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Abbreviations 
 

DTT Dithiothreitol 

TEMED N,N,N’,N’-Tetraethylethylenediamine 

AHT Anhydrotetracycline 

DTNB 5,5’-Dithiobis(2-nitrobenzoate) 

IPTG Isopropyl thio-β-D-galactoside 

AbfD 4-Hydroxybutyryl-CoA dehydratase 

AbfT 4-Hydroxybutyrate CoA-transferase 

MS_1, MS_2 Two different copies of 4-hydroxybutyryl-CoA dehydratases in 

Metallosphaera sedula 
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Zusammenfassung 
 

Die 4-Hydroxybutyryl-CoA-Dehydratase aus Clostridium aminobutyricum katalysiert die 

ungewöhnliche reversible Dehydratisierung von 4-Hydroxybutyryl-CoA zu Crotonyl-CoA. 

Das Enzym ist im nativen Zustand ein Homotetramer mit einer Masse von 232 kDa, und 

besteht aus zwei katalytisch aktiven Dimeren mit je zwei aktiven Zentren. Darin befinden 

sich je ein [4Fe-4S]2+ Cluster, ein nicht kovalent gebundenes FAD und einige konservierte 

Aminosäurereste, deren Oberflächen an einen schmalen Substrat-Bindungskanal grenzen. 

Die ungewöhnliche Dehydratisierung erfordert die Abstraktion des nicht aktivierten 3Si-

Protons (pK ≈ 40) vom 4-Hydroxybutyryl-CoA, die das Enzym über eine transiente 

Deprotonierung und Oxidation zu radikalischen Zwischenstufen bewerkstelligt Das 

Hauptziel dieser Arbeit war die Aufklärung der Funktionen hoch konservierter Aminosäuren 

im aktiven Zentrum. Dabei wurden die Liganden des [4Fe-4S]2+ Clusters, H292C/E, C99A, 

C103A und C299A, sowie E257Q, E455Q, Y296F, A460G, Q101E, T190V und K300Q 

durch ortsspezifische Mutagenese verändert. Die sieben erstgenannten Varianten waren 

enzymatisch völlig inaktiv. Die übrigen zeigten geringe Restaktivitäten (0.4 – 4%). 

Zusätzlich katalysiert die 4-Hydroxybutyryl-CoA Dehydratase die Isomerisierung von 

Vinylacetyl-CoA zu Crotonyl-CoA. Alle Varianten katalysierten diese Reaktion, wobei 

E455Q (7%), H292E (1%) und C99A (1%) die geringsten Aktivitäten aufwiesen. 

Überraschenderweise wurden die aktivsten E257Q (92%) und C299A (76%) Varianten durch 

Luft nicht inaktiviert, während der Wildtyp unter gleichen Bedingungen 90% seiner Aktivität 

verlor. Die Ergebnisse zeigen, dass wahrscheinlich H292 und E455 sowohl in der 

Dehydratisierung als auch in der Isomerisierung als katalytische Säure/Basen wirken. 

Möglicherweise ist E257 an der Stabilisierung des FAD beteiligt und somit für die 

Isomerisierung ohne Bedeutung. 

Vor kurzem wurde ein neuer CO2–Fixierungsweg in Archaeen gefunden, der sogenannte 3-

Hydroxypropionat/4-Hydroxybutyrat Zyklus. In diesem wurde die 4-Hydroxybutyryl-CoA 

Dehydratase ebenfalls als ein Schlüsselenzym nachgewiesen. Interessanterweise sind zwei 



Zusammenfassung 
 

 

10 
 

unterschiedene Kopien der 4-Hydroxybutyryl-CoA Dehydratase in Metallosphaera sedula 

vorhanden. Ein weiteres Ziel dieser Arbeit war die Aufklärung der Funktionen dieser beiden 

Dehydratasen. Die Gene wurden bereits erfolgreich in Plasmide kloniert, aber eine 

Produktion in Escherichia coli führte nur zu inaktivem Protein. Deshalb ist in Zukunft die 

Genexpression in Sulfolobus solfataricus geplant, weil sowohl Metallosphaera als auch 

Sulfolobus zu den thermophilen Crenarchaeota gehören. 

Die 4-Hydroxybutyrat CoA-Transferase katalysiert die Aktivierung von 4-Hydroxybutyrat 

zu 4-Hydroxybutyryl-CoA. Im Rahmen dieser Arbeit wurde mit ortsspezifischer Mutagenese 

herausgefunden, dass E238 während der Katalyse mit CoA ein Thioesterintermediat bildet. 

Dieses Intermediat wurde auch über den Ping-Pong-Mechanismus, die Reduktion mit NaBH4 

und durch thermische Fragmentierung der Peptidkette identifiziert. Die Kristallstruktur mit 

Butyryl-CoA als Substrat zeigt, dass das aktive Zentrum des homodimeren Enzyms zwischen 

den beiden Untereinheiten einen schmalen Kanal bildet, an dessen Ende sich E238 befindet. 

Diese Struktur eines Michaelis Komplexes ist bisher unter den CoA-Transferasen einmalig. 



Summary 
 

 

11 
 

Summary 
 

4-Hydroxybutyryl-CoA dehydratase from Clostridium aminobutyricum catalyzes the 

unusual reversible dehydration of 4-hydroxybutyryl-CoA to crotonyl-CoA. The enzyme is a 

homotetramer with the molecular mass of 232 kDa in native form, which consists of two 

catalytically functional dimers with two active sites in each dimer. Each active site contains 

one [4Fe-4S]2+ cluster and one not covalently bound FAD moiety. The surface of these two 

cofactors and several in the active site located amino acids forms a narrow substrate binding 

channel. 

This unusual dehydration reaction involves the removal of the non-activated 3Si-hydrogen 

(pK ≈ 40) of 4-hydroxybutyryl-CoA, which is carried out via transient deprotonation and 

oxidation generating radical intermediates. This work aimed to explain the catalytic 

functions of highly conserved amino acids in the active centre. Thereby, the ligands of [4Fe-

4S]2+ cluster, H292C/E, C99A, C103A, and C299A, as well as E257Q, E455Q, Y296F, 

A460G, Q101E, T190V, and K300Q were generated by site-directed mutagenesis. The first 

variants from H292C to E455Q abolished the dehydratase activities. The others showed low 

residual activity (0.4 – 4%). 

Moreover, 4-hydroxybutyryl-CoA dehydratase also catalyzes the isomerization of 

vinylacetyl-CoA to crotonyl-CoA. All mutants were able to catalyze this reaction, in which 

E455Q (7%), H292E (1%) und C99A (1%) exhibited the smallest activities. Surprisingly, the 

mutants E257Q (92%) and C299A (76%) were not inactivated by exposure to air, whereas 

the wild type lost 90 % of the initial value under the same conditions. The results showed 

that H292 and E455 probably act as catalytic acid/base in the dehydration as well as in the 

isomerization. E257 most likely participates in the stabilization of FAD and therefore is 

insignificant for the isomerization. 

Recently a new CO2-fixation pathway has been reported in archaea, namely the 3-

hydroxypropionate/4-hydroxybutyrate pathway, which contains 4-hydroxybutyryl-CoA 
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dehydratase as the key enzyme. However, the genome of the autotrophic thermopile 

Metallosphaera sedula revealed two different copies of 4-hydroxybutyryl-CoA dehydratase. 

This work also aimed to uncover the functions of these two copies through cloning of their 

genes in plasmid and analysis of the purified recombinant proteins. Unfortunately, the 

purified recombinant protein produced in Escherichia coli expression system showed no 

dehydratase activity. Therefore, in the future the recombinant protein will be produced in 

Sulfolobus solfataricus, because both Metallosphaera and Sulfolobus belong to the 

thermophilic Crenarchaeota. 

The 4-hydroxybutyrate CoA-transferase catalyzes the activation of 4-hydroxybutyrate to 

4-hydroxybutyryl-CoA. In this work it has been detected by site-directed mutagenesis that 

E238 is responsible to form the CoA-enzyme thioester intermediate. This intermediate was 

identified by the ping-pong mechanism, the reduction with NaBH4 and also by thermal 

fragmentation of the peptide chain. The crystal structure with butyryl-CoA as substrate 

exhibited that the active centre is forming a narrow substrate binding channel between both 

subunits, and E238 is located at the end of this channel. This structure of the Michaelis 

complex is unique in the CoA-transferases. 
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1. Introduction 

 

1.1 Overview of anaerobic energy metabolism 

 

Under anoxic conditions many organisms are able to use organic or inorganic compounds 

other than molecular oxygen as electron acceptors. During energy conservation reactions the 

organic substrates or hydrogen are oxidized and the electron acceptors, such as nitrate, nitrite, 

sulfate, carbon dioxide, fumarate, the substrate itself or a derivative thereof are reduced. In 

Clostridium aminobutyricum crotonyl-CoA, a derivative of the substrate 4-aminobutyrate, 

acts as electron acceptor. 

In the reductive branch, an electron is transferred from the donor with a negative redox 

potential to an acceptor with a more positive redox potential. The electron transfer is coupled 

to the synthesis of ATP (adenosine-5´-triphosphate). This process is known as electron-

transport phosphorylation (ETP) or anaerobic respiration. It is different to aerobic respiration, 

in that oxygen is replaced by other electron acceptors. However most of them have a less 

positive redox potential than oxygen, which leads to the less energy available for ATP-

synthesis [1-4]. 

In the oxidative branch, during the degradation of organic substrates, a high-energy 

phosphoanhydride bond containing compound is formed, from which ATP is generated by 

substrate level phosphorylation (SLP).  

Fermentation is the process of deriving energy from the oxidation of organic compounds 

using an endogenous electron acceptor. It occurs mainly in soil, marine, and anoxic sewage 

sludge environments, as well as in the intestinal tract and other anoxic niches of the animal 

and human body. Three types of fermentation have been observed [5]: 

• Fermentation in which two substrates participate, one acting as electron donor and the 

other as electron acceptor (e.g., amino acid fermentation called Stickland). 

• Fermentation in which a single substrate is fermented, such that the oxidative step is 
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followed by the reductive step (e.g., homolactate fermentation). 

• Fermentation in which a single substrate serves both as electron donor and as electron 

acceptor (e.g. glutamate fermentation). This occurs in the majority of cases. 

 

1.2 Glutamate fermentation pathway in anaerobic bacteria 

 

In the anoxic environments, the polypeptide and proteins are hydrolyzed by exogenous 

proteases to small peptides and single amino acids, which are taken up by fermentative 

bacteria and degraded to ammonia, CO2, H2, acetate and short chain fatty acids. Acetogenic 

organisms can then use the byproducts CO2 and H2 for acetate synthesis, while syntrophic 

bacteria can oxidize the short chain fatty acid to acetate, CO2 and H2. The latter reaction 

happens only if the H2 pressure is kept at a very low level by reacting with CO2 to produce 

methane, which occurs in methanogenic archaea. The biochemically most versatile 

organisms in this process are the fermentative bacteria. A special case is glutamate 

fermentation by anaerobic bacteria of the orders Clostridiales and Fusobacteriales [6-10]. 

These bacteria are able to degrade glutamate to fatty acids, ammonia, CO2 and H2 by at least 

five different pathways, most of which contain reactions with radical intermediates. 

 

The two coenzyme B12-dependent 3-methylaspartate pathways 

In the first half of the two pathways glutamate is degraded to ammonia, acetate and pyruvate 

via a catalytically interesting coenzyme B12-dependent glutamate mutase. Pyruvate then 

disproportionates either to CO2 and butyrate or to acetate, CO2 and propionate. 

The classic glutamate fermentation pathway was first discovered in Clostridium 

tetanomorphum [10, 11]. In this pathway, glutamate is converted via (2S, 3S)-3-

methylaspartate to mesaconate, which is hydrated to (S)-citramalate. Citramalate is then 

cleaved to acetate and pyruvate. The most interesting enzyme, glutamate mutase, catalyzes 

the reversible re-arrangement of (S)-glutamate to (2S,3S)-3-methylaspartate. It contains two 
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subunits, which in the presence of coenzyme B12 forms the active complex. When the 

substrate is added to the active complex, the carbon-cobalt bond of the coenzyme is cleaved 

into cob(II)alamin and the 5'-deoxyadenosine radical. The radical can then abstract the 4Si 

hydrogen to form 5'-deoxyadenosine and the 4-glutamate radical. The glutamate radical 

fragments to acrylate and the glycine radical, which recombines to the 3-methylaspartate 

radical. The 3-methylaspartate is formed during the regeneration of the 5'-deoxyadenosine 

radical. 

These two coenzyme B12-dependent pathways have detected in some clostridia, such as C. 

cochlearium, C. lentoputrescens, C. lismosum, C. malenominatum and C. tetani [12-14]. The 

pathway leading to propionate has been found in several bacteria of the family 

Acidaminococcaceae. 

 

The 2-hydroxyglutarate pathway 

In this pathway, glutamate is initially oxidized to 2-oxoglutarate by NAD+, then reduced to 

2-hydroxyglutarate by NADH. After activation to 2-hydroxyglutaryl-CoA, it is dehydrated to 

glutaconyl-CoA and then decarboxylated to crotonyl-CoA, which disproportionates to 

acetate, butyrate and H2 [15-21]. 

This pathway yields the same products as the butyrate forming coenzyme B12 dependent 

pathway, but in the absence of coenzyme B12. The mechanism involves the reversible syn-

elimination of water by 2-hydroxyglutaryl-CoA dehydratase. This oxygen sensitive enzyme 

contains two components, a homodimeric activator with a [4Fe-4S]2+ cluster and a 

heterodimeric dehydratase with either one or two [4Fe-4S]2+ clusters. Upon addition of ATP 

the helix-cluster-helix angle in the activator is probably enlarged from 105º to 180º. This 

conformational change moves the cluster towards the dehydratase component in order to 

facilitate the electron transfer, which reduces the electrophilic carbon to a negative charged 

ketyl radical. After elimination of the hydroxyl group the formation of the enoxyradical 

lowers the pK of the β-hydrogen from 40 to 14. Now the β-hydrogen can be removed easily 

by a base of the enzyme leading to a second ketyl radical. Finaly, it is oxidized to glutaconyl-
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CoA. 

This pathway has been detected in Acidominococcus fermentans, C. sporosphaeroides, C. 

symbiosum, Fusobacterium nucleatum and Peptostreptococcus asaccharolyticus [16, 19-21]. 

 

The 4-aminobutyrate fermentation pathway 

This pathway is different from the three pathways described above, because a second 

organism decarboxylates glutamate to 4-aminobutyrate, such as E. coli. 4-Aminobutyrate is 

used by several anaerobic bacteria for energy conservation. In this pathway 4-aminobutyrate 

is fermented via 4-hydroxybutyrate to acetate and butyrate [22]. The oxygen sensitive 4-

hydroxybutyryl-CoA dehydratase catalyzes the mechanistic most interesting reversible 

dehydration of 4-hydroxybutyryl-CoA to crotonyl-CoA using a ketyl radical. More details 

will be described in chapter 1.5. 

 

The fermentation pathway via 5-aminovalerate 

Under osmotic stress, glutamate is reduced to the osmoprotective amino acid proline by 

Bacillus subtilis, which is further reduced to 5-aminovalerate by Clostridium sporogenes. 

Clostridium viride then ferments 5-aminovalerate via 5-hydroxyvaleryl-CoA and 2-

pentenoyl-CoA to ammonia, acetate, propionate and valerate. During the dehydration of 5-

hydroxyvaleryl-CoA to 4-pentenoyl-CoA a non-activated γ-hydrogen has to be removed. 

The activation of this hydrogen is achieved by participation of FAD as a prosthetic group. 

Firstly, a double bond is generated using 5-hydroxvaleryl-CoA dehydratase/dehydrogenase 

with help of FAD resulting 5-hydroxy-2-pentenoyl-CoA and FADH2, which can be 

dehydrated by acid base catalysis. The resulting 2,4-pentadienoyl-CoA is reduced to 3-

pentenonyl-CoA, whereby oxidized FAD is regenerated [23]. 
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Figure 1-1. Glutamate fermentation pathway via (2S,3S)-3-methylaspartate, 2-
hydroxyglutaryl-CoA and 4-hydroxybutyryl-CoA. 
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1.3 Clostridium aminobutyricum 

 

Clostridia are bacteria, which probably evolved in the anoxic atmosphere before oxygen 

became available. They can produce spores during the resting stage, which are resistant to 

physical and chemical stress. Some species, such as C. difficile and C. tetani, cause diseases. 

On the other hand, most of them are harmless, and use sugars or amino acids as energy 

sources [24]. 

 

 

Figure 1-2. Growth phases of Clostridium 

 

Most clostridial species form spores, are Gram positive, motile, and able to degrade organic 

materials to acids, CO2 and H2. Their 16S ribosomal RNAs show very low sequence 

similarity, which indicates early divergence of the species during evolution [24, 25]. 

The strict anaerobic Clostridium aminobutyricum was first isolated from North Carolina 

swamp mud [26-29] and grows on 4-aminobutyrate, but not on closely related compounds. It 

forms acetate, butyrate and ammonia. 
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1.4 Fermentation of 4-aminobutyrate in C. aminobutyricum 

 

Escherichia coli is able to decarboxylate glutamate to 4-aminobutyrate, which is then 

fermented by C. aminobutyricum via 4-hydroxybutyryl-CoA and crotonyl-CoA to acetate 

and butyrate [22]. 

2 4-aminobutyrate + 2 H2O → 2 NH4
+ + 2 acetate- + butyrate- + H+ 

∆Go' ≈ - 50 kJ/mol 4-aminobutyrate 

Initially, the amino group of 4-aminobutyrate is exchanged with the keto-group of 2-

oxoglutarate by 4-aminobutyrate aminotransferase [30] producing succinate semialdehyde. 

This is then reduced to 4-hydroxybutyrate with the help of NADH using 4-hydroxybutyrate 

dehydrogenase. The activation of 4-hydroxybutyrate to 4-hydroxybutyryl-CoA is catalyzed 

by 4-hydroxybutyrate CoA-transferase, followed by dehydration of 4-hydroxybutyryl-CoA 

to crotonyl-CoA using 4-hydroxybutyryl-CoA dehydratase/vinylacetyl-CoA Δ-isomerase, a 

bifunctional oxygen sensitive cofactor containing enzyme. The resulting crotonyl-CoA then 

disproportionates to acetate and butyrate. The reductive branch leads to butyrate, whereas the 

oxidative branch via 3-hydroxybutyryl-CoA and acetoacetyl-CoA yields two acetyl-CoA, 

one of which is used for substrate level phosphorylation. On the other hand, C. 

aminobutyricum is also able to use vinylacetate, which is activated by 4-hydroxybutyrate 

CoA-transferase to vinylacetyl-CoA, afterwards it is converted to crotonyl-CoA by the same 

enzyme, namely 4-hydroxybutyryl-CoA dehydratase/vinylacetyl-CoA Δ-isomerase [22, 31-

34]. 

Additional, energy may be conserved via electron bifurcation in the reduction of crotonyl-

CoA to butyryl-CoA by NADH. The highly exergonic reaction is used to drive the 

endergonic reduction of ferredoxin by a second NADH. Ferredoxin is then reoxidized by 

NAD+ catalyzed by a membrane-bound ferredoxin NAD-reductase (Rnf) that generates 

∆µH+ equivalent to about ¼ ATP. Hence the total yield of ATP will be increased from 1.0 to 

1.25 per two 4-hydroxybutyrate giving 80 kJ/ATP, which approaches the theoretical value of 

70 kJ/ATP. 
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C. kluyveri can grow on succinate [35]. The dicarboxylic acid is activated by succinate CoA-

transferase to succinyl-CoA followed by reduction to succinate semialdehyde by succinate 

semialdehyde dehydrogenase using NADH. The resulting succinate semialdehyde is able to 

participate in the above described 4-aminobutyrate pathway [32, 36]. 

This pathway has been detected also in Fusobacterium varium and F. mortiferum, both of 

which are normally isolated from the gastrointestinal tract. 

 

Figure 1-3. Proposed pathways of the reduction of 4-aminobutyrate and vinylacetate 

in C. aminobutyricum as well as succinate in C. kluyveri.  

AbfA, 4-aminobutyrate aminotransferase; AbfH and 4hbD, 4-hydroxybutyrate 

dehydrogenase; AbfT and Cat2, 4-hydroxybutyrate CoA-transferase; AbfD, 4-

hydroxybutyryl-CoA dehydratase/vinylacetate Δ-isomerase; AbfB, butyryl-CoA 

dehydrogenase; SucD, succinate semialdehyde dehydrogenase. 
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1.5 4-Hydroxybutyrate CoA-transferase from C. aminobutyricum 

 

CoA-transferases exist mainly in energy-limited anaerobic bacteria. It catalyzes the 

reversible transfer of the CoA-group from the donor, a CoA-thioester, to the CoA-acceptor, a 

free acid. CoA-transferases are grouped into three enzyme families [37].  

In family I the reaction proceeds via a ping-pong mechanism, involving an active site 

glutamate residue that participates in the reaction mechanism [38, 39]. The reaction (Fig. 1-4, 

I) is started by a nucleophilic attack of the catalytic glutamate residue at the CoA-thioester 

substrate to form an enzyme-bound acyl-glutamyl anhydride. Then the released CoAS- anion 

participates in another nucleophilic attack at the mixed anhydride, which leads to an enzyme-

bound glutamyl-CoA thioester and liberation of the acid of the donor thioester. The CoA-

accepting carboxylate then attacks the glutamyl-CoA to generate the second mixed 

anhydride with the enzyme, and the liberated CoAS- anion reacts with this anhydride to 

produce the end product thioester. This enzyme family contains CoA-transferases for 3-

oxoacids (EC 2.8.3.5; EC 2.8.3.6), short chain fatty acids (EC 2.8.3.8) [40] and glutaconate 

(EC. 2.8.2.12). Most of them use succinyl- and acetyl-CoA as CoA donors and are composed 

of two distinct subunits. 

Family II consists of only the homodimeric α-subunits of the octadecameric citrate or 

citramalate lyases (EC 2.8.3.10, EC 2.8.3.11) and catalyzes a partial reaction (Fig.1-4, II). 

These lyases consist of three subunits with different functions, a CoA-transferase (α), a lyase 

(β) and an acyl-carrier protein (γ, ACP). Firstly, the thiol of the prosthetic group is converted 

to an acetyl-thioester in order to activate the enzyme [41]. The enzyme then catalyzes the 

acetylation of citramalate to an active acetyl-citramalyl-anhydride intermediate. The 

generated CoAS- anion from ACP reacts with this anhydride leading to the release of acetate 

and the production of citryl-CoA followed by cleavage to oxaloacetate and recycling of the 

acetyl-thioester. 

