

An Autonomic

Cross-Platform Operating Environment

for On-Demand Internet Computing

Dissertation

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)

Vom Fachbereich Mathematik und Informatik der

angenommene Dissertation von

Stefan Paal

aus Germersheim, Deutschland

Marburg/Lahn, April 2010

Vom Fachbereich Mathematik und Informatik der

Philipps-Universität Marburg als Dissertation

am 28.04.2010 angenommen.

Erstgutachter: Prof. Dr.-Ing. Bernd Freisleben, Philipps-Universität Marburg

Zweitgutachter: Prof. em. Dr.-Ing. Reiner Kammüller, Universität Siegen

Tag der mündlichen Prüfung am 25.06.2010

Für meine Eltern Nada und Georg Paal

Acknowledgements vii

ACKNOWLEDGEMENTS

The accomplishment of this dissertation has taken me a long time and it looked not only to me like

a never-ending project. There are many reasons for this; however, the most important one is that I

spent much more time on improving the software implementations than on writing the documenta-

tion of the contributions. Over all this time, many people have continually pushed me through the

work and I wish I could thank all of them personally for having been there and their unique support.

Among them, there are several individuals, to whom I want to explicitly express my appreciation

and gratitude.

First of all, I want to gratefully acknowledge my supervisor, Prof. Dr. Bernd Freisleben from

the University of Marburg, for his long-standing support of my academic work. In the same line, I

want to express my gratitude to Prof. em. Dr. Reiner Kammüller from the University of Siegen for

the extensive and fruitful discussions about many research issues. Without their most valuable guid-

ance and feedback, the present dissertation would have been not possible and many of my papers

would miss the academic acknowledgments they have received in many conference talks.

I also wish to thank my colleagues and students at the University of Siegen, in particular Ralf

Hofmann, Gerd Müller, Martin Hammel, Klaus Rühl and Kerstin Schmidt, who helped me through

the beginning of the work on my dissertation. Their support for developing, implementing and test-

ing the ODIX approach was essential for the overall accomplishment.

Next, I want to express my appreciation to the colleagues from the group MARS at the Fraun-

hofer Institute for Media Communication (IMK), especially Monika Fleischmann, Wolfgang

Strauss, Dr. Jasminko Novak, Predrag Peranovic and Daniel Pfuhl. They particularly supported me

the time I wrote many of my papers and presented them at various scientific conferences.

Furthermore, my special thanks go to Dr. Joachim Köhler, Dr. Stefan Eickeler, Ulrich Wer-

necke and Britta Schwipper from the group NetMedia at the Fraunhofer Institute for Intelligent

Analysis and Information Systems (IAIS). Without their outstanding personal support and confi-

dence, I would not have got the final push and the time for accomplishing the writing.

Last but certainly not least, I have to pay tribute to my family and friends, in particular to my

parents Nada and Georg Paal, who believed in me all the time. They always gave me the backup I

needed in difficult phases and I can never make up the time they all have spent on waiting for the

completion of my dissertation.

viii Abstract

ABSTRACT

The Internet has evolved into a global and ubiquitous communication medium interconnecting po-

werful application servers, diverse desktop computers and mobile notebooks. Along with recent

developments in computer technology, such as the convergence of computing and communication

devices, the way how people use computers and the Internet has changed people's working habits

and has led to new application scenarios.

On the one hand, pervasive computing, ubiquitous computing and nomadic computing become

more and more important since different computing devices like PDAs and notebooks may be used

concurrently and alternately, e.g. while the user is on the move. On the other hand, the ubiquitous

availability and pervasive interconnection of computing systems have fostered various trends to-

wards the dynamic utilization and spontaneous collaboration of available remote computing re-

sources, which are addressed by approaches like utility computing, grid computing, cloud

computing and public computing.

From a general point of view, the common objective of this development is the use of Internet

applications on demand, i.e. applications that are not installed in advance by a platform administra-

tor but are dynamically deployed and run as they are requested by the application user. The hetero-

geneous and unmanaged nature of the Internet represents a major challenge for the on demand use

of custom Internet applications across heterogeneous hardware platforms, operating systems and

network environments. Promising remedies are autonomic computing systems that are supposed to

maintain themselves without particular user or application intervention.

In this thesis, an Autonomic Cross-Platform Operating Environment (ACOE) is presented that

supports On Demand Internet Computing (ODIC), such as dynamic application composition and ad

hoc execution migration. The approach is based on an integration middleware called crossware that

does not replace existing middleware but operates as a self-managing mediator between diverse

application requirements and heterogeneous platform configurations. A Java implementation of the

Crossware Development Kit (XDK) is presented, followed by the description of the On Demand

Internet Computing System (ODIX).

The feasibility of the approach is shown by the implementation of an Internet Application

Workbench, an Internet Application Factory and an Internet Peer Federation. They illustrate the

use of ODIX to support local, remote and distributed ODIC, respectively. Finally, the suitability of

the approach is discussed with respect to the support of ODIC.

Zusammenfassung ix

ZUSAMMENFASSUNG

Das Internet hat sich zu einem allgegenwärtigen Kommunikationsmedium entwickelt, welches lei-

stungsfähige Anwendungsserver, Desktop-Computersysteme und Notebooks gleichermaßen ver-

bindet. Parallel zu den jüngsten Entwicklungen der Computertechnik und der damit verbundenen

Annäherung von Computern und Kommunikationsgeräten hat das Internet die Arbeitsgewohnheiten

der Nutzer verändert und zu neuen Anwendungsszenarien geführt.

Einerseits werden Pervasive Computing, Ubiquitous Computing und Nomadic Computing im-

mer wichtiger, da unterschiedliche Geräte wie PDAs und Notebooks gleichzeitig und abwechselnd

genutzt werden, z.B. während der Anwender sich von einem Ort zum anderen bewegt. Andererseits

haben sich aus der allgegenwärtigen Verfügbarkeit und der fortschreitenden Vernetzung von Com-

putersystemen neue Ideen zur dynamischen Nutzung und spontanen Kollaboration von entfernten

Rechnersystemen entwickelt, die vor allem in Utility Computing, Grid Computing, Cloud

Computing und Public Computing vorangetrieben werden.

Von einem allgemeinen Standpunkt betrachtet ist das gemeinsame Ziel die Nutzung von

Internet-Anwendungen auf Bedarf, d.h. Anwendungen, welche nicht durch einen Administrator vo-

rab installiert werden, sondern in dem Moment der Anfrage durch den Nutzer dynamisch verteilt

und gestartet werden. Der heterogene Charakter und der dezentrale Aufbau des Internets bilden die

hauptsächlichen Herausforderungen für den bedarfsgesteuerten Betrieb von kundenspezifischen

Anwendungen über verschiedenartige Hardware-Plattformen, Betriebssystemen und Netzwerkum-

gebungen. Eine vielversprechende Lösung stellen hierzu autonome Rechnersysteme dar, die sich

per Definition ohne besondere Nutzer- und Anwendungssteuerung selbst verwalten.

In dieser Arbeit wird eine Betriebsumgebung Autonomic Cross-Platform Operating

Environment (ACOE) vorgestellt, die On Demand Internet Computing (ODIC) unterstützt. Der An-

satz basiert auf einer Integration Middleware namens Crossware, welche als Mittler zwischen ver-

schiedenartigen Anwendungsanforderungen und heterogenen Plattformkonfigurationen dient.

Weiterhin werden eine Java-Implementierung des Crossware Development Kit (XDK), gefolgt von

einer Realisierung des On-Demand Internet Computing Systems (ODIX) beschrieben.

Die praktische Anwendung des Ansatzes wird anhand der Implementierungen einer Internet

Application Workbench, einer Internet Application Factory und einer Internet Peer Federation ve-

ranschaulicht. Sie zeigen den Einsatz von ODIX für die Unterstützung in lokalen, entfernten und

verteilten ODIC Anwendungsszenarien. Abschließend wird die Eignung des Ansatzes und der Im-

plementierung mit besonderen Augenmerk auf die Unterstützung von ODIC diskutiert.

x Table of Contents

TABLE OF CONTENTS

Acknowledgements .. vii

Abstract ... viii

Zusammenfassung ... ix

Table of Contents ... x

Table of Figures .. xiv

Acronyms .. xix

1. INTRODUCTION ... 1

1.1 Motivation ... 1

1.1.1 Background .. 1

1.1.2 Evolution .. 3

1.1.3 Vision ... 4

1.2 Focus .. 5

1.2.1 Goal .. 5

1.2.2 Challenges .. 6

1.2.3 Subject .. 7

1.3 Overview ... 8

1.3.1 Contributions .. 8

1.3.2 Publications .. 10

1.3.3 Thesis Map ... 12

2. TOWARDS ON-DEMAND INTERNET COMPUTING 13

2.1 Introduction .. 13

2.2 Internet .. 13

2.2.1 Definition ... 13

2.2.2 Characteristics .. 14

2.2.3 Challenges .. 16

2.3 Internet Computing ... 18

2.3.1 Application Scenarios .. 18

2.3.2 Assets ... 22

2.3.3 User Roles .. 24

Table of Contents xi

2.4 On-Demand Internet Computing ... 26

2.4.1 From Resource-Centric to Task-Centric Computation .. 26

2.4.2 Facets ... 28

2.4.3 Vision ... 30

2.5 Related Approaches ... 33

2.5.1 Local Task Processing ... 33

2.5.2 Remote Task Processing .. 36

2.5.3 Distributed Task Processing... 40

2.6 Summary ... 44

3. AN AUTONOMIC CROSS-PLATFORM OPERATING ENVIRONMENT 45

3.1 Introduction .. 45

3.1.1 Subject .. 45

3.1.2 Idea ... 46

3.1.3 Objectives... 47

3.2 Cross-Platform Operation ... 49

3.2.1 Virtual Machine ... 49

3.2.2 Features .. 52

3.2.3 Cross-Platform Operating Environment .. 53

3.3 Self-Managing Operation .. 55

3.3.1 Autonomic Computing ... 55

3.3.2 Features .. 57

3.3.3 Self-Managing Infrastructure ... 59

3.4 Supporting Solutions ... 61

3.4.1 Single Computing .. 61

3.4.2 Enterprise Computing .. 66

3.4.3 Community Computing ... 69

3.4.4 Public Computing .. 74

3.4.5 Results .. 78

3.5 Summary ... 79

xii Table of Contents

4. XDK - THE CROSSWARE DEVELOPMENT KIT 81

4.1 Introduction .. 81

4.1.1 System Architecture ... 81

4.1.2 Java Realization ... 82

4.1.3 Components ... 83

4.2 Distributed Code Deployment... 85

4.2.1 Self-Descriptive Crosslets .. 85

4.2.2 Java Class Collections .. 97

4.3 Dynamic Software Composition ... 106

4.3.1 Java Class Spaces ... 106

4.3.2 Java Loadable Modules .. 116

4.4 Shared Application Hosting .. 129

4.4.1 Adaptive Resource Broker ... 129

4.4.2 Java Task Spaces .. 140

4.5 Pervasive Environment Customization .. 151

4.5.1 Application Execution Engine ... 151

4.5.2 Roaming User Profiles ... 164

4.6 Virtual Object Interconnection... 175

4.6.1 Java Method Streams ... 175

4.6.2 Java Object Spaces ... 192

4.7 Ad Hoc Execution Migration .. 204

4.7.1 Java Thread Controller ... 204

4.7.2 Java Execution Units .. 216

4.8 Summary ... 231

5. ODIX - THE ON-DEMAND INTERNET COMPUTING SYSTEM 235

5.1 Introduction .. 235

5.1.1 Goals .. 235

5.1.2 Approach .. 236

5.1.3 Operation .. 238

Table of Contents xiii

5.2 On-Demand Application Engine... 242

5.2.1 Use Case ... 242

5.2.2 Features .. 243

5.2.3 Implementation .. 243

5.2.4 Application ... 245

5.3 Internet Application Workbench ... 247

5.3.1 Use Case ... 247

5.3.2 Features .. 248

5.3.3 Implementation .. 248

5.3.4 Application ... 250

5.4 Internet Application Factory .. 253

5.4.1 Use Case ... 253

5.4.2 Features .. 254

5.4.3 Implementation .. 254

5.4.4 Application ... 256

5.5 Internet Application Federation ... 260

5.5.1 Use Case ... 260

5.5.2 Features .. 261

5.5.3 Implementation .. 261

5.5.4 Application ... 263

5.6 Summary ... 266

6. CONCLUSIONS ... 269

6.1 Summary ... 269

6.2 Lessons Learned ... 270

6.3 Future Work ... 273

7. REFERENCES ... 277

xiv Table of Figures

TABLE OF FIGURES

Figure 1.1: Shift from Resource-Centric to Task-Centric Computing ... 3

Figure 1.2: On-Demand Computing System .. 4

Figure 1.3: Running On-Demand Internet Applications on Networked Resources 5

Figure 1.4: Uncertain Application Requirements and Heterogeneous Platform Capabilities 6

Figure 1.5: Autonomic Cross-Platform Operating Environment .. 7

Figure 1.6: Contributions of the Thesis .. 8

Figure 2.1: Intranet, Extranet and Internet .. 13

Figure 2.2: Characteristics of the Internet... 14

Figure 2.3: Exclusive Use of a Local Computing Device .. 18

Figure 2.4: Alternate Employment of Distinct Computing Devices ... 19

Figure 2.5: Switching to Another Type of Computing Device ... 19

Figure 2.6: Exclusive Assignment of an Application Server .. 20

Figure 2.7: Sharing an Application Server with Multiple Services .. 21

Figure 2.8: Concurrent Employment of Multiple Application Servers .. 21

Figure 2.9: Assets of Internet Computing ... 22

Figure 2.10: User Roles in Internet Computing .. 24

Figure 2.11: Shift from Resource-Centric to Task-Centric Computing ... 28

Figure 2.12: Facets of On Demand Internet Computing ... 29

Figure 2.13: Vision of On Demand Internet Computing .. 31

Figure 2.14: Thin Client Computing ... 34

Figure 2.15: Rich Client Computing ... 35

Figure 2.16: Service Computing ... 37

Figure 2.17: Web Computing ... 38

Figure 2.18: Peer-to-Peer Computing ... 40

Figure 2.19: Grid Computing .. 42

Figure 3.1: Running On Demand Internet Applications on Networked Resources 45

Figure 3.2: Autonomic Cross-Platform Operating Environment .. 47

Figure 3.3: Overview of Virtual Computing Approaches .. 49

Figure 3.4: Cross-Platform Operating Environment ... 53

Figure 3.5: Levels of Autonomic Computing Maturity .. 56

Figure 3.6: Autonomic Manager and Control Loop ... 57

Figure 3.7: Self-Managing Infrastructure ... 60

Figure 3.8: Types of Cross-Platform Operating Environments .. 61

Figure 4.1: XDK System Architecture.. 82

Table of Figures xv

Figure 4.2: Java Realization of the Autonomic Cross-Platform Operating Environment (ACOE) .. 83

Figure 4.3: Feature Mapping... 84

Figure 4.4: Application Deployment using Self-Descriptive Crosslets .. 88

Figure 4.5: Self-Managing Crosslet Installer .. 89

Figure 4.6: File Organization within a Crosslet Archive (XAR) .. 90

Figure 4.7: Example of Crosslet Configuration File ... 91

Figure 4.8: Autonomic Code Deployment .. 93

Figure 4.9: Class Grouping using Java Class Collections .. 99

Figure 4.10: Resolving Java Classes using Java Class Collections .. 100

Figure 4.11: XML Configuration Files used to define Java Class Collections 101

Figure 4.12: Autonomic Byte Code Selection .. 102

Figure 4.13: Self-Organizing of Application Code using Java Class Spaces 109

Figure 4.14: Application Class Loader and Application Class Space .. 110

Figure 4.15: Example of Dynamic Class Space Configuration .. 111

Figure 4.16: Example of Static Class Space Configuration .. 112

Figure 4.17: Autonomic Class Organization .. 112

Figure 4.18: Application Composition using Modules ... 118

Figure 4.19: Java Loadable Module .. 119

Figure 4.20: Implementation of a Module Handler .. 120

Figure 4.21: Module Configuration File ... 121

Figure 4.22: Reflective Component Framework .. 122

Figure 4.23: Excerpt of a Component Class ... 123

Figure 4.24: Requesting a Component Object .. 123

Figure 4.25: Autonomic Component Loading .. 124

Figure 4.26: Adaptive Resource Broker ... 132

Figure 4.27: Multi-Level Resource Mapping Framework .. 133

Figure 4.28: Property-Based Resource Description .. 134

Figure 4.29: Requesting a Class as Resource ... 134

Figure 4.30: Property-Based Role Description ... 135

Figure 4.31: Requesting a Class as Role ... 135

Figure 4.32: Simple Property-Based Casting .. 135

Figure 4.33: Autonomic Resource Binding .. 136

Figure 4.34: Task Management using Java Task Spaces .. 142

Figure 4.35: Task and Resource Management in a Multi-Session Runtime Environment 143

Figure 4.36: Stage and Scene Contexts ... 144

xvi Table of Figures

Figure 4.37: Application Environment Resources .. 145

Figure 4.38: Session Resources .. 145

Figure 4.39: Task Space Roles .. 145

Figure 4.40: Autonomic Resource Sharing ... 146

Figure 4.41: Application Execution Engine .. 154

Figure 4.42: Self-Managing Application Launcher .. 155

Figure 4.43: Excerpt of a Task Description .. 155

Figure 4.44: Command Mapping .. 156

Figure 4.45: Launch Configuration... 156

Figure 4.46: Application Configuration of a Legacy Java Application .. 157

Figure 4.47: Runtime Profile Provided by the Platform Administrator .. 158

Figure 4.48: Runtime Plugin for Launching a JVM in a Separate Process 158

Figure 4.49: Autonomic Task Deployment .. 159

Figure 4.50: Roaming User Profiles ... 166

Figure 4.51: Multi-Session Profile Manager .. 167

Figure 4.52: Explicit Profile Handling.. 168

Figure 4.53: Legacy Preferences Handling ... 168

Figure 4.54: Configuration of Custom Preferences Handler .. 169

Figure 4.55: Multi-Session Preferences Implementation .. 169

Figure 4.56: Autonomic Environment Customization .. 170

Figure 4.57: Self-Managing Object Communication.. 178

Figure 4.58: Cross-Platform Object Interconnection using Java Remote Method Streams 179

Figure 4.59: Remote Method Stream .. 180

Figure 4.60: Method Stream Proxy ... 181

Figure 4.61: Access Control Intermediary .. 181

Figure 4.62: Excerpt of a Connector Intermediary ... 182

Figure 4.63: Excerpt of a Broker Intermediary ... 183

Figure 4.64: Method Stream Dispatcher ... 184

Figure 4.65: Binding and Registering a Method Stream with a Binding Name 185

Figure 4.66: Locating and Connecting a Method Stream Using a Binding Name 185

Figure 4.67: Performance Evaluation of Java Remote Method Streams .. 186

Figure 4.68: Autonomic Object Communication .. 187

Figure 4.69: Java Object Spaces ... 194

Figure 4.70: Object Communication Control ... 195

Figure 4.71: Binding Output Stream ... 196

Table of Figures xvii

Figure 4.72: Binding Input Stream ... 197

Figure 4.73: Serializing a Dynamic Stub .. 198

Figure 4.74: Deserializing a Dynamic Stub .. 199

Figure 4.75: Autonomic Object Linking ... 199

Figure 4.76: Java Thread Controller ... 207

Figure 4.77: Java Thread Wrapping .. 208

Figure 4.78: Example for Managed Thread Control ... 209

Figure 4.79: Thread Feature Implementation ... 210

Figure 4.80: Custom Signal Handling .. 211

Figure 4.81: Extensible Thread State Model .. 212

Figure 4.82: Autonomic Task Execution .. 212

Figure 4.83: Serializable Execution Unit .. 218

Figure 4.84: Java Execution Unit (JEU) ... 219

Figure 4.85: Serialization Workflow of an Execution Unit .. 221

Figure 4.86: Contextualization of Execution Unit .. 222

Figure 4.87: Initialization of Execution Unit .. 222

Figure 4.88: Custom Object Passivation and Activation .. 223

Figure 4.89: Object Action Stream ... 223

Figure 4.90: Fragmentation of Migration Overhead ... 224

Figure 4.91: Autonomic Load Balancing .. 225

Figure 4.92: Concerns of Code Mobility .. 227

Figure 5.1: On-Demand Computing System .. 235

Figure 5.2: On-Demand Internet Computing System (ODIX) ... 237

Figure 5.3: Basic Deployment Scheme ... 238

Figure 5.4: Stationary Deployment of ODIX ... 239

Figure 5.5: Portable Deployment of ODIX... 240

Figure 5.6: Roaming Deployment of ODIX ... 241

Figure 5.7: On-Demand Task Processing ... 242

Figure 5.8: On-Demand Application Engine .. 244

Figure 5.9: Console Administration of the On-Demand Application Engine 245

Figure 5.10: Exemplary Excerpt of the ODIX Autostart Script ... 245

Figure 5.11: ODIX Command Line Shell ... 246

Figure 5.12: Local Task Processing On-Demand ... 247

Figure 5.13: Internet Application Workbench .. 249

Figure 5.14: Nomadic Computing with the ODIX Application Workbench 250

xviii Table of Figures

Figure 5.15: Desktop User Interface of the ODIX Application Workbench 251

Figure 5.16: ODIX Crosslet Manager ... 252

Figure 5.17: Remote Task Processing On-Demand .. 253

Figure 5.18: Internet Application Factory .. 255

Figure 5.19: Utility Computing with ODIX Application Factory .. 256

Figure 5.20: Simple Task Deployment ... 257

Figure 5.21: ODIX Task Description .. 257

Figure 5.22: ODIX Remote Task Admin .. 258

Figure 5.23: Distributed Task Processing On-Demand .. 260

Figure 5.24: Internet Application Federation .. 262

Figure 5.25: Public Computing with the ODIX Application Federation .. 263

Figure 5.26: ODIX Federation Admin .. 264

Figure 5.27: Excerpt of a Federation Peer Description ... 265

Acronyms xix

ACRONYMS

ACL Agent Communication Language

ACOE Autonomic Cross-Platform Operating Environment

AJAX Asynchronous JavaScript and XML

AOP Aspect-Oriented Programming

API Application Programming Interface

APT Advanced Packing Tool

ASP Application Service Provider

BOINC Berkeley Open Infrastructure for Network Computing

BPEL Business Process Execution Language

CaaS Component-as-a-Service

CLR Common Language Runtime

CORBA Common Object Request Broker Architecture

DLL Dynamic Link Library

DNS Domain Name System

DPE Distributed Processing Environment

EAR Enterprise Archive

ECMA European Computer Manufacturers Association

EJB Enterprise Java Beans

ESB Enterprise Service Bus

FQCN Fully Qualified Class Name

FTP File Transfer Protocol

GNU General Public License

GUI Graphical User Interface

HTML Hypertext Markup Language

HTTP Hyper Text Transport Protocol

IaaS Infrastructure-as-a-Service

IIOP Internet Inter-ORB Protocol

JAR Java Archive

JCC Java Class Collection

JCS Java Class Space

JDBC Java Database Connectivity

JDK Java Development Kit

JEU Java Execution Unit

JIT Just In Time

xx Acronyms

JLM Java Loadable Module

JMX Java Management Extensions

JNDI Java Naming and Directory Interface

JNLP Java Network Launch Protocol

JRE Java Runtime Environment

JRMP Java Remote Method Protocol

JVM Java Virtual Machine

JWS Java Web Start

JXTA Juxtapose, Language- and Platform-Independent Protocol for P2P Networking

LDAP Lightweight Directory Access Protocol

ODAE On-Demand Application Engine

ODC On-Demand Computing

ODIC On-Demand Internet Computing

ODIX On-Demand Internet Computing System

OGSA Open Grid Service Architecture

OSGI Open Service Gateway Interface

P2P Peer-to-Peer

PaaS Platform-as-a-Service

PDA Personal Digital Assistant

POJO Plain Old Java Object

PVM Process Virtual Machine

RAP Rich AJAX Platform

RCF Rich Client Framework

RMI Remote Method Invocation

RM-ODP Reference Model for Open Distributed Processing

RPC Remote Procedure Call

RPM Red Hat Package Manager

SaaS Software-as-a-Service

SMTP Simple Message Transfer Protocol

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SSH Secure Shell

SVM System Virtual Machine

UDDI Universal Description, Discovery and Integration

USB Universal Serial Bus

Acronyms xxi

VM Virtual Machine

WAR Web Archive

WSDL Web Service Description Language

XaaS Everything-as-a-Service

XAML Extensible Application Markup Language

XAR Crossware Archive

XDK Crossware Development Kit

XML Extensible Markup Language

ZIP Zip Drive File Format

1. Introduction 1

1. Introduction

The introduction outlines the transition of the Internet from a dedicated network environment into a

ubiquitous computing environment. The upcoming challenges along the evolution of On Demand

Internet Computing (ODIC) are considered and the goal and subjects of this thesis are introduced.

Then, the contributions of this thesis towards an Autonomic Cross-Platform Operating Environment

(ACOE) are presented, which are followed by an overview of the rest of the work.

1.1 Motivation

1.1.1 Background

The Internet has evolved from a global communication medium towards a ubiquitous computing

environment targeting the vision of Mark Weiser in which "computers are available throughout the

physical environment but effectively invisible to the user" [379, 380]. Along with this evolution, the

perception and use of Internet computing devices have changed, as illustrated below.

Client Computing. Originally, standard Internet applications, such as web browsers and email

readers, were installed on a computing device and used to access remote Internet resources via

common service protocols. The fixed feature set propelled the development and adoption of Internet

applications for virtually all types of computing devices. In particular, the web browser turned into

the standard interface to access remote information and applications provided in the Internet. Vari-

ous advancements, such as Flash animations, Java applets and AJAX, helped to blur further the dif-

ferences between desktop and browser applications. With the advent of custom browser plugins,

such as Adobe AIR [2], Microsoft Silverlight [238] and Sun JavaFX [341], the scenario changed

[216]. The Internet browser does no longer represent the main web application itself but it acts as a

web application launcher for running Rich Internet Applications [224]. It enables users to run appli-

cations on-demand while he or she visits distinct web pages [295]. This trend even continued with

the complete decoupling of the Internet application from the browser that is no longer needed to

host the Internet applications. Related solutions, such as Sun Java Web Start [383] and Eclipse RCP

[96], have fostered the trend towards Rich Client Platforms where application software is deployed

via the Internet and installed on user request. The related software components are managed by us-

ing custom component repositories, such as Sun Java Store [346], to which developers might upl-

oad new components. Typically, the rich client platform periodically checks various repositories for

new software releases and updates the local application installation; hence turning the Internet into a

large-scale software deployment environment for client computing.

2 1. Introduction

Nomadic Computing. At the same time, the convergence of computing and communication devic-

es has changed people's working habits and has led to new applications, such as nomadic and

mobile computing [196, 198]. Small computing devices with wireless link capabilities, such as

PDAs and netbooks, enable people to connect to the Internet and access information while they are

on the move [199, 251, 359], e.g. for querying a tourist information system by using a mobile phone

[291]. The possibility of alternately using distinct computing devices, e.g. with different screen res-

olution and input interfaces, "motivates the break from the traditional model of computation to a

ubiquitous model that makes the user's entire environment available wherever it is required" [82].

Particular software solutions, such as Sun J2ME [167], facilitate the instant execution of the same

application on different mobile devices. In addition, roaming user profiles have been introduced to

customize and provide the illusion of a pervasive application environment to the user across distinct

computing devices and in different scenarios [197, 314]. Since computing terminals have become

ubiquitously available, nomadic computing approaches have also gained attraction when fixed

computing devices are used [206, 395], e.g. public information kiosks and desktop computers found

in Internet cafes [221] or smart homes [98]. Besides launching a new application instance, a user

may also request the migration of remote processes [82], e.g. relocating a terminal session from the

office computer to the currently used notebook.

Service Computing. From another point of view, the provisioning and utilization of remote re-

sources has also changed. Similar to the development on the client-side, server-side scenarios

shifted from legacy web appliances towards custom services as in service computing. Web services

based on standardized application protocols, such as SOAP, popularized the service-oriented com-

puting model [170, 286] and has been early adopted by various manufacturers [366]. Application

servers supporting standard programming models, such as Sun Enterprise Java Beans (EJB) [336],

enable the cross-deployment of services independent of the actual vendor and have boosted the

propagation of the web service model [366]. An Internet server is no longer only used to serve web

pages but has evolved into an application server that is capable of running multiple service in-

stances at the same time, e.g. an online shop and a help desk. Various efforts have also been made

to benefit from the Internet growth [304] and related interconnection of large numbers of applica-

tion servers, e.g. by combining the distributed computing power of server farms to surpass the li-

mited performance progression of standalone computing systems [240], such as in Grid computing.

In cloud computing, the service computing idea has been extended to the provisioning and utiliza-

tion of common computing resources on user request, e.g. Infrastructure-as-a-Service (IaaS),

Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS) [220].

1. Introduction 3

1.1.2 Evolution

As the progress in microelectronics technology goes on, computing resources become more and

more a commodity good that are ubiquitously available [230]. In former times, specific applications

and dedicated computer systems have been purchased and set up to match a given task setting ex-

clusively. Nowadays, a user is able to switch applications and share computer systems to perform

the same task in different use cases. In this scenario, a user typically does no longer want to be con-

cerned with the computing details to perform a given task, e.g. how to retrieve a suitable application

plugin for reading a document. Instead, the user wants to focus on the current task and expects the

involved computing systems to provide the required resources on-demand, e.g. downloading code

libraries as needed or adjusting the application configuration to match the current network proxy

settings. Therefore and in contrast to traditional computing, the resources are no longer provided in

advance and in a static manner but are allocated the time they are requested. This evolution towards

On-Demand Computing (ODC) can be characterized as the shift from resource-centric towards

task-centric computation, as shown in Figure 1.1.

Figure 1.1: Shift from Resource-Centric to Task-Centric Computing

In resource-centric computing approaches, an administrator prepares a given computing re-

source to perform certain tasks only and is characterized by a fixed assignment of resources. This

procedure is well-known in administered environments like for example in enterprise networks with

dedicated servers, such as database and mail servers. In task-centric computing approaches, there is

4 1. Introduction

no fixed assignment and a user can ideally process a task on various computing resources. They

have been not set up for a specific computing purpose but are spontaneously adjusted to perform the

present task. This idea has become very common when requesting computing resources in changing

task scenarios like in nomadic computing, Grid computing and public computing. With the hype

around cloud computing [150] and its implementation by commercial providers, e.g. Amazon EC2

and Google AppEngine [215], the idea of ODC has recently gained much support and attraction.

1.1.3 Vision

A particular vision in the evolution of ODC is to break up the resource-centric relationship among

user, application and computing device and to replace it with a task-centric assignment. In place of

static task configuration, dynamic mediation of computing resources enables on-demand task

processing without user intervention. A specific feature of ODC is the on-demand provision of suit-

able applications to process the submitted user tasks on unsupervised computing resources, as illu-

strated in Figure 1.2.

Figure 1.2: On-Demand Computing System

The task descriptions do not contain specifications about which application is to be launched

and which computing resources may be allocated to process the task. The On-Demand Computing

System is free to set up a matching processing configuration, e.g. following a given computing poli-

cy to minimize the resource costs or reduce the overall completion time.

1. Introduction 5

1.2 Focus

1.2.1 Goal

The goal of this thesis is to apply the vision of ODC [51, 110] on the Internet and to elaborate an

approach for On-Demand Internet Computing (ODIC). In particular, integrated application systems

to enable local task processing, remote task processing and distributed task processing on-demand

are to be implemented. A prerequisite is to enable the dynamic provision and configuration of net-

worked resources to run Internet applications on heterogeneous computing systems by user request,

as illustrated in Figure 1.3.

Figure 1.3: Running On-Demand Internet Applications on Networked Resources

Internet applications do not have to be installed in advance but are deployed, composed and

launched on the fly. Nomadic users may switch among heterogeneous computing devices and

access their personal settings, applications and documents while being on the move (A). Remote

computing resources can be assigned to instantaneously run custom applications without adminis-

trator intervention (B). Running application components may migrate from one application server to

another and seamlessly continue their computation (C). Finally, multiple application servers may

dynamically grouped in federations to balance time-consuming task processing requests (D).

6 1. Introduction

1.2.2 Challenges

The realization of On-Demand Internet Computing (ODIC) encounters particular challenges that

reflect the spontaneous use of computer devices to run custom applications in unmanaged and hete-

rogeneous environments [98]. The major issue is the unpredictable constellation of application re-

quirements and platform capabilities which makes it difficult to provide an all-purpose application

configuration or ensure a uniform platform administration, as shown in Figure 1.4.

Figure 1.4: Uncertain Application Requirements and Heterogeneous Platform Capabilities

Required resources cannot be provided and allocated in advance but have to be determined and

requested in the moment they are needed. In turn, resources are alternately utilized in different ap-

plication scenarios and the relationship of device user, application installation and employed com-

puter device is untied and replaced by a dynamic assignment. Application components may be

spread and linked across various Internet nodes and moved while they are in use. Due to its large

extent and diversity, the Internet also renders precautionary configuration attempts of application

deployers and platform administrators infeasible. This results in Internet application systems that

cannot be actually prepared by administered approaches to support yet unknown applications. A

suitable approach is to manage dynamic and unspecified scenarios without manual user interven-

tion. Promising remedies are autonomic computing systems that are supposed to maintain and adjust

themselves according to the current application scenario.

1. Introduction 7

1.2.3 Subject

The subject of this thesis is the elaboration, design and implementation of an Autonomic Cross-

Platform Operating Environment (ACOE) supporting ODIC. It is supposed to enable the seamless

and dynamic employment of Internet applications across different operating systems and platforms

by introducing a self-managing integration middleware called crossware, as shown in Figure 1.5.

Figure 1.5: Autonomic Cross-Platform Operating Environment

The self-managing integration middleware is manually installed on participating computing

systems in advance and appropriately configured to exploit the specific characteristics of the under-

lying operating system and hardware platform. It is not supposed to replace conventional middle-

ware approaches but acts as a mediator to uniformly interact with heterogeneous platform installa-

tions, resources and features. Inspired by the autonomic computing approach of IBM [250], it par-

ticularly supports the self-managed deployment, composition, hosting, customization, interconnec-

tion and migration of Internet applications without manual user intervention. The resulting ACOE

virtually hides the use of distinct computing systems and provides the illusion of a pervasive appli-

cation environment to the user and the Internet application. In particular, the users, the developers

and the applications are relieved to deal with the current platform configuration.

8 1. Introduction

1.3 Overview

1.3.1 Contributions

The major contributions of the thesis are: elaborating the challenges of On Demand Internet

Computing (ODIC), introducing the features of an Autonomic Cross-Platform Operating

Environment (ACOE), and realizing and evaluating the Crossware Development Kit (XDK) and the

On Demand Internet Computing System (ODIX), as shown in Figure 1.6 and outlined below.

Figure 1.6: Contributions of the Thesis

 On Demand Internet Computing (ODIC). The first contribution is the elaboration of the

scope and the vision of On Demand Internet Computing (ODIC). The Internet and its chal-

lenges for running Internet applications are presented. Application scenarios of traditional In-

ternet computing are considered and related assets along with the involved user roles are iden-

tified. After presenting the original ideas of On Demand Computing (ODC), the proposed shift

from resource-centric to task-centric computing and the replacement of static resource alloca-

tion by dynamic resource assignment are described. The related facets of ODIC and various vi-

sions supporting nomadic computing and utility computing in the Internet are outlined. A ref-

lection relates the idea and needs of ODIC to existing Internet computing approaches like web

computing and peer-to-peer computing.

1. Introduction 9

 Autonomic Cross-Platform Operating Environment (ACOE). A new approach towards

ODIC is presented based on an autonomic cross-platform operating environment. The goal is

to deal with uncertain application scenarios in an Internet environment by separating the appli-

cation configuration, the resource administration and the environment customization. To this

end, the challenges imposed by the Internet are examined and the design of a cross-platform

operating environment for dealing with related cross-platform issues is presented. The need for

automation in an unmanaged environment like the Internet is illustrated and the ideas of auto-

nomic computing are explored. The outcome is a self-managing infrastructure that replaces the

manually performed tasks of the user roles in Internet computing scenarios into self-managing

operations. Finally, a review of existing solutions motivates the need for a different implemen-

tation.

 Crossware Development Kit (XDK). The implementation of the autonomic cross-platform

operating environment in Java is described. It pursues the automation of specific computing as-

sets by separating the deployment, composition, hosting, customization, interconnection and

migration of applications. To this end, a self-managing integration middleware is implemented

that performs the virtualization and integration of platform resources as well as their automa-

tion. The outcome is the Crossware Development Kit (XDK) that represents a Java application

framework that hides platform-specific details from the application while mediating between

application requests and platform capabilities in a self-managing way. As a result, applications

can be run and moved among peers without having been explicitly installed and configured on

each node in advance.

 On Demand Internet Computing System (ODIX). The application of the XDK is demon-

strated by means of the On Demand Internet Computing System (ODIX). An On-Demand

Application Engine can be dynamically deployed via the Internet, supports the integration of

multiple applications and interacts with peer instances to provide the illusion of a pervasive

application environment across heterogeneous computing devices. The Internet Application

Workbench can be used by nomadic users to seamlessly launch custom applications on alter-

nating computing devices without the need of manual user profile synchronization. Another

development is the Internet Application Factory that supports spontaneous deployment and

remote execution of Internet applications on remote computing devices. The Internet

Application Federation shows the execution migration of running Internet applications be-

tween networked computing devices.

10 1. Introduction

1.3.2 Publications

Aspects of the work described in this thesis have been partially published in the following journals

and conference proceedings:

P1. Paal, S. ODIX: An On-Demand Internet Application Workbench. Proceedings of the 9th

International Conference on Internet Computing (ICOMP 2008). Las Vegas, USA. CSREA

2008. pp. 342-348.

P2. Paal, S., Bröcker, L., Borowski, M. Supporting On-Demand Collaboration in Web-Based

Communities. Proceedings of the 17th IEEE International Conference on Database and Expert

Systems Applications (DEXA 2006). Krakow, Poland. IEEE 2006. pp. 293-298.

P3. Paal, S., Kammüller, R., Freisleben, B. Self-Managing Application Composition for Cross-

Platform Operating Environments. Proceedings of the 2nd IEEE International Conference on

Autonomic and Autonomous Systems (ICAS 2006). Silicon Valley, USA. IEEE 2006. p. 37.

P4. Paal, S., Kammüller, R., Freisleben, B. Crossware: Integration Middleware for Autonomic

Cross-Platform Internet Application Environments. Journal on Integrated Computer-Aided

Engineering. Vol. 13, Nr. 1. IOS Press 2006. pp. 41-62.

P5. Paal, S., Kammüller, R., Freisleben, B. Crosslets: Self-Managing Application Deployment in a

Cross-Platform Operating Environment. Proceedings of the 3rd International Conference on

Component Deployment (CD 2005). LNCS 3798. Grenoble, France. Springer 2005. pp. 51-65

P6. Paal, S., Kammüller, R., Freisleben, B. An Autonomic Cross-Platform Operating Environment

for On Demand Internet Computing. Demonstration on the 6th International Middleware

Conference (MW 2005). Grenoble, France. 2005.

P7. Paal, S., Kammüller, R., Freisleben, B. Application Object Isolation in Cross-Platform

Operating Environments. Proceedings of the 6th International Symposium on Distributed

Objects and Applications (DOA 2005). LNCS 3761. Agia Napa, Cyprus. Springer 2005. pp.

1047-1064.

P8. Paal, S., Kammüller, R., Freisleben, B. Dynamic Software Deployment with Distributed

Application Repositories. 14. Fachtagung Kommunikation in Verteilten Systemen (KiVS

2005). Informatik aktuell. Kaiserlautern, Germany. Springer 2005. pp. 41-52.

P9. Paal, S., Novak, J., Freisleben, B. Kollektives Wissensmanagement in virtuellen

Gemeinschaften. Wissensprozesse in der Netzwerkgesellschaft. transcript Verlag 2004. pp.

119-143.

P10. Paal, S., Kammüller, R., Freisleben, B. Supporting Nomadic Desktop Computing using an

Internet Application Workbench. Proceedings of the 5th International Conference and

Workshop on Distributed Objects and Applications (DOA 2004). Larnaca, Cyprus. Springer

2004. pp. 40-43.

1. Introduction 11

P11. Paal, S., Kammüller, R., Freisleben, B. A Cross-Platform Application Environment for

Nomadic Desktop Computing. Proceedings of the International Conference on Objects,

Components, Architectures, Services, and Applications for a NetworkedWorld (NODE 2004).

LNCS 3263. Erfurt, Germany. Springer 2004. pp. 185-200.

P12. Paal, S., Kammüller, R., Freisleben, B. Self-Managing Remote Object Interconnection.

Proceedings of the 15th International Conference and Workshop on Database and Expert

Systems Applications (DEXA 2004). Zaragoza, Spain. IEEE 2004. pp. 758-763.

P13. Paal, S., Kammüller, R., Freisleben, B. Separating the Concerns of Distributed Deployment

and Dynamic Composition in Internet Application Systems. Proceedings of the 4th

International Conference on Distributed Objects and Applications (DOA 2003). LNCS 2888.

Catania, Italy. Springer 2003. pp. 1292-1311.

P14. Paal, S., Kammüller, R., Freisleben, B. Java Remote Object Binding with Method Streaming.

Proceedings of the 4th International Conference on Objects, Components, Architectures,

Services and Applications for a Networked World (NODE 2003). Erfurt, Germany, 2003. pp.

230-244.

P15. Paal, S., Kammüller, R., Freisleben, B. Java Class Deployment with Class Collections.

Objects, Components, Architectures, Services, and Applications for a NetworkedWorld.

LNCS 2591. Erfurt, Germany. Springer 2003. pp. 135-151.

P16. Paal, S., Kammüller, R., Freisleben, B. Customizable Deployment, Composition and Hosting

of Distributed Java Applications. Proceedings of the 3rd International Conference on

Distributed Objects and Applications (DOA 2002). LNCS 2519. Irvine, USA. Springer 2002.

pp. 845-865.

P17. Paal, S., Kammüller, R., Freisleben, B. Java Class Deployment with Class Collections.

Proceedings of the 3rd International Conference on Objects, Components, Architectures,

Services and Applications for a Networked World (NODE 2002). Erfurt, Germany. 2002. pp.

144-158.

P18. Paal, S., Kammüller, R., Freisleben, B. Java Class Separation for Multi-Application Hosting.

Proceedings of the 3rd International Conference on Internet Computing (IC 2002). Las Vegas,

USA. CSREA 2002. pp. 259-266.

P19. Paal, S., Kammüller, R., Freisleben, B. Dynamic Composition of Web Server Functionality

over the Internet. Proceedings of the 6th International WebNet World Conference of the

WWW, Internet, and Intranet (Webnet 2001). Orlando, USA. AACE 2001. pp. 967-972.

P20. Paal, S., Kammüller, R., Freisleben, B. Distributed Extension of Internet Information Systems.

Proceedings of the 13th IASTED International Conference on Parallel and Distributed

Computing and Systems (PDCS 2001). Anaheim, USA. IASTED 2001. pp. 38-43.

12 1. Introduction

1.3.3 Thesis Map

The remainder of the thesis is organized as follows. In Chapter 2, the facets and vision of On De-

mand Internet Computing (ODIC) are presented and related approaches are reviewed. In Chapter 3,

an autonomic cross-platform operating environment is introduced that is especially designed to sup-

port ODIC. In Chapter 4, the corresponding implementation of the Crossware Development Kit

(XDK) is illustrated and its features are compared with related work. In Chapter 5, the On Demand

Internet Computing System (ODIX) that is implemented on top of the XDK is presented and its

application for running Internet applications on-demand is demonstrated. Chapter 6 concludes this

thesis and outlines areas for future work.

2. Towards On-Demand Internet Computing 13

2. Towards On-Demand Internet Computing

2.1 Introduction

In this chapter, the motivation and scope of On Demand Internet Computing (ODIC) are determined

and common objectives are deduced. The definition of the Internet is presented and its characteris-

tics are outlined. Then, application scenarios of Internet computing are considered and related assets

as well as involved user roles are deduced. Afterwards, the trend from resource-centric to task-

centric computation as proposed in On Demand Computing (ODC) is highlighted. Transferring this

approach to the Internet, the facets of On Demand Internet Computing (ODIC) are elaborated and

several visions of use are presented. The chapter ends with a review of related Internet computing

approaches and their support of ODIC.

2.2 Internet

2.2.1 Definition

To delimit the scope of Internet computing, a definition of the Internet environment is given and

how it differs to other network installations. A good starting point is the comparison with Intranet

and Extranet as shown in Figure 2.1.

Figure 2.1: Intranet, Extranet and Internet

Intranet. An Intranet is a closed network, typically limited to a single organization unit, such as a

department or enterprise. It is run by a single authority that manages the employed computing de-

vices and network components. Though there is no need to rely on global standards, most Intranets

employ well-known technologies. In addition, they introduce suitable profiles to ensure a homoge-

14 2. Towards On-Demand Internet Computing

neous computing environment that can be easily managed, e.g. the same MS Windows operating

system on every computer is installed and using a central user profile management.

Extranet. Due to business demands, there is a valuable need to access Intranet resources across

multiple organizational units, such as found among project partners or within a joint enterprise.

While the network components within an Intranet are actually still not accessible from outside, oth-

ers are installed in the Extranet that may be accessed from everywhere, such as a public web server.

They provide selected access to Intranet resources like a customer database and follow global com-

munication standards, such as the network protocol HTTP.

Internet. In contrast to an Intranet and an Extranet, the Internet is not managed by a single authori-

ty, limited to a certain purpose or closed to an organizational unit. The Internet is observed as a

global network communication medium that enables different computing devices to communicate.

It is based on global and publicly accepted communication standards and services, such as the

Domain Name System (DNS), but does not impose the installation of a specific operating system or

use of a particular hardware component.

2.2.2 Characteristics

The Internet poses several constraints upon the deployment and hosting of distributed applications

[53]. A summary of the underlying characteristics is shown in Figure 2.2 and described below

Figure 2.2: Characteristics of the Internet

2. Towards On-Demand Internet Computing 15

Global Availability. Once an Internet application has been installed, it can be used from any place

around the world. There is no need for switching a particular link between two Internet nodes but

the Internet infrastructure is available all the time, e.g. proving 24/7h access to a news service. From

this point of view, an Internet application may be concurrently used by a large number of users

which may lead to performance and security problems.

Spatial Installation. The Internet is not limited to a certain location but represents a global com-

munication network. Related applications are distributed among various Internet nodes that have

been set up separately. The installation and configuration of an application cannot be performed for

every node by a single authority. Local administrators and users do not follow a common policy but

use different setup configurations, such as firewall rules and directory organization.

Open Standards. An important key stone for the success of the Internet is the foundation on open

standards. The interoperability of Internet applications is not bound to a particular implementation

but on public specifications. In this line, the open source idea gained much attraction by offering

solutions that may be used instead of and mixed with commercial software, such as Apache web

server or the Internet browser Mozilla Firefox.

Public Access. Another feature of the Internet is the provision of public access to any networked

resource. Apart from the dial-in costs to the local Internet provider, there are no further charges,

such as time or volume based connection fees. In conjunction with the global availability and use of

open standards, this turned Internet computing into a ubiquitous approach that has influenced many

areas of everyday life, e.g. offering the online encyclopedia Wikipedia at no charge.

Heterogeneous Resources. The Internet is a global conglomerate of highly diverse computing de-

vices, operating systems and applications. In contrast to an Intranet, there is no common policy

which ensures a homogeneous operating environment. Due to this, Internet computing has to deal

with heterogeneous assets, e.g. by distributing a specific implementation for every kind of sup-

ported operating systems or by relying on virtual runtime environments, such as Sun Java.

Alternating Configurations. Another issue of the Internet is the diversity of platform installations

that leads to alternating configuration scenarios from node to node. In effect, each Internet applica-

tion is typically installed and configured separately without considering a concurrent installation or

shareable resources, such as common code libraries. Moreover, it is difficult to dynamically deploy

and configure applications across multiple nodes without particular user intervention.

16 2. Towards On-Demand Internet Computing

2.2.3 Challenges

Considering the characteristics, the Internet represents a particular network environment that im-

poses various challenges for running Internet applications, as described below.

Concurrent Repositories. In contrast to an Intranet, the Internet is a public space where distributed

and separately managed application repositories co-exist. They allow the introduction of particular

features needed for large scale deployment scenarios, such as caching and fault tolerance. However,

application components may be concurrently deployed to various application repositories and the

availability of a component in well-known repositories cannot be guaranteed. Particular problems

are the retrieval of software components from multiple remote repositories, the discovery of code

repositories in unknown network scenarios and the encapsulation and transmission of related soft-

ware packages. Furthermore, security issues, such as proving the authenticity and validity of code

packages, must be tackled.

Software Evolution. Along with concurrent code repositories and software deployment, the prob-

lem of identifying and employing appropriate code packages on-demand shows up. In a typical sce-

nario, an administrator identifies the right code libraries and configures the application accordingly.

