

An Autonomic

Cross-Platform Operating Environment

for On-Demand Internet Computing

Dissertation

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)

Vom Fachbereich Mathematik und Informatik der

angenommene Dissertation von

Stefan Paal

aus Germersheim, Deutschland

Marburg/Lahn, April 2010

Vom Fachbereich Mathematik und Informatik der

Philipps-Universität Marburg als Dissertation

am 28.04.2010 angenommen.

Erstgutachter: Prof. Dr.-Ing. Bernd Freisleben, Philipps-Universität Marburg

Zweitgutachter: Prof. em. Dr.-Ing. Reiner Kammüller, Universität Siegen

Tag der mündlichen Prüfung am 25.06.2010

Für meine Eltern Nada und Georg Paal

Acknowledgements vii

ACKNOWLEDGEMENTS

The accomplishment of this dissertation has taken me a long time and it looked not only to me like

a never-ending project. There are many reasons for this; however, the most important one is that I

spent much more time on improving the software implementations than on writing the documenta-

tion of the contributions. Over all this time, many people have continually pushed me through the

work and I wish I could thank all of them personally for having been there and their unique support.

Among them, there are several individuals, to whom I want to explicitly express my appreciation

and gratitude.

First of all, I want to gratefully acknowledge my supervisor, Prof. Dr. Bernd Freisleben from

the University of Marburg, for his long-standing support of my academic work. In the same line, I

want to express my gratitude to Prof. em. Dr. Reiner Kammüller from the University of Siegen for

the extensive and fruitful discussions about many research issues. Without their most valuable guid-

ance and feedback, the present dissertation would have been not possible and many of my papers

would miss the academic acknowledgments they have received in many conference talks.

I also wish to thank my colleagues and students at the University of Siegen, in particular Ralf

Hofmann, Gerd Müller, Martin Hammel, Klaus Rühl and Kerstin Schmidt, who helped me through

the beginning of the work on my dissertation. Their support for developing, implementing and test-

ing the ODIX approach was essential for the overall accomplishment.

Next, I want to express my appreciation to the colleagues from the group MARS at the Fraun-

hofer Institute for Media Communication (IMK) , especially Monika Fleischmann, Wolfgang

Strauss, Dr. Jasminko Novak, Predrag Peranovic and Daniel Pfuhl. They particularly supported me

the time I wrote many of my papers and presented them at various scientific conferences.

Furthermore, my special thanks go to Dr. Joachim Köhler, Dr. Stefan Eickeler, Ulrich Wer-

necke and Britta Schwipper from the group NetMedia at the Fraunhofer Institute for Intelligent

Analysis and Information Systems (IAIS). Without their outstanding personal support and confi-

dence, I would not have got the final push and the time for accomplishing the writing.

Last but certainly not least, I have to pay tribute to my family and friends, in particular to my

parents Nada and Georg Paal, who believed in me all the time. They always gave me the backup I

needed in difficult phases and I can never make up the time they all have spent on waiting for the

completion of my dissertation.

viii Abstract

ABSTRACT

The Internet has evolved into a global and ubiquitous communication medium interconnecting po-

werful application servers, diverse desktop computers and mobile notebooks. Along with recent

developments in computer technology, such as the convergence of computing and communication

devices, the way how people use computers and the Internet has changed people's working habits

and has led to new application scenarios.

On the one hand, pervasive computing, ubiquitous computing and nomadic computing become

more and more important since different computing devices like PDAs and notebooks may be used

concurrently and alternately, e.g. while the user is on the move. On the other hand, the ubiquitous

availability and pervasive interconnection of computing systems have fostered various trends to-

wards the dynamic utilization and spontaneous collaboration of available remote computing re-

sources, which are addressed by approaches like utility computing, grid computing, cloud

computing and public computing.

From a general point of view, the common objective of this development is the use of Internet

applications on demand, i.e. applications that are not installed in advance by a platform administra-

tor but are dynamically deployed and run as they are requested by the application user. The hetero-

geneous and unmanaged nature of the Internet represents a major challenge for the on demand use

of custom Internet applications across heterogeneous hardware platforms, operating systems and

network environments. Promising remedies are autonomic computing systems that are supposed to

maintain themselves without particular user or application intervention.

In this thesis, an Autonomic Cross-Platform Operating Environment (ACOE) is presented that

supports On Demand Internet Computing (ODIC), such as dynamic application composition and ad

hoc execution migration. The approach is based on an integration middleware called crossware that

does not replace existing middleware but operates as a self-managing mediator between diverse

application requirements and heterogeneous platform configurations. A Java implementation of the

Crossware Development Kit (XDK) is presented, followed by the description of the On Demand

Internet Computing System (ODIX).

The feasibility of the approach is shown by the implementation of an Internet Application

Workbench, an Internet Application Factory and an Internet Peer Federation. They illustrate the

use of ODIX to support local, remote and distributed ODIC, respectively. Finally, the suitability of

the approach is discussed with respect to the support of ODIC.

Zusammenfassung ix

ZUSAMMENFASSUNG

Das Internet hat sich zu einem allgegenwärtigen Kommunikationsmedium entwickelt, welches lei-

stungsfähige Anwendungsserver, Desktop-Computersysteme und Notebooks gleichermaßen ver-

bindet. Parallel zu den jüngsten Entwicklungen der Computertechnik und der damit verbundenen

Annäherung von Computern und Kommunikationsgeräten hat das Internet die Arbeitsgewohnheiten

der Nutzer verändert und zu neuen Anwendungsszenarien geführt.

Einerseits werden Pervasive Computing, Ubiquitous Computing und Nomadic Computing im-

mer wichtiger, da unterschiedliche Geräte wie PDAs und Notebooks gleichzeitig und abwechselnd

genutzt werden, z.B. während der Anwender sich von einem Ort zum anderen bewegt. Andererseits

haben sich aus der allgegenwärtigen Verfügbarkeit und der fortschreitenden Vernetzung von Com-

putersystemen neue Ideen zur dynamischen Nutzung und spontanen Kollaboration von entfernten

Rechnersystemen entwickelt, die vor allem in Utility Computing, Grid Computing, Cloud

Computing und Public Computing vorangetrieben werden.

Von einem allgemeinen Standpunkt betrachtet ist das gemeinsame Ziel die Nutzung von

Internet-Anwendungen auf Bedarf, d.h. Anwendungen, welche nicht durch einen Administrator vo-

rab installiert werden, sondern in dem Moment der Anfrage durch den Nutzer dynamisch verteilt

und gestartet werden. Der heterogene Charakter und der dezentrale Aufbau des Internets bilden die

hauptsächlichen Herausforderungen für den bedarfsgesteuerten Betrieb von kundenspezifischen

Anwendungen über verschiedenartige Hardware-Plattformen, Betriebssystemen und Netzwerkum-

gebungen. Eine vielversprechende Lösung stellen hierzu autonome Rechnersysteme dar, die sich

per Definition ohne besondere Nutzer- und Anwendungssteuerung selbst verwalten.

In dieser Arbeit wird eine Betriebsumgebung Autonomic Cross-Platform Operating

Environment (ACOE) vorgestellt, die On Demand Internet Computing (ODIC) unterstützt. Der An-

satz basiert auf einer Integration Middleware namens Crossware, welche als Mittler zwischen ver-

schiedenartigen Anwendungsanforderungen und heterogenen Plattformkonfigurationen dient.

Weiterhin werden eine Java-Implementierung des Crossware Development Kit (XDK), gefolgt von

einer Realisierung des On-Demand Internet Computing Systems (ODIX) beschrieben.

