z = 133.1 [M+H]+ 

calculated) to δ‐N‐hydroxy‐L‐ornithine (hOrn) (tR = 13.7, m/z = 149.0 [M+H]+ observed, m/z = 149.1 

[M+H]+ calculated) in the presence of the enzyme (Figure 5.24). HRMS‐analysis confirmed the product to 

be a hydroxylated ornithine species (m/z = 149.0922 [M+H]+ observed, m/z = 149.0921 [M+H]+ 

calculated). Substrate turnover could not be detected in the absence of EtcB or NADPH. In addition, the 

utilization of NADH as the reducing cosubstrate did not lead to the formation of hOrn. The identity of the 

product was confirmed by comparison with synthetically obtained L‐hOrn.207 The product of the 

enzymatic assay and the synthetic standard displayed the same retention times and MS‐spectra, when 

subjected to RP‐LCMS analysis.   
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Figure 5.24: δ‐N‐hydroxylation of L‐ornithine catalyzed by EtcB. A) LCMS‐traces of the hydroxylation assays 

are shown as selected ion chromatograms (SIC). Incubation of the substrate L‐Orn (tR = 4.8) with EtcB and the 

cosubstrates gives rise to the product L‐hOrn (tR = 13.7). The control lacking the reducing cosubstrate NADPH 

is shown in red and the control lacking EtcB is shown in green. The calculated and observed m/z‐ratios are 

given in the inset. B) The chemical structures and the observed ESI‐MS‐spectra of the substrate L‐Orn  

(m/z = 133.0 [M+H]+) and the product L‐hOrn (m/z = 149.0 [M+H]+).  

 

To evaluate the substrate specificity of EtcB, the recombinant enzyme was incubated with a set of 

alternative substrates representing the different classes of amino acids. In addition, the D‐isomer of  

L‐Orn was employed as well as α‐N‐acetyl‐L‐ornithine (L‐acOrn). Assays were carried out according to the 

conditions described above (Chapter 4.6.4) and were analyzed via RP‐LCMS. Hydroxylation was 

exclusively limited to L‐ornithine as shown in Table 5.3. 

 

Table 5.3: Overview of the substrates evaluated for EtcB‐mediated hydroxylation. The corresponding m/z‐

ratios are given for each substrate and hydroxylated substrate.  

 

 

 

 

 

 

 

 

 

substrate 
m/z [M+H]

+ 

substrate 

m/z [M+H]
+ 

hydroxylated substrate 

m/z [M+H]
+ 

observed 
hydroxylation  

L‐Orn 133.1 149.1 149.0 ���� 

D‐Orn 133.1 149.1 133.0 X 

L‐acOrn 175.2 191.2 175.0 X 

L‐Lys 147.1 163.1 147.0 X 

L‐Val 118.1 134.1 118.0 X 

L‐ Asp 134.1 150.1 134.0 X 

L‐Asn 133.1 149.1 133.1 X 

L‐Glu 148.0 164.0 148.1 X 

L‐Gln 147.1 163.1 147.2 X 

L‐Arg 175.2 191.2 175.3 X 



 Results  

‐ 97 ‐ 

Kinetic parameters for EtcB‐catalyzed δ‐N‐hydroxylation of L‐Orn were determined 

spectrophotometrically by measurement of the initial rates of the assay employing different substrate 

concentrations. The calculation of kinetic parameters was carried out with the Enzyme Kinetics Module 

for SigmaPlot 8.0 (Chapter 4.6.4) using Michalis‐Menten and Lineweaver‐Burk equations (Figure 5.25).  

 

 

 

 

 

 

 

 

Figure 5.25: Michaelis‐Menten and Lineweaver‐Burk plots for kinetic parameter determination of EtcB. 

 

The kinetic parameters for EtcB‐mediated δ‐N‐hydroxylation of L‐Orn were calculated to an apparent  

KM of 0.286 ± 0.035 mM and kcat = 19.6 ± 0.03 min‐1, leading to a catalytic efficiency of  

kcat/KM = 68.5 min‐1.mM‐1. Taking the results together it can be stated that EtcB can provide the L‐hOrn 

building block required for NRPS‐based erythrochelin assembly.  

 

5.4 Acetylation of δδδδ-N-Hydroxy-L-Ornithine During Erythrochelin Biosynthesis 

 

Hydroxamate‐type siderophores generally contain unusual N‐acyl, N‐hydroxy‐ or N‐acyl‐N‐hydroxy 

amino acids in the oligopeptide chain, which are essential for the coordination of iron. Although the 

hydroxylation of L‐lysine or L‐ornithine residues has been extensively characterized, the mechanism and 

timing of side‐chain acylation remains to be elucidated.98 Erythrochelin itself contains two δ‐N‐acetyl‐δ‐

N-hydroxy‐L‐ornithine (L‐haOrn) residues, which contribute to the iron‐chelating properties of the 

compound. Bioinformatic analysis identified two enzymes, Sace_1309 and Mcd presumably involved inL‐

haOrn biosynthesis. In order to investigate if both enzymes participate in the biosynthesis of L‐haOrn, 

they were produced in a recombinant manner and subjected to biochemical studies in vitro. 

Hydroxylation assays employing recombinant Sace_1309, the cosubstrates and L‐Orn gave rise to  

δ‐N‐hydroxy‐L‐ornithine and confirmed the enzyme to be involved in building block assembly. 

Acetylation assays were carried out by incubating L‐hOrn with recombinant Mcd and malonyl‐CoA as the  

acetyl‐group donor. Substrate turnover was increased by substituting malonyl‐CoA with acetyl‐CoA, 
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bypassing the decarboxylation reaction which represents the rate‐limiting step. Consecutive enzymatic 

synthesis of L‐haOrn was accomplished in coupled assays employing both an L‐ornithine hydroxylase and 

Mcd. In summary, a biosynthetic route for the generation of δ‐N‐acetyl‐δ‐N-hydroxy‐L‐ornithine starting 

from L‐ornithine has been established in vitro by tandem action of a FAD‐dependent monooxygenase 

(EtcB or Sace_1309) and the bifunctional malonyl‐CoA decarboxylase/acetyltransferase Mcd.  

 

5.4.1 Bioinformatic Identification of the Bifunctional Enzyme Mcd  

 

Erythrochelin assembly requires the proliferation of δ‐N‐acetyl‐δ‐N-hydroxy‐L‐ornithine, which is 

incorporated into the tetrapeptide at positions 1 and 4. Usually, enzymes involved in the modification or 

synthesis of specific building blocks for natural product assembly are integral components of the 

corresponding gene clusters. In the case of coelichelin the enzymes responsible for the synthesis of the 

δ‐N‐formyl‐δ‐N-hydroxy‐L‐ornithine residues are encoded within the cch biosynthetic gene cluster.38,98 In 

contrast, the etc gene cluster does not house a gene predicted to encode an acetyltransferase capable of 

catalyzing the acetylation of δ‐N-hydroxy‐L‐ornithine. In order to identify a putative acetyltransferase 

within the genome of S. erythraea (GenBank accession number: AM420293), a genome‐genome BLAST 

analysis was carried out with the query sequence being the genome of the aerobactin producing strain 

Shigella flexneri 5 str. 8401 (GenBank accession number: CP000266). Aerobactin itself represents a NIS‐

derived hydroxamate‐type siderophore in which the ε‐N‐hydroxy functionalities of L‐lysine are 

acetylated.232 It was proposed that the putative N‐acetyltransferase IucB is responsible for N‐acetyl 

transfer as it was shown to be required for aerobactin production.233 Screening of the S. erythraea 

genome for iucB‐type genes using ACT revealed the only significant hit to be mcd (sace_1304), encoded 

within the nrps1 gene cluster. This gene displayed 33% sequential identity and 49% sequential similarity 

to iucB (Figure 5.26). Due to multiple sequence alignments it was proposed that the C‐terminal region of 

Mcd represents the N‐acetyltransferase‐ and malony‐CoA decarboxylase domain similar to CurA, 

involved in curacin A (Lyngbya majuscula) biosynthesis.234 Intriguingly, Mcd has already been 

characterized and shown to catalyze the biotin‐independent decarboxylation of malonyl‐CoA.235‐236  

Based on the two functionalities of Mcd it was postulated that Mcd catalyzes the decarboxylation of 

malony‐CoA to acetyl‐CoA, which is subsequently transferred onto the δ‐amino group of δ‐N-hydroxy‐L‐

ornithine to generate δ‐N‐acetyl‐δ‐N-hydroxy‐L‐ornithine. In addition to mcd, a second gene is located 

within both biosynthetic gene clusters (Figure 5.26). Sace_1309 and iucD both share a high degree of 

sequential identity and are annotated as FAD‐dependent monooxygenases, involved in siderophore 

biosynthesis. IucD is proposed to catalyze the hydroxylation of L‐lysine during aerobactin biosynthesis 
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(Figure 1.19), whereas a specific function for Sace_1309 could not be predicted as the product of nrps1 is 

unknown and a frameshift mutation has been allocated in nrps1-1. 215,237 Sace_1309 itself shares 58% 

sequential identity and 70% sequential similarity to CchB, the hydroxylase involved in coelichelin 

biosynthesis.98 To obtain further insights into the biosynthesis of erythrochelin and to establish a 

biosynthetic route for the generation of δ‐N‐acetyl‐δ‐N-hydroxy‐L‐ornithine, Sace_1309 and Mcd were 

subjected to biochemical studies in vitro.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.26: Graphical result of the genome‐genome BLAST analysis with the Artemis Comparison Tool (ACT). 

Putative functions of the proteins encoded within the clusters are based on BLAST‐analysis and are given in 

the figure. A) Organization of the nrps1 gene cluster (Saccharopolyspora erythraea NRRL 23338).  

B) Organization of the aerobactin gene cluster (Shigella flexneri 5 str. 8401). The genes iucB and iucD share a 

high degree of sequential identity to mcd and sace_1309, encoding a putative acetyltransferase and a FAD‐

dependent monooxygenase. Regions of synteny are accentuated in light blue.  
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5.4.2 Recombinant Expression and Isolation of Sace_1309 as an Active Holo-Protein 

 

Sace_1309 was amplified from the chromosomal DNA of Saccharopolyspora erythraea NRRL 23338 and 

cloned into the pCB28a(+) vector. It was heterologously expressed in E. coli BL21(DE3) cells  

(Chapter 4.1.5) and isolated as a C‐terminally His6‐tagged holo‐protein (Figure 5.27 A) as described in the 

Methods section (Chapter 4.2.1.1). Final protein yield per liter culture after concentration and dialysis 

was 8.6 mg. UV/Vis‐spectroscopic analysis confirmed the recombinant protein to be loaded with the 

proposed cofactor FAD (Figure 5.27 B).  

 

 

 

 

 

 

 

 

 

Figure 5.27: A) SDS‐PAGE of purified recombinant Sace_1309 (40.9 kDa). Protein Marker (M) was Broad Range 

Protein Marker P7702 (NEB). B) UV/Vis‐spectrum of Sace_1309 (red) compared to the absorption spectrum of 

FAD alone (black). Absorption maxima at 370 nm and 450 nm indicate the presence of an enzyme‐bound FAD‐

cofactor.  

 

5.4.3 Biochemical Characterization of Sace_1309 

 

Sequence analysis and alignments revealed that Sace_1309 is a FAD‐dependent monooxygenase 

requiring NADPH as the reducing cosubstrate and molecular oxygen to mediate δ‐N‐hydroxylation of  

L‐ornithine. To investigate if Sace_1309 is catalyzing δ‐N‐hydroxylation of L‐ornithine in analogy to EtcB 

(Chapter 5.3.2) it was incubated with the substrate L‐Orn and the corresponding cosubstrates  

(Chapter 4.6.4). RP‐LCMS analysis of the assays after 4 h revealed 35% conversion of L‐ornithine (tR = 5.9, 

m/z = 133.0 [M+H]+ observed, m/z = 133.1 [M+H]+ calculated) to δ‐N‐hydroxy‐L‐ornithine (hOrn)  

(tR = 14.0, m/z = 149.0 [M+H]+ observed, m/z = 149.1 [M+H]+ calculated) in the presence of the enzyme 

(Figure 5.28). Substrate turnover could not be detected in the absence of Sace_1309 or NADPH or when 

employing NADH as the reducing cosubstrate.  
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Figure 5.28: δ‐N‐hydroxylation of L‐ornithine catalyzed by Sace_1309. A) LCMS‐traces of the hydroxylation 

assays are shown as selected ion chromatograms (SIC). Incubation of the substrate L‐Orn (tR = 5.9) with 

Sace_1309 and the cosubstrates gives rise to the product L‐hOrn (tR = 14.0). The control lacking the reducing 

cosubstrate NADPH is shown in red and the control lacking Sace_1309 is shown in green. The calculated and 

observed m/z‐ratios are given in the inset. B) The chemical structures and the observed ESI‐MS‐spectra of the 

substrate L‐Orn (m/z = 133.0 [M+H]+) and the product L‐hOrn (m/z = 149.0 [M+H]+). 