However, there is no common guideline for Internet environments how to tag and to distribute code

packages with additional attributes apart from the name. Moreover, different code packages may be

compatible and whereas the same code package could be provided in different variants, e.g. one

with a command-line interface and another using a GUI dialog. Dynamic dependency resolution

considering the current application scenario and available code packages is a further issue in this

context.

Portable Systems. Similar to nomadic users, computing devices have turned into portable systems,

such as notebooks, PDAs or smart phones. They have to deal with changing network configuration

and interconnection scenarios, e.g. roaming through network cells. Another problem is the unpre-

dictable change from online to offline operation. In this context, existing network links may have to

be re-established and switched. Furthermore, Internet applications cannot rely on a permanent con-

nection to a remote service but have to maintain its execution state and data in offline mode. This

leads to another problem, namely resource consumption and capabilities. Small computing devices

may only be used to run a limited set of applications and thus resource sharing across applications

should be considered.

Runtime Environment. Another problem is caused by the heterogeneous nature of the Internet and

the changing use of different resources. On the one hand, it is not possible to configure each re-

2. Towards On-Demand Internet Computing 17

source on every node in the same way. On the other hand, an application cannot be individually

implemented for each type of resource. Often used solutions are virtual runtime environments, such

as provided by Sun Java. A developer is able to compile an application into the intermediate Java

byte code that can be instantaneously run on any host with a Java Virtual Machine (JVM) installed.

However, this approach does not address different host configurations that may affect the applica-

tion composition, e.g. the lookup of required resources.

Large-Scale Extension. The large extent of the Internet and the comparatively limited bandwidth

of shared connections represent a particular challenge for the distribution of application code and

execution data. In contrast to a local network where bandwidths of up to 1 GBit/s are available, an

Internet connection is less capable and may even fail for several seconds. Particular scenarios are

mobile computing nodes, such as PDAs, which are usually equipped with low-bandwidth solutions,

such as Bluetooth or Wi-Fi. Consequently, the amount of data that has to be transmitted from the

source to the target host must be considered, e.g. by querying a local cache for already downloaded

application code.

Insecure Infrastructure. The Internet was designed to bridge distinct computing networks and

administration domains. On the one hand, this approach follows the basic idea to create a public

networking infrastructure without imposing a one-for-all global network management; on the other

hand it inherits security problems by incorporating unknown and potentially dangerous parties.

Apart from intercepting and manipulating network communication, Internet computing systems

have proven to be vulnerable against hacker intrusions, denial-of-service attacks and malicious code

received from remote sites. In this scenario, on-demand computing has to address the integrity of

code deployment, object communication and runtime environment.

Separated Administration. A basic difference of Intranets and Internet is the management of their

resources. The Internet is not ruled by a single organization but independently managed by diverse

authorities. There is no central instance that may be used to update software installations or syn-

chronize user profiles across different nodes at the same time. Instead, each node has to manage

itself according to the application scenario, user context and network configuration. A related prob-

lem is the lack of a common configuration policy. There is no guideline where to install application

libraries or how to access system resources. This makes it difficult for a developer to prepare the

operation of an application in a foreign computing environment and usually requires a separate ma-

nual installation process.

18 2. Towards On-Demand Internet Computing

2.3 Internet Computing

In this section, selected application scenarios of Internet computing are compared to refine the pic-

ture. Afterwards, related assets and user roles are deduced to elaborate the tasks that have to be per-

formed manually.

2.3.1 Application Scenarios

The Internet is used for various computing purposes and applications. With respect to the characte-

ristics of the Internet presented in Section 2.2.2, several application scenarios to determine the basic

assets of Internet computing are considered.

Personal Computing. Due to global availability and open standards, remote Internet resources may

be accessed using distinct applications individually installed and configured on a personal compu-

ting device, as shown in Figure 2.3.

Figure 2.3: Exclusive Use of a Local Computing Device

As an example, different web browser implementations can be used to access web pages in the

same way. The same is valid for other types of services, such as Telnet, FTP or SSH. In personal

computing scenarios, the computing device is usually not shared with other users and the user does

not employ other devices, such as PDAs or laptops. This results in a fixed assignment of device,

application and user.

Pervasive Computing. Another use of the Internet is pervasive computing and the breakup of strict

device assignment seen in personal computing by alternate and unconscious employment of various

computing devices [251], as shown in Figure 2.4.

2. Towards On-Demand Internet Computing 19

Figure 2.4: Alternate Employment of Distinct Computing Devices

After the user has finished using device 1, he or she may move from device 1 to device 2 and

continue his or her work, e.g. while walking between distributed information desks in a museum or

bulletin boards spread in a smart home environment. Since the user is not strictly bound to a single

computing device and in turn the same device may be alternately used by different users, each de-

vice is dynamically customized for providing a personal working environment to the user.

Nomadic Computing. A further step along this line is the alternate and mobile use of portable

computing devices, such as laptop and handheld computers, in conjunction with mobile communi-

cations technologies, as shown in Figure 2.5.

Figure 2.5: Switching to Another Type of Computing Device

20 2. Towards On-Demand Internet Computing

In nomadic computing, users are enabled to access the Internet, programs and data at distinct

locations. A user may take the computing device with him or engage different personal computing

devices which, in contrast to pervasive computing, are typically assigned to the same user. Nomadic

computing is designed to provide the system-level support for users who travel and switch compu-

ting devices while being on the move. The system support is meant to make this move as seamless

and transparent as possible.

Remote Computing. The global availability of the Internet and use of open standards allow to

access computing resources in a uniform way though running in a heterogeneous environment. In

remote computing, a dedicated computer offers resources while other machines access these re-

sources remotely via the Internet, as shown in Figure 2.6.

Figure 2.6: Exclusive Assignment of an Application Server

A popular example is the World Wide Web (WWW) that is based on the use of web standards,

such HTML and HTTP. A web browser can interact with every web server without any modifica-

tion. An advanced option is the installation of custom web services that are offered using WSDL,

SOAP and UDDI [322]. For remote access on application objects like in the object-oriented ap-

proach, there are cross-platform solutions, e.g. CORBA.

Shared Computing. In another application scenario, the Internet supports the outsourcing of dis-

tinct computing services to Application Service Providers (ASP), such as web hosting companies or

computer centers. In shared computing, enterprises let third-parties operate and maintain their ap-

plications and IT infrastructure, as shown in Figure 2.7.

2. Towards On-Demand Internet Computing 21

Figure 2.7: Sharing an Application Server with Multiple Services

Service providers seek to minimize the overall costs by untangling the fixed assignment of

computing resources, applications and customers. Instead, a service provisioning model allows the

dynamic allocation of computing resources as needed. Customers may then choose the best suitable

application service provider for each task on a pay-per-use basis.

Parallel Computing. The focus of parallel computing in the Internet is the concurrent use of vari-

ous computing devices to perform a computational task, as shown in Figure 2.8.

Figure 2.8: Concurrent Employment of Multiple Application Servers

22 2. Towards On-Demand Internet Computing

A related approach is Grid computing that crosses administrative domains and different device

configurations [116]. Common to all grids is their central management by a distinct grid node that

splits a computational task into smaller pieces, deploys them on available nodes and assembles the

partial results after completion. Typical is also the use of a common Grid installation based on open

standards, such as Globus [135], which is deployed on each grid node in advance and used to con-

trol the grid infrastructure later on.

2.3.2 Assets

From the application scenarios outlined in Section 2.3.1, various assets found in Internet computing

are deduced, as shown in Figure 2.9 and described below.

Figure 2.9: Assets of Internet Computing

Computing Device. The first asset is the computing device used to manage and run an Internet ap-

plication. There are various hardware platforms and operating systems, and once installed, they are

typically not extended nor modified during runtime. However, an Internet user may switch from one

computing device to another or concurrently use different devices, e.g. a notebook and desktop

computer while synchronizing his or her meeting calendar.

2. Towards On-Demand Internet Computing 23

Runtime System. The next asset is the runtime system that actually executes the Internet applica-

tion, such as Sun Java or a Perl interpreter. It can either run various applications at the same time or

exclusively be used for a single application only. Particular runtime environments, such as applet or

servlet containers, require extra application frameworks that offer advanced features like dynamic

service loading and multi-application resource management.

Software Component. An Internet application is typically built from diverse software components

that are appropriately composed to form the desired application functionality. Some components

may be dynamically loaded and shared by concurrently hosted applications while other components

are exclusively used by a single application. Particular component approaches like Enterprise Java

Beans (EJB) need an appropriate application container to run, e.g. offered by an application server.

Code Assembly. Software components are usually not deployed individually but grouped and dis-

tributed using a code assembly. Popular examples of Java code assemblies are Java Archives (JAR),

Web Archives (WAR) and Enterprise Archives (EAR). Though code assemblies may be separately

created and managed, they usually rely on a common specification that allows the runtime system to

exchange and combine them by request.

Process Environment. If an Internet application is started, a related process environment is created

that contains the application components and the task data. Depending on the underlying runtime

system, multiple applications may be also concurrently hosted in a single process environment, each

in a separated thread environment. This is often used for server-side Internet applications operating

as services for handling a user request.

User Profile. The execution of Internet applications may be customized by a user to meet his or her

preferences. The related settings are stored in a user profile that is evaluated when a process envi-

ronment associated with the corresponding user is created, e.g. by selecting the look-and-feel of a

GUI desktop. A user can create different user profiles for distinct computing systems or use a single

profile that is synchronized among the employed computing devices.

Network Connection. The final asset in this enumeration is network connections used by Internet

applications to access remote resources. Depending on the application scenario, various middleware

approaches are used, such as service-oriented, message-oriented and object-oriented middleware.

From a user's perspective, the use of remote resources is often transparently hidden by the underly-

ing middleware approach.

24 2. Towards On-Demand Internet Computing

2.3.3 User Roles

Various users are involved to set up, maintain and customize an Internet computing system as well

as to develop and deploy an Internet application and its software components, as shown in Figure

2.10.

Figure 2.10: User Roles in Internet Computing

System Administrator. The system administrator is responsible for the basic setup of a computing

device. Typically, he or she initially installs the hardware components and the operating system.

The continuing maintenance and update of core features, such as device drivers and hard disks, are

further tasks. In our consideration, the system administrator is not involved in installing and confi-

guring a specific Internet application.

Runtime Installer. Another role is runtime installer that denotes users capable of preparing a suit-

able runtime for hosting Internet applications, e.g. installing a Java Runtime Environment (JRE) or

downloading and configuring a Perl interpreter. The installer has to consider the current system

setup and choose appropriate software packages needed to execute the supposed Internet applica-

tions, e.g. setting up an application server to host Java servlets.

Component Provider. The component provider is a developer who works on the development of

distinct software components. They are encapsulated in a component assembly and uploaded to a

code repository. In this context, a component assembly is a particular code assembly that does not

2. Towards On-Demand Internet Computing 25

contain an entire application but components along with related specification, e.g. about required

runtime properties and dependencies to other components.

Application Assembler. Similar to the tasks of a component provider, an application assembler

works on the development of applications by selecting software components and packaging them in

an application assembly. An application assembly does not have to contain software code but may

also refer to component assemblies containing the desired components, e.g. by using query state-

ments to look up for components matching a certain release.

Assembly Deployer. The assembly deployer is the link between the development and the execution

of an Internet application. He or she decides which applications to deploy on a specific computing

device and manually retrieves and installs related assemblies from the code repository. In a typical

scenario, there are various repositories to choose from and the deployer has to monitor the reposito-

ries for recently released software updates and bug fixes.

Internet User. The final role is the Internet user who is actually employing the computer device to

launch a specific Internet application. The required runtime and application components are already

installed and configured appropriately. In addition, the Internet user may customize the existing

configuration and store his or her preferences in a user profile. Besides a human user, an Internet

user may also be an application accessing the computing device via a network interface.

26 2. Towards On-Demand Internet Computing

2.4 On-Demand Internet Computing

In this section, the definition of On-Demand Internet Computing (ODIC) is deduced by considering

the shift from resource-centric to task-centric computation introduced with regular On-Demand

Computing (ODC) in a well-known network environment like an Intranet or an Extranet. After-

wards, on-demand facets of ODIC are worked out with particular respect to the elaborated assets

and user roles of Internet computing in the previous chapter.

2.4.1 From Resource-Centric to Task-Centric Computation

There are a number of visions concerning ODC that are illustrated by means of different business

cases and application scenarios, such as nomadic computing, utility computing and cloud compu-

ting. As summarized in [110], "on-demand computing is a broad category that includes all the

other terms, each of which means something slightly different". Depending on the concrete use, par-

ticular features are emphasized in one scenario while in others they are not considered, such as

adaptive bandwidth allocation and dynamic software composition. A common characterization fol-

lows the use cases that have emerged along the rise of ODC and are described below.

Infrastructure Management. Inspired by the success of web hosting and virtual private servers, an

increasing number of companies discover that outsourcing of infrastructure management reduces

costs by sharing commonly used facilities, such as computing centers and backup systems. In this

scenario, on demand computing is also interpreted as an approach to facilitate the management and

utilization of own resources across distinct parties in the same company. The costs are shared on the

amount of resources actually consumed and therefore reflect the real level of business activity. A

typical example is the dynamic allocation of multiple cluster nodes according to the current task

requirements. In recent time, this trend is also denoted as Infrastructure-as-a-Service (IaaS) [218].

Application Server. A refinement is the exploitation of managed computing platforms with an in-

tegrated application stack already installed. The deployment of custom applications is facilitated by

removing the need to install, configure and manage common software solutions stacks, such as a

LAMP installation (Linux, Apache, MySQL, and PHP), a Java Servlet Container or an EJB server.

Typically, the application servers are hosted in a computing center and are remotely accessed, e.g.

by using SSH. In such a scenario, the idea of providing pre-configured application servers has been

further developed towards Platform-as-a-Service (PaaS) where the complete application develop-

ment and deployment are exclusively performed over the Internet, such as with Google AppEngine.

2. Towards On-Demand Internet Computing 27

Service Provider. The next step is the utilization of ready-to-use appliances provided by service

providers, e.g. a web hosting platform or virtual root servers running on top of a shared computing

platform. A further development is the invention of a multi-tenant architecture in which distinct

customers share the same computing resources, e.g. database and process environment. While cus-

tomer-related resources are virtually separated by the shared application instance, the overall

amount of memory and processing overhead is reduced compared to launching and terminating iso-

lated application instances for every customer. In particular, this approach has gained much attrac-

tion for accessing Internet application services and is denoted as Software-as-a-Service (SaaS).

Software Leasing. In traditional computing, users buy software packages and a number of related

licenses for lifetime; regardless whether the software is still needed or not, e.g. after the end of a

project. In a particular use case of on demand computing, required software is not bought but leased

for a period of time which typically cuts down associated license costs. In addition, a user can select

which features of an application suite he or she actually needs and pay only the requested ones. The

software is then executed on a remote host, e.g. an application service provider, or the components

are downloaded and only runnable during the time period paid for. Following the naming schemes

of IaaS, PaaS and SaaS, this trend might be denoted as Component-as-a-Service (CaaS).

Common to the illustrated use cases of ODC is the shift from resource-centric towards task-

centric computation replacing static resource allocation by dynamic resource assignment, as shown

in Figure 2.11.

In traditional resource-centric computing, a computing resource is prepared by an administrator

to perform certain types of tasks only, e.g. number crunching or video conversion. In task-centric

computing, a user issues tasks and uses various computing resources without task-specific setup.

Since there is no static task assignment, a resource can be no longer appropriately administered and

provided for every possible computational task by the administrator in advance. In contrast, various

resources, such as application configurations, software components and user profiles, may be used

to perform the computation; and have to be provided on demand and managed in the moment the

task is issued by the user.

28 2. Towards On-Demand Internet Computing

Figure 2.11: Shift from Resource-Centric to Task-Centric Computing

2.4.2 Facets

Transferring the ODC approach to the Internet environment, On Demand Internet Computing

(ODIC) is defined as the spontaneous provision and configuration of Internet assets to perform a

computational task on demand. Along the assets illustrated in Section 2.3.2, different facets of OD-

IC are distinguished as outlined in Figure 2.12 and described below.

Device On Demand. A basic facet is the dynamic allocation and grouping of computing resources.

A resource is no longer tightly bound to a certain task but is dynamically allocated and used in dif-

ferent scenarios. For example, a company may offer computing time in a high-performance server

farm according to the Grid approach. A customer can choose the number of servers that should be

utilized to process a complex computation in a given time. A metering service turns the servers into

utilities on demand that are only paid for the time they are used. In another scenario, desktop com-

puters may not always be utilized and could be virtually combined to assist in a global computing

effort like in the SETI and Folding@home projects [11, 115].

2. Towards On-Demand Internet Computing 29

Figure 2.12: Facets of On Demand Internet Computing

Runtime On Demand. There are various types of Internet applications that need different runtime

environments, such as Sun Java Runtime Environment (JRE), Microsoft Common Language Run-

time (CLR) or a Perl interpreter. The shift towards ODIC requires to provide appropriate runtime

environments on demand. On the client side, popular examples are browser applets, such as Flash

animations, which offer to automatically download and install the required runtime before starting

the actual applet. The user does not have to ask an administrator for manual installation, and the

runtime loaders are often designed to choose the proper installation files for the currently employed

computing device and operating system.

Assembly On Demand. Besides the spontaneous employment of an available computing device

and the automatic installation of the runtime environment, the application itself has to be deployed

and configured. This is often achieved by using remote code repositories and deployment units that

can be easily retrieved from the requesting computing node. For example, a Java applet is linked in

a web page along with the URL referring to a related Java Archive (JAR) on the server. The JRE

plugin of the Internet browsers downloads the JAR file as soon as the web page is visited by the

user and starts the Java applet afterwards. In this example, there is no need to install software pack-

ages in advance. This allows users to virtually start every applet on every computing device.

Component On Demand. Another on-demand facet is the provision of application components and

the dynamic creation of custom applications by assembling separately developed and deployed

components. For Internet computing environments, this is typically achieved by using particular

dynamic code loading approaches, such as MS ActiveX, Sun JNLP and OSGI. They allow retriev-

30 2. Towards On-Demand Internet Computing

ing application components from code repositories via the Internet and composing the application

during runtime. The sharing and reusing of components between different applications does not

only allow reshaping computing systems according to the specific task and resource capabilities but

also saves resources, such as network bandwidth and computer memory.

Profile On Demand. A further facet is the seamless customization of software and resource assets

according to the needs of the employing user. This is essential for software installations and re-

source elements that are not used by a single user only but shared and alternately applied like in the

Internet. As an example, a desktop computer in a public space, such as an Internet cafe or a library,

may be used by different users, each launching a locally installed Internet browser. Although not

using their own computer, every user expects to work with his or her personal bookmark list, while

other users are not allowed to gain access. The profiles are applied without human intervention and

used to seamlessly customize the currently employed computing device.

Network On Demand. In contrast to a well-known and managed network environment, such as an

Intranet, the location of remote resources in the Internet may be unknown. Similarly, a connection

to a resource can be only set up if client and server use the same protocol configuration. To this end,

a resource registry, such as UDDI for web services or a naming service for CORBA, is introduced

which allows client and servers to register and query resources, respectively. In addition, some ap-

proaches offer to download and include a suitable stub for connecting a remote resource on the fly,

e.g. Sun Jini [373]. The overall idea is to bridge the network without bothering the user or the appli-

cation to do so.

Process On Demand. The final facet in this enumeration is the movement of a process from one

computing device to another, such as found in mobile code scenarios. For this purpose, the process

is typically suspended; its data is packaged in a transferable form and transmitted to the remote run-

time environment that has been appropriately prepared. The application code is either transmitted as

well or retrieved by the remote node. After all, the resource bindings are re-established and the

process resumes its computation. This facet allows users to switch computing devices while appli-

cations are still in use and enables to balance the overall load of a computing network without task

interruption, e.g. due to server shut down or maintenance work.

2.4.3 Vision

The shift from resource-centric to task-centric computation will let computing devices respond fast-

er, operate in a more adaptive manner and open new ways to perform specific user tasks. Following

2. Towards On-Demand Internet Computing 31

this vision, ODIC will handle uncertain task requirements and heterogeneous platform configura-

tions to run Internet applications on distinct Internet computing devices, as illustrated in Figure

2.13.

Figure 2.13: Vision of On Demand Internet Computing

The fixed coupling of application installation and computing device is replaced by a flexible

processing setup performed on-demand. Concerning the computing scenarios presented in Section

2.3.1, various applications of ODIC are envisioned, as outlined below.

Local Task Processing. The first vision is the support of local task processing by using a GUI-

based pervasive application workbench. It hides the concrete implementation and composition of

the Internet application as well as the configuration and customization of the local computing de-

vice. This will allow users to move from one computing device to another while being able to

access their information and applications in a uniform and pervasive way.

Remote Task Processing. The ability to deploy and launch Internet applications on demand will be

used to turn computer devices into shared computing factories and to support remote task

processing in a multi-tenant manner. Related application environments are appropriately installed

32 2. Towards On-Demand Internet Computing

and shared by various processes without administrator intervention. Common resources, such as

software components and network connections will be dynamically assigned and utilized.

Distributed Task Processing. Another vision is the association of heterogeneous computing devic-

es to a public platform federation and the disappearance of the individual Internet computing device

used to process a task. Task processing requests are deployed to the federation without knowledge

about the actual setup and may be distributed to one or many computing nodes. Related task appli-

cations and data are transparently moved within the platform federation.

2. Towards On-Demand Internet Computing 33

2.5 Related Approaches

In this section, well-known approaches of Internet computing are discussed and how well they ad-

dress the presented facets of ODIC to support the shift from resource-centric to task-centric compu-

ting. Based on the distinction of the presented vision in Section 2.4.3, the regarded approaches are

categorized into local task processing, remote task processing and distributed task processing.

2.5.1 Local Task Processing

In local task processing, a computational task is performed on resident computing systems and the

related software components are dynamically retrieved and run the time the task is issued. In con-

trast to remote task computing [see Section 2.5.2], no task data has to be transferred to a foreign and

potentially unsafe node, e.g. local task computing may access a local database where remote task

computing is not suitable.

Thin Client Computing. Since the web computing approach utilizes the omnipresent web browser

to enable the ubiquitous access to remote Internet resources, it also forces Internet applications to

use a limited HTML/HTTP based user interface. This has lead to the development of browser plu-

gins that can be added to the browser installation. They offer to run a custom Internet application,

also known as applet, within the browser process environment, as shown in Figure 2.14.

The basic idea is to allow the deployment and running of custom Internet applications on the

client side in the same way as web pages are downloaded and rendered by the browser, e.g. by inte-

grating the application interface into the web page as with Java applets and Flash animations. To

this end, specific browser plugin are installed in advance. They do not contain the Internet applica-

tion themselves, but create a suitable application container whenever a related applet is downloaded

and about to run. With custom client-side applications, the service does no longer have to deliver

standard HTML pages but may rely on proprietary application communication, e.g. transmitting a

3D graphic model that can be modified by the user via an advanced applet control element.

Although the thin client approach offers flexible visualization and interaction features almost

like a regular desktop application, it still relies on the server-side business logic code. Similar to

web pages, applets can only be used while they are connected to the remote server. They are not

designed to run outside the browser. Typically, there are restrictions for the applet to access sensi-

tive data such as local files, or to connect to a remote server other than it has been loaded from such

as in the sandbox model of Java. A further drawback of the thin client approach is that it introduces

34 2. Towards On-Demand Internet Computing

a particular programming and runtime model that makes it complicated to transfer a regular applica-

tion into an applet. In addition, concurrently running applets are usually hosted in distinct runtime

environments and do not share client resources or program code.

Figure 2.14: Thin Client Computing

Concerning ODIC, the thin client approach already enables the spontaneous execution of cus-

tom Internet applications on the client side. It overcomes the limitation of the native web computing

approach without bothering users to manually install a client application for every service, as in

regular service computing. The required browser plugins are often available for a broad range of

computing systems and typically introduce a virtual runtime environment that frees application de-

velopers to create different applets for every target computing system. In summary, thin client com-

puting is a feasible approach to deploy custom application interfaces for accessing specific remote

services. However, there is no support for deploying entire applications on another computing de-

vice, e.g. for local task processing in a personal computing scenario.

Rich Client Computing. A further step in Internet computing was the introduction of the rich

client computing approach that addresses the deployment of Internet applications on the personal

computing device of the customer. For this purpose, a Rich Client Framework (RCF) is installed on

2. Towards On-Demand Internet Computing 35

the potential clients. It controls an application environment on top of the native operating system to

run custom Internet applications, as shown in Figure 2.15.

Figure 2.15: Rich Client Computing

Since the RCF should be able to manage multiple applications, rich client applications are de-

signed to share client resources and program code. They are deployed using a component deploy-

ment model. The RCF caches downloaded deployment units and reuses compatible components if

an application is to be launched. Missing and updated components are requested from remote dep-

loyment services and retrieved automatically. In this context, the RCF itself often provides particu-

lar features to the applications such as an integrated user interface that can be shared by the hosted

applications, e.g. a common application menu or window control. Applications may also use com-

ponents from other applications to extend their original functionality, e.g. loading a new version of

an image viewer plugin. In contrast to thin client applications, a rich client application does not rely

on remote services and can be used offline as well. The rich client computing approach has gained

much attraction with the advent of advanced RCF implementations, such as Eclipse Equinox [95].

The possibility to deploy and update fully-fledged applications across the Internet, such as with

Java Web Start, has simplified the deployer's work and represents a step towards separating the

fixed tangling of computing device and application installation. Moreover, the manual and shared

installation of the RCF enables to adjust the framework exactly to the capabilities of the underlying

computing device and operating system. This moves this task away from the applications. On the

other hand, rich client applications often have to follow a specific programming and deployment

model that incurs additional effort to the application developers and deployers. The setup and main-

36 2. Towards On-Demand Internet Computing

tenance of distributed deployment services is still subject of ongoing development, e.g. with respect

to reliability and synchronized code distribution.

The rich client computing approach addresses several features of ODIC, such as the spontane-

ous deployment of software components to the client. By using a RCF and remote code repositories,

an application deployer is no longer needed. If the repositories are linked and assemblies are ex-

changed on request, application assemblers and component providers do not have to upload the as-

semblies to each repository. In contrast to the previous approaches, the RCF may run Internet appli-

cations not only online but also offline. A major drawback of this approach is the focus on a single

device installation that requires installing and setting up custom applications on every participating

computing device. This is also valid for the user settings that are typically not synchronized across

the employed computing devices.

2.5.2 Remote Task Processing

In remote task processing, the utilized computing resources do not reside on the local computing

device but on distinct remote computing systems that are typically shared with other users. A com-

putational task is deployed to usually one server and the results are sent back to the client after

completion. To this end, an appropriate task processing service is installed and permanently run on

the remote site while a control application on the local site can connect to the service and does not

have to wait for the task results, e.g. when retrieving them in an asynchronous manner.

Service Computing. The first regarded approach is service computing in which resources of remote

computing devices are utilized to perform a specific task in place of the issuing computing node. In

this scenario, there is a client machine that is used to prepare a task and to interact with the remote

server machine connected via a network link, as shown in Figure 2.16.

The actual processing is done on the server machine on which a corresponding service has

been installed and configured before. To this end, the server administrator has to set up an applica-

tion server (Server 1) and to configure a set of services according to the purpose of the server, e.g.

performing video processing or data mining. In a typical scenario, a local code repository is used to

store related code components in well-known locations from where they are retrieved when the ser-

vice is started. The same procedure is done for every other server (Server 2). The client is typically

a regular computing device, such as a desktop computer, which is also set up in advance and in-

stalled with appropriate applications suitable to access the desired remote services, e.g. via web

services or proprietary network protocols. The user settings for customizing the client computing

2. Towards On-Demand Internet Computing 37

environment and service operation, such as account credentials, are partially managed on the client

and on the server side.

Figure 2.16: Service Computing

The major advantage of this approach is the decoupling of task preparation from task

processing. This is achieved by using services that are uniformly accessible although they are ma-

naged separately. The actual implementation of the client and service instances is hidden, which

supports operating in a heterogeneous environment, e.g. C++ clients can transparently access Java

services. A service registry can be used by service providers to announce the availability of specific

services. In turn, clients may query the registry for suitable services according to their attributes,

e.g. costs and quality of the services. Another advantage is the simultaneous processing of paralle-

lizable subtasks by concurrently issuing requests to various service instances.

Concerning ODIC, the online-only operation mode of the service computing approach limits its

use to remote task processing. It does not support mobile applications and seamless customization

among different computing devices. A service can only be used if a suitable client application has

been installed, and the spontaneous deployment of services to further computing devices is not sup-

38 2. Towards On-Demand Internet Computing

ported. In practice, this is complicated by using different code repositories on every site to which

the service components have to be deployed. Furthermore, the user settings to personalize the client

application and the services are separately managed and must be synchronized by the user, e.g.

switching from one service to another, the settings are not transferred but the user has to customize

the new service again. In addition, service computing still involves various user roles, such as plat-

form administrator, runtime installer and application deployer. Thus, service computing is not suit-

able for ODIC with respect to running a random application without manual user intervention.

Web Computing. An approach similar to service computing is web computing that is also based on

the remote execution of a service but uses a regular web browser on the client side. In this scenario,

the web browser is used to offer a uniform and standardized graphical user interface to different

remote services without the need to install a custom client application for each type of service, as

shown in Figure 2.17.

Figure 2.17: Web Computing

In a typical web service environment, the application server offers a standard runtime environ-

ment for hosting web servlets that may be accessed via regular HTTP, e.g. Jakarta Tomcat [16]. A

new service is simply installed by deploying the servlet assembly to the application server, e.g. a

web archive (WAR) or an Enterprise Archive (EAR). Afterwards, a suitable servlet environment is

2. Towards On-Demand Internet Computing 39

automatically created in which the service is hosted and run; typically without interfering with other

servlets. In addition, the server administrator may install and configure common resources, such as

a database connection pool, which may be shared by the servlets. On the client side, the web brows-

er does not need further maintenance once it has been installed. In contrast to native service compu-

ting, there is no code deployment to the client side since the browser does not execute specific busi-

ness logic but acts as a user interface that renders common HTML elements.

The web computing approach owes its success to the low-profile requirements of a regular web

browser that is installed on nearly every personal computing device today. Consequently, related

web services may be accessed from anywhere and at anytime. This commoditization enables new

ways of interacting with remote resources, e.g. blending the access on distinct services into a com-

mon web interface like in Internet portals [378]. Another trend is the activation of the formerly stat-

ic web page by using browser inherent features, e.g. by using Asynchronous JavaScript and XML as

in AJAX [293]. The web page is no longer entirely loaded but only the parts currently needed by

the user. The remaining components are downloaded in the background and separately updated

which results in better overall response of the web interface as in the Rich Internet Application ap-

proach [224]. The emergence of web application frameworks like Java Server Faces [345] has sim-

plified the development of web portals that impersonate the traditional graphical desktop computer

interface. Particular code migration tools like the Google Web Toolkit (GWT) allow developers to

write a desktop application by using the Java programming language and to compile it into an

AJAX application [298, 144]. The Web 2.0 approach aims to change the web at all by including

users to create, customize and offering web content and services, e.g. combined in so called service

mashups [31]. To this end, service interfaces are opened for public access, such as the Google

search API, and related services can be used in other services and included in private web pages.

The basic characteristic of web computing featuring ODIC is the remote execution of the actual

application and the resulting dependency on an Internet connection. In this context, the transmission

of sensitive data or personal documents may not be possible due to security threads. Although there

is an ongoing progress in transforming the web browser to a desktop-like user interface, it is not

possible to reuse the same web interface implementation for different services. Furthermore, web

computing does not address the spontaneous deployment of remote applications and does not main-

tain user profiles among different service instances.

40 2. Towards On-Demand Internet Computing

2.5.3 Distributed Task Processing

To perform a specific task, remote and local task processing approaches are limited in the number

and types of computing resources to select from. An advancement is distributed task processing

where a task is split and concurrently executed on various computing nodes. From this point of

view, task data and required software components are distributed across the network.

Peer-to-Peer Computing. The presented local and remote computing approaches separate compu-

ting nodes into clients and servers that allocate and offer resources, respectively. In peer-to-peer

computing, this is replaced by computing nodes that are explicitly supposed to act as clients and

servers at the same time, as shown in Figure 2.18.

Figure 2.18: Peer-to-Peer Computing

Although a peer may run alone without connecting to any other peer, it usually joins a specific

peer network to contribute to a dedicated computation, e.g. offering data sharing services like in the

bittorrent network. However, there is no remote management of peers in terms of controlling ser-

vice provision and utilization. On the contrary, a peer may come online and go offline any time,

offer services and abandon operation unexpectedly. In a typical scenario, one or multiple peer ser-

vices are installed on top of a P2P middleware that handles common peer service functions, such as

peer discovery, service announcements and network communication. In this context, a peer network

is usually limited to computing nodes using the same P2P middleware. In fact, a peer may only join

a P2P network if an appropriate P2P middleware has been manually installed before. The P2P com-

puting approach has gained much attention with the rise of file sharing systems [60], such as Nap-

ster and Gnutella [303]. Other popular applications are the support of complex computations, such

as in SETI [11], and the provision of novel collaboration tools like instant messengers [121]. A ma-

jor benefit of P2P systems is the self-managing organization of resource announcement and discov-

2. Towards On-Demand Internet Computing 41

ery [287]. This has also enabled the peer integration of temporarily connected computing devices,

such as personal computers that are likely to disappear without notice. From this point of view, the

operation of a P2P network cannot be determined exactly, e.g. required resources may become un-

available though they are still in use or the utilization of available peer resources is poor. For large

peer networks, balancing approaches have to be employed that aim at optimizing the peer network

in a self-managing way, e.g. by determining the computational load of the peers and reorganizing

the task distribution [236]. Further, the distribution of new services on distinct nodes in a large P2P

network is usually not possible without the explicit permission and help of the administrator of the

respective peer node. In small network environments, e.g. in an enterprise scenario [61], there are

particular P2P middleware solutions like Sun Jini [347] that supports the spontaneous interoperation

of computing devices, e.g. running in a clustered environment [219]. It benefits from the cross-

platform availability of the JRE [189].

Regarding ODIC, the P2P computing approach allows to connect to dynamically discovered

peer nodes in the Internet and allocate computing resources as needed. To this end, the P2P mid-

dleware frees developers and users from handling basic peer communication while building a trans-

parent resource network, e.g. by connecting to a well-known super peer node and retrieving all cur-

rently running peers on-demand. On the other hand, a P2P network is usually dedicated to certain

services, such as file sharing, and cannot be used for different computing tasks [112]. The deploy-

ment and composition of task-specific software components on the fly is only accepted from trusta-

ble peer nodes, e.g. in a small network environment by using Sun Jini. In this context, typical P2P

enabling approaches for the Internet, such as JXTA [140], focus more on network compatibility

than code compatibility and define how peer services should interact. This finally leads to heteroge-

neous computing environments and makes it more difficult to deploy and retrieve software compo-

nents suitable for every peer on-demand [121].

Grid Computing. A refinement of the P2P computing approach is the use of an application mid-

dleware that supports the dynamic deployment, configuration and allocation of services in a net-

worked computing environment in the Grid computing approach, remote computing devices are

interconnected and form a collaboration network, as shown in Figure 2.19.

There are different types of Grids, such as Data Grids, Service Grids and Resource Grids. The

common focus is on supporting the dynamic allocation and interconnection of Grid nodes according

to the task requirements, e.g. enabling high-performance computation using many low-profile com-

puting devices in parallel [122]. A specific Grid middleware, e.g. Globus [135], Unicore [361] or

42 2. Towards On-Demand Internet Computing

gLite [134], controls the task deployment within the Grid and handles topics, such as allocation of

additional nodes, accounting of the utilized resources and granting access to device resources.

Figure 2.19: Grid Computing

The overall vision of Grid computing is the transformation of networked computing resources

into a cross-platform computing environment in which resources are allocated and utilized dynami-

cally. Along with the standardizations efforts to enable intergrid collaboration among competing

Grid middleware implementations, e.g. by the introduction of OGSA [261], Grid computing prom-

ises to combine remote computing resources as needed without bothering the user to administer the

Grid network. However, Grid computing is not designed to handle personal computing applications,

such as running a web browser on a local computing device. In addition, running an Internet appli-

cation in a Grid requires to move the process data to the currently employed Grid node which is not

always possible, e.g. in case of a database or sensitive personal documents.

The Grid computing approach represents the state-of-the-art solution to distribute computation-

al tasks and utilize remote computing resources on-demand. Although new services were originally

supposed to be installed by the administrator [213], there are approaches that support the hot dep-

loyment of Grid services while the application servers are already up and running [125, 326]. In a

similar way, a typical Grid installation is supposed to be distributed on well-known and fixed com-

puting systems, e.g. located in an enterprise network, there are approaches to open the Grid idea to

2. Towards On-Demand Internet Computing 43

on-demand computing scenarios, e.g. by using mobile agents [133] and mobile computing devices

[289]. As a result, Grid computing greatly supports the on-demand vision of moving from resource-

centric to task-centric computing. However, this is only valid for distributed task processing and

does not apply to standalone scenarios, such as found in personal and nomadic computing applica-

tions. For example, Grid computing does not address the synchronization of profiles on demand and

the spontaneous deployment on yet unknown personal computing devices, such as found in typical

Internet computing scenarios.

44 2. Towards On-Demand Internet Computing

2.6 Summary

In this chapter, On Demand Internet Computing (ODIC) has been introduced from various perspec-

tives. The scope of Internet computing has been outlined by separating it from Intranet and Extranet

scenarios and by describing the characteristics of the Internet environment. Then, Internet applica-

tions and basic application scenarios have been regarded as well as the assets and user roles of In-

ternet computing. The idea of On Demand Computing (ODC) has been presented around the shift

from resource-centric to task-centric computing. Afterwards, this idea has been transferred to the

Internet, and the facets and vision of On Demand Internet Computing (ODIC) have been elaborated.

Finally, the major state-of-the-art approaches in regular Internet computing has been regarded and

how well they support the visions of ODIC; namely local, remote and distributed task processing

on-demand.

The basic outcome of this introduction to ODIC is the increasing demand to enable regular us-

ers to utilize Internet resources for tasks that were uncertain the time the resources were set up. A

related proposal is to shift the view from resource-centric to task-centric computation as presented

by ODC. The fixed assignment and configuration of resources is to be replaced by dynamic

allocation and customization of resources needed to perform the task. Although this affects various

user roles and creates some effort, it may still be conceivable for a limited number of well-known

computing resources, e.g. an administrator group could permanently reconfigure an enterprise com-

puting infrastructure according to changing requests. The Internet, however, represents an open

network environment with an unlimited number of separately managed heterogeneous resources

that cannot be manually reconfigured to perform uncertain tasks. As a consequence, the static one-

for-all resource administration has to be changed into a dynamic configurable-for-all resource

automation. With respect to this assumption, it has been shown that regular Internet computing ap-

proaches focus on individual application scenarios, address selected types of computing assets and

reveal a limited automation of on-demand facets, as presented in Section 2.3.1, Section 2.3.2 and

Section 2.4.2, respectively. Consequently, a common solution is needed that is not limited to either

local, remote or distributed task processing, at best considers all required computing assets and

enables the common automation of on-demand facets for tasks not known at the time the Internet

computing systems were set up.

3. An Autonomic Cross-Platform Operating Environment 45

3. An Autonomic Cross-Platform Operating Environment

3.1 Introduction

In this chapter, the proposal of using an Autonomic Cross-Platform Operating Environment

(ACOE) to support the visions of ODIC and the required automation of related on-demand facets

are presented. The project mission is sketched, and the cross-platform and autonomic operation of

the proposed environment is described. The chapter ends with a reflection on existing solutions and

a summary of the outcome.

3.1.1 Subject

With respect to the elaboration of ODIC in Section 2.4, the subject of the proposal is the dynamic

configuration of networked computing resources to run task applications in various application sce-

narios by user request, as introduced in Section 1.2.1 and illustrated in Figure 3.1.

Figure 3.1: Running On Demand Internet Applications on Networked Resources

For the use in the Internet, three major issues and affected user roles can be identified that have

to be considered by the proposal to support the on-demand vision, as detailed below.

46 3. An Autonomic Cross-Platform Operating Environment

Heterogeneous Computing Platforms. The setup of the proposal involves the use of common In-

ternet computing devices that differ in terms of hardware resources, operating system and platform

configuration. In this scenario, application developers should not have to consider the setup diversi-

ty of personal computers, laptops and server systems as well as of operating systems installations,

e.g. based on MS Windows, GNU Linux and Apple Mac OS X.

Uncertain Task Applications. From a general point of view, the computing devices are supposed

to host and execute uncertain Internet applications that are not known at the time the devices are set

up. The proposed system should free the platform administrators to prepare a suitable runtime envi-

ronment and to retrieve required software components for every application. In effect, it has to be

designed to run dynamically requested applications in a self-managing way.

Changing Runtime Scenarios. The alternating and shared use of computing devices is a further

issue, in particular if devices and applications are dynamically selected by regular and nomadic us-

ers mostly suited for their current task. The proposal should allow application users to switch com-

puting devices without the need to manually synchronize their personal settings, application confi-

guration and document data across distinct computing stations.

3.1.2 Idea

The basic idea of the proposal is to decouple the setup of the application environment needed to run

the application from the administration of the computing system currently employed by the user.

The proposed solution is the establishment of an Autonomic Cross-Platform Operating

Environment (ACOE) that virtually hides the use of distinct computing systems. To this end, a self-

managing integration middleware is installed on every computing node, as shown in Figure 3.2.

Instead of installing and configuring an application on each computing device, applications are

deployed once and are enabled to run on any computing device added to the cross-platform operat-

ing environment. A corresponding application environment is automatically created and customized

to run the application by evaluating the application requirements, personal settings and platform

capabilities. The autonomic operation will free application developers, application users and plat-

form administrators to manually manage the environment settings for individual applications and

computing devices. As a result, the ACOE can be used in an open and unmanaged environment

such as the Internet to support ODIC and the related on-demand facets, outlined in Section 2.4.

3. An Autonomic Cross-Platform Operating Environment 47

Figure 3.2: Autonomic Cross-Platform Operating Environment

3.1.3 Objectives

In conclusion to the automation of the computing assets and the administration tasks associated

with the user roles elaborated in Section 2.3.2 and Section 2.3.3, the following implementation ob-

jectives are defined as essential for the ACOE to support the vision of ODIC.

Distributed Code Deployment. In a limited network environment, such as an Intranet, the assem-

bly deployer may distribute all software packages that can ever be requested on every node, but in

an Internet environment this is practically impossible. Consequently, mobile code and hot deploy-

ment of applications are essential objects. The distribution is performed not only by a single appli-

cation repository but by various separately maintained repositories. In addition, due to the heteroge-

neous nature of the Internet, the deployment process cannot be individually prepared for each node

but it must be designed to be self-manageable without any user intervention.

Dynamic Software Composition. A major goal in an Internet environment is to avoid transmitting

unnecessary data and therefore to reduce the required bandwidth to deploy an application. Internet

applications are typically composed of smaller parts that can be individually selected, downloaded

and plugged into a running application. Thus, the goal is to support the appropriate self-managed

selection of the required component according to the requested operation and the current hosting

environment. In addition, components already downloaded by other applications should be stored

and shared in a local cache.

48 3. An Autonomic Cross-Platform Operating Environment

Shared Application Hosting. An application developer cannot address every kind of platform ar-

chitecture or operating system on which the application will probably be hosted in an Internet envi-

ronment. In turn, a platform administrator is not able to prepare an application system that can host

any application, e.g. by installing all existing libraries. Instead, a self-managing application system

should dynamically prepare an appropriate runtime environment according to the application re-

quirements and platform capabilities. Another related issue is the provision of a common interface

to interact with the platform and its resources, e.g. how to request components or establish network

connections.

Nomadic Environment Customization. Users typically customize employed applications accord-

ing to their personal needs and likings, e.g. picking a certain web proxy server or choosing a partic-

ular color scheme. Concerning a cross-platform application environment, an important requirement

is the seamless synchronization and application of customized profile settings across the employed

platforms without explicit application or user intervention. In particular, this is a non-trivial task in

a heterogeneous environment where profile settings may not be directly transferable, e.g. a confi-

gured web proxy server could be inaccessible from a different platform and a different proxy has to

be automatically determined.

Virtual Object Interconnection. For distributed environments like the Internet a further major

issue is the collaboration with remote applications and services. An application can either request

remote services and objects or provide access to its business logic, e.g. publishing a web service.

However, in heterogeneous environments with changing groups and roles of requestors and provid-

ers, there is not always only a single but there are often multiple ways for establishing a connection.

Consequently, there is a necessity to dynamically select and create an appropriate network link suit-

able for the current scenario.

Ad Hoc Execution Migration. The movement of nomadic users requires the migration of running

applications from one host to another. The same is valid for remote applications that have to switch

the hosting server while they are executed due to load balancing issues or user request. A related

requirement is the seamless migration and restoration of the application session as well as the trans-

parent reconnection of remote resources used by the migrating application. In turn, the reestablish-

ment of network links bound to resources of the migrating application is a particular challenge since

distributed applications are involved that should actually not be aware of the migration.

3. An Autonomic Cross-Platform Operating Environment 49

3.2 Cross-Platform Operation

A basic objective of a cross-platform operating environment is to enable the seamless execution of

user applications across heterogeneous computing nodes. This is typically achieved by introducing

a virtual computing layer that provides a uniform computing environment to the application while

mediating the interaction with the actual platform installation, e.g. by translating application-level

library calls into native system calls. In this section, two major approaches of virtual computing are

regarded and the proposal of a cross-platform operating environment is deduced for realizing the

visions of ODIC as illustrated in Section 2.4.3.

3.2.1 Virtual Machine

A popular approach to enable the cross-platform application execution on heterogeneous computing

nodes is the use of a virtual machine [385]. A platform-specific variant is deployed by the system

administrator on the target computing device where it provides a uniform computing environment

by separating the actual application execution from platform-specific characteristics. Based on the

abstraction level, related solutions are separated into two major categories, system virtual machine

and process virtual machine [327], as shown in Figure 3.3.

Figure 3.3: Overview of Virtual Computing Approaches

System Virtual Machine (SVM). It provides a virtualized hardware environment that can be al-

most used like a regular computing device, e.g. for installing a guest operating system and running

multiple native applications inside. The main element is the so called hypervisor that manages the

platform virtualization and allows the concurrent hosting of various guest operating systems. There

50 3. An Autonomic Cross-Platform Operating Environment

are two basic types of hypervisor implementations. The native hypervisor (Figure 3.3, left) runs

directly on the hardware whereas the hosted hypervisor runs on top of a regular operating system

(figure 3.3, center). A native hypervisor is typically used with computing devices that are exclusive-

ly dedicated to run virtualized guest operating systems, e.g. virtual servers running in a server envi-

ronment of an application service provider. A hosted hypervisor is better suited for temporarily

launching a virtual machine while the host computer is still regularly used, e.g. for development and

testing purposes. Popular implementations of the system virtual machine approach are VMware

Workstation, Sun VirtualBox, MS VirtualPC and Xen [26] that mainly differ in the handling of pri-

vileged native guest code and the exploitation of hardware-supported virtualization features.

Process Virtual Machine (PVM). It runs as a regular program in a host operating system and pro-

vides a high-level virtual runtime environment to execute particular applications written in a porta-

ble code, also known as intermediate code. A platform-specific portable code interpreter (Figure

3.3, right) executes the instructions step-by-step or may use a Just-In-Time compiler (JIT) to com-

pile some parts or the entire application into native machine code before the application is actually

started. Advanced JIT implementations operate on a per need basis to avoid delayed application

startup, e.g. by analyzing frequently executed code fragments during runtime and compiling only

involved code components while the rest of the code is still interpreted. This procedure speeds up

the overall application execution with the result that the execution of intermediate code is almost as

fast as native program code. Popular implementations of the process virtual machine approach are

Sun Java, MS .NET framework and Novell Mono [257].