Die praktische Anwendung des Ansatzes wird anhand der Implementierungen einer Internet

Application Workbench, einer Internet Application Factory und einer Internet Peer Federation ve-

ranschaulicht. Sie zeigen den Einsatz von ODIX für die Unterstützung in lokalen, entfernten und

verteilten ODIC Anwendungsszenarien. Abschließend wird die Eignung des Ansatzes und der Im-

plementierung mit besonderen Augenmerk auf die Unterstützung von ODIC diskutiert.

x Table of Contents

TABLE OF CONTENTS

Acknowledgements .. vii

Abstract ... viii

Zusammenfassung ... ix

Table of Contents ... x

Table of Figures .. xiv

Acronyms .. xix

1. INTRODUCTION ... 1

1.1 Motivation ... 1

1.1.1 Background .. 1

1.1.2 Evolution .. 3

1.1.3 Vision ... 4

1.2 Focus .. 5

1.2.1 Goal .. 5

1.2.2 Challenges .. 6

1.2.3 Subject .. 7

1.3 Overview ... 8

1.3.1 Contributions .. 8

1.3.2 Publications .. 10

1.3.3 Thesis Map ... 12

2. TOWARDS ON-DEMAND INTERNET COMPUTING 13

2.1 Introduction .. 13

2.2 Internet .. 13

2.2.1 Definition ... 13

2.2.2 Characteristics .. 14

2.2.3 Challenges .. 16

2.3 Internet Computing ... 18

2.3.1 Application Scenarios .. 18

2.3.2 Assets ... 22

2.3.3 User Roles .. 24

Table of Contents xi

2.4 On-Demand Internet Computing ... 26

2.4.1 From Resource-Centric to Task-Centric Computation .. 26

2.4.2 Facets ... 28

2.4.3 Vision ... 30

2.5 Related Approaches ... 33

2.5.1 Local Task Processing ... 33

2.5.2 Remote Task Processing .. 36

2.5.3 Distributed Task Processing... 40

2.6 Summary ... 44

3. AN AUTONOMIC CROSS-PLATFORM OPERATING ENVIRONMENT 45

3.1 Introduction .. 45

3.1.1 Subject .. 45

3.1.2 Idea ... 46

3.1.3 Objectives... 47

3.2 Cross-Platform Operation ... 49

3.2.1 Virtual Machine ... 49

3.2.2 Features .. 52

3.2.3 Cross-Platform Operating Environment .. 53

3.3 Self-Managing Operation .. 55

3.3.1 Autonomic Computing ... 55

3.3.2 Features .. 57

3.3.3 Self-Managing Infrastructure ... 59

3.4 Supporting Solutions ... 61

3.4.1 Single Computing .. 61

3.4.2 Enterprise Computing .. 66

3.4.3 Community Computing ... 69

3.4.4 Public Computing .. 74

3.4.5 Results .. 78

3.5 Summary ... 79

xii Table of Contents

4. XDK - THE CROSSWARE DEVELOPMENT K IT 81

4.1 Introduction .. 81

4.1.1 System Architecture ... 81

4.1.2 Java Realization ... 82

4.1.3 Components ... 83

4.2 Distributed Code Deployment... 85

4.2.1 Self-Descriptive Crosslets .. 85

4.2.2 Java Class Collections .. 97

4.3 Dynamic Software Composition ... 106

4.3.1 Java Class Spaces ... 106

4.3.2 Java Loadable Modules .. 116

4.4 Shared Application Hosting .. 129

4.4.1 Adaptive Resource Broker ... 129

4.4.2 Java Task Spaces .. 140

4.5 Pervasive Environment Customization .. 151

4.5.1 Application Execution Engine ... 151

4.5.2 Roaming User Profiles ... 164

4.6 Virtual Object Interconnection ... 175

4.6.1 Java Method Streams ... 175

4.6.2 Java Object Spaces ... 192

4.7 Ad Hoc Execution Migration .. 204

4.7.1 Java Thread Controller ... 204

4.7.2 Java Execution Units .. 216

4.8 Summary ... 231

5. ODIX - THE ON-DEMAND INTERNET COMPUTING SYSTEM 235

5.1 Introduction .. 235

5.1.1 Goals .. 235

5.1.2 Approach .. 236

5.1.3 Operation .. 238

Table of Contents xiii

5.2 On-Demand Application Engine... 242

5.2.1 Use Case ... 242

5.2.2 Features .. 243

5.2.3 Implementation .. 243

5.2.4 Application ... 245

5.3 Internet Application Workbench ... 247

5.3.1 Use Case ... 247

5.3.2 Features .. 248

5.3.3 Implementation .. 248

5.3.4 Application ... 250

5.4 Internet Application Factory .. 253

5.4.1 Use Case ... 253

5.4.2 Features .. 254

5.4.3 Implementation .. 254

5.4.4 Application ... 256

5.5 Internet Application Federation ... 260

5.5.1 Use Case ... 260

5.5.2 Features .. 261

5.5.3 Implementation .. 261

5.5.4 Application ... 263

5.6 Summary ... 266

6. CONCLUSIONS ... 269

6.1 Summary ... 269

6.2 Lessons Learned ... 270

6.3 Future Work ... 273

7. REFERENCES ... 277

xiv Table of Figures

TABLE OF FIGURES

Figure 1.1: Shift from Resource-Centric to Task-Centric Computing ... 3

Figure 1.2: On-Demand Computing System .. 4

Figure 1.3: Running On-Demand Internet Applications on Networked Resources 5

Figure 1.4: Uncertain Application Requirements and Heterogeneous Platform Capabilities 6

Figure 1.5: Autonomic Cross-Platform Operating Environment .. 7

Figure 1.6: Contributions of the Thesis .. 8

Figure 2.1: Intranet, Extranet and Internet .. 13

Figure 2.2: Characteristics of the Internet... 14

Figure 2.3: Exclusive Use of a Local Computing Device .. 18

Figure 2.4: Alternate Employment of Distinct Computing Devices ... 19

Figure 2.5: Switching to Another Type of Computing Device ... 19

Figure 2.6: Exclusive Assignment of an Application Server .. 20

Figure 2.7: Sharing an Application Server with Multiple Services .. 21

Figure 2.8: Concurrent Employment of Multiple Application Servers .. 21

Figure 2.9: Assets of Internet Computing ... 22

Figure 2.10: User Roles in Internet Computing .. 24

Figure 2.11: Shift from Resource-Centric to Task-Centric Computing ... 28

Figure 2.12: Facets of On Demand Internet Computing ... 29

Figure 2.13: Vision of On Demand Internet Computing .. 31

Figure 2.14: Thin Client Computing ... 34

Figure 2.15: Rich Client Computing ... 35

Figure 2.16: Service Computing ... 37

Figure 2.17: Web Computing ... 38

Figure 2.18: Peer-to-Peer Computing ... 40

Figure 2.19: Grid Computing .. 42

Figure 3.1: Running On Demand Internet Applications on Networked Resources 45

Figure 3.2: Autonomic Cross-Platform Operating Environment .. 47

Figure 3.3: Overview of Virtual Computing Approaches .. 49

Figure 3.4: Cross-Platform Operating Environment ... 53

Figure 3.5: Levels of Autonomic Computing Maturity .. 56

Figure 3.6: Autonomic Manager and Control Loop ... 57

Figure 3.7: Self-Managing Infrastructure ... 60

Figure 3.8: Types of Cross-Platform Operating Environments .. 61

Figure 4.1: XDK System Architecture.. 82

Table of Figures xv

Figure 4.2: Java Realization of the Autonomic Cross-Platform Operating Environment (ACOE) .. 83

Figure 4.3: Feature Mapping... 84

Figure 4.4: Application Deployment using Self-Descriptive Crosslets .. 88

Figure 4.5: Self-Managing Crosslet Installer .. 89

Figure 4.6: File Organization within a Crosslet Archive (XAR) .. 90

Figure 4.7: Example of Crosslet Configuration File ... 91

Figure 4.8: Autonomic Code Deployment .. 93

Figure 4.9: Class Grouping using Java Class Collections .. 99

Figure 4.10: Resolving Java Classes using Java Class Collections .. 100

Figure 4.11: XML Configuration Files used to define Java Class Collections 101

Figure 4.12: Autonomic Byte Code Selection .. 102

Figure 4.13: Self-Organizing of Application Code using Java Class Spaces 109

Figure 4.14: Application Class Loader and Application Class Space .. 110

Figure 4.15: Example of Dynamic Class Space Configuration .. 111

Figure 4.16: Example of Static Class Space Configuration .. 112

Figure 4.17: Autonomic Class Organization .. 112

Figure 4.18: Application Composition using Modules ... 118

Figure 4.19: Java Loadable Module .. 119

Figure 4.20: Implementation of a Module Handler .. 120

Figure 4.21: Module Configuration File ... 121

Figure 4.22: Reflective Component Framework .. 122

Figure 4.23: Excerpt of a Component Class ... 123

Figure 4.24: Requesting a Component Object .. 123

Figure 4.25: Autonomic Component Loading .. 124

Figure 4.26: Adaptive Resource Broker ... 132

Figure 4.27: Multi -Level Resource Mapping Framework .. 133

Figure 4.28: Property-Based Resource Description .. 134

Figure 4.29: Requesting a Class as Resource ... 134

Figure 4.30: Property-Based Role Description ... 135

Figure 4.31: Requesting a Class as Role ... 135

Figure 4.32: Simple Property-Based Casting .. 135

Figure 4.33: Autonomic Resource Binding .. 136

Figure 4.34: Task Management using Java Task Spaces .. 142

Figure 4.35: Task and Resource Management in a Multi-Session Runtime Environment 143