In family III (Fig.1-4, III) the mechanism of CoA-transferase is analogous to that of family I, 

but not via the ping-pong reaction. This family includes an aspartate residue in the active 
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centre, which leads to the formation of aspartyl mixed anhydride intermediate. Most of them 

catalyze CoA-transfer reactions in a highly substrate- and stereospecific manner. This family 

contains formyl-CoA: oxalate CoA-transferase (EC 2.8.3.2), succinyl-CoA: (R)-

benzylsuccinate CoA-transferase (EC 2.8.3.15), cinnamoyl-CoA: phenyllactate CoA-

transferase (EC 2.8.3.17) and isocarproyl-CoA: 2-hydroxyisocaproate CoA-transferase. 

 

 

Figure 1-4. Mechanisms of CoA-transferases of families I, II and III 
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4-Hydroxybutyrate CoA-transferase takes part in the fermentation pathway of 4-

aminobutyrate in anaerobic bacteria such as C. aminobutyricum or Porphyromonas 

gingivalis or in facultative bacteria as Shewanella oneidensis. It catalyzes the CoA transfer 

from acetyl-CoA to 4-hydroxybutyrate. The colorless 4-hydroxybutyrate CoA-transferase 

was isolated from C. aminobutyricum, purified and characterized several years ago [42]. The 

molecular mass was determined as 110 kDa and indicated a homodimeric structure with 54 

kDa per subunit. The enzyme does not consist of prosthetic groups and is capable of taking 

butyrate, propionate and its CoA-thioester, in addition to 4-hydroxybutyrate, acetate and 

vinylacetate as well as their CoA-thioesters as substrates. In contrast, 3-hydroxybutyrate and 

trans-crotonate are not esterified. 

However, the classification of 4-hydroxybutyrate CoA-transferase is not clear from its amino 

acid sequence alignment, although a relationship with the α-unit of citrate lyase has been 

suggested [22]. Moreover, according to glutaconate CoA-transferase from A. fermentas [34, 

38, 43], a thiol ester should be formed between the catalytic glutamate residue in the active 

site and the CoAS-moiety of the acyl-CoA substrate. This glutamate residue in 4-

hydroxybutyrate CoA-transferase could not be identified previously [22].  

 

1.6 4-Hydroxybutyryl-CoA dehydratase (AbfD) from C. aminobutyricum 

 

Most of the dehydratases catalyze the α,β-elimination of water. The α-hydrogen is removed 

as a proton, which is activated by an adjacent electron withdrawing functional group, such as 

carboxylate, carbonyl or CoA-thioester, and the hydroxyl-group is eliminated from the β-

position. However, 4-hydroxybutyryl-CoA dehydratase has to remove a non-activated 

hydrogen at the β-position of 4-hydroxybutyryl-CoA, which is the mechanistically most 

interesting reaction in the 4-aminobutyrate fermentation pathway in C. aminobutyricum. 

Furthermore, 4-hydroxybutyryl-CoA dehydratase can also catalyze the irreversible 

isomerization of vinylacetyl-CoA to crotonyl-CoA. Interestingly, in previous studies it has 

been shown that incubation of the native dehydratase under aerobic conditions resulted in the 
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complete loss of the dehydratase activity within 40 min, whereas the isomerase activity 

dropped to 40 % of the initial value. 

 

4-Hydroxybutyryl-CoA dehydratase (Fig. 1-5, A) contains a [4Fe-4S]2+ cluster and a non 

covalently bound FAD moiety in each 54 kDa subunit [44, 45]. It is active only as a 

homotetramer composed of two catalytically functional dimers with two active sites in each 

dimer [46]. The monomer consists of three domains (Fig. 1-5, B). The N- and C-terminal 

domains (residues Met1 - Leu143 and Glu277 – Lys490) are mainly α-helical, while the 

middle domain is predominantly β-structured. A similar structural fold is found in FAD-

containing medium chain acyl-CoA dehydrogenase (MCAD) from pig liver [47, 48], which 

catalyzes the reversible oxidation of an acyl-CoA derivative to form the α,β-double bond in 

the corresponding enoyl-CoA. However, both enzymes show only 16% amino acid sequence 

identity. Interestingly, both of them cleave the non-activated C-H bound at β position. 

The active site (Fig. 1-6, a) is built by a narrow substrate binding channel leading from the 

surface of the molecule of the [4Fe-4S]2+ cluster and FAD. The Fe atoms of the [4Fe-4S]2+ 

cluster are covalently bound to the protein by three cysteine and one histidine residues, C99 

and C103 from the N-terminal, and H292, C299 from C-terminal domain (Fig. 1-6, b). 

Interestingly, in all iron sulfur cluster containing metalloproteins the distances between Fe1 

and Nε2 of a histidine ranges from 1.9 Å to 2.1 Å, but in AbfD the Fe1– Nε2 bond of H292 

length is 2.4 Å. Three residues located also in the active centre , Y296, K300, E455 and 

E257 are highly conserved among all known 4-hydroxybutyryl-CoA dehydratases [49]. 
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Figure 1-5. Crystal structure. A, surface representation of AbfD homotetramer, each 

monomer is individually colored; B, secondary structure topology of the monomer 

with the N-terminal domain in red, the middle domain in green and the C-terminal 

domain in blue, the iron sulfur cluster is shown as ball and sticks with Fe and S 

atoms in red and yellow, FAD shows in cyan. 

 

 

Figure 1-6. The active site. (a) Stereo view of AbfD active site environment, color code 

for residues and FAD is in cream for carbon, red for oxygen, blue for nitrogen and 

yellow for sulfur. (b) Amino acids coordinating the [4Fe-4S]2+ cluster. 
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1.7 Proposed mechanism of dehydration via a ketyl radical 

 

Recently many enzymes have been found to act by a radical mechanism, which use the high 

reactivity of radicals to perform the catalytic reaction. The word ‘radical’ means a species 

with an unpaired electron, which is usually very reactive.  

Nature has evolved low-energy pathways via simple acid-base mechanisms wherever 

possible, but for some ‘chemically difficult’ reactions, where there is no alternative, high-

energy radical mechanisms are used. Because radicals react irreversibly with dioxygen, most 

of these enzymes occur in anaerobic bacteria and archaea [7, 50], apart from some B12- and 

S-adenosylmethionine (SAM)-dependent radical enzymes that occur also in aerobic bacteria 

and even in humans. 

There are three different ways to generate radicals: homolysis of a weak covalent bond, one-

electron oxidation and one-electron reduction. Well studied radical generators act via 

homolysis of adenosylcobalamin (coenzyme B12) as described for glutamate mutase (see 

above) or via reductive cleavage of S-adenosylmethionine that also leads to the 5´-

deoxyadenosine radical. The latter type, called SAM radical enzymes, catalyzes a variety of 

unusual chemical transformations such as the migration of the α-amino group of lysine to the 

β-position. This increasing number of enzymes is also involved in the activation of glycyl 

radical enzymes, hydrogenases and sulfatases, the biosynthesis of thiamin, biotin, porphyrin, 

molybdenum cofactor and lipoic acid, and the maturation of tRNA. An example of radical 

formation by one-electron reduction are the [4Fe-4S]2+ cluster containing 2-hydroxyacyl-

CoA dehydratases [15, 51], which consist of two components, a homodimeric activator and a 

heterodimeric dehydratase. Upon addition of ATP to the activator, the angle of helix-cluster-

helix architecture opens from 105° to 180°, which facilitates the transfer of a highly 

energized electron to the dehydratase and leads to the formation of a ketyl radical at the 

thioester carbonyl. This nucleophilic radical expels the hydroxyl group to yield the enoxy 

radical. This elimination increases the acidity of the β-proton from pK ≈ 40 to pK ≈ 14, 

which can be removed by a base of the protein.  
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The oxygen sensitive 4-hydroxybutyryl-CoA dehydratase is an example, in which a ketyl 

radical is formed by one-electron oxidation [52-55]. 

It has been proposed that during the catalytic reaction 4-hydroxybutyryl-CoA enters the 

active centre of enzyme as substrate with its hydroxyacyl part sandwiched between the two 

prosthetic groups. This results in the displacement of H292 from Fe1 of the iron sulfur cluster. 

Then H292 as a base abstracts the 2Re-proton from the α-position and the enolate is oxidized 

by FAD to an enoxy radical, which acidifies the β-proton from pK 40 to pK 14. The flavin 

semiquinone anion acts as a base removing the 3Si-proton from the β-position to yield 

neutral semiquinone FADH• and a ketyl radical anion. After elimination of the hydroxyl 

group to a dienoxyl radical, it is reduced to the dienolate by the semiquinone regenerating the 

flavin quinone. Lastly, dienolate is protonated to crotonyl-CoA. Overall, the dehydration of 

4-hydroxybutyryl-CoA to (E)-crotonyl-CoA can be described as anti-elimination of the 2Re- 

and the 3Si-hydrogen as well as substitution of the hydroxyl group by hydrogen with 

retention of configuration [55-58]. 

The postulated mechanism of the dehydration of 4-hydroxybutyryl-CoA is based on the 

catalytic mechanism of medium-chain acyl-CoA dehydrogenase (MCAD) [48, 59, 60], since 

a similar fold is found in both proteins, although these two shows just 16% amino acid 

sequence identity. Similarity is that both of AbfD and MCAD require the rupture of non-

activated β-C-H bond. MCAD is a FAD containing protein as AbfD, but devoid of an iron 

sulfur cluster. As in AbfD, the reaction initiates with deprotonation at the α-carbon and a 

consecutive one electron transfer from the enolate of acyl-CoA to FAD resulting in the 

enoxy radical and the flavin semiquinone anion, which could remove the β-proton as a base. 

The generated ketyl radical transfers a second electron to the flavin, whereby the 

hydroquinone anion and the product enoyl-CoA are formed. The mechanistic similarity 

suggests that the introduction of a [4Fe-4S]2+ cluster converted the acyl-CoA dehydrogenase 

into a 4-hydroxybutyryl-CoA dehydratase, a process called “evolution by selection of (small) 

modifications of existing catalytic systems” (Sir John W. Comforth). 
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Figure 1-7. Proposed radical-intermediated mechanism of 4-hydroxybutyryl-CoA 

dehydratase. 
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1.8 Cofactors in 4-hydroxybutyryl-CoA dehydratase  

 

Iron sulfur cluster 

Iron sulfur clusters have been found in a variety of metalloproteins, such as nitrogenase, 

hydrogenase, aconitase and so on, which contain sulfide-linked di-, tri- and tetrairon in 

variable oxidation states [61-63]. The simplest example of the iron sulfur protein is 

rubredoxin (Fig. 1-8). It has been detected in various sulfur anaerobic bacteria, where it 

serves as an electron transfer protein during oxygen detoxification by reduction. Ferredoxin 

is a classical iron sulfur protein, which has an electron transfer function and contains the iron 

sulfur cluster in the protein centre. The [2Fe-2S] cluster is built by two irons bridged by two 

sulfide ions and coordinated by either four cysteine, or two cysteine and two histidine 

residues of protein. The oxidized form contains two Fe3+ iron atoms, whereas the reduced 

form contains one Fe3+ atom and Fe2+ atom. 

 

Figure 1-8. Iron sulfur clusters and their spectroscopical characterizations. 
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[3Fe-4S] clusters have been also detected in proteins, in which each of three sulfide ions 

bridge two iron ions, while the fourth suldide bridges three iron ions. It could act as an 

inactive intermediate stage of a [4Fe-4S] cluster, e.g., the inactive form of aconitase 

possesses a [4Fe-3S] cluster and activated by addition of an Fe2+ atom. 

The most common iron sulfur cluster type in protein is the [4Fe-4S]-center, which is called 

“bacterial ferredoxin”. The iron centre is coordinated typically by cysteine ligands. The [4Fe-

4S] containing protein can be subdivided into low potential (bacterial type) and high 

potential iron sulfur protein (HIPIPs), which are related by the following electron transfer 

process (Fig. 1-9). HIPIP has a redox potential of ca. to + 500 mV; this speciality allows 

electron transfer in photosynthesis and aerobic bacterial metabolism. 

 

 

Figure 1-9. Redox states of [4Fe-4S] proteins 

4-Hydroxybutyryl-CoA dehydratase contains a total of four [4Fe-4S]2+ clusters in the whole 

enzyme, with one in each subunit. This has been confirmed by UV-vis, EPR- and 

Mössbauer-spectroscopic experiments [45, 52, 64]. Three iron ions are coordinated by C99, 

C103 and C299, while the fourth iron is coordinated by H292 (Fig.1-6, b). The low redox 

potential of the [4Fe-4S]2+ cluster assures that the transient one electron oxidation of the 

substrate results only in the reduction of FAD. Interestingly, after addition of crotonyl-CoA 

as substrate the redox potential is increased by ca. 200 mV, which indicates a direct 

interaction of the substrate with the iron sulfur cluster. The best studied example of substrate 

interaction is aconitase, which catalyzes the isomerization of citrate to isocitrate without any 

redox change. Aconitase contains a cubane-type [4Fe-4S]2+ cluster in its active site with 

three iron atoms bound to three cysteines and four inorganic sulfur atoms and a fourth labile 
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iron atom, which is not bound to a protein cysteine, but to a hydroxyl group of the substrate 

or water [65-67]. 

Under air the native 4-hydroxybutyryl-CoA dehydratase is irreversiblely inactivated, while 

vinylacetyl-CoA isomerase activity of the protein is decreased slowly and 40% of activity 

remains [32, 44]. We assumed that the inactivation of dehydratase by oxygen is based on 

destroying or degradation of the [4Fe-4S]2+ cluster to [3Fe-4S] or [2Fe-2S] clusters. But the 

mechanism is unknown yet. 

 

Flavin in proteins 

Flavoproteins include a group of enzymes containing protein bound flavin, such as flavin 

adenine dinucleotide (FAD) or flavin mononucleotide (FMN, riboflavin-5'-phosphat) [68, 

69]. From the isolation of the “old yellow enzyme”, as the first flavoprotein, up to now more 

than hundred flavoproteins have been detected, which are widely involved in biological 

processes, including bioluminescence, respiration and many dehydrogenases. Flavoproteins 

are able to accept either one by one electron in a two-step process or two electrons 

simultaneously. 

The redox active centre of flavin coenzyme is the isoalloxazine ring system that is found in 

three redox states [53]. The fully oxidized quinone form of FAD and FMN can be reduced 

with one electron to the blue semiquinone anion and protonated to the neutral semiquinone. 

Further addition of one electron leads to the colorless hydroquinone anion. During the 

catalytic reaction of the 4-hydroxybutyryl-CoA dehydratase, the enolate reduces the quinone 

to the semiquinone radical, which deprotonates the resulting enoxy radical at the β-position 

and the neutral semiquinone is formed [70, 71]. Upon addition of substrate, 4-

hydroxybutyryl-CoA dehydratase exhibits an absorbance decrease of the peak at 438 nm and 

an increase around 550 nm, which is due to formation of the neutral flavin semiquinone. 

Furthermore, the formation of the neutral flavin semiquinone radical can be identified by its 

EPR spectrum at 77 K. At a temperature lower than 40 K more radical signals can be 
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observed, probably due to the reduction of the cluster to [4Fe-4S]+ and a substrate based 

radical [44, 53, 72].  

 

Figure 1-10. Structure and redox stated of flavin isoalloxazine ring system 
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1.9 4-Hydroxybutyryl-CoA dehydratase in the 5th CO2-fixation pathway 

 

In addition to the Calvin cycle, the reductive citric acid cycle, the 3-hydroxypropionate 

bicycle and the reductive acetyl-CoA pathway, a fifth pathway has been discovered for CO2-

fixation in archaea, called 3-hydroxpropionate/4-hydroxybutyrate cycle (Fig. 1-11) [73, 74]. 

In this cycle and in the 3-hydroxypropionate cycle, CO2 is fixed by acetyl-CoA and biotin-

dependent acetyl-CoA carboxylase to form malonyl-CoA, which is reduced via malonate 

semialdehyde to 3-hydroxypropionate followed by further reduction to propionyl-CoA. Then 

propionyl-CoA is carboxylated to methylmalonyl-CoA, and rearranged to succinyl-CoA by 

coenzyme B12-dependent methylmalonyl-CoA mutase. In the bacterium Chloroflexus 

aurantiacus succinyl-CoA is converted to malyl-CoA, which is cleaved by a lyase to 

glyoxylate and acetyl-CoA. Again, the latter acts as the CO2 acceptor molecule, whereas 

glyoxylate together with a second molecule of propionyl-CoA is converted to a second 

acetyl-CoA and to pyruvate, the final product of the 3-hydroxypropionate bicycle. Recently 

it has been discovered that in some archaea, such as Sulfolobus and Metallosphaera, 

succinyl-CoA is not converted to malyl-CoA, but instead via succinate semialdehyde and 4-

hydroxybutyrate to 4-hydroxybutyryl-CoA, which is dehydrated to crotonyl-CoA by 4-

hydroxybutyryl-CoA dehydratase. Crotonyl-CoA is then hydrated to 3-hydroxybutyryl-CoA 

and oxidized to acetoacetyl-CoA, which is cleaved to two acetyl-CoA. 

4-Hydroxybutyryl-CoA dehydratase was originally considered to be restricted to the 

fermentative metabolism of strict anaerobic bacteria, but recently it was found to play an 

important role in autotrophic CO2-fixation of the aerobes Metallosphaera sedula and some 

other Crenarchaeota. Interestingly there are two different copies of 4-hydroxybutyryl-CoA 

dehydratase genes found in M. sedula, of which one is likely to code for the dehydratase with 

the iron sulfur cluster and other for a protein without the cluster, but H292 is conserved. 
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Figure 1-11. The 3-hydroxpropionate/4-hydroxybutyrate cycle 
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1.10 Goals of this work 

 

Previous research has shown the properties of native 4-hydroxybutyryl-CoA dehydratase 

from C. aminobutyricum. However, several points in the proposed mechanism were not 

clarified yet. One of major problem is the role of the iron-sulfur clusters in the dehydration 

of 4-hydroxybutyryl-CoA to crotonyl-CoA and in the isomerization of vinylacetyl-CoA to 

crotonyl-CoA. Another point, the functions of the conserved residues in the active centre 

during the catalytic reaction was also of particular interest. Therefore, this work aimed to 

produce the recombinant enzyme and to increase our knowledge about catalytic reaction in 

detail by mutagenesis technique. 

As another target, the native 4-hydroxybutyrate CoA-transferase from C. aminobutyricum 

has already been purified some time ago, but its mechanism retained still unknown. 

Therefore, the second purpose of this work was to obtain the recombinant CoA-transferase, 

which was applied for further characterization and enzyme classification. Additionally, the 

crystal structure of this CoA-transferase was solved and provided clear information for the 

reaction mechanism. 
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2. Materials and Methods 
 

2.1 Materials 

 

2.1.1 Chemicals and reagents 

 

All chemicals were purchased from Sigma-Aldrich (Deisenhofen, Germany), Lancaster 

(Mühlheim, Germany), Fluka (Buchs, Germany) or Merck (Darmstadt, Germany) and were 

of the highest quality available.  

The enzymes used for the molecular biology experiments were from Roche (Mannheim, 

Germany), MBI Fermentas GmbH (St. Leon-Rot, Germany) or Amersham (Freiburg, 

Germany) 

 

 

2.1.2 Instrument, gases and columns 

 

FPLC system and UV/Vis photometer (Ultrascopec 400) were from Amersham Biosciences 

(Freiburg, Germany). StrepTactin MacroPrep column and gravity flow StrepTactin 

sepharose columns were from IBA GmbH (Göttingen, Gernmany). N2 (99.996%) and N2/H2 

were purchased from Messer-Griesheim (Düsseldorf, Germany). 

Anoxic experiments were done in a glove box (Coy Laboratories, Ann Arbor MI, USA) 

providing an atmosphere of N2/H2 (95%/5%). Buffers for enzyme purification were prepared 

by boiling and cooling under vacuum. Afterwards the buffers were flushed with nitrogen und 

transferred to anaerobic chamber, where 2 mM dithiothreitol was added and stirred overnight. 



Materials and Methods 
 

 

37 
 

2.1.3 Bacterial strain and culture 

 

Clostridium aminobutyricum (DSM 2634) was cultivated under anaerobic conditions in 100 

ml serum bottles, which was used to inoculate a 10 L overnight pre-culture for the 100 L 

fermenter culture of the organism [26, 75]. 

The 1 L culture medium had the following composition, 

Potassium phosphate pH 7.4 50 mM 

NaHCO3 24 mM 

Yeast extract 3 mg/ml 

4-Aminobutyrate 97 mM 

MgCl2 × 6 H2O 0.20 g 

FeCl3 × 6 H2O 0.01 g 

CaCl2 × 2 H2O 0.01 g 

MnSO4 × H2O 1 mg 

Na2MoO4 × 2 H2O 1 mg 

Cysteine HCl × H2O 0.50 g 

Na2S2O4 0.35 g 

Resazurine (Na-Salt) 0.2% 400 μl 

The medium was boiled until the blue-red color of resazurine disappeared, and the air above 

medium was replaced by nitrogen gas. 

 

Escherichia coli DH5α (F− λ− supE44 ∆(argF-lac) U169 ϕ80 ∆lacZΔM15 hsdR17 recA1 

endA1 gyrA96 thi-1 relA1) (Stratagene, Heidelberg) was grown at 37 °C in LB-medium and 

used for gene cloning. 
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Escherichia coli BL21 CodonPlus(DE3)-RIL (B F− ompT hsdS(rB
− mB

−) dcm+ Tetr gal 

λ(DE3) endA Hte [argU ileY leuW Camr] (Stratagene, Heidelberg) was grown at 37 °C in 

standard-I medium (Merck, 1.5% Pepton, 0.3% yeast extract, 100 mM NaCl and 6 mM D-

Glucose) supplemented with required antibiotics, that depends on the harboured plasmid. 

Escherichia coli BL21 CodonPlus(DE3)-GroEL contains a chaperon-plasmid, which is able 

to improve the gene expression. E. coli as a expression-system has frequently troubles to 

produce proteins, e.g, Inclusion-body, degradation and insolubility of proteins [76]. 