 

Substrate specificity of Sace_1309 was evaluated by incubating the recombinant enzyme with a set of 

alternative substrates representing the different classes of amino acids. In addition, the D‐isomer of  

L‐Orn was employed as well as α‐N‐acetyl‐L‐ornithine (L‐acOrn). Assays were carried out according to the 

conditions described above (Chapter 4.6.4) and were analyzed via RP‐LCMS. In analogy to the results 

obtained during the biochemical characterization of EtcB (Chapter 5.3.2), hydroxylation was exclusively 

limited to L‐ornithine and proved Sace_1309 to be responsible for the generation of L‐hOrn.  

 

5.4.4 Recombinant Expression and Isolation of Mcd 

 

Mcd was amplified from the chromosomal DNA of Saccharopolyspora erythraea NRRL 23338 and cloned 

into the pET28a(+) vector. It was heterologously expressed in E. coli BL21(DE3) cells (Chapter 4.1.5) and 

isolated as a C‐terminally His6‐tagged protein (Figure 5.29) as described in the Methods section (Chapter 

4.2.1.1). Final protein yield per liter culture after concentration and dialysis was 9.6 mg.  

 

 

 

 



 Results  

‐ 102 ‐ 

 

 

 

 

 

 

 

Figure 5.29: SDS‐PAGE of purified recombinant Mcd (48.4 kDa). Protein Marker (M) was Broad Range Protein 

Marker P7702 (NEB).  

 

5.4.5 Biochemical Characterization of the Bifunctional Enzyme Mcd 

 

Bioinformatic analysis of Mcd revealed that the enzyme contains two putative functional domains: one 

domain responsible for the decarboxylation of malonyl‐CoA (m‐CoA) to afford acetyl‐CoA (ac‐CoA) and 

an acetyltransferase domain to catalyze the acetylation of L‐ornithine or δ‐N-hydroxy‐L‐ornithine 

(Chapter 5.4.1). To investigate if Mcd catalyzes the decarboxylation of malonyl‐CoA and subsequent 

acetyltransfer, it was incubated with the substrates L‐Orn and malonyl‐CoA (Chapter 4.6.5). RP‐LCMS 

analysis of the assay after 8 h showed that L‐Orn is not the cognate substrate for Mcd‐mediated 

acetylation as no substrate turnover was observed.  In contrast, incubation of Mcd with L‐hOrn and 

malonyl‐CoA as the acetyl‐donor afforded acetylation of the substrate. RP‐LCMS analysis of the assays 

after 4 h revealed 38% conversion of L‐hOrn (tR = 12.1, m/z = 149.0 [M+H]+ observed, m/z = 149.1 [M+H]+ 

calculated) to δ‐N‐acetyl‐δ‐N-hydroxy‐L‐ornithine (haOrn) (tR = 13.5, m/z = 191.0 [M+H]+ observed, m/z = 

191.1 [M+H]+ calculated) in the presence of the enzyme (Figure 5.30). Substrate conversion was 

increased to 79% after 8 h. Substrate turnover could not be detected in the absence of Mcd or malonyl‐

CoA. HRMS‐analysis of the product confirmed it to be the acetylated hydroxyornithine species  

(m/z = 191.1028 [M+H]+ observed, m/z = 191.1026 [M+H]+ calculated) (Figure 5.30 C). Future work will 

focus on proving acetylation of the δ‐hydroxamino group by chemical synthesis of a L‐haOrn standard, 

but recent genetic studies confirmed the results presented herein (Chapter 6.3.2.2).238   
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Figure 5.30: Mcd‐mediated acetylation of L‐hOrn. A) LCMS‐traces of the acetylation assays are shown as 

selected ion chromatograms (SIC). Incubation of the substrate L‐hOrn (tR = 12.1) with Mcd and malonyl‐CoA 

gives rise to the product L‐haOrn (tR = 13.5, green and black trace). The control lacking Mcd is shown in blue 

and the control lacking malonyl‐CoA is shown in red. The calculated and observed m/z‐ratios are given in the 

inset. B) The chemical structures and the observed ESI‐MS‐spectra of the substrate L‐hOrn (m/z = 149.0 

[M+H]+) and the product L‐haOrn (m/z = 191.0 [M+H]+). C) HRMS‐analysis of L‐haOrn (m/z = 191.1028 [M+H]+ 

observed, m/z = 191.1026 [M+H]+ calculated). 

 

Acetylation of the cognate substrate L‐hOrn by Mcd requires the decarboxylation of malonyl‐CoA, which 

precedes the acetyltransfer. In addition, substrate channelling of the resulting acetyl‐CoA from the 

decarboxylase domain to the acetyltransferase domain has to occur simultaneously to the binding of  

L‐hOrn.234 In order to circumvent the decarboxylation reaction and to enable direct acetyltransfer,  

acetyl‐CoA was employed as an alternative acetyl‐group donor. Assays were carried out and analyzed by 

RP‐LCMS as described earlier (Chapter 4.6.5). Analysis of the assays revealed total substrate turnover 

after 4 h (Figure 5.31 A). Substrate turnover could not be detected in the absence of Mcd or acetyl‐CoA. 

This result demonstrated that Mcd is quantitatively acetylating L‐hOrn in the presence of the acetyl‐

group donor acetyl‐CoA.  

As malonyl‐decarboxylation and subsequent substrate channelling appeared to be the rate‐limiting step 

of L‐hOrn acetylation, a time course experiment was carried out to investigate substrate conversion 

depending on the acetyl‐group donor. As substrate conversion occurred rapidly when utilizing  

acetyl‐CoA, the concentration of Mcd was reduced to 1 µM and samples were taken each 30 min and 

analyzed via RP‐LCMS. Determination of substrate conversion was based on integration of MS‐signals in 

the selected ion chromatograms (SIC). Analysis of the assays revealed complete substrate turnover in the 

presence of acetyl‐CoA after 90 min (Figure 5.31 B). In contrast, the utilization of malonyl‐CoA as the 
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acetyl‐donor resulted in only 35% substrate conversion after 240 min. These results indicate that 

malonyl‐CoA decarboxylation is the rate‐limiting step which can be bypassed by directly supplying acetyl‐

CoA as the cosubstrate for Mcd.   

 

Figure 5.31: Mcd‐mediated acetylation of L‐hOrn. A) LCMS‐traces of the acetylation assays are shown as 

selected ion chromatograms (SIC). Incubation of the substrate L‐hOrn (tR = 12.1) with Mcd and acetyl‐CoA 

gives rise to the product L‐haOrn (tR = 13.2). The control lacking Mcd is shown in blue and the control lacking 

acetyl‐CoA is shown in red. The calculated and observed m/z‐ratios are given in the inset. B) Time dependent 

conversion of L‐hOrn to L‐haOrn in the presence of either malonyl‐CoA (red) or acetyl‐CoA (black).  

 

Substrate specificity of Mcd was evaluated by incubating the recombinant enzyme with a set of 

alternative substrates representing the different classes of amino acids. Assays were carried out 

according to the conditions described above by using both malony‐CoA and acetyl‐CoA as the  

acetyl‐group donor (Chapter 4.6.5) and were analyzed via RP‐LCMS. Acetylation was exclusively limited 

to L‐hOrn as shown in Table 5.4. 
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Table 5.4: Overview of the substrates evaluated for Mcd‐mediated acetylation. The corresponding m/z‐ratios 

are given for each substrate and acetylated substrate.  

 

 

 

 

 

 

 

 

 

 

5.4.6 Consecutive Enzymatic Synthesis of δδδδ-N-Acetyl-δδδδ-N-Hydroxy-L-Ornithine 

 
Biosynthesis of the building block δ‐N‐acetyl‐δ‐N-hydroxy‐L‐ornithine requires the tandem action of two 

distinct enzymes. In the biosynthetic scheme based on the results obtained it is postulated that the first 

step is L‐ornithine hydroxylation catalyzed by the FAD‐dependent monooxygenases EtcB or Sace_1309.  

This hydroxylated ornithine species is subsequently acetylated by Mcd, which utilizes either malonyl‐CoA 

or acetyl‐CoA as the acetyl‐group donor. As acetylation of L‐Orn could not be observed in vitro, the  

alternative biosynthetic scheme in which acetylation of ornithine precedes hydroxylation was ruled out. 

To establish a biosynthetic route for the generation of L‐haOrn, a coupled assay employing both the FAD‐

dependent monooxygenase and the bifunctional malonyl‐CoA decarboxylase/acetyltransferase Mcd was 

carried out (Chapter 4.6.6). In these assays, both malonyl‐CoA and acetyl‐CoA served as cosubstrates for 

Mcd‐mediated acetyl‐transfer.  RP‐LCMS analysis of the assay with EtcB, Mcd and malonyl‐CoA revealed 

56% conversion of L‐Orn (tR = 4.5, m/z = 133.0 [M+H]+ observed, m/z = 133.1 [M+H]+ calculated) to  

δ‐N-hydroxy‐L‐ornithine (hOrn) (tR = 12.2, m/z = 149.0 [M+H]+ observed, m/z = 149.1 [M+H]+ calculated) 

and 32% conversion to δ‐N‐acetyl‐δ‐N-hydroxy‐L‐ornithine (haOrn) (tR = 13.1, m/z = 191.0 [M+H]+ 

observed, m/z = 191.1 [M+H]+ calculated) after 8 h (Figure 5.32). The same assay conducted with acetyl‐

CoA as acetyl‐donor gave rise to an almost quantitative conversion of L‐Orn to L‐haOrn and confirmed 

the results obtained during the biochemical characterization of Mcd (Chapter 5.4.5). Similar results were 

obtained when substituting the hydroxylase EtcB with Sace_1309, encoded in the nrps1 gene cluster. In 

summary, consecutive enzymatic synthesis of δ‐N‐acetyl‐δ‐N-hydroxy‐L‐ornithine is achieved by tandem 

substrate 
m/z [M+H]

+ 

substrate 

m/z [M+H]
+ 

acetylated substrate 

m/z [M+H]
+ 

observed 
acetylation  

L‐hOrn 149.1 191.1 191.1 ���� 

L‐Orn 133.1 175.1 133.0 X 

D‐Orn 133.1 175.1 133.0 X 

L‐acOrn 175.2 217.1 175.0 X 

L‐Lys 147.1 189.1 147.0 X 

L‐Val 118.1 160.1 118.0 X 

L‐ Asp 134.1 176.1 134.0 X 

L‐Asn 133.1 175.1 133.1 X 

L‐Glu 148.0 190.1 148.0 X 

L‐Gln 147.1 189.1 147.2 X 

L‐Arg 175.2 217.1 175.3 X 
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action of a FAD‐dependent monooxygenase, hydroxylating the δ‐amino group of L‐Orn, and the 

bifunctional malonyl‐CoA decarboxylase/acetyltransferase Mcd.  

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.32: Consecutive enzymatic synthesis of L‐haOrn. The LCMS‐traces of the coupled assays are shown as 

selected ion chromatograms (SIC). Incubation of the substrate L‐Orn (tR = 4.5) with EtcB, Mcd and malonyl‐

CoA gives rise to the products L‐hOrn (tR = 12.2) and L‐haOrn (tR = 13.3) (green trace). Utilization of acetyl‐CoA 

as acetyl‐group donor enhances the generation of L‐haOrn, resulting in almost complete substrate turnover 

(black trace). The control lacking both enzymes is shown in blue and the L‐hOrn standard is shown in red. The 

calculated and observed m/z‐ratios are given in the inset.  
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6. Discussion and Outlook 

 
6.1 Iterative Assembly of Chromodepsipeptide Derivatives 

 
The exploitation of the macrocyclization potential inherent in TEs dissected from their corresponding 

nonribosomal peptide synthetases has enabled the generation of novel macrocyclic bioactive 

compounds, based on the primary sequence of the native substrate, under stringent stereo‐ and 

regioselective control.118 Among the class of nonribosomally synthesized peptides the 

chromodepsipeptides represent a multitude of structurally and functionally diverse compounds. With 

the biochemical characterization of TioS PCP‐TE a model system for the biocombinatorial synthesis of the 

quinoline‐ and quinoxaline‐type class of chromodepsipeptides was established. In contrast to linearly 

operating TEs, TioS PCP‐TE acts as an iterative ligation and macrocyclization platform capable of 

catalyzing macrolactonization and a to date unreported macrothiolactonization. Substrate tolerance of 

the recombinant enzyme enabled the chemoenzymatic synthesis of chromodepsipeptide analogs, which 

were evaluated for DNA‐bisintercalation activity.    

 

6.1.1 TioS PCP-TE-Mediated Dimerization and Macrothiolactonization 

 
Iteratively operating thioesterases catalyze the cyclodimerization of two or more repetitive oligopeptides 

to afford the readily assembled product. The recently characterized gramicidin S thioesterase GrsB TE 

confirmed the TE to act as a ligation‐ and cyclization catalyst following the backward mechanism.112 

Biochemical characterization of TE‐domains in vitro showed the enzymes to catalyze macrolactonization‐ 

and macrolactamization reactions.53,118,239 Within the study presented herein a set of tetrapeptidyl 

thioesters was synthesized and incubated with the recombinant cyclase for the investigation of TE‐

mediated macrothiolactonization (Chapter 5.1.2). The results of this first approach are summarized in 

Table 6.1.  