Figure 4.36: Stage and Scene Contexts ... 144

xvi Table of Figures

Figure 4.37: Application Environment Resources .. 145

Figure 4.38: Session Resources .. 145

Figure 4.39: Task Space Roles .. 145

Figure 4.40: Autonomic Resource Sharing ... 146

Figure 4.41: Application Execution Engine .. 154

Figure 4.42: Self-Managing Application Launcher .. 155

Figure 4.43: Excerpt of a Task Description .. 155

Figure 4.44: Command Mapping .. 156

Figure 4.45: Launch Configuration... 156

Figure 4.46: Application Configuration of a Legacy Java Application .. 157

Figure 4.47: Runtime Profile Provided by the Platform Administrator .. 158

Figure 4.48: Runtime Plugin for Launching a JVM in a Separate Process 158

Figure 4.49: Autonomic Task Deployment .. 159

Figure 4.50: Roaming User Profiles ... 166

Figure 4.51: Multi -Session Profile Manager .. 167

Figure 4.52: Explicit Profile Handling.. 168

Figure 4.53: Legacy Preferences Handling ... 168

Figure 4.54: Configuration of Custom Preferences Handler .. 169

Figure 4.55: Multi -Session Preferences Implementation .. 169

Figure 4.56: Autonomic Environment Customization .. 170

Figure 4.57: Self-Managing Object Communication.. 178

Figure 4.58: Cross-Platform Object Interconnection using Java Remote Method Streams 179

Figure 4.59: Remote Method Stream .. 180

Figure 4.60: Method Stream Proxy ... 181

Figure 4.61: Access Control Intermediary .. 181

Figure 4.62: Excerpt of a Connector Intermediary ... 182

Figure 4.63: Excerpt of a Broker Intermediary ... 183

Figure 4.64: Method Stream Dispatcher ... 184

Figure 4.65: Binding and Registering a Method Stream with a Binding Name 185

Figure 4.66: Locating and Connecting a Method Stream Using a Binding Name 185

Figure 4.67: Performance Evaluation of Java Remote Method Streams .. 186

Figure 4.68: Autonomic Object Communication .. 187

Figure 4.69: Java Object Spaces ... 194

Figure 4.70: Object Communication Control ... 195

Figure 4.71: Binding Output Stream ... 196

Table of Figures xvii

Figure 4.72: Binding Input Stream ... 197

Figure 4.73: Serializing a Dynamic Stub .. 198

Figure 4.74: Deserializing a Dynamic Stub .. 199

Figure 4.75: Autonomic Object Linking ... 199

Figure 4.76: Java Thread Controller ... 207

Figure 4.77: Java Thread Wrapping .. 208

Figure 4.78: Example for Managed Thread Control ... 209

Figure 4.79: Thread Feature Implementation ... 210

Figure 4.80: Custom Signal Handling .. 211

Figure 4.81: Extensible Thread State Model .. 212

Figure 4.82: Autonomic Task Execution .. 212

Figure 4.83: Serializable Execution Unit .. 218

Figure 4.84: Java Execution Unit (JEU) ... 219

Figure 4.85: Serialization Workflow of an Execution Unit .. 221

Figure 4.86: Contextualization of Execution Unit .. 222

Figure 4.87: Initialization of Execution Unit .. 222

Figure 4.88: Custom Object Passivation and Activation .. 223

Figure 4.89: Object Action Stream ... 223

Figure 4.90: Fragmentation of Migration Overhead ... 224

Figure 4.91: Autonomic Load Balancing .. 225

Figure 4.92: Concerns of Code Mobility .. 227

Figure 5.1: On-Demand Computing System .. 235

Figure 5.2: On-Demand Internet Computing System (ODIX) ... 237

Figure 5.3: Basic Deployment Scheme ... 238

Figure 5.4: Stationary Deployment of ODIX ... 239

Figure 5.5: Portable Deployment of ODIX... 240

Figure 5.6: Roaming Deployment of ODIX ... 241

Figure 5.7: On-Demand Task Processing ... 242

Figure 5.8: On-Demand Application Engine .. 244

Figure 5.9: Console Administration of the On-Demand Application Engine 245

Figure 5.10: Exemplary Excerpt of the ODIX Autostart Script ... 245

Figure 5.11: ODIX Command Line Shell ... 246

Figure 5.12: Local Task Processing On-Demand ... 247

Figure 5.13: Internet Application Workbench .. 249

Figure 5.14: Nomadic Computing with the ODIX Application Workbench 250

xviii Table of Figures

Figure 5.15: Desktop User Interface of the ODIX Application Workbench 251

Figure 5.16: ODIX Crosslet Manager ... 252

Figure 5.17: Remote Task Processing On-Demand .. 253

Figure 5.18: Internet Application Factory .. 255

Figure 5.19: Utility Computing with ODIX Application Factory .. 256

Figure 5.20: Simple Task Deployment ... 257

Figure 5.21: ODIX Task Description .. 257

Figure 5.22: ODIX Remote Task Admin .. 258

Figure 5.23: Distributed Task Processing On-Demand .. 260

Figure 5.24: Internet Application Federation .. 262

Figure 5.25: Public Computing with the ODIX Application Federation .. 263

Figure 5.26: ODIX Federation Admin .. 264

Figure 5.27: Excerpt of a Federation Peer Description ... 265

Acronyms xix

ACRONYMS

ACL Agent Communication Language

ACOE Autonomic Cross-Platform Operating Environment

AJAX Asynchronous JavaScript and XML

AOP Aspect-Oriented Programming

API Application Programming Interface

APT Advanced Packing Tool

ASP Application Service Provider

BOINC Berkeley Open Infrastructure for Network Computing

BPEL Business Process Execution Language

CaaS Component-as-a-Service

CLR Common Language Runtime

CORBA Common Object Request Broker Architecture

DLL Dynamic Link Library

DNS Domain Name System

DPE Distributed Processing Environment

EAR Enterprise Archive

ECMA European Computer Manufacturers Association

EJB Enterprise Java Beans

ESB Enterprise Service Bus

FQCN Fully Qualified Class Name

FTP File Transfer Protocol

GNU General Public License

GUI Graphical User Interface

HTML Hypertext Markup Language

HTTP Hyper Text Transport Protocol

IaaS Infrastructure-as-a-Service

IIOP Internet Inter-ORB Protocol

JAR Java Archive

JCC Java Class Collection

JCS Java Class Space

JDBC Java Database Connectivity

JDK Java Development Kit

JEU Java Execution Unit

JIT Just In Time

xx Acronyms

JLM Java Loadable Module

JMX Java Management Extensions

JNDI Java Naming and Directory Interface

JNLP Java Network Launch Protocol

JRE Java Runtime Environment

JRMP Java Remote Method Protocol

JVM Java Virtual Machine

JWS Java Web Start

JXTA Juxtapose, Language- and Platform-Independent Protocol for P2P Networking

LDAP Lightweight Directory Access Protocol

ODAE On-Demand Application Engine

ODC On-Demand Computing

ODIC On-Demand Internet Computing

ODIX On-Demand Internet Computing System

OGSA Open Grid Service Architecture

OSGI Open Service Gateway Interface

P2P Peer-to-Peer

PaaS Platform-as-a-Service

PDA Personal Digital Assistant

POJO Plain Old Java Object

PVM Process Virtual Machine

RAP Rich AJAX Platform

RCF Rich Client Framework

RMI Remote Method Invocation

RM-ODP Reference Model for Open Distributed Processing

RPC Remote Procedure Call

RPM Red Hat Package Manager

SaaS Software-as-a-Service

SMTP Simple Message Transfer Protocol

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SSH Secure Shell

SVM System Virtual Machine

UDDI Universal Description, Discovery and Integration

USB Universal Serial Bus

Acronyms xxi

VM Virtual Machine

WAR Web Archive

WSDL Web Service Description Language

XaaS Everything-as-a-Service

XAML Extensible Application Markup Language

XAR Crossware Archive

XDK Crossware Development Kit

XML Extensible Markup Language

ZIP Zip Drive File Format

1. Introduction 1

1. Introduction

The introduction outlines the transition of the Internet from a dedicated network environment into a

ubiquitous computing environment. The upcoming challenges along the evolution of On Demand

Internet Computing (ODIC) are considered and the goal and subjects of this thesis are introduced.

Then, the contributions of this thesis towards an Autonomic Cross-Platform Operating Environment

(ACOE) are presented, which are followed by an overview of the rest of the work.