 

 

2.1.4 Plsmids 
Table 2.1 Plasmids. 

Plasmid Characteristic Company 

pASK-IBA3(+) 

pASK-IBA7 

pACYC-Duet 

AmpR, Ptet, tetR, C-terminal Strep-tagII 

AmpR, Ptet,tetR N-terminal Strep-tagII 

ChlorR, PT7, His-tag, S-tag 

IBA, Göttingen 

IBA, Göttingen 

Novagen, Munich 

 

 

2.1.5 Oligonucleotides 

 

All the primers were synthesized by MWG Biotech (Ebersberg, Germany). 
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Table 2.2 Cloning primers. 

Name Nucleotide sequence ( 5´- 3´) 

4HBdh-BsalIfor 

4HBdh-BsalIrev 

abfT-IBAfor 

abfT-IBArev 

abfDMsedu1F 

abfDMsedu1R 

DuetMS_2SacI 

DuetMS_2KpnI 

ATGGTAGGTCTCAAATGTTAATGACAGCAGAACAGTACATTG 

ATGGTAGGTCTCAGCGCTTTTAATTCCAGCGATTGCCTTAGC 

ATGGTAGGTCTCAAATGATGGATTGGAAGAAGATCTATGAAG 

ATGGTAGGTCTCAGCGCTGAATGCCGCGTTGAATCTCTTTTC 

ATGGTACCGCGGATGGTCGTCAGAACAGGGGAGCAATATCTC 

ATGGTAAGCGCTACTCTTGAGACCGGCCTCCTTAGCCTCTGC 

ATGGTAGAGCTCATGAGAAGCAAGGAGGAATTCGTG 

ATGGTAGGTACCACGGTTTAGAAGGGATTTCACCAG 

 

 

Table 2.3 Mutagenic primers used in 4-hydroxybutyryl-CoA dehydratase mutagenesis. 

Name Forward Primers for site directed mutagenesis 

H292C 

H292E 

C99A 

C103A 

C299A 

Y296F 

GAAAGATTTGCTGGATACTGCAGACAGTCATACGGCG 

GAAAGATTTGCTGGATACGAAAGACAGTCATACGGCGG 

GACAGAAGACCGCATCAGCATTCCAGAGATGTGTAG 

CGCATCATGCTTCCAGAGAGCGGTAGGTATGGACGCTTTC 

CAGTCATACGGCGGAGCGAAGGTTGGAGTAGG 

GATACCACAGACAGTCATTTGGCGGATGTAAGGTTGG 
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E257Q 

E455Q 

R90N 

Q101E 

T190V 

K300Q 

A460G 

CAGTTCGGCGGACAGCAGGCTTTAGTCGTATTCG 

CTGTAGGTTACAGAACTCAGTCCATGCATGGTGCAG 

GAAAAAAGGTTAAGATGCAGAACCTTCTTGGACAGAAGACCGC 

GAAGACCGCATCATGCTTCGAAAGATGTGTAGGTATGGAC 

GCTAAGGCTCACCAGGTGGGTTCCATCAACTCC 

CATACGGCGGATGTCAGGTTGGAGTAGG 

GAACTGAATCCATGCATGGTGGCGGTTCCCCTCAGGCTCAGAG 

 

 

Table 2-4 Mutagenic primers used in 4-hydroxybutyrate CoA-transferase mutagenesis. 

Name Forward Primers for site directed mutagenesis 

E238D 

E238Q 

E238S 

E238A 

H31S 

H31G 

H31A 

H31N 

M58T 

GGTATCCACTCTGACATGATTTCCGACGG 

CTTGGTATCCACTCTCAAATGATTTCCGACG 

CCTTGGTATCCACTCTTCAATGATTTCCGACGGTG 

CTTGGTATCCACTCTGCAATGATTTCCGACGG 

GAGTGCTATTTGCGAGCTGTGTTGCTGAACC 

GAGTGCTATTTGCGGGCTGTGTTGCTGAACC 

GAGTGCTATTTGCGGCCTGTGTTGCTGAACC 

GAGTGCTATTTGCGAACTGTGTTGCTGAAC 

GTAACGGTTTCACACACGGTTACCCTTGGAAAG 
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M58S 

Q213S 

Q213T 

GTAACGGTTTCACACAGCGTTACCCTTGGAAAGG 

GAAGATGGTTCCACATTAAGCCTTGGTATCGGAGCTATTC 

GAAGATGGTTCCACATTAACCCTTGGTATCGGAGCTATTC 

 

2.1.6 Media 

 

All the media were autoclaved at 121 °C and 1 bar for 20 min. 

LB medium 

Trypton 10.0 g/L 

Yeast extract 5.0 g/L 

NaCl  5.0 g/L 

 

Standard-I medium 

Standard-I  20.0 g/L 

 

2.1.7 Antibiotics 

 

All of antibiotics was prepared and sterilized by filtration (0.2 µm). 

Table 2-5. The stock solution of antibiotics. 

Antibiotics Stock Final concentration in media 

Carbenicillin 

Chloramphenicol 

100 mg/ml H2O 

100 mg/ml 99% ethanol 

50 µg/ml 

50 µg/ml 
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2.1.8 Molecular biology kits 

 

Table 2-6. Molecular biology kits 

Kits Company 

Easystart PCR kit 

QIAquick PCR Purification kit 

QIAquick Gel Extraction kit 

QIAquick Spin Miniprep kit 

T4 DNA ligase 

peqGOLD Gel Extraction kit 

GeneJET™ Plasmid Miniprep kit 

TOPO Walker kit 

PfuUltraTM Hotstart DAN Polymerase 

Phusion High-Fidelity DNA 

Polymerase kit 

MβP (UK) 

Qiagen (Hiden, Germany) 

Qiagen (Hiden, Germany) 

Qiagen (Hiden, Germany) 

Amersham Pharmacia Biotech (Freiburg, Germany) 

PEQLAQ Biotech GmbH (Erlangen, Germany) 

Fermentas GmbH (St. Leon-Rot, Germany) 

Invitrogen (Karlsruhe, Germany) 

Stratagene 

Finnzym 
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2.2 Molecular Biological Methods 

 

2.2.1 Isolation of genomic DNA from C. aminobutyricum 

 

The genomic DNA of C. aminobutyricum and Metallosphaera sedula were prepared from 

aerobically harvested cells. 

 

Solutions: 

Tris-sucrose-buffer 50 mM Tris/HCl pH 8.0, 25% sucrose 

Tris-EDTA-buffer 50 mM Tris, 25 mM EDTA, pH 8.0 

Tris-EDTA-SDS-buffer 50 mM Tris, 25 mM EDTA, pH 8.0, 1% SDS 

TE-buffer 10 mM Tris/HCl pH 8.0, 1 mM EDTA 

 

Cells (1 g) were suspended in 3 ml Tris-sucrose-buffer, which were incubated at 37 °C for 90 

min with gentle shaking after adding 50 mg lysozyme. 2 ml Tris-EDTA-buffer was then 

added and the mixture was incubated on ice for further 15 min. After adding 5 ml 1% Tris-

EDTA-SDS-buffer, 100 μg RNase und 10 mg Proteinase-K (52 units/mg, Roche), the solution 

was incubated at 37 °C for 3 hours. For phenol extraction, 10 ml phenol/chloroform (1:1) was 

added in the mixture and shaked gently. The aqueous and organic phase were separated by 

centrifugation at 5,000 × g for 20 min, this step was repeated twice. The aqueous phase 

containing the nucleic acid was transferred to a new falcon tube, which was mixed with the 

equal volume of chloroform/isoamylalcohol (24:1) and the protein was removed by 

centrifugation at 5,000 × g. The aqueous phase was subsequently dialyzed overnight in 5 L 

TE-buffer (10 mM Tris/HCl, 1 mM EDTA, pH 8.0) at 4 °C. 

The genomic DNA was stored at 4 °C 
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2.2.2 Isolation of plasmid DNA 

 

Plasmid DNA was isolated using QIAprep Spin Miniprep (Qiagen) oder GeneJET™ Plasmid 

Miniprep Kit (Fermentas). 

LB medium (5 ml) with the required antibiotics was inoculated with a bacterial colony and 

incubated at 37 °C for overnight. The culture was transferred into an Eppendorf tube and 

harvested at 13,000 × g for 5 min. The pellet was resuspended in 250 μl resuspend buffer. 

After 2-3 times gentle shaking the solution was added with 250 μl lysis buffer and 350 μl 

neutralization buffer. Precipitates were removed by centrifugation and the DNA was then 

washed twice with wash-buffer, which was dried and redissolved in 50 μl elution buffer. 

 

2.2.3 Determination of DNA concentration and purity 

 

In order to calculate DNA concentration and purity the purified plasmid DNA was measured 

at the absorption of 260nm using an absorbance of 1.0 for 50 μg/ml of double-stranded DNA. 

 

DNA concentration (μg/ml) = ΔE260 × 50 × dilution 

 

Measuring the absorbance of DNA solution at 260 nm and 280 nm was used for DNA purity. 

A pure sample of DNA has the 260/280 ratio at 1.8 and is relative free from protein 

contamination.  

 

2.2.4 Agarose gel electrophoresis 

 

50 × TAE buffer 

40 mM Tris 242 g 

20 mM Glacial acetic acid 57.1 ml 



Materials and Methods 
 

 

45 
 

0.5 mM EDTA pH 8.0 100 ml 0.5 M 

Fill to 1 L with H2O 

 

DNA loading buffer 

Bromphenol blue 0.25% (w/v) 

Xylene cyanol FF 0.25% (w/v) 

Orange G 0.25% (w/v) 

Sucrose   40% (w/v) 

 

Agarose powder (0.8 g) was suspended in 100 ml 1 × TAE buffer, boiled in a microwave 

oven until it is completely melted and the solution becomes clear. Before pouring, the solution 

was cooled down to about 60 °C. The agarose gel containing a sample comb was solidified at 

room temperature. After that the comb was removed and the gel was placed in the 

electrophoresis chamber, which is covered by TAE buffer. The DNA sample was mixed with 

the loading buffer und pipetted into the sample wells. The gel was run upon 80 volts in the 

beginning to allow DNA to move into the gel, and then speed up later. When the 

bromophenol blue has run 3/4 the length of gel, DNA fragments were stained by ethidium 

bromide and place on an ultraviolet transilluminator [77]. 

 

2.2.5 DNA extraction from agarose gel 

 

DNA bands of the desired size were exposed on an UV-illuminator and cuted out from gels. 

The extraction of DNA was performed using the QIAquick gel extraction kit or peqGOLD 

Gel Extraction kit following the manufactures instructions. 

 

2.2.6 DNA restriction and ligation 

 

Restriction reaction was performed at 5 - to 20 - fold over digestion using desired restriction 
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enzyme and corresponding buffer. The digested fragments were analyzed with agarose gel. 

To ligate the double strand DNA, T4 ligase was added in mixture of digested insert and vector, 

which was incubated at 22 °C for 1 - 2 hours or overnight at 16 °C. Then T4 ligase in the 

mixture was inactivated by heating at 65 °C for 10 min. After 30 min dialysis using Millipore-

Membrane against water, the ligation mixture was transformed into host cells. 

 

2.2.7 Preparation of competent E. coli cells for electrotransformation 

 

LB medium 5 ml was inoculated by a fresh E. coli single colony and incubated overnight at 

37 °C, which was used to grow the 500 ml main culture. During the exponential phase (OD578 

= 0.5 – 0.8) the cells were placed on ice for 30 min, then harvested by centrifugation at 6,000 

× g for 20 min in a SLA-3000 rotor at 4 °C. The pellets were washed twice with 500 ml and 

250 ml ice-cold sterilized H2O, then washed once again with 10% ice-cold glycerol and 

centrifuged at 5,000 × g for 10 min at 4 °C. The final pellets were resuspended in 1 ml 

sterilized ice-cold 10% glycerol and 40 μl aliquots in thin wall 500 μl tubes, which were 

stored at - 80 °C. 

 

2.2.8 Electrotransformation 

 

The plasmid was added to 40 μl competent cells on ice and transferred to a GenePulser 

cuvette (Bio-Rad). The GenePulser was set to 25 μF, 1.8 kV and 200 Ohm. After that the 

cuvette was washed using 500 μl LB medium, which is transferred to a sterile Eppendorf tube. 

The transformation mixture was incubated at 37 °C for 1 hour before plating on a LB agar 

plate containing antibiotics. The plate was incubated overnight at 37 °C [78]. 

 

2.2.9 PCR reaction 

 

The PCR reaction was performed with a thermostable DNA polymerase and desired primers. 



Materials and Methods 
 

 

47 
 

Primers should not be self-complementary and the GC content should be kept between 40 – 

60 %. In contrast to Taq-polymerase, Phusion-polymerase has lower error rate and higher 

fidelity [79]. 

 

The 50 μl reaction was mixed with 

 Final concentration/volume 

Forward primer 200 nM 

Reverse primer 200 nM 

dNTP 200 μM 

5 × HF buffer 10 μl 

Template DNA 1 ng – 1 μg 

(Higher concentration for total genomic DNA; lower for plasmid) 

DNA polymerase 0.5 – 1 unit 

(HF buffer: prepared PCR buffer in Phusion® High-Fidelity DNA Polymerase Kit) 

 

Temperature cycling of Phusion DNA polymerase 

Initial denaturation 98 °C 3 min 

Denaturation 98 °C 30 s 

Annealing 45 – 65 °C 30 s                     × 30 

Extension 72 °C 1 kb/30 s 

Final extension 72 °C 10 min 
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Temperature cycling of Taq DNA polymerase 

Initial denaturation 95 °C 5 min 

Denaturation 95 °C 1 min 

Annealing 45 – 65 °C 1 min                     × 30 

Extension 72 °C 1 kb / 1 min 

Final extension 72 °C 10 min 

 

2.2.10 Cloning of the genes 

 

Before cloning into pASK-IBA3(+) or pASK-IBA7 vector, the DNA fragments of abfD and 

abfT were amplified with the designed primer, which contains a restriction cut site of BsaI. 

The amplified DNA and vector were digested by BsaI and purified by gel extraction and gel 

extraction kit. Before transformation into E. coli DH 5α cells, the digested DNA and vector 

was ligated together by T4 ligase and dialysed for at least 30 min. 

 

2.2.11 Sequencing of the cloned genes 

 

DNA cloned in pASK-IBA vector was sequenced with the standard IBA sequencing primers. 

This was performed by MWG Biotech. 

 

2.2.12 Site directed mutagenesis 

 

To facilitate site directed mutagenesis, two complementary primers were designed for PCR, 

which contains the mutated sequence flanked by 20 bases on each side. About 20 PCR cycles 

were performed on a relatively large amount of plasmid template to minimize the chance of 

expanding PCR sequence errors. For desalting, the PCR product was dialysed through a 

Millipore dialysis paper for 30 min, after that is was digested with DpnI for 1 hour at 37 °C. 
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Before transformation into E. coli DH5α cells product was dialysed again. The abfD 

containing plasmids obtained from colonies were sequenced and used to transfer into the 

expression system – E. coli BL21 CodonPlus (DE3)-GroEL strain. 

DpnI only cuts dam methylated DNA. The parental plasmid DNA will be cut to pieces while 

the nascent PCR DNA is left intact. All routine E.coli strains have an intact dam methylase 

system [80]. 
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2.3 Biochemical methods 

 

2.3.1 Gene expression in E. coli and protein purification 

 

2.3.1.1 Recombinant 4-hydroxybutyryl-CoA dehydratase 

 

E. coli strain BL21 CodonPlus (DE3)-GroEL containing extra copies of rare E. coli argU, ileY, 

leuU and proL tRNA genes [81, 82], is able to improve the gene expression. pASK-IBA3(+) 

plasmid carrying abfD was transformed into this strain, which was grown aerobically in standard-

I medium supplemented with 2 mM iron citrate, 0.27 mM riboflavin and containing carbenicillin 

50 μg/ml, chloramphenicol 50 μg/ml at room temperature (20 °C – 25 °C). At an OD578 of 0.5 – 

0.6 the culture was induced with AHT (100 μg/l) and incubated for overnight. The cells were 

harvested by centrifugation at 6,000 × g, and cell pellets were washed with anaerobic water in an 

anaerobic chamber under 95% N2 and 5% H2. 

Transformed E. coli cells were suspended in 50 mM potassium phosphate, pH 7.4, 2 mM DTT 

and 200 mM sodium chloride. The suspension was sonicated for 3 × 8 min (Branson Sonifier, 50% 

duty cycle), and centrifuged at 100,000 × g for 1 hour at 4 °C (Ultracentrifuge, Beckman 

Instruments, Munich). The filtrated supernatant fluids were applied directly to previously with 

wash buffer (100 mM Tris-HCl pH 8.0, 150 mM NaCl and 2 mM DTT) equilibrated StrepTactin 

column. The StrepTactin purification system is based on the highly effective interaction between 

the Streptag overhang of the recombinant protein and the StrepTactin of the column [83-85]. 

After loading of the supernatant and washing with 50 ml wash buffer, the protein was eluted with 

wash buffer containing 2.5 mM desthiobiotin. The purified 4-hydroxybutyryl-CoA dehydratase 

was concentrated with a 100 kDa centricon and stored at – 80 °C for several months, but it was 

observed that even at this temperature the dehydratase activity was slowly lost. All experiments 

were performed in an anaerobic chamber. 
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2.3.1.2 Recombinant 4-hydroxybutyrate CoA-transferase 

 

The abfT-containing pASK-IBA3(+) vector was grown aerobically at 37 °C in standard-I medium 

with antibiotics. At an OD578 of 0.5 – 0.6 the culture was cooled to room temperature and induced 

with AHT (200 μg/l) and incubated for 2 hours. AbfT was also purified using StrepTactin 

purification system. 

 

2.3.1.3 Recombinant 4-hydroxybutyryl-CoA dehydratase MS_1 and MS_2 from M. sedula 

 

Recombinant MS_1 from M. sedula was purified anaerobically using a StrepTactin column. The 

harvested cells were washed by deoxygenated water and suspended in 50 mM potassium 

phosphate buffer containing 300 mM NaCl and 1 mg DNase. The suspended cells were then 

opened by sonication (3 × 5 min) and centrifuged at 100,000 × g for 60 min. The supernatant was 

heated at 75 °C for 20 min to select the thermophile protein and then centrifuged at 10,000 × g 

for 15 min. The clear supernatant was filtrated and loaded on the affinity StrepTactin column. 

After washing with 5 column volumes of wash buffer (100 mM Tris/HCl and 150 mM NaCl) the 

MS_1 protein was eluted by adding 2.5 mM desthiobiotin. 

To purify the recombinant MS_2 using Ni-Sepharose column, the harvested cells was washed 

previously by deoxygenated water and suspended in 20 mM Tris/HCl, pH 7.5 binding buffer 

containing 0.5 M NaCl and 20 mM imidazole. The cells were then opened by sonication (3 × 

5min) and centrifuged at 100,000 × g for 60 min. The supernatant was heated at 75 °C for 20 min 

to select the thermophile protein and then centrifuged at 10,000 × g for 15 min. The clear 

supernatant was filtrated and loaded on the Ni-Sepharose column. After washing with 5 column 

volumes of wash buffer (20 mM Tris/HCl, pH 7.5, 0.5 M NaCl and 60 mM imidazole) the MS_2 

protein was eluted by elution buffer containing 20 mM Tris/HCl, pH 7.5, 0.5 M NaCl and 500 

mM imidazole. 
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2.3.2 Purification of other proteins 

 

2.3.2.1 Purification of 4-hydroxybutyrate CoA-transferase from C. aminobutyricum 

 

All steps of CoA-transferase purification were peformed aerobically at 4 °C [42]. 

Frozen cells of C. aminobutyricum 30 g were suspended in 60 ml 50 mM potassium phosphate, 

pH 7.0, which contains 10 mM NaCl and 0.6 mg DNase I. The cells were lysed by AMICO 

French Cell Press (American Instrument Company – Division of Travenol Laboratorie, Inc., 

Maryland, USA) at 110 MPa and centrifuged at 100,000 ×g for 1 h. The supernatant was 

fractionated by adding of a saturated ammonium sulfate solution (55 – 80% saturation). The 

second precipitate was resuspended in 22 ml 50 mM potassium phosphate  with 1.5 M 

ammonium sulfate and was transferred to a Phenyl-Sepharose column (Pharmacia, Freiburg, 

Germany), which was equilibrated with 50 mM potassium phosphate containing 1.5 M 

ammonium sulfate. The protein was eluted using a decreasing ammonium sulfate gradient (1.5 M 

– 0) in 360 ml of 50 mM potassium phosphate, pH 7.0 followed by 370 ml 50 mM potassium 

phosphate buffer without ammonium sulfate using a flow rate of 3 ml/min. The CoA-transferase 

activity containing fractions were combined and concentrated (Amicon-concentrator, 10 kDa 

pore size, Witten, Germany). 

Then the protein solution was loaded on a DEAE-Sephacel column. After washing with the same 

buffer, the protein was eluted by 360 ml of a linear gradient increasing potassium phosphate, pH 

6.8 from 0 to 400 mM followed by 10 ml of 1 M potassium phosphate in same buffer at a flow 

rate 3 ml/min. The active fractions were loaded on a Superdex 200 Hiload 26/60 column. 

Until this step, the protein solution contains still phosphotransacetylase activity. In the presence 

of phosphate, it results in formation of acetylphosphate and releas of CoASH, which interfers the 

enzyme assay. Therefore, after concentration to 1 ml, the protein was loaded on a Mono Q-

column (GE Healthcare), which was prior equilibrated by H2O, then washed with low salt buffer 

(20 mM Tris/HCl, pH 7.0) and afterwards with high salt buffer (20 mM Tris/HCl, 1 M NaCl, pH 

7.0), finally using low salt buffer again. This procedure improves protein separation and binding 

capacity. The protein was eluted by a 100 ml gradient of 0 – 300 mM NaCl. Most of transferase 
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activities were observed in the 42 – 48 ml fractions, and most of phosphotransacetylase activities 

between 46 – 50 ml. The fractions from 42 ml to 45 ml were concentrated and frozen at - 80 °C. 

 

2.3.2.2 Purification of ‘enzyme pool’ from Acidominocuccus fermentas 

 

The following purification steps were achieved at 4 °C under aerobic conditions [54]. 