While both virtual machine approaches, SVM and PVM, may be used to build a cross-platform

operating environment on top, they differ in some essential implementation issues. A SVM has to

boot the guest operating system first, so its startup time till a specific application can be launched is

basically longer than of a PVM that starts the application execution almost instantaneously. Due to

that, there are approaches to take a live snapshot of a running SVM and to simply restore it later

which is much faster than to boot the guest OS from scratch. The snapshots can be stored in a cen-

tral snapshot repository and may be deployed to different computing devices, e.g. for setting up

spatial computers in an Intranet. A related extension is to maintain so called appliances, snapshots

with selected applications pre-installed, and to update distributed system installations from a central

administration site on a regular basis, e.g. office desktop computers running in an enterprise net-

work or cluster nodes within a Grid installation. Though various appliances may be offered to

match the customer's need, only one appliance can be hosted at the same time and a second SVM

3. An Autonomic Cross-Platform Operating Environment 51

has to be started in case another appliance is needed. A PVM, in contrast, does not support the ap-

pliance approach and there is typically no way to take a snapshot of a running PVM, e.g. for hiber-

nating purposes. This also prevents the spontaneous migration of a running PVM to another compu-

ting system while a SVM can be easily moved from one node to another without shutting down the

guest applications, e.g. to exploit the computing resources in an application cluster. Due to the low-

level virtualization of a regular hardware environment, a guest operating system and native applica-

tions can be directly run inside a SVM and are usually not aware of doing so. In general, there is no

intended interaction between the application and the hypervisor or between the application and the

actual hardware components. Various applications may be concurrently hosted within the same

SVM while the hosting system and the applications themselves cannot be affected by any applica-

tion action that is especially important for security sensitive scenarios. A PVM, however, is de-

signed with the goal to provide a high-level virtualization of a common application environment

and the explicit development of portable applications that are aware of being run by a PVM. As a

result, applications can be designed to use common programming interfaces to interact with the

underlying hardware, the host operating system and concurrently executed PVM instances. As an

example, the invention of Remote Method Invocation (RMI) as inherent part of the JVM radically

simplified the cross-platform communication for Java applications. The application developer has

no longer to deal with low-level network programming, data marshalling or even object serializa-

tion. In this context, the application developers also benefit from the portable code and managed

execution approach. The same code assembly may be reused and deployed to any PVM installation

without considering the target host system configuration. Advanced runtime features provide con-

trol over the program execution, e.g. by introducing a code verifier that prevents the loading of ma-

licious components. In comparison to a SVM, the set up of a PVM represents a less time- and re-

source-consuming task, e.g. multiple PVM instances can be launched from the same installation and

share common resources like a local assembly cache.

In summary, the use of a virtual machine eases the deployment and execution of applications

without the need to consider varying host system configurations. While a SVM provides a low-level

virtualization of a regular hardware environment and executes native machine code, a PVM intro-

duces a high-level virtualization of a common application environment and runs intermediate code.

From this point of view, both SVM and PVM may be used to develop a cross-platform operating

environment. Concerning on-demand task processing, however, a PVM is better suited to dynami-

cally deploy, compose and run task-specific applications. In addition, the development of particular

cross-platform application features like transparent network communication is supported by design.

52 3. An Autonomic Cross-Platform Operating Environment

3.2.2 Features

As deduced in the previous section, a PVM provides high-level virtualization of a common applica-

tion environment. The major features supporting the development of a cross-platform operating

environment are as summarized below.

Cross-Platform Software Development. The invention of a uniform programming environment

across different computing systems and the provision of high-level system libraries, e.g. for net-

work, database and GUI programming, allows developers to focus on the business logic without

having the need to struggle with different tools and library variants for every target platform.

Simplified Assembly Deployment. The intermediate code representation simplifies the dynamic

application deployment across distinct computing systems, especially in a large network environ-

ment such as the Internet. The same application assembly may be instantly executed on even yet

unknown computing devices given that a suitable virtual runtime system is installed before.

Binary Component Interoperability. A software component compiled into intermediate code can

be still inspected (introspection). This allows developers to include third-party code components in

their applications without having access to the related source code. In addition, application objects

can be transferred along with their code, e.g. to enable migration in a cluster computing scenario.

Managed Application Execution. Another feature is the managed execution of the application by

using a portable code interpreter approach and monitoring the access to system resources. In fact, a

sandbox is created from which the application is not able to break out. This is an important feature

concerning the dynamic deployment of unknown and potential unsecure code components.

Object-Level Communication. In contrast to native low-level system libraries, virtual machines

like the Sun JVM or MS CLR is aware of object entities. If the same virtual machine is used, this

enables object-level communication between heterogeneous nodes without considering low-level

network aspects. Besides transparent object serialization, a well-known approach is to encapsulate

the actual network communication and to let remote method calls do not differ from local ones.

Uniform User Interface. The high-level virtualization of a common application environment also

includes the GUI. Platform-specific system libraries provide access to the underlying window sys-

tem while a platform-independent GUI toolkit can be used to create the illusion of a uniform cross-

platform user interface. This also eases the development task since the GUI developed on one com-

puting system is presented just the same on any other computing system without manual adaptation.

3. An Autonomic Cross-Platform Operating Environment 53

3.2.3 Cross-Platform Operating Environment

While a virtual machine already supports cross-platform application execution, the actual operating

environment is still limited to a single computing device only. This results in platform-specific con-

figurations that limit the spontaneous employment of a computing device to run yet unknown task

applications, e.g. due to different code repositories and task processing policies. A basic idea of this

thesis is the introduction of a cross-platform operating environment that links distributed computing

system to run applications across various computing devices without task-specific preparation in

advance. An application framework synchronizes platform, application and user settings with other

framework instances to bridge platform boundaries, as shown in Figure 3.4.

Figure 3.4: Cross-Platform Operating Environment

The application framework is installed and configured by the system administrator on top of a

virtual runtime system. It features the resources, capabilities and settings of the platform and

enables other peers to access them in a transparent fashion. From this point of view, the assets of

distinct computing systems are no longer bound to a single application environment but may be

provided by request to any peer within the federation. They may be centrally managed, e.g. using a

single registry server, or dynamically discovered, e.g. using a P2P approach. Accordingly, compu-

ting tasks may be distributed and run in a cross-platform operating environment on-demand.

54 3. An Autonomic Cross-Platform Operating Environment

In an advanced scenario, the framework also provides a user interface that allows starting a

personal session and launching applications on-demand. To this end, the user settings are retrieved

from the peer federation, e.g. loaded from a remote peer running a user database, and applied to

customize the application environment. The required software components to launch an application

are also managed and dynamically exchanged via the peer federation on request, breaking up the

fixed deployment of software assemblies into a single code repository. While a computing device

may be locally used by a single user only, a remote device may concurrently run various services

associated with different users. In this scenario, applications and services may be hosted in the same

application environment to benefit from commonly used resources or, alternatively, launched in

different application environments without directly interfering with each other.

As a result, users may switch computing devices and do not have to bother with profile syn-

chronization, application configuration and environment customization. In turn, the system adminis-

trators may focus on the system setup of a single computing device and do not have to consider

which users and applications may utilize the computing device. Application assemblers and compo-

nent providers can deploy the software packages to any peer in the cross-platform federation and let

the peers exchange assemblies directly without using a central code repository. This particularly

supports the "once deployed, run anywhere" scheme proposed in the ODIC approach. Finally, the

role of an application deployer is actually no longer needed since applications are installed and con-

figured by the application framework on-demand the first time they are requested.

3. An Autonomic Cross-Platform Operating Environment 55

3.3 Self-Managing Operation

As elaborated in Section 3.2, there are various cross-platform issues to deal with for supporting

cross-platform computing. An outcome was the proposal of a cross-platform operating environment

that is based on an application framework to network distinct computing systems and transparently

bridge platform boundaries. In this scenario, it is assumed that the framework is capable of provid-

ing and requesting assets without user intervention. However, this is only valid for assets known by

the system administrator at the time the framework was installed, e.g. already deployed code as-

semblies. Recalling the challenges illustrated in Section 2.2.3, the uncertainty of application re-

quests, spontaneous use of heterogeneous resources and dynamic application of user profiles add

another level of complexity that cannot be addressed by manual approaches or by one-for-all confi-

gurations. A promising solution is the transformation of computing resources into self-managing

elements that monitor their environment and react on changing conditions without user intervention,

as proposed by the autonomic computing vision illustrated below.

3.3.1 Autonomic Computing

The motivation for autonomic computing stems from realizing that systems have become so com-

plex that they exceed human ability to manage and secure their operation. Major reasons for the

increasing complexity are the heterogeneousity and extent of nowadays computing infrastructures

[130]. A remedy is their simplification and the provision of a system view that human can under-

stand and cope with [191]. The challenge is to transform computing systems into self-managing

elements that are capable of quickly responding to requests, changes and failures without or with

only minimal user intervention [192]. A driving force behind related autonomic computing is IBM

which propagates the evolution of legacy systems towards autonomic operation passing various

levels of maturity, as described in detail in [250] and sketched in Figure 3.5.

On the basic level, the computing system generates complex data from multiple sources that

have to be collected and evaluated by highly skilled staff to control the system, e.g. by concurrently

inspecting multiple log files. On the managed level, management tools ease the access on system

parameters via a uniform interface. The staff can focus on analyzing the system and does not have

to deal with low-level handling of different log files and configuration setups. Computing systems

operating on the predictive level support the staff by providing recommendations and preparing

corresponding actions. The administrator does not have to understand in detail how the system

works but can make decisions upon high-level suggestions.

56 3. An Autonomic Cross-Platform Operating Environment

Figure 3.5: Levels of Autonomic Computing Maturity [250]

On the adaptive level, a computing system performs appropriate actions on its own and the

administrator is no longer needed to ensure proper operation. The system maintains the basic func-

tionality while the administrator may adjust selected configuration details to meet pre-defined ser-

vice level agreements. Finally, computing systems on the autonomic level operate without human

interaction, are able to recover from errors and continuously optimize the task processing by eva-

luating business rules and policies. The IT staff can handle business requests much faster and does

not have to control the actual operation of the computing system. As a result, autonomic computing

systems can be especially used to build on-demand computing systems that have to dynamically

reconfigure itself to process yet unknown tasks and requests.

While various proposals to build self-managing computing systems have emerged over time

[248], the actual autonomic computing approach has been described and issued by IBM in 2001

[169]. It is based on the decomposition of the computing system into autonomic elements that

monitor and control the operation of associated resources [381], as shown in Figure 3.6.

3. An Autonomic Cross-Platform Operating Environment 57

Figure 3.6: Autonomic Manager and Control Loop [250]

The managed element can be any resource in an autonomic computing system, such as a soft-

ware module, a network connection or a database. It features a sensor to retrieve information about

the condition of the element, e.g. by registering an event trigger, and an effector to adjust the re-

source behavior and state, e.g. by using an Application Programming Interface (API) to issue com-

mands to the resource. The autonomic manager utilizes the sensor and effector to build a closed

control loop that monitors the resource condition, analyzes the current scenario, creates a plan to

maintain the supposed function and executes necessary changes on the resource. Besides predefined

system policies that outline the basic operation of the control loop, the autonomic manager ever

improves its knowledge by learning about the managed element, e.g. by tracking of instantiated

software components and reusing compatible ones instead of loading another variant. Learning can

be used to predict future situations and create an adaptive response to yet unknown challenges. As a

final result, the autonomic manager transforms the managed element into an autonomic element that

is capable of responding to resource issues in a self-managing way and at best without user inter-

vention.

3.3.2 Features

The introduction of an autonomic manager enables the realization of various self-managing fea-

tures, subsumed under the term Self-X [169]. Besides the original ones proposed by IBM, namely

self-configuration, self-optimization, self-healing and self-protection, further features have been

proposed by related approaches like self-organization and self-explaining in organic computing

[317]. Below, self-managing features are listed with particular respect to the anticipated features of

an autonomic cross-platform operating environment to run Internet applications on-demand.

58 3. An Autonomic Cross-Platform Operating Environment

Self-Description. An autonomic manager is responsible for handling requests received by the ap-

plication and for controlling the managed element, e.g. a platform resource or remote service. In a

distributed and heterogeneous environment like the Internet, the elements to be managed are not

known in advance and may change across different platform installations. Nevertheless, the applica-

tion framework should be able to adjust its operation without user intervention. Remedies are self-

descriptive elements that describe their capabilities and requirements in a standardized way, e.g. by

XML formatted configuration files. From this point of view, self-description is an essential feature

of an autonomic cross-platform operating environment.

Self-Configuration. The second feature is the ability to prepare the target node according to the

requirements of the application and with respect to the capability of the currently involved compu-

ting system. Furthermore, migrating applications and nomadic users come with specific profiles

about their global and platform-specific preferences that may have to be moved and processed as

well. The interconnection with remote objects cannot always be configured in advance, but current

network constraints such as blocking firewalls must be considered. As a result, self-configuration

enables applications to be dynamically requested on a different Internet application system without

intervention by the user or the application, respectively.

Self-Integration. To deploy an application, already installed components and available features of

the currently used Internet application environment must be considered. The application should

seamlessly integrate itself into an application environment and utilize existing features instead of

asking for a separate installation. To this end, the application system should be customized accord-

ing to the application requirements and platform capabilities. As an example, instead of download-

ing application specific components for each application separately, already installed compatible

components should be reused. Similarly, an existing network link to a remote object can be shared

among applications instead of establishing further communication paths.

Self-Optimization. Once a cross-platform application has been distributed and a suitable configura-

tion has been determined, there is still the need to survey the existing configuration whether the

operation can be improved to better fit to the current application requirements and system condi-

tions. For instance, the release of new software libraries could offer the update of already deployed

and configured applications. Running applications may have to migrate to another computing sys-

tem, and established interconnections may be re-routed due to changing workload. Therefore, auto-

nomic cross-platform computing should provide facilities to monitor existing application installa-

tions in a self-optimizing manner to make them more efficient.

3. An Autonomic Cross-Platform Operating Environment 59

Self-Healing. In contrast to self-configuration and self-optimization, which are derived from given

high-level objectives with respect to expected conditions of an application, there also is the need to

deal with unexpected conditions such as software failures, network interruptions or runtime errors.

In this sense, self-healing is the ability to repair parts of an operational system without shutting it

down. As an example, a remote object connection might be lost due to the migration of the object to

another host and must be individually re-established. In another scenario, an application may use a

software component that suddenly fails and which then has to be dynamically exchanged. Thus,

self-healing is another objective that should be supported by an autonomic cross-platform compu-

ting environment.

Self-Protection. Another objective is the prevention of errors arising from security related prob-

lems that cannot be managed by self-configuration or self-healing measures. To this end, self-

protection essentially organizes the defense against malicious attacks or incorrect usage. For distri-

buted Internet application scenarios, this objective is important to ensure proper operation of appli-

cations. For instance, network communications should be appropriately encrypted, if necessary.

Deployed software packages have to be validated before they are used, and the distribution of user

profiles should only be allowed to trusted platforms.

3.3.3 Self-Managing Infrastructure

Besides the cross-platform features that are related to the functional operation of the cross-platform

operating environment, it is interesting to introduce cross-cutting autonomic features that deal with

the timely provision of Internet computing assets in a self-managing way as presented in Section

2.3.2 and Section 3.3.2, respectively. Transferring the idea of autonomic computing to the cross-

platform operating environment presented in Section 3.2.2 to realize a self-managing infrastructure,

the platform resources are identified as the managed elements, the application framework as the

autonomic element and the cross-platform application as the requesting element, as shown in Figure

3.7.

The platform resources at the bottom represent the assets provided by the computing device.

They are configured by the system administrator and likely differ from one computing system to

another. In turn, the configuration of the cross-platform application has been defined by the applica-

tion developer and will typically not change across distinct platforms. The application framework is

the autonomic element sitting in between.

60 3. An Autonomic Cross-Platform Operating Environment

Figure 3.7: Self-Managing Infrastructure

The particular challenge is to add cross-cutting autonomic behavior to the application frame-

work to enable autonomic operation without changing the concerned applications and resource on

the one hand. On the other hand, the automation should be separated from the concrete platform

configuration, and the application should be shielded from the automation details. To this end, the

autonomic application framework is separated into three layers. The integration layer provides uni-

form access to platform resources across heterogeneous computing devices using an integration

middleware. This eases the implementation of the autonomic manager residing in the automation

layer that does not have to consider different platform capabilities and configurations. The auto-

nomic manager performs the actual self-managing tasks and is used by the virtualization layer for

providing a cross-platform operating environment to the applications without revealing automation

issues to the applications.

As a result, the self-managing infrastructure replaces the manually performed tasks of the user

roles concerning asset provision described in Section 2.3.3 into self-managing operations dynami-

cally performed by the application framework, as proposed in Section 3.3.2. Particular intervention

is no longer needed to prepare a suitable application environment but the system itself handles user

and application requests. The self-managing infrastructure is also able to react to changing runtime

conditions and adjust the configuration of the cross-platform operating environment.

3. An Autonomic Cross-Platform Operating Environment 61

3.4 Supporting Solutions

In this section, potential solutions and their applicability to support autonomic cross-platform opera-

tion, as outlined in Section 3.2 and Section 3.3, are discussed. The solutions are categorized along

the dimension of the cross-platform operating environment they are supposed to support, namely a

single computing device, the Intranet, the Extranet and the Internet, as introduced in Section 2.2.1.

Consequently, single computing, enterprise computing, community computing and public

computing are identified, as shown in Figure 3.8 and detailed below.

Figure 3.8: Types of Cross-Platform Operating Environments

3.4.1 Single Computing

The operating scenario single computing is related to an operating environment limited to a single

computing device only, typically managed by an administrator or a regular user. Although runtime

operations are not synchronized with other computing systems, single computing solutions intro-

duce various cross-platform features to ease the software deployment to and the employment of

heterogeneous computing devices. The administrator installs an operating environment customized

to the platform capabilities to free application developers from dealing with hardware concerns and

low-level system operations, e.g. by using native operating systems, virtual machines and particular

application frameworks.

Native Operating Systems. With the release of Windows XP, Microsoft has introduced some au-

tonomic features with respect to self-configuration, self-customization and self-healing. The soft-

ware and hardware installation is simplified by various installation wizards, user and hardware pro-

files ease switching to another computing system, automatic updates ensure the installation of latest

patches and the system restore feature protects core system settings by supervising installation

62 3. An Autonomic Cross-Platform Operating Environment

tasks. Concerning cross-platform support, most of the features of MS Windows XP may be only

used in a pure Windows environment, e.g. using image files to redistribute a Windows installation

on equally configured computing devices. There is no or only little support to use Windows-specific

tools and features in another operating system, e.g. applying Windows user profiles on Linux sys-

tems. Similar to MS Windows XP, Linux represents an operating system that has to be manually

installed and configured on the target computing device. However, there are various Linux distribu-

tions a system administrator may choose from which in practice support almost any computing ar-

chitecture from large-scale server systems down to smart phones. As a consequence of this diversi-

ty, Linux binaries cannot easily be transferred from one Linux system to another. This complicates

software deployment compared to MS Windows. Software package managers, such as RPM or

APT, offer automated installations of suitable software packages using self-configuration and self-

customization features. Linux also enables system switching and user profile synchronization using

directory services, such as LDAP [205]. In comparison to MS Windows, the self-managing features

of Linux are still in an early development stage and allow only experienced users to master Linux

on desktop computing systems.

Process Virtual Machines. While native operating systems can run only platform specific program

binaries, a virtual machine can host related applications independent of the actual computing de-

vice. As deduced in Section 3.2.1, a process virtual machine (PVM) fits better into an on-demand

application scenario than a system virtual machine (SVM). Currently, there are two main PVM so-

lutions with a widespread installation basis, Sun Java and Microsoft .NET [108]. While there are

many discussions and arguments about their individual merits, both solutions co-exist in different

application scenarios. In fact, Sun Java is widely used in the Internet composed of heterogeneous

computing devices, most of them running MS Windows and Linux. Microsoft .NET rather domi-

nate in a homogeneous environment running MS Windows, e.g. in a corporate Intranet.

Sun Java benefits from a virtual runtime system that enables Java applications to instantly run

on any computing device with a Java Runtime Environment (JRE) installed. It consists of a plat-

form-specific Java Virtual Machine (JVM) and corresponding runtime libraries that enable the

seamless execution of Java applications on a variety of platforms [68]. A Java compiler generates

the intermediate program code, called Java byte code, which may be used to compile further appli-

cations without accessing the original source code. This facilitates cross-platform operation like

software deployment and application hosting in a heterogeneous environment such as the Internet,

e.g. Java applets may be deployed and executed with any Java-enabled web browser. Built-in sup-

3. An Autonomic Cross-Platform Operating Environment 63

port for cross-platform network communication based on CORBA and Web services ease the trans-

parent interconnection of Java applications with various remote computing systems. Since a JRE is

available for virtually any computing device, from mobile phone to a server system, Java is widely

acknowledged to be the first choice for running applications on heterogeneous platforms. Concern-

ing autonomic operation, Java Web Start offers self-configuring deployment and runtime provision

for legacy Java applications. In contrast to MS Windows and GNU Linux, however, a regular JRE

does not support the synchronization of user and runtime profile across various platforms and appli-

cation installations, e.g. if a user moves to another computer system. Another limitation is the origi-

nal design of the JRE to run a single application only. A common remedy to easily run multiple

Java applications within the same JVM is the initialization of a Java launcher. It is a regular Java

application that loads and launches further Java applications, e.g. by offering an interactive com-

mand line shell, such as Jsh [182], or an application menu, such as Xito AppManager [390]. Moreo-

ver, there are solutions that attempt to create a Java-based operating system and an extended Java

runtime system, such as JOS [181], JNode [180] and JX [138, 184]. The common idea is to provide

a bootable image written in native code that is directly run by the computer system instead on top of

a commodity operating system like MS Windows or Linux. Apart from concurrently launching var-

ious Java applications, there are various arguments pro Java OS, e.g. increased overall performance

and better system integration, e.g. by addressing low-level system support. However, this approach

represents a most complex development task. In fact, no Java OS has ever left the beta development

stage and has been widely adopted on desktop and server computer systems. Concerning the sup-

port of on-demand task processing in a cross-platform operating environment, a basic issue is the

dedicated use of the target computer system and the installation of an unmanaged runtime environ-

ment in contrast to run a single or multiple legacy JVMs.

Although the regular JVM is executed on a single computing device only and represents a mul-

ti-platform runtime system, the JRE is often called a cross-platform runtime system. The term cross-

platform refers to its inherent ability to support the distributed execution and fragmentation of an

application across heterogeneous computing devices, e.g. using Java RMI and dynamic byte code

transfer. From this point of view, the virtual runtime system .NET from Microsoft follows a differ-

ent goal [237]. Instead of providing specific virtual runtime systems for different computing plat-

forms, Microsoft has developed the .NET Common Language Runtime (CLR) for tight integration

into its operating system Microsoft Windows only. The focus is on the support of executing inter-

mediate code built from different programming languages, such as .NET C++, .NET C# and .NET

Visual Basic. Consequently, the original .NET framework can only be used for cross-platform com-

64 3. An Autonomic Cross-Platform Operating Environment

puting based on MS Windows. Nevertheless, it provides a managed runtime environment that offers

self-managing features, such as self-configuring software composition using assembly metadata.

The drawback of .NET concerning the support of host systems other than Microsoft Windows is

addressed by the open source project Mono that aims to port the .NET runtime system and frame-

work on heterogeneous host systems, such as Linux, Mac OS and Sun Solaris. However, Microsoft

does not officially support the development of Mono and attempts to restrict essential parts of the

.NET framework, such as ASP.NET and Extensible Application Markup Language (XAML). Other

parts are released to the European Computer's Manufacturer Association (ECMA) for standardiza-

tion, such as the programming language C# [253]. This hinders the complete clone of the .NET

framework and so far has also prevented the use of .NET in a cross-platform manner as demonstrat-

ed with Sun Java.

Rich Client Platforms. In a typical single computing scenario, the administrator of a computer

system installs distinct software applications in parallel. Apart from system libraries, there is typi-

cally no reuse of common code assemblies or application configurations. Further, applications are

executed in different process environments and do not share runtime resources, e.g. an application

window or plugin repository. A popular remedy is to introduce a Rich Client Platform that offers

common services to the applications, e.g. unified configuration, window management and plugin

management. It is installed on a desktop computer in advance and provides a shared installation

environment to distinct applications and plugins. For example, Xito AppManager defines a rich

client application model to run multiple Java applications in the same JVM [390] and provides

cross-application services to organize the handling of shared resources. It also offers advanced op-

tions to retrieve software components and application configurations from well-known remote

software repositories, e.g. via the Internet. As a result, an application developer can focus on the

actual business logic and users benefit from an integrated application environment. A basic problem

of custom application launchers is their proprietary implementation and lack of developer support.

In this context, the Spring Framework represents a widely adopted application framework that sim-

plifies the development of Java applications by providing a set of common libraries and services,

e.g. for component initialization and lookup. Based on the Spring Framework, the Spring Rich

Client [330] provides a Rich Client Platform for Java desktop applications and aims at providing a

unified application environment and runtime model. In this context, the Open Services Gateway

Initiative (OSGI) specifies a Java-based application framework targeting a wide range of computing

devices like desktop computers, small computing devices and embedded systems [262]. It provides

a "service-oriented, component-based environment and offers standardized ways to manage the

3. An Autonomic Cross-Platform Operating Environment 65

software lifecycle". The framework benefits from the advantages of Java as described above and it

adds further cross-platform features concerning software deployment, application composition and

runtime management. The introduction of so called bundles allows developers to define interdepen-

dencies between software components and enables the self-managing composition of Java applica-

tions from a shared bundles pool. As an example, Exymen utilizes an OSGI framework to manage

and update application plugins [105]. A user can easily retrieve and install new plugin bundles, e.g.

a media editor plugin, from dedicated bundle repositories without being involved in resolving plu-

gin dependencies. By extending the features of the regular Java Virtual Machine (JVM), OSGI also

supports multi-application hosting and separately configurable application environments within the

same JVM. Popular implementations of the OSGI specification are Apache Felix and Eclipse

Equinox that are supposed to run on desktop computing devices and represent Rich Client Platforms

[13, 95]. Basically, Eclipse Equinox represents a good choice for running Java-based OSGI services

and deploying rich client applications via the Internet. It is used in various Eclipse subprojects, such

as Eclipse Rich Client Platform (RCP) and Eclipse Java Development Tools (JDT) [96, 154]. There

is a strong developer community, and a growing number of OSGI-applications can be run in Equi-

nox out of the box. The original OSGI framework, however, focuses on the support of single com-

puting scenarios by managing the deployment and execution on distinct computing nodes separate-

ly. There is no support for synchronizing user and application profiles across various installations,

and the core components of Equinox have to be manually installed by an administrator. Further, the

on-demand resolution and installation of missing bundles from remote software repositories is typi-

cally not part of the OSGI engine implementation. Thus, it may launch only applications that are

already known at the time the on-demand processing request is received. In addition, the OSGI spe-

cification introduces a new programming and application model that forces developers to rewrite

legacy Java software components.

As a result, there are various native operating systems, such as Apple OS X and Sun Solaris,

virtual runtime systems, such as Java, Perl and Python, and Rich Client Platforms, such as Spring

Rich Client and Eclipse Equinox, which address the single computing scenario. They differ in terms

of the supported hardware platforms, programming language and application model but commonly

miss some cross-platform features and the autonomic operation as proposed for the ACOE. In

summary, the regarded approaches focus on operating scenarios managing a single computing sys-

tem with static hardware constellations and well-known application tasks. There is no regular sup-

port to synchronize the deployment, composition and customization of applications across multiple

computing systems. From this point of view, the single computing approaches are not suitable to

66 3. An Autonomic Cross-Platform Operating Environment

create an autonomic cross-platform operating environment with distinct computing systems in-

volved, but they may serve as a foundation for advanced approaches, as described in the next sec-

tions.

3.4.2 Enterprise Computing

Another operating scenario is enterprise computing with an operating environment spread across

the computing devices of a company, also denoted as Intranet. The computing systems are managed

by an administrator group that assigns every device a specific task within the enterprise network,

e.g. hosting a database instance, and prepare a suitable configuration for each one in advance. The

resulting cross-platform operating environment organizes the runtime operation of tightly related,

often homogeneous computing systems according to the enterprise objectives, e.g. creating a high-

performance computing cluster [24]. In contrast to the single computing scenario and its box-centric

view, multiple computing nodes are interconnected and configuration changes of one node have to

be propagated to all nodes as well; typically in a manual fashion. Thus, in a classic setup, the com-

puting nodes are coupled in a static way and employ the same operating system and set of business

applications to ease the management. A selection of enterprise computing solutions is described

below.

Enterprise Application Servers. The transformation of the web server into an application server

has lead to various approaches and standards to ease application development and deployment. A

popular approach is Sun Enterprise Java Beans (EJB) [336] that has become the de-facto standard

for Java application servers and is used in various products, such as JBoss or Jonas [179, 187]. The

major advantage is the introduction of a server-side component model that supports the application

composition using third-party components. Instead of implementing every application from scratch,

the application is deployed using a deployment descriptor. The application server evaluates the ap-

plication configuration and prepares a suitable runtime environment for every service. Concerning

cross-platform operation, the EJB standard enables the seamless deployment of components across

different application servers. An application developer does not have to consider a specific server

implementation, and the administrator may choose the right application component out of a set of

compatible variants. In a remote task processing setup, application servers can expose certain object

instances via a network protocol, such as RMI, CORBA or SOAP. A naming service, such as the

CORBA Naming Service or the RMI registry, is used to register and link remote server objects. In an

advanced task processing scenario, a component search engine may be introduced to find a suitable

object implementation on-demand, e.g. by specifying a complex component query as in the AGORA

3. An Autonomic Cross-Platform Operating Environment 67

system [320]. Further, multiple application servers may be grouped to form a distributed task

processing platform. A related example is the Java Parallel Processing Framework (JPPF) that

splits applications in smaller parts and enables the simultaneous task processing on different ma-

chines [183]. Another example is Entropia that uses MS Windows desktop computers to enable

distributed task processing [59]. It hosts native applications in a sandboxed environment and pro-

vides a central job management to control the desktop grid. The actual installation and configura-

tion of the application server and its processing objects, however, is mainly done in a manual way

and with particular consideration of the tasks for which the box is supposed to be used. The applica-

tion server approach is not intended to be used on the client-side and also does not support user pro-

file management across distinct computing devices.

Remote Application Terminals. Another enterprise computing solution is the use of an application

server to centrally manage desktop applications, such as offered by the X Window System and

Virtual Network Computing (VNC) [389, 300]. Instead of deploying all applications on every desk-

top computing system, each application is installed on a central application server only. A particular

application client is installed on the desktop computer that is able to launch an application on the

application server and to redirect user input to the application and to receive updates of the user

interface. As a result, the user can interact with the remotely executed application as with any regu-

lar desktop application. Actually, the application client represents a universal networked user inter-

face that may be used to control different and unknown applications run on the application server.

From this point of view, a user is able to instantly run any application as soon as the administrator

has installed it on the application server. Apart from maintaining the application client, the adminis-

trator does not have to deploy new applications or software updates to each desktop computer sys-

tem. Concerning cross-platform operation, the application terminal solution enables users to access

applications without the need to run the related program code, e.g. Linux clients may use MS Win-

word. However, the application server becomes a bottleneck if many users concurrently launch ap-

plications, and a regular user is not able to run applications not yet installed on the application serv-

er. In addition, a fast network connection is needed to get the illusion of running a regular desktop

application and offline operation is not supported [211].

Service-Oriented Architecture. The evolution of enterprise networks over time and the resulting

diversity of employed computing systems end in separate and heterogeneous computing resources

that cannot interact although they are connected to the same Intranet. Instead of simply connecting

disparate computing assets, resources have to be integrated and must become part of the overall

68 3. An Autonomic Cross-Platform Operating Environment

system. A recent approach is the invention of an Enterprise Service Bus (ESB) based on a Service-

Oriented Architecture (SOA). Each resource of the enterprise network is transformed into a service

that is transparently connected via the ESB. The ESB mediates the interaction among the services

using appropriate communication protocols, e.g. Java Message Service (JMS) and Simple Object

Access Protocol (SOAP). Additional elements like a Message Queue Server (MQS) introduce new

features, such as service synchronization and transaction control. Actually, the use of an ESB has

become a key element of today's enterprise computing solutions. With the dynamic orchestration of

web service workflows, e.g. by using the Business Process Execution Language (BPEL), complex

web service interactions may be automated. This can be refined with the automated provisioning of

application services to enable on-demand task processing [190]. Various products, such as HP

Adaptive Enterprise, IBM Tivoli Intelligent Orchestrator and IBM On Demand Operating

Environment [51, 231], promises the seamless collaboration and central management of networked

resources without replacing matured installations and thus increase the utilization and reduction of

maintenance costs of enterprise resources. Concerning cross-platform operation, SOA and ESB

solutions focus on the management and collaboration support of already deployed and configured

resources and services. As a result, the system administrator still has to perform deployment and

configuration tasks of certain services and prepare a suitable runtime environment. The support of

user-related issues, such as profile synchronization, is usually not addressed by an ESB implemen-

tation.

Ad-hoc Service Infrastructure. While the cross-platform operation support of application server

frameworks automates the preparation of an application environment to run already configured and

deployed applications, there are enterprise computing solutions supporting the spontaneous access

on yet unknown remote services, such as Universal Plug and Play (UPnP), TSpaces and Sun Jini

compared in detail in [156]. For example, Sun Jini uses directory services to announce new services

and resources, such as data decoding service and a color printer, and to deploy corresponding net-

work stubs required to access these services and resources. An application looking for certain Jini

services queries the directory service for matching service descriptions and downloads the related

network stub to access the remote service. As a result, an application may dynamically access dis-

covered services without having been explicitly configured to do so in advance. By using a service

interface specification and downloading a specific stub for each service, the implementation of the

service and the application are separated, which eases their deployment in a cross-platform operat-

ing environment. In addition, the announcement and discovery of new services is performed in a

self-managing way, e.g. using leases for service validation, without requiring particular application

3. An Autonomic Cross-Platform Operating Environment 69

or user intervention. The self-organization features of Jini may be also used to simplify the man-

agement of clustered server systems like in Large-scale system’s Autonomous Management Agent

(LAMA) [219]. In general, an ad-hoc service infrastructure is typically limited to a subnet and a

small number of computing devices. By focussing on the goal of providing on-demand access to

remote services, there is usually no support of dynamic application deployment and composition;

user profile synchronization is also not addressed.

As a result, the common goal of enterprise computing solutions is the support of administrators

to manage a limited number of well-known networked resources, such as application servers, desk-

top computers and peripheral devices. The solutions differ with respect to their management sup-

port, e.g. dynamic application composition as with Enterprise Java Beans, service orchestration as

with IBM WebSphere and self-managing service discovery as with Sun Jini [374]. There are further

enterprise computing solutions, such as Sun N1, HP Adaptive Enterprise, MS Distributed Systems

and IBM On Demand Operating Environment [51], which address the management of computing

resources from different points of view, e.g. data management centers, heterogeneous network ele-

ments, distributed computing systems and on-demand service provision, respectively. To summar-

ize, enterprise computing solutions represent a good choice to ease the management of well-known

enterprise resources typically found in a managed network environment, such as databases, applica-

tion servers and web portals. Autonomic features focus on the self-managing operation due to

changes imposed by alternating tasks, such as launching a new application on a VNC server or inte-

grating a new EJB component in an application server. However, enterprise computing solutions are

limited to manual integration of additional computing devices, e.g. installing the VNC client on new

desktop computers, and assume static platform configurations, such as using a well-known relation-

al database with container-managed Enterprise Java Beans.

3.4.3 Community Computing

The third operating scenario is community computing with a managed cross-platform operating en-

vironment spread across heterogeneous computing devices of various organizations and networks

that form an Extranet [41]. The computing systems are separately set up by different administrators

following a common setup guideline for integrating each one into the distributed operating envi-

ronment. Multiple heterogeneous computing devices are loosely coupled and alternately used to

process tasks yet unknown when they are set up. The actual difference to enterprise computing is

the wide-area extension and the loose coupling of applications, e.g. by using standard service proto-

cols, such as Simple Object Access Protocol (SOAP) and Agent Communication Language (ACL)

70 3. An Autonomic Cross-Platform Operating Environment

[120], instead of program-specific elements, such as proprietary service stubs and software compo-

nents. This also enables the dynamic composition of distinct web services, known as orchestration,

that have not especially been designed to work together in the first place. A particular extension is

to share virtualized computing resources on a pay-per-use basis and to outsource the operation of

custom application services to specialized providers, as in utility and cloud computing [372]. Per-

sonal and terminal mobility are addressed by mobile code approaches. Selected examples of com-

munity computing solutions are discussed below.

Web Services. With the ability to penetrate firewalls using HTTP communication and to call re-

mote services using standardized XML encoded messages, web services have become a widely used

approach to bridge the Internet. Communication protocols, such as XML-RPC and SOAP, allow

applications to access remote services in a platform- and programming language-independent man-

ner and also provide the basis for establishing a general-purpose service infrastructure [58]. A key

stone in this picture is the use of particular registry services, such as Universal Description,

Discovery and Integration (UDDI), to announce the availability and characteristics of new services

on the one hand and to query for present and matching services on the other hand. The registry ser-

vice may be additionally used to exchange service interface descriptions, e.g. specified using Web

Service Description Language (WSDL), and to enable clients to create a corresponding service stub

on the fly [73]. From this point of view, related solutions, such as the IBM Web Service Gateway,

support spontaneous cross-platform operation among loosely coupled service providers and service

consumers. However, service-oriented approaches typically do not address the deployment and con-

figuration of clients and services but focus on their interaction on the network level. There is no

guideline how to set up distinct web service nodes. The installation is often performed in a specific

way with respect to the employed application server, e.g. deploying a web archive (WAR) into a

servlet engine. Moreover, the underlying communication model forces application developers to

alternate between object-oriented implementation features, e.g. native object-serialization in Java,

and service-oriented design limitations, e.g. lack of real object references and callback methods.

This complicates the mixing of existing application code and new service code.

Service Grids. While web services are typically used to access a specific remote computing system,

service Grids transparently group distinct computing nodes from various institutional and organiza-

tional domains into a virtual computing resource. The Grid allows performing lengthy tasks that are

otherwise too complicated for a single computing system to deal with. Various solutions, such as

Globus [117, 135], Unicore [102, 361] and Condor [354, 64] support the establishment of the basic

3. An Autonomic Cross-Platform Operating Environment 71

Grid infrastructure by adding particular architectural elements, such as a task scheduler and a re-

source monitor. The solutions mainly differ in the target application scenario, project partners and

underlying standards, such as the Open Grid Service Architecture (OGSA) [118, 350] and the Web

Services Resource Framework (WSRF) [259] A common advantage is the dynamic allocation of

computing nodes, the launching and orchestration of required services and the transparent distribu-

tion of computational tasks. While Grid approaches originally rely on service installations in ad-

vance, dynamic service and job deployment is also supported to utilize Grid nodes for applications

yet unknown when the Grid was set up. By using virtual machines, Grid resources can be virtua-

lized and the heterogeneity of the participating computing nodes masked [111]. Advanced ap-

proaches may establish virtual distributed environments in a Grid to run different applications in

shared and isolated settings [309]. From this point of view, Grid solutions support cross-platform

operation in terms of deployment, composition, hosting and interconnection of services. Various

autonomic features, such as self-configuration and self-integration, are supported and there are ef-

forts to develop autonomic Grid applications, as pursed in AutoMate [3]. However, Grid solutions

like Globus address distributed application scenarios on the server side and are not usable on the

client side. The cross-platform operation is limited to a managed infrastructure with well-known

platform configurations and runtime environments, e.g. there is no need for application developers

to consider different platform capabilities and software composition as found in a heterogeneous

environment.

Cloud Computing Platform. Due to the ubiquitous availability of an Internet interconnection, the

falling costs of computing systems and data storages, and the progress in virtualization technologies

[86], the approach to exploit remote computing resources in an on-demand manner has been recent-

ly extended towards Everything-as-a-Service (XaaS) [220]. The basic principle is to virtualize com-

puting resources like system hardware, network infrastructure, operating system and middleware

platforms with the goal to enable their provision and utilization as services via the Internet. Besides

private cloud installations that are limited to the use in an enterprise environment, there are public

cloud installations, such as Amazon EC2 [9] and Google App Engine [143], which are made availa-

ble to everyone on a pay-per-use basis. From this point of view, cloud computing is related to utility

computing and is typically separated into Infrastructure-as-a-Service (IaaS), Platform-as-a-Service

(PaaS), Software-as-a-Service (SaaS). The resource management is mostly performed in a self-

managing and transparent way, e.g. by moving a software service to another computing node in

case of a hardware error. As a result, the customer is relieved from administration tasks, however, at

the expense of security risks and privacy threads by moving business applications and private data

72 3. An Autonomic Cross-Platform Operating Environment

to a remote site [369]. A related solution is TeamDrive that allows users to store documents in the

Amazon Cloud and to transparently access them like regular files from any Internet workstation, e.g.

running at the office or at home [353]. Concerning cross-platform operation, a cloud installation

delivers a virtualized and scalable operating environment across heterogeneous computing systems.

Depending on the concrete cloud installation, the dynamic deployment, composition and hosting of

regular Internet applications on-demand is supported with slight differences compared to a native

execution environment, e.g. Google App Engine offers the hosting of custom Java applications run-

ning with a feature limited JDK only [143]. The transparent interconnection and migration of ser-

vices is addressed by various implementations like Eucalyptus, Open Nebula, Intergrid and

GridGain that use cloud technologies to establish a virtualized distributed environment across mul-

tiple Internet computing sites [65, 103, 328, 149]. As such, cloud computing is often seen similar to

the Grid approach but it does not target the particular issues for controlling multiple nodes to com-

pute a given a task in parallel, as elaborated in [119]. Besides distributed task processing, cloud

installations may be also used for remote task processing by using regular desktop computers and

following the public and volunteer computing idea, as proposed in Cloud@Home [72]. The hosts

act as a consumer and provider of computing resources at the same time, thus forming a dynamic

computing community, as discussed in [175]. Nevertheless, a basic issue with cloud computing re-

mains the installation and configuration of the resource virtualization and the dedicated use of the

computing node. This makes it difficult to use cloud computing solutions for local task processing.

Mobile Code Systems. Another community computing approach is the use of mobile code to push

applications and services to networked computing nodes. For remote and distributed task

processing, an agent network infrastructure [386] allows running autonomous and proactive appli-

cations, so called mobile agents [294], across distributed computing systems. Each agent pursues a

certain goal, may communicate with other agents to request resources or, vice versa, offer own re-

sources to requesting agents. An agent is able to move from one host to another host that are often

grouped following the P2P model, such as AntHill, JATLite and Aglets [12, 185, 212, 4]. A repre-

sentative implementation is JADE [178] written in Java, which represents a multi-agent middleware

to run agents on various types of hardware, operating systems and Java Virtual Machines, e.g. J2SE

and J2ME. It consists of a specific runtime environment for each platform variant, an agent contain-

er, which must be manually installed by the system administrator and provides libraries to link the

actual agent against. Jade is supported by the Foundation for Intelligent Physical Agents (FIPA) and

uses the standardized Agent Communication Language (ACL) to interact with other agent containers

[120]. This ensures interoperability with different vendors and implementations of agent containers.

3. An Autonomic Cross-Platform Operating Environment 73

Concerning cross-platform operation, JADE offers the spontaneous deployment, seamless execu-

tion, transparent interconnection and ad hoc migration of agents. A related multi-agent system is

AgentScape that has been designed for large-scale network environments [46]. It supports multiple

code bases and provides a flexible application framework that separates platform dependent and

independent parts. In addition, it supports the deployment of agents written in diverse languages,

such as Java, Python and C. Though various mobile agent toolkits exist, they are not yet used to

implement autonomic application built of mobile agents [48]. In contrast, autonomic elements are

rather framed as services than agents. Another drawback of agent networks is their explicit focus on

a specific application scenario, namely the collaboration of autonomous applications. There is no or

only little support of user interaction, e.g. supporting nomadic users while moving from one compu-

ting system to another. The programming model is different compared to regular applications, e.g. it

uses a particular action method as execution starting point and is limited to single threading, and

there is no support of application composition or user profile synchronization in general. Another

mobile code approach is used in the Thin Servers solution that supports the dynamic deployment of

Java task applications, so called Cingalets [85]. It explicitly focuses on remote task processing and

uses native C++ daemon processes to startup separate JVMs and run the dynamically deployed Java

task applications inside. For local task processing, various personal computing solutions, such as

envisioned by Universal Personal Computing [207, 222] and implemented by NetChaser [333],

have been proposed to support terminal mobility and personal mobility by using mobile objects.

While the first relies on the ability of the network to locate a mobile terminal, the second addresses

the ability to maintain the personal environment and transparently access network services. A par-

ticular challenge is to separate the application implementation from the underlying host environ-

ment. In NetChaser, an agent framework, Autonomous Remote Cooperating Agents (ARCA) [19], is

used to run various agents that assist users in accessing information services and attempt to predict

future user actions. While NetChaser deploys agents to integrate the personal environment into ex-

isting distributed systems and installed applications, there are mobile code approaches that deliver

software on-demand to mobile terminals. As an example, Achilles provides a software delivery ar-

chitecture that checks if available resources of a mobile computer are sufficient to run a selected

application and when it is suitable to update installed software components [202]. Its main goal is

the transparent provision of a customized user environment that supports disconnected operations of

mobile clients. A step further towards personal mobility and pervasive personal computing is pro-

posed with the Internet Suspend/Resume (ISR) approach [315, 316]. It separates a virtualized com-

puting environment from the physical computing system by using Virtual Machines (VM), such as

VMWare or Xen [26]. Similar to the suspend/resume approach of modern operating systems; the

74 3. An Autonomic Cross-Platform Operating Environment

user may suspend a VM anytime if he or she wants to move to another computing system. The cap-

tured execution state is then transferred to a remote storage system and can be retrieved by any tar-

get system that has been prepared to do so, i.e. by installing VMWare and the ISR software. The

user can resume the VM and continue with his or her work at the point the execution has been sus-

pended. Besides always transferring the entire VM state, there are variants that dynamically syn-

chronize local changes of the VM with the remote storage to minimize the transmitted data, e.g. by

intercepting disk operations. Another variant is the use of a mobile storage device to transport the

suspended VM, such as implemented by IoMega v.Clone [174].

In summary, community computing solutions focus on managed infrastructures, dedicated ap-

plications and well-known configuration scenarios. In contrast to enterprise computing, the admin-

istration is not performed by a single authority but by many. This leads to the invention of standar-

dized specifications to support and simplify the interaction among different parties, e.g. by using

SOAP and ACL. This simplification creates a harmonized application environment on top of the

heterogeneous network infrastructure and enables application developers to create uniform applica-

tions and services for a variety of computing systems, e.g. by using Rich Client Platforms. Concern-

ing the support of cross-platform operation, community computing solutions cannot rely on a cen-

tral management like in enterprise computing. Therefore, the computing nodes are separately ma-

naged using previously negotiated parameters, e.g. contacting the same UDDI registry and down-

loading additional components from well-known remote code repositories. This allows distinct ad-

ministrators to link their computing systems into the community system anytime without the need

to coordinate management tasks with other administrators.

3.4.4 Public Computing

The final operating scenario is public computing with a cross-platform operating environment dy-

namically spread across distinct networked computing nodes in the Internet. There is typically no

managed coupling of computing devices at all, and resources are alternatively employed when they

become available [255], e.g. running personal applications on unmanaged desktop computers in an

Internet cafe or supporting global distributed computing like in the SETI project [11]. The devices

are set up by different administrators in separate ways, and the major difference to the prior solu-

tions is the lack of a pre-determined goal for which the devices are used. Therefore, no task-specific

applications or services are installed in advance but deployed to a target computing device and run

as needed, e.g. using transferable code deployment units such as JAR files. Well-known solutions

are illustrated below.

3. An Autonomic Cross-Platform Operating Environment 75

Global Computing Network. To process certain computational tasks like the analysis of drugs in

cancer research or the computation of prime numbers, conventional Grid computing approaches

may not be powerful enough. A particular solution is the interconnection of Internet computing

nodes to form a "bigger" Grid; a global computing network [204]. While in a typical Grid network

the number of computing nodes moves around few thousands of computing nodes, an Internet com-

puting network may easily exceed several millions and include various types of computing re-

sources. In this context, various approaches have been pursued towards wide-area computing, as in

WebOS, Legion and Globe [363, 151, 152, 332]. The common idea was to map heterogeneous com-

puting resources into a worldwide virtual computer and to develop a distributed computing system

in which remote objects and computing resources can be used like local ones [365]. In recent years,

service-oriented approaches with autonomously operating nodes have gained much more attraction

for distributed computing projects. Instead of providing remote resource access on the network-

level, the interaction is performed on the application-level by using proprietary or standard service

protocols. Common design considerations of related public computing systems and distributed task

processing are discussed in [305]. Nowadays, the underlying approach has become well-known as

volunteer computing. Popular examples are SETI@home, World Community Grid and GIMPS that

utilize the combined computing power for solving specific problems [11, 172, 146]. To this end,

related client software packages are installed on distinct Internet computing nodes that connect to a

central project server and retrieve a work package to solve. After processing, the results are sent

back to the project server where they are assembled and evaluated along with further result pack-

ages received from other clients. In contrast to Grid computing, the Internet nodes of a global

computing platform are not supervised and assigned by a central monitor and scheduler but are

loosely coupled on a volunteer basis. Each client is free to join and leave the public computing net-

work and to offer or revoke resources as it wishes like in XtremWeb [109]. A particular volunteer

computing solution is Berkeley Open Infrastructure for Network Computing (BOINC) that differs

from the first distributed network computing approaches by separating the infrastructure manage-

ment and the computational processing [10]. It allows users to reuse the same BOINC client instal-

lation for supporting various distributed computing projects and eases the concurrent computation

by sharing account and configuration settings. As a result, BOINC creates a cross-platform operat-

ing environment for multi applications and distributed computing purposes.