1.1 Motivation

1.1.1 Background

The Internet has evolved from a global communication medium towards a ubiquitous computing

environment targeting the vision of Mark Weiser in which "computers are available throughout the

physical environment but effectively invisible to the user" [379, 380]. Along with this evolution, the

perception and use of Internet computing devices have changed, as illustrated below.

Client Computing. Originally, standard Internet applications, such as web browsers and email

readers, were installed on a computing device and used to access remote Internet resources via

common service protocols. The fixed feature set propelled the development and adoption of Internet

applications for virtually all types of computing devices. In particular, the web browser turned into

the standard interface to access remote information and applications provided in the Internet. Vari-

ous advancements, such as Flash animations, Java applets and AJAX, helped to blur further the dif-

ferences between desktop and browser applications. With the advent of custom browser plugins,

such as Adobe AIR [2], Microsoft Silverlight [238] and Sun JavaFX [341], the scenario changed

[216]. The Internet browser does no longer represent the main web application itself but it acts as a

web application launcher for running Rich Internet Applications [224]. It enables users to run appli-

cations on-demand while he or she visits distinct web pages [295]. This trend even continued with

the complete decoupling of the Internet application from the browser that is no longer needed to

host the Internet applications. Related solutions, such as Sun Java Web Start [383] and Eclipse RCP

[96], have fostered the trend towards Rich Client Platforms where application software is deployed

via the Internet and installed on user request. The related software components are managed by us-

ing custom component repositories, such as Sun Java Store [346], to which developers might upl-

oad new components. Typically, the rich client platform periodically checks various repositories for

new software releases and updates the local application installation; hence turning the Internet into a

large-scale software deployment environment for client computing.

2 1. Introduction

Nomadic Computing. At the same time, the convergence of computing and communication devic-

es has changed people's working habits and has led to new applications, such as nomadic and

mobile computing [196, 198]. Small computing devices with wireless link capabilities, such as

PDAs and netbooks, enable people to connect to the Internet and access information while they are

on the move [199, 251, 359], e.g. for querying a tourist information system by using a mobile phone

[291]. The possibility of alternately using distinct computing devices, e.g. with different screen res-

olution and input interfaces, "motivates the break from the traditional model of computation to a

ubiquitous model that makes the user's entire environment available wherever it is required" [82].

Particular software solutions, such as Sun J2ME [167], facilitate the instant execution of the same

application on different mobile devices. In addition, roaming user profiles have been introduced to

customize and provide the illusion of a pervasive application environment to the user across distinct

computing devices and in different scenarios [197, 314]. Since computing terminals have become

ubiquitously available, nomadic computing approaches have also gained attraction when fixed

computing devices are used [206, 395], e.g. public information kiosks and desktop computers found

in Internet cafes [221] or smart homes [98]. Besides launching a new application instance, a user

may also request the migration of remote processes [82], e.g. relocating a terminal session from the

office computer to the currently used notebook.

Service Computing. From another point of view, the provisioning and utilization of remote re-

sources has also changed. Similar to the development on the client-side, server-side scenarios

shifted from legacy web appliances towards custom services as in service computing. Web services

based on standardized application protocols, such as SOAP, popularized the service-oriented com-

puting model [170, 286] and has been early adopted by various manufacturers [366]. Application

servers supporting standard programming models, such as Sun Enterprise Java Beans (EJB) [336],

enable the cross-deployment of services independent of the actual vendor and have boosted the

propagation of the web service model [366]. An Internet server is no longer only used to serve web

pages but has evolved into an application server that is capable of running multiple service in-

stances at the same time, e.g. an online shop and a help desk. Various efforts have also been made

to benefit from the Internet growth [304] and related interconnection of large numbers of applica-

tion servers, e.g. by combining the distributed computing power of server farms to surpass the li-

mited performance progression of standalone computing systems [240], such as in Grid computing.

In cloud computing, the service computing idea has been extended to the provisioning and utiliza-

tion of common computing resources on user request, e.g. Infrastructure-as-a-Service (IaaS),

Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS) [220].

1. Introduction 3

1.1.2 Evolution

As the progress in microelectronics technology goes on, computing resources become more and

more a commodity good that are ubiquitously available [230]. In former times, specific applications

and dedicated computer systems have been purchased and set up to match a given task setting ex-

clusively. Nowadays, a user is able to switch applications and share computer systems to perform

the same task in different use cases. In this scenario, a user typically does no longer want to be con-

cerned with the computing details to perform a given task, e.g. how to retrieve a suitable application

plugin for reading a document. Instead, the user wants to focus on the current task and expects the

involved computing systems to provide the required resources on-demand, e.g. downloading code

libraries as needed or adjusting the application configuration to match the current network proxy

settings. Therefore and in contrast to traditional computing, the resources are no longer provided in

advance and in a static manner but are allocated the time they are requested. This evolution towards

On-Demand Computing (ODC) can be characterized as the shift from resource-centric towards

task-centric computation, as shown in Figure 1.1.

Figure 1.1: Shift from Resource-Centric to Task-Centric Computing

In resource-centric computing approaches, an administrator prepares a given computing re-

source to perform certain tasks only and is characterized by a fixed assignment of resources. This

procedure is well-known in administered environments like for example in enterprise networks with

dedicated servers, such as database and mail servers. In task-centric computing approaches, there is

4 1. Introduction

no fixed assignment and a user can ideally process a task on various computing resources. They

have been not set up for a specific computing purpose but are spontaneously adjusted to perform the

present task. This idea has become very common when requesting computing resources in changing

task scenarios like in nomadic computing, Grid computing and public computing. With the hype

around cloud computing [150] and its implementation by commercial providers, e.g. Amazon EC2

and Google AppEngine [215], the idea of ODC has recently gained much support and attraction.

1.1.3 Vision

A particular vision in the evolution of ODC is to break up the resource-centric relationship among

user, application and computing device and to replace it with a task-centric assignment. In place of

static task configuration, dynamic mediation of computing resources enables on-demand task

processing without user intervention. A specific feature of ODC is the on-demand provision of suit-

able applications to process the submitted user tasks on unsupervised computing resources, as ill u-

strated in Figure 1.2.

Figure 1.2: On-Demand Computing System

The task descriptions do not contain specifications about which application is to be launched

and which computing resources may be allocated to process the task. The On-Demand Computing

System is free to set up a matching processing configuration, e.g. following a given computing poli-

cy to minimize the resource costs or reduce the overall completion time.

1. Introduction 5

1.2 Focus

1.2.1 Goal

The goal of this thesis is to apply the vision of ODC [51, 110] on the Internet and to elaborate an

approach for On-Demand Internet Computing (ODIC). In particular, integrated application systems

to enable local task processing, remote task processing and distributed task processing on-demand

are to be implemented. A prerequisite is to enable the dynamic provision and configuration of net-

worked resources to run Internet applications on heterogeneous computing systems by user request,

as illustrated in Figure 1.3.

Figure 1.3: Running On-Demand Internet Applications on Networked Resources

Internet applications do not have to be installed in advance but are deployed, composed and

launched on the fly. Nomadic users may switch among heterogeneous computing devices and

access their personal settings, applications and documents while being on the move (A). Remote

computing resources can be assigned to instantaneously run custom applications without adminis-

trator intervention (B). Running application components may migrate from one application server to

another and seamlessly continue their computation (C). Finally, multiple application servers may

dynamically grouped in federations to balance time-consuming task processing requests (D).

6 1. Introduction

1.2.2 Challenges

The realization of On-Demand Internet Computing (ODIC) encounters particular challenges that

reflect the spontaneous use of computer devices to run custom applications in unmanaged and hete-

rogeneous environments [98]. The major issue is the unpredictable constellation of application re-

quirements and platform capabilities which makes it difficult to provide an all-purpose application

configuration or ensure a uniform platform administration, as shown in Figure 1.4.

Figure 1.4: Uncertain Application Requirements and Heterogeneous Platform Capabilities

Required resources cannot be provided and allocated in advance but have to be determined and

requested in the moment they are needed. In turn, resources are alternately utilized in different ap-

plication scenarios and the relationship of device user, application installation and employed com-

puter device is untied and replaced by a dynamic assignment. Application components may be

spread and linked across various Internet nodes and moved while they are in use. Due to its large

extent and diversity, the Internet also renders precautionary configuration attempts of application

deployers and platform administrators infeasible. This results in Internet application systems that

cannot be actually prepared by administered approaches to support yet unknown applications. A

suitable approach is to manage dynamic and unspecified scenarios without manual user interven-

tion. Promising remedies are autonomic computing systems that are supposed to maintain and adjust

themselves according to the current application scenario.