 

Table 6.1: Overview of the substrates investigated towards macrothiolactonization. The compound names, 

corresponding peptide sequences, observed products and hydrolysis to cyclization (hy:cy)‐ratios are given. 

The ligation product resembles the C‐terminally SNAC‐activated linear octapeptidylthioester.  

 

 

 

 

compound sequence ligation cyclization hy:cy-ratio 

TL1 QA‐D‐Cys1‐Gly2‐L‐Cys3‐L‐Cys4‐SNAC X X           / 

TL2 QA‐D‐Cys1‐Gly2‐L‐Cys3‐S‐Me‐L‐Cys4‐SNAC X X           / 

TL3 QA‐D‐Cys1‐Gly2‐L‐Ala3‐S‐Me‐L‐Cys4‐SNAC X ���� 1:7 

TL4 QA‐D‐Cys1‐Gly2‐L‐Ala3‐L‐Met4‐SNAC ���� ���� 1:2 

TL5 QA‐D‐Cys1‐Gly2‐L‐Cys3‐L‐Met4‐SNAC X X           / 

TL6 QA‐L‐Cys1‐Gly2‐L‐Ala3‐L‐Met4‐SNAC X X           / 

TL11 QX‐D‐Cys1‐Gly2‐L‐Ala3‐S‐Me‐L‐Cys4‐SNAC X ���� 1:6 
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At first TioS PCP‐TE was tested using a linear tetrapeptide based on the amino acid sequence derived 

from the specificity prediction of the corresponding A domains. Incubation of TL1 with the thioesterase 

resulted solely in hydrolytic cleavage of the C‐terminally SNAC activated thioester. This result led to the 

conclusion that the steric demand of the C‐terminal amino acid is crucial for suppression of hydrolysis by 

shielding the acyl‐O‐TE oxoester intermediate from the nucleophilic attack of water. Presuming that  

S‐methylation of the naturally occurring S‐Me‐L‐Cys4 is carried out prior to recognition, activation and 

incorporation of the building block into the oligopeptide chain, TL2 was synthesized and employed in the 

macrocyclization assay. Under these conditions hydrolysis was reduced with little substrate remaining 

after 2 h of incubation, in contrast to total substrate conversion in the case of TL1, confirming the 

assumption made concerning hydrolysis suppression by steric demand. Dimerization or cyclization was 

also not observed employing substrate TL2. It was postulated that the sterical demand of the  

Cys3‐residue impedes the cyclodimerization reaction. To evaluate the influence of this cysteine residue 

on macrothiolactonization, TL3 was employed harbouring an L‐Ala3 residue to maintain stereochemical 

information and concurrently reduce the electrostatic repulsion effects of two neighbouring sulfhydryl 

groups. Detection of the macrocyclic product indicated a strong influence of this position onto the 

ligation and cyclization reaction. The reduction of macrocyclization due to the sterical hindrance of two 

sulfhydryl groups in close proximity has also been observed during the characterization of the 

echinomycin Ecm7 TE.240 Linear octapeptidyl‐SNAC substrates containing twin thiol groups cyclized with 

reduced efficiencies, whereas the same octapeptidyl substrates harbouring intramolecular disulfide 

connectivity showed superior cyclization efficiencies. 

In the assembled native thiocoraline the sulfhydryl groups of L‐Cys3 form a disulfide crossbridge 

minimizing conformational freedom to a great extent.68 It can be assumed that the oxidative formation 

of the crossbridge is carried out on the PCP‐bound linear octapeptidyl‐thioester resulting in a prefold 

facilitating subsequent macrocyclization. This assumption is in compliance with the backward 

mechanism proposed for iteratively working thioesterases in which the PCP‐domain serves as a holding 

bay for the dimerized product. In the case of echinomycin biosynthesis an oxidoreductase (Ecm17) is 

found within the biosynthetic operon proposed to be responsible for disulfide formation.241 This 

oxidoreductase, although lacking in the gene cluster enabling thiocoraline biosynthesis, could carry out 

the online modification of the linear PCP‐bound octapeptide in trans.136 In contrast to this mechanism, 

Watanabe and coworkers proposed the putative disulfide forming enzyme Ecm17 to mediate disulfide 

crossbridging after release of the octapeptidyl macrolactone precursor from the synthetase Ecm7.241 

Ecm17 represents a FAD‐dependent pyridine nucleotide‐disulfide oxidoreductase requiring NADP+ for 
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oxidative disulfide formation. This disulfide crossbridged echinomycin precursor is subsequently 

converted into the corresponding thioacetal linked echinomycin by the SAM‐dependent 

methyltransferase Ecm18 as proven by studies with the recombinant enyme in vitro (Figure 6.1).241  

A further example of disulfide bridge forming enzymes mediating the postsynthetic modification of 

natural products is the FAD‐dependent pyridine nucleotide‐disulfide oxidoreductase DepH, involved in 

the formation of the disulfide‐linkage found in the antitumor compound FK228.242 As the cytosolic 

environment provides reducing conditions, the timing of disulfide crossbridging remains to be 

elucidated.  

 

 

Figure 6.1: The postulated model for the generation of the thioacetal crossbridge in echinomycin. A) The 

octapeptidyl macrolactone is released from the NRPS Ecm7 via TE‐mediated cyclodimerization of 

tetrapeptidyl substrates. Disulfide crossbridging is governed by Ecm17 affording triostin A. Ecm18 catalyzed 

thioacetal formation gives rise to echinomycin. B) The mechanism for Ecm18 mediated methylation of the 

disulfide. In a first step, Ecm18 catalyzes the nucleophilic attack of sulphur onto the methyl group of SAM. 

Subsequently, base assisted deprotonation and intramolecular reorganization results in the thioacetal group.  

  

To further prove that the steric demand of the C‐terminus is a key position in thiocoraline 

macrothiolactonization, S‐Me‐L‐Cys4 was substituted with L‐Met4, resulting in an improved hydrolysis to 

cyclization‐ratio of 1:2 for TL4 (TL3 12:1, 25°C), reinforcing former presumptions. Intriguingly, the 

substitution also led to the buildup of a linear ligation product which can be directly assigned to the 

backward mechanism.  

Following this mechanism, the TE‐bound tetrapeptide undergoes a nucleophilic attack by the external 

tetrapeptidyl‐SNAC mimicking the PCP‐bound tetrapeptide. The C‐terminal steric demand then inhibits 
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subsequent macrocylization and leads to the accumulation of the octapeptidyl‐SNAC, resembling the 

naturally occurring PCP‐bound octadepsipeptide. These observations directly correlate with the results 

obtained with GrsB PCP‐TE and confirm TioS PCP‐TE to follow the backward mechanism logic  

(Figure 6.2).112 This backward mechanism has now been confirmed for three individual thioesterase 

domains catalyzing macrolactonization (echinomycin), macrolactamization (gramicidin S) and 

macrothiolactonization in vitro.20,112,240 

 

 

Figure 6.2: Mechanistic model of the TioS PCP‐TE catalyzed cyclodimerization reaction during thiocoraline 

biosynthesis in vivo. Ligation and subsequent cyclization follows the backward mechanism logic. The PCP‐

bound tetrapeptide conducts a nucleophilic attack onto the acyl‐O‐TE oxoester of the  

TE‐bound tetrapeptide (accentuated in blue) resulting in a PCP‐bound linear octathiodepsipeptide. This PCP‐

bound intermediate is then transferred onto the active‐site serine of the adjacent TE‐domain. Subsequent 

nucleophilic attack of a free thiol group gives rise to the cyclic thiodepsipeptide which is modified by means of 

disulfide crossbridging.  

 

All known chromodepsipeptides share a D‐configured N‐terminal amino acid which is harbouring the 

nucleophilic side‐chain that mediates cyclization.124 Substitution of this position with L‐Cys1 (TL6) 

abolished ligation and subsequent cyclization resulting in complete hydrolysis. This observation indicates 

that only D‐configured amino acids enable the specific angle, following Bürgi‐Dunitz trajectory, required 

for the nucleophilic attack onto the acyl‐O‐TE oxoester intermediate.243 Furthermore, the correct 

positioning of the substrate within the catalytic pocket of the thioesterase might be influenced. This 

result is also in full agreement with the biochemical characterization of several NRPS‐derived TE‐domains 

in vitro. During the characterization of the surfactin or the CDA cyclase.the stereoconfiguration of the C‐ 

or the N‐terminal amino acid was found to be essential for macrocyclization.53,180  

In contrast to the native thiocoraline tetrapeptide, all utilized peptidyl substrates lacked N‐methylation 

of residues 3 and 4 and the hydroxylation of the chromophore moiety. Alkylations of amide‐bonds shift 



 Discussion and Outlook  

‐ 111 ‐ 

the equilibrium between cis‐ and trans‐conformation towards cis, influencing the overall conformation 

of the peptide.244 Furthermore, rotational barriers are elevated with the peptide being rigidified in a 

specific conformation.245 This missing structural restriction may also be responsible for the observed 

hydrolysis rates or the lack of substrate conversion.  

 

6.1.2 Biocombinatorial Potential of TioS PCP-TE 

 

To further investigate the biocombinatorial potential of TioS PCP‐TE, a set of D‐Ser1 substituted 

tetrapeptidyl‐SNACs (TL7‐TL10) was analyzed (Chapter 5.1.3). The results of these experiments are 

summarized in Table 6.2.  

 
Table 6.2: Overview of the substrates investigated towards macrolactonization. The compound names, 

corresponding peptide sequences, observed products and hydrolysis to cyclization (hy:cy)‐ratios are given.  

The ligation product resembles the C‐terminally SNAC‐activated linear octapeptidylthioester.  

 

 

 

 

In contrast to TL1, the serine‐substituted TL7 was cyclized leading to the conclusion, that L‐Cys3 is only 

influencing macrothiolactonization. In this case the electrostatic repulsion effects only occur when L‐Cys3 

of one tetrapeptide and D‐Cys1 of the other peptide chain are in close proximity. With the sterically less 

demanding D‐Ser1, macrolactonization is feasible even in presence of L‐Cys3. When incubating TioS  

PCP‐TE with TL8 the formation of a four residue macrolactone (Cy8/4) was detected (Figure S1). This 

macrolactonization of a single tetrapeptidyl‐SNAC was solely observed with TL8. In contrast to TL7 the  

C‐terminal steric demand is leading to a more stable TE‐bound intermediate allowing an intramolecular 

attack of D‐Ser1 onto the acyl‐O‐TE oxoester intermediate prior to hydrolytic cleavage. Alteration of the 

C‐terminal chromophore from quinoline to quinoxaline does not influence cyclization yields to a great 

extent and allows the generation of quinoxaline‐type chromodepsipeptides. In summary, TioS PCP‐TE is 

the first dissected cyclase catalyzing both macrothiolactonization and macrolactonization.  

 

 

 

 

 

 

compound sequence ligation cyclization hy:cy-ratio 

TL7 QA‐D‐Ser1‐Gly2‐L‐Cys3‐L‐Cys4‐SNAC X ���� 5:1 

TL8 QA‐D‐Ser1‐Gly2‐L‐Cys3‐S‐Me‐L‐Cys4‐SNAC X ���� 1:4 

TL9 QA‐D‐Ser1‐Gly2‐L‐Ala3‐S‐Me‐L‐Cys4‐SNAC X ���� 4:1 

TL10 QA‐D‐Ser1‐Gly2‐L‐Ala3‐L‐Met4‐SNAC ���� ���� 8:1 
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6.1.3 Concepts for the Improvement of Cyclization Yields 

 
Enzymatic peptide cyclization often displays low efficiency due to the occurrence of hydrolysis of the 

acyl‐O‐TE oxoester intermediate. Previous work on the excised TE‐domains from the tyrocidine and 

pristinamycin synthetases revealed hydrolysis to cyclization‐ratios of 1:1 and 1:3 for natural substrate 

analogs.246‐247 Macrocyclization assays described herein also revealed a high degree of hydrolysis typical 

for some isolated TE‐domains. In order to improve cyclization yields the temperature dependence of 

either macrothiolactonization or macrolactonization was evaluated. TE‐mediated macrothiolactonization 

represents an energetically less favored reaction due to the fact that a thermodynamically stable 

oxoester is converted to a high energy thioester.  