Peer-to-Peer Networks. Another popular approach for public computing is the establishment of a

loosely coupled networking infrastructure following the peer-to-peer model and without imposing

the use of a particular application system like BOINC or an Internet browser. In contrast, P2P solu-

76 3. An Autonomic Cross-Platform Operating Environment

tions mainly focus on network communication and how separately managed and so far unknown

peers can interact. There is no common application model except that every peer typically operates

in a self-configuring and self-integrating manner, e.g. by announcing own peer services and disco-

vering peer nodes without user intervention. Sun JXTA is another P2P solution that defines a set of

open protocols and allows any connected device on the network to link into the JXTA virtual net-

work and seamlessly communicate with other peers, hiding the programming language, operating

system and underlying network protocol [140]. This separation of business logic and network

communication greatly eases the development of P2P application in a heterogeneous and cross-

platform operating environment like the Internet. In addition, JXTA comes with autonomic features,

such as the self-configuration of the network communication due to firewalls and Network Address

Translation (NAT). From a general point of view, JXTA has become a set of standard protocol defi-

nitions for dealing with various P2P infrastructure management tasks in Java, such as peer discov-

ery, peer binding and peer routing. Application developers are free to choose a suitable reference

implementation or implement the JXTA protocol suite on their own, e.g. for the use along with a

not yet supported programming language. While JXTA may be used to add P2P functionality for

certain application scenarios, such as file sharing, it introduces a pipe-based communication model

that complicates object-oriented communication used among distributed applications. As a result,

JXTA represents a good choice for developing new P2P applications without starting from scratch

but lacks support for interconnecting regular applications, e.g. transparently accessing distributed

objects. Nevertheless, P2P infrastructures may be also used to organize the peers and its resources

in a wide-area computing environments. For example, Tapestry and Pastry provide an overlay loca-

tion and routing infrastructure that enables the location-independent interaction with distributed P2P

resources [306, 394]. In p2pCM, a distributed component deployment model is introduced on top of

a structured peer-to-peer overlay network [285]. It aims at enabling Computer-Supported

Collaborative Work (CSCW) in a wide-area environment by deploying required software compo-

nents via a P2P network.

Rich Internet Applications. While the invention of a multi-purpose application environment like

BOINC supports distributed component deployment, spontaneous application execution and trans-

parent device employment, it still requires manual installation of software packages before it can be

actually used. For desktop computing scenarios, another approach is the use of commodity applica-

tions like regular Internet browsers that have been already installed and configured on the target

computing system. A related solution is Asynchronous JavaScript and XML (AJAX) that relies on

the built-in feature of Internet browsers to execute applications written in JavaScript and encapsu-

3. An Autonomic Cross-Platform Operating Environment 77

lated in regular web pages [293]. The particular improvement over standard web pages is the conti-

nuous communication with the application server in the background and reacting to user input with-

out submitting a distinct web form every time. The result is a responsive web interface that behaves

almost like a regular desktop system, such as the cloud-based web desktop eyeOS [106]. A further

extension of this idea is pursued by the Eclipse Rich AJAX Platform (RAP) project [97]. Besides

using AJAX for client-side user interface processing, it aims to introduce a corresponding applica-

tion model on the server side that is based on an OSGI application system, namely Eclipse Equinox

[95]. This results in the combination of client-side and server-side technologies to create a seamless

cross-platform operating environment by using the best concepts of both worlds. Following the

Model View Controller (MVC) concept, RAP maps client-side AJAX user interface elements on

server-side OSGI components and enables Java developers to focus on the Java business logic ra-

ther than on how to implement the required web logic for dealing with different browser features.

Besides using built-in browser features, there are Rich Internet Application (RIA) solutions that rely

on extra browser plugins like Adobe Flash, MS Silverlight and Sun Java FX [216, 238, 341]. They

are typically installed on-demand when a related web page is visited the first time and mainly im-

prove the GUI capabilities compared to a native web page, e.g. by adding new animation elements.

While the browser-based computing approach has revolutionized the web and supports public com-

puting by implementing a cross-platform operating environment based on commodity technologies,

it is still a web computing approach. It cannot be used offline, and the client-side operation is li-

mited to the browser environment and currently running application; no concurrent use of multiple

applications on the same web page is possible. In addition, the programming model is different

from regular applications in that it requires some effort to transform regular desktop applications

[388]. However, concerning on-demand computing scenarios, RIA supports the shift from resource-

centric to task-centric computing by providing the right application the user needs and, in case of

AJAX, without installing any software package in advance.

As a result, public computing solutions have recently become quite popular due to the de-facto

permanent connection of computing systems to the Internet and the increasing availability of un-

used computing resources at the same time. A particular characteristic is the unmanaged infrastruc-

ture in terms of system setup and application deployment which results in public computing solu-

tions separating the concrete application from the specifics of the underlying platform, e.g. intro-

ducing a common-purpose computing environment like in BOINC and XtremWeb. Another option

is the shift from a box-centric to a network-centric view and the specification of the service com-

munication instead of application hosting, e.g. by defining an independent set of communication

78 3. An Autonomic Cross-Platform Operating Environment

protocols like in Sun JXTA. Certainly, there are further public computing solutions that mainly dif-

fer in terms of programming language and programming model [293], such as Adobe AIR, Google

Web Toolkit (GWT), Microsoft Silverlight and Sun JavaFX [2, 144, 238, 341]. Most of them have

been developed with the focus on separately deploying and running Internet applications. They typ-

ically lack support for concurrent hosting of applications across heterogeneous computing systems

and self-managing integration of software components offered by different Internet sites.

3.4.5 Results

While single computing, enterprise computing and community computing are addressed by many

approaches, such as Eclipse Equinox, IBM On Demand Operating Environment and Globus, the

public computing scenario is still subject of current research and ongoing development. Related

work like Berkeley Open Infrastructure for Network Computing (BOINC) aim to create a distributed

computing environment on top of unmanaged and loosely coupled computing systems, e.g. by tem-

porarily running desktop computers at home. The major advantage is the establishment of a global

computing infrastructure in which everybody can plugin and remove his or her computer at any

time, without actually dealing with the specific application deployment and operation. While this

solution focuses on remote task processing, other approaches, such as the Eclipse Rich Ajax

Platform (RAP), address local task processing in the public space. The idea is to set up and run spe-

cific applications on managed server computing systems and to use web browsers on unmanaged

desktop computers to display the application interface and access local data. The user gets the illu-

sion of a pervasive application environment in which applications are run on the currently employed

desktop computer. A further approach is to support distributed task processing by specifying the

interaction model instead of the application model, like in Sun JXTA. Each peer provides access to

its resources and services via standard communication protocols, but is free how to realize the func-

tions, e.g. by using a virtual runtime environment like Sun JRE or executing native program code.

On the one hand, this results in greater flexibility to integrate different peers and services in a hete-

rogeneous environment on the fly. On the other hand, major issues of spontaneous cross-platform

operation are not addressed and supported, e.g. distributed code deployment and dynamic software

composition. They are partially addressed by mobile code systems, such as AgentScape, which sup-

port ad-hoc execution migration but lack features concerning environment customization.

3. An Autonomic Cross-Platform Operating Environment 79

3.5 Summary

In this chapter, the motivation for building an autonomic cross-platform operating environment

suitable to support on demand Internet computing has been presented. Various cross-platform issues

have been discussed by considering the challenges of application management in a heterogeneous

network environment. The outcome was the presentation of an approach that addresses the desired

features of a cross-platform operating environment and considers the challenges imposed by realiz-

ing it in an Internet environment. Next, the need for autonomic operation has been motivated due to

the uncertainty of application requests, spontaneous use of heterogeneous resources and dynamic

application of user profiles that cannot be addressed by manual management or one-for-all configu-

rations. After having deduced essential self-managing features for cross-platform computing, a self-

managing infrastructure has been presented that is based on the integration, automation and virtuali-

zation of computing resources. Finally, supporting solutions for cross-platform computing have

been outlined with respect to the addressed operating environment, namely single computing, enter-

prise computing, community computing and public computing.

The principal outcome of this chapter is the feasibility of combining functional cross-platform

features with self-managing behavior to address the features of ODIC and the challenges of an open

and unmanaged network environment as found in a public computing scenario. The idea of separat-

ing the platform setup, the application configuration and the environment customization along with

the introduction of a self-managing middleware decouples the tasks of the user roles of ODIC as

elaborated in Section 2.3.3. From this point of view, the proposed Autonomic Cross-Platform

Operating Environment (ACOE) is supposed to particularly support the spontaneous deployment

and launching of Internet applications, as described in the vision in Section 2.4.3.

The review of supporting solutions, primarily with respect to their support of ODIC and im-

plementing an ACOE has revealed that there are many efforts to address local, remote and distri-

buted task processing in single, enterprise and community computing scenarios. For public compu-

ting scenarios as typically found in the Internet, however, only few solutions exist that are typically

limited in supporting the elaborated cross-platform features and self-managing behavior. In addi-

tion, they are typically supposed to address a single kind of task processing only, e.g. BOINC

enables remote task processing but is not well-suited for local task processing in a public computing

scenario. As a conclusion, a suitable realization supporting all facets of ODIC, as presented in Sec-

tion 2.4.2, as well as implementing the features of ACOE, as proposed in Section 3.1.3, is missing.

4. XDK – The Crossware Development Kit 81

4. XDK - The Crossware Development Kit

4.1 Introduction

In this chapter, the realization of the Autonomic Cross-Platform Operating Environment (ACOE)

proposed in Chapter 3 is presented. First, the system architecture and the Java realization of the

Crossware Development Kit (XDK) are sketched and its deployment in a cross-platform operating

environment is outlined. Then, the implementation of the core features, namely deployment, com-

position, hosting, customization, interconnection and migration, is described in detail. Parts of this

work have been already published in journals and conference proceedings [267, 268, 269, 270, 271,

272, 273, 274, 277, 278, 279, 280, 281, 282], and carried on in [89, 162, 297, 318, 362]. Last, the

implementation is reviewed and the results with respect to the project goal of ACOE are discussed.

4.1.1 System Architecture

The system architecture of the XDK follows the proposals for building a cross-platform operating

environment (Figure 3.4) and the self-managing infrastructure (Figure 3.7) presented in Section

3.2.2 and Section 3.3.3. As illustrated in Figure 4.1, the layered system architecture is separated into

the platform, the middleware and the application layer.

The platform layer represents the host-specific installation found on a target computing node.

A suitable operating system has been installed by the administrator, e.g. MS Windows, and addi-

tional features like hardware drivers and database installations have been added to the installation.

On top, a virtual runtime environment is set up that hides the actual node installation and provides a

uniform interface to the platform resources. The middleware layer contains the core of the self-

managing infrastructure components. An integration middleware complements the virtual runtime

environment with additional features concerning cross-platform operation, e.g. code deployment

units, application composition descriptions and virtual object interconnection. The layer feature

automation contains the basic components for creating a self-managing infrastructure across distinct

computing nodes. In fact, it represents the autonomic manager that controls the host resources pro-

vided by the integration middleware and establishes a virtual operating environment on top; hence it

is an autonomic element altogether. As shown in Figure 4.1, the resulting control loop involves the

following layers: integration middleware (managed element), the feature automation (autonomic

manager) and the virtual operating environment (touch point). The application layer is located on

top of the virtual operating environment and benefits from the cross-platform automation provided

by the self-managing infrastructure.

82 4. XDK – The Crossware Development Kit

Figure 4.1: XDK System Architecture

An application does no longer have to be prepared to run on a specific target host but can be

configured with respect to the uniform and self-managing features of the virtual operating environ-

ment. As a result, the system architecture combines the features of a cross-platform operating envi-

ronment presented in Section 3.2.2 with the automation capabilities of the self-managing infrastruc-

ture described in Section 3.3.3.

4.1.2 Java Realization

The system architecture shown in Figure 4.1 is based on a virtual runtime environment that allows

running the same program code on different host systems. As discussed in Section 3.4, there are

actually two competing solutions suitable at present, namely Sun Java and Microsoft .NET, which

both provide a fully-featured and matured virtual runtime environment. However, recalling the ob-

jective to establish a cross-platform operating environment consisting of hosts with heterogeneous

operating systems, only Sun's Java is currently a working approach. Microsoft .NET is originally

limited to Microsoft Windows platforms, although there are various open source projects on the

way, e.g. Mono, which allow running .NET application on different operating systems, the feature

and installation support are still limited [257]. Moreover, Java is actually the preferred runtime en-

4. XDK – The Crossware Development Kit 83

vironment for running cross-platform applications in the Internet, e.g. Java applets and servlets.

Consequently, the Java Standard Runtime Environment (J2RE) is chosen to realize the ACOE, as

shown in Figure 4.2.

Figure 4.2: Java Realization of the Autonomic Cross-Platform Operating Environment (ACOE)

The middleware layer from Figure 4.2 is implemented by the Crossware Development Kit

(XDK) whose implementation is described in the following sections in detail. In short, the XDK

represents the autonomic element that manages the platform resources and provides self-managing

features to the cross-platform applications. The latter can be a legacy Java application, a legacy Java

applet or a Java crosslet that represents a new type of cross-platform application introduced by the

XDK and described in Section 4.2.1. The basic idea is to support existing applications as well as to

offer and implement advanced features arising from the interaction of the crosslet and the XDK.

4.1.3 Components

Before the realization of the XDK is described in detail, a brief overview of the components target-

ing the ACOE is given. Recalling the feature list in Section 3.1.3, a corresponding implementation

has to consider various issues, as illustrated in Figure 4.3.

The XDK addresses distributed code deployment by introducing Self-Descriptive Crosslets and

Java Class Collections, described in Section 4.2. The dynamic software composition is handled by

Java Class Spaces and Java Loadable Modules, described in Section 4.3. In Section 4.4, Adaptive

Resource Broker and Java Task Spaces are proposed for shared application hosting. This is fol-

84 4. XDK – The Crossware Development Kit

lowed by the illustration of the Application Execution Engine and Roaming User Profiles in Section

4.5 used for the pervasive environment customization. Next, Java Method Streams and Java Object

Spaces address virtual object interconnection, as illustrated in Section 4.6. Finally, the support of ad

hoc execution migration is described in Section 4.7 by presenting Java Thread Controller and Java

Execution Units.

Figure 4.3: Feature Mapping

4. XDK – The Crossware Development Kit 85

4.2 Distributed Code Deployment

The employment of computing resources requires the separate installation of software on spatially

administered computing nodes. This is usually performed by the roles of the assembly deployer

who copies the software from a well-known code repository and the system administrator who runs

the specific software installation program. In a distributed environment, various code repositories

like public FTP mirrors are concurrently employed by component providers and assembly deployers

to propagate component and application assemblies, respectively, e.g. plugins in packaged in single

software libraries and application installers that subsequently download necessary bundles during

installation. In a self-managing cross-platform operating environment, a particular problem is the

automatic selection of suitable assemblies from various code repositories without user intervention.

In Section 4.2.1, self-descriptive crosslets are introduced for packaging and describing code assem-

blies [280, 355]. The aim of the new deployment approach is to enable the concurrent shipping of

assemblies to different code repositories and the dynamic selection and download of appropriate

bundles according to the application and platform configuration, e.g. locating a matching database

driver to access the locally installed database. For Java applications, an additional problem is the

native class loading approach that does not operate in terms of Java assemblies, e.g. Java archives

(JAR files) but classes found in the CLASSPATH setting. In Section 4.2.2, a refinement of regular

Java class loading is presented using Java class collections [270]. It is shown how they support the

definition of code assemblies in Java by decorating regular Java archives and how Java class load-

ing is modified to transparently select and load required code assemblies in a self-managing way.

4.2.1 Self-Descriptive Crosslets

The term crosslet is introduced in this thesis to denote a novel self-descriptive code deployment unit

that allows organizing the code shipping in a self-managing way. Though the approach is imple-

mented in Java and primarily intended to be used with Java applications, it is shown how crosslets

support the self-managing selection and deployment of native application assemblies, e.g. retrieving

Linux executables matching the configuration of the target computing system.

4.2.1.1 Motivation

A software application is typically composed of smaller parts, e.g. libraries, modules and compo-

nents that are provided by component developers in separate code packages [see Section 2.3.2]. In a

traditional deployment scenario, the application assembler selects appropriate software components,

adds an application configuration and creates an application assembly suitable for a prearranged

86 4. XDK – The Crossware Development Kit

computing system, e.g. a MS Windows executable bundled with all required DLLs and often supp-

lemented with a specific application installer. In turn, a system administrator selects an application

assembly appropriate for the target computing system, e.g. by ordering a related installation CD,

and performs the required installation steps, e.g. preparing the computing system, running the appli-

cation installer and choosing the installation options suitable for the present computing system.

While this approach works fine in a managed environment and with well-known application

installations, it has drawbacks in a cross-platform operating environment where application installa-

tions not known in advance co-exist on heterogeneous computing systems, e.g. installed by different

users of the same computing system. First of all, applications are deployed and installed in an all-or-

nothing fashion. There is usually no way to reuse software components from parallel application

installations that causes the deployment the same component another time. This wastes disk space

and increases the transmission overhead in case of remote installations, e.g. via the Internet. Anoth-

er drawback is the administrator-driven installation scheme that assumes the manual selection of

software components with respect to the target computing environment. The replacing and mixing

of software components from different sources is not generally supported and only possible for ex-

perts. A further issue is the lookup of suitable application software to install. There is not only one

code repository but several may be offered from where missing software components can be re-

trieved. A user has to manually query each one for new and updated software releases which is not

only a tedious task but may be practically impossible in a large scale environment.

4.2.1.2 Features

The goal of the Self-Descriptive Crosslet approach is the introduction of a cross-platform deploy-

ment system for distributing and resolving software packages in a self-managing way. The major

features are as follows.

Self-Descriptive Deployment Unit. An essential feature is the introduction of comparable deploy-

ment units that can be used by a self-managing deployment approach to organize and evaluate dep-

loyment units in a uniform way and regardless of their content, e.g. determining deployment depen-

dencies and identifying compatible variants in the local deployment cache before actually down-

loading the same deployment unit another time.

Distributed Code Repositories. In a cross-platform operating environment, there are various au-

thorities that may concurrently introduce different releases of the same component and upload them

to multiple code repositories. By using crosslets, a self-managing deployment approach can access

4. XDK – The Crossware Development Kit 87

distinct code repositories and query them for missing components, e.g. resolving the dependencies

of a component found in another repository.

Self-Managing Code Deployment. A particular concern is the customizable selection and resolu-

tion of required components according to the requirements and capabilities of the requesting appli-

cation and the current hosting environment, respectively. The self-managing code deployment app-

roach evaluates the current deployment scenario and adapts the deployment query, e.g. by dynami-

cally selecting an updated release of the originally requested component.

Transparent Use. The deployment process can be dynamically invoked and altered without affect-

ing the current application execution, e.g. switching from one code repository to another on-the-fly

or selecting a compatible variant already installed on the host computing system. The self-managing

deployment procedure is hidden from the application and the user as well, e.g. how to resolve the

dependencies of an application plugin.

Legacy Application Support. The self-managing deployment approach is able to deploy legacy

applications without modification, e.g. packaging Java applications without recompilation but by

adding particular deployment descriptions. In addition, native executables, such as MS Windows

programs, can be packaged as well and decorated with configuration statements for deployment on

suitable MS Windows computing systems only.

4.2.1.3 Approach

The idea behind the approach is to adjust the dynamic composition of applications in a self-

managing way according to the current deployment scenario. Application requirements, platform

configurations and available code assemblies are evaluated and the best matching assemblies are

selected and used for application composition. To this end, the approach introduces a self-

descriptive assembly unit called Crosslet that acts as a physical container for custom resources, e.g.

code archives or image files, and may be individually deployed to distributed crosslet repositories

[277]. Every crosslet contains a crosslet description to control the deployment of the crosslet by

specifying its properties and dependencies. If an application is to be deployed and run on a compu-

ting system, the required crosslets are dynamically selected and retrieved from crosslet repositories,

as illustrated in Figure 4.4.

88 4. XDK – The Crossware Development Kit

Figure 4.4: Application Deployment using Self-Descriptive Crosslets

The crosslet repositories are separately run by different authorities and may be connected to

synchronize their crosslet stores, e.g. for forming a master and backup repository installation. While

a computing system can retrieve all crosslet descriptions from every repository and resolve the re-

quired crosslets on its own, the preferred way is to submit a list of required crosslets, e.g. by speci-

fying the crosslet properties, to a single crosslet repository. This repository will then resolve the

crosslet dependencies by querying the other repositories. Thus, there is no need to update every

computing system with the information of all installed crosslet repositories and system administra-

tors are enabled to set up a single connection point to a varying crosslet deployment infrastructure.

4.2.1.4 Realization

The actual application deployment on a computing system is performed by a self-managing crosslet

installer. It evaluates the application description and the platform configuration to select and re-

trieve the application crosslets best suitable for the current computing system, as shown in Figure

4.5.

The deployment procedure of application crosslets is as follows. First, the installer reads the

crosslet dependencies from the application description (1) and checks the crosslet cache for match-

ing crosslets (2). Next, the platform configuration provided by the system administrator is read (3)

and a crosslet query is defined (4) while considering both the application requirements and platform

configuration as well. The crosslet repositories are queried and the crosslet descriptions of matching

4. XDK – The Crossware Development Kit 89

crosslets are returned in a list (5). Next, the dependency resolution starts and tries to determine

which crosslets should be actually retrieved. Finally, the list of resolved crosslets is returned and the

crosslets are downloaded from the crosslet repositories (6). To adjust the self-managing deployment

process, a deployment policy can be defined to modify the crosslet selection and installation accord-

ing to additional parameters and constraints, e.g. excluding crosslet repositories that failed in the

past or prefering crosslets from a certain provider.

Figure 4.5: Self-Managing Crosslet Installer

A particular objective for the realization of the crosslet approach is the transparent application

in regular development and deployment scenarios. For this reason, existing file formats and com-

mon tools to package a crosslet are used. A ZIP-based file format is chosen where code bundles are

encapsulated and described using various configuration files. Similar to a WAR file (Web Archive),

a XAR file (Crossware Archive) introduces a specific file organization, as shown in the example in

Figure 4.6.

90 4. XDK – The Crossware Development Kit

Figure 4.6: File Organization within a Crosslet Archive (XAR)

The XAR file contains a particular folder CROSS-INF in which specific configuration files are

located and a sub directory LIB that can host various code packages. The mandatory XML configu-

ration file crosslet.xml describes the crosslet content and is mainly used to identify the cross-

let and its deployment dependencies, e.g. which crosslets have to be retrieved before this crosslet

can be enabled. Additional configuration files, such as collection.xml, modules.xml,

application.xml and launch.xml can be optionally added and are used to refine the com-

position procedures after the deployment phase [see Section 4.2.2, Section 4.3.2, and Section 4.5.1].

An excerpt of a crosslet configuration is shown in Figure 4.7.

The XML crosslet configuration file crosslet.xml starts with a root node crosslet and

a related attribute id that marks this crosslet with a unique identifier, e.g. archiver-1.3.0-

070103.2340. The format of the identifier is free as long as the id string is unique. The remain-

ing configuration is divided into three sections, namely properties, dependencies and

command, as shown in Figure 4.7. The sections properties contains key-value pairs of various

meta-data properties, e.g. the identifying name of the crosslet, the release statement for comparing

other variants of the same crosslet, an informal description and a directory statement for grouping

related crosslets when the crosslet properties are displayed in a deployment browser.

4. XDK – The Crossware Development Kit 91

Figure 4.7: Example of Crosslet Configuration File

Apart from the mandatory property name, all properties are optional and can be extended with

any other key-value pair to refine the crosslet meta-data. In turn, the dependencies section uses

these meta-data properties to refer required crosslets by defining corresponding properties to match

against. In the example, when the crosslet archiver-1.3.0-070103.2340 is deployed a

crosslet with the name crossware-odix and the release 2.1.0-dev1 or newer has to be re-

trieved as well. If there is more than one crosslet containing the matching property values, the most

recent crosslet will be used. By specifying additional properties, the component deployer can refine

the deployment dependencies and thus the deployment process. Another option is to use the crosslet

id that uniquely refer a certain crosslet but will not allow the system to select a compatible variant if

possible. In addition to refer other crosslets, the deployer could also constrain the deployment of the

crosslet to platforms with certain features. As an example, by using os.type and the value

windows, one can bind the deployment of the crosslet to MS Windows platforms only. It should

be pointed out, that the configuration file may be extended with further property statements that

refine the deployment process, such as screen resolution or the amount of installed main memory.

Furthermore, the current property matching procedure is rather simple and does only compare re-

92 4. XDK – The Crossware Development Kit

lated properties by regular string matching or proprietary char sequences like the plus sign in the

release statement meaning this or a more recent release. However, the evaluation of the crosslet

configuration file can be adjusted by plugins that could rely on regular expressions or introduce a

complete different crosslet matching scheme. Finally, the command section can be used to add ref-

erences to particular launch configurations found in the launch configuration file launch.xml. In

the example, a launch configuration is referenced that will be evaluated when this crosslet is to be

installed. Further crosslet commands can be added, e.g. for updating and uninstalling an application.

The current realization of the autonomic code deployment logic is part of the XDK and imple-

mented in Java. Nevertheless, the crosslet deployment units and the XDK can also be used for the

autonomic deployment and launching of native applications. To this end, the executables and re-

quired extra files are packaged into a ZIP file that will be in turn put into the crosslet. A particular

application launcher evaluates the crosslet after deployment, unzips the executables into a tempo-

rary directory and starts the application a separate process like any other native executable. In case

of Java programs, various applications may also be launched and organized within the same Java

Virtual Machine, as will be shown in Section 4.3.1 and Section 4.4.2.

A simple crosslet repository can be set up by using a regular file system and storing the dep-

loyed crosslets as serialized files, e.g. often used for installing a local crosslet cache. Another option

is to use a database installation and store the crosslet description in database tables for better han-

dling. Furthermore, a crosslet repository may be installed as a web service that can be easily ac-

cessed via the Internet. When uploading a crosslet to a crosslet repository, the crosslet description is

extracted and stored separately from the actual crosslet unit. This enables the querying of crosslets

without reading possibly large crosslet files during operation later on. In addition, a computing sys-

tem can request the crosslet descriptions and select crosslets before actually downloading them.

4.2.1.5 Autonomic Application

The present crosslet deployment approach can be used to implement Autonomic Code Deployment

for spontaneous launching of applications by retrieving and installing required crosslets automati-

cally, as shown in Figure 4.8.

If the application launcher receives an application launching request, it delegates the retrieval

and installation of suitable crosslets to the crosslet manager. Various crosslet repository handlers,

that have been configured by the platform administrator during system setup or discovered during

runtime, may be accessed by the crosslet manager to query missing crosslets.

4. XDK – The Crossware Development Kit 93

Figure 4.8: Autonomic Code Deployment

Code deployment is performed in an autonomic manner by evaluating a given deployment pol-

icy that specifies various rules for selecting and downloading required crosslets. From this point of

view, the application launcher represents the requesting element whereas the crosslet manager acts

as the autonomic manager that controls various crosslet repositories, the managed elements, to

query and retrieve needed crosslets. For example, the crosslet manager could discover online cross-

let repositories by querying well-known repositories and prefer crosslet repositories in the Intranet

or reachable via secure connections (self-configuration). Before actually launching an application

an administrator could have specified to always check for updated crosslets located in repositories

in the Intranet or ignore crosslet repositories that have failed in the past due to poor network con-

nectivity (self-optimization). Another scenario is the movement of a nomadic user to another com-

puting system and the synchronization of application launcher profiles [see Section 4.5.1]. The

crosslet manager is able to detect unresolved crosslet dependencies on the new computing system

and try to retrieve the missing crosslets in the background (self-healing). Finally, the crosslet man-

ager checks all crosslet installation tasks and prevents the installation of crosslets that may com-

promise the installation, e.g. replacing system crosslets or downloading crosslets lacking a trusted

security certificate (self-protection).

4.2.1.6 Related Work

There are many Java deployment approaches available that mainly differ in the way how Java

classes are packaged, distributed and retrieved. Various aspects like scalability and complexity may

94 4. XDK – The Crossware Development Kit

be considered to select a suitable deployment solution [351]. In the following section, related work

is reviewed with respect to the applicability in a cross-platform operating environment.

Native Java Deployment. The native Java deployment approaches are basically characterized by

using the Java system class loader. A simple option is to put the Java classes in a directory structure

following the package hierarchy and set the CLASSPATH accordingly. This approach is suitable

for development time but fails to support remote code distribution. A refinement is the use of a Java

archive (JAR) that is built by packaging the directory structure into a single file [367]. On the one

hand, a JAR file can be easily distributed and used to add extra information about the contained

classes, such as version statements in the manifest file. It is compatible with each legacy JVM and

is therefore well-suited for a cross-platform operating environment. On the other hand, it lacks sup-

port for dynamically configuring the composition, customization and execution. Once started, the

JVM cannot be easily reconfigured to consider additional JAR files that were not added to the

CLASSPATH. The customization of an application is not possible without modifying the JAR files,

and the runtime configuration is not addressed at all by this approach.

Java Component Frameworks. There are framework approaches that emerged from standardized

application scenarios, such as CORBA Components [232] and Java Servlets [171]. They address

specific deployment and composition scenarios that are defined by the framework implementation.

For example, web modules are packaged in Web Archives (WAR) files that are JAR files containing

particular configuration directories and files, such as Java classes, HTML and XML files. They are

supposed to be exclusively used by a servlet engine for the deployment of Java servlets. The

Enterprise Java Beans (EJB) approach introduces Enterprise Archives (EAR) that adds an addition-

al abstraction level to group various WAR and JAR files into a single entity [242, 336]. This makes

it easy to reuse components in new J2EE applications and distribute them to another application

server. Both approaches focus on the support of specific server-side application scenarios and are

not suitable for different kinds of applications, e.g. legacy Java desktop applications. While a WAR

file does not basically differ from a JAR file concerning deployment configuration, an EAR file can

be used to configure the composition, customization and execution of a J2EE application. Though it

separates the concerns of application deployment and supports different user roles, such as applica-

tion assembly, it is not able to dynamically modify the deployment and composition process during

runtime. It lacks support for remote code repositories and always bundles the code along with the

configuration files as a single entity. A popular deployment approach is introduced by the OSGI

service platform [262] that focuses on the installation and management of self-descriptive software

4. XDK – The Crossware Development Kit 95

components. It introduces so called bundles as deployment units that are based on legacy JAR files

with extended manifest files within. The OSGI approach relies on a well-known deployment scena-

rio where bundles are provided at specific locations from which they are downloaded during the

dependency resolution process if a new component is to be installed. In this scenario, distinct bun-

dles cannot be dynamically selected and retrieved from concurrent repositories. Furthermore, the

OSGI deployment approach is designed to particularly support the dynamic composition of OSGI

applications and is not feasible for the deployment of legacy Java applications, e.g. due to the need

of an OSGI runtime installation.

Dynamic Code Deployment. A dynamic approach is specified by the Java Network Launch

Protocol (JNLP) and used by various implementations for client-side deployment, such as Sun Java

Web Start, Netx and Object Component Desktop [383, 254, 260]. Instead of distributing code and

application configuration as a single unit, a JNLP configuration file is retrieved from a remote ap-

plication repository and used to dynamically configure the deployment process. The approach sup-

ports local caching of downloaded JAR files and checking for updated versions that are transparent-

ly downloaded when the application is started next time. In addition, it supports the configuration of

the application composition by introducing particular server-side JNLP handlers and the paramete-

rization of the application execution. The dynamic selection and configuration of a suitable runtime

environment is possible. Although the JNLP approach supports many issues of dynamic application

deployment in a cross-platform operating environment, it is basically limited to a fixed deployment

scenario, e.g. using well-known JNLP repositories like the upcoming Sun Java Store [346]. The

distribution and composition configuration is tightly coupled, and there is no way to dynamically

include or query other code repositories. There is no support for self-managing customization of the

deployment process such as the selection of the most appropriate component according to applica-

tion requirements and platform capabilities.

Custom Networked Deployment. There are several custom deployment approaches that address

different application scenarios. Deploy Directory [84] and Power Update [296] are designed to

manage auto-updating of Java clients and use a proprietary deployment protocol. The approaches

are able to customize the deployment process but are not supposed to be used in application scena-

rios different from local task processing. A similar solution is Software Dock [160]. It enables co-

operative software deployment by introducing particular servers, release dock and field dock, which

represent software producers and software consumers, respectively. Agents implement the actual

software deployment functionality and use the servers to deploy and to retrieve software systems.

96 4. XDK – The Crossware Development Kit

While this approach introduces an advanced software deployment infrastructure, it heavily relies on

a well-known deployment scenario and specific agents to perform certain operations, such as check-

ing for software updates. The approach supports the installation and removal of separate software

systems but does not explicitly address custom application composition. In the context of nomadic

and mobile applications, there are approaches that extend mobile agent solutions to take along the

related Java software components from one host to another, e.g. TACOMA [335]. For pervasive

application scenarios, the component deployment may be coupled with the movement of the user,

e.g. by using RFIDs (radio frequency identifiers), and performed in a self-managing way, as in the

Hydra framework [313]. Both, TACOMA and Hydra are designed to be mainly used in the ad-

dressed deployment scenarios and cannot easily be adopted by legacy applications. They introduce

specific component assemblies or transfer components directly between two nodes without using an

assembly entity at all. A further approach is SATIN [391] that provides a lightweight component

model supposed to be used in mobile devices. It adapts itself to changing requirements and enables

self organization based on logical mobility and the introduction of Logical Mobile Units (LMU). An

inherent drawback is the compulsory use of the related component model that actually turns this

approach unfeasible for the deployment of legacy Java code. Another custom deployment approach

is represented by SmartFrog [137]. It defines an application as a collection of possibly distributed

components that are automatically deployed and configured. A particular specification language is

introduced to define the lifecycles and dependencies of components and how they should be dep-

loyed, run and connected. The major drawback of this approach is the encapsulation of each instant-

iated component in a separate process or JVM. A certain middleware approach, such as RMI, must

be used to connect the components. Moreover, there is no way to share commonly required soft-

ware libraries which increases the resource requirements.

To summarize, native approaches are commonly used to encapsulate and distribute application

classes, such as Java archives (JAR), but do not support distributed scenarios. Application frame-

work approaches, such as Java servlets and OSGI, add particular features but are typically limited to

well-known application scenarios and custom programming models. Dynamic approaches based on

JNLP are able to customize the deployment process but depend on administered assembly reposito-

ries. Custom approaches tend to be specific for a certain application scenario, fail for different ones

or cannot be easily adopted like the Hydra framework. Moreover, they typically require particular

installations in advance and lack support for legacy Java applications, such as SATIN. From this

point of view, the crosslet approach represents a self-managing deployment solution while it still

supports legacy Java applications and class assemblies.

4. XDK – The Crossware Development Kit 97

4.2.2 Java Class Collections

Java class collections support the definition of code packages based on regular Java archives and for

use with legacy Java applications. The following sections show how existing Java code archives are

decorated with various metadata defining the properties and dependencies of the contained classes.

The realization using a particular Java class loader is described and the application of the approach

for the self-managing selection of suitable code packages from remote code repositories is illu-

strated.

4.2.2.1 Motivation

The original design of the Java Runtime Environment (JRE) is based on dynamic Java class loading

and a Java Virtual Machine (JVM) that instantiates Java classes as they are requested by locating,

loading and resolving the related byte code [223]. This reduces the startup time. Later on, the mem-

ory allocation since only required classes are loaded and resolved. The native JVM comes with a so

called system class loader that locates the byte code using an environment variable CLASSPATH

and the fully-qualified class name (FQCN) of the required classes (composed of the package name

and the class name itself) [94, 367]. The system class loader is able to load classes deployed into

directories of the local file system or stored in Java Archives (JAR). In addition, custom class load-

ers can be installed that are free in the way the byte code is located and loaded, e.g. loading the JAR

files from a remote repository via the Internet.

Typical custom class loader implementations usually change the way classes are loaded and

sometimes also how they are located, but not how they are selected. They still use only the package

and class name. Thus, it is not possible to configure from where which classes should actually be

used when composing a specific application. In contrast, the classes are selected in the sequence as

they are found which is not always correct, e.g. when an application is composed of classes from

various Java Archives that contain several classes having the same class name. A related problem is

the separated handling of distinct class loading requests which affects the resolution of class depen-

dencies. Since the origin of a class is not remembered, associated classes may be loaded from a dif-

ferent location, e.g. from another JAR file than the referencing class, and an incompatible class va-

riant may be possibly resolved and initialized.

98 4. XDK – The Crossware Development Kit

4.2.2.2 Features

The Java Class Collection approach is aimed at introducing a Java component assembly that

enables the self-managing deployment and composition of Java applications in a shared hosting

environment. The major features are as follows.

Java Class Grouping. Java classes can be virtually grouped by selecting Java classes whose FQCN

match a regular expression, e.g. all classes of the package java.lang. In contrast to the regular

class loading approach, a particular class loader evaluates the JCC configuration and can ensure to

load associated classes from the same origin. In addition, JCC allows deployers to create class

groups spanning various class repositories, e.g. grouping classes contained in several JAR files.

Custom Assembly Tagging. The JCC can be decorated with custom assembly tags that may be

used to select Java classes not only by the FQCN but also by extra properties, e.g. vendor and re-

lease tags. A related feature is the option to evaluate the properties without actually downloading

the entire JCC from a remote code repository that eases the self-managing deployment in a cross-

platform operating environment.

Adaptive Dependency Resolution. The declaration of dependencies and compatibilities among

JCC by using an extensible description scheme is another feature. An application framework can

evaluate the descriptions and determine the required Java classes before the application is actually

launched, resolve the related JCC and, if the composition cannot be performed, try to resolve the

dependencies in a self-managing way, e.g. by choosing compatible Java classes from another JCC.

Existing Class Repositories. A keystone of the JCC approach is the use of existing class reposito-

ries, like Java Archives (JAR) or Open Services Gateway Initiative (OSGI) bundles, which can be

referred in a JCC configuration without modification or repackaging. The contained Java classes

may be loaded from the local file system, a remote server or from any other origin by using a cus-

tom class loader plugin, e.g. from a database.

Legacy Java Runtime Environment. The JCC approach can be used with any legacy Java Run-

time Environment and does not require any modification of the application implementation; hence

the approach does not change the standard Java programming model that is especially important for

developers and the reuse of existing code. The JCC configuration can also be used to create a cor-

responding JAR file for launching any regular Java application.

4. XDK – The Crossware Development Kit 99

4.2.2.3 Approach

A new class loading approach is invented that is no longer relying on the location of a native Java

classes or JAR files. Instead, so called class collections [268] are introduced that represent groups

of classes that can be randomly defined and decorated with custom properties, as shown in Figure

4.9.

Figure 4.9: Class Grouping using Java Class Collections

The system administrator provides a list of available Java class collections in the platform con-

figuration. Every class collection contains a configuration file defining the properties (3) of the col-

lection and where the associated Java classes (4) can be found, e.g. in JAR files stored on the com-

puting system or downloadable from a web server. The application developer specifies in the appli-

cation configuration of an application assembly which classes are required to run the application.

Particular collection queries are defined and used to resolve matching Java class collections on the

current computing system. Both application and platform configuration can be individually created

and are dynamically evaluated when an application is started to resolved the required Java classes.

There is no need for application developers to know the platform configuration of the target compu-

100 4. XDK – The Crossware Development Kit

ting system and vice versa, the platform administrator can define the platform configuration without

yet knowing the applications to be run on the computing system.

4.2.2.4 Realization

To evaluate the Java class collections during runtime, a custom class loader is introduced that han-

dles class loading requests by evaluating the collection properties of the configured Java class col-

lections, as shown in Figure 4.10.

Figure 4.10: Resolving Java Classes using Java Class Collections

In the example, a new class collection is defined by selecting classes from two different class

repositories. The resulting collection encloses all classes from the Java class repository 1 that match

the regular expression apache.xerces.* and a single class org.w3c.dom.Attr from the

Java class repository 2. In addition, the resulting class collection is decorated with the properties

name, version and creator. They can be used later to address this class collection. If the Java

application refers a class not yet loaded, a class loading request is delegated to the installed custom

4. XDK – The Crossware Development Kit 101

class loader (1). The class name is used to lookup a matching class collection (2) and to resolve the

class repository location from where the associated byte code should be retrieved (3). Finally, the

byte code is loaded and the requested class is instantiated by the class loader (4).

The realization is based on the introduction of a custom class loader that evaluates XML confi-

guration file to determine the location of the byte code when a class loading request is received. An

example is presented in Figure 4.11 and shows a sample configuration for the classes from the Sun

Java Mail framework.

 Figure 4.11: XML Configuration Files used to define Java Class Collections

First, it declares a collection with the name javamail and then it specifies two variants of it

decorated with the vendor tag sun and the release parameter 1.1.3 and 1.2, respectively. Fur-

ther, it defines the location of the related class repositories and indicates which classes from this file

should be considered. For flexibility and efficiency, the declaration is done with regular expres-

sions, thus it is easy to address various classes with few statements. As a result, class collections

can be easily used by the platform administrator to define groups of classes and their host-specific

file locations. Different variants of the same collection can be defined by adding additional

variant section which eases the management of ongoing developments and concurrent imple-

mentations. Each variant can be individually marked and selected with a custom set of properties

and configured to include only certain classes matching the given regular expressions. There is no

102 4. XDK – The Crossware Development Kit

need to modify existing class repositories, as shown for the Sun Java Mail classes. The XML confi-

guration file can also be stored in a different location than the class files. This way, different plat-

forms can also define individual collections but can still use the same class repositories, e.g. re-

trieved from the same URL.

4.2.2.5 Autonomic Application

The Java Class Collection approach enables an application framework to implement Autonomic

Byte Code Selection by introducing a self-managing code repository handler, as shown in Figure

4.12.

Figure 4.12: Autonomic Byte Code Selection

Whenever an application class is to be loaded by the class loader, it delegates the fully-

qualified class name (FQCN) to the code repository handler and asks for loading the related byte

code from attached Java class repositories, e.g. handling JAR files located in a plugin directory. The

actual resolution and loading of the byte code are hidden from the class loader that simply receives

the byte code.

The autonomic operation is implemented as follows. The application configuration is used to

specify the rules for selecting a class collection whereas the class collection configuration specifies

4. XDK – The Crossware Development Kit 103

the location of related byte code files. Both configurations are evaluated during runtime and set up

the autonomic operation of the code repository handler. From this point of view, the class reposito-

ries are the managed elements, the class loader is the requesting element and the code repository

handler acts as the autonomic manager that controls the byte code. As an example, if an application

requests various Java class collections, the code repository handler resolves dependencies to other

class collections in the background and considers already loaded classes to avoid class loading con-

flicts (self-configuration). In this line, the code repository handler may check the current class load-

ing scenario in a multi-tasking runtime environment and adjust the class loading of the next applica-

tion to share and reuse already loaded classes to keep the memory foot print low (self-optimization).

Next, some classes may not be loaded though the related Java class collections have been success-

fully resolved. The resulting ClassNotFoundException is catched by the code repository

handler and triggers the lookup of another class collection suitable to load the requested class (self-

healing). To prevent an application to inject malicious Java classes into a multi-application frame-

work, the code repository handler checks all class loading requests and can deny access on class

repositories following various rules, e.g. allowing only class loading from certain code repositories

in the Intranet (self-protection).

4.2.2.6 Related Work

The customization of Java class loading is supported and encouraged by the standard JRE imple-

mentation back to the first releases of Java. The basic principle is the introduction of a custom class

loader that is used in place of or in addition to the legacy class loader. A basic categorization can be

deduced along the class resolution strategy.

Native Class Assemblies. In the first category, the custom class loading implementations rely on

native class assemblies based on ZIP-like data containers, e.g. JAR and WAR files. The introduced

custom class loader works with the same class resolution and loading strategy as the standard Java

class loader. The classes are placed in a hierarchical organization according to their packages and

the resolution is directed by evaluating the package name of the requested class. In a similar sense,

the class loading is performed either by reading the unzipped classes from a local file system or

reading the ZIP file into memory. In a typical scenario, the required class assemblies are selected by

the application developer and deployed by the application installer together with the rest of the ap-

plication files, e.g. packaged on a distributable CDROM. Mostly due to potential class loading con-

flicts, there is no intentional sharing of the application class assemblies among various applications.

For example, a servlet container like Apache Tomcat introduces distinct class loaders for every Java

104 4. XDK – The Crossware Development Kit

servlet and separates the application class assemblies by putting them in different folders. There is

typically no support to customize the class selection during runtime, e.g. by evaluating version

properties from the manifest file to resolve class loading conflicts with already loaded class in-

stances. From this point of view, related solutions based on the original Java class loading strategy

are not applicable in a multi-application scenario as addressed by the Java class collection approach

and found in a cross-platform operating environment.

Shared Class Repository. The second category is related to class loader approaches that are based

on a shared class repository and advanced class selection strategies. In contrast to the first category,

the deployment of a class assembly is not dedicated to a single application installation. A common

repository, e.g. a relational database or file system, is used to store class assemblies and related me-

tadata information, e.g. describing the dependencies between a class and its referenced classes. If an

application is to be started, a custom class loader reads the application description, connects to the

shared class repository and selects the required classes by evaluating the application description and

the class metadata information. Besides various proprietary approaches [155], a well-known meta-

data standard to describe class relationships is OSGI that is the foundation of many application

frameworks like Eclipse Equinox, Apache Felix and Knoplerfish [95, 13]. In contrast to the Java

Class Collection approach, OSGI metadata is typically packaged within a JAR file and refers to the

contained classes only. The definition of remote class locations, e.g. referring to a database entry, is

not addressed. The same is valid for remote evaluation of class properties and dependencies during

runtime, e.g. for selecting matching classes without actually downloading and unzipping the JAR

file. Nevertheless, the support of OSGI bundles is an interesting issue for future Java Class Collec-

tion implementations due to the increasing adoption of the OSGI standard and availability of

enriched JAR files. Similar to the OSGI standard for launching Java applications, the development

tools Apache Maven and Apache Ivy introduce another metadata standard for automating the depen-

dency resolution [14]. Regular JAR files and related metadata are stored in a remote repository from

where the required JAR files are dynamically loaded as they are needed during a Java build process.

The developer does no longer need to resolve the application dependencies and upcoming updates

of referenced JAR files are automatically included. In contrast to OSGI, Apache Maven supports

the remote evaluation of class assemblies. There are various features to manage local bundle caches

to avoid repeated download of the same class assemblies. By focussing on the resolution of class

assemblies and Java build automation, there is no way to define subsets of classes based on existing

class assemblies like in the Java Class Collection approach.

4. XDK – The Crossware Development Kit 105

Networked Class Loading. While class loader implementations of the categories above rely on

locally stored class assemblies, the third category is dedicated to networked class loading where

required classes are dynamically resolved and loaded from remote class repositories. A well-known

approach is Java Network Launch Protocol (JNLP) and its reference implementation Java Web

Start from Sun [383]. Based on regular JAR files and an application description file, a custom class

loader typically retrieves related class assemblies from a web server via HTTP. This results in the

main advantage of the JNLP approach, namely the on-demand selection and downloading of appli-

cation classes via the Internet. The JNLP specification allows developers to define custom class

assembly configurations that are selected during runtime according to the target runtime environ-

ment and operating system. In comparison to the Java Class Collection approach, however, the

JNLP assembly definition is fixed. There is no option to adjust the class configuration of an applica-

tion and there is no support to dynamically resolve class dependencies across different JNLP sites.

Besides further remote class loading approaches like the use of a remote Java codebase in RMI

applications, there are countless custom network class loaders. They typically add the ability to

download classes over different communication paths, e.g. by using regular HTTP servers as in

Harness [209], JXTA pipes to transmit class files in a P2P network [288], a Java Class Broker to

retrieve class instances from a remote peer via a TCP socket connection [164] or by extending an

application server with customer services loaded from an HTTP server [265]. In general, the legacy

Java class loader extensions do not change the way how classes are selected but how specified

classes are retrieved from a remote site. In contrast to that, various ideas have inspired to change the

class selection according to application and environment requests. In Gandiva [227] for example,

Java classes are dynamically determined and selected during runtime, e.g. according to the security

constraints in a distributed application environment. A remote class inventory is introduced that can

be queried for matching classes by evaluating their custom metadata definitions.

In summary, the legacy Java class loader approach encourages the custom adaptation how

classes are loaded but not how they are selected. While there are many custom class loader imple-

mentations for various purposes, only few allow changing the class resolution and selection strate-

gy. A related specification standard for dependency configuration is missing though OSGI has re-

ceived much attraction in recent years and addresses some objectives of the Java Class Collection

approach such as the custom assembly tagging. Nevertheless, the Java Class Collection approach is

not bound to a certain application framework or based on the introduction of a custom programming

model. It can be used with legacy Java applications and easily integrated in existing application

frameworks.