1. Introduction 7

1.2.3 Subject

The subject of this thesis is the elaboration, design and implementation of an Autonomic Cross-

Platform Operating Environment (ACOE) supporting ODIC. It is supposed to enable the seamless

and dynamic employment of Internet applications across different operating systems and platforms

by introducing a self-managing integration middleware called crossware, as shown in Figure 1.5.

Figure 1.5: Autonomic Cross-Platform Operating Environment

The self-managing integration middleware is manually installed on participating computing

systems in advance and appropriately configured to exploit the specific characteristics of the under-

lying operating system and hardware platform. It is not supposed to replace conventional middle-

ware approaches but acts as a mediator to uniformly interact with heterogeneous platform installa-

tions, resources and features. Inspired by the autonomic computing approach of IBM [250], it par-

ticularly supports the self-managed deployment, composition, hosting, customization, interconnec-

tion and migration of Internet applications without manual user intervention. The resulting ACOE

virtually hides the use of distinct computing systems and provides the illusion of a pervasive appli-

cation environment to the user and the Internet application. In particular, the users, the developers

and the applications are relieved to deal with the current platform configuration.

8 1. Introduction

1.3 Overview

1.3.1 Contributions

The major contributions of the thesis are: elaborating the challenges of On Demand Internet

Computing (ODIC), introducing the features of an Autonomic Cross-Platform Operating

Environment (ACOE), and realizing and evaluating the Crossware Development Kit (XDK) and the

On Demand Internet Computing System (ODIX), as shown in Figure 1.6 and outlined below.

Figure 1.6: Contributions of the Thesis

 On Demand Internet Computing (ODIC) . The first contribution is the elaboration of the

scope and the vision of On Demand Internet Computing (ODIC). The Internet and its chal-

lenges for running Internet applications are presented. Application scenarios of traditional In-

ternet computing are considered and related assets along with the involved user roles are iden-

tified. After presenting the original ideas of On Demand Computing (ODC), the proposed shift

from resource-centric to task-centric computing and the replacement of static resource alloca-

tion by dynamic resource assignment are described. The related facets of ODIC and various vi-

sions supporting nomadic computing and utility computing in the Internet are outlined. A ref-

lection relates the idea and needs of ODIC to existing Internet computing approaches like web

computing and peer-to-peer computing.

1. Introduction 9

 Autonomic Cross-Platform Operating Environment (ACOE). A new approach towards

ODIC is presented based on an autonomic cross-platform operating environment. The goal is

to deal with uncertain application scenarios in an Internet environment by separating the appli-

cation configuration, the resource administration and the environment customization. To this

end, the challenges imposed by the Internet are examined and the design of a cross-platform

operating environment for dealing with related cross-platform issues is presented. The need for

automation in an unmanaged environment like the Internet is illustrated and the ideas of auto-

nomic computing are explored. The outcome is a self-managing infrastructure that replaces the

manually performed tasks of the user roles in Internet computing scenarios into self-managing

operations. Finally, a review of existing solutions motivates the need for a different implemen-

tation.

 Crossware Development Kit (XDK). The implementation of the autonomic cross-platform

operating environment in Java is described. It pursues the automation of specific computing as-

sets by separating the deployment, composition, hosting, customization, interconnection and

migration of applications. To this end, a self-managing integration middleware is implemented

that performs the virtualization and integration of platform resources as well as their automa-

tion. The outcome is the Crossware Development Kit (XDK) that represents a Java application

framework that hides platform-specific details from the application while mediating between

application requests and platform capabilities in a self-managing way. As a result, applications

can be run and moved among peers without having been explicitly installed and configured on

each node in advance.

 On Demand Internet Computing System (ODIX). The application of the XDK is demon-

strated by means of the On Demand Internet Computing System (ODIX). An On-Demand

Application Engine can be dynamically deployed via the Internet, supports the integration of

multiple applications and interacts with peer instances to provide the illusion of a pervasive

application environment across heterogeneous computing devices. The Internet Application

Workbench can be used by nomadic users to seamlessly launch custom applications on alter-

nating computing devices without the need of manual user profile synchronization. Another

development is the Internet Application Factory that supports spontaneous deployment and

remote execution of Internet applications on remote computing devices. The Internet

Application Federation shows the execution migration of running Internet applications be-

tween networked computing devices.

10 1. Introduction

1.3.2 Publications

Aspects of the work described in this thesis have been partially published in the following journals

and conference proceedings:

P1. Paal, S. ODIX: An On-Demand Internet Application Workbench. Proceedings of the 9th

International Conference on Internet Computing (ICOMP 2008). Las Vegas, USA. CSREA

2008. pp. 342-348.

P2. Paal, S., Bröcker, L., Borowski, M. Supporting On-Demand Collaboration in Web-Based

Communities. Proceedings of the 17th IEEE International Conference on Database and Expert

Systems Applications (DEXA 2006). Krakow, Poland. IEEE 2006. pp. 293-298.

P3. Paal, S., Kammüller, R., Freisleben, B. Self-Managing Application Composition for Cross-

Platform Operating Environments. Proceedings of the 2nd IEEE International Conference on

Autonomic and Autonomous Systems (ICAS 2006). Silicon Valley, USA. IEEE 2006. p. 37.

P4. Paal, S., Kammüller, R., Freisleben, B. Crossware: Integration Middleware for Autonomic

Cross-Platform Internet Application Environments. Journal on Integrated Computer-Aided

Engineering. Vol. 13, Nr. 1. IOS Press 2006. pp. 41-62.

P5. Paal, S., Kammüller, R., Freisleben, B. Crosslets: Self-Managing Application Deployment in a

Cross-Platform Operating Environment. Proceedings of the 3rd International Conference on

Component Deployment (CD 2005). LNCS 3798. Grenoble, France. Springer 2005. pp. 51-65

P6. Paal, S., Kammüller, R., Freisleben, B. An Autonomic Cross-Platform Operating Environment

for On Demand Internet Computing. Demonstration on the 6th International Middleware

Conference (MW 2005). Grenoble, France. 2005.

P7. Paal, S., Kammüller, R., Freisleben, B. Application Object Isolation in Cross-Platform

Operating Environments. Proceedings of the 6th International Symposium on Distributed

Objects and Applications (DOA 2005). LNCS 3761. Agia Napa, Cyprus. Springer 2005. pp.

1047-1064.

P8. Paal, S., Kammüller, R., Freisleben, B. Dynamic Software Deployment with Distributed

Application Repositories. 14. Fachtagung Kommunikation in Verteilten Systemen (KiVS

2005). Informatik aktuell. Kaiserlautern, Germany. Springer 2005. pp. 41-52.

P9. Paal, S., Novak, J., Freisleben, B. Kollektives Wissensmanagement in virtuellen

Gemeinschaften. Wissensprozesse in der Netzwerkgesellschaft. transcript Verlag 2004. pp.

119-143.

P10. Paal, S., Kammüller, R., Freisleben, B. Supporting Nomadic Desktop Computing using an

Internet Application Workbench. Proceedings of the 5th International Conference and

Workshop on Distributed Objects and Applications (DOA 2004). Larnaca, Cyprus. Springer

2004. pp. 40-43.

1. Introduction 11

P11. Paal, S., Kammüller, R., Freisleben, B. A Cross-Platform Application Environment for

Nomadic Desktop Computing. Proceedings of the International Conference on Objects,

Components, Architectures, Services, and Applications for a NetworkedWorld (NODE 2004).

LNCS 3263. Erfurt, Germany. Springer 2004. pp. 185-200.

P12. Paal, S., Kammüller, R., Freisleben, B. Self-Managing Remote Object Interconnection.

Proceedings of the 15th International Conference and Workshop on Database and Expert

Systems Applications (DEXA 2004). Zaragoza, Spain. IEEE 2004. pp. 758-763.

P13. Paal, S., Kammüller, R., Freisleben, B. Separating the Concerns of Distributed Deployment

and Dynamic Composition in Internet Application Systems. Proceedings of the 4th

International Conference on Distributed Objects and Applications (DOA 2003). LNCS 2888.

Catania, Italy. Springer 2003. pp. 1292-1311.

P14. Paal, S., Kammüller, R., Freisleben, B. Java Remote Object Binding with Method Streaming.

Proceedings of the 4th International Conference on Objects, Components, Architectures,

Services and Applications for a Networked World (NODE 2003). Erfurt, Germany, 2003. pp.

230-244.

P15. Paal, S., Kammüller, R., Freisleben, B. Java Class Deployment with Class Collections.

Objects, Components, Architectures, Services, and Applications for a NetworkedWorld.

LNCS 2591. Erfurt, Germany. Springer 2003. pp. 135-151.