Increasing the temperature also increased the formation of the endergonically generated 

macrothiolactone in the case of TL3 and TL11 (Chapter 5.1.4). A reduction of the temperature also 

resulted in the increase of cyclization yields. It was speculated that low temperatures induce a more 

compact conformation of the enzyme. Under these conditions premature hydrolysis is reduced 

increasing the stability of the acyl‐O‐TE oxoester intermediate capable of reacting with further molecules 

to give rise to the macrocyle. In contrast, the thermodynamically indifferent macrolactonization is 

favored at low temperatures utilizing TL9. Analogous results were obtained with substrate TL8. In all 

examined cases total substrate conversion is decelerated at lower temperatures reflecting minimized 

reaction velocities. Kinetic investigation of TL3 turnover resulted in a kcat of 5.26 ± 0.64 min‐1 being in 

range of the corresponding substrate turnover of the linear pentapeptidyl‐thiophenol of GrsB PCP‐TE  

(kcat = 2.4 min‐1).112 Substrate turnover of TL8 is given by a kcat of 8.92 ± 1.2 min‐1. The higher kcat‐value for 

TL8 is the result of an increased flux towards hydrolysis compared to TL3 and does not resemble an 

improved cyclization efficiency. Higher catalytic efficiencies can be expected when the linear octapeptide 

is used due to the fact that the ligation reaction is the rate‐determining step as described for GrsB PCP‐

TE.112 Additional studies will have to be conducted to prove the generality of the approach described 

herein. Methods for the reduction of the hydrolysis ratio such as the addition of non‐ionic detergents to 

the reaction mixture or the utilization of ionic liquids or organic solvents have also been reported.247‐248  

An alternate approach to increase the yield of macrocyclic products was established with the 

recombinant TE‐domain dissected from Ecm7, a synthetase involved in the assembly of the 

macrolactone echinomycin.240 The cyclase was incubated with several tetrapeptidyl‐ and octapeptidyl 

thioesters resembling the native sequence of echinomycin in the absence or presence of DNA. It was 

found that hydrolysis was reduced to a great extent in the presence of DNA. Furthermore it was shown 

that the addition of DNA improved the yields of macrolactones with a complete reversal of the hydrolysis 
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to cyclization‐ratio for several substrates especially for TANDEM (2:1 →1:18) (Figure 6.3).240 Product 

inhibition and TE‐mediated hydrolysis of the macrocycles is circumvented by the capture of the  

DNA‐bisintercalating compound with double‐helical DNA containing bisintercalation sites. This 

chemoenzymatic generation of chromodepsipeptides in the presence of DNA represents an effective 

method for the screening of DNA‐binding small molecules by coupling the production of the compound 

with a preliminary screening of DNA‐binding ability and can be applied for the generation of thiocoraline 

analogues.   

 
 
Figure 6.3: Schematic overview of the effect of DNA on the Ecm7 TE‐mediated macrocyclization of the 

substrate TANDEM‐SNAC. Absence of DNA gives rise to the hydrolysis product TANDEM‐OH, which is 

furthermore hydrolytically cleaved and inhibits Ecm7 TE. In contrast, presence of DNA leads to a reversal of 

the hydrolysis to cyclization‐ratio (2:1 → 1:18) and prevents further hydrolytic cleavage via DNA‐capture 

processes giving rise to the desired product TANDEM.   

 

The mechanisms of how iteratively operating thioesterases can control the number of repetitive ligation 

steps is yet unknown. Throughout all cyclization reactions the ring sizes of the resulting macrocycles 

were limited to four residue rings (Cy8/4) or to eight residue rings. In contrast, GrsB PCP‐TE is capable of 

trimerizing pentapeptidyl‐SNAC substrates to form macrocycles composed of up to 15 residues.112 It 

could not be determined if the capacity of the active‐site is the size determining factor. Preorganization 

and structure of the substrate is also considered to determine whether a ligation or a cyclization step is 

carried out. Macrocyclization studies employing the recombinant TycC TE, derived from the tyrocidine 

biosynthetic pathway, proved preorganization of the substrates to be crucial for cyclization efficiency.249 

NMR‐structures of the decapeptides tyrocidine and gramicidin S proved both compounds to exhibit a  

β‐sheet like antiparallel fold (Figure 6.4).249‐251 It was proposed that the prefold of the linear substrates 
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enhances the catalytic efficiency of the TE‐mediated macrocyclization due to close spatial coordination 

of amino acids directly participating in the cyclization reaction.59 Prefold‐induced spontaneous 

macrocyclization was also observed during the autocatalytic macroimination of nostocyclopeptide. 

Unfortunately, the prefold of the linear thiocoraline octapeptide has not yet been investigated. In 

addition, it is assumed that 12‐residue rings could exceed the maximum capacity of the catalytic pocket.  

 

 

 

 

 

 

 

Figure 6.4: A network of hydrogen‐bonds constitutes the antiparallel fold of the cyclic macrolactams 

tyrocidine and gramicidin S. A) Five hydrogen bonds give rise to the β‐sheet structure of tyrocidine as 

proposed from the cyclization efficiency of backbone‐substituted tyrocidine analogues. B) β‐sheet fold of 

gramicidin S is induced by four hydrogen bonds and was determined via NMR.  

 

In conclusion, the excised thioesterase of thiocoraline is a versatile catalyst for the in vitro‐generation of 

chromodepsipeptide analogs. TioS T‐TE is the first cyclase characterized capable of catalyzing 

macrothiolactonization. Additionally, macrolactonization is feasible due to relaxed substrate specificity 

towards the cyclizing nucleophile. Cyclization yields can be improved by temperature shifts or by utilizing 

methods already reported.240,247‐248 Substrate tolerance towards the chromophore moiety also allows the 

chemoenzymatic synthesis of quinoxaline substituted analogs mimicking the class of triostins and 

echinomycins. The approach presented herein provides new opportunities to develop novel compounds 

related to thiocoraline and similar oligopeptides with a potentially improved spectrum of 

pharmacologicalproperties and higher in vivo‐stability. Future studies will aim at the generation of 

amide‐linked thiocoraline derivatives by substitution of the D‐Cys1 residue with D‐Dap1  

(D‐diaminopropionate). 
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6.1.4 DNA-Bisintercalative Activity of Thiocoraline Analogs 

 

Thiocoraline attains the antiproliferative activity from its capability to bisintercalate into duplex DNA, 

leading to the inhibition of DNA‐polymerase α.141 Although no three‐dimensional structure of 

thiocoraline intercalated into DNA is available, it is postulated that thiocoraline binds to DNA in a mode 

similar to echinomycin.134,252 The three‐dimensional structure of echinomycin intercalated into duplex 

DNA shows the molecule to adopt the same U‐shaped conformation upon intercalation into DNA as 

postulated for thiocoraline based on molecular dynamics simulations (Figure 6.5).252 In this cocrystal 

structure, the quinoxaline‐moieties (QX) enable π‐π interactions with the aromatic nucleobases, 

distorting the helical structure of the DNA.   

 

 
 
 
 
 

 

 

 

 

 

Figure 6.5: A) The three‐dimensional structure of echinomycin intercalated into duplex DNA (5’‐ACGTACGT‐3’) 

(PDB code: 2ADW). Echinomycin is presented in green. The chromophore moieties ensure π‐π‐stacking effects 

inducing a U‐shaped conformation of the bisintercalator. Echinomycin is shown to bind to the minor groove of 

the DNA encompassing a central CpG motif. An analogous bisintercalation mode has been postulated for 

thiocoraline based on molecular dynamics simulations. B) The same structure rotated by 90° along the y‐axis.  

 

To investigate the potential bioactivity of the generated macrocycles, several were isolated and 

employed in a DNA‐bisintercalation activity assay (Chapter 5.1.5) (Figure 6.6). Thiocoraline stabilized 

duplex DNA in a range similar to previously described results, whereas bisintercalation of the analogs 

could not be detected.134 The generated thiocoraline analogs displayed a variety of modifications of the 

peptidic backbone compared to the native bisintercalator. The glycine residue was conserved 

throughout the analogs as it is postulated that hydrogen‐bonds are formed between the NH‐ and 

carbonyl groups of glycine and the N3‐ and exocyclic amino group of guanine.134    
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Substitution of the naturally occurring chromophore moiety 3HQA with QA or QX is not likely to affect 

the bisintercalation properties. QX is found in the well characterized DNA‐bisintercalators echinomycin 

and triostin A, nevertheless Cy11 did not show any activity (Figure 6.6). Furthermore QA‐substituted 

chromodepsipeptides, belonging to the recently synthesized FAJANU peptide family, also showed 

bioactivity against several tumor cell lines in vivo.253 FAJANU 7, a QA‐capped eight residue macrolactam 

displayed highest bioactivity even exceeding 3HQA or QX harbouring compounds. The lack of  

N‐methylation of L‐Cys3/4 is presumably responsible for the absence of DNA‐bisintercalation activity.  

N‐methylation induces conformational changes and elevates rotational barriers.245 This rigidification of 

molecular dynamics gives rise to a preferential prefold of the oligopeptide. The substitution of N‐Me‐Gly 

residues with Gly in the case of FAJANU chromodepsipeptides led to the decrease of bioactivity by one 

order. In addition, the intramolecular disulfide connectivity is also likely to induce a preorganization of 

the molecule facilitating DNA‐bisintercalation. This structural rigidification was only present in the 

macrocycle Cy8SS but did not affect the stabilization of DNA. The choice of the oligonucleotide has also 

to be considered as the oligonucleotide AS displayed the highest degree of stabilization upon incubation 

with thiocoraline, but might represent the inappropriate template for the investigation of thiocoraline 

analogue DNA‐bisintercalation. Obviously, additional extensive studies will be necessary to gain further 

insights into the molecular mechanism of thiocoraline bioactivity and its MOA to rationally generate 

chromodepsipeptide analogs. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.6: The structures of the chemoenzymatically generated macrocycles investigated for DNA‐

bisintercalation activity.  
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6.2 Erythrochelin – a Hydroxamate-Type Siderophore Discovered via Genome Mining 

 
The genome of the erythromycin‐producing strain Saccharopolyspora erythraea contains 25 secondary 

metabolite gene‐clusters mostly considered to be orphan including two responsible for siderophore 

assembly. Within the study presented herein, the isolation and structural elucidation of the 

hydroxamate‐type tetrapeptide siderophore erythrochelin, the first NRPS‐derived natural product of  

S. erythraea, was reported. In an attempt to substitute the traditional activity assay‐guided isolation of 

novel secondary metabolites, a dedicated radio‐LCMS‐methodology to identify NRPs of cryptic gene 

clusters in the industrially relevant strain was established. This methodology was based on transcriptome 

data and adenylation domain specificity prediction and resulted in the detection of a radiolabeled 

ornithine‐inheriting hydroxamate‐type siderophore. The improvement of siderophore production 

enabled overall structural elucidation via NMR‐ and MSn‐analysis and hydrolysate‐derivatization for the 

determination of amino acid configuration. The sequence of the tetrapeptide siderophore erythrochelin 

was determined to be α‐N‐acetyl‐δ‐N‐acetyl‐δ‐N-hydroxy‐D‐ornithine‐D‐serine‐cyclo(δ‐N-hydroxy‐L‐

ornithine‐δ‐N‐acetyl‐δ‐N-hydroxy‐L‐ornithine). Bioinformatic analyis of the S. erythraea genome revealed 

the enzyme responsible for δ‐N-acetylation of L‐hOrn to be encoded in a distant NRPS gene cluster. 

Biochemical characterization of this bifunctional malonyl‐CoA decarboxylase/N‐acetyltransferase 

together with two FAD‐dependent monooxygenases established a biosynthetic route for the generation 

of the L‐haOrn building block found in erythrochelin. The results derived from structural and functional 

characterization of erythrochelin, together with the biochemical characterization of the tailoring 

enzymes EtcB, Sace_1309 and Mcd, enabled the proposal of a biosynthetic pathway for erythrochelin 

biosynthesis. In this model the tetrapeptide is assembled by the tetramodular NRPS EtcD, involving 

unusual initiation‐ and cyclorelease‐mechanisms.  

 
6.2.1 Natural Product Discovery via Radio-LCMS-Guided Genome Mining 

 

Advances in DNA‐sequencing technologies by the development of high‐throughput pyrosequencing (454, 

SOLEXA) gave rise to over 1000 sequenced microbial genomes (Genomes Online Database). Automated 

annotation of the genomes unveiled a large number of orphan (cryptic) gene clusters related to the 

biosynthesis of secondary metabolites representing a rich resource for the discovery of bioactive natural 

products. By applying systematic state‐of‐the‐art bioinformatic analysis of these biosynthetic clusters 

structural elements or even the activity of the cryptic product can be predicted. The subsequent isolation 

of these compounds solely based on genomic sequence data was baptized genome mining.254 Several 

strategies were developed to assist the genome mining process being either targeted (heterologous 



 Discussion and Outlook  

‐ 118 ‐ 

expression of the gene cluster, gene knockout/comparative metabolic profiling) or general 

(genomisotopic approach).39 The radio‐LCMS‐guided genome mining method established within this 

study represents a general and rational strategy for the discovery of NRPS‐derived natural products. This 

concept relies on the bioinformatic analysis of the targeted gene clusters for the prediction of the 

substrates incorporated into the natural product. These building blocks are then fed to cultures of the 

target strain in an isotopically labeled form and incorporated into the natural product, which is 

subsequently detected with a radioactivity flow‐through detector coupled to a HRMS instrument  

(Figure 6.7).  

 

Figure 6.7: The concept of natural product discovery via radio‐LCMS‐guided genome mining. Bioinformatic 

analysis of the cryptic genes leads to the prediction of putative substrates. Feeding of the precursor as  
14C‐labeled molecule gives rise to the isotopically labeled compound which is identified with a radioactivity 

flow‐through detector coupled to a HRMS‐instrument.  