106 4. XDK – The Crossware Development Kit

4.3 Dynamic Software Composition

Software applications are usually developed by reusing existing code components and implement-

ing new features specific to the current business logic. Besides static software composition, e.g. by

linking libraries during design time, dynamic software composition is performed during runtime

and using a composition configuration defined by the application assembler. When the application

is loaded, the runtime system evaluates the composition configuration and tries to resolve all re-

quired component assemblies, e.g. by looking for shared libraries using the given name. This ap-

proach works well in a single application scenario with only one composition configuration in ac-

tion, e.g. running applications in separate address spaces. To run multi applications in a Java Virtual

Machine (JVM), composition configurations are typically used to build specific class loader hierar-

chies for shielding different and sharing common classes among applications. However, conven-

tional approaches may not dynamically change the composition strategy, e.g. by reusing a compati-

ble code assembly from the local cache instead of downloading the requested variant from a remote

code repository. In Section 4.3.1, a new class loading approach called Java Class Spaces is pre-

sented that enables the fine-grained adaptation of application composition during runtime by eva-

luating the current composition setting, application composition requests and a system composition

policy [267]. Another issue of Java application composition is the provision, request and sharing of

random program resources like database connections and user profiles. In Section 4.3.2, Java

Loadable Modules are introduced that represent initializable code components and manage various

program resources [272, 360]. A related module manager receives module resource requests from

the application and performs the lookup, the dependency resolution and the initialization of suitable

modules in a cross-platform operating environment.

4.3.1 Java Class Spaces

The self-managing organization of Java class loaders using Java class spaces and configuration pol-

icies is presented in the following section. It is based on application assembly definitions and code

packages [269], as introduced in Section 4.2. Afterwards, the particular handling of class loading

requests for assigning Java classes to distinct class loaders is described. Finally, the self-managing

adaptation of application composition in a shared application hosting environment is illustrated.

4.3.1.1 Motivation

The regular Java Virtual Machine (JVM) uses the system class loader to load and resolve applica-

tion classes. While this approach is feasible for the original single application hosting approach,

4. XDK – The Crossware Development Kit 107

advanced application hosting systems transform the JVM into a multi-application hosting environ-

ment by instantiating various custom class loaders; usually one per application as in a typical Java

servlet engine implementation or application server configuration. All class loaders are chained in a

tree-like hierarchy where every class loader has one parent class loader and may have several child-

ren class loaders. At top of the hierarchy, the boot class loader and its sole children, the system class

loader, are instantiated by the JVM. If an application issues a class loading request, the related ap-

plication class loader checks if the class has been already loaded and returns the instantiated class.

If not, it delegates the request to its parent class loader that performs the same check and, if neces-

sary, passes the request further to its parent. This is repeated until the root of the class loader hie-

rarchy, the boot class loader, is reached. Then, the boot class loader tries to locate the class and if it

is not found, the request is passed back the same way down until a class loader on the path can load

the class. Finally, if the issuing class loader can also not load the requested class, a

ClassNotFoundException is raised.

The standard class loading procedure ensures that first the parent class loaders get the chance

to load common classes that are visible to all children class loaders and loaded only once, e.g. Java

system classes like java.lang.String. In turn, classes loaded by a children class loader are

not visible to the parent or the sibling class loaders; hence shielding private application classes from

other application instances, e.g. concurrently loaded classes of different application versions. How-

ever, a basic problem is the concrete specification which class loader should be actually used to

load the class. As described above, the first parent class loader that is able to locate the requested

class will load it regardless if the application wants to use a private class variant. In addition, the

regular class loader implementation uses only the package and class name to locate a class. For the

resolution of related class dependencies, the system cannot determine which class loader has al-

ready loaded the application class and should also be used to resolve the dependencies.

4.3.1.2 Features

The goal of the Java Class Spaces approach is the introduction of a self-managing Java application

composition framework with particular respect to multi-application hosting in a regular JVM. The

major features are as follows.

Java Application Definition. The JCS approach allows developers to specify the application com-

position without knowing the deployment configuration on the target platform. A developer can

define class collection queries that are evaluated by a custom class loader and used to retrieve suita-

108 4. XDK – The Crossware Development Kit

ble Java class collections on-the-fly. If a composition request cannot be fulfilled, another compo-

nent can be selected without running into an unexpected ClassNotFoundException.

Adaptive Composition Strategy. With JCS, the application composition configuration does not

request specific component assemblies but describe the properties of a matching Java Class Collec-

tion. This way, a self-managing class loader is able to refine the application composition by consi-

dering the current composition layout, cached component assemblies and deployment efforts for

retrieving new assemblies from remote code repositories, e.g. in case of a low-bandwidth network

link.

Shared Application Environment. A particular benefit of the JCS approach is the ability to organ-

ize and manage Java classes from various applications in a shared application environment. Every

application is associated with a class space that in turn is managed by a custom class loader. A self-

managing class space supervisor takes care about the overall organization and decides about sharing

and shielding of application classes according to the application composition strategies.

Dynamic Class Reloading. A special issue in self-managing application composition is the recon-

figuration of an existing composition layout during runtime, e.g. upgrading to a newer component

version or replacing a buggy class instance. To this end, the JCS approach allows virtually reload-

ing of Java classes by recording the current configuration, removing the affected class space and

inserting a new one without user intervention.

Legacy Java Programming Model. The JCS approach enables adaptive application composition

without introducing a different Java programming model. Any legacy Java application can be

loaded and run as long as they do not install another class loader; hence they rely on the standard

class loading procedure. In particular, existing Java components and libraries can be used for self-

managing application composition after being packaged using Java Class Collections.

4.3.1.3 Approach

The Java Class Space approach enables the customizable organization of Java classes using a con-

figurable hierarchy of class loaders. Every class loader is associated with a class space and adjust

the delegation of class loading requests to the parent class loader according to a given class space

configuration. Related classes may be grouped in the same class space while other classes are put in

a separated class space, e.g. shielding the Java classes of concurrently hosted Java applications in

the same JVM, as shown in Figure 4.13.

4. XDK – The Crossware Development Kit 109

Figure 4.13: Self-Organizing of Application Code using Java Class Spaces

There is a shared class space SCS and two application class spaces ACS1 and ACS2 as child-

ren of SCS. All objects created by classes in ACS1 will be associated with the class loader of

ACS1. In the case one of these objects creates another object from a new, yet not loaded class, the

class loader is asked to load the byte code of the newly requested class. For this purpose, it deter-

mines whether the related class space, in this case ACS1, is configured to load the class. If not, it

delegates the request up to its parent class space SCS and its class loader. This is directly opposed

to the original behavior of chained class loaders, where all class loading requests are at first directed

to the parent class loader. But with this reversal, the class spaces can be configured to hold shared

classes in the parent class spaces and unshared classes in the child class spaces. In the example,

objects in ACS1 and ACS2 can be built from classes with the same name C, but could rely on dif-

ferent class implementations. On the other hand, they can share data and collaborate by using

classes and objects located in SCS. In addition, the configuration of a class space and the informa-

tion which classes can be loaded is combined with the information where to find the related byte

code. A special issue at this point is the question of how the system should resolve registration con-

flicts between parent and child class space, if both want to register the same class for loading. The

answer is quite simple: all registrations must be checked against the configuration of the chained

class spaces at startup, and if there is already a chained class space that handles the class, the regis-

tration is denied. This is manageable up to a certain degree if the class spaces are configured proper-

ly by the application framework. But certainly, there are constellations that cannot always be re-

solved, i.e. applications, which want to collaborate using the same class in different variants. In this

case, however, some kind of adaptation is needed anyway.

110 4. XDK – The Crossware Development Kit

As a result, the application code layout, shared and separated classes is defined without mod-

ifying existing application code. The configuration process of class spaces and the distribution of

newly loaded classes are completely transparent to the application. Of course, this is only guaran-

teed as long as the application does not use a self-defined class loader. In this case, it would be

possible, that the foreign class loader retrieves classes without knowledge of the parent class loaders

and their associated class spaces. Thus, they would not be able to check future resource registrations

whether the related classes are already handled by one of the child class loader.

4.3.1.4 Realization

Before an application is started in a JVM, an application class loader is created and associated with

an application class space, as shown in Figure 4.14.

Figure 4.14: Application Class Loader and Application Class Space

The class space is initialized with a class space configuration file and evaluates matching class

collection configurations to determine which classes can be loaded and which class loading request

should be delegated to the parent class space. After that, the first application class is loaded using

the application class loader and thereby associated with it. As a result, subsequent requests of fur-

ther application classes are automatically handled by the same application class loader.

Dynamic Class Space Configuration. The configuration of class spaces can be done statically by

using an XML configuration file given by an administrator, or dynamically by the application im-

plemented by a developer, as shown in the example in Figure 4.15.

4. XDK – The Crossware Development Kit 111

Figure 4.15: Example of Dynamic Class Space Configuration

At first, a new class space app is created with the class space system as its parent. Then, a new

resource is registered in the class space, specifying that all classes whose names begin with

org.apache.xerces will be found in the given JAR-file, and the class space should be able to load

this class. By the way, the dots in the class name are masked with slashes, since a dot is a special

letter in regular expressions, which are used to specify the matching pattern. At the end of the ex-

ample, the class space is requested to load a class, or with other words, the class is injected into the

class space. All subsequently class loading requests initiated by this class, respectively its objects,

will also be handled by the class loader of the associated class space application. At this point, it

should be stressed that the class space does not load any class without a request. The configuration

does only specify which classes can be loaded by the class space and where to find the related byte

code.

Static Class Space Configuration. Besides dynamic class space configuration that is primarily

used by developers, an administrator can define a static class space configuration for the JVM. It is

read when the system is started and enables administrators to specify the class space of each appli-

cation separately. An excerpt of an example is shown in Figure 4.16.

The configuration defines a class space called application, with the class space system as its

parent. The class space application is configured to host classes from the JAR-files specified in path

and the following resource entries. The class space application is not automatically created, but

whenever the system opens a class space named application, the configuration file is read, and the

class space is configured respectively. Afterwards, additional resources can be registered dynami-

cally provided that they do not cause any conflicts with existing registrations.

112 4. XDK – The Crossware Development Kit

 Figure 4.16: Example of Static Class Space Configuration

4.3.1.5 Autonomic Application

The Java Class Spaces approach enables the Autonomic Class Organization for the concurrent ex-

ecution of Java applications by introducing self-managing class space handlers, as shown in Figure

4.17.

Figure 4.17: Autonomic Class Organization

If a Java application is launched, a new class loader is created by the global class space manag-

er and associated with a class space as part of a hierarchical class space system. A class space hand-

ler monitors the class loader and controls the way how classes are organized across the class spaces.

4. XDK – The Crossware Development Kit 113

Every class space is configured with a class space configuration that contains class loading rules,

e.g. to delegate the loading of certain classes to a parent class space or to prevent an application

class space to reload a private copy of a shared class instance. The processing of class loading re-

quests is performed in a self-managing way by evaluating the class space configurations and by

monitoring the class loading requests during runtime. From this point of view, the class space

represents the autonomic elements, the class space handler the autonomic manager and the class

loader is the managed element. In particular, the ever-changing loading and launching of applica-

tions in a multi-tasking runtime environment requires a flexible management of shared and private

class instances. For example, if an application environment for running a new application is set up,

the class space manager determines which Java class collections may be shared with all or some

applications. This results in an adaptive organization of class spaces with respect to the current class

spaces layout (self-configuration). During runtime, a loaded class instance may have to be replaced

with a different one, e.g. due to a hot upgrade. In this case, the implementation supports the unlink-

ing of a class space branch and the insertion of reconfigured class spaces (self-optimization). The

affected applications are typically relaunched after that or suspended and continued using the object

spaces approach, described in Section 4.6.2. This is also the case if the class space handler detects a

class loading conflict due to a configuration error and has to reconfigure the related class spaces

(self-healing). Finally, the class spaces implementation is also used to shield private classes of an

application against the unauthorized access of concurrently executed applications hosted in different

class spaces. This is ensured by the class space handler that monitors every class loading request

and denies access to objects not belonging to the same application class space (self-protection).

4.3.1.6 Related Work

The introduction of custom class loaders as proposed for implementing the Java Class Space ap-

proach is a widely used strategy. In a single application scenario, the custom class loader is typical-

ly added to extend the loader capabilities of the system class loader, e.g. for loading classes from a

remote site. In a shared application scenario, various class loaders are concurrently instantiated and

controlled by an application framework to address the particular needs of multi-application hosting

like the sharing of common classes. In the following sections, related work is considered that allows

defining and managing the class loader organization during design or runtime, respectively.

Single Application Environment. The regular Java Runtime Environment has been originally de-

signed for single application execution and locally stored class assemblies. This results in a simple

class loader configuration that does not offer advanced definition of runtime requirements and com-

114 4. XDK – The Crossware Development Kit

position schemes, e.g. for separating the tasks of application developer and assembly deployer [see

Section 2.3.3]. A well-known solution to that is provided by the Java Network Launch Protocol

(JNLP) and its reference implementation Java Web Start from Sun [383]. An application configura-

tion file is introduced to define application properties like the required operating system to run the

application and remote locations where to find the application classes. Similar to the Java Class

Space approach, the JNLP approach also supports the legacy Java programming model and the use

of regular class assemblies. If an application is to be launched, a particular JRE is started and a cus-

tom class loader is installed before the actual application is loaded. From this point of view, the

JNLP approach represents a standardized implementation variant of the Java Class Space approach

though there is no support to enable runtime adaptation of the application composition, e.g. due to

user request. A related runtime adaptation approach is presented in [266] where web server func-

tionality is dynamically extended on user request by downloading code assemblies from the Inter-

net. In contrast to the Java Web Start approach, there is no fixed application definition that can be

checked and only one class loader is used. Thus, no concurrent hosting of different class variants is

possible and the reloading of classes is not supported. These issues are addressed by a proposal of

hierarchical arrangement of custom class loaders in [329]. An application deployment descriptor is

introduced that can be used to declare the class loader organization, similar to the Java Class Spaces

approach. Every application receives its own class loader and application components may be put in

extra child class loaders, e.g. concurrently loaded application plugins. As a result, selected applica-

tion classes are separated from each other and may be reloaded without affecting concurrently

loaded components. In contrast to the Java Class Spaces approach, the application deployment de-

scriptor is not able to select certain classes from a given class assembly, as shown in Figure 4.16,

and there is no dynamic configuration option that can be applied during runtime. A more advanced

class loader organizing approach is presented in [42] and which introduces a token-driven class

loader mechanism. This is used to reverse the class loading delegation from a parent class loader to

one of its child class loader, e.g. in an application framework scenario where a requested plugin

class does not have to be loaded by the framework but by the delegated plugin class loader. This is

very similar to the Java Class Spaces approach but a token is used to select a matching class loader

instead of regular expressions for filtering the handled classes.

Shared Application Environment. With the advent of application frameworks, the demand to host

multiple applications within the same JVM has brought up new class loading issues, e.g. handling

complex dependency relations between shared framework classes and specific classes of isolated

application instances. In general, the class loader approaches designed for single application envi-

4. XDK – The Crossware Development Kit 115

ronments may be applied and extended in a shared application environment, e.g. to organize class

loaders in a hierarchical manner [139]. A new issue is the possible occurrence of class loading con-

flicts due to different class variants requested by multiple applications not known in advance. Popu-

lar application servers like Jakarta Tomcat, JBoss and Jonas [16, 179, 187] instantiate a separate

class loader for every loaded application instance and hereby strictly separate application-related

classes from each other. Apart from putting shared classes into the framework CLASSPATH, the

configurable organization of shared and shielded classes as in the Java Class Space approach is not

supported. Application frameworks, e.g. based on OSGI [262], allow reloading of application in-

stances during runtime due to software updates. In this case, an existing class loader is replaced

with a new one, however, without re-creating the original class loader hierarchy, e.g. for reloading

application plugins as well. A transparent use with legacy Java applications as possible with the

Java Class Space approach is not feasible. A different approach to organize the Java class loading

across various class loaders is described in [81]. It is based on the Multi-Tasking Virtual Machine

(MVM) [77] and allows sharing the runtime representation of classes across concurrently hosted

application isolates within the same JRE and across distinct MVM instances. A similar extension

has been added to the JRE with class data sharing in Java 5.0 [337]. From a multi-application host-

ing point of view, these approaches reduce the overall memory footprint and startup time of an ap-

plication if already loaded classes may be reused. The class loader organization, however, cannot be

managed by the application environment itself, e.g. to replace already loaded classes, but it is part

of the underlying JVM implementation. As a consequence, the custom class loader implementations

can be usually found in application frameworks and runtime environments that rely on particular

programming models, e.g. Java servlets, OSGI services and EJB component model.

In summary, there are different approaches of how applications can be hosted and related

classes are organized. For single application environments, the JNLP approach represents a good

choice to define application runtime requirements and composition schemes. Most of the Java Class

Space features are supported and Sun's Java Web Start is usually installed as part of a regular JRE.

Though the Java Class Spaces approach is a proprietary solution, it can be easily integrated in exist-

ing applications, e.g. to enable adaptive Java application composition. For shared application envi-

ronments as typically found in an on-demand computing scenario, the Java Class Space approach

encompasses the custom class loader features of established application frameworks and adds new

ones, as the dynamic recording and restoration of hierarchical Java Class Space configurations. A

common problem of existing class organization solutions is the lack of instrumentalization support,

e.g. by an autonomic class loader like in the Java Class Space implementation.

116 4. XDK – The Crossware Development Kit

4.3.2 Java Loadable Modules

The regular Java Runtime Environment (JRE) lacks native support of a dynamic component model

and the lookup and deployment of distributed component assemblies. The Java Loadable Module

approach introduces a module-based component and deployment model, and supports the managed

access to contained resources in a multi-application environment. The runtime adaptation of the

application composition is enabled by transparent module rebinding and individual life cycle man-

agement. In the following sections, the Java realization is described and its application for the self-

integration of dynamically loaded modules and instantiated resources is shown.

4.3.2.1 Motivation

The dynamic composition of software applications has several advantages regarding the on-demand

extension and adaptation of application systems [5, 18]. In contrast to a self-contained application

assembly that is loaded as a whole before the related application is started, various software compo-

nents are loaded and put together one-by-one as they are needed [123]. This reduces the startup time

of the application and enables the adaptation of the program functionality during runtime, e.g. by

selecting and loading distinct components according to a plugin configuration. In a shared applica-

tion environment, common components like an XML parser may be shared by concurrently hosted

applications to reduce the overall memory usage. In addition, already loaded software components

may be individually replaced by different variants on-the-fly without shutting down the host system

along with concurrently running applications, e.g. while updating a certain plugin [27].

For better handling, related software components are usually grouped in component packages

that are loaded under particular control of the runtime environment, e.g. for resolving the compo-

nent dependencies, managing the life-cycle and handling security issues. Well-known component

packages for dynamic application composition are Dynamic Link Libraries (DLL) for MS Windows

applications and Shared Libraries for Linux applications. For Java applications, a Java Archive

(JAR) seems to be a comparable component package. However, the JAR file only groups various

classes in a ZIP file for better deployment and does not act as a component package that can be ad-

dressed by an application. Apart from loading single classes by their name, there is no common

support for life cycle management of arbitrary program elements provided by a module, e.g. a data-

base handler or a window manager in a shared application environment. In addition, the support of

dynamic rebinding updated component instances is another upcoming issue of distributed operating

environments [21].

4. XDK – The Crossware Development Kit 117

4.3.2.2 Features

The overall goal of Java Loadable Modules (JLM) is the provision of application component units

which separates the virtual application composition from the physical component deployment. The

major features are as follows.

Application Component Units. With the JLM approach, initializable application component units

are introduced that represent functional blocks that can be explicitly requested by an application.

The component developer can group various components into a module and may add a module

handler to initialize contained resources on first access. A module manager is introduced that con-

trols module handling and provides seamless access to loaded module instances.

Individual Module Resolution. While every JLM is associated with a unique module identifier, an

accompanying module configuration contains extra property definitions and dependency declara-

tions that can be evaluated during runtime. In turn, an application developer can specify module

loading requests during design time, e.g. querying modules offering a specific resource, without

knowing how to load matching modules from a local or remote module repository.

Life Cycle Management. While in a shared application environment a JLM can be concurrently re-

quested by one or more applications, the module manager ensures that every module is loaded only

once; eventually reusing an already initialized instance. If an application does no longer need a mo-

dule, it is released and the module manager checks if it can be removed. As a result, the life cycle of

a module instance is controlled by the module manager which eases the application development.

Self-Managing Module Binding. The module manager tracks the loading of modules and controls

their proper operation. In case a module cannot be initialized, indicates an error later on or should

be upgraded, the module manager substitutes the related module by loading and initializing another

module variant. In this context, existing module resource bindings are seamlessly restored without

notifying the application; hence introducing self-healing features to the overall system.

General Composition Approach. The module approach is not limited to Java applications. There

are also C++ implementations for MS Windows and Linux which, in particular, unifies the binding

of static and shared libraries and separates their different handling from the application implementa-

tion. Instead, the module manager detects the type of binding during runtime and provides seamless

access on module resources on-the-fly.

118 4. XDK – The Crossware Development Kit

4.3.2.3 Approach

In regular Java application environments, the application composition is triggered by explicit load-

ing of specific code assemblies and by requesting needed resources afterwards. The basic idea of

the following approach is the reversion of this process and the separation of application composition

and assembly loading. Java Loadable Modules are introduced that dynamically select and load code

assemblies due to application resource requests and by transparently evaluating the current deploy-

ment scenario, as shown in Figure 4.18.

Figure 4.18: Application Composition using Modules

Similar to Shared Libraries in UNIX and Dynamic Link Libraries in MS Windows, a module

represents a building block of a dynamically composed application. In contrast to a Java class col-

lection [see Section 4.2.2], a module additionally contains a particular module handler that is re-

sponsible for initializing the module and for providing an interface to its resources, e.g. a reference

to a database connection. An application is no longer requesting resources by directly loading code

assemblies or using code references, e.g. a Java class name, but by querying modules containing the

required resource. To this end, a module is decorated with module properties and a list of managed

resources each associated with a unique resource id. Furthermore, a module is usually loaded only

once when the first resource is requested. Later on, the same module is reused that supports the cus-

tomizable application composition in a shared application environment. As an example, both appli-

cation environments in Figure 4.18 request the same resource B that is provided by module 2 and

initialized only once, e.g. a reference to a sidebar window on a graphical desktop.

4. XDK – The Crossware Development Kit 119

4.3.2.4 Realization

The realization of the JLM approach is based on the introduction of a module manager and module

handlers, as shown in Figure 4.19.

Figure 4.19: Java Loadable Module

When a computing system is set up, the system administrator configures a module directory

where the module properties and resource list of all available modules are stored (1). This could be

a local configuration file or a remote web service that is shared among computing systems in the

same Intranet. If an application request a resource (1), the module manager, a singleton object, que-

ries the module directory for suitable modules (2), e.g. matching a property query or offering a spe-

cific resource. Next, the module code assemblies are resolved using the crosslet repository (3) and

the module handler is created (4). After having initialized all contained resources, the requested

resource is returned to the application (5). In case an already loaded module contains a requested

resource, the module manager skips loading another module instance and returns the loaded re-

source instance.

Module Handler. To use the JLM approach, the component developer has to implement a module

handler and associate the module and managed resources with unique ids, as shown in Figure 4.20.

120 4. XDK – The Crossware Development Kit

 Figure 4.20: Implementation of a Module Handler

First, an interface IDatabaseModule is defined that may be used by other parties to interact

with this module. It contains a unique identifier MODULE_ID that tags this module and a constant

DATABASE_RESOURCE_ID used to access a managed resource of the module. Second, there is an

implementation of this interface representing the actual program code of the module handler. Its

init method is automatically called when the module is loaded, and the corresponding exit me-

thod is called when the module is no longer referenced by other modules. In the example, the init

method dynamically opens another module IPostgresqlModule using the related module id

IPostgresqlModule.MODULE_ID and requests a contained resource PROVIDER in it. Sub-

sequently, the actual initialization of the module is performed by opening a database connection

using the requested provider object and by registering the connection as a new resource

DATABASE_RESOURCE_ID. This resource can be requested by other modules in a similar way

4. XDK – The Crossware Development Kit 121

like the provider resource of the module before. In turn, when the module is no longer referenced,

the exit method is called and the initialized resources as well as the requested modules are re-

leased.

Module Configuration. As shown in the example in Figure 4.20, each module is referenced by its

module id without any knowledge how and where to retrieve the related module code. The module

management completely hides the issues of lookup, loading and initializing modules from the appli-

cation. Instead, these tasks are performed by the module controller of the application environment

that is configured using certain module definition files, as shown in Figure 4.21.

Figure 4.21: Module Configuration File

The module texteditor is marked with the module id {A9D52EF1} and defined to use

the class collections texteditor and apache-xerces with the given properties. The attribute

handler points to a class that represents the module handler of the current module. Furthermore,

the module may also be decorated with properties like vendor that can be used to query this mod-

ule. The section resources contains a list of resource descriptions that can be queried by the

module manager when searching for a requested resource, e.g. by resource id. Finally, the section

dependency indicates further modules that have to be loaded by the module controller before the

current module can be used.

122 4. XDK – The Crossware Development Kit

Component Framework. A particular module resource is a component class that is a template for

creating a customizable component object. A component model specifies rules for defining a com-

ponent class, e.g. which interfaces have to be implemented for interacting with the component con-

tainer. In addition to common component interfaces, a component class may be decorated with cus-

tom interfaces that are determined during runtime and represent additionally implemented features

of the component, e.g. a thread component that exposes an interface to suspend and resume the ma-

naged thread. In the implementation of the Java Loadable Module approach, a reflective component

framework is introduced to dynamically inspect the component features, to initialize the component

object and to embed it into a runtime context, as shown in Figure 4.22.

Figure 4.22: Reflective Component Framework

Every component class may be decorated with feature interfaces that represent a certain capa-

bility of the component like IConfigurable, IContextualizable and

IInitializable. Following the Inversion-of-Control pattern (IoC) [352] they are determined

during runtime by Java reflection and used to interact with the component, e.g. passing configura-

tion parameters and object references to the runtime contexts like IModuleContext,

ISessionContext and IServiceContext. An excerpt of a component implementation is

shown in Figure 4.23.

4. XDK – The Crossware Development Kit 123

Figure 4.23: Excerpt of a Component Class

A component that implements IConfiguration provides a method config that can be

called to pass configuration parameters to the component before it is initialized. In a typical scena-

rio they are read from a configuration file. A particular feature interface is IContextualiza-

ble, indicating a component that requires certain interfaces to access the context it has been

created in, such as IClassContext. It typically contains object references to other components

and resources created during runtime. The feature interface IInitializable indicates that the

component can be initialized. To create a component object, a typical initialization sequence is to

determine and call the methods config, contextualize and initialize. The requestor of

a component object is not aware of this sequence but passes the related information to the compo-

nent framework, as shown in Figure 4.24.

Figure 4.24: Requesting a Component Object

124 4. XDK – The Crossware Development Kit

In the example, a class manager component is to be created and configured with the URL of a

class collection registry and contextualized with an object reference of the related class loader. As a

result, a component may be seen as a special type of model resource that follows specified imple-

mentation guidelines like the feature interface approach. In the context of self-managing application

composition, they can be used to facilitate the composition of complex objects.

4.3.2.5 Autonomic Application

The Java Loadable Modules approach can be used to implement Autonomic Component Loading

and dynamic software composition by resolving application resource requests in a self-managing

way, as shown in Figure 4.25.

Figure 4.25: Autonomic Component Loading

A module represents an application composition unit that contains various resources and can be

dynamically loaded during runtime. If an application requests a component resource, it passes the

resource description to the module manager which queries for the resource across the loaded mod-

ules in the component environment. If no offering module is found, the module manager determines

a suitable module using the module repository and the module descriptions stored there.

The autonomic operation is performed in a self-managing way by monitoring the requested re-

sources in the component environment and controlling the module instances. From this point of

view, the component environment represents the autonomic element, the application acts as the re-

questing element, the module manager is the autonomic manager and the modules are the managed

4. XDK – The Crossware Development Kit 125

elements. This allows adapting the selection and loading of modules according to the application

configuration, platform capabilities and current composition scenario. For example, if an applica-

tion is launched and required components have to be loaded, the module manager dynamically re-

solves and loads suitable modules, e.g. by following a policy to prefer and share already loaded

modules (self-configuration). Once an application composition has been performed, the module

manager monitors the allocated resources of the related modules and unloads the instances that are

no longer in use, e.g. if there are no resources used anymore. The next time a resource is requested,

the module manager can recheck the composition set up and select a different module (self-

optimization). Furthermore, the module manager monitors the initialization of a module and the

resources provision. If an error occurs, the module is unloaded and replaced with a different one

matching the requirements. By using the object space approach [see Section 4.6.2], object refer-

ences to unloaded resources are transparently restored after module replacement (self-healing). Fi-

nally, the module manager protects modules to be untimely unloaded or manipulated by misbehav-

ing applications, e.g. due to an attack. The same is valid for accessing private modules loaded by an

application in a multi-tasking environment (self-protection).

4.3.2.6 Related Work

The legacy Java programming model has not yet addressed the modularization of Java applications

and the establishment of a distributed component management system. Based on the dynamic class

loading approach, application composition is typically performed on a per-class basis. Over time,

many approaches and implementations emerged to support software components and loadable

modules. A possible taxonomy of software component models can be found in [214] and a related

comparison of native component management capabilities in MS COM, Sun Java and MS .NET is

discussed in [100]. The following review starts with a discussion about built-in composition fea-

tures of a legacy JRE, than it gives an overview of approaches used by various composition frame-

works and outlines the component management features of integrated application environments.

Legacy Java Runtime Environment. Since the original Java language specification does not ad-

dress software composition and application modularity, there is ongoing work to extend the specifi-

cation within the Java Community Process and the Java Specification Request (JSR) 294 [49]. The

basic idea is to embed modularity support in the Java language and to introduce so called super

packages. As soon as this proposal will be implemented by Sun, as predicted for Java version 7, it

will supersede proprietary component models such as proposed with the Java Loadable Module

approach. In addition, existing solutions like OSGI and Sun's JigSaw will be probably adapted to

126 4. XDK – The Crossware Development Kit

conform to this component standard. Nevertheless, the support of flexible resource definitions and

queries for resolving suitable components in a distributed operating scenario will not be an integral

part of JSR 294. A related task is partially performed by the JNDI approach for acquiring and initia-

lizing pre-configured and shared resources, e.g. a database connection point. In this scenario, the

providing module is either already loaded or can be resolved from a local module repository. Con-

cerning native support of distributed component lookup and deployment, however, there is currently

no plan to extend the legacy JRE into this direction.

Java Composition Frameworks. A common approach of Java composition frameworks is the in-

troduction of an individual component model and the use of dynamic class loading to retrieve com-

ponents on-the-fly. Well-known examples are Sun EJB, OSGI, Spring and CORBA Components

[336, 188, 330, 28]. They allow composing applications from independently developed components

for different purposes but still rely on the inherent deployment scheme of the underlying runtime

environment. In other words, they do not introduce a deployment model offering the dynamic loo-

kup and retrieval of distributed software components during runtime, e.g. by using a remote module

repository and dynamic resolution of suitable modules. Thus, they are supposed to be primarily

used with local component repositories and are not designed for hot component deployment in

cross-platform application environments. There are various implementations that extend the basic

capabilities with additional composition features. For example, an OSGI-based module loader has

been implemented within the Oscar project [159] that uses a policy-driven class loader and sepa-

rates the composition process from the class loading infrastructure. It focuses on the life-cycle man-

agement of components, allows dynamic updating of loaded components but it is still limited to the

local class loading capabilities of OSGI. The Java module system MJ [69] introduces a module lan-

guage to specify component dependencies and related tools to compile extra module statements

added to the actual Java source code. It refactors existing Java source code to add particular compo-

sition features like import definitions and extension points. A step further towards component defi-

nition by using inline Java code annotations is performed in the Spring framework [330]. The com-

ponent model supports annotation-driven dependency injection and various configuration files de-

scribe the resource definitions of a component. During runtime, the framework transparently eva-

luates the Java annotations and resource definitions to perform the application composition. The

examples above outline the variety of application composition objectives and how related frame-

works add extra composition features to Java applications. In general, the frameworks focus on the

composition aspects and are based on managed module repositories on the same host. They are not

supposed to dynamically deploy and retrieve modules and contained components from remote sites.

4. XDK – The Crossware Development Kit 127

Java Application Environments. While a composition framework is typically built upon a legacy

Java runtime environment and is usually deployed along with the application itself, this is not feasi-

ble for all kinds of applications. As an example, for concurrently managing web applications in a

server application environment a so called application server is needed. It is started before the ac-

tual applications are loaded and then launches each application and service as part of the same

process. Related applications are developed using a certain application model, e.g. Java Servlets or

Enterprise Java Beans (EJB), and can be solely executed in the target application environment pro-

vided by the application server; examples are Jakarta Tomcat, Sun ONE, JBOSS, Apache Avalon

[141, 377, 179, 15]. While references to shared components provided by the application server are

managed by using a common naming manager, e.g. JNDI, this is not valid for application objects.

In detail, an application server typically separates application instances from each other and there-

fore a composition configuration is also related to a single application and does not take in account

the life cycle of components of concurrently hosted application instances. Moreover, due to their

orientation towards well-defined server-side scenarios with fixed system configurations, application

server approaches have not been designed to be configured on-demand for the dynamic composition

of new applications, e.g. due to user request. A well-known approach to organize software composi-

tion in a remote application environment is implemented by Sun Java Web Start [331]; it is part of

the standard Java installation and eases the deployment of Java Applications in that it organizes

downloaded Java archives in a locally managed cache. Each time an application is to be started,

Java Web Start compares the cached version with the server version and downloads the application

only if there is a newer version on the server. It inherently relies on Java archives (JAR) and though

it extends the deployment scheme of remote applications, it does not come with a component model

but it focuses on the hosting of legacy Java applications. Moreover, while it is a good starting point

for distributed Internet application systems, it is not able to directly communicate with remote JAR

repositories but by downloading and evaluating a Java Native Launch Protocol (JNLP) configura-

tion file from a web server. And it also does not allow a customer to dynamically change the pro-

vided configuration of a JNLP application. An interesting approach towards software composition

in a distributed application environment is provided by Jtrix that is not fixed to a single host but

targets code mobility across multiple platforms [324]. It propagates so called netlets that represent a

certain kind of Java service. They can be dynamically retrieved from a remote module repository

and instantiated on the current platform as well as migrated and spread across different nodes. In

this sense, Jtrix establishes a particular cross-node application environment with respect to nomadic

services but therefore it only supports service-based deployment and composition, respectively. A

related approach is Cells in that it introduces so called deployable containers [302]. It likewise en-

128 4. XDK – The Crossware Development Kit

capsulates component code and object data that can be moved from one host to another. A high-

level language JCells is used to define the component dependencies and interaction. While it has

been mainly designed to support the distributed execution of Cell applications in the Internet, it is

not suitable to run legacy Java applications without refactoring the source code according to the

Cell programming model. Finally, Cingal is similar to JCells in that it also supports component dep-

loyment and the composition of distributed Java applications [83]. It shares the idea of OSGI to

introduce so called bundles and various high-level configurations describing the application compo-

sition independent of the actual deployment scenario. Similar to JCells, it focuses on running distri-

buted service components that communicate via network links.

In summary, there are plenty of dynamic software composition solutions available for Java. If

Java Web Start is mainly seen as a software deployment solution without a distinct component

model, none is yet supported by the legacy JRE. Thus, one has to choose a composition framework

or application environment with composition features built-in. For implementing a cross-platform

operating environment, however, additional features are needed that cannot be easily added to exist-

ing implementations. For example, the Java Loadable Module implementation heavily relies on the

crosslet deployment features to dynamically resolve and download modules from remote module

repositories. The managed organization of concurrent Java Class Spaces in a multi-application sce-

nario allows the module manager to share and rebind components among application instances

without putting them into the shared framework configuration. From this point of view, the Java

Loadable Module approach represents a practical choice to add dynamic software composition fea-

tures to the XDK without claiming to surpass OSGI or Spring. It lacks various features like ad-

vanced component lookup techniques to choose the best matching module [29] and it certainly in-

troduces an increasing complexity to component dependency management in a large-scale distri-

buted environment [201].

4. XDK – The Crossware Development Kit 129

4.4 Shared Application Hosting

For better exploitation of hardware resources, regular computing systems usually run multiple ap-

plications and services that are managed in separate hosting environments, e.g. an operating system

manages processes in distinct address spaces. Considering the concurrent hosting of Java applica-

tions, the memory and startup overhead for launching an individual Java Virtual Machine (JVM)

has emerged various approaches towards shared application hosting, e.g. Java servlets and web ser-

vices are organized in different servlet containers within the same JVM. When a Java application is

started, the related container is created following the predefined runtime settings, however, without

considering the current overall resource configuration of the JVM. This results in shared use of the

JVM but separated resource management for every Java application, e.g. creating distinct XML

parser engine instances. In Section 4.4.1, a new Adaptive Resource Broker is introduced that selects

suitable resources by mapping application roles on platform resources [282]. The broker manages

platform resources along with their descriptions and receives resource requests in terms of role de-

finitions from applications. The roles are mapped to suitable resources by evaluating the current

mapping policy. Besides platform resources, the sharing and shielding of application resources

among application instances within the same JVM is another issue that has been only little ad-

dressed so far. In Section 4.4.2, so called Java Task Spaces are presented to organize private and

public resources of application instances. In this context, the notions of scene and stage are intro-

duced that reflect the collection of role definitions and resource configurations, respectively. In ef-

fect, applications are organized in scenes that are mapped on stages during application startup whe-

reby applications on the same stage can mutually access each other’s resources.

4.4.1 Adaptive Resource Broker

Typical application composition strategies are based on the direct mapping of resource queries on

resource properties, e.g. querying resources by their name. In this section, a different approach to-

wards self-managing resource binding is presented that maps application roles on platform re-

sources by dynamically evaluating a composition policy. The realization of the approach using an

adaptive resource broker is described and the application is illustrated.

4.4.1.1 Motivation

If an application is loaded into the hosting environment, it usually requests access to various plat-

form resources, e.g. by getting a file handle for opening a configuration file or asking the window

manager to create an application window. In turn, it may also create and offer resources, e.g. a call-

130 4. XDK – The Crossware Development Kit

back handler for receiving system messages or a viewer component to be included in a document

browser. The mutual access on application and platform resources is characterized by well-known

interface declarations and methods that are used to bind the resources during runtime, e.g. a soft-

ware component implements a given interface and the application asks a component manager to

create a corresponding component instance. In this way, not only software components may be re-

quested but any kind of managed program resource like established database connections or profile

settings of a user.

The common aim of resource binding is to select and bind platform resources according to the

application requirements. For Java applications, resource registration and binding is typically per-

formed by using a runtime resource registry like approaches based on the Java Naming Directory

Interface (JNDI) [343]. The resource provider registers the resource with a unique name and certain

attributes while the resource requestor queries the registry for resources matching the query parame-

ters. This works well for a single application environment if both the application implementation

and the platform configuration are adjusted accordingly in advance, e.g. by the developer and the

administrator during design time and setup phase, respectively. In a shared and alternating applica-

tion environment, however, the static mapping of resource requests on resource registrations makes

it difficult to find a common setup for matching the requirements of all installed applications at the

same time.

4.4.1.2 Features

The goal of the Adaptive Resource Broker is to implement a new resource binding approach that

dynamically resolves resource requests in a self-managing way by evaluating an adaptive binding

policy. The major features are as follows.

Cross-Application Resource Framework. Besides the binding of resources provided by the cur-

rent platform installation, concurrently hosted applications may share and request resources from

each other. A cross-application binding framework allows registering application resources like

platform resources. In both cases, the resource binding is transparent to the application that also

enables the mutual sharing of dynamically resolved resources between unknown applications.

Dynamic Role Mapping. The role mapping approach is based on the dynamic evaluation of the

application role descriptions and system resource definitions. A role manager receives the role de-

scription of the application and selects a matching resource by additionally considering the current

4. XDK – The Crossware Development Kit 131

runtime scenario, e.g. memory load and already instantiated resources. After all, a resource binding

to an appropriate resource is established without particular application intervention.

Multi-Level Mapping Framework. An application may not seek for a specific resource instance

but use any resource matching the required features, e.g. a newer version then originally requested.

For this purpose, a multi-level binding framework introduces a role manager along with roles that

are dynamically mapped onto a resource instance using a system-specific role description. The ap-

plication does no longer requests resources but roles mapped on a matching resource later on.

Developer Task Decoupling. The introduction of roles enables the decoupling of developer and

administrations tasks by using separated configuration files. While the component developer pack-

ages resources along with a related resource description in an assembly, the application developer

specifies the resources required by the application using a role description. During runtime, the role

description is read and a matching resource is retrieved on-the-fly.

Adaptive Binding Policy. The fixed mapping of roles on resources by using a hard-coded strategy

hinders the system to adapt to new conditions in a flexible way, e.g. following different platform

administrator preferences for distinct hosts. In the following approach, a casting manager uses an

external policy definition to customize the role mapping in a self-managing way, e.g. dynamically

selecting less-memory consuming components if many applications are concurrently run.

4.4.1.3 Approach

An application is composed of various resources that are provided by the application environment

on request. Depending on the chosen programming paradigm, a resource may represent various

units, such as a regular library or a component definition. Common to all types, an application does

not need to know the actual resource implementation as long as the resource implements the ex-

pected interface, or in other words, it can play the requested role in the application environment. In

a multi-tasking environment, various applications can request different roles that may be mapped on

the same resource, e.g. a service instance implementing two interfaces. A corresponding approach is

based on the introduction of an adaptive resource broker that mediates between resource queries

issued by an application and resource implementations provided by the shared resource environ-

ment, as shown in Figure 4.26.

132 4. XDK – The Crossware Development Kit

Figure 4.26: Adaptive Resource Broker

The resource provider implements various resources and provides a resource definition file de-

scribing the properties of the resource. In turn, the application developer designs an application by

defining the roles a resource has to implement and providing related role descriptions. The adaptive

resource broker receives the resource query and reads the role description. Then, loaded resources

are checked for matching the given role and if none has been found, the resource definitions are

evaluated. A broker policy can be used to adjust the role-resource mapping by the system adminis-

trator, e.g. excluding certain resources from being shared in multi-tasking environment or refining

the resource query with additional parameters.

4.4.1.4 Realization

The realization of the approach is implemented around a multi-level resource mapping framework

which is customized by various configuration files, as shown in Figure 4.27.

The application issues a resource request by using a unique role id that is passed to the role

manager and resolved using an external configuration file roles.xml. After having retrieved the

role description, the role manager passes it down to the casting manager that is responsible to find a

suitable resource. To this end, it queries the resource manager in the next layer beneath for a match-

ing resource. The concrete strategy and policy to determine a matching resource is not fixed but

adjustable using an external configuration policy.xml.

4. XDK – The Crossware Development Kit 133

Figure 4.27: Multi-Level Resource Mapping Framework

If a suitable resource has been found, the casting manager is requesting the resource from the

resource manager using the unique resource id found in the resource.xml. In the next step, the

module manager is asked to look up the related module in module.xml providing this resource,

and if it has been not loaded before, it will be dynamically requested. The module provides access

to the required resource and returns an object reference up to the resource manager. The casting

manager takes the object reference and encapsulates it into a casting object that is further passed as

a role to the application. In this context, the casting object acts as a controlling proxy for the self-

managed application composition and mapping role-based interfaces to resource-based implementa-

tions.

Overall, the application and the role manager, as well as the resource manager and the module

manager, form independent control loops. In the middle, the casting manager is like an agent at a

theatre keen to map roles to suitable resources. It does not deal with the concrete composition re-

quest or the deployment scenario but attempts to find a platform resource according to its strategy

and a specific application request.

Configurable Resource Selection. The module approach enables to query and open modules by

their properties [see Section 4.3.2]. However, the application is typically not interested in opening a

certain module but in requesting a particular resource. On top of the module manager shown in Fig-

ure 4.27, a resource manager is added to resolve the module that contains the requested resource

using an external configuration file resource.xml. The resource manager does not know how to

134 4. XDK – The Crossware Development Kit

load the modules. It only resolves the module id and passes it to the module manager. If the module

has been already loaded, the module manager simply returns an object reference to the module. An

excerpt of a property based resource configuration is shown in Figure 4.28.

 Figure 4.28: Property-Based Resource Description

The resource with the id {57F2B411-1171-4fe2} is offered by two modules. If the appli-

cation passes only the resource id, the resource manager will select the first module containing the

resource and which has been already loaded. Another option would be to pass additional parameters

to select a resource by its properties, e.g. matching a certain vendor. As a result, the application

does no longer need to know which module provides the resource but can simply pass the resource

id to the resource manager and will receive the resource, as shown in Figure 4.29.

Figure 4.29: Requesting a Class as Resource

In this example, the application passes the resource id, and the resource manager is resolving a

module in the background and returns an object reference to the requested resource, e.g. a class ob-

ject.

Adaptive Resource Selection. Next, the notion of roles and the self-managed mapping to resources

with a casting manager are introduced. Instead of knowing the resource that provides a certain func-

tion, the application refers to roles that are not linked to any resource but are supposed to be dynam-

ically mapped on an implementing resource, e.g. by matching properties such as type and version,

as shown in Figure 4.30.

4. XDK – The Crossware Development Kit 135

Figure 4.30: Property-Based Role Description

The application requests a role from the role manager that queries the role configuration for the

description of the role, as shown in Figure 4.31.

Figure 4.31: Requesting a Class as Role

The actual mapping of a role to a suitable resource is performed by the casting manager. It

receives the resolved role description and returns a matching role, as shown in Figure 4.32.

 Figure 4.32: Simple Property-Based Casting

In the example, the casting manager retrieves the properties of the role description and encap-

sulates them into a resource description. The exemplified casting strategy is quite simple and just

compares the properties one-by-one. In a real-world scenario, the approach uses custom casting

plugins, e.g. evaluating additional parameters such as required classes or considering environment

settings of the host platform.

136 4. XDK – The Crossware Development Kit

4.4.1.5 Autonomic Application

The Adaptive Resource Broker approach can be used to implement Autonomic Resource Binding in

a cross-platform operating environment and with concurrently hosted Java applications, as shown in

Figure 4.33.

Figure 4.33: Autonomic Resource Binding

A platform resource is a non-moveable entity, e.g. a database instance or a GUI framework,

which may be bound by the application during runtime. To request a resource binding, the applica-

tion passes a role description to the role manager. In the case, there is a suitable resource already

bound, e.g. a database connection has been already opened, the role manager will return the existing

binding. Otherwise, the resource manager is directed to determine a matching resource.

The role manager performs the autonomic operation by monitoring and controlling the resource

bindings. From this point of view, the application is the requesting element, the application envi-

ronment represents the autonomic element, the role manager acts as the autonomic manager and the

resource manager is the managed element. Concurrently hosted applications do no longer requests

resources directly but use a common resource manager to synchronize resource requests. The appli-

cation-specific role manager tracks existing resource bindings and is able to adapt role requests ac-

cording to the current binding scenario. For example, if an on-demand application is deployed and

launched on a new computing system, suitable platform resources are determined by evaluating the

role descriptions and platform configuration, e.g. discovering a graphical user interface to present

an advanced application window (self-configuration). During runtime, the role manager checks the

resource bindings and may modify an existing binding according to a given plan, e.g. increasing the

data cache size in case of increased cache miss rates (self-optimization). Similar to this scenario, the

4. XDK – The Crossware Development Kit 137

role manager can also determine failing resources, e.g. by periodically polling the health state of a

resource or introducing an interceptor as sensor [see Section 4.6.1]. For example, a database opera-

tion may fail due to a shutdown of the database engine and a new database connection is reopened

without application intervention (self-healing). Further, the role manager can check the authenticity

of a resource and protect the application against using an exchanged resource item, e.g. in case of

passing a private key to an encryption resource (self-protection).

4.4.1.6 Related Work

Driven by the large-scale deployment of applications in heterogeneous environments the need for

adaptive applications came up and various approaches were proposed to cope with conflicting re-

quirements in distinct application domains [40, 233]. Besides the dynamic adjustment of the pro-

gram execution, this also includes the runtime reconfiguration of the application structure. A related

survey of distinct adaptation spaces can be found in [7]. While there are application-level proposals

that require the extra preparation of the application code to adapt its behaviour, there are system-

level approaches that introduce runtime adaptation as part of the software architecture [37], e.g. a

component framework or a reflective middleware. The following overview focuses on composition-

al adaptation and reflective adaptation approaches that follow the separation of concerns and enable

the adding of related self-management features on the system level without application modification

[30].

Compositional Adaptation. The component-based development paradigm enables the dynamic

composition of software applications. This can be used to select and deploy software component

according to the application scenario during runtime. Common composition approaches, such as

Enterprise Java Beans (EJB) [242] or CORBA Components [232], perform the actual composition

by evaluating the application configuration, the runtime environment and particular component dep-

loyment descriptors. However, these approaches are typically designed to support separated appli-

cation execution and there is no way to adjust the binding of selected component resources, e.g. to

share selected component resources with concurrently loaded. This results in an all-or-none re-

source binding configuration. In addition, the rebinding of system resources is not supported, e.g.

after an application instance has been migrated from one platform to another. To address this issue,

advanced binding approaches have been proposed like Colomba [30]. Originally designed to sup-

port dynamic binding in mobile applications, its binder manager and policy managed can be used to

separate application logic from resource binding management. This is similar to the Adaptive

Resource Broker approach. It also exploits resource metadata and uses an advanced policy specifi-

138 4. XDK – The Crossware Development Kit

cation to control the runtime adaptation in dynamic environments and to hide low-level binding

mechanisms from application developers and system administrators. While Colomba represents a

powerful resource binding solution to migrating mobile applications, it focuses on service resources

and misses particular support for resolving component resources and the retrieval of suitable soft-

ware components. Moreover, Colomba is build on top of SOMA [321], a mobile agent platform, and

cannot be easily integrated into another middleware implementation, e.g. into the XDK. Another

direction of compositional adaptation is the dynamic and transparent modification of component

code while it is loaded, such as provided by JOIE [63] and JMangler [200]. They allow to respond

to changed interface specifications and to adjust the corresponding component interaction. Although

these approaches support the transformation and weaving of random components, they do not ad-

dress the autonomic selection and binding of compatible component resources with respect to the

platform configuration and computing scenario. In addition, they add another level of complexity to

the overall system may easily produce malicious component implementations.