P16. Paal, S., Kammüller, R., Freisleben, B. Customizable Deployment, Composition and Hosting

of Distributed Java Applications. Proceedings of the 3rd International Conference on

Distributed Objects and Applications (DOA 2002). LNCS 2519. Irvine, USA. Springer 2002.

pp. 845-865.

P17. Paal, S., Kammüller, R., Freisleben, B. Java Class Deployment with Class Collections.

Proceedings of the 3rd International Conference on Objects, Components, Architectures,

Services and Applications for a Networked World (NODE 2002). Erfurt, Germany. 2002. pp.

144-158.

P18. Paal, S., Kammüller, R., Freisleben, B. Java Class Separation for Multi-Application Hosting.

Proceedings of the 3rd International Conference on Internet Computing (IC 2002). Las Vegas,

USA. CSREA 2002. pp. 259-266.

P19. Paal, S., Kammüller, R., Freisleben, B. Dynamic Composition of Web Server Functionality

over the Internet. Proceedings of the 6th International WebNet World Conference of the

WWW, Internet, and Intranet (Webnet 2001). Orlando, USA. AACE 2001. pp. 967-972.

P20. Paal, S., Kammüller, R., Freisleben, B. Distributed Extension of Internet Information Systems.

Proceedings of the 13th IASTED International Conference on Parallel and Distributed

Computing and Systems (PDCS 2001). Anaheim, USA. IASTED 2001. pp. 38-43.

12 1. Introduction

1.3.3 Thesis Map

The remainder of the thesis is organized as follows. In Chapter 2, the facets and vision of On De-

mand Internet Computing (ODIC) are presented and related approaches are reviewed. In Chapter 3,

an autonomic cross-platform operating environment is introduced that is especially designed to sup-

port ODIC. In Chapter 4, the corresponding implementation of the Crossware Development Kit

(XDK) is illustrated and its features are compared with related work. In Chapter 5, the On Demand

Internet Computing System (ODIX) that is implemented on top of the XDK is presented and its

application for running Internet applications on-demand is demonstrated. Chapter 6 concludes this

thesis and outlines areas for future work.

2. Towards On-Demand Internet Computing 13

2. Towards On-Demand Internet Computing

2.1 Introduction

In this chapter, the motivation and scope of On Demand Internet Computing (ODIC) are determined

and common objectives are deduced. The definition of the Internet is presented and its characteris-

tics are outlined. Then, application scenarios of Internet computing are considered and related assets

as well as involved user roles are deduced. Afterwards, the trend from resource-centric to task-

centric computation as proposed in On Demand Computing (ODC) is highlighted. Transferring this

approach to the Internet, the facets of On Demand Internet Computing (ODIC) are elaborated and

several visions of use are presented. The chapter ends with a review of related Internet computing

approaches and their support of ODIC.

2.2 Internet

2.2.1 Definition

To delimit the scope of Internet computing, a definition of the Internet environment is given and

how it differs to other network installations. A good starting point is the comparison with Intranet

and Extranet as shown in Figure 2.1.

Figure 2.1: Intranet, Extranet and Internet

Intranet. An Intranet is a closed network, typically limited to a single organization unit, such as a

department or enterprise. It is run by a single authority that manages the employed computing de-

vices and network components. Though there is no need to rely on global standards, most Intranets

employ well-known technologies. In addition, they introduce suitable profiles to ensure a homoge-

14 2. Towards On-Demand Internet Computing

neous computing environment that can be easily managed, e.g. the same MS Windows operating

system on every computer is installed and using a central user profile management.

Extranet. Due to business demands, there is a valuable need to access Intranet resources across

multiple organizational units, such as found among project partners or within a joint enterprise.

While the network components within an Intranet are actually still not accessible from outside, oth-

ers are installed in the Extranet that may be accessed from everywhere, such as a public web server.

They provide selected access to Intranet resources like a customer database and follow global com-

munication standards, such as the network protocol HTTP.

Internet . In contrast to an Intranet and an Extranet, the Internet is not managed by a single authori-

ty, limited to a certain purpose or closed to an organizational unit. The Internet is observed as a

global network communication medium that enables different computing devices to communicate.

It is based on global and publicly accepted communication standards and services, such as the

Domain Name System (DNS), but does not impose the installation of a specific operating system or

use of a particular hardware component.

2.2.2 Characteristics

The Internet poses several constraints upon the deployment and hosting of distributed applications

[53]. A summary of the underlying characteristics is shown in Figure 2.2 and described below

Figure 2.2: Characteristics of the Internet

2. Towards On-Demand Internet Computing 15

Global Availability. Once an Internet application has been installed, it can be used from any place

around the world. There is no need for switching a particular link between two Internet nodes but

the Internet infrastructure is available all the time, e.g. proving 24/7h access to a news service. From

this point of view, an Internet application may be concurrently used by a large number of users

which may lead to performance and security problems.

Spatial Installation. The Internet is not limited to a certain location but represents a global com-

munication network. Related applications are distributed among various Internet nodes that have

been set up separately. The installation and configuration of an application cannot be performed for

every node by a single authority. Local administrators and users do not follow a common policy but

use different setup configurations, such as firewall rules and directory organization.

Open Standards. An important key stone for the success of the Internet is the foundation on open

standards. The interoperability of Internet applications is not bound to a particular implementation

but on public specifications. In this line, the open source idea gained much attraction by offering

solutions that may be used instead of and mixed with commercial software, such as Apache web

server or the Internet browser Mozilla Firefox.

Public Access. Another feature of the Internet is the provision of public access to any networked

resource. Apart from the dial-in costs to the local Internet provider, there are no further charges,

such as time or volume based connection fees. In conjunction with the global availability and use of

open standards, this turned Internet computing into a ubiquitous approach that has influenced many

areas of everyday life, e.g. offering the online encyclopedia Wikipedia at no charge.

Heterogeneous Resources. The Internet is a global conglomerate of highly diverse computing de-

vices, operating systems and applications. In contrast to an Intranet, there is no common policy

which ensures a homogeneous operating environment. Due to this, Internet computing has to deal

with heterogeneous assets, e.g. by distributing a specific implementation for every kind of sup-

ported operating systems or by relying on virtual runtime environments, such as Sun Java.

Alternating Configurations. Another issue of the Internet is the diversity of platform installations

that leads to alternating configuration scenarios from node to node. In effect, each Internet applica-

tion is typically installed and configured separately without considering a concurrent installation or

shareable resources, such as common code libraries. Moreover, it is difficult to dynamically deploy

and configure applications across multiple nodes without particular user intervention.

16 2. Towards On-Demand Internet Computing

2.2.3 Challenges

Considering the characteristics, the Internet represents a particular network environment that im-

poses various challenges for running Internet applications, as described below.

Concurrent Repositories. In contrast to an Intranet, the Internet is a public space where distributed

and separately managed application repositories co-exist. They allow the introduction of particular

features needed for large scale deployment scenarios, such as caching and fault tolerance. However,

application components may be concurrently deployed to various application repositories and the

availability of a component in well-known repositories cannot be guaranteed. Particular problems

are the retrieval of software components from multiple remote repositories, the discovery of code

repositories in unknown network scenarios and the encapsulation and transmission of related soft-

ware packages. Furthermore, security issues, such as proving the authenticity and validity of code

packages, must be tackled.

Software Evolution. Along with concurrent code repositories and software deployment, the prob-

lem of identifying and employing appropriate code packages on-demand shows up. In a typical sce-

nario, an administrator identifies the right code libraries and configures the application accordingly.

However, there is no common guideline for Internet environments how to tag and to distribute code

packages with additional attributes apart from the name. Moreover, different code packages may be

compatible and whereas the same code package could be provided in different variants, e.g. one

with a command-line interface and another using a GUI dialog. Dynamic dependency resolution

considering the current application scenario and available code packages is a further issue in this

context.

Portable Systems. Similar to nomadic users, computing devices have turned into portable systems,

such as notebooks, PDAs or smart phones. They have to deal with changing network configuration

and interconnection scenarios, e.g. roaming through network cells. Another problem is the unpre-

dictable change from online to offline operation. In this context, existing network links may have to

be re-established and switched. Furthermore, Internet applications cannot rely on a permanent con-

nection to a remote service but have to maintain its execution state and data in offline mode. This

leads to another problem, namely resource consumption and capabilities. Small computing devices

may only be used to run a limited set of applications and thus resource sharing across applications

should be considered.

Runtime Environment. Another problem is caused by the heterogeneous nature of the Internet and

the changing use of different resources. On the one hand, it is not possible to configure each re-

2. Towards On-Demand Internet Computing 17

source on every node in the same way. On the other hand, an application cannot be individually

implemented for each type of resource. Often used solutions are virtual runtime environments, such

as provided by Sun Java. A developer is able to compile an application into the intermediate Java

byte code that can be instantaneously run on any host with a Java Virtual Machine (JVM) installed.