 

Analysis of the nrps3 and the etc gene cluster identified L‐Orn to be incorporated in both putative 

siderophores. In addition, transcriptome analysis of Saccharopolyspora erythraea NRRL 23338 cultures 

grown in SCM‐medium confirmed upregulation of both clusters in growth phases B/C.225 Initial detection 

of a CAS‐positive compound was performed by cultivation of S. erythraea in SCM‐medium, confirming 

DNA‐microarray gene expression profiles obtained for S. erythraea. LCMS‐analysis of this CAS‐positive 

fraction revealed several compounds coeluting, thus impeding the direct MS‐based identification of the 

target compound (Figure 6.8 A). In order to circumvent this activity‐based genome mining approach, the 

radio‐LCMS‐guided concept was carried out. Feeding of the nonproteinogenic amino acid 14C‐L‐Orn prior 

to expression of the etc and nrps3 gene clusters gave rise to a radiolabeled compound, which could be 

clearly identified on an analytical scale and displayed the same m/z‐ratio as one of the compounds in the 

CAS‐positive fraction (Figure 6.8 A). The sensitivity of radioactivity detection and sophisticated analytical 

separation proved to be advantageous in this approach. The iron‐chelative properties of the radiolabeled 
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compound were confirmed by CAS‐assay‐guided fractionation of medium‐scale fermentation extractions 

and the detection of a radiolabeled ferri‐siderophore complex (Figure 6.8 B).  

 

 

 

 

 

 

 

 

 

Figure 6.8: The sensitivity of radio‐LCMS guided natural product discovery. A) LCMS‐analysis of the fraction 

identified via CAS‐activity assay. Fraction complexicity as detected by UV/Vis‐analysis impedes the 

identification and isolation of the target compound. B) Radio‐LCMS‐guided identification of the target 

compound. The TIC (blue) exemplifies the complexicity of the sample. The radioactivity flow‐through detector 

(green) reveals two radiolabeled compounds in the complex sample and enables a direct correlation between 

the radioactivity signal and high resolution mass signal. Compound A is ferri‐erythrochelin and compound B 

represents erythrochelin.  

 

Cultivation of S. erythraea under iron‐depleted conditions induced the production of erythrochelin 

compared to iron‐rich media cultivations. This observation has been described for the isolation of several 

siderophores including fuscachelin and coelichelin and involves iron‐sensing processes by the 

microorganisms.37‐38 

Interestingly, the amount of 14C‐L‐Orn incorporation was increased from 2% to 4% (based on the total 

amount of radioactivity fed) when switching to minimal media. It is likely that the decelerated growth in 

iron‐depleted minimal media combined with an increase in siderophore production leads to the 

increased incorporation of 14C‐L‐Orn into the main secondary metabolite erythrochelin. The utilization of 

radiolabeled proteinogenic amino acids, which can be channelled to ribosomal synthesis of peptides or 

to the primary metabolism, remains to be elucidated. Throughout the experiments, the second 

catecholate/hydroxamate‐type siderophore assembled by the NRPSs encoded in nrps3 could not be 

detected applying the aforementioned approach (Figure S8). In addition, the extraction of culture 

supernatants of S. erythraea, cell pellets and lysed cells with a variety of organic solvents did not lead to 

the identification of a second CAS‐reactive compound (data not shown). It is therefore assumed that 
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either the extraction conditions were inadequate for the isolation of the natural product, or that the 

gene cluster is silent under the conditions employed. It is also postulated that S. erythraea might 

assemble the second compound to serve as a backup siderophore upon iron starvation.238  

In conclusion, the described approach, solely based on A‐domain specificity prediction and available 

transcriptome data, can be applied for the initial detection and isolation of NRPs, enabling the  

scale‐down of NRP discovery from preparative to analytical scale. Radio‐LCMS‐guided genome mining 

can be utilized to substitute the detection and isolation of NRPs based on their biological activity, which 

is often challenging to predict. The main advantage of this approach in comparison with the established 

strategies is the generality of this rapid method as several biosynthetic gene clusters can be targeted in 

parallel when the isotope label is predicted to be incorporated into different cryptic products.  

A limitation of this approach is the selection of the appropriate precursor as some are toxic to specific 

organisms or can be incorporated into other secondary metabolites.255 In addition, specificity prediction 

has to be accurate for the label to be incorporated into the product.196 Degradation of the amino acid 

can also result in the dispersal of the label to other compounds. Identifying the right cultivation 

conditions leading to gene cluster expression is also crucial for this strategy to result in the identification 

of the compound as it does not uncouple the biosynthetic enzymes from native regulatory mechanisms 

compared to the heterologous gene cluster expression concept.196,241 

 
6.2.2 Physicochemical Properties of Erythrochelin 

 
The overall structure of erythrochelin was determined by NMR‐ and MS‐analysis as well as  

hydrolysate‐derivatization for determination of amino acid configuration. The peptide sequence is 

composed of D‐ac‐haOrn1‐D‐Ser2‐cyclo(L‐hOrn3‐L‐haOrn4). Erythrochelin represents a hydroxamate‐type 

tetrapeptide siderophore containing three ornithine residues of which two are δ‐N‐acetylated and  

δ‐N‐hydroxylated. In addition, the N‐terminal α‐amino group of haOrn1 is capped with an acetyl moiety. 

A local symmetry in erythrochelin is attained by a DKP‐structure consisting of two cyclodimerized L‐Orn 

residues. The mode of Fe(III)‐chelation by erythrochelin remains to be elucidated, but an iron binding 

mode analogous to gallium‐binding by coelichelin is postulated and has recently been described  

(Figure 6.9).38,238 The NMR spectroscopic analysis of the Ga(III)‐erythrochelin complex showed an upfield 

shift for the serine carbonyl group in addition to upfield shifts of the carbonyl groups of D‐ac‐haOrn1 and 

L‐hOrn3. Analogous correlations have been reported for the Ga(III)‐coelichelin complex.38 MS‐analysis of 

ferri‐erythrochelin reveals an abolished skimmer fragmentation compared to erythrochelin, being 
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indicative of an induced rigidification of the siderophore upon iron‐binding. Erythrochelin shows an 

absorption spectrum typical of ferri‐hydroxamate siderophores with λmax = 440 nm.  

 

 

 

 

 

 

 

Figure 6.9:  Proposed Fe(III)‐binding modes of coelichelin compared to erythrochelin. The proposed model is 

supported by MS‐data of ferri‐erythrochelin and NMR analysis of Ga(III)‐erythrochelin. Coordination of iron 

involves three carbonyl‐ and three hydroxyl‐groups. 

 

The structure of erythrochelin resembles that of DKP‐containing fungal siderophores exemplified by 

coprogen (Pezizomycota species) or rhodotorulic acid (Rhodotorula basiodomycetes), which solely 

consists of two cyclodimerized N‐acetyl‐N‐hydroxyornithine residues (Figure 6.10).256‐257 Erythrochelin 

shares a high degree of structural similarity to the angiotensin‐converting enzyme (ACE)‐inhibitor 

foroxymithine, isolated from cultures of Streptomyces nitrosporeus (Figure 6.10).229‐230 In contrast to 

erythrochelin, the δ‐amino groups of ac‐hOrn1 and hOrn4 are formylated suggesting a formyltransferase 

to be involved in the biosynthesis, similar to coelichelin assembly.38 In an attempt to chemically obtain 

foroxymithine, a total synthesis was established by Miller and coworkers, which resulted in a compound 

exhibiting the same NMR‐spectroscopic properties as the isolated natural product. All residues within 

the peptide chain showed L‐configuration.258 This stereochemistry differs from erythrochelin, in which 

two residues show a D‐configured stereocenter thus suggesting a similar NRPS‐based assembly of 

foroxymithine by a synthetase lacking all E‐domains. The lack of sequence information of the  

S. nitrosporeus genome impeded the identification of a biosynthetic machinery governing foroxymithine 

assembly. Based on the structural similarity to the ACE‐inhibitor foroxymithine, ACE‐inhibition assays 

were carried out employing both erythrochelin and ferri‐erythrochelin. In contrast to foroxymithine, 

which has been reported as a hypertension reducing agent with an IC50‐value of 7 µg/mL, erythrochelin 

does not inhibit the proteolytic cleavage of the artificial substrate HHL.229 It can only be speculated if the 

substitution of the δ‐hydroxamino acetyl‐groups with formyl‐groups affects ACE inhibitory activity or if 

the altered stereochemistry results in abolished in vitro activity since no MOA studies of foroxymithine 

are available.  
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Figure 6.10: Chemical structures of the DKP‐containing hydroxamate‐type siderophores erythrochelin, 

foroxymithine, rhodotorulic acid and coprogen. The siderophores contain the characteristic diketopiperazine‐

moiety and tailored ornithine residues involved in the coordination of ferric iron.  

 
6.3 Biosynthesis of the Modified Ornithine Residues in Erythrochelin 

 

6.3.1 Characterization of Ornithine δδδδ-N-Hydroxylation 

 

6.3.1.1 Bioinformatic Analysis of the FAD-Dependent Monooxygenases EtcB and Sace_1309 

 

Biosynthetic analysis of the etc and the nrps1 gene cluster revealed two FAD‐dependent 

monooxygenases, EtcB and Sace_1309, putatively involved in the generation of δ‐N‐hydroxy‐L‐ornithine 

required for erythrochelin assembly. Multiple sequence alignments of the two enzymes with the 

characterized FAD‐ and NADPH‐dependent monooxygenases CchB, IucD, PvdA and VbsO confirmed EtcB 

and Sace_1309 to share a high degree of sequential identity to this class of enzymes  

(Figure 6.11).98‐99,169,259‐260 Three highly conserved motifs could be identified in the sequence of the 

monooxygenases of which two are considered to be involved in nucleotide binding. Binding of the 

cofactor FAD is enabled by the N‐terminal binding site (GxGxxG), whereas the second binding site 

(GxGxxG) is responsible for binding of NADPH.261 Interestingly, the last Gly residue of the FAD binding 

site is substituted with Pro in FAD‐dependent monooxygenases associated with siderophore 

biosynthesis.262  

 

 

 

 

 



 Discussion and Outlook  

‐ 123 ‐ 

Figure 6.11: Multiple sequence alignments of FAD‐dependent monooxygenases. Alignments were performed 

under application of a ClustalW algorithm. The highly conserved N‐terminal nucleotide binding site 

responsible for FAD binding is accentuated in green, whereas the motif involved in NADPH coordination is 

given in blue. The C‐terminally located substrate binding motif constituting a hydrophobic pocket is 

accentuated in red. The degree of conservation is indicated by color: Red indicates complete and blue no 

agreement. 

 

The third conserved motif (DxxxL/FATGYxxxxP), located in the C‐terminal region of the monooxygenases, 

is assumed to be involved in substrate binding.262 The central amino acids L/FATGY constitute a 

hydrophobic pocket in which the substrate can be coordinated. The conserved aspartic acid residue of 

this motif is proposed to catalyze the deprotonation of the side‐chain ammonium group of L‐Lys or  

L‐Orn, enhancing the nucleophilicity and reactivity of this position. EtcB displays 65% sequential identity 

and 78% sequential similarity to CchB, whereas Sace_1309 shares 58% sequential identity and 70% 

similarity with CchB. 

Spectrophotometric analysis of purified EtcB or Sace_1309 confirmed both enzymes to be partially 

loaded with the cofactor FAD, which has been reported for several FAD‐dependent enzymes. This 

cofactor is noncovalently associated with the protein in the case of external FAD‐dependent 

monooxygenases. It was shown that recombinant EtcB or Sace_1309 catalyze δ‐N‐hydroxylation of L‐Orn 

in the presence of the cofactor FAD, the reducing cosubstrate NADPH and molecular oxygen, whereas 

NADH is not accepted as cosubstrate (Figure 6.12). This specificity towards the cofactor and reducing 
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cosubstrate has also been observed for CchB and PvdA, as both enzymes solely exhibit activity in the 

presence of FAD and NADPH. In contrast, IucD mediates hydroxylation of L‐Lys in the presence of FAD 

and NADPH or NADH as the reducing cosubstrates.     

 

 

 

 

Figure 6.12: The FAD‐dependent monooxygenases EtcB and Sace_1309 catalyze the hydroxylation of the  

δ‐amino group of L‐Orn in the presence of FAD, NADPH and molecular oxygen to afford  

δ‐N‐hydroxy‐L‐ornithine. 

 

6.3.1.2 Substrate Specificity and Kinetic Parameters of the Monooxygenases 

 

The substrate specificities of EtcB and Sace_1309 were evaluated by incubating the recombinant 

enzymes with a set of alternative substrates representing the different classes of amino acids. Neither 

the D‐Orn, L‐Lys nor α‐N‐acetyl‐L‐ornithine, representing a possible precursor of the α‐N‐acetyl‐δ‐N‐

acetyl‐δ‐N-hydroxy‐L‐ornithine1 building block, were accepted. It was shown that the enzymes 

exclusively catalyze the δ‐N‐hydroxylation of L‐Orn. Similar results were obtained during the 

characterization of FAD‐dependent monooxygenases involved in siderophore biosynthesis. IucD 

specifically hydroxylates L‐Lys during aerobactin biosynthesis, whereas hydroxylation activity of CchB or 

PvdA is exclusively limited to L‐Orn.98‐99,169,259‐260 Kinetic parameters for the EtcB‐mediated hydroxylation 

of L‐Orn were determined spectrophotometrically and are given with the kinetic parameters of several 

other FAD‐dependent monooxygenases for comparison in Table 6.3.  