Frozen cells from A. fermentas 25 g were suspended in 20 mM potassium phosphate, pH 7.0 with 

1 mM PMSF, 5 mM MgCl2 and 1 mg DNase I. The solution was lysed by French Press at 110 

MPa, which was then centrifuged at 100,000 × g for 60 min. The pellet was used to purify the 

glutaconyl-CoA decarboxylase. After two ammonium sulfate precipitations (50 % and 80 %) the 

solution was centrifuged at 10,000 × g for 30 min. The pellets were suspended in 20 mM 

potassium phosphate, pH 7.0 and dialyzed overnight in 5 L 20 mM potassium phosphate. To 

remove small particles, the protein solution was filtrated with a 0.45 μm filter. The filtrate was 

transferred with a flow rate 3 ml/min to a DEAE-Sepharose Fast-Flow column (3 × 10 cm). The 

column has been washed with 100 ml 20 mM potassium phosphate, pH 7.0 with 1 M NaCl, and 

equilibrated with 150 ml 20 mM potassium phosphate. After loading, the column was washed 

with 50 ml of the same buffer and the protein was eluted by a linear 500 ml NaCl-gradient from 0 

to 1 M. The enzyme pool was concentrated and frozen at – 80 °C. 

 

2.3.2.3 Purification of crotonyl-CoA carboxylase/reductase 

 

The GenoStatTM pGS-2 expression plasmid containing the gene of crotonyl-CoA 

carboxylase/reductase from Rhodobacter sphaeroides (AG Fuchs, Freiburg, Germany) was 

transformed into E. coli BL21 (DE3) and a single colony was selected for the purification of the 

enzyme [86, 87]. The 2 L standard-I medium with carbenicillin (50 µg/ml) was inoculated with a 

transformed plasmid and grown at 37 °C. When the cells reached an OD578 of approximately 0.5, 

the culture was induced by addition of IPTG to a final concentration of 0.5 mM and grown for 

further 4 hours. After 15 min centrifugation at 6,000 × g, the harvested cells were suspended in 
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50 mM potassium phosphate, pH 7.0 and 1 mg DNase I and lysed by sonication on ice, which 

was then centrifuged at 100,000 ×g for 60 min. The supernatant was loaded onto a Ni-Sepharose 

Fast Flow column that washed by 20 mM Tris/HCl, pH 7.8 and again by the same buffer with 75 

mM imidazole, then equilibrated with 20 mM Tris/HCl and 50 mM KCl. The crotonyl-CoA 

carboxylase/reductase was eluted with 20 mM Tris/HCl, pH 7.8 containing 500 mM imidazole. 

The enzyme was concentrated and stored at – 80 °C [87]. 

 

2.3.3 Determination of protein concentration 

 

Protein concentration was determined by the Bradford method. The assay is based on the shift of 

the absorbance maximum for an acidic solution of Coomassie Brilliant Blue G-250 from 465 nm 

to 595 nm upon binding of protein. The 50 μl protein was mixed with 950 μl 1:5 diluted 

Coomassie Brilliant Blue G-250 reagent using 0 – 0.2 mg/ml bovine serum albumin (BSA) as 

standard. After 30 min incubation in the dark at room temperature, the absorbance was measured 

at 595 nm [88].  

 

2.3.4 Sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

 

According to their electrophoretic mobility the protein could be separated by SDS PAGE [89]. 

The gel was prepared as in table 2-7. 

  



Materials and Methods 
 

 

55 
 

Table 2-7. Protocols for SDS-PAGE gel preparation 

 Separating gel 12.5% (µl) Stacking gel 8% (µl) 

H2O dest. 

Tris/HCl, pH 8.8 

Tris/HCl, pH 6.8 

Acryl/Bisacryl.30% 

10% SDS 

5% TEMED 

10% APS 

2080 

4500 

------ 

5000 

120 

120 

180 

2540 

------ 

470 

950 

40 

40 

80 

APS: 10% ammonium persulfate (fresh) 

 

Electrophoresis running buffer 

Tris 0.3% (w/v) 

Glycin 1.44% (w/v) 

SDS 0.1% (w/v) 

 

Protein loading buffer 

Tris, pH 6.8 125 mM 

Glycerol 4% (w/v) 

β-Mercaptoethanol 10% (w/v) 

Bromophenol blue 0.1% (w/v) 

DTT 10 mM 
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Staining solution for Coomasie Blue staining 

Coomasie R 250 1.2 g 

Acetic acid 200 ml 

Methanol 1 L 

Fill to 2 L with H2O 

 

Destaining solution for Coomasie Blue staining 

Ethanol 50 ml 

Acetic acid 70 ml 

Fill to 1 L with H2O 

 

Prior to electrophoresis, the protein sample was mixed with protein loading buffer and incubated 

at 95 °C for 5 min prior to load on the gel. The electrophoresis was performed at a constant 

voltage between 120 – 150 volts until the tracking dye reached the bottom of the gel. Afterwards 

the gel was stained with Coomasie Brilliant Blue in the microwave oven for 1 -2 min and 

destained slowly on a shaker. 

 

2.3.5 Gel-filtration 

 

For molecular mass determination of native enzymes, the protein solution was loaded on a 

HiLoad 26/60 Superdex 200 column that was prior washed by H2O and 50 mM Tris/HCl, pH 7.4. 

The chromatography was achieved using 50 mM Tris/HCl pH 7.4 and 150 mM NaCl with a flow 

rate of 0.5 ml/min. 

A calibration curve was prepared by measuring the elution volumes of four standard proteins 

(Amersham Biosciences, Germany), aldolase from rabbit muscle (158 kDa), catalase from human 

serum (232 kDa), ferritin from horse spleen (440 kDa) and thyroglobulin from bovine thyroid 

(669 kDa). A Kav value (elution volume of protein/molecular mass) was calculated from the 
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calibration curve with standard proteins. 

 

2.3.6 Enzyme activity assays 

 

2.3.6.1 4-Hydroxybutyryl-CoA dehydratase 

 

4-Hydroxybutyryl-CoA dehydratase was assayed anaerobically in a cuvette containing 100 mM 

potassium phosphate, pH 7.4, 2 mM EDTA, 2 mM DTE, 2 mM NAD+, 1 mM sodium 4-

hydroxybutyrate, 0.1 mM CoASH, 0.1 mM acetyl-phosphate, 1 mM acetyl-CoA, 1.2 U 4-

hydroxybutyrate CoA-transferase and ‘enzyme pool’ from Acidaminococcus fermentans (0.3 

mg/ml). After 3 min incubation at room temperature, the reaction was started by adding 4-

hydroxybutyryl-CoA dehydratase and the formation of NADH was measured at 340 nm using an 

extinction coefficient 6.3 mM-1.cm-1 [75].  

 

2.3.6.2 Vinylacetyl-CoA Δ-isomerase 

 

Vinylacetyl-CoA Δ-isomerase was assayed using crotonyl-CoA reductase/carboxylase from 

Rhodobacter sphaeroides in a reaction mixture with 100 mM potassium phosphate, 0.2 mM DTT, 

1 mM vinylactate, 2 mM NADPH, 0.5 mM acetyl-CoA, 30 mM KHCO3 and 1.2 U 4-

hydroxybutyrate CoA-transferase, 0.5 U crotonyl-CoA reductase/carboxylase. After 2 min 

incubation at room temperature, the reaction was started by adding the 4-hydroxybutyryl-CoA 

dehydratase and the formation of NADP+ was measured at 340 nm using an extinction coefficient 

6.3 mM-1.cm-1. 

Vinylacetyl-CoA ∆-isomerase could also assayed aerobically with 100 mM potassium phosphate, 

pH 7.4, 0.5 μmol vinylacetyl-CoA, which was synthesized from acetyl-CoA and vinylacetic acid 

using 1.2 U 4-hydroxybutyrate CoA-transferase. The reaction was initiated by adding the 4-

hydroxybutyryl-CoA dehydratase, and its conversion to crotonyl-CoA was followed by 
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measuring the increasing a absorbance at 290 nm using an extinction coefficient value 2.2 mM-

1cm-1. 

 

2.3.6.3 4-Hydroxybutyrate CoA-transferase 

 

4-Hydroxybutyrate CoA-transferase was assayed with 40 mM sodium acetate and 0.25 mM 

butyryl-CoA as the substrates in a cuvette containing 100 mM potassium phosphate, 0.4 mg/ml 

DTNB, 1 mM oxalacetate and 4 U citrate synthase. In the assay the formed acetyl-CoA was 

condensed with oxalacetate, thereby liberating CoASH, which reacted with DTNB to a yellow 

thiophenolate anion. The reaction was started by adding CoA-transferase. The initial rate was 

measured at 410 nm using an extinction coefficient 14.0 mM-1cm-1. 

4-Hydroxybutyrate CoA-transferase was also assayed with butyryl-CoA as the CoA-donor and 

acrylate as CoA-acceptor in a cuvette containing 100 mM potassium phosphate, pH 7.4, butyryl-

CoA and acrylate. The reaction was started by adding 0.15 U of 4-hydroxybutyrate CoA-

transferase. The initial rate was measured at 280 nm using an extinction coefficient 4.2 mM-1cm-1. 

 

2.3.6.4 Butyryl-CoA dehydrogenase 

 

Butyryl-CoA dehydrogenase was assayed spectrophotometrically in a cuvette containing 50 mM 

potassium phosphate, 0.3 mM ferrocenium hexaflurophosphate, 0.25 mM butyryl-CoA, 5 µM 

FAD. The reduction of ferrocenium was measured by adding butyryl-CoA dehydrogenase at 300 

nm using an extinction coefficient 4.3 mM-1cm-1. 

 

2.3.6.5 Crotonyl-CoA reductase/carboxylase 

 

The crotonyl-CoA reductase/carboxylase was assayed with 100 mM Tris/HCl, 0.2 mM NADPH, 



Materials and Methods 
 

 

59 
 

0.5 mM crotonyl-CoA and 30 mM KHCO3 in a reaction. After 2 min incubation at room 

temperature the crotonyl-CoA reductase/carboxylase was added to initiate the reaction. Enzyme 

activity was measured spectrophotometrically by decreasing in absorbance at 340 nm using an 

extinction coefficient 6.3 mM-1cm-1 [86, 87] 

 

2.3.7 Iron protein reconstitution 

 

In order to reconstitute sufficient iron in the active centre of 4-hydroxybutyryl-CoA dehydratase, 

200 mM DTT, 100 mM FeCl3 and 30 mM Na2S·× 9 H2O were prepared in 100 mM Tris-HCl, pH 

7.4. Firstly, DTT with 5 mM final concentration was added to the enzyme solution, it was 

incubated at room temperature for 30 min [90]. After adding FeCl3 with 5 mol excess amount 

over protein and Na2S·× 9 H2O with 10 mol excess amount over protein, the mixture was 

incubated again for further 90 min. To remove the precipitated iron sulfide, it was centrifuged by 

13,000 × g for 5 min, and the protein solution was concentrated with a centricon. All experiments 

were performed at room temperature in an anaerobic chamber. 

 

2.3.8 Non-heme iron determination with Ferene 

 

Reagents: 1.0% (w/v) HCl 

  7.5% (w/v) Ammonium acetate solution 

  2.5% (w/v) SDS 

  4.0% (w/v) Ascorbic acid (always freshly prepared) 

  1.5% (w/v) Ferene 

 

Non-heme iron in protein was quantified with Ferene (3-(2-pyridyl)-5,6-bis (5-sulfo-2-furyl)-

1,2,4-triazine, disodium salt trihydrate). For the calibration curve with iron standard a freshly 

prepared solutions of 0.2 mM (NH4)2Fe(SO4)2 × 6 H2O (Mohr’s salt) was used [91, 92]. 
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Six iron standard samples (10, 20, 40 , 80, 100 µl), 100 µl H2O as blank and 2 diluted protein 

solutions were filled with H2O to an end volume of 100 µl, which were mixed 1% HCl and 

incubated at 80 ºC for 10 min. After cooling down to room temperature 500 µl 7.5% ammonium 

acetate, 100 µl 4% ascorbic acid, 100 µl 2.5% SDS and 100 µl iron chelator Ferene were 

sequentially added into each samples with vortexing. The Eppendorf tubes were centrifuged at 

13,000 × g for 10 min. The supernatant was used for measuring the absorbance at 593 nm. The 

iron content of the protein solution was calculated from the calibration curve of the absorbance 

valued vs. [Fe2+] of the standard Mohr’s salt. 

 

2.3.9 Acid-labile sulfur determination 

 

Reagents: 1.0% (w/v) Zinc acetate (freshly prepared) 

  7.0% (w/v) Sodium hydroxide 

  0.1% (w/v) N, N`-dimethyl-p-phenylenediamine (DMPD) in 5 M HCl 

  10 mM  FeCl3 in 1 M HCl 

  2 mM   Sulfide standard Na2S × 9 H2O in 10 mM NaOH 

 

The iron sulfur protein is denatured in an alkaline solution containing zinc hydroxide. The 

released sulfide is co-precipitated with Zn(OH)2 as ZnS. After acidification, H2S condenses with 

two molecules of DMPD to form methylene blue. 

The crystals of Na2S × 9 H2O (about 0.5 g) was added rapidly to a 1 L volumetric flask 

containing 10 mM NaOH, which has been purged with nitrogen. The flask was closed 

immediately and stirred magnetically. The aborbance of diluted stock solution vs the sulfide 

concentration was used to calculate the sulfide content of enzyme. 

Five sulfide standard (5 – 50 µM), two blanks, 2 protein samples and 2 protein samples with 

sulfide standard additions were transferred in Eppendorf tubes and filled to 200 µl with distilled 
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water. 600 µl 1% zinc acetate and then 50 µl 7% NaOH were added and mixed carefully. After 

incubation at room temperature for 15 min the tubes were centrifuged for several seconds to 

minimize the loss of sulfide. DMPD solution was added and mixed. When zinc hydroxide and 

sulfide precipitates were completely dissolved, 150 µl 10 mM FeCl3 was rapidly added. The 

Eppendorf tubes were closed immediately, and vortexed for 30 seconds and then incubated at 

room temperature for 20 min. The mixture was centrifuged at 9,000 × g for 10 min before 

measuring the absorbance at 670 nm against water 

 

Iodimetric determination of the sulfide standard 

The gravimetric preparation of a sulfide standards using Na2S × 9 H2O is inaccurate because of 

the hygroscopic nature of the compound leading to overestimation of the sulfide amount in 

protein. So an accurate amount of iodine (I2) is partly reduced with a know volume of sulfide 

standard solution. The remaining amount of I2 could be determined by titration with sodium 

thiosulfate, and the sulfide concentration of Na2S solution is calculated by subtraction. 

 

Sodium thiosulfate (Na2S2O3)  45 mM (accurate amount) 

Iodine solution I2 40 mM in 50 ml 300 mM KI 

Soluble starch  0.35 g/70 ml H2O (boiled and cooled down under continuous stirring) 

 

In 100 ml Erlenmeyer flask 25 ml water, 5 ml iodine solution and 1 ml 1M sulfuric acid (H2SO4) 

were mixed on a white sheet of paper using a magnetic stirrer and titrated with sodium thiosulfate 

until the solution turned almost colorless. Then 0.5 ml indicator solution (Soluble starch) was 

added for further titration with sodium thiosulfate until the blue color disappeared, and the 

volume of sodium thiosulfate was read from the buret. 

After the accurate amount of iodine was determined, the same amount of iodine was partly 

reduced with 25 ml sulfide standard and the remaining iodine was titrated by sodium thiosulfate. 
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The determination was repeated at least 3 times and values were used to calculate the exact 

concentration of the sulfide standard. 

Stoichimometry 

I2 + S2-- = S + 2 I- 

I2 + 2 S2O3
2- = 2 I- + S4O6

2- 

 

2.3.10 Flavin determination by UV-Vis 

 

For flavin determination of 4-hydroxybutyryl-CoA dehydratase, the protein solution was 

denatured at 80 ºC for 10 min and centrifuged at 10,000 × g for 5 min. The supernatant was used 

to measure the flavin content spectroscopically. The flavin amount was calculated using an 

extinction coefficient 11.3 mM-1.cm-1 at 445 nm [53]. 

 

2.3.11 MALDI-TOF Mass Spectrometry 

 

The mass spectrometry analysis of the CoA derivates was achieved with Matrix Assisted Laser 

Disorption Ionisation Time Of Flight Mass Spectrometry (MALDI-TOF MS). The samples were 

measured in a Voyager Spectrometer DE-RP (Applied Biosystem). Before measurement the 

sample was embedded in a low molecular mass, UV-absorbing matrix, namely 3-hydroxy-α-

cyanocinnamonic acid or 4-hydroxy-α-cyanocinnamonic acid [93]. When the matrix is hit by a 

laser beam it transfers enough energy to the sample for forming the molecular ions. The ions are 

accelerated and allowed to drift through the high vacuum Time-of-Flight analyzer. They separate 

the CoA derivates according to their mass-to-charge ratios and the ion abundance as a function of 

time is measured by the detector. 
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2.3.12 EPR Spectroscopy 

 

X-band of EPR spectra were obtained with a Bruker ESP-300E EPR spectrometer equipped with 

an ER-4116 dual mode cavity and an Oxford Instrument ESR-900 helium-flow cryostat with an 

ITC4 temperature controller. 

To prepare the samples for EPR spectroscopy, suitable activity tests were performed to confirm 

functionality of the enzymes. In an anaerobic glove box (atmosphere of 95 % N2 and 5 % H2) ca 

200 µl of the reaction mixture were transferred to ERP-tubes. Anaerobic tubing was placed over 

the end of each EPR tube and closed. Then the EPR tubes were removed from the glove box and 

immediately frozen in liquid nitrogen prior analysis by EPR spectroscopy. 

 

2.4 Chemical synthesis 

 

2.4.1 Acetyl-CoA, butyryl-CoA and crotonyl-CoA synthesis by anhydride 

 

To synthesize the CoA-ester, acetyl-CoA, butyryl-CoA, crotonyl-CoA and glutaryl-CoA, 50 mg 

free CoASH (60.9 μmol) was added in 2 ml 1 M NaHCO3 and 7 ml H2O, which was mixed with 

11 μl corresponding anhydride in 1.5 ml acetonitrile. After 15 min incubation at room 

temperature, the reaction was stopped by acidifying using 1 M HCl to a pH 1.5 – 2, and loaded 

on a C18 Sep-PakTM column (Waters, USA), which was previously washed by 5 ml methanol and 

equilibrated by 10 ml 0.1% trifluoroacetic acid. The column was washed with 5 column volume 

of 0.1% trifluoroactic acid and the CoA-ester was eluted by 5 ml 1% trifluoroactic acid and 50% 

acetonitrile. After lyophilisation the mass of the synthesized CoA-ester was confirmed by 

MALDI-TOF mass spectroscopy. 
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2.4.2 CoA-esters synthesis by 4-hydroxybutyryl-CoA transferase 

 

To synthesize the CoA-ester, 4-hydroxybutyryl-CoA and vinylacetyl-CoA, 4-hydroxybutyrate 

sodium salt and vinylacetate were incubated with 2.5 µmol acetyl-CoA and 5 U 4-

hydroxybutyrate CoA-transferase in 1 ml 100 mM potassium phosphate, pH 7.4 for at least 30 

min at 37 ºC. The product 4-hydroxybutyryl-CoA was loaded on a C18 Sep-PakTM column and 

purified as in 2.4.1. 

 

2.4.3 4-Hydroxyvaleryl-CoA synthesis 

 

(R,S)-γ-valerolactone as substrate was mixed with 10% excess amount of NaOH. After 

adjustment of the solution to pH 9.0, the mixture was incubated at 60 °C for 1 hour. During this 

period, the valerolactone is cleaved to 4-hydroxypentanoate. For further experiments it is 

necessary to adjust pH to neutral. The resulting 4-hydroxypentanoate was converted to 4-

hydroxyvaleryl-CoA by incubation with 4-hydroxybutyrate CoA-transferase at room temperature 

for 30 min. The CoA ester was purified as in 2.4.1. 
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3. Results 
 

3.1 The recombinant 4-hydroxybutyryl-CoA dehydratase AbfD in E. coli 

 

3.1.1 Sequence analysis of AbfD 

 

The gene of abfD from C. aminobutyricum is composed of 1473 base pairs encoding for 490 

amino acids with a calculated molecular mass of 54.509 kDa. Comparison of the AbfD amino 

acid sequence with sequences in the databank revealed high levels of identity, including the same 

enzymes from C. kluyveri, Porphyromonas gingivalis and Fusobacterium sp., several 

dehydratase/isomerases participating in gamma aminobutyrate metabolism and also two putative 

4-hydroxyphenylacetate 3-hydroxylases from Archaeoglobus fulgidus and a marine gamma 

proteobacterium. As shown in Fig 3-1, more than 50% of the amino acid sequences were 

identical in all 16 different species. All of them contain the iron sulfur cluster coordination motif, 

CX3CX…HisX6C (Fig 3-1) [46]. The first two cysteine residues are from the N-terminus, while 

the histidine residue and the third cysteine residue are from the C-terminus. Other residues 

located in the active centre are the highly conserved T190, Y296, E455 and E257. Furthermore, 

some residues, which were not located in the active centre of the enzyme, such as K300, A460 

and R90, were also revealed to be highly conserved in all sequences. 

Some homologous sequences that are termed as vinylacetyl-CoA isomerase or 4-

hydroxyphenylacetate 3-hydroxylase contain the iron sulfur cluster coordination motif and thus 

are actually 4-hydroxybutyryl-CoA dehydratases, since this motif can be considered as a 

signature for AbfD.  
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Table 3-1. Comparison of AbfD amino sequence from C. aminobutyricum with sequences in 

the database. 

AbfD homologues Sources Length 

/amino acids 

Identities 

(%) 

AbfD C. aminobutyricum 490 100 

γ-Aminobutyrate metabolism 
dehydratase/isomerase 

C. difficile 489 83 

γ-Aminobutyrate metabolism 
dehydratase/isomerase 

Acidaminococcus sp. D21 494 78 

4-Hydroxybutyryl-CoA dehydratase Porphyromonas gingivalis 486 75 

Vinylacetyl-CoA ∆-isomerase C. beijerinckii 484 75 

γ-Aminobutyrate metabolism 
dehydratase/Isomerase 

Porphyromonas endodontalis 512 72 

AbfD C. kluyveri 484 72 

4-Hydroxybutyryl-CoA 
dehydratase/vinylacetyl-CoA 
isomerase 

Fusobacterium sp. 486 70 

Vinylacetyl-CoA ∆-isomerase Thermosinus 
carboxydivorans 

495 70 

Vinylacetyl-CoA ∆-isomerase Desulfatibacillum 
alkenivorans 

484 64 

γ-Aminobutyrate metabolism 
dehydratase/isomerase 

Carboxydothermus 
hydrogenoformans 

491 59 

Vinylacetyl-CoA ∆-isomerase Geobacter metallireducens 483 57 

4-Hydroxybutyryl-CoA dehydratase Cenarchaeum symbiosum 507 57 

4-Hydroxyphenylacetate-3-
hydroxylase 

Archaeoglobus fulgidus 500 56 

4-Hydroxyphenylacetate-3-
hydroxylase 

Marine gamma 
proteobacterium 

513 53 

γ-Aminobutyrate metabolism 
dehydratase/isomerase 

Plesiocystic pacifica 536 52 
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Figure 3-1. Multiple alignment of AbfD amino acid sequence with sequences of other 

highly similar protein [94]. 