Reflective Adaptation. In contrast to compositional adaptation which typically evaluates extra me-

tadata configurations, reflective adaptation relies on the introspection of component implementa-

tions and the introduction of a meta space [40, 70, 71]. They basic idea is to open a programming

interface to the component implementation that can be used by a development tool or runtime mid-

dleware to adjust the composition process. There are related approaches, such as ARCAD, AspectJ,

OpenJava, R-Java or TRAP/J [80, 233, 310], which introduce custom compilation models based on

meta objects. They support particular composition features during design time but do not support

the adaptive configuration of application composition during runtime, e.g. due to changed runtime

conditions. Other approaches, such as OpenORB, OpenCOM, Iguana/J and Prose [38, 62, 233], use

open implementation and computational reflection to inspect the components and to adjust the bind-

ing process during runtime. They offer additional features to the middleware like the option to mon-

itor the internal resource condition and to reinitialize the resource according to changed runtime

constraints, e.g. available memory and CPU utilization in a shared application environment. While

this facilitates the low-level adaptation, reflective approaches require particular component imple-

mentation and typically suffer from offering too much flexibility [37]. Moreover, the reflective code

is part of the component implementation and therefore it can only be customized if the correspond-

ing source code is available.

In summary, related work has shown a particular need for reconfiguration and recomposition of

software applications. While application-level approaches require additional implementation effort

4. XDK – The Crossware Development Kit 139

and are limited to a single application instance, system-level approaches represent a good choice to

implement an adaptive resource broker approach as part of a self-managing middleware. The com-

parison of selected compositional and reflective adaptation solutions has revealed their differences

concerning easy system integration and adaptation flexibility. Reflective adaptation solutions offer a

greater degree of behavioural customization but they typically experience performance problems in

large and dynamic application systems [37]. Compositional adaptation solutions focus on the

structural customization and are less intrusive concerning the overall implementation than reflective

adaptation approaches. In particular, policy-based solutions like Colomba [30] add configurable

runtime adaptation capabilities while separating the resource binding management from the applica-

tion logic. From this point of view, various Java adaptation solutions are available that may be inte-

grated into the XDK to manage resource binding in a self-managing way. A common drawback of

the related solutions, however, is their original design to focus on single application adaptation and

the lack of adjusting the configurations of concurrently loaded applications. As a result, the Adap-

tive Resource Broker represents a compositional adaptation solution that offers a unique multi-

application configuration without imposing the complexity of reflective adaptation solutions.

140 4. XDK – The Crossware Development Kit

4.4.2 Java Task Spaces

To support multi-tasking program execution in regular Java runtime environments, an essential re-

quirement is the configurable management of system and program resources. In this section, Java

Task Spaces are introduced to manage private task resources and to handle provisions and requests

of shared resources. For this purpose, a self-managing resource assignment scheme is implemented

by mapping application-specific resource role definitions on platform resource implementations.

4.4.2.1 Motivation

If an application is to be started, the host system creates an application environment in which the

application code is loaded and run. In a single application environment, only one application is ex-

ecuted at the same time. Application composition, resource handling and task management are fair-

ly simple like in the original Java Runtime Environment (JRE) approach. Things change if various

applications are concurrently hosted like in a shared application environment, e.g. MS Windows or

Linux. The runtime system typically creates separated address spaces for hosting each application

instance, and managing each application and its resources separately. The access on common sys-

tem resources is controlled by the runtime system and mapped into the address space of the applica-

tion. Since the mutual access of application resources is also typically prevented, there are various

approaches, like Shared Memory and Pipes, to support the collaboration of distinct applications.

For Java application environments, shared application hosting is originally not supported

though there are various approaches out there that mimic the behaviour as good as possible. Since

the original JRE does not support separated address spaces within the same Java Virtual Machine

(JVM), popular approaches like servlet container or application servers create multiple application

class loaders that enable the separation and shielding of application classes in a multi-tenant operat-

ing scenario, e.g. hosting various customer services. However, this is limited to managing class

resources but does not actually introduce address spaces to manage access on random task

resources. Moreover, there is no support for multi-task handling in a JVM, e.g. for associating

thread groups and threads to an application instance, also known as task. Due to this, the JVM lacks

a task manager and the ability to fork sub tasks that share resources with the parent task, e.g. for

launching a new terminal session.

4. XDK – The Crossware Development Kit 141

4.4.2.2 Features

The goal of the Java Task Space approach is to enable the multi-tasking operation of a regular JVM

by managing concurrently executed Java tasks and their resources in a multi-tenant fashion. The

major features are as follows.

Task Resource Management. To handle multiple tasks in the same JVM, related application code,

task resources and objects have to be managed and associated with a task, e.g. code assemblies,

execution threads and task objects. The Java Task Space approach offers the separate and shared

use of task resources, e.g. between concurrently hosted applications or a task and its forked child

tasks.

Java Task Manager. To administer task units in a multi-tasking JVM, a task manager keeps track

of all running applications and enables users to start, stop, suspend and resume selected Java tasks.

Starting with the first task, the task manager organizes subsequently launched child tasks in a hie-

rarchical manner whereby a parent task and its child tasks form a common task space; hence group-

ing related tasks and their resources.

Reentrant Code Execution. When a new task is to be started, the task manager checks if there is a

running instance of the corresponding application and offers users to reuse the existing task space.

For particularly designed applications, code components and static resources may be shared be-

tween tasks while each task unit can create private task resources, e.g. a text editor can reuse the

spell checker but works on a different text document.

Multi-Session Support. Besides multi-tasking support, the XDK offers multi-session handling and

to it, task spaces are used to associate running tasks and their resources to a login session. In partic-

ular, task spaces enables tasks launched by the same user to register and query session-related re-

sources, e.g. for sharing a graphical desktop interface. Whenever a session ends, the task manager

stops all tasks in the related task space and releases its resources automatically.

Custom Task Collaboration. Similar to Inter-Process Communication (IPC) in conventional oper-

ating systems, the XDK offers tasks belonging to different task spaces and sessions to communicate

and exchange data. Java tasks may query the task manager for a certain task and open an object

queue to it. By using particular object serialization features and dynamic class resolution as pre-

sented in Section 4.6, objects may be passed between tasks without exposing private object refer-

ences.

142 4. XDK – The Crossware Development Kit

4.4.2.3 Approach

To run a Java application, a JVM is started and the program execution starts by executing the me-

thod main of the application class passed on the command-line. In this single-tasking scenario, the

JVM acts as task manager and session manager at the same time. There is only one task environ-

ment and a task is simply comprised of all running threads, initialized resources and loaded applica-

tion code. To transform the JVM into a multi-tasking and multi-session environment, the following

approach introduces a task manager that creates task spaces for managing distinct task objects, a

resource manager for registering shared and private application resources and a session manager for

handling multiple user sessions, as shown in Figure 4.34.

Figure 4.34: Task Management using Java Task Spaces

When the JVM is launched, first the resource manager, the session manager and the task man-

ager are initialized to control multi-session and multi-tasking operation. If a user session is created

and the first application is started, a new task and task space are created, and associated with the

user session. Additional tasks may be launched reusing and re-executing the same application code,

or run in a separately customized application environment [see Section 4.5.1]. Either way, every

new task is a child task of the launching task and associated with the same session. Thus, a task

hierarchy is built and controlled by the task manager, e.g. when stopping a parent task, all child

tasks are stopped as well. The same is valid for terminating a user session using the session manag-

er. For task collaboration, a task can register task resources with the task space that can be queried

by tasks in the same task space or concurrently hosted tasks in different task spaces, e.g. a service

task may provide a programming interface for controlling the installed service.

4. XDK – The Crossware Development Kit 143

4.4.2.4 Realization

The realization of Java Task Spaces is mainly driven by separating the concerns of task

management and resource management in a multi-session resource environment, as shown in Fig-

ure 4.35.

Figure 4.35: Task and Resource Management in a Multi-Session Runtime Environment

Before a Java application is actually launched and the present task is processed, the application

launcher configures an appropriate application environment to host the required application re-

sources like Java classes, modules and components. In this context, the Java Task Space realization

introduces so called stages to manage system and application resources, e.g. module loader and

component factories. The task instance running the application and related task objects are managed

by so called scenes. This implementation enables the processing of one or more tasks using the

same application resources, hence playing the same application in various task scenes on a common

application stage.

As tasks launch sub tasks and create a task tree of parent and child tasks, related scenes are or-

ganized in a hierarchical manner whereby all scenes on the path to the root scene via the session

scene create a common task space, as shown in Figure 4.35. The root scene is the scene created

144 4. XDK – The Crossware Development Kit

when the first application is launched by the XDK, e.g. the Internet Application Workbench [see

Section 5.3]. The session scene 1 is related to the user session 1, and task scene 1 and task scene 4

are associated with the task 1 and its sub task 4. As a result, the task 4 can view and access all task

objects of its parent tasks and share session objects of the related session with task 2 managed by

task scene 2. This results in the reuse of application resources while still separating the management

of task and session objects.

Similar to scenes, stages may create child stages that allow sharing common application re-

sources, e.g. peer registries and crosslet repositories, and shielding private application resources,

e.g. code assemblies and component factories. A particular stage is the system stage that is created

during the initialization phase of the XDK and is configured with a class space configuration con-

taining all core classes of the JDK and XDK. In addition, the system stage is used to register sys-

tem-wide platform resources like the session manager or the task manager. All other stages are

usually created as a child stage of the system stage when a new application environment has to be

set up, as shown in Figure 4.35. Finally, the application resources of a stage and its parent stages

form a common resource environment that allows a task to transparently access private application

resources registered with the associated stage and reuse shared application resources provided by

the parent stages.

Stage and Scene Contexts. If an application instance is started, the application launcher passes

various context references for accessing the scene and stage objects. The references are passed by

using an optionally implemented feature interface IContextualize, as shown in Figure 4.36.

Figure 4.36: Stage and Scene Contexts

4. XDK – The Crossware Development Kit 145

Application Environment Resources. The context m_stageContext allows all application

instances running on the same stage to register and share application-related resources as well as

system-related resources. In Figure 4.37, an example for retrieving the global session manager and a

list of application resources is shown.

Figure 4.37: Application Environment Resources

Session Resources. Every task is run in the context of a user session and the associated application

instance may retrieve session-related resource objects that are shared by all application instances of

the same user session. To access session-related resources, the session object is requested from the

session manager, as shown in Figure 4.38.

Figure 4.38: Session Resources

Task Space Roles. While an application may directly request resources, another option is to re-

trieve the role manager of the current scene and access application resources by using role defini-

tions. In Figure 4.39, the example shows how to get a list of all registered roles in the task space and

how to request a specific resource mapped on the given role.

Figure 4.39: Task Space Roles

The hierarchical organization of stages and scenes is hidden from the application and resource

and role manager are transparently traversing parent instances for determining requested resources.

146 4. XDK – The Crossware Development Kit

4.4.2.5 Autonomic Application

The Java Task Spaces approach is used to implement Autonomic Resource Sharing between distinct

application instances that are concurrently hosted in a multi-tasking runtime environment, as shown

in Figure 4.40.

Figure 4.40: Autonomic Resource Sharing

In contrast to platform resources that are configured during system setup, task space resources

are dynamically created and destroyed as applications are launched and terminated, e.g. a task-

specific network protocol handler. By organizing the task spaces using hierarchically arranged

scenes and stages, an application can decide which resources should be shared or kept private. For

example, an application launching a desktop GUI could provide shared access to the desktop win-

dow but separate the application windows from each other.

The autonomic operation is performed by tracking and controlling the resource provisions and

requests within a task space. From this point of view, the task spaces are autonomic elements, the

scene manager represents the autonomic manager and the stage manager with the task resources are

the managed elements. In particular, various scene managers of the task space are combined to

build a multi-level autonomic resource sharing systems. If a task requests a certain resource, the

scene manager of the origin task scene checks the current scene for a matching resource, and if none

4. XDK – The Crossware Development Kit 147

is found, it follows the chain up to the root task scene. In this context, every scene manager acts as

an autonomic manager of the parent scene and monitors resource provisions of the related stage. For

example, if a desktop GUI framework is launched and subsequently started applications should be

displayed on the same desktop window, the framework registers the desktop window as a resource

in its stage. The desktop applications are started in sub scenes and can access the shared desktop

window by querying the parent scenes (self-configuration). In this scenario, concurrent hosted ap-

plications usually create separated stages to which their code base is associated, e.g. related class

spaces are configured with the application classes. A particular scenario is the start of several in-

stances of the same application. The scene manager of the desktop framework can create distinct

sub scenes on top of the same stage and share the same code base for minimizing the memory foot

print and startup time (self-optimization). In case of an application failure, e.g. due to a missing

class, a separate stage can be created and configured with a different code base to run the applica-

tion (self-healing). The scene and stage managers can also be used to implement adaptive resource

access control, e.g. granting access on resources of the parent stage to selected user sessions only

(self-protection).

4.4.2.6 Related Work

The goal of the Java Task Space approach is the extension of the legacy JVM to support multi-

tasking operation with particular concerns to task-specific resource handling. This is related to Java

application isolation in common and the organization of concurrent access to shared and shielded

program resources. Although the actual idea has been discussed for several years [165, 338], there

are only few public available implementations [348, 93] and in fact no widely adopted solution is

known in practice. A good introduction to various forms of Java application isolation is provided in

[74] along with a possible categorization of related work that is used in the following review.

Class Loader Based Approaches. The first category encompasses solutions based on a legacy

JVM and a class loader per application configuration. Typically, an application framework is

launched first that loads every application into the same JVM. The application isolation is realized

by associating a separated class loader to every application and the assumption that no object refer-

ence is directly passed from one application instance to another. Well-known solutions are Apache

Tomcat or JBoss [16] that typically host trusted web services and applications in the same JVM.

While they support shared resource provision to the servlets, e.g. by registering and activating re-

sources via JNDI [343], they lack support for associating certain resources to a running servlet in-

stance. For example, Apache Tomcat may launch and unload multiple servlets that request distinct

148 4. XDK – The Crossware Development Kit

resources during their life cycle. The loaded Java classes are related to a servlet-specific class loader

and thus can be separately managed, e.g. by using a servlet class loading policy [159], however, this

is not valid for servlet-specific resources. As a result, acquired resources like an open file stream

will still remain locked in case of an unexpected servlet shutdown. This issue is addressed in J-

Kernel by introducing capabilities as handles to resources in another application domain and asso-

ciated with a different class loader [165] A related solution tackles this problem by using so called

service gateways that control resource management in a multi-service environment [307]. Based on

the OSGI technology, a core service gateway is installed that can be compared to the task stage in

the task space approach and multiple virtual service gateways that relate to task scenes. A similar

solution is Echidna [93] that tracks acquired resources that are automatically released as soon as an

application instance terminates. The common idea is to separate the resource provision code from

the resource allocation code by introducing a specific programming model and by managing distinct

class loaders for every application instance.

Process Based Approaches. In the second category, multiple Java applications are launched in

separate JVM processes while allowing them to share a common memory region to reuse applica-

tion classes and data [76, 87]. Since the introduction of class data sharing in Java 5.0, this approach

is generally used by the native JVM when launching more than one Java application [337]. Besides

enabling strong application isolation, this feature also reduces overall memory footprint and startup

time of multiple application instances, e.g. in a desktop computing or on-demand service provision-

ing scenario. Moreover, the execution of one application does not affect concurrently running appli-

cations as in a shared JVM, e.g. no general blocking if a single application is locked in an infinite

loop. In contrast to class loader based solutions, most of the regular Java applications work with this

approach without any code modification or recompilation. While process-based approaches greatly

exploit the OS-specific process isolation to run multiple Java applications, it inherently lacks native

support to manage custom program resources across distinct application instances and process

boundaries, e.g. sharing session data objects in a multi-user scenario. In addition, the launching of a

separate JVM process per task represents a heavy-weight operation in comparison to the class load-

er-based approaches, especially with many short-lived applications launched in an on-demand com-

puting scenario.

Java Runtime Modifications. The third category is related to approaches based on a custom JVM

that is modified to offer particular application isolation features. The basic idea is to exploit and

extend internal data structures to support transparent multi-tasking in a shared JVM. There is an

4. XDK – The Crossware Development Kit 149

ongoing discussion in the Java Community Process about extending the legacy JVM with an appli-

cation isolation API [338] but there is yet no public implementation available. Another development

line of Sun towards a Multi-Tasking Virtual Machine (MVM) [77] has not been adopted by the offi-

cial JVM, mostly due to the fact that if a MVM process crashes. In this case, it will take down all

hosted Java applications which is not feasible for a real-world business scenario. The same is valid

for a proposed resource management interface for the MVM that is able to model application-

specific resources and management policies [78]. From the agent and mobile computing research

fields, various mobile agent systems have been proposed to support the mobility of executing pro-

grams. For example, NOMADS [348] introduces a custom Java virtual machine in which each agent

executes in a separate virtual machine thread while all still run in the same process. In a multi-

tasking scenario, this enables the sharing of common resources and the shielding of application-

specific elements like code components and session data objects, respectively. However, agent and

mobile application systems are designed to enable the transparent and isolated application execu-

tion. There is typically no support to manage task-specific resource requests among concurrently

executed application instances, e.g. sharing a common desktop control element in a self-managing

way as possible with the Java Task Space implementation.

In summary, true multi-tasking support is a long awaited feature for the Java runtime environ-

ment. Various approaches have been proposed to mimic the concurrent execution of Java applica-

tions and the management of private and shared application resources in a common runtime envi-

ronment. A basic idea to enable multi-tasking is the isolation of Java applications instances and re-

lated resources. In a legacy JVM, this is not feasible since there is yet no programmable option to

define a task and to separate task-related resources as proposed in the Java Task Space approach.

Class loader based solutions at least try to achieve this for application class resources and some of-

fer advanced resource management features like life-cycle management in Echidna. Nevertheless,

there is still no task management available, e.g. for launching a subtask within the same JVM, and

the scoped management of resources is also missing, e.g. sharing the resources of a user session

among all applications of the same user while separating private application data objects. While

using a legacy JVM to host multiple applications, a basic issue is its inherent characteristic to run

everything in a single process and therefore without exploiting the process isolation features of the

underlying host operating system. For critical applications, this may cause problems concerning

security and stability requirements. From this point of view, true application isolation can be only

achieved by launching a separate JVM process per task. While related solutions still lack advanced

task and resource management features, they result in heavy-weight multi-tasking systems. Custom

150 4. XDK – The Crossware Development Kit

JVM implementations like the Multi-Tasking Virtual Machine (MVM) can offer a reasonable com-

promise between strong application isolation and light-weight task handling, once they are widely

adopted. As a result, advanced task and resource management in Java is still subject of various re-

search and engineering efforts. The Java Task Space implementation offers autonomic resource

sharing features as implemented with the hierarchically organized scene and stage managers. It is

based on a legacy JVM and can be used to implement a light-weight multi-tasking system for non-

critical use cases.

4. XDK – The Crossware Development Kit 151

4.5 Pervasive Environment Customization

Before a software application can be run, a suitable runtime environment in which the application

can be hosted has to be prepared by the runtime installer [see Section 2.3.3], e.g. by installing a

servlet container for running a Java servlet. In a personal computing scenario with only one compu-

ting device involved, this task is easy to accomplish by the end-user, e.g. by running an installation

CD. However, in a distributed computing environment, the user has to repeat the installation proce-

dure on every computing device and to consider different platform configurations not known in

advance; making it quite tedious and complex as well. In Section 4.5.1, an application execution

engine is introduced that evaluates the application configuration and performs the preparation of the

required runtime environment in a self-managing way while considering the present platform confi-

guration and runtime policy, e.g. downloading and starting an OSGI container [284]. In this context,

a particular issue is the customization of the deployed runtime environment according to the appli-

cation, user and system profiles, e.g. choosing a specific proxy server for connecting remote web

services. In general, the customization definitions are stored in a local profile repository on the

computing device from where they are retrieved each time the user logs in and launches the applica-

tion. While there are approaches to synchronize the profile across various computing systems in a

uniform and well-known network environment, e.g. by synchronizing it with a master copy on a

MS Windows domain controller, it does typically not apply to Internet computing systems with

changing system configurations. In Section 4.5.2, roaming user profiles are introduced that are not

bound to a central profile server and are evaluated by a profile recommender system with respect to

the current requirements, e.g. a not yet existing proxy server configuration is derived from another

user profile [283, 297, 362].

4.5.1 Application Execution Engine

The installation and configuration of a runtime environment for launching an application are extra

tasks that are usually not performed by the regular user but by the system administrator. In the fol-

lowing sections, an application execution engine is presented that evaluates the application and plat-

form configuration, selects suitable crosslets for launching the application and prepares the required

runtime environment in a self-managing way.

4.5.1.1 Motivation

To execute a software application, a suitable runtime environment is needed that is able to load and

run the application code, e.g. a MS Windows operating system. Since the related installation proce-

152 4. XDK – The Crossware Development Kit

dure is a non-trivial task, it is typically performed by the system administrator in a manual way, e.g.

by selecting a matching release for the current computing system and following specific setup in-

structions. While this is feasible for basic operating system installations, however, there are various

approaches that enable the installation of lightweight runtime environments like web browser plu-

gins for launching thin clients. Apart from notifying the user about the installation, the setup is per-

formed mostly without further user intervention, e.g. by installing a Sun Java plugin for running

Java applications. For this purpose, the plugin vendor provides a download site with prepared run-

time releases for well-known platform configurations and operating systems.

By applying the lightweight runtime installation approach on cross-platform operating scena-

rios, applications on heterogeneous computing systems can be launched as they are requested along

with the needed runtime environment. For this purpose, an execution engine is needed that eva-

luates the application requirements and current platform configuration to determine a suitable run-

time environment and, if needed, to download and install it automatically. Though there are work-

ing solutions like Sun's Java Web Start that evaluates the application configuration and are able to

install a proper runtime environment on-the-fly [383], they are typically limited to a certain type of

application executable, e.g. Java byte code. Currently, there is no general execution engine that is

designed to support various types of application executables and is suitable for the employment in a

cross-platform operating scenario, as described in Chapter 3.

4.5.1.2 Features

The Applicationt Execution Engine aims at running a cross-platform execution environment in

which tasks can be deployed and executed in a self-managing way without particular user interven-

tion. The major features are as follows.

Self-Managing Assembly Selection. By dynamically evaluating the current platform configuration

and application runtime requirements, the crosslet engine selects suitable code assemblies when an

application is to be launched in a self-managing way. An execution policy specifies the overall be-

haviour of the application execution engine, e.g. always to retrieve the latest code components from

remote code repositories or to favor native execution code upon interpreted byte code.

Adaptive Task Processing. In traditional usage scenarios, a user installs a certain application on a

computing system in advance to process a task, e.g. MS Winword for editing text documents. By

using the application execution engine, the user is no longer specifying which application is to be

4. XDK – The Crossware Development Kit 153

started but which task he wants to process. This enables the adaptive customization of the task pro-

cessing on a per platform basis, e.g. switching to different text editors in nomadic usage scenarios.

Extensible Executable Support. While the application execution engine is primarily designed to

handle standard Java executables, it can be extended to support particular cross-platform application

types as well, e.g. Perl scripts, OSGI bundles or Java Servlets. A specific runtime handler has to be

added that knows how to configure the runtime environment, assemble the application and start the

execution, e.g. adding a Java wrapper for configuring and controlling a Perl interpreter.

Dynamic Runtime Installation. If an application cannot be run on a given computing system since

none of the available runtime environments can be used, the crosslet engine tries to retrieve and

configure a suitable one, e.g. by downloading and starting a Java servlet container for running a

Java servlet. The runtime installation itself is performed as for regular crosslet applications; appro-

priate code assemblies are selected and code dependencies resolved without user interaction.

Native System Integration. By using the Java activation library, the application execution engine

is able to register crosslet applications to be launched when the user attempts to open a file using the

operating system. For example, by double-clicking on a XAR file on the user's desktop, the con-

tained crosslet application is automatically loaded and executed. This feature allows to integrate any

crosslet applications into the operating system; acting like a cross-platform application installer.

4.5.1.3 Approach

In an on-demand computing scenario, a user is interested in processing a task without having the

need to select and configure suitable applications for the currently employed computing system. In

the following approach, an application execution engine is presented that receives task descriptions

from the user and dynamically customizes the target computing system to run the task without par-

ticular user intervention, as shown Figure 4.41.

The task description contains the configuration information of the task, e.g. the type and loca-

tion of the task input data and the desired task action. The command mapping specifies the applica-

tion for processing a task and has been configured by an application installer, the user or the system

administrator. The crosslet repository is used to retrieve missing application crosslets if a yet not

installed application should be launched for the processing of a given task. The application execu-

tion engine manages the task execution and prepares customized application environments for run-

ning related applications in a self-managing way.

154 4. XDK – The Crossware Development Kit

Figure 4.41: Application Execution Engine

For example, if a user wants to print a document with a certain document format, a task de-

scription specifies the document location, its content type and a print command object (1). The ap-

plication execution engine evaluates the received task description and tries to determine matching

applications by checking the command mapping entries (2). Afterwards, a suitable application envi-

ronment is created to run the application (3) and, if needed, related application crosslets are in-

stalled on-the-fly (4). As a result, the application execution engine separates the task processing

from the application execution. A user can delegate a task to a computing system and does not need

to know how to set up and run the required application.

4.5.1.4 Realization

The Java realization of the approach divides the application execution engine in task manager, self-

managing application launcher and runtime manager, as shown in Figure 4.42.

4. XDK – The Crossware Development Kit 155

Figure 4.42: Self-Managing Application Launcher

Task Description. The task description is an XML configuration file that is passed to the task man-

ager for processing a given task, e.g. by a nomadic user who wants to edit a specific document. An

excerpt of a task description is shown in Figure 4.43.

 Figure 4.43: Excerpt of a Task Description

The property command indicates the task command, e.g. that the user wants to edit a docu-

ment. The property content-type specifies the document type for selecting an appropriate ap-

plication to edit the document given in property input. More properties may be specified depend-

ing on the task type, e.g. passing the location of an output file for writing the results of a computa-

tional task.

156 4. XDK – The Crossware Development Kit

Command Mapping. The task description is passed to the task manager that resolves a suitable

application by searching a matching command mapping like the example shown in Figure 4.44.

Figure 4.44: Command Mapping

Command mappings are managed using the Java Activation Framework (JAF) and configured

by an application during installation or by the user during runtime. In the example, an activation

configuration is set up for handling the command edit and content-type text/plain. Instead of

directly referring a certain application configuration, a launcher configuration is resolved in the next

step user the property launcher.id.

Launch Configuration. The idea is to define a common configuration of application and runtime

settings, as shown in Figure 4.45, which can be multiply referred, e.g. in distinct menu items.

 Figure 4.45: Launch Configuration

4. XDK – The Crossware Development Kit 157

A custom set of application properties is used to query a matching application configuration,

e.g. an application with the name odix-text-editor and a release 1.0 or newer. The same is

valid for the runtime properties, e.g. using a native JVM and executing the application in a separate

process.

Application Configuration. An application configuration defines the properties, the parameters

and the dependencies of an application. It is typically defined by the application developer. An ex-

ample for a legacy Java application is shown in Figure 4.46.

Figure 4.46: Application Configuration of a Legacy Java Application

The properties section is evaluated when querying an application, e.g. by name and release.

The parameters are passed to the runtime environment for launching the application, e.g. the

main-class of a Java application. Finally, the dependencies section specifies the application

requirements, e.g. the properties for querying a suitable runtime environment and the Java class

collections to configure the CLASSPATH.

158 4. XDK – The Crossware Development Kit

Runtime Profile. The platform-specific runtime profiles are set up by the platform administrator

and contain information about how to initialize a certain application environment on the current

computing system, e.g. where to find the PERL interpreter or how to set up the environment set-

tings such as the CLASSPATH for a legacy Java application. An example of a runtime profile con-

figuration for launching a JVM in a separate process is shown in Figure 4.47.

Figure 4.47: Runtime Profile Provided by the Platform Administrator

In the example, the properties indicate that this configuration is related to an application envi-

ronment that launches a native JVM in a separate process. It corresponds to Sun JRE 1.4.2 and is

started by passing the command-line /usr/sdk/sun-jdk-1.4.2/bin/java to the shell.

Runtime Plugins. To prepare particular application environments, extra runtime plugins may be

added to the application execution engine to evaluate the related settings in the application configu-

ration and runtime profile. For the example above, an excerpt of the related runtime plugin code is

shown in Figure 4.48.

 Figure 4.48: Runtime Plugin for Launching a JVM in a Separate Process

The plugin gets the application configuration and runtime profile for initializing the application

environment. The main class and class path of the Java application are read and the shell command

4. XDK – The Crossware Development Kit 159

for starting the process is assembled. The location of the Java tool is retrieved from the runtime pro-

file shown in Figure 4.47. A new process is started with exec and the Java command line is passed

to the shell as well as the environment settings. Finally, the plugin redirects the input, output and

error streams to a separate console that for instance may be forwarded to a remote terminal. Beside

this described scenario for hosting a legacy Java application, further application environments may

be created provided there is a suitable runtime plugin and runtime profile available on the currently

employed computing system.

4.5.1.5 Autonomic Application

The application execution engine approach can be used to implement Autonomic Task Deployment

by on-demand launching of related task processing applications in a cross-platform operating envi-

ronment, as shown in Figure 4.49.

 Figure 4.49: Autonomic Task Deployment

A task processor runs an application execution engine and is able to process customs tasks by

interpreting a task description, e.g. for retrieving a media file from a content repository and per-

forming certain media indexing operations. Before a task is actually processed, the task processor

evaluates the task description for required crosslets and may download missing ones from a shared

code repository. The task dispatcher represents the single point of command and control for delegat-

ing received tasks to dynamically discovered task processors, e.g. in a peer-to-peer network.

160 4. XDK – The Crossware Development Kit

The autonomic operation is performed by monitoring and controlling the tasks running on the

task processors. From this point of view, the customer's computer is the requesting element, the task

dispatcher acts as the autonomic manager, the task processors are the managed elements that alto-

gether form the cross-platform operating environment as the autonomic element. The customer is

not aware on that task processor his or her task is actually processed and how required resources are

appropriately configured. In contrast, he or she gets the illusion of an ever ready-to-use cross-

platform operating environment for random computing tasks. For example, if a customer wants a

computing task to be processed, he or she creates a task description and passes it to the task dis-

patcher. Depending on the computing task, available task processors and code assemblies, the dis-

patcher delegates the task, e.g. to a MS Windows computing systems if the task can be only

processed by a native MS Windows application (self-configuration). Since there is an ever-

changing task deployment scenario, the task dispatcher checks the computing load and may adapt

the deployment of new tasks according to a given policy, e.g. for ensuring a minimal task

processing time (self-optimization). Another monitoring issue is the tracking of computing progress

and results. In case a task could not be processed, e.g. due to an unexpected shut down of a task

processor, the task dispatcher can redeploy the task to another task processor and restart the compu-

ting (self-healing). If the task dispatcher is notified about an issued shut down request, it could also

migrate an existing task and its result to another task processor [see Section 4.7]. The same is valid

for protecting a single task processor to be overloaded due to an unexpected lengthy task execution

(self-protection).

4.5.1.6 Related Work

The interconnection of distributed computing systems has made it possible to easily deploy

applications to a large number of computing systems on-demand. A related request is the spontan-

eous launching of random applications not yet known when the target computing system has been

set up. In this context, the provision and configuration of a suitable application environment to run

the deployed application is a non-trivial task. In the following overview, related approaches and

exemplary solutions towards on-demand application execution are categorized and compared

against the application execution engine approach.

Native Application Environment. In the first category, related solutions address the need to

deploy and run native application code. For example, if legacy standalone applications are to be

reused to parallelize the computation of customer tasks and to utilize idle workstations. In Butler

[255], a machine registry is introduced to list all connected machines in a local network. If an

4. XDK – The Crossware Development Kit 161

application is to be executed on a remote computing system, the registry is queried for a suitable

machine and an appropriate execution environment is prepared, e.g. copying required shared

libraries to the target machine. The actual application execution, however, is not altered. In fact, an

application can be only executed if there is a workstation with a CPU capable to run its machine

code. A related solution for volunteer computing is Berkeley Open Infrastructure for Network

Computing (BOINC) that offers to deploy and run applications on idle workstations in the Internet

[32]. In contrast to Butler, the user of an Internet computing system first decides to support a

specific distributed computing project and then requests its BOINC client to install a related

computing application on his or her workstation. An application is not pushed to remote computing

systems but pulled from a central project repository to the local computing system. Popular projects

using BOINC are SETI@Home and Einstein@Home [99]. Besides supporting volunteer computing

projects over the Internet, BOINC can also be used to run a desktop Grid computing system in an

enterprise network. Actually, any standalone application can be adapted to run within a BOINC

application environment. Due to platform-specific code assemblies, however, there is no or only

little support of dynamic component deployment and application composition, e.g. for launching a

suitable task processor not yet installed on the target computing system.

System Virtual Machine. The next category is related to on-demand computing solutions based on

launching a System Virtual Machine (SVM), e.g. VMWare Workstation or Sun Virtual Box. A

computer hardware environment is virtualized and a guest operating system is bootstrapped to run

the requested application. This approach allows running native application code in a sandbox

without interfering with the host system or applications running in another SVM. With the advent

of cloud computing, this solution is widely adopted for deploying legacy computing applications in

a shared computing infrastructures [220]. For example, Amazon EC2 supports the creation of virtual

machine images that can be used to easily set up a large number of application installations in the

Amazon cloud [9] and support remote task processing. While the required application environment

is dynamically prepared, a virtual machine image cannot be modified without launching it, e.g. if a

contained application is to be updated. Further, distinct application services running in the same

virtual machine may affect each other, e.g. in an application service provisioning scenario. A

possible solution is a service on-demand architecture (SODA) for application service hosting utility

platforms [186]. Application services are isolated in different virtual machines and separately

launched on-demand. A common service switch is installed to direct client requests to appropriate

application services. For wide-area distributed computing, the SVM approach offers the dynamic

deployment and secure execution of untrusted application, as in the XenoServer project [124]. Re-

162 4. XDK – The Crossware Development Kit

lated execution platforms are deployed around the globe and offer the multi-customer hosting of

application services in distinct virtual machines on-demand. In this scenario, a particular issue is the

efficient management of globally distributed computing resources. In Oceano, an autonomous man-

agement system is implemented to manage global utility computing resources [145]. Automated

resource demand-supply control systems support the automated service deployment and dynamic

capacity sizing of services. In a wide-area deployment scenario, however, a common problem of

SVM-based solutions is the initial setup of the SVM installation which usually requires some ad-

ministration knowledge.

Process Virtual Machine. In a Process Virtual Machine (PVM), portable code is run by an inter-

preter in a regular process environment of the host system [see Section 3.2.1]. The overall resource

consumption of a PVM is smaller than of a SVM and the startup time is usually much faster. In

conjunction with the simple and instantaneous code deployment over the Internet, this has particu-

larly driven the development of Rich Internet applications (RIA) [216] e.g. applets written in Adobe

Flash and Sun Java. In this context, the web browser acts as an application container and dynami-

cally installs an appropriate runtime environment to launch the selected RIA, similar to the Applica-

tion Execution Engine. A common disadvantage is the focus on particularly implemented and self-

contained web-based applications. Besides running a RIA in a browser environment, so called Rich

Client Applications may be deployed over the Internet and run in a separate process environment.

For example, regular Java applications may be launched on virtual any Internet computer system

on-demand by using Sun Java Web Start [383]. An application description, the Java Network

Launch Protocol file (JNLP), is downloaded and dynamically evaluated for installing the appropri-

ate JVM version and launching the Java application. In fact, Sun's Java Web Start actually

represents the most adopted PVM solution for deploying and running regular Java desktop applica-

tions on-demand. Of course, there are further PVM implementations, e.g. running Python or Perl

scripts, but they lack support for the dynamic installation of the required runtime environments in

an Internet computing scenario. Once a PVM-based application container is installed, there are var-

ious approaches to run user applications on-demand and to support task processing. In Argos, an

extensible personal application server allows deploying and composing Java applications on desk-

top computers by introducing a custom application description [249]. In Hydra, the application con-

tainer supports the policy-based aggregation of Java applications from mobile code components

travelling between computers [313]. For remote and distributed task processing with administered

application containers, there are popular PVM-based solutions for regular applications like Google's

AppEngine [143], for standardized JEE servlets like Snap [131] and for proprietary applications like

4. XDK – The Crossware Development Kit 163

DistrIT [88]. While PVM application containers easily support on-demand application execution, a

common issue is the concurrent processing of multiple tasks within the same virtual machine. As an

example, if one task processing application fails, concurrently hosted applications may be affected

as well.

To summarize, there are many application containers supporting on-demand application

execution. Some of them support single application execution like Java Web Start while others have

been designed to enable multi application execution like BOINC. Native application environments

like Butler promise the best computing performance but lack on-demand application deployment in

a cross-platform operating scenario. The SVM solutions like VMWare Server can be used to run

prepared virtual images in isolated process environments and on a broad range of heterogeneous

computing platforms. A basic issue of SVM solutions, however, is the overhead to virtualize a lega-

cy hardware environment and to provide a customized application installation, e.g. an offline virtual

image cannot be modified and the hot deployment of large virtual images is not feasible over the

Internet. An alternative approach is the use of a PVM and running customer applications in legacy

processes. The startup time is typically less than the one of a SVM, the resource requirements are

moderate and application executables may be easily deployed over the Internet. From this point of

view, SVM-based approaches enable heavy-weight application execution while PVM-based ap-

proaches make light-weight application execution possible. A common limitation of related solu-

tions is the focus on a single application container implementation and type of runtime environ-

ment, e.g. Sun Java Web Start can be only used to deploy and run Java applications. The presented

application execution engine is divided in a task manager and a runtime manager. If an application

is requested, a suitable application configuration and runtime installation are negotiated by a self-

managing application launcher, the application components are retrieved from the crosslet reposito-

ry and finally the application is launched. Various Java applications may be concurrently hosted in a

shared JVM or separately executed like regular native executables. As a result, the application ex-

ecution engine does not only control the application execution but also the runtime configuration.

164 4. XDK – The Crossware Development Kit

4.5.2 Roaming User Profiles

The seamless customization of distributed computing systems is needed to provide the illusion of a

pervasive application environment to the nomadic user. In this section, the conceptual approach of

roaming user profiles is described for customizing the application installation by considering sys-

tem, application and user settings. The realization is illustrated and the application of the approach

for deducing missing profile settings in a self-managing way is outlined.

4.5.2.1 Motivation

To work with a software application, a user typically customizes the application configuration to

suit his or her preferences, e.g. by adjusting the visual appearance and removing unused menu

items. The goal is to ease the handling of the application and to store user-related configurations

like the mail account settings for the next application session. While some applications put the set-

tings in separated configuration files, e.g. in their installation directory, more and more applications

use shared user profile repositories, e.g. managed by an enterprise LDAP server. They can be cen-

trally administered and also be used to synchronize distributed profiles located on alternately em-

ployed computing systems. At best, a nomadic user gets the illusion of a pervasive application envi-

ronment that is not bound to a certain computing system but is restored on each one he or she is

currently working at, e.g. across various computing systems in the enterprise.

In Java, legacy support for storing user profiles is provided by the Java preferences package

java.utils.prefs that usually backups the settings in a configurable native profile repository,

e.g. the MS Windows registry or a remote profile database. While this approach is feasible for sin-

gle-user application environments, it has a major drawback in a multi-user and multi-tasking scena-

rio. The original preferences approach has been designed to manage system and user profiles that

are associated with the user account having launched the JVM. In a shared JVM, however, various

tasks are concurrently run by different user accounts and there is a particular need to offer each

transparent access on private application and user profile settings. Another issue is the dynamic

adaptation of roaming user profiles due to different configuration setups found in a cross-platform

operating scenario, e.g. an application is to be used on a computing system where it has been origi-

nally not installed; hence application-specific profile settings are missing in the profile repository.

4. XDK – The Crossware Development Kit 165

4.5.2.2 Features

The overall goal of the Roaming User Profile approach is the seamless provision, synchronization

and customization of user preferences to provide the illusion of a pervasive application environment

to a nomadic user. The major features are as follows.

Roaming Profile Synchronization. A user customizes his or her computing environment by mod-

ifying various configurations that are stored in a user profile, e.g. in the user's home directory. The

XDK supports the nomadic synchronization of this profile with a remote master copy; similar to the

MS Windows domain user account approach. As a result, a nomadic user can switch to distinct

computing systems that are customized according to his or her user profile.

Multi-Session Profile Handling. While the legacy JRE offers a standardized way to store system

and user preferences in the local profile, the related implementation has been designed for a single-

session JVM only. The XDK approach extends the standard preferences package and enables trans-

parent support of multi-session profile handling using the Java standard. Applications running in

different sessions can access related user preferences without particular implementation.

Self-Managing Profile Deduction. Another feature of roaming user profiles is the self-managing

deduction of missing preferences by evaluating profiles of other users. For example, a nomadic user

might not know which proxy server to use for passing the firewall on a new computing system.

However, a former user has already configured the right proxy and left the settings in the local pro-

file storage. The XDK applies this setting and completes the current user profile on-the-fly.

User Document Repository. In addition to custom user preferences, the computing environment of

a user also encompasses the document files the user works on. Since the XDK is run by the same

system user but may host various sessions of distinct nomadic users, a particular home directory for

each session is created and the document files therein are synchronized with a user document repo-

sitory. The user gets the illusion of travelling with his or her documents while being on the move.

Legacy Application Support. If a Java application is started in a separate JVM, the default work-

ing directory is the user's home from where the preferences are loaded as well. A related XDK fea-

ture is the support of legacy applications for nomadic use by extending the regular JVM with extra

preference classes and providing transparent access to the synchronized user profile and documents.

A legacy application does not need to be aware of this and can still use standard JRE methods.

166 4. XDK – The Crossware Development Kit

4.5.2.3 Approach

The basic idea of the approach is to synchronize the user preferences on multiple computing sys-

tems by introducing remote profile repositories and roaming user profiles, as illustrated in Figure

4.50.

Figure 4.50: Roaming User Profiles

If a user customizes the application environment on a computing system, the user preferences

are stored in a local profile cache and reloaded the next time the user logs in. In addition, the prefe-

rences are synchronized with a remote profile repository in the same peer domain, e.g. the Intranet

of an enterprise or a pre-defined group of computing devices. Assuming that the profile repository

is reachable by all peers in the peer domain, a user may alternately use distinct peer computing sys-

tems and gets his or her user preferences restored. In case a nomadic user moves to another peer

domain with a different profile repository, e.g. from peer domain 1 to peer domain 2, the profile

repository of domain 2 requests the user profile from repository 1 and becomes the new synchroniz-

ing profile repository for the current user session. This speeds up further synchronization of the user

profile in the new peer domain and allows administrators to connect all peers of a peer domain to

the same profile repository. By partitioning the user profile in static and roaming fragments, plat-

form-specific user preferences are not synchronized that allows users to refine the application envi-

ronment on a per-platform basis, e.g. configuring different display resolutions on various computing

devices. Moreover, user documents in the local working directory are also synchronized and res-

tored with the user profile. For regular Java applications running in a multi-session runtime scena-

4. XDK – The Crossware Development Kit 167

rio, the respective user preferences and documents are transparently provided and there is no need

to adapt the application preferences handling.

4.5.2.4 Realization

The realization of the approach introduces a multi-session profile manager that handles the profile

synchronization with the profile repository, as shown in Figure 4.51.

Figure 4.51: Multi-Session Profile Manager

If a new user session is started, the profile manager checks the local profile cache (1) and the

remote profile repository for the newest release of the related user profile (2) by comparing the seri-

al numbers. If needed, a newer user profile is retrieved from the profile registry and stored in the

local profile cache. Then, a user profile copy is prepared by the profile manager (3) that can be ac-

cessed by the profile handler of the user session (4). The profile handler provides a transparent in-

terface to the user profile and can also complete missing profile settings by using a setting resolver

(5). For example, if a user has installed a new application that needs information about the local

network configuration, the settings resolver can be used to evaluate the system profile and other

user's profile for an appropriate setting (6), e.g. determining the last working configuration of a web

168 4. XDK – The Crossware Development Kit

proxy for the current computing system. Finally, user profiles may be stored in regular directory

systems like an LDAP server that offer built-in support for profile roaming (7).

Profile Loading. The profile settings are organized in a hierarchical structure and can be easily

explored and read, as shown in Figure 4.52.

Figure 4.52: Explicit Profile Handling

First, the principal id of the current session is determined and used to load the profile of the

session user. Then, an application specific key is created to read the associated application setting.

In this example, a font setting is read, its font size is set to 10 and written back to the profile. Final-

ly, the profile is committed and synchronized with the profile repository.

Native Preferences Handling. The explicit profile handling allows developers to determine the

user session and access the respective profile. However, existing Java applications using legacy

preferences handling are not aware of user profiles and use a different approach shown in Figure

4.53.

Figure 4.53: Legacy Preferences Handling

In contrast to the profile repository implementation, the legacy preference handler does not

support multi-session operation and thus the hosting of multiple Java applications in the same JVM

may cause problems in access the respective user profile. A remedy is offered by the JVM by instal-

ling a custom preferences handler, as shown in Figure 4.54.

4. XDK – The Crossware Development Kit 169

Figure 4.54: Configuration of Custom Preferences Handler

The environment setting java.util.prefs.PreferencesFactory replaces the built-

in preferences handler with a customizable implementation that can be used to support legacy prefe-

rences handling in a multi-session environment.

Multi-Session Preferences Implementation. A custom preferences implementation has to extend

the class java.util.prefs.AbstractPreferences and can implement various methods

of the service provider interface (SPI) to control the preferences handling. An excerpt of the imple-

mentation is shown in Figure 4.55.

Figure 4.55: Multi-Session Preferences Implementation

When the application requests access to the user preferences, as shown in Figure 4.53, the reg-

istered preferences factory returns an instance of the multi-session preferences implementation. An

application method call of public String get(String key) is delegated to the method

170 4. XDK – The Crossware Development Kit

protected String getSpi(String key) shown in Figure 4.55. The method

getProfile is called to retrieve the current session that is associated with the thread group of the

task execution. If the respective user profile has not yet been loaded, the profile repository gets the

profile from the profile cache. Finally, the requested setting is read from the user profile and re-

turned to the calling application. This is performed without modifying the application and can also

be used for customizing the preferences handling of legacy Java applications launched in a separate

JVM process. In this context, the synchronization of document files for a certain session is similarly

done by using the environment setting user.home that denotes the working directory to be used

by the JVM process. Before the legacy application is launched, the user's files are copied to the

working directory and when the session ends, the documents are zipped and synchronized as part of

the user profile.

4.5.2.5 Autonomic Application

The Roaming User Profile approach can be used to implement Autonomic Environment

Customization for nomadic application scenarios with heterogeneous computing systems involved,

as shown in Figure 4.56.

Figure 4.56: Autonomic Environment Customization

4. XDK – The Crossware Development Kit 171

A nomadic user moves from one computing system to another and wants to run his or her ap-

plications with the same profile settings. For this purpose, a nomadic application workbench [see

Section 5.3] is used to prepare a suitable application environment and a profile server is introduced

to synchronize the customized user settings across distinct computing systems. Along with the dy-

namic deployment of the user's applications, this results in a pervasive application environment in

which the different capabilities and configurations of heterogeneous computing systems are hidden

from the user. For example, if an application exists as MS Windows and GNU Linux variant, the

nomadic application workbench will seamlessly customize the environment and restore the user's

profile before the appropriate variant is launched.

The nomadic application workbench makes autonomic operation possible by controlling the

user profile synchronization and monitoring its customization later on. From this point of view, the

hosted applications are the requesting elements, the workbench acts as the autonomic manager, the

platform configurations are the managed elements and the pervasive application environment

represents the autonomic element. The user and the applications are not aware of the profile syn-

chronization in the background and get the illusion of a seamlessly roaming user profile. For exam-

ple, if the user logs into a new computing system, the workbench determines the related profile

server, synchronizes the local profile cache and customizes the workbench without user or applica-

tion intervention, e.g. launching applications configured in the autostart section (self-configuration).