 

Table 6.3: The kinetic parameters for EtcB‐mediated hydroxylation of L‐Orn in comparison with kinetic 

parameters of FAD‐dependent monooxygenases involved in siderophore biosynthesis.  

 
 
 
 
 
 
 
 
The value for KM with 0.286 ± 0.035 mM is in the range of the values determined for VbsO, PvdA and IucB 

but is lower than the KM of CchB, being indicative of a higher affinity of EtcB towards the cognate 

enzyme substrate KM (mM) kcat (min
-1

) kcat/Km (min
-1 . 

mM
-1

) 

EtcB L‐Orn 0.286 ± 0.035  19.6 ± 0.03 68.5 

CchB L‐Orn 3.6 ± 0.58  17.4 ± 0.87 4.83 

VbsO L‐Orn 0.305 ± 0.024  108 ± 2 354.1 

PvdA L‐Orn 0.593 ± 0.012  26.4 ± 0.4 44.52 

IucD L‐Lys 0.11  n.d. n.d. 
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substrate. Substrate turnover is also in the same range as CchB, PvdA and IucB but significantly lower 

than the value determined for VbsO. The catalytic efficiency is also lower than the efficiency observed 

for VbsO, but similar to the value determined for PvdA and higher than the value for CchB. In summary, 

EtcB represents a typical member of FAD‐dependent monooxygenases involved in the δ‐N‐hydroxylation 

of L‐Orn or L‐Lys. Based on the results a mechanism of catalysis can be postulated for EtcB and 

Sace_1309 as members of the external FAD‐dependent monooxygenases (Figure 6.13). In the first step 

of catalysis, the enzyme associated oxidized FAD cofactor is reduced under the consumption of NADPH, 

leading to the generation of FADH2.169 The reduced cofactor is subsequently converted into a highly 

reactive hydroperoxy‐flavin species by molecular oxygen, which reacts with the substrate L‐Orn to afford 

L‐hOrn and hydroxy‐flavin. Elimination of water from hydroxy‐flavin the and release of L‐hOrn results in 

the oxidized cofactor FAD and enables another catalytic cycle.94  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.13:  The proposed mechanism for δ‐N‐hydroxylation of L‐Orn with detailed description of the 

resulting FAD species. In the first step the reduced FAD cofactor (FADH2) is converted to a reactive 

hydroperoxy‐flavin (FAD‐OOH) by molecular oxygen. This reactive species is nucleophilically attacked by L‐Orn 

to afford L‐hOrn and hydroxy‐flavin (FAD‐OH). The elimination of H2O results in FAD, which is subsequently 

reduced to FADH under consumption of NADPH.  

 
In summary, the biochemical characterization of EtcB and Sace_1309 established a biosynthetic route for 

the generation of δ‐N‐hydroxy‐L‐ornithine during erythrochelin biosynthesis in vitro. This building block 

represents a branching point in erythrochelin biosynthesis as it can be directly incorporated into the 

tetrapeptide siderophore at position 3 or be subjected to an additional tailoring step catalyzed by the 

bifunctional malonyl‐CoA decarboxylase/acetyltransferase Mcd (Chapter 6.3.2).  
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6.3.2 Characterization of Hydroxyornithine δδδδ-N-Acetylation 

 

6.3.2.1 Bioinformatic Analysis of the Bifunctional Enzyme Mcd 

 

Genes required for the biosynthesis of secondary metabolites are usually clustered within one region of 

the prokaryotic chromosome. As an example, all genes necessary for the assembly of the bacterial 

siderophore aerobactin, iucA‐iucD, are located in a small region allowing coordinated regulation and 

expression.99 In the aerobactin locus, several operator sequences for binding of the ferric uptake 

regulator (Fur) could be identified.263 Analysis of the etc gene cluster revealed the lack of a gene 

encoding an N‐acetyltransferase, responsible for the generation of δ‐N‐acetyl‐δ‐N-hydroxy‐L‐ornithine, 

the residue incorporated into erythrochelin at positions 1 and 4. In order to identify a candidate gene, a 

genome‐genome BLAST analysis was carried out with ACT and the genomes of S. erythraea and the 

aerobactin producing strain Shigella flexneri 5 str. 8401.237 Analysis of the genome‐genome comparison 

revealed mcd to display 33% sequential identity and 49% sequential similarity to the N‐acetyltransferase 

IucB, catalyzing the acetylation of δ‐N‐hydroxy‐L‐lysine during the biosynthesis of the mixed 

citrate/hydroxamate‐type siderophore aerobactin.99 As seen in multiple sequence alignments, Mcd also 

shows homology to other putative N‐acetyltransferases encoded in the biosynthetic operons for the 

production of mycobactin (MbtK, Mycobacterium tuberculosis) or vicibactin (VbsA, Rhizobium 

leguminosarum) (Figure 6.14).162,260  

 

Figure 6.14: Multiple sequence alignments of the putative siderophore N‐acetyltransferases Mcd  

(residues 243‐417), MbtK, IucB and VbsA. Alignments were performed under application of a ClustalW 

algorithm. The degree of conservation is indicated by color: Red indicates complete and blue no agreement.  
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All N‐acetyltransferases encoded in siderophore biosynthetic operons show sequential similarity to 

GCN5‐related N‐acetyltransferases (GNATs), involved in cellular processes such as the modification of 

aminoglycoside antibiotics or histone proteins in eukaryotes.176,264 A subgroup of this enzyme class is 

represented by histone N‐acetyltransferases (HATs), which mediate acetyltransfer to lysine residues in 

histones.265 GNATs contain separate binding sites for the acyl group donor and the acceptor substrate, 

catalyzing the acyltransfer without the covalent binding of intermediates.264 It was noted that within the 

GNAT superfamily, no conserved residue patterns could be identified that constitute an active site or are 

involved in the coordination of the acceptor substrate.264 GNATs are mechanistically and structurally 

distinguished from PKS and FAS AT‐domains, which catalyze the S‐acylation of the ppan group of ACPs. In 

addition, PKS and FAS AT‐domains bind their intermediate covalently and belong to the α/β‐hydrolase 

superfamily, whereas GNATs display a specific fold.264,266‐267   

Mcd is encoded in the nrps1 gene cluster which is located 2 mb away from the etc gene cluster in the 

core region of the S. erythraea genome (Figure 6.15).215,238 Six genes constitute the nrps1 gene cluster 

including two NRPSs with Sace_1305 showing an evident frameshift mutation rendering it non‐

functional. The product of nrps1 is not known, but the ferric siderophore reductase Sace_1308 and the 

lysine/ornithine monooxygenase Sace_1309, which has been biochemically characterized in vitro, 

suggest the product of nrps1 to be involved in cellular iron uptake.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.15: Schematic overview of the nrps1 gene cluster. Putative functions of the proteins encoded within 

the operon are based on BLAST‐analysis and are given in the figure. Apart from two NRPSs, a gene encoding a 

transcriptional regulator for secondary metabolism (sace_1307) and a ferric siderophore reductase 

(sace_1308) are found. The boundaries are determined by mcd coding for a putative N‐acetyltransferase and 

sace_1309, encoding an ornithine monooxygenase.  

 

Mcd has been shown to catalyze the biotin‐independent decarboxylation of malonyl‐CoA and 

additionally named EryM.235 Disruption of mcd (eryM) gave rise to erythromycin nonproducing mutants 

and subsequent complementation studies confirmed Mcd to provide propionyl‐CoA for the synthesis of 
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the PKS products erythromycin and the red pigment flaviolin via decarboxylation of methylmalonyl‐

CoA.235 The N‐terminal region of Mcd (residues 1‐242) does not display sequential similarity to any 

protein deposited in public databases. Intriguingly, the C‐terminal sequence of Mcd (residues 243‐417) 

resembles the GNAT‐domain found in the initiation module of CurA on a structural level.238 CurA is 

involved in the biosynthesis of curacin A, which is assembled by a type I polyketide synthase in Lyngbya 

majuscula.234,255 CurA contains an atypical N‐terminal loading module, which also occurs in the 

biosynthetic pathway for onnamide. The CurA loading module is constituted of an N‐terminal region of 

unknown function (∼180 aa), designated adapter (AR)‐domain which is not present in the OnnB loading 

module, a variable‐length linker region and the GNATL‐domain (Figure 6.16). The predicted function of 

such initiation modules is the loading of an acetyl group derived from acetyl‐CoA onto the assembly line. 

It was shown that the GNATL‐domain of CurA is a bifunctional enzyme that mediates malonyl‐CoA 

decarboxylation to afford acetyl‐CoA and subsequent acyltransfer to the ppan group of the adjacent 

ACP.234 The three‐dimensional structure of the CurA GNATL‐domain cocrystallized with acetyl‐CoA 

revealed unique substrate coordination and channelling mechanisms.  

 

Figure 6.16: Initiation modules of PKSs containing GNATL‐domains and Mcd together with the products 

assembled by the synthases and L‐haOrn. A) Domain organization of CurA and chemical structure of curacin A. 

B) The onnamide loading module OnnB and onnamide A. C) The bifunctional malonyl‐CoA  

decarboxylase/N‐acetyltransferase Mcd and the final product L‐haOrn. D) The three‐dimensional structure of 

the CurA GNATL‐domain (PDB code: 2REF) cocrystallized with acetyl‐CoA. CurA exhibits the GNAT superfamily 

fold consisting of a central antiparallel β‐sheet motif flanked by α‐helices. Abbreviations: AR; adapter  

region‐domain, UR; region of unknown function, KS; ketosynthase.  
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Multiple sequence alignments of the C‐terminal residues of Mcd (243‐417) and the N‐terminal region of 

CurA (residues 218‐440) could not identify a high degree of sequential similarity for the localization of 

the acetyl‐CoA binding site or the residues involved in the decarboxylation reaction of malonyl‐CoA. 

Within the crystal structure of the CurA GNATL‐domain two residues (Thr355 and His389) could be 

identified at the junction of two tunnels separated by the aromatic side‐chain of Trp249  

(Figure 6.17).234 Substitution of these residues with alanine resulted in decarboxylase activity deficient 

mutants, whereas acetyltransferase activity was still detectable. These residues could not be located 

within the sequences of Mcd or related GNAT‐domain proteins associated with siderophore biosynthesis 

(Figure 6.14).   

 

 

 

 

 

 

 

 

Figure 6.17: The three‐dimensional structure of the CurA GNATL‐domain (PDB code: 2REF).  

A) Surface representation of the GNAT‐domain including the cosubstrate acetyl‐CoA. B) Overview of the 

active site residues involved in the decarboxylation of malonyl‐CoA. The substrate tunnels are separated by 

Trp249. Thr355 and His389 stabilize the enolate anion intermediate of the decarboxylation reaction. Arg404 is 

proposed to facilitate the binding of the deprotonated ACP ppan group.   

 

6.3.2.2 The Bifunctional Enzyme Mcd Mediates Decarboxylation and Acetylation 

  

On the basis of the results obtained from bioinformatic analysis of mcd it was postulated that Mcd 

catalyzes the decarboxylation of malonyl‐CoA to acetyl‐CoA and subsequent acetyltransfer onto the  

δ‐amino group of L‐ornithine or δ‐N‐hydroxy‐L‐ornithine (Figure 6.18). In a study published recently, the 

REDIRECT method was employed for the generation of a S. erythraea ∆mcd mutant.238  

Deletion of mcd resulted in an erythrochelin nonproducing strain and confirmed the essential role of 

Mcd in the biosynthesis of the siderophore. Complementation of the mutant strain with chemically 

synthesized L‐haOrn restored erythrochelin production, proving Mcd to mediate δ‐N-acetylation of free  

L‐hOrn. On the basis of these results two biosynthetic routes for the generation of L‐haOrn can be 

postulated. In the first model, hydroxylation of L‐Orn, catalyzed by the FAD‐dependent monooxygenases 
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EtcB or Sace_1309 precedes acetylation of L‐hOrn by Mcd, whereas in the second model acetylation 

precedes hydroxylation (Figure 6.18).   

 

 

 

 

 

 

 

 

Figure 6.18: The mechanistic routes for the biosynthesis of L‐haOrn. A) Hydroxylation of L‐Orn by EtcB or 

Sace_1309 precedes acetylation. B) Acetylation of L‐Orn by Mcd is followed by δ‐N‐hydroxylation.  