The amino acids are colored according to their chemical properties. violet: hydrophilic, 

polar and uncharged; blue: hydrophilic, polar, and positively charged; red: hydrophilic, 

polar and negatively charged; green: polar and neutral; black: hydrophobic and unpolar. 
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3.1.2 Cloning and expression of abfD in E.coli 

 

The gene abfD encoding 4-hydroxybutyryl-CoA dehydratase was amplified using Phusion DNA 

polymerase and ″Easystart PCR Mix″. After digestion by BsaI, the PCR products were 

subsequently ligated into a pASK-IBA3(+) vector. The abfD containing competent E. coli BL21 

CodonPlus-GroEL cells [95] were grown in standard-I medium with 2 mM Fe-citrate and 0.27 

mM riboflavin as cofactor sources at room temperature. At an OD578 of 0.5 – 0.6 the culture was 

induced with AHT (100 μg/L) and incubated for overnight. 

In the E. coli system, iron sulfur proteins usually are not produced in their proper folding form. 

All attempts to express the abfD gene in E. coli BL21 stain yielded large proportions of insoluble 

protein. The formation of insoluble protein or inclusion bodies was attributed to inappropriate 

protein-protein interactions due to the lack of proper polypeptide folding. Therefore, the 

expression conditions were changed to improve the solubility of the recombinant AbfD in E. coli. 

Different methods were used, for example, the incubation temperature was decreased, the 

concentration of AHT was lowered and iron, sulfur and riboflavin were added to the medium. 

Investigations on the solubility of recombinant AbfD in E. coli hosts have shown that a carefully 

controlled cell growth was required to obtain high yields of the recombinant protein in active 

form. A growth at 37 °C resulted in a large amount of inclusion bodies. The identified crucial 

parameters for a successful abfD expression were growth temperature, inducer concentration, 

cofactor concentration in the medium, coexpression of the chaperon genes groEL and 

maintenance of the exponential phase though the production phase. 

 

3.1.3 Purification of the recombinant AbfD 

 

The heterologous expression of pASK-IBA(3+) carring abfD resulted in the production of 

recombinant protein, which was C-terminally fused to a Streptag for affinity purification on 

StrepTactin column. The purification procedure was performed anaerobically in an anoxic glove 

chamber. 
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The cells were harvested, resuspended and opened by sonication. After ultracentrifuging at 

100,000 ×g for 1 h at 4 °C, the brown supernatant, which indicated the formation of an iron 

sulfur cluster, was loaded on a 5 ml StrepTactin column and the protein was eluted using 2.5 mM 

desthiobiotin in Tris/HCl buffer. The protein sample was then stored at -80 °C. 

 

 

Figure 3-2. SDS-PAGE of purified recombinant 4-hydroxybutyryl-CoA dehydratase.  

m, molecular mass marker; 1, cell free extract before induction; 2, pellet after sonication 

and ultracentrifugation; 3, supernatant after sonication and ultracentrifugation; 4, purified 

recombinant 4-hydroxybutyryl-CoA dehydratase. 

 

3.1.4 Physical and chemical characterization of the recombinant protein 

 

Molecular mass determination 

According to SDS-PAGE (Fig. 3-2), the AbfD monomer revealed a mass of about 54 kDa. The 

quaternary structure of holoenzyme was determined by gel filtration chromatography, which 

separated the proteins based on their mass. As standards, aldolase, catalase, ferritin and 

thyroglobin were loaded individually onto a Superdex 60 column with a flowrate of 0.5 ml/min. 
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A calibration curve was made with their elution volume parameters and used for the 

determination molecular mass of recombinant AbfD. The apparent molecular mass of the 

recombinant AbfD amounts to ca. 230 kDa (Fig. 3-3). Therefore, a homotetrameric structure 

appears to be most likely, which confirmed the molecular properties of native AbfD from C. 

aminobutyricum [45]. 
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Figure 3-3. Calibration curve of molecular mass determination. 

 

 

Specific activity and cofactor determination 

AbfD was assayed spectrophotometrically with 4-hydroxybutyrate CoA-transferase (AbfT) and 

the ‘enzyme pool’ from A. fermentans, which is an enzyme mixture containing crotonase, 3-

hydroxybutyryl-CoA dehydrogenase, thiolase and phosphate acetyltransferase [108]. The 

produced NADH was measured at 340 nm on the spectrophotometer. The obtained specific 
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activity of recombinant AbfD (0.5 mg/ml) was calculated to be about 2.2 U/mg, this corresponds 

to the value of native AbfD from C. aminobutyricum (Tab. 3-2) [52]. 

In order to compare the properties of the native enzyme with those of the recombinant enzyme, 

the cofactor contents were quantified. Non-heme iron from recombinant AbfD was determined 

with Ferene as 11.8 mol iron per mol homotetrameric enzyme. As evidence from previous results, 

E. coli cannot offer optimal conditions for the iron sulfur cluster assembly compared to C. 

aminobutyricum, and therefore an iron reconstitution technique was used to improve the iron 

stoichiometry of the enzyme. After incubation of recombinant AbfD with iron(III) chloride and 

sodium sulfide for 2 h, the iron content increased to 14.8 mol/mol enzyme and the specific 

activity to 4.5 U/mg. The FAD content was determined spectrophotometrically. The result 

indicated that the homotetrameric enzyme consists of 4.4 ± 0.2 mol FAD per mol enzyme as 

expected. 

 

Table 3-2. Comparison of recombinant AbfD properties with native enzyme 

 Spec. activity 

(U/mg) 

Iron content 

(mol/mol protein) 

Flavin content 

(mol/mol protein) 

Structure 

AbfD from 
C.aminobutyricum 

(Irfan Çinkaya) 

 

2 – 16.7 

 

12.0 – 13.4 

 

4 

 

tetramer 

AbfD from E.coli 2.2 ± 0.3 11.8 ± 0.1 4.4 ± 0.2 tetramer 

AbfD after iron 
reconstitution 

4.5 ± 0.3 14.8 n.d tetramer 

n.d: not determined 

 

MALDI-TOF mass spectrometry 

It was used to analyze the organic molecules during the dehydration reaction. 4-Hydroxybutyryl-

CoA as substrate, which was synthesized using CoA-transferase, 4-hydroxybutyrate and acetyl-

CoA, incubated with active AbfD in D2O for 30 min. After purification of the reaction mixture 
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using a SepPakTM hydrophobic column, the products were identified by MALDI-TOF. In 

comparison with control (Fig 3-4, 1), the peak at 854 Da (4-hydroxybutyryl-CoA) dropped down 

and a peak at 839 Da revealed the production of crotonyl-CoA. The theoretical mass of crotonyl-

CoA amounts 836 Da, which was shifted to 839 Da (Fig 3-4, 2), as protons were deuterium-

exchanged during dehydration procedure. The peaks at 857 Da and 858 Da could be considered 

as 4-hydroxybutyryl-CoA carrying three or four deuterium atoms. Due to its instability, only 

slight peaks could be observed. 

 

 

Figure 3-4. MALDI TOF mass spectrometry using 4-hydroxybutyryl-CoA as substrate. 

1, Synthesized 4-hydroxybutyryl-CoA (854 Da) in D2O as control; 2, 4-Hydroxybutyryl-

CoA was incubated anaerobically with purified AbfD in D2O. 
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To characterize the reverse reaction of AbfD, crotonyl-CoA was incubated with AbfD in D2O for 

30 min. The mixture was purified with the same column as described below. Different to the 

control (Fig 3-5, 1), with active AbfD treated sample revealed that the peak of crotonyl-CoA (836 

Da) was shifted to 839 Da (Fig. 3-5, 2), which was due to the proton-exchange by deuterium 

atoms. Unexpectedly, the mass spectrometry indicated an unclear peak corresponding to 4-

hydroxybutyryl-CoA (854 Da). It is likely to attribute to the instability of 4-hydroxybutyryl-CoA, 

it could cleave to free CoA and 4-hydroxybutyrate or reconstruct to lactone. 

 

 

 Figure 3-5. MALDI TOF mass spectrometry using crotonyl-CoA as substrate. 

1, Synthesized crotonyl-CoA (836 Da) in D2O as control. 2, Crotonyl-CoA was incubated 

anaerobically with purified AbfD in D2O. 
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Inactivation by air 

As an oxygen sensitive enzyme in anaerobic microorganisms, it was shown previously that AbfD 

lost the dehydratase activity very quickly at room temperature during exposure to air, within 5 

hours dehydratase activity disappeared completely. The native AbfDs from C. aminobutyricum 

became completely inactive within 70 min of being exposed to aerobic conditions. It has been 

also observed that exposure to air bleached the dark brown color. This could be an indication that 

the protein lost the essential iron. However, the yellow color was intensified, indicating that the 

flavin in the protein was still present. 

 

Butyryl-CoA dehydrogenase activity 

A fold similar to that seen in the AbfD crystal structure was found in FAD-containing medium 

chain acyl-CoA dehydrogenase (MCAD) from pig liver, which catalyzes the reversible oxidation 

of an acyl-CoA derivative to form the α,β double bond in the corresponding enoyl-CoA, although 

the amino sequence of these enzymes showed just 16 % identity. Because the non-activated β-

hydrogen has to be removed by butyryl-CoA dehydrogenase in a way analogous to the reaction 

catalyzed by AbfD, the dehydrogenase activity was tested using the purified active dehydratase 

or the inactivated enzyme by air. However, there was no dehydrogenase activity detectable. EPR 

spectroscopy has been also applied to detect the FAD radical of the oxidized AbfD as a 

hypothetic dehydrogenase. Compared to the sample without adding butyryl-CoA, no difference 

of flavin signal in EPR spectra was found, as shown in Fig 3-6, 
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Figure 3-6. EPR spectra of inactivated AbfD by air at 77 K using butyryl-CoA as substrate. 

 

Test using 4-hydroxypentanoate as inhibitor 

4-Hydroxypentanoate, acts probably as an interesting inhibitor, was synthesized by incubating (R, 

S)-γ-valerolactone and sodium hydroxide at 60 ºC. After adding acetyl-CoA and AbfT in the 

synthesized 4-hydroxypentanoate, the products were detected by MALDI-TOF mass 

spectroscopy. The presence of 4-hydroxyvaleryl-CoA was inferred from the peak of 869 Da (Fig. 

3-7). The resulting CoA ester was mixed with AbfD in potassium phosphate, and the products 

measured directly with a photometer at 290 nm. Obviously, no activity was observed. As shown 

in Fig 3-8, in order to detect the competition effect between 4-hydroxybutyrate and 4-

hydroxypentanoate, the coupled assay of AbfD was initiated by adding 4-hydroxybutyrate as 

substrate. After mixing with 4-hydroxypentanoate there was no variation of the reaction rate, 

which proved that the CoA ester derivate of 4-hydroxypentanoate acted not as an inhibitor of 

AbfD.  
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Figure 3-7. MALDI-TOF mass spectrum showing the peak at 869 Da corresponding to 4-

hydroxyvaleryl-CoA. 

 

 

Figure 3-8. Inhibition test of AbfD using 4-hydroxypentanoyl-CoA. 
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3.1.5 Vinylacetyl-CoA ∆-isomerase 

 

In previous publications it was reported that AbfD also exhibited vinylacetyl-CoA Δ-isomerase 

activity, which catalyzes the conversion of vinylacetyl-CoA to crotonyl-CoA [33, 52, 96]. The 

isomerase specific activity of AbfD was measured using the same assay as that of dehydratase, in 

which vinylacetate was mixed in the reaction mixture instead of 4-hydroxybutyrate. However, a 

clear activity was observed without adding the dehydratase/isomerase sample. An explanation for 

this could be that the vinylacetate was converted to vinylacetyl-CoA by CoA-transferase and the 

produced CoA ester could be isomerized by an enzyme from the A. fermentas ‘enzyme pool’. 

Consequently, a new assay using crotonyl-CoA reducatase/carboxylase from Rhodobacter 

sphaeroides was devised to determine the isomerase activity. During this assay vinylacetyl-CoA 

was generated by CoA-transferase from vinylacetate and acetyl-CoA, and then it was isomerized 

to crotonyl-CoA by AbfD. The product crotonyl-CoA is then converted to ethylmalonyl-CoA 

upon adding crotonyl-CoA reductase/carboxylase. The disappearance of NADPH was measured 

on the spectrophotometer. The specific activity was calculated to be about 18.5 U/mg. Upon 

exposure to air the activity decreased very quickly in the first 3-4 hours, then dropped slowly to 

10 % of the initial value in 24 hours, whereas the dehydratase activity was lost completely within 

5 hours as shown in Fig 3-9. 
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Figure 3-9. The variation of dehydratase and isomerase activity after exposure to air. 

4-Hydroxybutyryl-CoA dehydratase activity is colored in red, vinylacetyl-CoA 

isomerase in blue. 

 

The isomerization procedure was also determined by MALDI-TOF mass spectrometry (Fig 3-10). 

In comparison with control (Fig.3-10.1), after incubation of vinylacetyl-CoA with active AbfD in 

D2O for 30 min, the molecular mass of crotonyl-CoA (836 Da) increased by 1 Da to 837 Da, as a 

hydrogen atom in the product was replaced by deuterium. When the by air inactivated AbfD was 

added (Fig 3-10, 3), the product crotonyl-CoA was also labeled, but the response was not so 

strong as compared with active AbfD in the reaction. 
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Figure 3-10. MALDI-TOF mass spectrometry using vinylacetyl-CoA as substrate. 

1. Vinylacetyl-CoA in D2O as control, which was synthesized with vinylacetate and 

acetyl-CoA by 4-hydroxybutyrate CoA-transferase. 

2. Vinylacetyl-CoA reacted with purified 4-hydroxybutyryl-CoA 

dehydratase/isomerase (1 mg/ml) under anaerobic condition in D2O, incubated at room 

temperature for 30 min. 

3. Vinylacetyl-CoA reacted with oxidized 4-hydroxybutyryl-CoA 

dehydratase/isomerase (1 mg/ml) in D2O, which was performed by incubation under 

aerobic condition for 5 h. The reaction mixture was incubated at room temperature for 

30 min. 
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3.1.6 Mutagenesis of 4-hydroxybutyryl-CoA dehydratase 

 

The crystal structure and active site architecture of AbfD shows a narrow substrate binding 

channel in the active site, which is formed by the surface of the [4Fe-4S]2+ cluster, FAD and 

several conserved residues from both monomers. The iron atoms of the [4Fe-4S]2+ cluster are 

covalently bound to each monomer of the protein by three Cys-residues (99, 103 and 299) and 

one H292 residue. Between the two monomers there are some residues, which go deep into the 

active center, such as Y296, E257 and E455. In comparison with other 4-hydroxybutyryl-CoA 

dehydratases from 17 different species, it was revealed that also many highly conserved residues 

were not located in the active centre. To uncover the functions of theses conserved residues 

during the catalytic reaction, these amino acids were replaced by site-directed mutagenesis, 

which were then produced, purified under the same conditions as the recombinant wild type. The 

purified mutants were analyzed by SDS-PAGE (Fig 3-12). Their specific activity, cofactor 

amounts and structure were also characterized (Tab 3-3).  

 

 Figure 3-11. SDS-PAGE of purified H292C and Y296F mutants as examples. 

M, molecular mass marker; S, supernatant after sonication, P1 and P2, purified protein in 

different fractions. 
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The mutation that weakens the building of the iron sulfur clusters yielded an enzyme without 

dehydratase activity and less cofactor, for example C99, C103, C299 and H292 mutants. And 

their structures were degraded to dimers, or even monomers, which could be due to the 

destruction of the iron sulfur cluster. The mutants of three highly conserved residues, such as 

Y296, E455, E257 and A460, which are located in the substrate binding channel, exhibited 

negligible or unmeasurable dehydratase activity. The Y296F mutant contains only 0.7% 

detectable activity in comparison with wild type dehydratase, and A460 replaced by glycine 

shows 2%. Several conserved residues, which are not involved in the active centre but probably 

also participated in catalytic reaction, were also mutated and analyzed. All of these showed a 

homotetrameric structure, with high iron and flavin contents and specific activities between 0.02–

0.2 U/mg. 

 

Table 3-3. Characterization of mutants. 

 Specific activity 

(U/mg) 

Iron/tetramer 

(mol/mol) 

FAD/tetramer 

(mol/mol) 

Structure 

Wild type  2.2 ± 0.3  11.8 ± 0.1  4.4 ± 0.2  tetramer  

Wild type R  4.5 ± 0.2  14.8  n.d. n.d.  

H292C  < 0.005  8.1 ± 0.1  3.1 ± 0.1  tetramer, dimer  

H292C R  < 0.005  11.5  n.d. n.d. 

H292E  < 0.005  7.8 ± 0.2  2.9  tetramer  

C299A  < 0.005  7.7 ± 0.2  3.0  tetra-, di- and monomer 

C103A  < 0.005  8.0  2.7  tetra-, di- and monomer 

C99A  < 0.005  7.7  3.2  tetra-, di- and monomer 

Y296F  0.03  11.0 ± 0.2  4.4± 0.2  tetramer  
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Y296F R  0.03  13.8  n.d. n.d. 

E455Q  < 0.005  10.2 ± 0.2  3.8 ± 0.1  tetramer  

E455Q R  < 0.005  12.2  n.d. n.d. 

E257Q  < 0.005  11.0 ± 0.1  3.5  tetramer  

A460G  0.09  10.3  3.5  tetramer  

Q101E  0.2  13.1  3.2  tetramer  

T190V  0.02  10.6  2.9  tetramer  

K300Q  0.2  13.6  3.4  tetramer  

 Wild type: the recombinant AbfD produced in E. coli, 

 R: the protein sample treated by iron resonstitution, 

 n.d: not determined 

 

Furthermore, because the iron sulfur clusters are not chemically stable, some samples were 

treated by iron reconstituted using iron chloride and sodium sulfide. As shown in Fig 3-12, the 

specific activity of the wild type increased two fold to 4.5 U/mg, which was caused by an 

increase in the iron content in the enzyme. However the experiments indicated also that the 

mutant activities were unchanged after iron reconstitution. When the iron content after 

reconstitution was compared with that before (Fig 3-13), all sample were found to contain more 

iron. However this did not lead to enhancement of enzyme activity. 
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Figure 3-12. Specific activity comparison with the sample before and after iron reconstitution. 

 

 

Figure 3-13. Iron content comparison with the sample before and after iron reconstitution. 
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In order to detect the function of conserved amino acids during the isomerization procedure, the 

isomerase activities of all mutants were determined and compared with the wild type (Table 3-4). 

E257, Y296 mutants showed a high isomerase specific activity, and even E257 contains almost 

same activity as wild type protein, which was retained even after incubation with oxygen. H292E 

and C99A mutants showed lowest isomerase specific activity and completely lost activity after 

incubation with oxygen. Both of H292 and C99 residues were located at the side close to the 

active centre. In comparison, the isomerase activities of C103 and C299 mutants were relative 

higher. This could be considered a consequence of the fact that these residues are located at the 

upper side of iron sulfur cluster, further from the active centre. 

 

Table 3-4. Comparison of vinylacetyl-CoA ∆-isomerase specific activity before 

and after 24 h exposure to air. 

 Vinylacetyl-CoA ∆-isomerase activity (U/mg) 

Purified enzyme Enzyme after exposure to air 

Wild type 18.5 1.7 ± 0.2 

H292C 2.1 0 

Y296F 9.6 4.4 

E455Q 1.3 1.0 

E257Q 17.0 17.0 

H292E 0.2 0 

C299A 14.0 14.0 

C103A 3.1 1.8 

C99A 0.25 0 
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3.2 The recombinant 4-hydroxybutyrate CoA-transferase AbfT in E. coli 

 

3.2.1 Sequence analysis of AbfT 
 

AbfT is also involved in the 4-aminobutyrate fermentation pathway of C. aminobutyricum, which 

catalyzes the activation of 4-hydroxybutyrate to 4-hydroxybutyryl-CoA. The gene abfT coding 4-

hydroxybutyrate CoA-transferase contains 438 amino acids. The protein has been characterized 

as a homodimeric enzyme, each monomer with a molecular mass of 54 kDa. Comparing the 

amino acid sequence of abfT with other 4-hydroxybutyrate CoA-transferases in the data bank 

revealed a high level of identity (ca. 60%) to 4-hydroxybutyrate CoA-transferase of C. difficile, C 

kluyveri and C. beijerinckii exists. Other CoA-transferases from various microorganisms 

including Anaerofustis caccae, Prophyromonas gingivalis, P. unenonis, P endodontails 

Fusobacterium mucleatum, F. sp, C. tetani indicated an identity between 45% - 50% to AbfT. 