In this context, a particular issue is the transmission of the user profile from and to the master pro-

file server. The implementation supports the configuration of multiple profile servers and the ability

to move the master copy to the nearest profile server, e.g. roaming the user profile to a profile serv-

er in the local network for shortening the synchronization time (self-optimization). Once the user

has installed his or her applications, the related installation configurations are stored in the user pro-

file and also synchronized. In case a configured application has been not yet deployed on the cur-

rently employed computing system, the workbench automatically installs the application according

to a given policy, e.g. when the user logs in, on first access or always in the background (self-

healing). Since the nomadic application workbench is designed to support multi-session operation, a

further issue is the protection of user profiles against access and manipulation by other users. This is

achieved by the multi-session profile manager that denies unauthorized access during runtime and

encrypts the user profiles before storing them in the local profile cache. In turn, the signature of the

user profile is checked during login and before evaluating the profile settings (self-protection).

172 4. XDK – The Crossware Development Kit

4.5.2.6 Related Work

The shared and alternate use of various computing systems by multiple users creates individual ap-

plication environments. A particular user request is enabling ubiquitous personalized computing by

adjusting the current application environment according to preferences of the user [387]. A common

approach to save and restore the related settings is the introduction of various profile repositories,

e.g. for managing system, application and user profiles. In the following overview, static and dy-

namic profile approaches that can be used to create the illusion of a pervasive application

environment are outlined and evaluated for implementing roaming user profiles in Java.

Static User Profiles. A common strategy to manage user settings is to use static user profiles that

are not modified by the profile repository once they have been stored. In a simple implementation,

text files are used to store the profile settings as key-value pairs. Popular examples are so called

INI-files that have been widely used in MS Windows 3.x and can be still found in particular scena-

rios, e.g. for configuring available plugins in an application framework. The basic advantage is the

straightforward processing of the configuration files and the simple handling in a distributed com-

puting scenario, e.g. the configuration files can be downloaded from a central profile server and

uploaded if changes have to be committed. The major drawback is the scattered organization in a

multi-application environment, e.g. every application uses a separate configuration file, introduce

various profile definitions, the files may be modified or corrupted by accident. An advanced ap-

proach is the introduction of profile registries like in MS Windows 95 and later. All configuration

settings are stored in the registry and there is an official registry specification where settings are to

be stored, e.g. user and machine settings are stored in different hives [239]. For Java applications,

the actual profile handling is shielded by the Java Preferences API that transparently maps profile

operations to the underlying profile registry of the hosting platform [344]. Concerning roaming user

profiles, a common approach is the synchronization of a local profile cache with the remote profile

repository, e.g. a server-based user profile is downloaded to the local registry upon login to the

workstation [384]. This happens in the same way for every workstation and the profile settings are

usually not adapted to platform-specific configurations. While this also works for Java applications

in uniform computing environments, e.g. MS Windows workstations connected to the same domain

controller, this approach fails for heterogeneous computing systems. In fact, on-demand Java appli-

cations that alternately run on MS Windows and Linux cannot use the standard profile storage ap-

proach. Another issue of Java preferences is the all-or-nothing synchronization scheme that is not

feasible for profile management over the Internet.

4. XDK – The Crossware Development Kit 173

Dynamic User Profiles. A remedy to the roaming issues of static user profiles are dynamic user

profiles that are not completely synchronized in advance but allows accessing selected profile set-

tings by request. A common approach towards dynamic user profiles is the provision of directory

services. For MS Windows, the MS Active Directory Service supports remote access to dedicated

registry settings. For Linux operating systems, similar directory service implementations are used

that typically conforms to the Light-Weight Directory Access protocol (LDAP) [205]. For Java ap-

plications, a suitable Java Naming and Directory (JNDI) adapter can be used to connect to a remote

directory service [343]. In a cross-platform computing scenario, remote directory services may be

used to bridge application and platform boundaries, e.g. for managing common user settings of MS

Windows applications, Linux applications and Java applications in the same profile repository. A

common limitation of regular directory services is the static mapping of profile request on profile

provision. For example, a platform profile provides the address of a network proxy with a certain

profile key while an application requests the address with another profile key. As a consequence of

this, a roaming user has to manually map both keys to create a valid configuration that makes it

difficult to support on-demand computing in a large-scale cross-platform operating environment

[264]. A possible solution to that are the introduction of semantic user profiles and the use of se-

mantic matching and reasoning tools as proposed in [325]. This enables the separation of profile

repositories operating at a syntactical level from applications evaluating profiles at a semantic level.

For mobile computing devices moving across different networks, new forms of dynamic service

discovery and integration can be realized. By now, these approaches have not been widely adopted

at most due to increased implementation efforts for regular application developers.

In comparison, static user profiles are most suitable for the centralized synchronization of user

and application settings across uniform computing systems located in an Intranet environment. For

cross-platform operating environments with various profile repository installation, dynamic user

profiles allows roaming of user settings from one site to another, e.g. in a mobile computing scena-

rio. There are advanced and yet not widely adopted approaches like the semantic user profiles that

address the dynamic mapping of profile requests on profile definitions at a semantic level. For Java

applications, the Java Preferences API represents the legacy approach to manage local user profiles.

The JNDI binding provides uniform access to remote profile settings and hides the current directory

service implementation. From this point of view, the roaming user profile implementation benefits

from the uniform JNDI binding to synchronize a local profile cache with different types of remote

profile registries in self-managing way. Though the semantic mapping of different user profiles is

not supported, a customizable settings resolver offers the context-based adaptation of user profiles,

174 4. XDK – The Crossware Development Kit

e.g. for adjusting the settings of mobile applications according to the platform characteristics like

screen resolution and network bandwidth. In contrast to the native Java preferences implementation,

an extended profile service provider offers the transparent access on user-specific profiles via the

standard API, e.g. for running legacy Java applications in a shared JVM. Moreover, the environ-

ment customization is not limited to profile settings but may be configured to handle seamless doc-

ument synchronization as well. For example, the workplace of a user is managed across distinct

computing stations and can be easily accessed by legacy Java applications. As a result, the roaming

user profile approach enables pervasive environment customization not only for custom but also for

legacy Java applications that can be deployed over the Internet.

4. XDK – The Crossware Development Kit 175

4.6 Virtual Object Interconnection

In a distributed computing environment, networked applications are executed on distinct computing

devices and usually interact with each other by using specific network middleware approaches, e.g.

based on CORBA, SOAP or XML-RPC. The network middleware separates the business logic from

the network handling needed to communicate with remote parties and frees the application develop-

er from low-level and often proprietary network programming. This is achieved by introducing par-

ticular network wrappers, stubs and skeletons, which are usually generated by helper tools during

design time. However, once the application is tight to the middleware implementation chosen by the

application developer, it cannot be run with a different one, e.g. for dynamically connecting a re-

mote resource using a different network protocol. In Section 4.6.1, a distinct Java object communi-

cation approach is introduced, Java Method Streams, which features the adaptive remote intercon-

nection of Java objects; especially the selection of appropriate middleware implementations during

runtime and self-managing reconnection of interrupted object bindings [162, 273]. In this context,

the practice has shown that the hosting of multiple Java applications within the same Java Virtual

Machine (JVM) raises new challenges concerning the configuration and control of object intercon-

nections. While regular stubs and skeletons have been originally designed to connect application

objects hosted in distinct execution environments, they lack particular support for controlling inter-

connections of application objects in the same execution environment. In Section 4.6.2, a new ap-

proach to encapsulate Java objects in so called Java Object Spaces and to control their inbound and

outbound communication following given system policies and application configurations is pre-

sented, e.g. for implementing a particular object access control and securing application data [278].

4.6.1 Java Method Streams

The interconnection of distributed Java objects is typically performed on the network level using a

specific middleware approach. In this section, remote method streams are presented that introduce

virtual object interconnection by separating virtual object bindings from real object links. The reali-

zation using Java Dynamic Proxy is described and the application for establishing and maintaining

remote bindings to nomadic objects in a self-managing way is illustrated.

4.6.1.1 Motivation

In object-oriented programming theory, a software application is composed of distinct object in-

stances that are bound by using interface references and communicate with each other by exchang-

ing messages. In practice, this is realized by introducing object references that act as placeholders

176 4. XDK – The Crossware Development Kit

for the object instances and are used by sender objects to transmit a message via method call to the

referred objects. In a local computing environment, the object reference is linked to the referred

object instance by using its memory address. For distributed computing scenarios, this is not possi-

ble and has led to object middleware approaches that virtually link object reference and object in-

stance by introducing object stub and skeleton objects [370]. Following the Proxy pattern [129],

they transparently pass the message from the caller to the callee while bridging hosting boundaries,

e.g. by using suitable network connections. From this point of view, the application is interested in

virtual object binding and does usually not want to be bothered with the real object linking and

eventually involved network communications.

While network middleware allows developers to focus on the business logic and manages net-

work communication issues mostly without application intervention, the drawback is the tight

coupling of application and selected middleware implementation; hence the object binding and ob-

ject linking issues. Consequently, an application is typically not able to bind a remote object with-

out the information about how to link the remote object, e.g. which network protocol and parame-

ters have to be used to establish a connection. Though there are options to customize the object link-

ing on the connection level, e.g. by using particular object registries and self-managing reconnec-

tion interceptors as in the CORBA approach [252], they are specific to the current middleware im-

plementation and cannot be applied with different solutions. In turn, the customization of object

bindings on the application level, e.g. by introducing access control binding aspects, is not possible

for the developer without specifying the middleware to be used for transmitting the message.

4.6.1.2 Features

Similar to the concept of distribution transparency in RM-ODP [364], the Java Remote Method

Stream approach aims at supporting the self-managing operation of local and remote object bind-

ings without customizing the actual business logic [271]. The major features are as follows.

Dynamic Middleware Activation. Java Remote Method Streaming allows developers to select and

initialize the actual network middleware during runtime, e.g. by dynamically negotiating the

connection type with the remote party and by binding objects using a matching network middleware

implementation. In addition, the employed middleware of established object bindings can be altered

without breaking the link, e.g. switching from RMI to CORBA due to a changed network scenario.

Custom Binding Composition. Every method call issued from the caller to the callee is passed

through the method stream and controlled by chained interceptors [371]. They can be used to add

4. XDK – The Crossware Development Kit 177

object independent functionalities dynamically to arbitrary objects, similar to the approach intro-

duced by Aspect-Oriented Programming (AOP) [195]. This separates the streaming logic defining

how a method call is passed from the business logic defining how the method call is processed.

Invariant Object Identifier. To register and locate Java objects, invariant object identifiers are

introduced that are dynamically resolved and mapped on a specific object address suitable for the

network middleware currently in use. By separating object referencing from object addressing, an

application can establish an object connection even if the underyling network protocol has been

switched or the object has moved to another peer in the meantime.

Self-Managing Object Connection. Once a remote object has been connected, the method stream

controls the underlying network middleware in a self-managing way, e.g. adjusting connection

parameters like data compression if necessary. Moreover, if the connection fails for some reason,

e.g. due to a network error, the method streams attempts to reconnect the remote object without

affecting the business logic. In the same way, relocated objects are transparently reconnected.

Legacy Programming Model. The object binding of network middleware approaches usually re-

quires code customizations, e.g. the use of specific parameter types. Java Remote Method Stream-

ing offers a common approach to bind Java objects independent of binding aspects. Neither extra

implementation effort on behalf of the business logic nor recompilations of the source code are re-

quired. Plain-Old Java Objects (POJO) created by third-party libraries can be easily networked, too.

4.6.1.3 Approach

The basic idea of the approach is the customizable interception of the object binding between caller

and callee by introducing a transparent method stream, as shown in Figure 4.57.

A regular object binding is realized by creating or copying an object reference that is insepara-

ble bound to the object and can be used to pass method calls from the caller to the callee. Once an

object reference is deployed, there is no way to change the object communication between caller

and callee, e.g. replacing an object pointer with a dynamic network stub. From this point of view, a

method stream represents an object reference that is bound to the callee but still allows customizing

the object communication. To this end, a method stream separates the object binding from the ob-

ject communication, as shown in Figure 4.57. Each method call issued by the caller is serialized by

the dynamic connector, passed down the method stream and deserialized by the dynamic broker for

calling the related method on the callee side.

178 4. XDK – The Crossware Development Kit

Figure 4.57: Self-Managing Object Communication

While being streamed, the method call can be intercepted and customized by intermediaries in

a uniform way [25], e.g. to encrypt and decrypt the method parameters or to use a different network

middleware for reaching a remote object. In this context, intermediaries can be used to implement a

self-managing object communication for bridging platform boundaries in a changing and

heterogeneous network scenario. For example, an intermediary can reestablish a broken network

link without application intervention. Furthermore, a method stream mimics a legacy object refer-

ence, and can connect caller and callee without the need to modify existing code. Hence, it is par-

ticularly suitable for networking existing object implementations, e.g. for seamlessly wrapping a

legacy library with a custom network interface. Finally, it should be stressed that method streams

are not supposed to substitute matured object middleware approaches such as CORBA or RMI. In

contrast, method streams try to utilize and combine installed features of the currently employed

platform to hide heterogeneous implementations from the application and negotiate an appropriate

communication link in the background.

4.6.1.4 Realization

Based on the separation of application-specific object bindings and platform-related object commu-

nication, the realization of remote method streams introduces a binding manager for managing ob-

ject bindings and a connection manager for managing object connections, as shown in Figure 4.58.

4. XDK – The Crossware Development Kit 179

Figure 4.58: Cross-Platform Object Interconnection using Java Remote Method Streams

A peer registry is introduced for registering peers and their connection capabilities, and a bind-

ing registry for registering objects and their hosting peer. In practice, a common directory service

approach such as LDAP is used that is not bound to a certain object middleware approach like the

RMI registry but can be used independently. When a computing system is started, the peer registers

itself to the peer registry and announces the communication protocols available for connecting ob-

jects. Later on, application objects that want to be reachable by other objects, possibly located on

different peers, are registered with the binding registry using a unique binding id and the peer id.

Actually, the binding registry does not contain any information about how to communicate with an

object and where the object actually resides. The concrete communication path is dynamically re-

solved and negotiated using the peer registry and evaluating the communication protocol imple-

mented by caller and callee. In detail, if an object binding should be established, the requesting ap-

plication object (caller) asks the local binding manager for creating an object binding (1) by provid-

ing the unique binding id. The binding registry is queried for the object (2) and the information

about the hosting peer is passed to the connection manager (3). Then, the peer registry is used to

resolve the location of the peer (4) and protocol parameters for establishing a connection, e.g. a

network connection via a TCP socket link (5). The remote connection manager creates a method

stream (6) that is bound to the remote application object (callee) by the binding manager (7). After

180 4. XDK – The Crossware Development Kit

all, the caller gets a transparent method stream linked to the callee without noticing the communica-

tion path. In this context, method parameters that are serializable will be directly transmitted. How-

ever, object references are seamlessly replaced by the binding id of the referenced object and on the

remote site replaced with a method stream linked to the original object, as detailed below.

Method Stream Components. The basic components of remote method streaming are Java

Dynamic Proxies as well as Java Reflection Dispatcher [339], as shown in Figure 4.59.

Figure 4.59: Remote Method Stream

Dynamic Proxy. The Java dynamic proxy represents the head of the method stream and is able to

masquerade itself with the interfaces of the actual object; hence it takes up the role of the callee still

residing on the other side of the method stream. This way, the caller is not aware of the method

stream and passes all method calls to the proxy instead. Next, the proxy converts the method calls

into a streamable representation and passes them down the method stream to the next link, as shown

in Figure 4.60.

The actual method call is encapsulated in a serializable object of type CMethodRequest

which passed to the next link in the stream. After the method has been processed, a response object

of type CMethodResponse is passed back through the method stream. If the response is an in-

stance of CMethodException, an exception occurred during the method execution and the re-

lated exception is thrown to the caller, otherwise the regular return value is returned. The rest of

wrapping and unwrapping the method call and its return value is done by the Java Dynamic Proxy

mechanism behind the scenes and is explained in detail in [271].

4. XDK – The Crossware Development Kit 181

Figure 4.60: Method Stream Proxy

Intermediaries Chain. In addition to stream the method call from one object to the other, the me-

thod call can also be inspected and easily modified the way down the method stream using particu-

lar intermediaries [25]. They are linked into the method stream and can transparently add particular

features such as encryption or logging capabilities. To some extent, they can also be employed to

implement cross-cutting aspects like access control, as shown in Figure 4.61.

Figure 4.61: Access Control Intermediary

182 4. XDK – The Crossware Development Kit

In this context, a particular task of intermediaries is the creation of cross-platform method

streams when caller and callee do not reside on the same platform. In this case, the method stream is

actually divided in two parts that transparently communicate with each other using an appropriate

real communication link. To this end, the first part on the caller side ends with a particular connec-

tor intermediary depending on the real communication link to be used, as shown in Figure 4.62.

Figure 4.62: Excerpt of a Connector Intermediary

In this simplified example, a raw TCP socket is used to transmit the method call over the net-

work. The input and output stream are used to write the method request and to read the method re-

sponse that is returned to the caller at the end. In the case an exception has occurred, the exception

object is wrapped within a method exception object and returned instead. On the callee side, a re-

lated broker intermediary handles incoming communication requests and passes the method calls

down the second part of the method stream on the callee side, as shown in Figure 4.63.

Similar to the connector intermediary, the broker uses the input and output streams of the sock-

et to read and write the method request and response, respectively. Thus, the actual transmission of

the method call is separated from the real network communication. Once a network link has been

established, the same connection may be shared across distinct object bindings.

4. XDK – The Crossware Development Kit 183

 Figure 4.63: Excerpt of a Broker Intermediary

For full-duplex network links like raw TCP connections, an inbound method stream may be al-

so used to enable outbound method calls. As an example, a task processor located behind a firewall

may register to a public task dispatcher and open a method stream to it. If new task processing re-

quests arrive, the inbound method stream is used to transmit the method call from the task dispatch-

er to the task processor though it is actually located behind the firewall. This is performed in a

transparent way without application intervention and can be used to enable public computing with

Intranet computing systems as in the ODIX application federation [see Section 5.5].

Reflection Dispatcher. At the end of the method stream, the reflection dispatcher takes the

streamed method call and calls the related method on the actual object using Java reflection, as

shown in Figure 4.64.

When the dispatcher is created, the actual callee object is passed in the constructor and stored

as an attribute m_callee. This is later on used to call the passed method with the given parame-

ters. After that, a new CMethodResponse object is created and passed back. In case an exception

occurred, a CMethodException is returned.

184 4. XDK – The Crossware Development Kit

Figure 4.64: Method Stream Dispatcher

Object Binding. The use of method streams as well as of the binding registry is transparent to the

application except for binding and connecting the initial reference of the first object, respectively.

Besides associating an object with a unique binding id, an object can also be bound with a well-

known binding name to ease the lookup of this object, as shown for the binding name

loginservice in Figure 4.65.

4. XDK – The Crossware Development Kit 185

Figure 4.65: Binding and Registering a Method Stream with a Binding Name

In an administered and small-scale network environment, e.g. an Intranet, dedicated binding

and peer registry servers are installed and announced to the computing systems, e.g. as part of the

application configuration during startup. In a large-scale network environment, the Java Remote

Method Streaming implementation can switch to a P2P network organizing approach without mod-

ifying the application logic. Actually, a super-peer overlay network following the SG-1 approach

has been implemented [245] where super-peers run distributed peer and binding registry services in

a self-managing way [247].

Object Connection. On the caller side, the binding id associated with the callee is discovered using

the binding registry and the well-known name loginservice, as shown in Figure 4.66. After

that, the binding id can be used to get the head of the method stream that can be directly casted

down to the supposed interface.

Figure 4.66: Locating and Connecting a Method Stream Using a Binding Name

Consequently, on the one hand the caller gets always a real Java object reference to the head of

a method stream that masquerades itself to implement the interfaces of the callee. On the other

hand, the method stream is bound to the callee using a binding id and can be dynamically custo-

mized with particular intermediaries.

Method Routing. A particular extension of the XDK implementation is the provision of method

stream router services [see Section 5.5.3] in the ODIX application framework. In a fragmented

network environment, they can be used to bridge different network segments, e.g. to enable method

calls between object instances located in distinct firewalled Intranets. Similar to traditional network

routers, a router service is installed in every Intranet and connected with a public router service. If a

method stream is requested to a remote object that is not reachable via a direct network link, the

186 4. XDK – The Crossware Development Kit

binding registry contacts the local router service and requests a bridged method stream. A route

lookup is started and if the public router service has an established method stream to the router ser-

vice of the remote object behind the firewall, that method stream is reused to create an object bind-

ing and virtually transmit the method calls across both firewalls. Once the bridged method stream is

established, it may be also used for transmitting callbacks from the callee to the caller.

Performance Comparison. Since the realization of Java Remote Method Streams is based on Java

Dynamic Proxies and Java Reflection, it of course introduces some runtime overhead in contrast to

native Java method calls. However, the overhead depends heavily on the used reflection mechan-

isms and parameters passed to the method. For example, primitive Java parameter types like long or

double have to be encapsulated within objects before they can be used in Java Dynamic Proxies, but

object references can be passed directly. Consequently, the approach has been evaluated in two dif-

ferent method calling scenarios [271]. In the first one, a method login is called using object refer-

ences only, and in the second one a method sqrt is defined with long as parameter type and

double as return type. The evaluation has been performed by calling each of the methods 100.000

times, at first on a local object using a regular method call, then on a remote object using RMI and

finally using SOAP. Subsequently, a comparable evaluation has been performed using the Java

Remote Method Stream approach. The results are shown in Figure 4.67 with a logarithmically

scaled y-axis, grouped by local calls and remote method calls using RMI and SOAP.

Figure 4.67: Performance Evaluation of Java Remote Method Streams

4. XDK – The Crossware Development Kit 187

Each left bar in the group stands for the first method and the right bar symbolizes the second.

In addition, the row in front represents the measurements of the native approach and the row in the

back the measurements using method streaming. In comparison to the native approaches there is a

certain overhead introduced by method streaming, shown as the difference between the first and

second row in Figure 4.67. But compared to a local method call, the additional overhead for a re-

mote method call caused by method streaming is relatively small compared to the original overhead

as shown in the diagram between the bars in the first and second row of remote method calls and

compared further to the bars of the corresponding local method calls. Surprisingly, due to the binary

encapsulation of the method call, method streams using SOAP turn to be even slightly faster than

the native SOAP approach.

4.6.1.5 Autonomic Application

The Java Methods Stream approach can be used to implement Autonomic Object Communication in

a cross-platform operating environment with moving remote Java objects and alternating communi-

cation protocols, as shown in Figure 4.68.

Figure 4.68: Autonomic Object Communication

188 4. XDK – The Crossware Development Kit

In a distributed Java computing environment, a caller wants to issue method calls on remote

program objects offered by a callee. To this end, an object link has to be established between the

object reference on the caller side and the object itself on the callee side, e.g. by using an object-

oriented middleware approach like CORBA. A particular objective is to perform the method calls

on local and remote objects in the same way (location transparency). This is achieved by introduc-

ing stubs and skeletons that are created by the connection managers and hide the actual object inte-

raction via the communication links.

The autonomic operation is performed by controlling object connection requests and monitor-

ing existing communication links. From this point of view, the callers are the requesting elements,

the object references are the autonomic elements, every connection manager is an autonomic man-

ager and the communication links represent the managed elements. In particular, the caller and cal-

lee are not aware of handling different communication issues like remote object localization, para-

meter negotiation or network failures. For example, if a caller wants to connect a remote object, the

binding manager is used to determine the hosting peer [see Section 4.6.1.4] and the connection

manager negotiates the communication protocol and parameters, e.g. following a connection policy

to prefer secure network protocols, if possible (self-configuration). The connection manager usually

maps various object links on the same communication link to a peer. This reduces resource utiliza-

tion and may cause performance decreasing, e.g. since method calls via the same communication

link hinders each other. In this case, the communication manager can track the throughput and

create additional communication links or switch to another network protocol to improve the per-

formance (self-optimization). Another monitoring task of the communication manager is the detec-

tion of broken communication links, e.g. by receiving an exception if a network transmission failed

or by periodically pinging the remote peer. Since the object links are loosely coupled with the

communication links, the communication manager is able to replace a failing communication link

and seamlessly redirect existing object links without user or application intervention (self-healing).

Further runtime scenarios have to deal with the modification of communication parameters, the mi-

gration of connected remote objects and use of network proxies. The binding and connection man-

agers of related peers communicate with each other and exchange notifications to adjust the com-

munication links in advance before an object link gets invalid. For example, if a connected object

migrates to another peer, the origin binding manager sends a notification about the new peer to all

connected callers to avoid time-consuming object localization (self-protection).

4. XDK – The Crossware Development Kit 189

4.6.1.6 Related Work

There have been many efforts to extend the legacy support of accessing remote objects in Java. For

example, some approaches aim at enhancing the existing RMI implementation, e.g. by introducing

remote object caching to minimize the amount of transmitted data [92]. Others provide an efficient

implementation of the original RMI specification to speed up the network communication, e.g.

Manta [229]. Concerning the presented features of the Java Method Streaming approach, related

work may be separated into proposals that address the reflective object binding and proposals that

focus on adaptive object linking, as discussed below.

Reflective Object Binding. For accessing a remote object, a corresponding object binding in the

local process environment has to be established that acts like a genuine object reference. The popu-

lar object middleware CORBA offers various ways to configure and customize the object binding

aspects. Particular CORBA features are the reflective adjustment of the middleware operation, the

handling of dynamic object bindings and their behavioral customization. In Jonathan, this is used to

extend the Java notion of an object reference and to separate reference management and binding

management [91]. For example, the CORBA interceptor approach can be used to dynamically add

encrypting features when the connection is bridging insecure network sections [252]. In a self-

managing scenario, this may be performed by a binding monitor that observes and controls the

binding actions and also provides alternatives when an existing network connection fails. Similar to

CORBA as a general approach for heterogeneous environments, RMI provides a basis for self-

managing middleware in a pure Java environment and offers binding customization by using intros-

pection and remote reflection features [301]. It can utilize special options like Java Dynamic

Proxies and Java Reflection to simplify the development of distributed Java applications, as in JEDI

[8] and TRMI [157], and to transparently customize remote object bindings with smart proxies and

interceptors [312]. Advanced approaches like FlexiBind introduce pluggable and replaceable poli-

cies to support self-managing binding configuration [163]. In OpenORB, an extensible binding

framework is implemented that is not limited to remote method invocation but also supports differ-

ent binding types, e.g. event- and multicast-based interactions [290]. Another binding and intercep-

tor approach is supported by the Java Servlet API that introduces servlet filters to customize the

servlet method execution [171]. Similar to Java Dynamic Proxies, there is a related approach called

Transparent Proxy [234] in Microsoft .NET. It can be used to transparently bind remote objects by

dynamically creating appropriate stubs and interceptors, e.g. to perform security tasks. And though

it still lacks features to configure a network communication itself, it could be used as a basis for

building a .NET specific autonomic network middleware on top of it.

190 4. XDK – The Crossware Development Kit

Adaptive Object Linking. While binding a remote object creates an object reference on the

application level, linking a remote object establishes a communication path on the network level.

Object middleware solutions hide the actual network communication from the business logic by

using appropriate protocol stubs and skeletons. For example, CORBA and RMI use a standard net-

work protocol like Internet Inter-ORB Protocol (IIOP) and Java Remote Method Protocol (JRMP),

respectively. While these protocols support the cross-platform operation of CORBA and RMI ap-

plications on the network level, it is not possible to switch to another network protocol, e.g. using a

HTTP-based communication to penetrate legacy firewalls in the web. A remedy are middleware

solutions like RMIX that supports the multi-protocol linking of remote objects by using legacy RMI

binding, e.g. for tunneling RMI method calls via SOAP [210]. Another approach is FlexiNet that

introduces a reflective protocols stack and enables the customization of the network communication

on different levels by using various client and server side meta objects [166]. In conjunction with

the FlexiBind approach [163], it represents an advanced Java object binding and linking solution

similar to the Java Remote Method Streaming approach. However, they rely on the remote object

lookup scheme associated with the currently used network protocol. Thus, there is no strict separa-

tion of binding and linking operations, e.g. for looking up the remote object and negotiating the

network protocol with the hosting server in a self-managing way before a communication link is

established. In contrast to using a dedicated object lookup service in a well-known client-server use

case, there are self-managing approaches like Jini that use unicast and multicast discovery protocols

to obtain a reference to a lookup service in a changing scenario [61, 161], e.g. to support spontane-

ous networking with distributed services. Jini separates the service announcement and discovery

from the actual network communication. The service provider registers a service by submitting a

serializable service proxy to the lookup service and the client receives a copy of it when it requests

an object reference to the related remote service [189]. This way, the service proxy may use RMI or

some other communication protocol in a transparent way to the client application. While Jini sup-

ports the dynamic lookup of remote services, it is limited to Intranet scenarios and not suitable for

wide-area applications due to its dynamic service lookup approach. In this context, DACE provides

an abstraction of remote object interaction in a P2P environment by introducing a borrow/lend ap-

proach and a distributed publish/subscribe service [104]. The tight coupling of client and server is

broken up and replaced by an asynchronous communication scheme that supports the expiration of

remote object references, e.g. if a resource object moves to another peer. Related to large-scale P2P

systems, there are object location and data routing approaches, like JXTA [140], Pastry [306],

Chord [334] and Tapestry [394], that support the building of a self-managing overlay network of

peers and can be used to facilitate object linking in a large-scale P2P network.

4. XDK – The Crossware Development Kit 191

To summarize, there are many approaches that address the interconnection of distributed Java

objects. A common idea is the introduction of an object middleware solution to hide the actual net-

work communication from the application logic. This results in the virtual separation of object bind-

ing from object linking and can be utilized to customize each other in an independent manner, e.g.

by introducing interceptor and filter objects. Existing middleware approaches and solutions mainly

differ in the degree of runtime customization support. For example, CORBA is stuck with its default

communication protocol IIOP while RMIX adopts the RMI binding approach and can be run with

multiple communication protocols like XML-RPC and SOAP. In turn, CORBA offers the customiza-

tion of method calls by using interceptors while this is not possible with the original RMI imple-

mentation. Of course, there are proposals using Java reflection and Java dynamic proxies, e.g. JEDI

and TRMI, which add extra customization options to existing middleware solutions. However, they

require more or less specific development of applications to benefit from these extensions, e.g. by

adopting the Jini implementation guidelines. In this context, reflective and adaptive middleware

solutions like FlexiNet and FlexiBind enable the runtime customization of object and network

communication without changing the application logic similar to the presented Java Remote Method

Streaming (JRMS) approach.

Concerning autonomic operation, various related work can be also used as a foundation to im-

plement self-managing object interconnections to some extent. As an example, RMIX can be ex-

tended with pluggable transport service providers that may be used by an autonomic manager to

monitor and control the actual object communication, e.g. to dynamically switch from one network

protocol to another, if needed. A basic advancement of Java Remote Method Streaming above re-

lated work is the strict separation of object binding and object linking issues. For example, FlexiNet

encodes the protocol name and object location in the binding name that is used to bind a remote

object at the same time. Thus, there is no way to spontaneously switch to another communication

protocol without rebinding the remote object. In this context, JRMS introduces an invariant object

identifier and supports the self-managing routing of method calls via different network protocols

and network boundaries, e.g. in a large-scale cross-platform operating environment.

192 4. XDK – The Crossware Development Kit

4.6.2 Java Object Spaces

In a regular Java Virtual Machine (JVM), there is no particular support for managing object interac-

tion among concurrently hosted applications. In this section, Java object spaces are introduced to

enable application-specific object assignment and isolation. The realization based on the managed

separation of object references from object instances is described and its application for task passi-

vation and activation is illustrated.

4.6.2.1 Motivation

A Java application is run by launching a Java Virtual Machine (JVM) and loading the Java class

specified on the command-line. By calling the method main, the program execution starts and the

application usually begins to create program objects that are interlinked by using object references;

hence creating a common object space. As long as at least one object reference exists, the corres-

ponding object is not garbage-collected and remains valid, e.g. the owner of the object reference can

call methods and inspect attributes of the object. From this point of view, an object reference oper-

ates as an effective substitute for the actual object and there is no way to revoke the object access

once an object reference has been deployed. Moreover, object references can only refer to real Java

objects and not to other object references; a pointer to pointer approach like in C++ is missing for

Java. As a result, every object reference represents an independent instance and can be exclusively

updated by its reference holder.

Since the JVM has been designed to host a single application only, it lacks features for creating

and managing multiple object spaces, e.g. hosting various applications in a multi-tasking scenario.

As a result, there is no way to separate task-related objects within the same JVM or control access

on distinct application objects, e.g. private data objects of different user sessions. In well-known

multi-tasking application containers, like servlet engines or Enterprise Java Beans (EJB) application

servers, the interlinking of application objects is simply avoided. Each application gets a private

object space and the programming model requires not to exchange object references directly but to

share data by means of the application server. In addition, the regular JVM does not support the

replacement of objects without turning existing object references invalid, e.g. for relocating task

objects to another host due to a migration request or replacing selected objects after upgrading re-

lated code components to a newer release.

4. XDK – The Crossware Development Kit 193

4.6.2.2 Features

The overall goals of the Java Object Spaces approach are the custom grouping and shielding of

task-related objects, and the control of the object communication in a multi-tasking environment.

The major features are as follows.

Java Object Isolation. The introduction of Java object spaces allows developers to associate and

isolate tightly coupled objects, e.g. all objects created by a Java task, and to ease particular opera-

tions like the relocation of the entire object space. Following the Java persistence-by-reachability

approach, an object is defined to be a member of an object space if it can be reached by any other

object of the same object space via a native Java object reference.

Object Access Control. The objects within the same object group can refer and access each other

directly by using native object references. If objects belonging to different object spaces want to

communicate, e.g. by calling a method and passing arguments, the communication is checked

against given access rules, e.g. allowing access on task-related objects only from object spaces be-

longing to the same user session.

Custom Object Activation. The regular Java serialization approach handles the streaming of object

data only. It does not deal with further actions needed before the object is serialized and after the

object has been deserialized. The Java object space approach offers developers to define the passi-

vation and activation procedure of an object space in a customizable manner, e.g. for releasing and

acquiring platform resources referenced by related objects, respectively.

Invariant Object References. A native Java object reference is inseparably bound to the refe-

renced object and will prevent the object to be garbage collected; hence an object reference usually

never becomes invalid. The Java object space approach allows relocating object groups and their

objects though they are still referenced. This is achieved by using invariant object references that

are updated in a self-managing way.

Hot Component Upgrade. When an object groups is serialized and deserialized, the related class

space configuration is stored and restored with the object data, respectively. In addition, the class

space configuration can be modified before deserializing the objects, e.g. upgrading the referenced

code components to a new release. As long as the object data layout has not been changed com-

pared to the stored class space configuration, the upgrade is performed without particular actions.

194 4. XDK – The Crossware Development Kit

4.6.2.3 Approach

The basic idea of the approach is to virtually group application objects into Java Object Spaces and

to support the common control of inbound and outbound object communication of all encapsulated

objects. There are various types of object communication to be addressed in a cross-platform oper-

ating environment, as illustrated in Figure 4.69.

Figure 4.69: Java Object Spaces

There are application objects that use the same class loader, and related object communication

will not leave the object space (A). Another scenario is formed by object spaces that belong to dif-

ferent origins but still use the same class loader. Object communication may pass space boundaries,

e.g. when accessing objects of an application plugin (B). In the next scenario, object communication

involves objects associated with classes that have been loaded by different class loaders, e.g. calling

methods on a shared software component (C). This could cause problems with colliding or missing

classes depending on the class loader hierarchy and thus requires particular treatment. In case appli-

cation objects reside in different JVMs, object communication has to cross process boundaries and

use object-oriented middleware approaches, such as RMI or CORBA (D). Finally, application ob-

jects may be also hosted in JVMs started on different machines. Apart from particular communica-

tion issues, such as establishing a suitable network link to the remote host (E), the employed mid-

dleware approach has to dynamically resolve the location of an object if objects migrate to another

host while they are in use, e.g. by means of an object registry.

4. XDK – The Crossware Development Kit 195

4.6.2.4 Realization

The realization is based on using the Java Method Stream approach presented in Section 4.6.1 to

intercept and check the object communication from and to the contained objects of a Java object

space. In addition, an object space manager is introduced to control the operation of various object

spaces within the same JVM, as shown in Figure 4.70.

Figure 4.70: Object Communication Control

The objects within the same object space can refer to each other using legacy Java object refer-

ences and their communication is not affected. Objects from another object space are not directly

referenced but bound by a method stream that is dynamically created whenever an object reference

passes the boundary of an object space. While method streams can be easily used to connect remote

objects in a cross-platform operating environment as described in Section 4.6.1, there is a particular

problem when passing method calls among objects instantiated by different class loaders in the

same JVM. A method stream can be bound to only one class loader and it is not aware of object

spaces using different class loaders. A possible remedy is to serialize every object communication

even if the caller and the callee reside in the same object space or use compatible class loaders.

However, this would decrease the overall performance and therefore the object space manager cus-

tomizes the method stream by introducing intermediaries that replace object references only as

needed.

196 4. XDK – The Crossware Development Kit

Object Adaptation. When a method call leaves an object space and enters another one, it is passed

down a method stream and the corresponding request and response objects are transparently seria-

lized and deserialized. At this point, particular binding streams are added that take care of different

class loaders of the involved object spaces, as shown in Figure 4.71.

Figure 4.71: Binding Output Stream

The legacy Java class ObjectOutputStream is used to derive a custom binding output

stream that processes the serialized request objects passed from the caller to the callee. In doing so,

the overridden method replaceObject is called for each object in the stream. While a legacy

object output stream would throw an exception if a non-serializable object is found, a non-

serializable object is taken out of the stream, a dynamic skeleton is created and bound to the object

space of the method stream. Then, the globally unique binding id of the skeleton is put into the out-

put stream in place of the actual object. In effect, all leaving object references to non-serializable

objects are encapsulated with dynamic skeletons and the related binding ids are passed to the callee.

There, the binding ids are replaced with method streams to the remote objects left on the caller side.

The corresponding binding input stream is shown in Figure 4.72.

Similar to the binding output stream above, the overridden method resolveObject of the

binding input stream is called for each deserialized object. The corresponding Java class is eva-

luated to identify the binding ids that actually represent remote object references. Next, the binding

manager is used to connect the related object.

4. XDK – The Crossware Development Kit 197

Figure 4.72: Binding Input Stream

It should be stressed that the binding manager evaluates the binding id and the object space

where the new object reference is to be created. If the target object resides in the same object space,

the binding manager returns an object reference that directly refers to the target object, and no me-

thod stream is established. In case of different object spaces, a local method stream is used and ap-

propriately wrapped by a Java dynamic proxy. If the object is located in a different JVM or on

another host, a remote method stream is established, and the dynamic stub is linked to the method

stream. Subsequent method calls will be serialized using the presented binding input and output

streams while they are passed through the method streams. In addition, the method

resolveClass is overridden to modify the class loading required to appropriately deserialize

received objects. The class loader is taken from the object space that contains the callee object. As a

result, all serialized objects and dynamic stubs of an object space are created by the same class

loader. This is important for seamlessly casting object references, updating object implementations

and serializing application object spaces, as illustrated below.

Object Space Serialization. A challenging objective of Java object spaces is the serialization and

deserialization of an entire object space. The Java Runtime Environment (JRE) already offers an

easy-to-use serialization approach that is enabled by the tagging interface Serializable. Each

object can be decorated with this interface without imposing the implementation of any particular

method. It is actually a marker for the Java compiler to create specific methods that are called by

198 4. XDK – The Crossware Development Kit

the JVM when this object is serialized. Besides serializing primitive attributes, the built-in serializa-

tion approach tracks each object reference and automatically serializes the linked objects (persis-

tence-by-reachability). Though an object reference to a Java dynamic proxy can be generally used

in place of the regular object reference, the Java serialization approach still differs between a regu-

lar object and a Java dynamic proxy object. Instead of transparently passing the serialization calls to

the linked object, Java attempts to serialize the dynamic stub. While this approach eases the transpa-

rent serialization of regular Java objects, it may cause problems for particular objects, such as dy-

namic stubs used in the method stream approach. Because of that, Java allows to add custom me-

thods writeObject and readObject to the object implementation that are seamlessly called

instead of the compiler-generated serialization methods. This particular feature is exploited to cus-

tomize the serialization of the stub by introducing a custom method writeObject, as shown in

Figure 4.73.

Figure 4.73: Serializing a Dynamic Stub

The method writeObject writes the unique binding id and the names of the remote inter-

faces to the stream. They are used to recreate and relink the stub to the method stream. For this pur-

pose, a method readObject is introduced that is called whenever a dynamic stub is deserialized,

as shown in Figure 4.74.

A custom object input stream IObjectSpaceStream is used to read in the serialized ob-

jects. The basic reason is the association with the target object space wherein the objects and stubs

should be deserialized. On the one hand, all regular objects are reinstantiated using the class loader

of the object space and the standard Java deserialization approach. On the other hand, the custom

method readObject is invoked whenever a dynamic stub is about to be deserialized. There, the

binding id and the interfaces of the remote object are read from the stream.

4. XDK – The Crossware Development Kit 199

Figure 4.74: Deserializing a Dynamic Stub

Next, the stub is connected to the remote object by calling connect on the binding manager.

In addition to the binding id and the names of the remote interfaces, a reference to the target object

space is passed whose class loader should be used to create the Java dynamic proxy. This ensures

that the returned object references can be seamlessly casted and passed among objects within the

object space wherein this stub resides.

4.6.2.5 Autonomic Application

The Java Object Space approach can be used to implement Autonomic Object Linking in a multi-

tasking Java runtime environment with the ability to monitor and control the interaction between

Java objects of distinct object groups (application partitions), as shown in Figure 4.75.

Figure 4.75: Autonomic Object Linking

200 4. XDK – The Crossware Development Kit

To initialize the multi-tasking runtime environment, first an application framework is launched

and associated with an object space in which all Java objects are automatically grouped. Later on,

for every launched application a new child object space is created to host the related application

objects. Whenever an object reference passes an object space boundary, e.g. usually as a parameter

of a method call or as an attribute of a transmitted object, the involved object space managers re-

place the original object reference with a particular object link to intercept the object interaction.

The autonomic operation is performed by monitoring and controlling the inbound and outbound

object communication using the dynamically inserted object links. From this point of view, every

object passing an object reference to an outbound object is a requesting element, the object space

managers are the autonomic managers, the object links act as the managed elements and every ob-

ject space is an autonomic element from the perspectives of outbound objects. In particular, the in-

volved objects are not aware of the autonomic link control. For example, if an object link should be

established between objects of different application object spaces, e.g. for passing process data to

the next node in a workflow chain, the affected object space managers determine if they share a

common class loader. If not, the object link has to serialize and deserialize passed objects to de-

couple incompatible class references of each other's object space (self-configuration). Another op-

tion is to serialize the entire object space into a file and deserialize the stored objects in a separate

Java process along with the restoration of the execution state [see Section 4.7], e.g. to enable load-

balancing in a cluster environment (self-optimization). Similar to this option, the serialized objects

may be reloaded in a new object space of the same Java runtime environment while restoring exist-

ing object links, e.g. for seamlessly replacing the classes of active Java objects with a security up-

date (self-healing). Finally, the object space manager can monitor and control access on private ob-

ject spaces, e.g. application object spaces of different users in a multi-session scenario (self-

protection).

4.6.2.6 Related Work

The overall goal of Java Object Spaces is the separation of an object reference from the related ob-

ject instance to support custom object grouping. This leads to the custom handling of object com-

munication which has already been addressed by many Java object middleware approaches. In the

following review, related work is considered with respect to the objectives and challenges of Java

application object isolation in a cross-platform operating environment.

Custom Java Class Loader. There are many approaches towards application object isolation that

are based on the introduction of custom class loaders and the modification of how classes are se-

4. XDK – The Crossware Development Kit 201

lected, loaded and arranged in the JVM. Popular examples include servlet engines, such as Apache

Tomcat [171], and J2EE application servers, such as JBOSS [113] that benefit from the ability to

load different class variants at the same time. Custom class loaders may also be used to update al-

ready loaded classes and use new variants, e.g. for reloading and restarting a Java servlet. A com-

mon drawback of custom class loaders is their focus on class separation and lack of features to

support object isolation. It is not possible to update the implementation of already linked objects. A

custom class loader is not aware which object belongs to a certain application instance, and there is

no way to determine object groups of an application, e.g. scheduled for migration.

Java Component Framework. Another approach is the introduction of component frameworks to

handle object interactions and related application containers to control the component loading. Pop-

ular examples are EJB and OSGI. They support reloading and updating single components during

runtime. Similar to the custom class loader approach, however, it is not possible to group distinct

application objects and to handle the object communication between application partitions within

the application container. Various solutions towards transparent runtime evolution of Java applica-

tions address similar issues concerning application partitioning and maintaining established object

references. For example, the Jadabs application container uses dynamic proxy objects to control

inbound and outbound object communications [357]. It can update component groups without shut-

ting down referencing components that are located in other component groups of the same JVM.

For distributed systems, a component framework is proposed in [55] to support reconfiguration and

migration of component groups. In particular, it implements transparent switching of local and re-

mote object communication depending on the hosting scenario. A basic issue of component frame-

works is its focus on managing components and not object groups associated with an application

instance. Thus, it cannot be applied with legacy Java classes and related applications have to be

implemented following the component development specification.

Custom Java Virtual Machine. Approaches based on a custom Java Virtual Machine, such as the

Multi-Tasking Virtual Machine (MVM) [75], NOMADS [348] and Camel [6], may offer particular

features, e.g. a multi-tasking runtime environment, code sharing and a mobile application frame-

work. On the other hand, they require additional effort to install the JVM and suffer from the lack of

portability in a heterogeneous cross-platform operating environment. In a similar way, code rewrit-

ing approaches, such as J-Orchestra [356] and J-Seal2 [36], are able to incorporate extra features

like automatic application partioning, advanced resource control and protection domains. Due to

byte code modification during compile time, they inherit the problem that this cannot be performed

202 4. XDK – The Crossware Development Kit

on-demand during runtime, e.g. when passing object references among uncertain and dynamically

loaded components. Furthermore, they rely on a different programming model that hinders the dy-

namic hosting of unmodified legacy Java applications. In addition, compile-time byte code modifi-

cations cannot be applied to signed Java classes without breaking the seal. A particular variant is

proposed in [35] that is based on the runtime transformation of byte code to decorate loaded Java

classes with application partitioning features.

Java Object Middleware. The next approach considered is legacy Remote Method Invocation

(RMI). It is the proposed solution of Sun for binding distributed Java objects and calling methods

remotely. There are various approaches that rely on RMI and extend it with custom features [20].

For example, there is basic support to relink RMI object references on the fly by using smart

proxies and interceptors [312], although the custom separation of an RMI object reference from its

corresponding remote object is formally not supported. In addition, the grouping of tightly coupled

objects and the custom interception of object communication from and to this object group is not

supported. Another drawback of legacy RMI is the explicit compilation of stubs/skeletons for each

object implementation. This is not feasible for on-demand operation. As a remedy, TRMI [157] uses

Java dynamic proxies to wrap the RMI communication and to enable dynamic remote object linking

without using the rmic compiler. The same is valid for RMI in Sun J2SE 5. However, the RMI-

based approaches do not address multi-application hosting. There is no separate handling of

different object instances and custom tracking of object references within the same JVM.

Object Request Broker. Another well-known object middleware approach is the Common Object

Request Broker Architecture (CORBA). In contrast to RMI, it readily supports the dynamic linking

of yet unknown remote objects and the custom interception of object communication via intercep-

tors [263]. A Java implementation is deployed as part of the Sun J2SE and does not have to be in-

stalled manually. From this point of view, CORBA represents a suitable approach to realize Java

application object isolation on top of it. On the other hand, the application of CORBA requires

some modification of legacy Java application code, such as using the narrowing approach to cast a

remote object reference. This may complicate the use in a cross-platform operating environment

with legacy application code migrating from one host to another. The update of object

implementations leads to a similar problem that CORBA stubs and skeletons have to be exchanged

whenever the target object implementation is modified.

In summary, there are various approaches that address and support application object isolation

to some extent. Custom Java class loader approaches, e.g. as used in Apache Tomcat, focus on class

4. XDK – The Crossware Development Kit 203

separation and do not support object isolations. Component frameworks, such as EJB and OSGI,

may be used to implement runtime evolution of Java applications but they cannot be used to group

custom applications. Custom Java VM approaches, such as the MVM and J-Seal2, provide particu-

lar features but often rely on a proprietary JVM or a different programming model. They cannot be

used easily in a cross-platform operating environment with unknown applications. Standard object

middleware approaches, such as CORBA, can be used to dynamically link remote object instances

and are able to separate the tight coupling of object reference and object instance. Common object

middleware, however, typically fail for tracking the object references spread in distinct application

partitions within the same JVM.