 

To obtain further insights into the acetylation mechanism and timing, Mcd was produced recombinantly 

and characterized biochemically in vitro. It was shown that Mcd mediates the decarboxylation of 

malonyl‐CoA and subsequent acetyltransfer to the δ‐hydroxamino group of L‐hOrn, demonstrating that 

hydroxylation of L‐Orn precedes acetylation. Proving the resulting acetylated species to be  

δ‐N-acetyl-δ‐N‐hydroxy‐L‐ornithine will require the chemical synthesis of an L‐haOrn standard following 

established methods or the chemoenzymatic synthesis of preparative‐scale amounts of the compound 

for NMR studies.259  

Acetylation was exclusively limited to L‐hOrn and confirmed Mcd to exhibit a high degree of substrate 

specificity. In vitro characterization of CurA also demonstrated a high degree of substrate specificity 

towards the acetyl group acceptor.234 Substitution of the naturally occurring ACP ppan group by loading 

the CurA ACP with amino‐CoA revealed only trace amounts of acetyl‐NH‐ACP. In contrast, Mcd is a 

GNAT‐like protein catalyzing N‐acetylation instead of S‐acetylation. Time‐course experiments showed 

that utilization of malonyl‐CoA as the acetyl‐donor resulted in only 35% substrate conversion after 240 

min, whereas acetyl‐CoA as the cognate acetyl group donor afforded complete substrate turnover after 

90 min, proving the decarboxylation of malonyl‐CoA and subsequent substrate channelling to be rate‐

limiting steps of this reaction. In contrast, the determination of kinetic parameters of S‐acetylation by 

CurA using malonyl‐CoA and acetyl‐CoA revealed similar kcat values for both substrates. In addition, the 

kcat value for acetyl group transfer was 780‐fold lower than the kcat for the decarboxylation of malonyl‐

CoA suggesting that decarboxylation and acetyltransfer are separated by conformational changes leading 
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to an effective coordination of the ACP ppan arm in the acceptor site.234 The determination of kinetic 

parameters for Mcd‐mediated acetylation of L‐hOrn will grant further insights into this unique class of 

enzymes. In addition, a consecutive enzymatic synthesis of δ‐N‐acetyl‐δ‐N-hydroxy‐L‐ornithine was 

achieved by tandem action of a FAD‐dependent monooxygenase, hydroxylating the δ‐amino group of  

L‐Orn, and the bifunctional malonyl‐CoA decarboxylase/acetyltransferase Mcd. This coupled assay gave 

rise to the L‐haOrn building block, which is subsequently recognized and activated by the first and the 

third A‐domain of the synthetase EtcD in vivo.  

 

6.4 Biosynthesis of Erythrochelin Requires NRPS Crosstalk 

 
Biosynthesis of erythrochelin requires the crosstalk between distant NRPS gene clusters due to Mcd 

being encoded in a cluster 2 mb away from the etc locus.238 The phenomenon of crosstalk between 

metabolic pathways is common in prokaryotes and has been observed for the malonyl‐CoA transferase 

(MAT) of the S. coelicolor FAS, which is also proposed to be involved in the biosynthesis of the PKS‐

derived isochromanone pigment actinorhodin.268 An additional example of one enzyme being shared by 

different biosynthetic pathways are the PPtases, catalyzing the conversion of FAS, PKS and NRPS apo‐CPs 

to holo‐CPs via phosphopantetheinylation in parallel. PPtases usually display a high degree of substrate 

tolerance towards the recognized CPs as in the case of the PPtase Sfp (Bacillus subtilis), whereas the 

SePptII PPtase (S. erythraea) is specific for the erythromycin PKS.269  

Similar enzymes carrying out the same catalytic function in different pathways can complement each 

other upon deletion of one gene. This crosstalk has been described by mutational analysis of MbtH‐like 

protein regulation of the coelichelin and CDA biosynthetic pathways in S. coelicolor A2(3).168 MbtH‐like 

proteins are small, highly conserved proteins of unknown function, assumed to be involved in the 

regulation of secondary metabolite biosynthesis and commonly found in NRPS biosynthetic gene 

clusters. Deletion of either cdaX or cchX, both encoding MbtH‐like proteins, gave rise to mutants 

producing both compounds at wild‐type levels. In contrast, the ∆cdaX∆cchX double mutant failed to 

produce either of the compounds, confirming the necessity of the deleted genes for production of the 

corresponding metabolite.168  In S. erythraea, MbtH‐like proteins are encoded in the nrps3, etc and nrps7 

gene clusters.215 Genetic deletion of mcd proved the gene encoding the bifunctional N‐acetyltransferase 

to be required for erythrochelin assembly. As mcd is not located in the etc operon an unprecedented 

crosstalk between remote NRPS gene clusters has been uncovered. Intriguingly, Mcd was also shown to 

be essential for the biosynthesis of the macrolide polyketide antibiotic erythromycin, thus being involved 

in both PKS and NRPS pathways.235 
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6.5 Biosynthetic Model for Erythrochelin Assembly  

 

On the basis of the results obtained herein, a model for erythrochelin biosynthesis by the tetramodular 

NRPS EtcD in combination with the FAD‐dependent monooxygenases EtcB and Sace_1309 and the 

bifunctional tailoring enzyme Mcd was established (Figure 6.19). The irrevocable evidence for  

EtcD‐mediated erythrochelin assembly resulted from targeted gene deletion of etcD followed by  

LCMS‐analysis of culture supernatants. It was shown that deletion of etcD utilizing the RedET‐based 

REDIRECT technique generated erythrochelin nonproducing mutants.238 Eythrochelin biosynthesis by 

EtcD follows a linear enzymatic logic, in which the number of A‐domains located within the template 

directly correlates with the number of amino acids found in the product. Initiation of erythrochelin 

assembly requires δ‐N‐hydroxylation of L‐Orn by the flavin‐dependent monooxygenase EtcB or 

Sace_1309, analogous to the CchB‐catalyzed oxygenation of L‐Orn during coelichelin biosynthesis.98  

L‐hOrn itself represents a branching point in erythrochelin synthesis. This building block is either directly 

recognized by A3 or further modified by means of δ‐N‐acetylation catalyzed by Mcd to afford L‐haOrn 

which is recognized by A1 and A4. These results are consistent with bioinformatic analysis of EtcD 

adenylation domain specificity, resulting in the less accurate prediction of L‐Arg as the substrate for both 

A1 and A4. Differences in the specificity determining residue pattern are likely to be the result of minimal 

structural differences between L‐Arg and L‐haOrn. When comparing the active site residues of A1 and A4, 

a high degree of identity (90%) is found, indicating L‐haOrn as the common substrate. This model would 

exclude online δ‐N‐hydroxylation and δ‐N‐acetylation of the NRPS‐bound substrates as seen in the 

hydroxylation of PCP‐bound Glu in kutzneride biosynthesis.102 Recent genetic studies investigating the 

biosynthesis of the L‐haOrn residue corroborated this model.238 Complementation of the ∆mcd mutant 

with chemically synthesized L‐haOrn restored erythrochelin production, confirming the FAD‐dependent 

monooxygenases EtcB and Sace_1309 to act in combination with Mcd for the biosynthesis of L‐haOrn. 

This chemical complementation furthermore demonstrated EtcD A1 and A4 to recognize and activate the 

tailored L‐haOrn as the cognate substrate.  

Prior to incorporation of L‐haOrn1 into the growing peptide chain, the α‐N‐acetylation is likely to be 

carried out by the C1‐domain located at the N‐terminus of EtcD, recognizing acetyl‐CoA as the cognate 

substrate. This in cis modification of a PCP‐bound substrate was shown to be adopted in the initiation 

reaction during surfactin biosynthesis with β‐hydroxymyristoyl‐CoA being the substrate for NRPS‐

catalyzed acyl transfer.270 An alternative mechanism would arise from a lone‐standing acetylated ACP 

being the cognate substrate donor similar to the initiation mechanism mediated by DptE and DptF during 

daptomycin biosynthesis (Figure 1.8).106 Future work will focus on the reconstitution of the initiation of 



 Discussion and Outlook  

‐ 133 ‐ 

erythrochelin biosynthesis in vitro, employing the N‐terminal module 1 (C‐A1‐PCP) of EtcD and acetyl‐CoA 

as the acetyl‐group donor. Epimerisation of the α‐stereocenters of L‐ac‐haOrn1 and L‐Ser is mediated by 

the E‐domains located in module 1 and 2, being in full agreement with the experimental determination 

of overall stereochemistry. 

 

Figure 6.19: Biosynthesis of erythrochelin by the tetramodular nonribosomal peptide synthetase EtcD.  

δ‐N‐hydroxylation of L‐ornithine is mediated by the peptide monooxygenases EtcB or Sace_1309.  

δ‐N‐acetylation of L‐hOrn is carried out by the malonyl‐CoA decarboxylase/N‐acetyltransferase Mcd, encoded 

in the nrps1 gene cluster. The N‐terminal C‐domain of EtcD catalyzes the α‐N‐acetylation of PCP‐bound  

L‐haOrn1 in cis. Cyclorelease of the assembled tetrapeptide mediated by the C‐terminal C‐domain of EtcD 

results in the formation of a diketopiperazine (DKP) moiety. Erythrochelin is subsequently exported into the 

extracellular space to scavenge iron and is reimported into the cell by the uptake machinery consisting of 

EtcC/F/G.   

 

The C‐domain catalyzed condensation of the four unique building blocks follows a linear NRPS‐assembly 

line logic. In the first step the C2‐domain catalyzes the nucleophilic attack of the Ser1 α‐amino group onto 

the PCP1‐bound ac‐haOrn1 resulting in a PCP2‐bound dipeptide. C3‐catalyzed isopeptide bond formation 

between the δ‐amino group of L‐hOrn3 and the PCP2‐bound D‐ac‐haOrn1‐D‐Ser2 dipeptide results in the 

translocation of the tripeptide to PCP3. A nucleophilic attack of the L‐haOrn4 α‐amino group onto the 
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PCP3‐bound tripeptide thioester functionality gives the fully assembled tetrapeptide consisting of  

D‐ac‐haOrn1‐D‐Ser2‐L‐hOrn3‐L‐haOrn4. In contrast to erythrochelin assembly, the biosynthesis of the 

hydroxamate‐type siderophores fuscachelin or coelichelin involves unorthodox use of the modular 

template including module‐skipping mechanisms.37‐38  

The release of the assembled NRP is generally mediated by C‐terminal TE‐domains or reductase domains 

located in the termination module of the NRPS assembly line.59,216 In contrast to this mechanism, the 

cyclorelease of erythrochelin through DKP‐formation carried out by the C‐terminal C5‐domain is 

proposed, catalyzing the intramolecular nucleophilic attack of the L‐hOrn3 α‐amino group onto L‐haOrn4. 

Taking into account that the synthetases involved in the biosynthesis of the DKP‐containing toxins 

thaxtomin (Streptomyces acidiscabies), gliotoxin (Aspergillus fumigatus) and fumitremorgin  

(Aspergillus fumigatus) also contain a C‐terminal condensation domain, this C‐domain catalyzed 

cyclorelease seems feasible (Figure 6.20 A).61‐62,271 Multiple sequence alignments of EtcD‐C5 with the  

C‐terminal regions of TxtB, GliP and FtmA revealed EtcD‐C5 to contain a modified C3‐core motif  

(Figure 6.20 B). The catalytically active second histidine residue of the C3‐core motif (MHHxxxDG(WV)S) 

is missing with the core sequence being MHYLGDEWS. Future work will address the C‐domain catalyzed 

cyclorelease by loading synthetic CoA‐activated dipeptidyl‐, tripeptidyl‐ and tetrapeptidyl substrates 

onto the recombinant EtcD PCP‐C5 didomain. In the course of this study the didomain could be produced 

recombinantly and the possibility to posttranslationally load synthetic CoA‐substrates onto the  

PCP‐domain was confirmed via fluoresceinyl‐CoA phosphopantetheinylation assays (Figure S9).  

 

 

 

 

 

 

 

 

 

Figure 6.20: Multiple sequence alignments of C‐terminal C‐domains of NRPSs governing the biosynthesis of 

DKP‐containing natural products and the corresponding chemical structures. A) The chemical structures of 

thaxtomin B, gliotoxin and fumitremorgin. B) Sequences aligned are EtcD, TxtB, GliP and FtmA, responsible for 

the assembly of erythrochelin, thaxtomin B, gliotoxin and fumitremorgin, respectively. The C3‐core motif is 

accentuated in green. Alignments were performed under application of a ClustalW algorithm. The degree of 

conservation is indicated by color: Red indicates complete and blue no agreement.  



 Discussion and Outlook  

‐ 135 ‐ 

After release from the synthetase, erythrochelin is exported into the extracellular space to scavenge 

iron. The reimport of ferri‐erythrochelin is likely to be mediated by the FeuA homologue EtcC, 

responsible for periplasmic binding.152 EtcC represents a membrane anchored periplasmic binding 

protein that in combination with EtcF, the ABC‐transporter transmembrane component and EtcG, the 

corresponding ATP‐binding component, actively reimports ferri‐erythrochelin into the cell  

(Figure 6.21).272 In order to investigate the recognition and binding of ferri‐erythrochelin by EtcC, the 

protein was produced recombinantly omitting the N‐terminal 21 residues, which are proposed to 

constitute the membrane anchor (Figure S10). Future work will aim to establish a structural and 

functional basis for the binding of ferri‐erythrochelin by EtcC. In summary, the model for iron import by 

S. erythraea is as follows: I) Iron starvation leads to upregulation of the etc and nrps1 gene clusters;  

II) Biosynthesis of the tailored amino acids L‐hOrn and L‐haOrn is carried out by EtcB, Sace_1309 and 

Mcd; III) The tetrapeptide siderophore is assembled by EtcD; IV) Export of the siderophore; V) Reimport 

of ferri‐erythrochelin by EtcC/F/G.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.21: The proposed mechanism for iron uptake by S. erythraea. In response to iron starvation, 

erythrochelin is assembled and secreted into the extracellular space for the chelation of ferric iron. Loaded 

ferri‐erythrochelin is recognized by the membrane‐anchored periplasmic binding protein EtcC and channelled 

into the cytoplasm by the transport machinery consisting of EtcF and EtcG in an ATP‐dependent manner.  
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8. Supplementary Section 

 
8.1 Supplementary Figures 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure S1: MS2‐spectra of the linear hydrolysis product Hy8 and macrolactone Cy8/4. A) MS2‐spectrum of the 

linear hydrolysis product Hy8 and the chemical structures of the resulting fragment ions. B) The 

fragmentation pattern of macrolactone Cy8/4 and the chemical structures of the resulting fragment ions. The 

fragmentation pattern differs from the spectrum of Hy8 due to the dominant formation of dehydro‐alanine 

species (b4/3/2‐H2O). The formation of dehydro‐alanine species resulting from a loss of one molecule of water 

is characteristic for the fragmentation of lactones.214 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2:  1D 1H‐NMR spectrum of erythrochelin in DMSO at 300K.  
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Figure S3: Section of the DQF‐COSY spectrum of erythrochelin in DMSO at 300K.  