Sequence          -------MDWKKIYEDRTCTADEAVKSIKSGDRVLFAHCVAEPPVLVEAMVANAAAYKNV 53 
Q9RM86_CLOAM      -------MDWKKIYEDRTCTADEAVKSIKSGDRVLFAHCVAEPPVLVEAMVANAAAYKNV 53 
Q185L2_CLOD6      -------MSWQELYQSKLCSATEAVKQIKNGDTVVFAHCVGEPPALVEAMIENAEQYKDV 53 
A6LV90_CLOB8      ----MSKISWKDLYKSKVVTADEAVRKIKSNDRVVTGHACGEPKEIIDAMVRNKDLYENV 56 
CAT2_CLOK5        -------MEWEEIYKEKLVTAEKAVSKIENHSRVVFAHAVGEPVDLVNALVKNKDNYIGL 53 
B0M9J7_9FIRM      MMRDKKDKPWKAEYREKLVSADEAVSHIRSGQRIVFSHAAGESLVLSDALVRNRALFENV 60 
B2RIP9_PORG3      ------MKDVLAEYASRIVSAEEAVKHIKNGERVALSHAAGVPQSCVDALVQQADLFQNV 54 
Q7P6F4_FUSNV      ------MGNWKERYESKLCTSDEAIKKIAGVKRIIFEHACGESALLTEALMKNKELFKKT 54 
C3WS57_9FUSO      ------MGNWKERYESKLCTSDEAIKKIAGVKRIIFEHACGESALLTEALMKNKELFKKT 54 
C3JA15_9PORP      ----------MEEYKSKVVSAQEAIRAIKNGDSVVLSHAAGAPQLISRALADNYQNYQDV 50 
                               * .:  :: :*:  * . . :   *. . .     *:  :   :    
 
Sequence          TVSHMVTLGKGEYSKPEYKENFTFEGWFTSPSTRGSIAEGHGQFVPVFFHEVPSLIRKD- 112 
Q9RM86_CLOAM      TVSHMVTLGKGEYSKPEYKENFTFEGWFTSPSTRGSIAEGHGQFVPVFFHEVPSLIRKD- 112 
Q185L2_CLOD6      EIKHMVSLGSGGYTAKGMEAHFRVNPMFVSGNVRKAIENGDGDFTPAFFHEVPKLLREK- 112 
A6LV90_CLOB8      EIVHMVSMGKSEYCKPEMAVNFRHNSIFAGGTTREAIFDGRADFTPCFFSEVPKMFREG- 115 
CAT2_CLOK5        EIVHMVAMGKGEYTKEGMQRHFRHNALFVGGCTRDAVNSGRADYTPCFFYEVPSLFKEK- 112 
B0M9J7_9FIRM      EIVHMVAMGAAKYCEPGMEKHFRHNSFFLGASTRKAAKEGRADVTPVYFSEVPELFRTT- 119 
B2RIP9_PORG3      EIYHMLCLGEGKYMAPEMAPHFRHITNFVGGNSRKAVEENRADFIPVFFYEVPSMIRKD- 113 
Q7P6F4_FUSNV      EIIHLVAMGKGEYAKEENSEYFRHNALFVGGTTREAANSSYGDYTPSFFFEMPKLFKKGG 114 
C3WS57_9FUSO      EIIHLVAMGKGEYAKEENSEYFRHNALFAGGTTREAANSSYGDYTPSFFFEMPKLFKKGG 114 
C3JA15_9PORP      KIFHMLVLGDAPYCAPEMEGHFRHVTNFVGGNTRQALADGRADFIPLFFYQVPRMFENG- 109 
                   : *:: :* . *        *     * .   * :  .. .:  * :* ::* ::.    
 
Sequence          IFHVDVFMVMVSPPDHNGFCCVGVSSDYTMQAIKSAKIVLAEVNDQVPVVYGDTFVHVSE 172 
Q9RM86_CLOAM      IFHVDVFMVMVSPPDHNGFCCVGVSSDYTMQAIKSAKIVLAEVNDQVPVVYGDTFVHVSE 172 
Q185L2_CLOD6      RLKCDVVLAQVTPPDEHGYCSLGTSVDYTYEAIKTARTVIVQVNDQFPRTYG-EVVHVSE 171 
A6LV90_CLOB8      TLPVDVALVQLSVPDEHGYCSFGVSNDYTKPAAEAAKIVIAELNEKMPRTLGDSFIHVSD 175 
CAT2_CLOK5        RLPVDVALIQVSEPDKYGYCSFGVSNDYTKPAAESAKLVIAEVNKNMPRTLGDSFIHVSD 172 
B0M9J7_9FIRM      -LPVDAVFLNLSPPDEHGYCSFGISVDYSKPAAMEAELVIAQINPSMPRTLGDSFIHISD 178 
B2RIP9_PORG3      ILHIDVAIVQLSMPDENGYCSFGVSCDYSKPAAESAHLVIGEINRQMPYVHGDNLIHISK 173 
Q7P6F4_FUSNV      VLNPDVTIIQVSYPDEHGYCSYGISCDYTKCAAENSNIVIAQVNKFMPRTLGNCFIHIDS 174 
C3WS57_9FUSO      VLNPDVTIIQVSYPDEHGYCSYGISCDYTKCAAENSNIVIAQVNKFMPRTLGNCFIHIDS 174 
C3JA15_9PORP      AIPVDVAVVHVSEPNEEGYCSYGVSCDYTKPAAERAKVVIAEMNKQMPFVHGDNLIHVSK 169 
                   :  *. .  :: *:. *:*. * * **:  *   :. *: ::*  .* . *  .:*:.. 
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Sequence          IDKFVETSHPLPEIGLPKIGEVEAAIGKHCASLIEDGSTLQLGIGAIPDAVLSQLKDKKH 232 
Q9RM86_CLOAM      IDKFVETSHPLPEIGLPKIGEVEAAIGKHCASLIEDGSTLQLGIGAIPDAVLSQLKDKKH 232 
Q185L2_CLOD6      FDYIVEKSQPLFELQPAKIGEVEEAIGKNCASLIEDGSTLQLGIGGIPDAVMLFLTDKKD 231 
A6LV90_CLOB8      IDYIVETSNDIIELKPPKIGEVEKAIGENCAKLIEDGSTLQLGIGAIPDAVLLFLKGKKD 235 
CAT2_CLOK5        IDYIVEASHPLLELQPPKLGDVEKAIGENCASLIEDGATLQLGIGAIPDAVLLFLKNKKN 232 
B0M9J7_9FIRM      IDYIVEADTPLIELPPAGISEVERAIGKNCASLIEDGDTLQLGIGAIPDAVLGFLKEKKD 238 
B2RIP9_PORG3      LDYIVMADYPIYSLAKPKIGEVEEAIGRNCAELIEDGATLQLGIGAIPDAALLFLKDKKD 233 
Q7P6F4_FUSNV      IDYIVEQATPIIELKIPVIGEIEKRIGEHCASLIDDGATLQLGIGAIPDAVLSFLRHKKD 234 
C3WS57_9FUSO      IDYIVEQATPIIELKIPVIGEIEKRIGEHCSSLIDDGATLQLGIGAIPDAVLSFLRHKKD 234 
C3JA15_9PORP      LDYIVEADYPLYEIALPTIGDVEKAIGDNVAHLVQDGDTLQLGIGAIPDAVLLFLKDKKD 229 
                  :* :*     : .:  . :.::*  ** : : *::** *******.****.:  *  **. 
 
Sequence          LGIHSEMISDGVVDLYEAGVIDCSQKSIDKGKMAITFLMGTKRLYDFAANNPKVELKPVD 292 
Q9RM86_CLOAM      LGIHSEMISDGVVDLYEAGVIDCSQKSIDKGKMAITFLMGTKRLYDFAANNPKVELKPVD 292 
Q185L2_CLOD6      LGIHSEMISDGTLALYEKGVINGKYKNFDKEKMTVTFLMGTKKLYDFANNNPAVEVKPVD 291 
A6LV90_CLOB8      LGIHSEMISDGVVELIEAGVITNKAKTLHPGKSVVTFLMGTKRLYDYVNGNPSVAMYPVD 295 
CAT2_CLOK5        LGIHSEMISDGVMELVKAGVINNKKKTLHPGKIVVTFLMGTKKLYDFVNNNPMVETYSVD 292 
B0M9J7_9FIRM      LGIHSEMISDGIVELYEAGVITNRRKSLHAGKSIVTFLMGTRKLYDFADNNPAVELHPVD 298 
B2RIP9_PORG3      LGIHTEMFSDGVVELVRSGVITGKKKTLHPGKMVATFLMGSEDVYHFIDKNPDVELYPVD 293 
Q7P6F4_FUSNV      LGIHSEMISDGVVDLVNLGVITNKRKNINVGKSIVSFLMGTRKLYDYIDNNPEIELHPVD 294 
C3WS57_9FUSO      LGIHSEMISDGVVDLVNLGVITNKRKNINVGKSIVSFLMGTRKLYDYIDNNPEIELHPVD 294 
C3JA15_9PORP      LGIHTEMFSDGVLELVRAGVITGKKKEIDNGKLTATFLMGSRDLYDFVNNNPDVRLAPVN 289 
                  ****:**:*** : * . ***    * :.  *   :****:. :*.:   ** :   .*: 
 
Sequence          YINHPSVVAQCSKMVCINACLQVDFMGQIVSDSIGTKQFSGVGGQVDFVRGASMSIDGKG 352 
Q9RM86_CLOAM      YINHPSVVAQCSKMVCINACLQVDFMGQIVSDSIGTKQFSGVGGQVDFVRGASMSIDGKG 352 
Q185L2_CLOD6      YVNHPAIIMKQHKMVSINSAIQVDLMGQVVAEAMGLRQFSGVGGQVDFIRGVSMGEDGK- 350 
A6LV90_CLOB8      YVNNPCVIAENYKMVSINSCIQVDLMGQVAADTIGLKQFSGVGGQVDFVRGAAMAKGGK- 354 
CAT2_CLOK5        YVNNPLVIMKNDNMVSINSCVQVDLMGQVCSESIGLKQISGVGGQVDFIRGANLSKGGK- 351 
B0M9J7_9FIRM      YVNDPYVIAQNERLVSVNSCVQVDLMGQVVSASVGRRQISGVGGQVDFVRGANMSRGGK- 357 
B2RIP9_PORG3      YVNDPRVIAQNDNMVSINSCIEIDLMGQVVSECIGSKQFSGTGGQVDYVRGASWSKNGK- 352 
Q7P6F4_FUSNV      YVNNPFIIAQNDNMISINSAIQVDLMGQVNAESIGSKQFSGTGGQVDFVRGAAMSKGGK- 353 
C3WS57_9FUSO      YVNNPFIIAQNDNMISINSAIQVDLMGQVNAESIGSKQFSGTGGQVDFVRGAAMSKGGK- 353 
C3JA15_9PORP      WVNDPVTVMNFDRMVSINSCIEVDLMGQVASETIGYKQFSGTGGQVDYVRGASMSGHGV- 348 
                  ::*.*  : :  .::.:*:.:::*:***: :  :* :*:**.*****::**.  .  *   
 
Sequence          KAIIAMPSVAKKKDGSMISKIVPFIDHGAAVTTSRNDADYVVTEYGIAEMKGKSLQDRAR 412 
Q9RM86_CLOAM      KAIIAMPSVAKKKDGSMISKIVPFIDHGAAVTTSRNDADYVVTEYGIAEMKGKSLQDRAR 412 
Q185L2_CLOD6      -AIIAMPSITTKKDGTVISKIVSIVDEGAPITTSRNDVDYIVTEYGIAELKGKSLRERAR 409 
A6LV90_CLOB8      -SIIAMPSTASKGK---LSRIVPILDEGATVTTSRNDIHYVVTEFGIAELKGKTLKERAK 410 
CAT2_CLOK5        -AIIAIPSTAGKGK---VSRITPLLDTGAAVTTSRNEVDYVVTEYGVAHLKGKTLRNRAR 407 
B0M9J7_9FIRM      -SIMAMPSTAAEGR---ISKIVPVIGEGAAVTTSRYDADYIVTEYGTARLKGETLRNRAR 413 
B2RIP9_PORG3      -SIMAIPSTAKNGT---ASRIVPIIAEGAAVTTLRNEVDYVVTEYGIAQLKGKSLRQRAE 408 
Q7P6F4_FUSNV      -SIIALPSTAAKGT---ISKIVFTLDEGAAVTTSRNDVDYIVTEYGIAHLKGKSLRERAK 409 
C3WS57_9FUSO      -SIIALPSTAAKGT---ISKIVFTLDEGAAVTTSRNDVDYIVTEYGIAHLKGKSLRERAK 409 
C3JA15_9PORP      -SIMAMPSTAAKGK---VSRIVPLLAEGAAVTTSRNDVDYVVTEFGAAKLKGKSLRERAE 404 
                   :*:*:** : :      *:*.  :  **.:** * : .*:***:* *.:**::*::**. 
 
Sequence          ALINIAHPDFKDELKAEFEKRFNAAF---- 438 
Q9RM86_CLOAM      ALINIAHPDFKDELKAEFEKRFNAAF---- 438 
Q185L2_CLOD6      NLINIAHPSVRESLAVEFEKRFKEKY---- 435 
A6LV90_CLOB8      ALINVAHPDFRDALIKEWEKRFKVKF---- 436 
CAT2_CLOK5        ALINIAHPKFRESLMNEFKKRF-------- 429 
B0M9J7_9FIRM      KLIRIAHPDFRRMLAEEYEKRFREAWSDDE 443 
B2RIP9_PORG3      ALIAIAHPDFREELTEHLRKRFG------- 431 
Q7P6F4_FUSNV      ALIEIAHPDFREELTKKAVGKFGTL----- 434 
C3WS57_9FUSO      ALIEIAHPDFREELTKKAVGKFGTL----- 434 
C3JA15_9PORP      ALISIAHPDFRPQLLEEFNKRFPSK----- 429 
                   ** :***..:  *  .   :*         

 

 Figure 3-14. Homology analysis of AbfT from C. aminobutyricum. 
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It has also been concluded in previous research that E324 in propionate CoA-transferase from C. 

propionicum [97, 98]and βE54 in glutaconate CoA-transferase from A. fermentas [39] act as 

covalent-catalytic residues in the active centre. A mechanism was proposed in which the 

glutamate residue acts as a nucleophile and attacks the carbonyl group of the CoA-ester substrate, 

which causes release of the CoA group. The amino acid alignment revealed only two conserved 

glutamates, E195 and E238, in the gene abfT. Furthermore, compared to two known 4-

hydroxybutyrate CoA-transferase structure from Shewanella oneidensis and P. gingivalis 

suggested that E238 was the most likely candidate for the formation of the enzyme CoA thioester. 

As evidence of this, E238 was mutated and analyzed in chapter 3.2.4. 

 

3.2.2 Cloning and expression of abfT in E.coli 

 

The abfT-gene encoding 4-hydroxybutyrate CoA-transferase was amplified by PCR using 

Phusion DNA polymerase and primers containing restriction enzyme cute sites. The PCR product 

and the pASK-IBA3 (+) plasmid were digested by restriction enzymes and ligated with one 

another. The products were then transformed into an E. coli DH5α stain. The DNA sequences of 

four clones were analyzed by XbaI and PstI (Fig. 3-15). The digestion by XbaI showed one band 

(4.5 kb) and by PstI showed two bands (3.8 kb and 700 bp), as expected.  

 
Figure 3-15. Restriction analysis of the clone in pASK-IBA3(+). 

X: the sample was digested by XbaI; P: the sample was digested by PstI. 
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Before transformation and expression in E. coli BL21CodonPlus strain, the gene was sequenced. 

The results revealed that eight nucleotides in the database were inaccurate (Tab. 3-5), which 

caused three amino acid errors (Table 3-6). 

Table 3-5. The corrected eight nucleotides of abfT. 

Nucleotide position* Old data (wrong) New data(corrected) 

3406 G a 

3530 A g 

3532 T a 

3562 G a 

3871 A g 

3884 A c 

4005 G a 

4012 G a 

 * The position in the gene cluster of 4-hydroxybutyrate dehydration. 

Table 3-6. New corrected amino acids of AbfT in database 

Amino acid position Old data (wrong) New data(corrected) 

172 N E 

290 T P 

330 R Q 

 

(http://www.ncbi.nlm.nih.gov/nuccore/188032705?ordinalpos=1&itool=EntrezSystem2.PEntrez.

Sequence.Sequence_ResultsPanel.Sequence_RVDocSum)  

http://www.ncbi.nlm.nih.gov/nuccore/188032705?ordinalpos=1&itool=EntrezSystem2.PEntrez.Sequence.Sequence_ResultsPanel.Sequence_RVDocSum
http://www.ncbi.nlm.nih.gov/nuccore/188032705?ordinalpos=1&itool=EntrezSystem2.PEntrez.Sequence.Sequence_ResultsPanel.Sequence_RVDocSum
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The abfT gene in pASK-IBA3(+) was expressed in standard-I medium with carbenicillin and 

chloramphenicol. To improve the yield of the protein, the expression was tested at different 

temperature (37 ºC, 30 ºC and room temperature) and induced by AHT 200 µg/L. As shown in 

Fig 3-16 and 3-17, a carefully controlled growth was required to obtain high yield purification of 

the recombinant protein. At 37 ºC and 30 ºC no obvious expression was detectable, but at room 

temperature the SDS-PAGE exhibited an efficient expression in E. coli strain. 

 

 

Figure 3-16. Test of abfT expression condition at 37 ºC 30 ºC. M, molecular mass 

marker; B, cell free extract before induction; 1-8 h, cell free extract with different 

induction time. 

 

Figure 3-17. Test of abfT expression condition at room temperature (22-25 ºC) 
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3.2.3 Protein purification and analysis 

 

The protein purification was performed under aerobe conditions with a StrepTactin column. The 

eluted AbfT were stored at – 80 ºC without loss of activity for several months and analyzed by 

SDS-PAGE (Fig 3-18). 

 

 

Figure 3-18. SDS-PAGE of recombinant AbfT purification in E. coli. 

M, molecular mass marker; B, cell free extract before induction; 2h, 5h and o/n, 

cell free extract after induction for 2, 5 h and overnight; P and S, pellet and 

supernatant after sonication and ultracentrifugation; TF, flow through from Strep-

Taction column; AbfT, purified recombinant 4-hydroxybutyrate CoA-transferase. 

 

Enzymatic properties and substrate specificity 

The purified protein revealed a specific activity of 170–181 U/mg using butyryl-CoA as substrate 

instead of 4-hydroxybutyryl-CoA, due to the instability of the latter. It is a colorless enzyme, 

which indicates no additional cofactor in the protein, such as an iron-sulfur cluster. In order to 

ascertain the substrate specificity of the enzyme the activity was measured with a different CoA-

donor (Tab. 3-7). The highest activity of the CoA-transferase was obtained by adding butyryl-

CoA in the enzyme assay, followed by propionyl-CoA (142 U/mg), vinylacetyl-CoA (96 U/mg) 
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and 4-hydroxybutyryl-CoA (41 U/mg). The activity was undetectable with trans-crotonyl-CoA as 

the CoA-donor. The instability and ease of degradation of 4-hydroxybutyryl-CoA could lead to 

apparently reduced CoA-transferase activity. 

 

3.2.4 Mutagenesis in the active site of 4-hydroxybutyrate CoA-transferase 

 

Determination of glutamate residue coordinated with CoAS-moiety of acyl-CoA substrate 

Glutaconate CoA-transferase from A. fermentas and propionate CoA-transferase from C. 

propionicum, both contain a highly conserved glutamate residue (βE54 and E324, respectively) in 

the active centre. This acts as a nucleophile to attack the thiolester carbonyl. The amino acid 

sequence alignment of 4-hydroxybutyrate CoA-transferase exhibited two conserved glutamate 

residues, E195 and E238 (Fig. 3-13, colored in red). In order to verify our hypothesis, E238 as 

the most likely candidate for the formation of the enzyme-CoA thioester intermediate was 

mutated to glutamine, alanine, serine and aspartate. After purification with affinity 

chromatography, the activities of the mutants were measured and compared to that of the wild 

type. The yields of purified mutants E238Q, E238A and E238S were 41 – 67% of that of wild 

type, except E238D that showed a very low expression rate (2%). Interestingly, only this E238D 

mutant retained a remarkable CoA-transferase activity (30 – 35 U/mg, 20% of the wild type), the 

specific activities of other mutants were negligible (0.04 – 0.05%) or not measurable. It has been 

found in glutaconate CoA-transferase from A. fermentas that the single amino acid replacement 

βE54D resulted in a reduced CoA-transferase activity and an appearance of acyl-CoA hydrolase 

activity. According to this, the acyl-CoA hydrolase of these three mutants were also assayed. 

Unfortunately, all of them indicated no acyl-CoA hydrolase activity (Tab. 3-7). 
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Table 3-7. Specific activities of E238 mutants in comparison to the wild type. 

 Obtained protein 
concentration 

(mg/ml) 

Specific activity of 
CoA-transferase 

(U/mg) 

Activity relative 
to that of wt 

(%) 

Specific activity of 
acyl-CoA hydrolase 

 (U/mg) 

Wild type 2.7 170-181 100 0 

E238Q 1.1 0.07 0.04 0 

E238D 0.1 30-35 20 0 

E238A 1.4 0.1 0.05 0 

E238S 1.8 0 0 0 

 

The substrate specificity of E238D mutant was same as that of wild type. With butyryl-CoA as 

the CoA-donor, the E238D mutant exhibited the highest activity, which is 20% of the wild type 

activity. Almost all of the substrate specificity showed a reduced activity to 17 - 20%. However, 

using 4-hydrxybutyryl-CoA the activity decreased to 11%. This is likely to be due to the 

degradation of 4-hydroxbutyryl-CoA under storage (Tab. 3-8). 

Table 3-8. Specific activities' comparison using different CoA-donors. 

CoA esters Wild type 

specific activity (U/mg) 

E238D 

specific activity (U/mg) 

Vinylacetyl-CoA 96 16.3 (17%) 

Crotonyl-CoA 0 0 

Propionyl-CoA 142 24 (17%) 

4-Hydroxybutyryl-CoA 41 4.5 (11%) 

Butyryl-CoA 181 35 (20 %) 
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3.2.5 Crystal structure analysis 

 

The produced recombinant CoA-transferase abfT in 50 mM Tris/HCl, pH 7.0 and 200 mM 200 

NaCl was sent for crystallization (Group of A. Messerschmidt, MPI of Biochemistry). 

The crystal structure revealed a homodimeric protein, which consists of subunits A and B. Both 

molecules are built up by seven parallel β-sheets flanked by α-helices on both sides of the sheet 

(Fig 3-19). Subunit A has two α-helices at the N-terminus, and subunit B has an additional 

antiparallel β-strand at the C-terminal end of the sheet and two α-helices at the C-terminus.  

 

 

Figure 3-19. Crystal structure of homodimer AbfT from C. aminobutyricum.  