However, this approach does not address different host configurations that may affect the applica-

tion composition, e.g. the lookup of required resources.

Large-Scale Extension. The large extent of the Internet and the comparatively limited bandwidth

of shared connections represent a particular challenge for the distribution of application code and

execution data. In contrast to a local network where bandwidths of up to 1 GBit/s are available, an

Internet connection is less capable and may even fail for several seconds. Particular scenarios are

mobile computing nodes, such as PDAs, which are usually equipped with low-bandwidth solutions,

such as Bluetooth or Wi-Fi. Consequently, the amount of data that has to be transmitted from the

source to the target host must be considered, e.g. by querying a local cache for already downloaded

application code.

Insecure Infrastructure. The Internet was designed to bridge distinct computing networks and

administration domains. On the one hand, this approach follows the basic idea to create a public

networking infrastructure without imposing a one-for-all global network management; on the other

hand it inherits security problems by incorporating unknown and potentially dangerous parties.

Apart from intercepting and manipulating network communication, Internet computing systems

have proven to be vulnerable against hacker intrusions, denial-of-service attacks and malicious code

received from remote sites. In this scenario, on-demand computing has to address the integrity of

code deployment, object communication and runtime environment.

Separated Administration. A basic difference of Intranets and Internet is the management of their

resources. The Internet is not ruled by a single organization but independently managed by diverse

authorities. There is no central instance that may be used to update software installations or syn-

chronize user profiles across different nodes at the same time. Instead, each node has to manage

itself according to the application scenario, user context and network configuration. A related prob-

lem is the lack of a common configuration policy. There is no guideline where to install application

libraries or how to access system resources. This makes it difficult for a developer to prepare the

operation of an application in a foreign computing environment and usually requires a separate ma-

nual installation process.

18 2. Towards On-Demand Internet Computing

2.3 Internet Computing

In this section, selected application scenarios of Internet computing are compared to refine the pic-

ture. Afterwards, related assets and user roles are deduced to elaborate the tasks that have to be per-

formed manually.

2.3.1 Application Scenarios

The Internet is used for various computing purposes and applications. With respect to the characte-

ristics of the Internet presented in Section 2.2.2, several application scenarios to determine the basic

assets of Internet computing are considered.

Personal Computing. Due to global availability and open standards, remote Internet resources may

be accessed using distinct applications individually installed and configured on a personal compu-

ting device, as shown in Figure 2.3.

Figure 2.3: Exclusive Use of a Local Computing Device

As an example, different web browser implementations can be used to access web pages in the

same way. The same is valid for other types of services, such as Telnet, FTP or SSH. In personal

computing scenarios, the computing device is usually not shared with other users and the user does

not employ other devices, such as PDAs or laptops. This results in a fixed assignment of device,

application and user.

Pervasive Computing. Another use of the Internet is pervasive computing and the breakup of strict

device assignment seen in personal computing by alternate and unconscious employment of various

computing devices [251], as shown in Figure 2.4.

2. Towards On-Demand Internet Computing 19

Figure 2.4: Alternate Employment of Distinct Computing Devices

After the user has finished using device 1, he or she may move from device 1 to device 2 and

continue his or her work, e.g. while walking between distributed information desks in a museum or

bulletin boards spread in a smart home environment. Since the user is not strictly bound to a single

computing device and in turn the same device may be alternately used by different users, each de-

vice is dynamically customized for providing a personal working environment to the user.

Nomadic Computing. A further step along this line is the alternate and mobile use of portable

computing devices, such as laptop and handheld computers, in conjunction with mobile communi-

cations technologies, as shown in Figure 2.5.

Figure 2.5: Switching to Another Type of Computing Device

20 2. Towards On-Demand Internet Computing

In nomadic computing, users are enabled to access the Internet, programs and data at distinct

locations. A user may take the computing device with him or engage different personal computing

devices which, in contrast to pervasive computing, are typically assigned to the same user. Nomadic

computing is designed to provide the system-level support for users who travel and switch compu-

ting devices while being on the move. The system support is meant to make this move as seamless

and transparent as possible.

Remote Computing. The global availability of the Internet and use of open standards allow to

access computing resources in a uniform way though running in a heterogeneous environment. In

remote computing, a dedicated computer offers resources while other machines access these re-

sources remotely via the Internet, as shown in Figure 2.6.

Figure 2.6: Exclusive Assignment of an Application Server

A popular example is the World Wide Web (WWW) that is based on the use of web standards,

such HTML and HTTP. A web browser can interact with every web server without any modifica-

tion. An advanced option is the installation of custom web services that are offered using WSDL,

SOAP and UDDI [322]. For remote access on application objects like in the object-oriented ap-

proach, there are cross-platform solutions, e.g. CORBA.

Shared Computing. In another application scenario, the Internet supports the outsourcing of dis-

tinct computing services to Application Service Providers (ASP), such as web hosting companies or

computer centers. In shared computing, enterprises let third-parties operate and maintain their ap-

plications and IT infrastructure, as shown in Figure 2.7.

2. Towards On-Demand Internet Computing 21

Figure 2.7: Sharing an Application Server with Multiple Services

Service providers seek to minimize the overall costs by untangling the fixed assignment of

computing resources, applications and customers. Instead, a service provisioning model allows the

dynamic allocation of computing resources as needed. Customers may then choose the best suitable

application service provider for each task on a pay-per-use basis.

Parallel Computing. The focus of parallel computing in the Internet is the concurrent use of vari-

ous computing devices to perform a computational task, as shown in Figure 2.8.

Figure 2.8: Concurrent Employment of Multiple Application Servers

22 2. Towards On-Demand Internet Computing

A related approach is Grid computing that crosses administrative domains and different device

configurations [116]. Common to all grids is their central management by a distinct grid node that

splits a computational task into smaller pieces, deploys them on available nodes and assembles the

partial results after completion. Typical is also the use of a common Grid installation based on open

standards, such as Globus [135], which is deployed on each grid node in advance and used to con-

trol the grid infrastructure later on.

2.3.2 Assets

From the application scenarios outlined in Section 2.3.1, various assets found in Internet computing

are deduced, as shown in Figure 2.9 and described below.

Figure 2.9: Assets of Internet Computing

Computing Device. The first asset is the computing device used to manage and run an Internet ap-

plication. There are various hardware platforms and operating systems, and once installed, they are

typically not extended nor modified during runtime. However, an Internet user may switch from one

computing device to another or concurrently use different devices, e.g. a notebook and desktop

computer while synchronizing his or her meeting calendar.

2. Towards On-Demand Internet Computing 23

Runtime System. The next asset is the runtime system that actually executes the Internet applica-

tion, such as Sun Java or a Perl interpreter. It can either run various applications at the same time or

exclusively be used for a single application only. Particular runtime environments, such as applet or

servlet containers, require extra application frameworks that offer advanced features like dynamic

service loading and multi-application resource management.

Software Component. An Internet application is typically built from diverse software components

that are appropriately composed to form the desired application functionality. Some components

may be dynamically loaded and shared by concurrently hosted applications while other components

are exclusively used by a single application. Particular component approaches like Enterprise Java

Beans (EJB) need an appropriate application container to run, e.g. offered by an application server.

Code Assembly. Software components are usually not deployed individually but grouped and dis-

tributed using a code assembly. Popular examples of Java code assemblies are Java Archives (JAR),

Web Archives (WAR) and Enterprise Archives (EAR). Though code assemblies may be separately

created and managed, they usually rely on a common specification that allows the runtime system to

exchange and combine them by request.

Process Environment. If an Internet application is started, a related process environment is created

that contains the application components and the task data. Depending on the underlying runtime

system, multiple applications may be also concurrently hosted in a single process environment, each

in a separated thread environment. This is often used for server-side Internet applications operating

as services for handling a user request.

User Profile. The execution of Internet applications may be customized by a user to meet his or her

preferences. The related settings are stored in a user profile that is evaluated when a process envi-

ronment associated with the corresponding user is created, e.g. by selecting the look-and-feel of a

GUI desktop. A user can create different user profiles for distinct computing systems or use a single

profile that is synchronized among the employed computing devices.

Network Connection. The final asset in this enumeration is network connections used by Internet

applications to access remote resources. Depending on the application scenario, various middleware

approaches are used, such as service-oriented, message-oriented and object-oriented middleware.

From a user's perspective, the use of remote resources is often transparently hidden by the underly-

ing middleware approach.