 
 
 
 
 
 

 

 

 

 

 

 

 

 

Figure S4:  
1H‐15N HSQC spectrum of erythrochelin in DMSO at 300K. 
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Figure S5: A section of the HMBC spectrum of erythrochelin in DMSO at 300K in the region of correlations 

between carbonyl atoms, amide protons and protons at the α‐position. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S6: A section of the HMBC spectrum of erythrochelin in DMSO at 300K in the region of correlations 

between carbonyl groups and protons of amino acid sidechains. 
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Figure S7: ROESY spectrum of erythrochelin in DMSO at 300K. The mixing time was 300 ms.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S8: The proposed biosynthesis of the second siderophore by nrps3 (Sace_ 2693, Sace_2695, 

Sace_2696). Initiation of siderophore biosynthesis is mediated by the lone‐standing AMP‐ligase Sace_2694, 

activating 2,3‐DHB as aminoacyl‐adenylate which is subsequently transferred onto the N‐terminal PCP of 

Sace_2693. Additional tailoring steps involve the δ‐N‐formylation of L‐Orn or L‐hOrn to afford L‐hfOrn. Release 

of the product is catalyzed by the C‐terminal TE‐domain of Sace_2696, giving rise to a mixed 

catecholate/hydroxamate‐type siderophore.  
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Figure S9: A) SDS‐PAGE analysis of recombinant EtcD PCP‐C5 (58.3 kDa) incubated with fluoresceinyl‐CoA and 

Sfp (+). (‐) indicated the sample lacking Sfp. B) SDS‐PAGE analysis of fluoresceinyl‐labeled protein prior to 

Coomassie staining on an UV‐screen (λ = 312 nm). Labeling of the protein (+) indicates the possibility to 

posttranslationally load the didomain with CoA‐activated peptidyl substrates. The control (‐) lacked the 

PPtase Sfp. Protein Marker (M) was Broad Range Protein Marker P7702 (NEB). 

 

 

 

 

 

 

 

 

 

Figure S10: SDS‐PAGE analysis of the recombinant periplasmic binding protein EtcC (36.1 kDa). Protein 

Marker (M) was Broad Range Protein Marker P7702 (NEB). 
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8.2 Supplementary Tables 

 
Table S1: US FDA‐approved NRPS‐derived drugs. The brackets indicate the postulated system responsible for 

drug assembly.  

___________________________________________________________________________________________________________________  
 

      compound                    system     class                      indication                           producing organism                        semi-synthetic  

___________________________________________________________________________________________________________________ 

     

cyclic lipopeptides 
 

daptomycin   NRPS lipopeptide    antibacterial Streptomyces roseosporus NRRL11379              N 

polymyxin B   (NRPS) lipopeptide  antibacterial        Bacillus polymyxa                 N 

colistin   (NRPS) lipopeptide  antibacterial Bacillus colistinus   N 

colistimethate  NRPS lipopeptide  antibacterial Bacillus colistinus   Y 

caspofungin   (NRPS) echinocandins  antifungal  Aspergillus nidulans   Y 

micafungin    NRPS echinocandins  antifungal  Aspergillus nidulans   Y 

anidulafungin  NRPS echinocandins  antifungal  Aspergillus nidulans   Y 

 

glycopeptides 
 

vancomycin   NRPS glycopeptide antibacterial  Amycolatopsis orientalis   N 

teichoplanin  PKS‐NRPS glycopeptide  antibacterial Actinoplanes teichomyceticus  N 

bleomycin   PKS‐NRPS  glycopeptide antineoplastic Streptomyces verticillus ATCC 15003  N 

 

cyclic peptides 
 

bacitracin   NRPS thiazolinepeptide antibacterial Bacillus licheniformis ATCC 10716  N 

quinopristin   NRPS streptogramin antibacterial Streptomyces pristinaespiralis  Y 

capreomycin  NRPS aminoglycoside antibacterial Streptomyces capreolus ATCC 23892  N 

cyclosporine  NRPS undecapeptide immunosupressive Tolypocladium inflatum   N 

 

linear peptides 
 

gramicidin D  NRPS oligopeptide antibacterial Bacillus brevis   N 

 

chromodepsipeptides 
 

dactinomycin   NRPS chromopeptide antibacterial Streptomyces parvullus   N 

 

tetrahydroisoquinolines 
 

ecteinascidin ET‐743   NRPS tetrahydroisoquinoline antineoplastic Streptomyces lavendulae  N 

 

ββββ-lactam antibiotics 
 

cephalosporin  NRPS  β‐lactam  antibacterial Cephalosporium acremonium  N 

penicillin V/G  NRPS  β‐lactam  antibacterial Penicillium sp.   Y 

ampicillin   NRPS  β‐lactam  antibacterial fungi    Y 

carbenicillin   NRPS  β‐lactam  antibacterial fungi    Y 

cefmetazole   NRPS  β‐lactam  antibacterial fungi    Y 

cephamycin   NRPS  β‐lactam  antibacterial fungi    Y 

loracarbef   NRPS  β‐lactam  antibacterial fungi    Y 

cefotiam    NRPS  β‐lactam  antibacterial fungi    Y 

flucloxacillin   NRPS  β‐lactam  antibacterial fungi    Y 

___________________________________________________________________________________________________________________________________ 

Source: U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Department of Health and Human Services, 25.03.2010 
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Table S2: Bioinformatic overview of the gene cluster responsible for erythrochelin biosynthesis and transport.  

The length of each gene is given in basepairs, whereas the length of the gene product is given in the number 

of amino acids. The proposed functions of the encoded proteins and the corresponding homology to related 

proteins are based on BLAST‐analysis.    

 

 

Table S3: 1H chemical shifts of erythrochelin in DMSO (δ1H = 2.49 ppm) at 300 K. 

 

 

Table S4: 
13C chemical shifts of erythrochelin in DMSO (δ13C = 39.5 ppm) at 300 K. 

 

 

Table S5: 15N chemical shiftsa of erythrochelin in DMSO at 300 K. 

 
 
 
 
 
 

areferenced to 15N of urea at 77.0 ppm. 

 

gene length (bp) length (aa) proposed function sequence similarity, organism 
  identity / 

similarity (%) 
      

etcA 894 297 LysR family transcriptional regulator SALBJ_010100018803, Streptomyces albus J1074 44/56 
etcB 1326 441 putative peptide monooxygenase SCO0498, Streptomyces coelicolor A3(2) 69/82 
etcC 987 328 iron ABC transporter periplasmic‐binding protein AMIRDRAFT_47480, Actinosynnema mirum DSM 43827 51/73 
etcD 16290 5429 putative nonribosomal peptide synthetase RHA1_RO04715, Rhodococcus sp. RHA1 50/63 
etcE 204 67 MbtH protein SCO3218, Streptomyces coelicolor A3(2) 72/83 
etcF 1758 585 putative ABC transporter transmembrane component SROSN1_010100030367, Streptomyces roseosporus NRRL 15998 59/72 
etcG 1638 545 ABC transporter protein, ATP‐binding component SSDG_00035, Streptomyces pristinaespiralis ATCC 2586 60/72 
etcH 666 221 IclR‐type transcriptional regulator RHA1_RO05075, Rhodococcus sp. RHA1 52/66 
etcI 1311 436 CoA‐transferase ROP_51380, Rhodococcus opacus B4 73/82 
etcJ 867 288 hydroxymethylglutaryl‐CoA lyase  RHA1_RO05078, Rhodococcus jostii RHA1 60/73 
etcK 1293 430 dicarboxylate carrier protein RHA1_RO05079, Rhodococcus jostii RHA1 55/73 
      

1
H (ppm) NH Hα Hβ Hγ Hδ Me 

acetyl      1.838 
D‐haOrn1 7.958 (d: 8.3 Hz) 4.318 1.422; 1.624 1.50; 1.54 3.416; 3.488 1.960 
D‐Ser2 7.737 (d: 7.4 Hz) 4.875 3.552; 3.626 / / / 
L‐hOrn3 8.077 (s) 3.811 1.594 1.59 3.38; 3.58  
L‐haOrn4 8.117 (s) 3.803 1.651 1.58 3.46 1.960 

13
C (ppm) Cα Cβ Cγ Cδ C=O NC=O Me 

acetyl      169.20 22.51 
D‐haOrn1 52.13 29.45 23.09 46.67 171.67 170.28 20.31 
D‐Ser2 52.13 60.86 / / 169.30 / / 
L‐hOrn3 53.78 30.09 21.76 47.10 167.97 / / 
L‐haOrn4 53.57 30.28 22.08 46.81 167.88 170.28 20.31 

15N (ppm) HN 

D‐haOrn1 122.86 
D‐Ser2 113.60 
L‐hOrn3 117.35 
L‐haOrn4 117.60 



  Supplementary Section  

‐ 151 ‐ 

Table S6: The observed NOE contacts of erythrochelin in DMSO at 300K. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Table S7: The observed long‐range 1H‐13C correlations in erythrochelin in DMSO at 300K. 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

cross peaks intensity 

NH (D‐haOrn1) – Hα (D‐haOrn1) strong (s) 
NH (D‐Ser2) – Hα (D‐haOrn1) s 
NH (D‐Ser2) – Hα (D‐Ser2) s 
NH (D‐Ser2) – Hβ (D‐Ser2) medium (m) 
NH (L‐hOrn3) – Hα (L‐hOrn3/L‐haOrn4) s 
NH (L‐haOrn4) – Hα (L‐hOrn3/L‐haOrn4) s 
NH (D‐haOrn1) – CH3 (Ac) s 
NH (D‐haOrn1) – Hβ (D‐haOrn1) m 
NH (D‐Ser2) – Hβ (D‐haOrn1) weak (w) 
NH (L‐hOrn3) – Hβ (L‐hOrn3) m 
NH (L‐haOrn4) – Hβ (L‐haOrn4) m 
Hα (D‐haOrn1) – Hβ (D‐haOrn1) m 
Hα (D‐haOrn1) – Hδ (D‐haOrn1) w 
Hα (D‐Ser2) – Hβ (D‐Ser2) m 
Hα (D‐Ser2) – Hδ (L‐hOrn3) w 
Hα (L‐hOrn3) – Hβ (L‐hOrn3) s 
Hα (L‐haOrn4) – Hβ (L‐haOrn4) s 
CH3 (δ‐N‐ac‐D‐haOrn1) – Hδ (D‐haOrn1) w 
CH3 (δ‐N‐ac‐D‐haOrn4) – Hδ (D‐haOrn4) w 

cross peaks coupling constants intensity 

CH3(α‐N‐ac‐L‐haOrn1) – C=O (α‐N‐ac) 2
JCH s 

C=O (α‐N‐ac) – NH (D‐haOrn1) 2
JCH s 

NH (D‐haOrn1) – Cα (D‐haOrn1) 2
JCH

 s 
NH (D‐haOrn1) – Cβ (D‐haOrn1) 3

JCH
 s 

NC=O (D‐haOrn1) – CH3 (D‐haOrn1) 2
JCH s 

NC=O (D‐haOrn1) – Hδ (D‐haOrn1) 3
JCH

 s 
Hα (D‐haOrn1) – C=O (Ac) 3

JCH w 
Hα (D‐haOrn1) – C=O (D‐haOrn1) 2

JCH s 
C=O (D‐haOrn1) – NH (D‐Ser2) 2

JCH w 
Hα(D‐Ser2) – C=O (D‐haOrn1) 3

JCH w 
Hα (D‐Ser2) – C=O (D‐Ser2) 2

JCH s 
Hβ (D‐Ser2) – C=O (D‐Ser2) 3

JCH s 
Hα (L‐hOrn3) – C=O (L‐hOrn3) 2

JCH s 
C=O (D‐Ser2) – Hδ (L‐hOrn3) 3

JCH w 
Hα (L‐haOrn4) – C=O (L‐haOrn4) 2

JCH s 
NH (L‐hOrn3) – Cα (L‐hOrn3) 2

JCH s 
NH (haOrn4) – Cα (haOrn4) 2

JCH s 
C=O (δ‐N‐ac‐L‐haOrn4) – CH3 (L‐haOrn4) 2

JCH s 
C=O (δ‐N‐ac‐L‐haOrn4) – Hδ (L‐haOrn4) 3

JCH
 s 
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