Subunit A and B are colored in pink and blue 

 

The active site is a narrow channel between A and B subunits which extends to the glutamate 

residue 238 in the active site. It was studied by crystallization with a spermidine in the active site 

(Fig 3-20, left). The electron density map showed that the amino group of spermidine builds a 

salt bridge with the carboxyl group of E238. The putative binding pocket for the 4-

hydroxybutyrate substrate is filled with several water molecules. 
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Interestingly, two pockets can be seen in the crystal structure (Fig 3-20, right). They are situated 

at the both side of the active site E238. The left pocket with H31 at the bottom refers to the 

binding site for either the acetyl-CoA of the acyl-CoA and the right pocket with Q213 at the 

bottom could represent the co-substrate binding site. However, this pocket is rather broad and 

little characteristic for specific binding of 4-hydroxybutyryl-CoA. To confirm this hypothesis, the 

substrate binding pockets were studied using site directed mutagenesis in next chapter. 

 

 

 Figure 3-20. Active site of AbfT from C. aminobutyricum. 

Left: the active site occupied by spermidine (blue) and water molecules. In addition, an 

acetate molecule (red) was manually docked into the active site. Right: the surface of active 

site including the glutamyl-CoA as bound in AbfT from S. oneidensis. 
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Determination of substrate binding pocket using mutagenesis 

 

The successful expression of abfT in E. coli facilitated the possibility to analyze the functions of 

conserved amino acid residues by site directed mutagenesis. The residues, which were deduced 

from the 3D structure to be important for the substrate binding, were studied by mutagenesis. The 

yields of mutants and their activities were measured and compared as stated in Table 3-9.  

To determine the roles of H31 in the substrate binding pocket, it was replaced by several amino 

acids. H31S and H31G exhibited 2% of that of wild type and inactive, respectively, while H31A 

and H31N mutants had activities of 71% and 183%, respectively. However, their activities 

decreased significantly during storage at – 20 °C. The mutants M58S and M58T were constructed, 

in order to examine the influence of a hydrophilic group close to the imidazole ring in H31. Both 

of them showed reduced activities (15% and 40% of wild type activity, respectively). In contrast 

to the H31 mutants, the M58 mutants retained stability during storage at – 20 °C with no activity 

loss after 24 hours. Other investigated residues were the conserved Q213 (Fig 3-13). It was 

replaced by serine and also by theronine, in order to find its roles as hydrogen bonding forming 

residue in a putative separate co-substrate binding site. Both mutants were found to be inactive. 

Furthermore three double mutants H31A/D139A, H31A/S137A and H31A/M58S were made to 

ascertain the reason that H31A has relative higher activity than expected. All of them indicated 

the specific activities of 60%, 6% and 3%, respectively. As for the H31 mutants, the activities of 

these three double mutants exhibited instability during storage at – 20 °C. 
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Table 3-9. Yields and specific activities of the AbfT mutants. 

 

Mutants 

Protein 
concentration 

(mg/ml) 

Specific 
activity 

(U/mg) 

Specific activity 
relative  

to that of wt 

(%) 

Specific activity 
after 24 h storage at 

- 20 °C 

(U/mg) 

Wild type 2.7 170 - 181 100% 160 

H31S 0.04 3.0 2% 2.2 

H31G 0.14 0.5 0 0.5 

H31N 0.8 320 183% 137 

H31A 0.2 125 71% 8 

M58S 4.2 27 15% 30 

M58T 1.7 70 40% 68 

Q213S 0.1 ≤ 1.0 0 ≤ 1.0 

Q213T 0.13 ≤ 0.5 0 ≤ 0.5 

Double Mutants     

H31A/D139A 1.0 105 60% 2 

H31A/S137A 0.02 10 6% < 0.5 

H31A/M58S 4.0 5 3% < 0.5 
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Crystal structure of AbfT & butyryl-CoA complex 

The crystal structure of enzyme-butyryl-CoA complex has been determined at a resolution of 2.6 

Å. The butyryl-group of substrate is located in an approximate syn-conformation in the left-hand 

pocket (H31 at the bottom) of the enzyme, which has been identified in the previous chapter. 

Unexpectedly, butyryl-CoA was not observed to react with the active site glutamate (Figure 3-21). 

However, the binding of butyryl-CoA with enzyme causes a flip of the active site loop (residues 

215-219) from an open conformation in the apo-form to a closed conformation in the enzyme-

substrate complex. This conformation change is likely characteristic for all family I CoA-

transferase. 

 

Figure 3-21. Stereo view of butyryl-CoA as substrate in the active centre. 

 

The protein sequence and the structure of AbfT revealed a similarity to that of the α-subunit of 

the family II enzyme – citrate lyase, which does not form the enzyme-CoA thioester intermediate 

in its catalytic pathway. To uncover the existence of this glutamyl-CoA thioester, three different 

methods were applied: reduction by sodium borohydride (NaBH4) to the inactive alcohol, 

mechanism based fragmentation of the peptide chain by heating at 70 °C and the kinetic 

determination. 
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Inactivation of AbfD by sodium borohydride or hydroxylamine 

In the case of CoA-transferase family I, the reaction proceeds via a ping-pong mechanism, 

involving the formation of a glutamyl-CoA thioester intermediate, which could be reduced by 

NaBH4 or cleaved by hydroxylamine [99-101]. The treatment with NaBH4 results in the 

reduction of the glutamyl-CoA thioester to the corresponding alcohol, whereas hydroxylamine 

could cleave the thioester bound generating a hydroxamate and free CoA.  

Therefore, purified AbfT 600 µg was incubated with 2 mM butyryl-CoA for 5 – 20 min, and then 

treated with 20 mM NaBH4 or 200 mM hydroxylamine. The enzyme in the absence of butyryl-

CoA acts as control. The results exhibited that CoA-transferase treated with butyryl-CoA was 

inactivated almost completely by NaBH4 (0.7% residual activity), whereas in the absence of 

butyryl-CoA the activity of AbfT was hardly affected (Fig. 3-22). Surprisingly, longer incubation 

with NaBH4 reactivated the enzyme to a small extent. Similar results have been observed with all 

of family I and III CoA-transferases. 
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Figure 3-22. Inactivation of 4-hydroxybutyrate CoA-transferase by NaBH4. in the presence or 

absence of butyryl-CoA. Light red bars are in the absence of butyryl-CoA and dark red bars 

are in the presence of butyryl-CoA. 
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However, incubation of the enzyme with 200 mM hydroxylamine did not result in inactivation of 

CoA-transferase (Fig. 3-23). In order to ascertain the function of hydroxylamine on CoA thioester 

intermediate of family I CoA-transferase, glutaconate CoA-transferase as a well studied CoA-

transferase was also treated by hydroxylamine. After 10 min 77% activity was retained as shown 

in 4-hydroxybutyrate CoA-transferase. In comparison to prior publications, only the thioester 

intermediates of propionate CoA-transferase (family I) and 2-hydroxyisocaproate CoA-

transferase (family III) are known to react with hydroxylamine. 

 

0

20

40

60

80

100

120

before 10 min 30 min 60 min

%
 A

ct
iv

it
y

+ 200 mM hydroxylamine
AbfT

AbfT+butyryl-CoA

 

Figure 3-23. Inactivation of 4-hydroxybutyrate CoA-transferase by hydroxylamine in the 

presence or absence of butyryl-CoA. Light bars are in the absence of butyryl-CoA and dark 

bars are in the presence of butyryl-CoA. 

 

Mechanism-based fragmentation of the peptide chain 

In a previous publication it has been shown that the glutamyl-CoA thioester intermediate from 

succinyl-CoA: 3-keto acid CoA transferase in pig heart was susceptible to fragmentation at 70 °C 

[102]. To ascertain the existence of this intermediate from 4-hydroxybutyrate CoA-transferase, 

AbfT was incubated with 2 mM butyryl-CoA at room temperature for 5 – 20 min. Afterwards, 

the protein solution was heated at 70 °C up to 1 hour. The protein components were identified by 

gel electrophoresis.  
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The protein sequence of AbfT possesses 438 amino acids, and the protein molecular mass was 

calculated to be about 48 kDa. The active-site glutamyl residue is located at residue 238. 

Therefore, fragments of 23 kDa and 25 kDa were expected. The reults was shown in Fig. 3-24, 

which revealed a small but significant cleavage to a fragment about 24 kDa, but only when the 

enzyme-CoA thioester intermediate was formed. AbfT in the absence of butyryl-CoA could not 

fragment. Furthermore, to ascertain that the thioester is generated from the active site E238, the 

inactive E238A was also treated in the same way. As expected, no small fragment could be 

observed. The detection of only one peptide probably is due to lack of separation. 

 

 

Figure 2-24. The mechanism-based fragmentation of CoA-thioester intermediate during 

CoA-transfer. AbfT, purified enzyme; AbfT (-), in the absence of butyryl-CoA and the 

protein was heated for 1 h at 70 °C; 10 and 30 min, the incubation time at 70 °C. 

 

Kinetics of 4-hydroxybutyrate CoA-transferase 

Routinely, AbfT activity was assayed by a coupled assay, in which butyryl-CoA reacts with 

acetate to produce butyrate and acetyl-CoA. The formation of acetyl-CoA could be monitored by 

citrate synthesis, whereby the liberated CoASH was detected with DTNB. Using this coupled 

assay, no reliable Km values for butyryl-CoA and acetate could be determined. In order to obtain 
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accurate mechanistic information on 4-hydroxybutyrate CoA-transferase from C. 

aminobutyricum, the reaction mixture contained butyryl-CoA, acrylate as substrate and 0.15 U 

CoA-transferase. The appropriate butyryl-CoA concentration ranges were chosen to be 0.05 – 0.3 

mM, and acrylate varied between 5 – 30 mM. The activity was measured directly at 280 nm. As 

shown in the double reciprocal plots of Fig. 3-25 and 3-26, the data exhibited parallel lines. 
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Figure 3-25. Kinetics of 4-hydroxybutyrate CoA-transferase. Km for butyryl-CoA was 

determined at 5 mM (♦), 10 mM (◊), 15 mM (▲), 20 mM (∆) 25 mM (■) and 30 mM (×) 

acrylate. A. Michaelis-Menten plot; B. Lineweaver-Burk plot; C. determination of Km for 

butyryl-CoA at saturating acrylate concentration. 

 

The Km for butyryl-CoA increased with rising concentrations of acrylate until saturation state 

(Fig. 3-25). To determine the apparent Km values for butyryl-CoA, a curve using 1/Km as X-axis 

and 1/[butyryl-CoA] as Y-axis was made. Km for butyryl-CoA at saturating acrylate was 

calculated to be 0.06 ± 0.01 mM, Vmax to be 0.13 U/mg (Tab. 3-10). The parallel lines suggests 

that reaction proceeds via a ping-pong mechanism, by which butyryl-CoA as substrate forms the 

enzyme-CoA thioester and the generated butyrate is released before the second substrate acrylate 

enters the catalytic pathway. 
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Figure 3-26. Kinetics of 4-hydroxybutyrate CoA-transferase. Km for acrylate was 

determined at 0.1 mM (♦), 0.2 mM (□) and 0.3 mM (▲) butyryl-CoA. A. Michaelis-
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Menten plot; B. Lineweaver-Burk plot; C. determination of Km for acrylate at saturating 

butyryl-CoA concentration. 

 

The data using acrylate as substrate gave at saturating butyryl-CoA Km = 15 ± 2 mM, Vmax = 0.16 

U/mg (Tab. 3-10). Although acrylate is not an optimal substrate as compared to 4-

hydroxybutyryl-CoA, the lines clearly favor a ping-pong mechanism (Fig. 3-26).  

Table 3-10. Summary of Km and Vmax under saturation conditions. 

Substrate Cosubstrate Km (mM) Vmax (µmol/min/mg) 

Butyryl-CoA Acrylate 0.06 ± 0.01 0.13 

Acrylate Butyryl-CoA 15 ± 2 0.16 

 

 

3.3 4-Hydroxybutyryl-CoA dehydratase in CO2-fixation 

 

Recently a new CO2-fixation pathway was found in Achaea, namely the 3-hydroxypropionate/4-

hydroxybutyrate pathway. The genome of autotrophic Metallosphaera sedula unexpectedly 

showed two different copies of 4-hydroxybutyryl-CoA dehydratase, namely, MS_1 and MS_2. 

This part of the project aims to detect the functions of these two copies through the cloning of 

their genes in plasmids and analysis of purified recombinant proteins. 

 

3.3.1 Cloning and expression of two different 4-hydroxybutyryl-CoA dehydratases from 

M. sedula 

 

The genes encoding two copies of 4-hydroxybutyryl-CoA dehydratase (MS_1 and MS_2) from 

M. sedula were amplified by Phusion-polymerase and desired primers containing restriction cute 

sites. The PCR products of ms_1 were digested and ligated into a pASK-IBA3(+) vector and 
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ms_2 into a pACYCDuet vector. Before sequencing, the clones were analyzed by using 

restriction enzymes (Fig. 3-27). The in IBA3 (+) ligated MS_1 gene was digested by XbaI and 

XbaI/Eco37III, and MS_2 in pACYCDuet by KpnI and KpnI/SacI. 

                    

 Figure 3-27. Restrictionsanalysis of MS_1 and MS_2 from M. sedula. 

 X: digested with XbaI, X+E: digested with XbaI/Eco37III, K: digested with KpnI, K 

+ S: digested with KpnI/SacI. 

 

After successful ligation in pASK-IBA3(+) and pACYC-Duet1 and transformation into E. coli 

BL21 CodonPlus-GroEL, the gene encoding MS_1 was expressed in standard-I medium 

supplemented with 2 mM iron citrate, 0.27 mM riboflavin and antibiotics, and the gene of MS_2 

was expressed in same medium without iron citrate. The cells were grown aerobically at room 

temperature and induced by adding AHT (100μg/l) (ms_1 in pASK-IBA3(+)) and 1mM IPTG 

(ms_2 in pACYC-Duet1). 
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3.3.2 Protein purification 

 

Recombinant MS_1 from M. sedula was purified using a StrepTactin column. As shown in 

Figure 3-28, the resulting protein was checked for purity using SDS-PAGE and Coomassie 

staining after affinity purification. As expected, the protein found to have a molecular mass of ca. 

55 kDa. Unfortunately, purified MS_1 did not show 4-hydroxybutyryl-CoA dehydratase activity 

and revealed a low vinylacetyl-CoA Δ-isomerase activity (2-3 U/mg), although the enzyme 

revealed a brown color. 

 

Figure 3-28. SDS-PAGE of recombinant MS_1 purification. 

M, molecular mass marker; B, cell free extract before induction; 4h and o/n, cell free 

extract after induction for 4 h and overnight; P and S, pellet and supernatant after 

sonication and ultracentrifugation; TF, flow through from StrepTaction column; W, 

flow through during column washing; MS_1, purified recombinant 4-

hydroxybutyryl-CoA dehydratase from M. sedula. 

 

Up to now the gene expression of MS_2 in E. coli host cells seems unsuccessful; there was no 

obviously expressed band on SDS-PAGE. It is hoped that further improvements can be made in 

this direction. 
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4. Discussion 
 

4.1 4-Hydroxybutyryl-CoA dehydratase 

 

4.1.1 Recombinant 4-hydroxybutyryl-CoA dehydratase 

 

In contrast to common dehydratases, some anaerobic organisms possess special dehydratases, 

which catalyze the removal of protons from non-activated β- or γ-carbons of 2-, 4- or 5-

hydroxyacyl-CoA derivatives. An example is 4-hydroxybutyryl-CoA dehydratase from C. 

aminobutyricum which converts 4-hydroxybutyryl-CoA to crotonyl-CoA most likely via a ketyl 

radical intermediate. For the purpose of elucidating its catalytic mechanism, the recombinant 

protein was produced for biochemical studies. 

To produce the soluble dehydratase in E. coli, a strong promoter tet and chaperones were used. 

Consequently, a new host cell, namely E. coli BL21-GroEL, was applied in this work. It contains 

extra copies of rare E. coli tRNA genes, argU, ileY, leuU, proL, and an additional gene for the 

molecular chaperone GroEL, which will be co-expressed during fusion protein production. It 

improves the appropriate folding of the proteins and avoids their self-association [103-105].  

Moreover, without addition of cofactor sources, such as iron citrate and riboflavin in the nutrient 

medium for E. coli growth, no functional and active protein was detectable. Furthermore, the 

concentration of the cofactor sources could also influence the enzyme activity. Too low amounts 

cannot offer enough cofactor for protein assembly in its active form, and too high cofactor 

concentrations in the medium may be toxic for the bacteria or prevent growth. Therefore, the 

cofactor sources at optimal concentrations are also an important parameter to produce fully active 

enzyme. 

Aside from these, the gene expression was tried under different conditions with varying inductor 

concentrations in order to increase the protein yield. The experiments showed that carefully 

controlled growth of the recombinant E. coli strains and a lower inductor concentration are 
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necessary for the production of high quality enzymes. Remarkably more soluble protein that is 

soluble was produced at low temperature 15 – 25 °C during a longer growth time. The protein 

solubility can also be improved by adding lower and moderate amounts of the inductor AHT (50 

– 100 μg/l). 

Growth of E. coli BL21-GroEL cells under aerobic and anaerobic conditions resulted in no 

differences of protein amount and solubility. Both conditions yielded the same active enzyme, in 

spite of the sensitivity of the dehydratase towards molecular oxygen. In order to yield sufficient 

cells and to improve the work efficiency, the host cells were grown aerobically, but the protein 

purification was performed under strict anaerobic conditions. With the help of the StrepTactin 

affinity chromatography, the produced fusion protein AbfD could be purified easily.  

The successful production and purification of AbfD from E. coli offered the possibility to 

characterize the recombinant protein. The recombinant AbfD revealed to be a 232 kDa 

homotetramer with a subunit molecular mass of 56 kDa, containing 11.8 ± 0.1 mol Fe and 4.4 ± 

0.2 mol FAD per homotetramer. In comparison to the theoretical value of cofactors, 16 mol Fe 

and 4 mol FAD per tetramer, the level of cofactors in the recombinant protein are relatively low. 

However, this is not surprising, since E .coli probably cannot offer the optimal environment for 

gene expression as C. aminobutyricum. Another possibility is that purification by StrepTactin 

column may also routinely decrease the content of iron and sulfide, which results in fewer 

cofactors in the recombinant protein. 

The specific activity was calculated to be around 2.2 ± 0.3 U/mg using 4-hydroxybutyrate and 

acetyl-CoA as substrates. Interestingly, reconstitution with iron and sulfide doubled the 

dehydratase specific activity to 4.5 U/mg. Aside from this, the measurable iron amount in the 

protein also increased close to the optimal value, 16 mol Fe per mol homotetramer. This indicated 

that the iron content plays a key role for dehydratase activity.  

Like other iron containing proteins, AbfD is oxygen sensitive and unstable under aerobic 

conditions. Incubation of the dehydratase under air at room temperature resulted in rapid decrease 

of specific activity, which was completely lost in 5 hours. Even after storage at –20 °C or –80 °C 

a reduced activity was observed. Additionally, the inactivation of dehydratase by oxygen could 

not be reversed under reconstitution conditions. 



Discussion 
 

 

109 
 

The crystal structure of AbfD without substrate has been solved six years ago [46]. Interestingly, 

a structure similar to AbfD has been found in the FAD-containing medium chain acyl-CoA 

dehydrogenase (MCAD) from pig liver, which catalyzes the reversible oxidation of an acyl-CoA 

derivative to generate the α, β–double bond in the corresponding enoyl-CoA. The AbfD and 

MCAD monomers revealed a highly similar fold (Fig 4-1, left), whereas the two enzymes 

showed only 16% amino acid sequence identity. The related structures suggested, however, a 

similar substrate binding mode for the respective substrates (Fig 4-1, right). Using MCAD as a 

model, in AbfD 4-hydroxybutyryl-CoA with its hydroxyacyl part has been located between the 

two prosthetic groups as a sandwich and fixed by two hydrogen bonds between its CoA-thiol 

ester carbonyl group and both the 2´-OH of FAD and A460 of the polypeptide backbone [46, 

106]. Both enzymes, MCAD and AbfD, have to remove one proton from the non-activated β-

position. However, in contrast to anaerobic dehydratase from C. aminobutyricum, the aerobic 

flavoprotein MCAD is devoid of an iron sulfur cluster. It has been assumed that AbfD could 

contain butyryl-CoA dehydrogenase activity, but none was measurable using active and air-

inactivated recombinant AbfD. The EPR spectral analysis and MALDI-TOF mass spectrometry 

exhibited also no evidences that AbfD could act as a butyryl-CoA dehydrogenase. 

 

Figure 4-1. Stereo view of the structures of AbfD and medium chain acyl 

dehydrogenase from pig liver. Left, monomer structure of both enzymes, N and C 

termini of the polypeptide chains are labeled; Right, substrate binding mode of both 

enzymes, FAD from dehydrogenase is colored in orange. 
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4-Hydroxypentanoyl-CoA as a probable substrate or inhibitor for AbfD was measured using the 

standard enzyme assay, in which 4-hydroxybutyrate was replaced by 4-hydroxypentanoate. It 

neither acted as substrate nor inhibited the activity observed with 4-hydroxybutyrate. MALDI-

TOF mass spectrometry indicated the successful synthesis of 4-hydroxypentanoyl-CoA by AbfT. 

This result showed that AbfT can use 4-hydroxypentanoate as substrate. The crystal structure 

suggested that the methyl group of 4-hydroxypentanoyl-CoA did not fit into the active centre. 

 

4.1.2 Mutagenesis of 4-hydroxybutyryl-CoA dehydratase 

 

The successful expression and characterization of recombinant AbfD offered the possibility to 

study the most important amino acid residues involved in the catalytic mechanism by site-

directed mutagenesis. The crystal structure and active site architecture of native has been already 

solved as shown in chapter 1.4. All highly conserved resides located in the active centre were 

mutated.  

The iron atoms of the [4Fe-4S]2+ cluster of each monomer are covalently bound to the protein by 

three cysteine residues, C99, 103, 299 and one H292 residue. Accordingly, the mutants C99A, 

C103A, C299A and H292C and H292E contain only 50% of iron and 75% of FAD compared 

with the wild type protein, which led to the inactivation of the recombinant protein. It 

demonstrated that the histidine and cysteine residues are crucial for the integrity of the iron sulfur 

cluster as a functional prosthetic group. These mutants also resulted in the structural degradation 

of the tetramer to dimers and monomers. These results indicated that the iron sulfur cluster is also 

necessary for the stability of the whole enzyme. In many iron sulfur cluster containing proteins, 

only cysteine residues coordinate the iron atoms. Therefore, H292 was mutated to cysteine or 

glutamate in order to uncover the role of the histidine residue. As expected, both mutants showed 

no dehydratase activity. Hence, it was proposed that H292 acts as a base to abstract the 2Re-

proton of 4-hydroxybutyryl-CoA, and the now uncoordinated Fe atom functions as Lewis acid to 

eliminate the hydroxyl group. Therefore, the replacement of H292 by cysteine could stabilize the 

cluster, but inactivate the enzyme. However, the H292C mutant destabilized the cluster and 

inactivated the enzyme. Perhaps the distance is too long for the cysteine residue to attach to the 
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iron-sulfur cluster. The inactive H292E mutant shows that glutamate cannot replace histidine as a 

base. 