24 2. Towards On-Demand Internet Computing

2.3.3 User Roles

Various users are involved to set up, maintain and customize an Internet computing system as well

as to develop and deploy an Internet application and its software components, as shown in Figure

2.10.

Figure 2.10: User Roles in Internet Computing

System Administrator. The system administrator is responsible for the basic setup of a computing

device. Typically, he or she initially installs the hardware components and the operating system.

The continuing maintenance and update of core features, such as device drivers and hard disks, are

further tasks. In our consideration, the system administrator is not involved in installing and confi-

guring a specific Internet application.

Runtime Installer. Another role is runtime installer that denotes users capable of preparing a suit-

able runtime for hosting Internet applications, e.g. installing a Java Runtime Environment (JRE) or

downloading and configuring a Perl interpreter. The installer has to consider the current system

setup and choose appropriate software packages needed to execute the supposed Internet applica-

tions, e.g. setting up an application server to host Java servlets.

Component Provider. The component provider is a developer who works on the development of

distinct software components. They are encapsulated in a component assembly and uploaded to a

code repository. In this context, a component assembly is a particular code assembly that does not

2. Towards On-Demand Internet Computing 25

contain an entire application but components along with related specification, e.g. about required

runtime properties and dependencies to other components.

Application Assembler. Similar to the tasks of a component provider, an application assembler

works on the development of applications by selecting software components and packaging them in

an application assembly. An application assembly does not have to contain software code but may

also refer to component assemblies containing the desired components, e.g. by using query state-

ments to look up for components matching a certain release.

Assembly Deployer. The assembly deployer is the link between the development and the execution

of an Internet application. He or she decides which applications to deploy on a specific computing

device and manually retrieves and installs related assemblies from the code repository. In a typical

scenario, there are various repositories to choose from and the deployer has to monitor the reposito-

ries for recently released software updates and bug fixes.

Internet User. The final role is the Internet user who is actually employing the computer device to

launch a specific Internet application. The required runtime and application components are already

installed and configured appropriately. In addition, the Internet user may customize the existing

configuration and store his or her preferences in a user profile. Besides a human user, an Internet

user may also be an application accessing the computing device via a network interface.

26 2. Towards On-Demand Internet Computing

2.4 On-Demand Internet Computing

In this section, the definition of On-Demand Internet Computing (ODIC) is deduced by considering

the shift from resource-centric to task-centric computation introduced with regular On-Demand

Computing (ODC) in a well-known network environment like an Intranet or an Extranet. After-

wards, on-demand facets of ODIC are worked out with particular respect to the elaborated assets

and user roles of Internet computing in the previous chapter.

2.4.1 From Resource-Centric to Task-Centric Computation

There are a number of visions concerning ODC that are illustrated by means of different business

cases and application scenarios, such as nomadic computing, utility computing and cloud compu-

ting. As summarized in [110], "on-demand computing is a broad category that includes all the

other terms, each of which means something slightly different". Depending on the concrete use, par-

ticular features are emphasized in one scenario while in others they are not considered, such as

adaptive bandwidth allocation and dynamic software composition. A common characterization fol-

lows the use cases that have emerged along the rise of ODC and are described below.

Infrastructure Management. Inspired by the success of web hosting and virtual private servers, an

increasing number of companies discover that outsourcing of infrastructure management reduces

costs by sharing commonly used facilities, such as computing centers and backup systems. In this

scenario, on demand computing is also interpreted as an approach to facilitate the management and

utilization of own resources across distinct parties in the same company. The costs are shared on the

amount of resources actually consumed and therefore reflect the real level of business activity. A

typical example is the dynamic allocation of multiple cluster nodes according to the current task

requirements. In recent time, this trend is also denoted as Infrastructure-as-a-Service (IaaS) [218].

Application Server. A refinement is the exploitation of managed computing platforms with an in-

tegrated application stack already installed. The deployment of custom applications is facilitated by

removing the need to install, configure and manage common software solutions stacks, such as a

LAMP installation (Linux, Apache, MySQL, and PHP), a Java Servlet Container or an EJB server.

Typically, the application servers are hosted in a computing center and are remotely accessed, e.g.

by using SSH. In such a scenario, the idea of providing pre-configured application servers has been

further developed towards Platform-as-a-Service (PaaS) where the complete application develop-

ment and deployment are exclusively performed over the Internet, such as with Google AppEngine.

2. Towards On-Demand Internet Computing 27

Service Provider. The next step is the utilization of ready-to-use appliances provided by service

providers, e.g. a web hosting platform or virtual root servers running on top of a shared computing

platform. A further development is the invention of a multi-tenant architecture in which distinct

customers share the same computing resources, e.g. database and process environment. While cus-

tomer-related resources are virtually separated by the shared application instance, the overall

amount of memory and processing overhead is reduced compared to launching and terminating iso-

lated application instances for every customer. In particular, this approach has gained much attrac-

tion for accessing Internet application services and is denoted as Software-as-a-Service (SaaS).

Software Leasing. In traditional computing, users buy software packages and a number of related

licenses for lifetime; regardless whether the software is still needed or not, e.g. after the end of a

project. In a particular use case of on demand computing, required software is not bought but leased

for a period of time which typically cuts down associated license costs. In addition, a user can select

which features of an application suite he or she actually needs and pay only the requested ones. The

software is then executed on a remote host, e.g. an application service provider, or the components

are downloaded and only runnable during the time period paid for. Following the naming schemes

of IaaS, PaaS and SaaS, this trend might be denoted as Component-as-a-Service (CaaS).

Common to the illustrated use cases of ODC is the shift from resource-centric towards task-

centric computation replacing static resource allocation by dynamic resource assignment, as shown

in Figure 2.11.

In traditional resource-centric computing, a computing resource is prepared by an administrator

to perform certain types of tasks only, e.g. number crunching or video conversion. In task-centric

computing, a user issues tasks and uses various computing resources without task-specific setup.

Since there is no static task assignment, a resource can be no longer appropriately administered and

provided for every possible computational task by the administrator in advance. In contrast, various

resources, such as application configurations, software components and user profiles, may be used

to perform the computation; and have to be provided on demand and managed in the moment the

task is issued by the user.

28 2. Towards On-Demand Internet Computing

Figure 2.11: Shift from Resource-Centric to Task-Centric Computing

2.4.2 Facets

Transferring the ODC approach to the Internet environment, On Demand Internet Computing

(ODIC) is defined as the spontaneous provision and configuration of Internet assets to perform a

computational task on demand. Along the assets illustrated in Section 2.3.2, different facets of OD-

IC are distinguished as outlined in Figure 2.12 and described below.

Device On Demand. A basic facet is the dynamic allocation and grouping of computing resources.

A resource is no longer tightly bound to a certain task but is dynamically allocated and used in dif-

ferent scenarios. For example, a company may offer computing time in a high-performance server

farm according to the Grid approach. A customer can choose the number of servers that should be

utilized to process a complex computation in a given time. A metering service turns the servers into

utilities on demand that are only paid for the time they are used. In another scenario, desktop com-

puters may not always be utilized and could be virtually combined to assist in a global computing

effort like in the SETI and Folding@home projects [11, 115].

2. Towards On-Demand Internet Computing 29

Figure 2.12: Facets of On Demand Internet Computing

Runtime On Demand. There are various types of Internet applications that need different runtime

environments, such as Sun Java Runtime Environment (JRE), Microsoft Common Language Run-

time (CLR) or a Perl interpreter. The shift towards ODIC requires to provide appropriate runtime

environments on demand. On the client side, popular examples are browser applets, such as Flash

animations, which offer to automatically download and install the required runtime before starting

the actual applet. The user does not have to ask an administrator for manual installation, and the

runtime loaders are often designed to choose the proper installation files for the currently employed

computing device and operating system.

Assembly On Demand. Besides the spontaneous employment of an available computing device

and the automatic installation of the runtime environment, the application itself has to be deployed

and configured. This is often achieved by using remote code repositories and deployment units that

can be easily retrieved from the requesting computing node. For example, a Java applet is linked in

a web page along with the URL referring to a related Java Archive (JAR) on the server. The JRE

plugin of the Internet browsers downloads the JAR file as soon as the web page is visited by the

user and starts the Java applet afterwards. In this example, there is no need to install software pack-

ages in advance. This allows users to virtually start every applet on every computing device.

Component On Demand. Another on-demand facet is the provision of application components and

the dynamic creation of custom applications by assembling separately developed and deployed

components. For Internet computing environments, this is typically achieved by using particular

dynamic code loading approaches, such as MS ActiveX, Sun JNLP and OSGI. They allow retriev-