 

 

Figure 4-2. Active centre architecture. 

A: stereo view from side; B: stereo view from upper. 

 

Aside from this, mutants of three residues located in the active centre, Y296F, E455Q and E257Q 

were generated, whereas only Y296F retained 0.7% dehydratase activity. Both glutamate mutants 

completely lost activity, although they contain similar cofactor amounts and maintained a 

homotetrameric structure as the wild type protein. It was postulated that upon substrate binding in 
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the active site, the electron transfer could proceed via Y296, which is in hydrogen bonding 

distance to E455. In addition, E455 is at hydrogen bonding distance to K300 (Fig 4-2), which 

together with Y296 belongs to the helix coordinating the [4Fe-4S]2+ cluster. Moreover, E455 is 

ideally positioned to add a proton at the C4-position of substrates, either 4-hydroxybutyryl-CoA 

or vinylacetyl-CoA. E257, as another highly conserved residue among all known 4-

hydroxybutyryl-CoA dehydratases, is located on the Si-side of the FAD isoalloxazine ring, and 

has a strong interaction at hydrogen bonding distance between its carboxyl group and the 

hydroxyl group of T190. A replacement of T190 by valine resulted in an over 99% drop-off of 

specific activity. It was considered that T190V may alter the redox potential of flavin and be 

involved in the stability of flavin in cooperation with E257. The structure modelling of 4-

hydroxybutyryl-CoA as substrate in the active centre of the dehydratase indicated that the CoA-

thiol ester carbonyl group is at hydrogen bonding distance to the 2′-OH of FAD and the backbone 

amide of A460. The replacement of alanine by glycine caused a reduced activity (2% residual 

activity). Because glycine is much more conformational flexible, the substrate cannot be held in 

the appropriate position. Besides this, Q101 is located in the N-terminal domain and anchors the 

loop with C99 and C103 to the middle domain via interactions at hydrogen bonding distance with 

N194, and Q101 also helps to fix C103 through interactions at hydrogen bonding distance 

between its main chain and the carbonyl group of C103. The same interaction occurs also 

between C99 and Q101. The exchange of this conserved Q101 to glutamate may not much 

influence this network of interactions, and thereby Q101E retained about 10 % dehydratase 

activity. 

 

4.1.3 Vinylacetyl-CoA Δ-isomerase 

 

AbfD possesses also vinylacetyl-CoA Δ-isomerase activity, which catalyzes the irreversible 

isomerization of vinylacetyl-CoA to crotonyl-CoA. The specific activity as an isomerase was 

calculated to be 18 U/mg, which could not be improved by iron reconstitution. Upon exposure to 

air, the dehydratase activity was completely lost in 5 hours. However, the isomerase was more 

stable, after 24 hours 10% activity retained without further loss within several days and weeks.  
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In order to investigate the difference in mechanism between dehydratase and isomerase, a few 

mutants, which were likely to be important, were measured using an isomerase assay. 

Remarkably, only H292E and C99A (0.2 and 0.25 U/mg, respectively) mutants revealed very low 

isomerase activities, which disappeared after incubation under aerobic conditions, whereas 

C103A and C299A carried more activity (3.1 and 14 U/mg, respectively) that persisted under air 

(1.8 and 14 U/mg). As shown in figure 4-3, the Fe atoms coordinated to H292 and C99 are 

located closed to the substrate-binding channel, whereas the Fe atoms coordinated to C103 and 

C99 are located further from the active centre. Thus, the results show that the isomerase does not 

require the iron sulfur cluster as functional prosthetic group, although the H292 and C99 residues 

play an important role for isomerase. 

 

 Figure 4-3. Fe atom positions in the stereo view of crystal structure. 

 

The isomerase activity of E257Q, E455Q and Y296F mutants were also tested. The E257Q 

mutant exhibited an isomerase activity almost as high as that of the wild type protein (17 U/mg). 

It was unexpected that even upon exposure to air the mutant did not lose any isomerase activity. 

This confirms that E257 as well as FAD are not involved in the catalytic reaction. The Y296F 

mutant exhibited relatively high isomerase activity (9.4 U/mg, 52%), and after exposure to air the 

activity decreased to 4.4 U/mg (24%). Probably there is no electron transfer via Y296 during 
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isomerisation. Interestingly, the mutant E455Q revealed a low isomerase activity (1.3 U/mg, 7%). 

Most likely E455 plays a role in proton translocation, therefore, the displacement of glutamate 

residue by glutamine interferes with the proton transport during catalytic reaction. All of these 

results supposed that H292 could abstract the 2Re-proton of vinylacetyl-CoA as a base, whereas 

C99 helps the histidine residue to dock at the appropriate position. 

 

4.1.4 Proposed AbfD mechanism via a ketyl radical 

 

A fully active recombinant AbfD requires the assembly of cofactors in the protein, such as FAD 

and the iron sulfur cluster. Iron sulfur clusters are often discussed as cofactors, and have been 

found in a variety of metalloproteins. They play a role in oxidation-reduction reactions, radical 

generation, and act as sulfur donors for biosyntheses [61-63]. The long distance between Fe1 

atom and Nε2 of H292 (2.4 Å) suggested the tuning of the electronic and bonding properties of 

Fe1, which is ideally positioned to interact with the hydroxyl group of the substrate [46]. In 

presence of the substrate, the redox potential of the [4Fe-4S]2+ cluster is increased by ca. 200 mV 

[53], which indicates alternation of the cluster environment and direct interaction between cluster 

and substrate. In addition, H292 is located at 3 Å distance to 2Re-proton (modelled), which 

makes this residue ideally positioned to abstract this proton as a catalytic base. The replacement 

of H292 by C or E abolished the AbfD activities, impeding the removal of 2Re-proton from 

substrate. Furthermore, H292 has a similar structural position as the active base in MCAD. 

Therefore, we proposed that in the first step of the dehydratase mechanism, the substrate 4-

hydroxybutyryl-CoA enters the binding channel between the two prosthetic groups and 

consequently displaces the H292 residue from the Fe1 atom. While the Fe atom acts as a Lewis 

acid to attach the hydroxyl group of the substrate, the released H292 residue acts as the base to 

abstract the 2Re-proton yielding the enolate. 

The modeled distance between N5 of FAD and the 3Si-proton is ≈ 3 Å, which facilitates the 

removal of the 3Si-proton from the substrate. Two residues, E257 and T190, which are thought to 

participate in the stabilization of FAD according to the crystal structure, were replaced by Q and 

V. The mutants showed either none (E257Q) or only negligible activity (0.4 % in T190V 
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compared to that in the wild type). So in the next step an enoxy radical is generated by one 

electron oxidation using FAD forming the semiquinone anion, for which the 3Si-proton is 

acidified from pK 40 to pK 14 [7]. Now the flavin semiquinone anion as a base removes this 

proton to yield a neutral semiquinone FADH• and a ketyl radical. The released hydroxyl group 

attached to the [4Fe-4S]2+ cluster interacts with the removed 2Re-proton at H292 to form the 

water molecule. Now the flavin semiquinone reduces the dienoxyl radical to the dienolate, 

whereby the initial quinine form of FAD is regenerated. 

 

 

Figure 4-4. Proposed substrate binding during dehydration process. 

 

E455 as a further highly conserved residue in all 4-hydroxybutyryl-CoA dehydratase is ideally 

positioned to add a proton at the C4-position with retention of configuration [57]. The 

substitution of glutamate´s carboxylate by glutamine´s amide suppresses the proton transfer from 

E455 to C4 of the substrate, which lead to the disappearance of the dehydratase activity. 

Therefore, in the final step, E455 transports a proton to C4 of the formed dienolate producing the 

end product crotonyl-CoA (Fig. 4-4). 
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Another goal of my work was to uncover the mechanism of AbfD as vinylacetyl-CoA ∆-

isomerase. The replacement of E257 by Q did not abolish the isomerase activity (92% residual 

activity); even after incubation with air, the mutant retained the identical isomerase activity. This 

indicates that FAD is not involved in the isomerization, because E257 is most likely responsible 

for the stability of the flavin [46]. The isomerase acitivity of H292E was diminished by about 

99%, which confirmed the function of H292 as the base to remove the 2Re-proton not only from 

4-hydroxybutyryl-CoA during dehydration, but also from vinylacetyl-CoA during isomerization 

(Fig. 4-5). 

Now, it becomes logical that AbfD retained 10% of isomerase activity upon exposure to air in 24 

hours, whereas it as dehydratase is completely inactivated by air within 5 hours. Because it was 

deduced that the released H292 from the destroyed iron sulfur cluster by air abstracts the α-

proton from vinylacetyl-CoA, resulting in the formation of a dienolate. Then, the dienolate is 

protonated by adding a proton by E455 at the C4-postion to generate the end product crotonyl-

CoA. The whole reaction does not require the [4Fe-4S]2+ cluster and FAD as cofactors. Following 

the breakage of the [4Fe-4S]2+ cluster by oxygen, however, the spatial configuration of the active 

site could be effected or changed, which leads to the slowly decreasing isomerase activity. 

 

 

Figure 4-5. Proposed substrate binding during isomerization process. 



Discussion 
 

 

117 
 

 

4.2 4-Hydroxybutyrate CoA-transferase 

 

4-Hydroxybutyrate CoA-transferase (AbfT) is involved in the fermentation of 4–aminobutyrate 

to ammonia, butyrate and acetate in C. aminobutyricum. The native enzyme has been purified and 

characterized several years ago, but the mechanism was not elucidated. In this chapter the gene 

abfT was cloned and the recombinant protein was purified and analyzed. 

 

4.2.1 Recombinant 4-hydroxybutyrate CoA-transferase 

 

The abfT gene encoding CoA-transferase was ligated into a pASK-IBA(+) vector, which is a 

vector designed for high level expression and purification of recombinant Strep-tag fusion 

proteins. After sequencing, three amino acid errors were corrected. Since AbfT is an oxygen-

insensitive protein and requires no additional cofactor for catalytic reactions, the gene expression 

in E. coli BL21 strain was more effective than that of the oxygen sensitive AbfD. However, a 

carefully controlled growth was also required for a successful expression, and the expression 

exhibited a highest level at room temperature. 

The molecular mass of the colorless recombinant AbfT with a C-terminal Streptag was calculated 

to be about 2 × 49 kDa. The activity was measured at 412 nm using citrate synthase, oxaloacetate 

and DTNB, revealing a high specific activity between 170 – 181 U/mg with butyryl-CoA and 

acetate as substrate. Because the synthesized 4-hydroxybutyryl-CoA was unstable and degraded 

during storage, the specific activity with it as substrate amounts only to 41 U/mg, much less than 

observed previously [42]. Using propionyl-CoA, vinylacetyl-CoA and (E)-crotonyl-CoA as 

substrates the specific activities were 142, 96 and 0 U/mg, respectively). Compared to the native 

enzyme, the recombinant AbfT exhibited much higher specific activities with all tested CoA 

esters. 

The kinetics of the recombinant AbfT are shown in Fig. 3-19 with butyryl-CoA as the substrate at 

different concentrations, double-reciprocal plots gave the parallel lines indicating a ping pong 
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mechanism. This demonstrates that AbfT belongs to family I of CoA-transferases. In family I the 

reaction proceeds via a ping pong mechanism, involving a glutamate residue in the enzyme acting 

as acceptor of covalently bound intermediates. This family contains CoA-transferases for 3-

oxoacids, short chain fatty acids and glutaconate. The mechanism of CoA-transferase family I has 

been well studied as shown in Fig.4-6. Negative charged substrates, such as glutaconate, 

propionate and 4-hydroxybutyrate, are attached by the positive charges at the entrance of the 

active site. The carboxylate anion of the enzyme’s glutamate residues attacks the carbonyl carbon 

of the substrate R1-CO-CoA to generate a mixed anhydride. Then the negative charged free CoA 

reacts with the carbonyl carbon of glutamate resulting in the displacement of the first product, 

R1-carboxylate. Subsequently, the substrate R2-carboxylate enters the reaction, and through a 

second mixed anhydride the CoA-group is transferred to yield R2-carboxylate. The whole 

catalytic cycle consists of four subsequent nucleophilic attacks on electrophilic carbonyl groups, 

alternately by carboxylate and thio anions. 

 

Figure 4-6. The reaction mechanism of CoA-transferases of family I. 

 

The amino acid sequence of AbfT was compared to other CoA-transferases from various 

microorganisms including Anaerofustis caccae, Prophyromonas gingivalis, P. unenonis, P 

endodontails Fusobacterium mucleatum, Fusobacterium. sp, Clostridium. tetani, all of which 

revealed a high level of identity between 60 – 45%. As expected, a highly conserved glutamate 

residue has been recognized, which is located within a so-called EM-SDG motif. However, this 
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characteristic motif is found only in 4-hydroxybutyrate CoA-transferase, whereas propionate 

CoA-transferases have a motif of ENG and glutaconate CoA-transferases have a motif of E-G in 

the active centre. To ascertain the presence of the catalytic glutamate residue in the active site, it 

was characterized as described in the following chapter. 

 

4.2.2 Identification of the catalytic glutamate residue in the active site 

 

From the amino acid sequences alignment and the two known structures of family I CoA-

transferase, it was suggested that E238 was the most likely candidate for the formation of the 

enzyme-CoA thioester. To confirm it, E238 was mutated to glutamine, alanine, serine and 

aspartate. After successful expression in E. coli host cells and purification by a StrepTactin 

column, the yields of the mutant proteins were comparable to that of the wild type AbfT (41 – 

67%), except that E238D which has a very low protein yield (2%). However, only this aspartate 

mutant retained 20% of the wild type specific activity, and all of others exhibited almost no CoA-

transferase activity. As described in a previous publication about glutaconate-CoA transferase 

from A. fermentas, E54 of the β-subunit was also studied by mutagenesis [39]. The βE54D 

showed a low growth rate and a reduced protein yield similarly to E238D of AbfT. The specific 

activity of βE54D and two other mutants βE54A and βE54Q were negligible. However, the 

βE54D mutant exhibited a high hydrolase activity. Apparently, a water molecule can fit between 

the shorter aspartate residue and the thioester. Furthermore, upon incubation of the βE54Q 

mutant with a thioester, the transferase activity slowly recovered, probably due to transfer of NH2 

instead of oxygen as shown in Fig. 4-6 (a, b). In contrast to glutaconate CoA-transferase, all 

AbfT mutants including E238D exhibited no acyl-CoA hydrolase activity, nor could the E238Q 

mutant be recovered. Moreover, the substrate specifity of the E238D mutant was identical to that 

of the wild type. Hence these results demonstrate that E238 plays a most important role for 

formation of the thioester intermediate, and AbfT appears to be much more flexible than 

glutaconate CoA-transferase, because the aspartate residue is able to take over the function of the 

glutamate residue. 
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4.2.3 Crystal structure and mutation studies 

 

The successful purification and determination of the recombinant AbfT from C. aminobutyricum 

offered the possibility of uncovering its crystal structure, which was solved by the group of A. 

Messerschimidt (MPI of Biochemistry, Martinsried). The overall structure revealed a 

homodimeric protein with an elongated pocket between the C- and N-terminal domains or 

between the α, β subunits, which extends to the active site glutamate residue. It confirmed the 

determination of E238 as a key residue by site-directed mutagenesis in this work.  

The three known 4-hydroxybutyrate CoA-transferase structures respective from Shewanella 

oneidensis, Porphyromonas gingivalis and C. aminobutyricum have been compared, which 

revealed a much related overall structure. The fold of the active site residues is identical in all 

three enzymes, as can be deduced by the amino acid sequence alignment. All of them contain a 

glutamate residue in the active centre bound to the CoA-thioester.  

Moreover, it remained a question of the separate co-substrate binding site in AbfD hinted from 

glutaconate CoA-transferase. On the other hand, this enzyme is specific for C-5 and C-6 

dicarboxylic acids like trans-glutaconate, trans-muconate as well as 2-hydroxyglutarate and 

glutarate. On the other hand, acetate, propionate, and to a lesser extent (R)-lactate, butyrate and 

cis-crotonate become esterified, which can be explained by the existence of two binding pockets. 

From the crystal structure of AbfT, two pockets have been seen. The left refers to the binding site 

for acetyl groups of CoA and the right could be the co-substrate binding site. Among the co-

substrate binding pocket from the right side, Q213 could be the only residue for forming a 

hydrophilic contact to the 4-hydroxy group of 4-hydroxybutyrate, which is highly conserved in 

all 4-hydroxybutyrate CoA-transferases. However, 4-hydroxybutyrate could also be modeled into 

the left pocket with its C-1 carboxyl group in position of the acetyl carboxyl group and with the 

4-hydroxy group in such a location that it can form hydrogen bonds to atom NE2 of H31. It is 

also conserved in the CoA-transferase from P. gingivalis, but in the enzyme from S. oneidensis 

H31 is replaced by a serine. To ascertain this hypothesis, the residues deduced from the 3D 

structure to be relevant for the substrate binding were mutated. The specific activities of the 

resulting proteins were measured and compared. H31G was expected to be inactive, because it 

does not provide a hydrophilic side chain. The reduced activity of H31S (2%) can be explained 
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by the shorter side chain of serine forcing the hydrophilic group deeper in the substrate pocket. In 

contrast to this, the H31N mutant has a longer side chain, and is able to make stronger 

hydrophilic contacts to the respective substrate, which can result in the enhancement of the 

activity (183%). Moreover, the relatively high activity of the H31A mutant cannot be explained 

easily. Surprisingly, it was observed in the crystal structure that S137 and D139 are located below 

the side chain of H31. Therefore, we considered it is also possible, when the side chain of H31 is 

removed by mutation to alanine, the substrate could have access to these hydrophilic groups. The 

mutants H31A/S137A and H31A/D139A exhibited CoA-transferase activities of 6 % and 60 %, 

which explained that S137 has ability to compensate the action of H31A mutant. It has to be 

considered, however, that all the activities were measured with butyryl-CoA as substrate. 

Therefore H31, which is thought to interact with the hydroxyl group of 4-hydroxybutyryl-CoA, is 

not necessary any more. This could explain the considerably higher activity of the H31N mutant 

as compared to that of the wild type. 

Unexpectedly, all of H31 mutants are unstable upon storage at – 80 °C, especially in the case of 

H31N.and H31A. Their activities were reduced from 320 and 125 U/mg to 137 and 8 U/mg, 

probably because the H31 residue is involved in the stability of the 3D structure. 

 

 Figure 4-7. The position of S137 and D139 in the active centre. 4-hydroxybutyrate was 

manually docked into the substrate-binding pocket, which is colored in purple. 
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The mutants of M58S and M58T were made to examine the influence of a further hydrophilic 

group close to the imidazole ring of His31. Both mutants showed decreased activity (15% and 

40%, respectively). The same value is valid for the double mutant H31A/M58S. The above 

evidence indicates that the hydrophilic group in place of M58 is not able to compensate for the 

action of His31. 

 

4.2.4 The crystal structure of enzyme & butyryl-CoA complex 

The crystal structure of the complex between AbfT and butyryl-CoA has been determined at a 

resolution of 2.6 Å. The binding of butyryl-CoA in the active centre causes a conformational 

change of the active site loop from an open conformation in the apo-form to a closed 

conformation in the complex. The conformation change of this loop seems to be characteristic for 

all family I CoA-transferases. The butyryl-group is situated in an approximate syn-conformation 

in a substrate binding pocket, which has been identified in the mutation studies (4.2.3). This 

phenomenon could be the explanation, why AbfT cannot accept (E)-crotonyl-CoA as substrate. 

Similarly, glutaconate CoA-transferase, as a well studied family I CoA-transferase, accepts 

acetate, propionate, butyrate, (Z)-crotonate, glutarate and (E)-glutaconate, but not (E)-crotonate 

and (Z)-glutaconate [38]. Unexpectedly, the good substrate butyryl-CoA did not react with the 

active site glutamate of AbfT. A possibility for this result could be that no such thioester 

intermediate is formed at all, as observed in family II of CoA-transferases. To ascertain the 

existence of this thioester intermediate between E238 and CoASH, three methods have been used: 

inactivation of CoA-transferase by sodium borohydride, mechanism based fragmentation of the 

enzyme at the thioester by heating at 70 °C and kinetic measurements. All of results proved the 

formation of this enzyme-CoA thioester intermediate. The reason for no reaction between 

butyryl-CoA and E238 in the crystal structure could be the five-fold reduced enzymatic activity 

of butyryl-CoA compared to 4-hydroxybutyryl-CoA and/or by formation of enzyme-butyryl-CoA 

complex on ice, i.E. socking of the crystals with butyryl-CoA. Furthermore, the kinetic data 

clearly favor a ping-pong mechanism typically for family I CoA-transferases. 
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4.3 4-Hydroxybutyryl-CoA dehydratase in new CO2-fixation pathway in M. 

sedula 

 

Metallosphaera sedula, an extremely thermoacidophilic archaea, plays important roles during the 

metal mobilization in the natural environment. It grows optimally at pH 2.0 and 75 ºC. A new 

CO2-fixation cycle via 3-hydroxypropionate and 4-hydroxybutyrate in M. sedula has been 

published [73,74]. Surprisingly, in this organism exist two different copies of 4-hydroxybutyryl-

CoA dehydratase (MS_1 and MS_2). To uncover their functions and differences, their genes 

were expressed in E. coli, a widely used expression system to produce recombinant proteins. 

Unfortunately, MS_1 was produced in an inactive form, although on SDS-PAGE it exhibited a 

high-level gene expression and protein purity, and MS_2 in the pACYCDuet vector was not 

expressed successfully in the E. coli system. Up to now, E. coli has been used to produce 

thermostable proteins for biochemical characterization and crystallographic studies, but a large 

amount of thermophilic and hyperthermophilic proteins folded into their native state only under 

natural conditions of high temperature or in the presence of their native cofactors. Therefore, in 

future the native thermophilic hosts will be applied to produce the active MS_1 and MS_2 

proteins [107]. 
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