204 4. XDK – The Crossware Development Kit

4.7 Ad Hoc Execution Migration

In a distributed computing environment, programs are typically run in separated execution envi-

ronments, e.g. web services in different servlet containers of an application server and user applica-

tions on distinct desktop computers. Though they are advanced approaches like Message Passing

Interface (MPI) [128] to synchronize the parallel execution of tasks on separate nodes, each node is

still running a prepared application portion that has been deployed and launched in advance. In the

on-demand computing approach, computing resources, services and applications are made available

to the user as needed without prior deployment and configuration. Extending this idea to running

tasks in a distributed environment, an emerging feature is ad-hoc execution migration and the seam-

less movement of task execution from one computing node to another. This approach raises new

challenges with respect to code mobility as discussed in [126]. In particular, the serialization, trans-

fer and deserialization of execution states and the provision of code components are essential facets

of a computing environment supporting execution migration and mobile agents [45]. In Section

4.7.1, an approach to an advanced Java Thread Controller is presented that supports virtual control-

ling of Java program execution by introducing a signal-based thread communication system, e.g. for

coordinated suspending and resuming of multiple Java threads. In Section 4.7.2, the conceptual ap-

proach and implementation of Java Execution Units are described that enables the actual task mi-

gration by encapsulating the execution state of a Java program along with the required code and

data objects [89, 278]. It enables the serialization, the transfer and the deserialization of a running

Java program in a self-managing way.

4.7.1 Java Thread Controller

The regular Java Virtual Machine (JVM) has only limited built-in support for managing Java

threads. In this section, an advanced Java threading approach on top of regular Java threads is pre-

sented that enables fine-grained monitoring and controlling of Java threads. The realization of the

approach using a legacy JVM and particular check points is described, and the application for pas-

sivation and activation of running tasks is illustrated.

4.7.1.1 Motivation

To process a task in Java, a JVM has to be launched with the main class of the related Java applica-

tion passed on the command-line. In this scenario, the JVM is run in a separate user process and

executes only one Java application at a time; turning the original JRE into a single-tasking envi-

ronment. Over time, various multi-tasking approaches have emerged that concurrently execute mul-

4. XDK – The Crossware Development Kit 205

tiple Java applications within a legacy JVM by starting each in a separate thread and thread group

as well [22]. For this purpose, an application framework like a servlet engine is started first and the

required code packages of the applications are loaded one-by-one using Java dynamic class loading.

Then, the actual program entry point of each application is determined and passed to a new thread

that starts with the application execution similar to the original single-tasking approach. Further

threads are automatically associated in the thread group of the application which eases the overall

task handling, e.g. determining whether all threads of the task have ended.

The concurrent execution of Java applications using multi-threading features implies advanced

requirements on the thread management of distinct tasks, e.g. controlling their execution and pass-

ing runtime events like an upcoming JVM shutdown. Though there are legacy thread control me-

thods like suspend, resume and stop, their use is not recommended due to object locking problems

[217]. Their synchronous and pre-emptive character let the addressed threads no chance to respond

upon the request in a structured and decoupled way, e.g. closing network channels and releasing

allocated resources in the background before suspending the task. There is also no common pro-

gramming interface to communicate with a thread in an asynchronous way, e.g. by posting events.

Furthermore, the controlling application framework is not able to monitor the thread execution state

of tasks apart from being stopped or still running. Thus, advanced multi-thread operations and syn-

chronization are not originally supported, e.g. for implementing task migration and hibernation.

4.7.1.2 Features

The Java Thread Controller approach pursues to improve the monitoring and controlling of regular

Java threads by introducing particular thread wrapper classes and check points for customizable

interception of the thread execution. The major features are as follows.

Java Thread Controller. To control the execution of Java applications in multi-tasking JVM, a

process manager is introduced that is able to track and monitor the threads of all tasks. This is valid

for registered threads but also for non-registered threads, e.g. daemon threads started by an applica-

tion using regular thread classes. If a task should be stopped or a login session ends, the process

manager determines the related threads and terminates all of them automatically.

Custom Thread State Model. In addition to the legacy Java thread states new, running, blocked,

and dead, a developer can modify the thread state model and add custom states like migrating and

passivated. This is achieved by introducing a thread wrapper that implements the state model and is

206 4. XDK – The Crossware Development Kit

dynamically created by the process manager for every registered thread the first time it is con-

trolled, e.g. when suspending all threads of a task and waiting for the related state transition.

Asynchronous Thread Signaling. A particular feature is the ability to control threads in an asyn-

chronous manner. The thread is not directly affected by the caller but it is signalled to change its

operation. The signal is represented by a signal object that is posted into a message queue and

checked by the thread when passing certain check points, e.g. while calling yield or waiting to reach

a given thread state.

Synchronous Action Handling. In contrast to asynchronous thread control, the synchronous han-

dling of custom runtime actions allows coordinating multiple threads in a pre-defined way. For ex-

ample, if the JVM is shutdown, a developer can specify to terminate all application threads at first,

then to stop background services and finally to flush data buffers. For this purpose, particular han-

dlers have to be implemented and passed to an action queue that is then processed one-by-one.

Legacy Code Support. The implementation is based on standard Java features and does not force

developers to use custom thread objects. In particular, the tracking and monitoring also works for

existing threading code, e.g. provided in third-party libraries. However, for proper handling of the

thread signals, the developer has to implement a signal handler method or check for incoming sig-

nals regularly.

4.7.1.3 Approach

The basic idea of the approach is to separate the thread control from the thread execution by intro-

ducing a signal-based communication, as shown in Figure 4.76.

A Java application does no longer directly interact with a Java thread, e.g. by calling suspend

or resume on the thread object, but uses a Java Thread Controller to submit signals into a related

signal queue. The addressed thread regularly evaluates the enqueued signals by calling a signal

handler. In contrast to regular thread control methods that may interrupt the thread execution any-

time, the application developer can decide where to call the signal handler and process waiting sig-

nals. As a result, the thread is not accidentally interrupted, blocked or terminated in a critical code

section, e.g. without having the chance to clean up resources. Moreover, by using the signalling

approach some of the inherent problems of Java thread handling are avoided like lost synchroniza-

tion monitors when calling suspend or stop on the thread [340].

4. XDK – The Crossware Development Kit 207

Figure 4.76: Java Thread Controller

Besides common thread control, custom signals allow introducing new thread commands that

may be processed by particular thread implementations only, e.g. preparing a thread to migrate its

execution to another host. In this context, signals can also be used to exchange specific program

data between related threads, e.g. implementing an asynchronous messaging approach in a multi-

tasking Java runtime environment. Finally, signals may be decorated with priorities to indicate ur-

gent requests that have to be processed as soon as possible, e.g. signalling an upcoming shutdown

of the JVM.

4.7.1.4 Realization

The realization of the approach is based on the introduction of a thread wrapper with a signal queue

and the extension of the actual thread implementation with a signal handler, as shown in Figure

4.77.

To control a thread, a global thread manager creates a thread wrapper that gets a reference to

the thread object and passes a reference of the thread wrapper back to the thread. A call of a thread

control method (1) enqueues a corresponding signal into the signal queue of the thread wrapper (2).

The next time the thread calls the method yield on the thread wrapper (3), the standard signal hand-

208 4. XDK – The Crossware Development Kit

ler of the Java Thread Controller is called (4) and evaluates the signals (5) related to common thread

controlling operations like sleep, wait, suspend and resume. Afterwards, a configurable custom sig-

nal handler is called (6, 7), if available, and can be used to process both standard and application-

specific signals, e.g. closing a file handle before suspending the thread execution or notifying all

application threads about a migration request.

Figure 4.77: Java Thread Wrapping

Managed Thread Control. A particular idea of the approach is to let the thread determine when to

handle a controlling request and to potentially interrupt the regular thread execution, as shown in

the example for managed thread control in Figure 4.78.

If a thread should be started, the thread controller first creates a thread wrapper object that in

turn creates the actual Java thread object. The thread is initialized and configured with the runnable

object that contains the business logic that should be executed in a new thread. In this context, the

thread wrapper evaluates the implementing feature interfaces of the runnable object by using Java

Reflection and subsequently calls configure, contextualize and compose, similar to a

component object [see Section 4.3.2]. Then, the original method run is called and the thread con-

trol is passed to the runnable object. Later on, if the thread manager wants to control the thread, it

calls a method signal on the thread wrapper object that adds a related control signal to the signal

queue of the thread wrapper, and may return immediately or wait for the signal to be processed.

Each time the runnable object calls the thread wrapper method yield at an appropriate check

point in the execution that may be interrupted, the thread wrapper uses handleSignal to let the

associated signal handler evaluate waiting signals. Besides processing custom signals, the presented

approach is also used to manage regular thread control operations, as shown in Figure 4.78 for sus-

4. XDK – The Crossware Development Kit 209

pending and resuming a thread. If the standard signal handler encounters the signal suspend, it re-

mains in an endless loop and usually waits for the signal resume before the thread execution is con-

tinued. However, the thread may still receive different signals, e.g. shutdown, and the application

developer is free to implement custom signal handlers that let thread react on external events while

actually being blocked, e.g. end the thread though still suspended.

Figure 4.78: Example for Managed Thread Control

Thread Feature Implementation. As described above, a thread implementation can implement

specific feature interfaces for being controlled by a Java Thread Controller, as shown in Figure

4.79.

The legacy Java interface Runnable indicates that CExample contains a method run and

may be executed in a separate thread. The method contextualizable is part of the interface

IContextualizable and called by the thread controller to pass an object reference to the

thread wrapper during the initialization phase. If the thread is executed, the method run writes in-

210 4. XDK – The Crossware Development Kit

teger values into the FileOuputStream m_fos. For every iteration, the thread wrapper method

yield is called that let the thread wrapper check the signal queue and call the standard signal

handler. Thus, if an application sends a signal suspend to the thread, the execution would be inter-

rupted during the call of yield, actually a check point, and blocked until a signal resume is re-

ceived.

Figure 4.79: Thread Feature Implementation

Custom Signal Handling. For application-specific signal handling, the thread can additionally im-

plement the interface ISignalHandler, as shown in Figure 4.80.

The method handleSignal of the interface ISignalHandler is implemented by

CExample to receive and evaluate thread signals. When the custom signal started is received, the

signal handler can initialize thread resources before the method run is actually called, e.g. by open-

ing a FileOutputStream. Similar to this, the signal handler may release resources when receiv-

ing the signal stopped. In addition, the custom signal handler can be used to prepare the thread be-

fore suspending and after resuming the execution, e.g. releasing and requesting thread resources. By

implementing application-specific signal classes, developers can use the signal handling to trigger

appropriately implemented threads with custom data, e.g. notifying all threads of a user session

about a forthcoming session termination.

4. XDK – The Crossware Development Kit 211

 Figure 4.80: Custom Signal Handling

Extensible Thread State Model. While legacy thread implementations, e.g. AWT threads, are not

aware of the Java Thread Controller and can only be monitored, particular thread implementations

offer the processing of control commands sent by the thread controller. Based on custom signal

handlers, check points are regularly called by the thread and received commands are processed

asynchronously, e.g. for preparing a thread to passivate. In this context, the presented approach al-

lows to extend the legacy thread state model, as shown in Figure 4.81.

After a thread object has been created, the thread is situated in the thread state new. By calling

the method start, the thread execution starts and the thread state changes to running. From there,

a thread can change to the thread state blocked, e.g. by calling suspend, and back to running, by

calling resume. Finally, a thread stops its execution when reaching the thread state dead, e.g. by

leaving the method run. The presented approach extends this thread state model by introducing so

called check points that are regularly called by the thread and check for extra state change requests,

e.g. a passivate request for suspending the thread execution and saving the thread variables. In con-

trast to regular thread control methods, e.g. suspend and stop, which may intercept the thread execu-

tion anywhere in the executed code, check points are checked asynchronously by the thread itself,

e.g. during a lengthy processed loop. The check point approach also allows developers to insert fur-

ther handlers for preparing the thread to change the thread state, e.g. releasing acquired resources

and monitors before terminating the execution.

212 4. XDK – The Crossware Development Kit

Figure 4.81: Extensible Thread State Model

4.7.1.5 Autonomic Application

The Java Thread Controller approach can be used to implement Autonomic Task Execution in a

multi-tasking runtime scenario with not centrally managed threads of distinct applications, as shown

in Figure 4.82.

Figure 4.82: Autonomic Task Execution

4. XDK – The Crossware Development Kit 213

A task environment groups all threads of a task and represents a program element to control the

task execution by using a common task manager. The thread wrapper provides extra management

functions above the legacy thread implementation, e.g. managing a signal queue for asynchronous

thread interaction. If a task is created, the initial thread is linked to a new thread group and subse-

quently created task threads are automatically assigned to this thread group and dynamically asso-

ciated with a thread wrapper.

The autonomic operation of the Java task environment is performed by monitoring and control-

ling the contained Java threads. The task manager tracks the creation of new threads and requests

task actions by sending signals to the related thread wrappers. From this point of view, the task

manager represents the requesting element, the thread wrapper acts as the autonomic manager, the

legacy thread is the managed element and the task environment is the autonomic element. Similar to

creating a regular component object [see Section 4.3.2], a thread component may be configured,

contextualized and initialized during creation. For example, the task manager can pass an object

reference to the task context and provide access to the current task environment (self-configuration).

During runtime, the task threads may be signalled by other tasks and have to process various sig-

nals. The thread wrapper can check the thread state and customize the signals, e.g. to improve res-

ponsiveness of the application by transforming one long execution suspension into many shorter

ones (self-optimization). A particular issue is the monitoring of the task to perform a certain action.

For example, when a request is received to terminate a task all related threads have to be terminated

before the task actually ends. The thread wrapper monitors the execution and may automatically kill

certain threads, if they are not responding (self-healing). Since the thread wrapper shields the actual

thread object from external access, the approach can also be used to control access to sensitive

threads in a multi-tasking environment, e.g. filtering and ignoring too many signals received from

unauthorized or malicious tasks (self-protection).

4.7.1.6 Related Work

The legacy JVM has been originally designed to support single application hosting and lacks basic

multi-processing capabilities like Java task management [22]. In a multi-tasking scenario, every

Java application is run in a separate JVM process. Since there is no built-in support for multi-

process execution synchronization, a popular remedy is thread-based multi-tasking and to run mul-

tiple applications in separate Java threads. In this context, concurrent programming has not only to

deal with application-specific thread execution but it has to consider cross-application thread con-

214 4. XDK – The Crossware Development Kit

trol as well. In the following overview, various thread management solutions are regarded with par-

ticular respect to enable multi-tasking.

Legacy Java Virtual Machine. In a legacy JVM, an application may launch various threads to

parallelize the program execution [258]. Over time, the runtime library was extended with sophisti-

cated synchronization features to ease the implementation of concurrent workflows, e.g. by intro-

ducing the Java package java.util.concurrent. Particular application frameworks exploit

these features to support multi-application execution and introduce custom programming models

and control flows [203]. Popular examples are servlet containers like Jakarta Tomcat [16] and J2EE

application servers like JBoss [179]. Since their application models have been designed to run ap-

plications at best without mutual interference, there is no support for thread management and execu-

tion synchronization across multiple applications. There are multi-tasking approaches that propose

the extension of the legacy JVM with advanced multi-threading features. For example, Fair

Threads [107] introduce a cooperative thread scheduling implementation which ensures the fair

execution of multiple Java threads and allows event-based thread synchronization. A basic issue of

thread libraries is the introduction of a proprietary thread programming model that does not support

legacy thread implementations. Thus, existing application code has to be changed before it can ben-

efit from additional thread scheduling and synchronization features.

Custom Java Virtual Machine. Multi-thread programming, in particular multi-thread synchroniza-

tion and signalling, is a non-trivial development task [203]. In addition, the cooperative thread

scheduling model of Java cannot be changed with Java libraries. Various approaches have been

proposed to seamlessly extend the JVM with advanced thread management features while keeping

the extra development effort moderate. For example, MobileThread [43] modifies the JVM and

allows applications to inspect and control the internal thread states during runtime. From Sun, a

Multi-Tasking Virtual Machine (MVM) has been proposed to explicitly support multi-tasking in a

shared JRE without imposing developers to use a new thread programming model [75]. The MVM

offers seamless execution of multiple legacy Java applications and can handle non-cooperative

thread implementations. In this context, multi-tasking support is bundled with strong application

isolation. Similar to third-party Java thread libraries, there is no common thread management and

execution synchronization across distinct application instances. In general, custom JVM implemen-

tations may introduce advanced thread monitoring and scheduling schemes but they cause particular

deployment efforts in a wide-area computing environment.

4. XDK – The Crossware Development Kit 215

To summarize, the presented Java Thread Controller can be used with legacy JVMs and is

deployed as part of the XDK. In contrast to related thread libraries addressing multi-tasking support,

e.g. FairThreads, its focus is not the strong isolation of application threads but the cross-application

synchronization in a shared JRE. The introduced thread management allows monitoring the execu-

tion state of concurrently running tasks and their threads. And though it may not access internal

thread states like the custom JVM approaches, e.g. MVM, it offers advanced thread control and in-

ter-thread communication features for cooperative Java applications that follow a particular thread

programming model. As a result, the Java Thread Controller implementation may be used to moni-

tor legacy threads in multi-tasking scenario and additionally it offers advanced thread synchroniza-

tion features for custom thread implementations.

216 4. XDK – The Crossware Development Kit

4.7.2 Java Execution Units

Due to the original design of the Java Virtual Machine to support the exclusive hosting of one ap-

plication, the actual control of the application execution is missing in a multi-tasking setting. In this

section, Java Execution Unit (JEU) is introduced to manage Java programs in terms of tracking the

loaded code components, the instantiated data objects and the program execution. The realization of

the approach is described and the application for ad-hoc execution migration is illustrated.

4.7.2.1 Motivation

There is an ongoing trend in Java programming to host various tasks in the same Java Virtual Ma-

chine and to benefit from the advantages of a multi-tasking environment, e.g. reduced overall mem-

ory footprint and shorter application startup time. For server-side applications, a well-known ap-

proach is to launch a Java application server like JBOSS and to run multiple tasks by loading pro-

gram components into different host containers, e.g. Java servlets or EJB components. Similar ap-

proaches exist for running client-side applications where OSGI-based implementations have recent-

ly gained much attraction like the Eclipse Equinox runtime environment. Common to these ap-

proaches is the definition of particular deployment units like Web Archives (WAR) and Enterprise

Application Archive (EAR) that usually contain a single application or service. In contrast, OSGI-

based applications are typically fragmented into distinct bundle files that are dynamically resolved,

loaded and composed one-by-one when the application is launched.

While an application framework greatly supports the dynamic composition and launching of

applications, later on its task is typically limited on monitoring and controlling the application con-

tainer. For example, a servlet engine like Jakarta Tomcat may shutdown a servlet container with the

servlet therein and may relaunch an updated servlet release. However, there is no support to sus-

pend a running servlet and proceed with the servlet execution from where it has been interrupted,

e.g. resuming a lengthy task after a temporary server shutdown. A related issue is the need of track-

ing inbound and outbound object connections of the hosted applications to seamlessly reestablish

resource bindings and remote object connections after resuming the execution, e.g. after being

moved from one host container to another due to a migration request in a load-balancing cluster. In

effect, there is a demand to handle suspension, migration and resumption of application execution in

terms of relocating required code assemblies and instantiated data objects, restoring the current ex-

ecution state and rebinding needed system resources; also known as code mobility.

4. XDK – The Crossware Development Kit 217

4.7.2.2 Features

The overall goal of the Java Execution Unit approach is to manage the program elements of Java

applications running in a multi-tasking JVM and to support code mobility in distributed computing

scenarios. The major features are as follows.

Code Assembly Fetching. A Java Execution Unit (JEU) tracks the requested Java classes by using

the Java Class Collection and Java Class Spaces approach. Whenever a task should be moved to an-

other computing system or suspended to disk, the class collection configurations are serialized and

sent along with the task data. To resume the task execution, the configurations are read and the re-

quired code assemblies are fetched by the target computing system from local code repositories.

Task Data Relocation. A JEU manages task data that is comprised of application data objects and

thread elements, e.g. thread object, instruction pointer and stack variables. To move a JEU to anoth-

er computing system, the threads can be suspended at the next check point to serialize the thread

elements and the data objects. On the target computing system, the data objects are deserialized and

the threads restarted from the last check points the execution was suspended.

Dynamic Object Reconnection. If a data object of the JEU has been bound to external objects by

an inbound or outbound connection, the connections are dynamically restored when the JEU is

moved. In case of remote object connections, e.g. via network links, the connection is reestablished

without having the need to inform the remote partner in advance. In particular, inbound connections

are automatically rerouted to the new object location.

Adaptive Resource Binding. Besides serializable data objects, a JEU binds system resources that

cannot be transferred to another computing system or written to a file for later restoration, e.g. data-

base connections or handles on GUI elements. This is resolved by implementing an adaptive re-

source binding approach that initializes suitable resources on execution resumption and restores

resource bindings of the JEU before the task is actually restarted.

Regular Java Implementation. For the easy application of the approach in a cross-platform oper-

ating environment, the JEU implementation does not require a customized JRE but runs with any

regular JVM, e.g. potentially installed on nowadays computing systems. Moreover, developers may

add existing code components without modification or recompilation as long as all related threads

can be suspended at well-known check points, e.g. when returning from a third-party library call.

218 4. XDK – The Crossware Development Kit

4.7.2.3 Approach

The approach is based on Java Execution Units (JEU) that enable individual or all fragments of a

running task to be moved from one computing system to another, as shown in Figure 4.83.

Figure 4.83: Serializable Execution Unit

For the definition of a JEU, various concerns of running a Java application in a multi-tasking

runtime environment have to be regarded. First, an appropriately configured application environ-

ment has to be created in which the related program elements can be hosted [see Section 4.5.1],

such as code assemblies and application objects. While running, the application may request various

platform resources, such as a handle to the local graphical user interface [see Section 4.4.1], and

establish connections to application objects on the same or a remote computing system [see Section

4.6]. Various execution threads can be forked which comprise altogether the overall task execution

state [see Section 4.7.1]. From this point of view, a Java Execution Unit (JEU) is defined as a task

fragment whose related code assemblies, platform resources, object connections and thread execu-

tion states can be independently tracked and managed from the rest of the task. A particular man-

agement feature is to suspend the execution at developer-defined check points in the program code

and to serialize the related task elements in a way that the execution can be seamlessly resumed

later. While being serialized, a JEU can be stored on the same computing system (hibernation) or

may be transmitted to a remote computing system (migration). All information needed to create an

appropriate application environment, rebind platform resources, reconnect remote objects and re-

store the execution state is contained in the serialized execution unit. Besides serializing a single

task fragment only, entire tasks and user sessions may be moved in a nomadic computing scenario.

4. XDK – The Crossware Development Kit 219

4.7.2.4 Realization

The realization of the JEU approach benefits from various XDK solutions concerning code deploy-

ment, resource bindings, object bindings and task management. The components of the approach

are shown in Figure 4.84.

Figure 4.84: Java Execution Unit (JEU)

The code handling of a JEU (1) is based on Java Class Collections and Java Class Spaces as

described in Section 4.2.2 and Section 4.3.1, respectively. In particular, the introduced ability to

configure Java application composition without knowing the deployment scenario in advance al-

lows serializing a JEU without including related code assemblies. In the context of execution migra-

tion, this is also known as code fetching which dynamically resolves required code packages on the

target computing system in contrast to code shipping and transmitting the code packages. The ob-

ject bindings to different object spaces on the same or a remote computing system are managed by

using the Java Remote Method Streaming and Java Object Spaces approach (2) as described in Sec-

tion 4.6.1 and Section 4.6.2. A particular feature is the individual tracking of virtual object binding

and physical object communication that allows the seamless separation and insertion of JEU objects

220 4. XDK – The Crossware Development Kit

from and into an application environment, respectively. If a JEU is serialized and moved, all infor-

mation about existing object bindings are added and used to reestablish the object communication

on the target computing system. A related concern is the management of JEU bindings to platform

resources (3), e.g. an application window in a graphical desktop system. Since a migrated JEU will

usually not reopen a window on the originating host, the encapsulated application has to request a

suitable application window on the currently hosting platform, e.g. by using the Adaptive Resource

Broker approach as described in Section 4.4.1. Concerning the tracking of threads and their execu-

tion state (4), a JEU has to support the Java Thread Controller approach presented in Section 4.7.1.

In detail, a signal handler has to be implemented that can process hibernation/migration signals to

interrupt the execution of a JEU at given check points and serialize all application object and thread

variables, as described below.

Serialization Workflow. A basic feature of the JEU approach is the transformation into a serializa-

ble form that can be easily transferred to another computing environment and transformed back.

The serialization workflow of the underlying realization is shown in Figure 4.85.

If the execution manager receives a suspend request, the serialization is conducted as follows.

By using the Java Thread Controller, a passivate signal is sent to all threads of the JEU that causes

them to stop at defined check points and to save their execution state. After all threads have entered

the passivate state, the execution unit starts to lock all object skeletons and outbound connections to

its objects as well as the object stubs and inbound links by using the binding manager. The connec-

tions are closed and the execution unit returns control to the execution manager. At this point, the

execution unit is no longer executed and all object connections have been locked. Now, all applica-

tion objects of the JEU, including thread objects and object bindings, are serialized into a byte

stream and can be easily managed, e.g. stored in a hibernate storage for later resumption or trans-

mitted to a remote computing system. To resume the execution, the serialized JEU is passed to the

execution manager that reads in and initializes all application objects. In particular, the thread ob-

jects use the saved attributes to restore their execution state for restart. By using the binding manag-

er of the Java Remote Method Streaming approach, the object stubs and skeletons are transparently

reconnected with their original endpoints and unlocked. Finally, the Java Thread Controller restarts

all threads by sending appropriate activate signals and the execution unit returns back to work. The

details of injecting a JEU into an application environment and initializing the object data is as fol-

lows.

4. XDK – The Crossware Development Kit 221

Figure 4.85: Serialization Workflow of an Execution Unit

Unit Contextualization. A particular issue for launching an application is the dynamic provision of

required hooks for requesting bindings to environment and platform resources. The XDK imple-

mentation uses an Inversion-Of-Control (IOC) approach and checks the application for implement-

ing various features interfaces [see Section 4.4.1] to trigger the contextualization, as shown in Fig-

ure 4.86.

The application CExample implements the feature interfaces IContextualizable,

IInitializable and IPassivatable to allow the application environment to call related

control methods. Concerning the resumption of a serialized JEU, the example shows a method

contextualize that is called several times to pass various context hooks like a scene context, a

thread context and a task context. In general, a context hook represents a specific program interface

to a related resource object of the hosting application environment, e.g. for interacting with the ap-

plication task object or requesting platform resources, as described below.

222 4. XDK – The Crossware Development Kit

Figure 4.86: Contextualization of Execution Unit

Execution Initialization. After the JEU has been contextualized, the execution manager checks for

the next feature interface IInitializable and the existence of the related method init, as

implemented in the example in Figure 4.87.

Figure 4.87: Initialization of Execution Unit

The method init can be used to perform specific initialization steps before the actual use of

the object and its application. The pendant of init is the method exit that is called before the

application is terminated. In the context of initializing a JEU, an object can implement init to

request the graphical desktop manager for creating a client frame window.

Custom Object Passivation and Activation. In addition to the object initialization of a regular

application start, JEU objects may have to save and restore specific runtime data for the seamless

4. XDK – The Crossware Development Kit 223

restart of the execution. The feature interface IPassivatable decorates objects that provide

related methods to be called before passivation and activation, as shown in Figure 4.88.

Figure 4.88: Custom Object Passivation and Activation

In the example, the method passivateObject is used to save the attributes and content of

the application window. Later, they are serialized as any other object data and restored during dese-

rialization. To activate the object before restart, the method activateObject is called, and the

attributes and content of the application window are restored.

Object Action Stream. While well-known application objects like the one containing the starting

point can be easily accessed by the application environment, other application objects are not direct-

ly reachable, e.g. referred via various links of distinct object instances. In fact, the execution man-

ager can not directly call custom object passivation and activation methods of all application objects

as required by the presented approach. This problem is solved in the realization by customizing the

original Java serialization implementation and introducing so called object action streams, as shown

in Figure 4.89.

Figure 4.89: Object Action Stream

224 4. XDK – The Crossware Development Kit

Normally, the original Java serialization implementation is used to persist all serializable ob-

jects that can be reached by traversing regular object references (persistence-by-reachability). The

Java compiler generates the methods readObject and writeObject method to read and write

the object attributes, and to traverse through all reachable objects. This particular traversal imple-

mentation is exploited by the object activation stream to call specific methods on the objects com-

ing across the serialization. In Figure 4.89, the CPassivationStream is an

ObjectOutputStream that is used to "persist" the JEU objects. However, instead of writing the

object attributes the method replaceObject is overridden to call the method

passivateObject on implementing objects. As a result, an object output stream pretends to

serialize all linked application objects but in fact, it performs a specific action by calling related

methods on the application objects.

Performance Evaluation. Performance measurements exhibit that the inherent migration overhead

for passivating and activating regular application objects is small compared to the time for transmit-

ting the serialized execution units across the network, as shown in Figure 4.90.

Figure 4.90: Fragmentation of Migration Overhead

In an exemplary test bed to determine the fragmentation of the migration overhead, a running

application is moved from one computing system to another one. Both systems are located in the

same network, run a legacy JRE and use a common crosslet repository. At the beginning of the mi-

1 2 3 4 5 6 7 8 9 10
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Activation

Transmission

Passivation

Number of Objects (x 10000)

F
ra

g
m

e
n

ta
ti
o

n
 o

f
M

ig
ra

ti
o

n
 O

v
e

rh
e

a
d

4. XDK – The Crossware Development Kit 225

gration process, the application and its threads are passivated, all related application objects are se-

rialized and transmitted to the target node. Then, required code assemblies are fetched from the

crosslet repository and the application objects are deserialized. After that, the migrated thread ob-

jects are restored and the thread execution is resumed. The relative overhead appears to be almost

constant over a wide range of object counts whereby the activation needs more time than the passi-

vation. This is due to the recontextualization and the reinitialization of the migrated objects after the

deserialization into a new runtime environment. In practice, the times heavily depend on the appli-

cation scenario, e.g. initially fetching related code components, dealing with system resources or

reconnecting remote object bindings may delay the migration for an indefinite time.

4.7.2.5 Autonomic Application

The Java Execution Unit approach can be used to implement Autonomic Load Balancing on inter-

connected application execution engines running in a cross-platform peer federation, as shown in

Figure 4.91.

Figure 4.91: Autonomic Load Balancing

Based on the application execution engine approach introduced in Section 4.5.1, a customer

can issue tasks to a peer federation by sending a task description to the execution controller that

226 4. XDK – The Crossware Development Kit

monitors and controls various peers. The execution controller determines the current load distribu-

tion and selects an appropriate application execution engine to process the task, e.g. a peer for

which crosslets to run the related execution units can be found and installed. In this context, an ap-

plication execution engine can host several execution units and in case a peer gets overloaded, the

execution controller can migrate a single execution unit to another peer, or temporarily suspend the

related task processing and hibernate the task to disk for a while. The autonomic operation is per-

formed by controlling the task dispatching and monitoring the execution state of every peer. From

this point of view, the customer acts as the requesting element, the peer federation represents the

autonomic element, the execution controller is the autonomic manager and the controlled applica-

tion execution engines are the managed elements. The peer federation is comprised of separately

managed peers that may join and leave the federation at any time. A particular problem is the selec-

tion of an appropriate peer on which the crosslets needed to process the task can be deployed. The

execution controller queries the execution managers and determines the best match for deploying a

task according to the platform capabilities, task requirements and deployment policy, e.g. using a

high-performant machine for business customers and filling up the remaining time with regular cus-

tomer tasks (self-configuration). Since the composition of the peer federation and the arrival of new

tasks are ever-changing, a particular issue is the dynamic balancing and migration of tasks across

available peers, e.g. according to a given plan to equalize the CPU load or minimize the costs for

processing a task (self-optimization). Next, it may happen that a peer is no longer available and the

task processing is unpredictably aborted. The execution controller will notice this and try to redep-

loy the task to another peer. In this context, the execution controller can instruct a peer to periodi-

cally hibernate the execution unit in a central task repository for being able to relaunch the task on

another peer (self-healing). Finally, the execution controller monitors the overall condition of the

peer federation to protect distinct peers to get overloaded. Similarly, new tasks may be queued be-

fore deployed for processing (self-protection).

4.7.2.6 Related Work

Over time, various notions of code mobility have been introduced in the literature. A good starting

point on the terminology and issues of code mobility can be found in [126]. Another paper focuses

on process migration and details the complexity of transferring a process from one computing sys-

tem to another [241]. The support of mobile objects in Java is illustrated in [246]. As a result, a

possible definition of code mobility is the capability to dynamically change the bindings between

code fragments and the location where they are executed [52]. In the following section, the con-

4. XDK – The Crossware Development Kit 227

cerns of code mobility are discussed with respect to execution migration, weak and strong mobility

as described in [126]. A common view is the separation of concerns into data objects, code frag-

ments and execution state, as illustrated in Figure 4.92.

Figure 4.92: Concerns of Code Mobility

A basic concern is the transfer of data objects and the handling of references from and to mo-

bile objects. Object links are separated due to migration and must be reestablished later. Another

issue is the suitable selection and binding of local system resources when an execution unit moves,

such as the window manager of a GUI framework or a particular service of the operating system.

Another concern is the provision of needed code fragments when executions units are moved. The

selection and retrieval of suitable code packages as well as their composition may differ among

various hosts. A particular issue is the configuration of the target computing environment to run the

execution unit, such as the path to locally installed programs. The migration of a running execution

unit has to intercept the processing in the current computing environment and continue with its op-

eration after the migration. To this end, the execution state is recorded on the source node, relocated

and restored on the target node. A particular problem is the reading and transfer of transient data,

such as local variables within a method call. From these concerns, various categories of code mobil-

ity can be deduced. They arise from different mixtures of features and mainly differ in what is ac-

tually moved from one computing environment to another. The first category is resource mobility

that refers to the seamless serialization of data objects along with the code fragments needed to

reinstantiate the object. On the other hand, bindings to resources that cannot be moved are encapsu-

lated by a suitable connection approach. Related stub classes are deployed on the target node and

object references are created that actually point to a stub that in turn connects back to a skeleton on

the original host. Similar to that, remaining objects reconnect to migrated data objects the other way

228 4. XDK – The Crossware Development Kit

round. A second category is weak mobility where actually only code is transferred; possibly with

some initialization data. The execution initially starts on the target node and there is no connection

to other execution units or computing environments. No data is serialized and there are no object

references that have to be maintained. Basically, the code is either shipped with the initialization

data or autonomously fetched by the target node, e.g. from a remote code repository or a local code

archive. The third category is strong mobility which addresses the seamless movement of an execu-

tion unit and represents the most complex form of mobility. Execution migration requires every-

thing needed to run an execution unit to be transferred from one computing environment to another.

This includes data objects, object references, code fragments and the current execution state of each

thread and process. A particular variant is execution cloning that lets the original execution unit

continue and consequently results in two separately executed units. If the migration of a code com-

ponent is externally triggered, this is called reactive migration. If the code component itself decides

when to migrate, this is called proactive migration. As a result, the level of complexity increases

from resource mobility via weak mobility to strong mobility. With respect to ad hoc execution mi-

gration, the support of strong mobility requires an approach that is able to asynchronously signal a

migration request and execution units that are able to handle this request at any time. There are sev-

eral proposals that deal with strong mobility and ad hoc Java execution migration. The approaches

mainly differ in the way how they address the regarded concerns and they can be separated into the

following categories:

Modified Java Virtual Machines. Modified and custom Java Virtual Machines (JVM) allow in-

cluding advanced features that are not available in a standard JVM. As an example, the permanent

monitoring of the execution state and the ability to inspect the calling stack greatly support strong

mobility down to the interception and migration of a running thread nearly at each line of code. Var-

ious approaches benefit from a custom JVM, such as MVM [75], MobileThread [43], JavaThread

[47], Camel [6], DGET [101], NOMADS [349, 256] and JESSICA2 [396, 397]. Detailed reviews can

be found in [54]. According to these reviews, a major disadvantage is the lack of portability in

many ways which affects the application of the approaches in large-scale heterogeneous environ-

ments. Above all, the use of a custom JVM requires a separate installation process that presumes

that administrators are willing to trust a non-certified Java sandbox approach and also to keep it up

to date with new Java releases and features, e.g. Java language extensions and JIT compilers.

Another drawback is their confinement to handle the execution state. They do not consider sepa-

rated object links, different platform configurations and application requirements in a heterogeneous

environment.

4. XDK – The Crossware Development Kit 229

Java Code Instrumentation. Another category uses custom instrumentation tools that rely on a

standard JVM but generate modified byte code to enable strong mobility. Extra code is inserted that

allows capturing the execution state of the mobile components and tracking object references that

must be restored after migration. Some approaches, such as WASP [127] and X-KLAIM [33], are

based on source code modifications during design time and operate like a Java preprocessor to

translate strong mobility into weak mobility. A different option is to transform existing Java byte

code during runtime, such as in Correlate [358], JavaGoX [311], JMobile [299] and JADE [228].

Next, the Java platform debugger may be used to inspect internal data structures, such as proposed

in the Collaboration and Coordination Infrastructure for Personal Agents (CIA) [173]. Common to

all these approaches is the generation of standard compliant Java applications that may be run by a

legacy JVM. However, they presume the application of the same tool on all participating nodes and

may be not mixed with another instrumentation approach, e.g. aspect-oriented programming. They

also lack specific support for code deployment and binding of migrated data objects in a cross-

platform operating scenario.

Mobile Code Frameworks. The next category is related to mobile code frameworks that can be

used with every standard compliant Java development and runtime environment. The frameworks

typically introduce object middleware layers and specific programming models to support object

relocation and code mobility. Since they are not designed to inspect the calling stack or monitor the

actual thread execution, they at best enable weak mobility. For example, both MobileRMI [20] and

Mobile Object Workbench [50] are based on a distributed objects approach. They use a middleware

layer that allows the automatic updating of remote references to mobile objects and the location-

transparent movement from host to host. Mikado [34] provides a mobile code framework to imple-

ment mobile agent systems by supporting the transparent shipping of code components during the

migration. In Kalong [44], an advanced code shipping approach is introduced to reduce migration

overhead by dynamically determining which Java classes are actually required on the target node

[194]. In this context, particular security issues arise from executing dynamically received program

code, e.g. sent by a malicious host [56, 392]. Various approaches emerged to address mobile code

security, e.g. by using a sandbox, signing shipped code components or checking code with Proof-

Carrying Code (PCC) techniques like the Java Byte Code Verifier [308]. Concerning the adaptive

migration of mobile objects, Ajents introduces a distributed Java software infrastructure for parallel

computing that is able to create objects on remote hosts. [177]. A related mobile code system is

POEMA that enables the policy-based dynamic reconfiguration of mobile code applications [244]

and separates the mobility concerns from application functionality [243]. It supports different mo-

230 4. XDK – The Crossware Development Kit

bility pattern, such as remote evaluation, code-on-demand and mobile agent, and allows reconfigur-

ing the mobile code application by using Java reflection and the policy language Ponder [79] In

FarGo, the application code is divided into mobile modules, called complets, and a scripting lan-

guage is used to specify the dynamic layout strategy at loading time [168]. Although these mobile

code frameworks may be used in a heterogeneous environment, they are not feasible for large-scale

and separately managed installations. They either rely on unsecure code shipping or use a static

deployment approach that does not support different class repositories, such as [34]. Furthermore,

focusing on a single communication approach, such as legacy RMI [20] or CORBA [319], prevents

the ad hoc use of different connection solutions suitable for the capabilities of the currently in-

volved computing environments.

In summary, there are many approaches addressing code mobility and supporting ad-hoc

execution migration to some extent. Depending on the capturing level, resource mobility, weak mo-

bility and strong mobility can be distinguished which roughly correspond to the migration of appli-

cation data, application code and application state. Actually, full support of transparent execution

migration is offered by strong mobility approaches only. In this context, the most difficult task is to

capture and restore the application state, e.g. by tracing the thread execution and method calling

stack. This can be only achieved by either modifying the hosting JVM, injecting extra monitoring

code into the application or instrumenting the Java platform debugger. While modified JVM ap-

proaches, e.g. JESSICA2, can be applied to legacy Java code, they cannot be used easily in a large-

scale cross-platform operating environment due to the custom JVM installation requirements. Ap-

proaches that modify existing application code during compile time, e.g. X-KLAIM, cannot be ap-

plied in dynamic application composition scenarios. Against this background, mobile code frame-

works like Mikado promise to enable transparent execution migration for applications following a

particular programming model. From this point of view, the Java Execution Unit approach can be

seen as a mobile code framework that supports ad-hoc execution migration by introducing a pro-

prietary application programming model. In contrast to related work, it does not rely on static code

deployment in advance or the shipment of migrating code. Instead, it utilizes the crosslet deploy-

ment model to offer adaptive code fetching. Thus, the execution units reduce the amount of migrat-

ing data and can select appropriate code components on the target computing system, e.g. by re-

binding a compatible third-party library in favor to download the original library release. In addi-

tion, characteristic security issues of mobile code systems can be particularly addressed, e.g. by

configuring trusted crosslet repositories from where missing code components can be exclusively

fetched.

4. XDK – The Crossware Development Kit 231

4.8 Summary

In this chapter, the Crossware Development Kit (XDK) has been presented which follows the idea of

building an Autonomic Cross-Platform Operating Environment (ACOE) as presented in Chapter 3.

It is completely written in pure Java and does not use any custom development tools or a modified

JVM. It provides various software components to address the objectives of the ACOE listed in Sec-

tion 3.1.3 and delivers a Java library that can be linked and deployed with an application installa-

tion. In the following discussion, the distinct features of the XDK implementation are briefly sum-

marized and their practical feasibility is highlighted.

Distributed Code Deployment. Concerning distributed code deployment, the XDK supports as-

sembly packaging and deployment by introducing Self-Descriptive Crosslets. The use is not limited

to Java applications and can be used to deploy and resolve assemblies in a self-managing way. In

particular the setup of remote crosslet repositories facilitates the distributed code deployment.

Though the creation of crosslet archives (XAR) is quite simple, it does not follow a common pack-

aging standard, e.g. to describe the assembly content and dependencies. Moreover, crosslets can be

effectively used with an XDK based implementation only. Related to Java code deployment, the

XDK also introduces Java Class Collections that virtually groups Java classes and allows adaptive

class resolution by evaluating class collection queries. By using a standard class loader approach,

regular Java applications can be transparently composed and launched without code modification.

This is not valid, however, for application containers already managed by a custom class loader like

in a Java servlet environment.

Dynamic Software Composition. Another feature of the XDK is the support of dynamic software

composition by introducing the Java Class Spaces approach. It allows organizing the class loaders

in a shared application environment and can be transparently used with legacy Java applications. In

combination with class collections, class spaces may be organized to share common classes and to

enable the selective reloading of application classes. For the same reason, class spaces may be only

used as long as no custom class loader is installed and therefore the approach is not usable to organ-

ize existing application containers. To separate the virtual application composition from the physi-

cal component deployment, the XDK introduces Java Loadable Modules that represents initializa-

ble and queryable application composition units. On the one hand, the approach hides the actual

component instantiation from the application by managing the module dependencies and life cycle.

On the other hand, an application developer has to use the XDK module manager and extend the

application code; hence the approach cannot be used out-of-the-box.

232 4. XDK – The Crossware Development Kit

Shared Application Hosting. A further advancement concerning resource resolution in a multi-

application hosting environment has been introduced with the Java Resource Binding approach. An

adaptive resource broker mediates the mapping of application roles on component resources and

decouples the tasks of application and component developers. The crucial elements are the descrip-

tion files that are evaluated by the resource broker during runtime. In practice, this approach re-

quires much effort to create the role and resource descriptions. Moreover, a particular application

model is used that prevents the use of legacy libraries. A related development is the Java Task

Space approach to organize task related resources in a multi-session environment. Stages are intro-

duced to manage system and application resources while scenes deal with task objects. The han-

dling of task spaces is quite complex and the effort to manage the resource interactions is only

worth for collaborating sessions in a shared application environment. For the common shielding of

application instances it is not needed.

Pervasive Environment Customization. A major XDK approach is the introduction of an

Application Execution Engine that represents a self-contained application launcher and task

processing unit. Based on a task description, a matching application is selected by a task manager

and the related application requirements are passed to a runtime manager that prepares a suitable

application environment. Though the approach also works for native applications, it relies on the

proper description and adjustment of task, application and runtime configuration. In practice, this

effort makes it difficult to extend the application execution engine to new tasks and applications.

Concerning pervasive environment customization, the XDK introduces the Roaming User Profile

approach to synchronize user preferences across distributed computing systems, e.g. in a nomadic

use case. After user login, a local profile manager connects to a remote profile repository and de-

duces the effective user preferences for a new computing system, e.g. by evaluating existing user

preferences. Regular Java applications can easily interact with the profiles by using the standard

Java preferences API. The disadvantage, however, is the simple synchronization approach that ex-

changes the entire profile and slows down the login procedure.

Virtual Object Interconnection. The XDK supports transparent object interconnection across

network boundaries by introducing Java Method Streams and separating the real network commu-

nication from the virtual object communication. In contrast to legacy network middleware ap-

proaches, the method stream implementation offers developers a protocol-independent API to bind

remote objects and call methods in a heterogeneous and changing networking scenario. This is faci-

litated by using Java dynamic proxies and Java reflection that shield the application from network

connection issues. Though the method stream approach eases the object communication for pure

4. XDK – The Crossware Development Kit 233

Java environments, it is not usable in a cross-language scenario. For multi-tasking environments,

the Java Object Space approach extends the method streams implementation to isolate Java object

groups hosted within the same JVM by separating the object references and the related object in-

stances. It enables the control of inbound and outbound communication of encapsulated objects that

can be used to serialize distinct applications. Since the approach relies on the particular use of cus-

tom class loaders and Java reflection, it cannot be used with legacy application containers, e.g. in a

Java servlet environment.

Ad Hoc Execution Migration. While the Java object space approach addresses the application da-

ta, the Java Thread Control implementation of the XDK provides features for asynchronous thread

signalling and synchronous action handling. This is achieved by particular thread wrappers and

check points in the application code. In fact, every time an application passes a check point, it

checks for waiting thread signals using a callback in the thread wrapper. Since the approach intro-

duces a custom thread wrapper class that has to be explicitly used by the application developer, it

cannot be used for legacy Java code. Moreover, the implementation assumes the cooperation of the

addressed applications and requires particular design and implementation effort. A particular feature

of the XDK is the introduction of Java Execution Units to encapsulate the program elements of run-

ning Java applications and enable their ad-hoc migration in a distributed computing environment,

e.g. due to load-balancing requests. The core idea is to control the resource binding, object connec-

tions and task execution of an application by using the object space, method stream and task control

features presented above. An application developer extends the migrating object with corresponding

callbacks that are called during passivation and activation of an execution unit. While the migration

implementation has proven its feasibility, it is only usable with specifically extended applications.

In this context, the XDK only supports weak code mobility and cannot imperatively interrupt a run-

ning thread until it passes the next check point.

Overall, the XDK implementation represents a self-managing integration middleware that ad-

dresses deployment, composition, hosting, customization, interconnection and migration of Internet

applications in an autonomic cross-platform operating environment. In this context, the focus of the

XDK is the provision of a self-managing software infrastructure. The concrete implementation of

advanced autonomic policies, e.g. by introducing utility or goal-based policies, has been not yet

addressed. The same is valid for common security concerns in a distributed environment, e.g. deni-

al-of-service attacks and malicious code deployment. Finally, a major disadvantage is the proprie-

tary Java realization that makes it difficult to use and integrate the XDK in legacy application sys-

tems, e.g. an OSGI or servlet container.

5. ODIX- The On-Demand Internet Computing System 235

5. ODIX - The On-Demand Internet Computing System

5.1 Introduction

In this chapter, the realization of the On-Demand Internet Computing System (ODIX) for supporting

On-Demand Internet Computing (ODIC) described in Chapter 2 is presented. First, the goals, ap-

proach and system architecture are outlined. Then, the ODIX components, namely On-Demand

Application Engine, Internet Application Workbench, Internet Application Factory and Internet

Application Federation, are described. Various parts of this work have been already published in

[274, 275, 279, 281, 283, 284] and carried on in [66, 235, 318, 382]. The section ends with a sum-

mary about the suitability of ODIX to perform On-Demand Internet Computing as presented in Sec-

tion 2.4.

5.1.1 Goals

The overall goal of ODIX is to enable on-demand task processing following the shift from resource-

centric to task-centric computing, as outlined in Section 2.4.1. In particular, required applications

for processing a task should be retrieved, installed and run without particular user intervention, as

shown in Figure 5.1.

Figure 5.1: On-Demand Computing System

A task description does not contain any references to the application needed to process the task

but entails task-related configuration statements only, such as the task type and where to find the

task data. The actual selection of the application is dynamically performed by ODIX with respect to

the task description and the current runtime scenario, e.g. capabilities of the employed computing

236 5. ODIX- The On-Demand Internet Computing System

platform, already deployed applications and present user preferences. Based on the vision of On-

Demand Internet Computing (ODIC) illustrated in Section 2.4.3, the support of various task

processing schemes are pursued by ODIX, as follows.

Local Task Processing On-Demand. In local computing scenarios, a user employs a local compu-

ting device to process a task, e.g. editing a document or retrieving his or her emails on a desktop

computing system. ODIX should support the local task processing on-demand by providing a

pervasive computing environment to run related applications and which customizes itself to his or

her needs. A specific challenge is the alternating use of potentially heterogeneous and separately

managed computing devices, e.g. at home and at the office.

Remote Task Processing On-Demand. In remote computing scenarios, a user or an application

engages a remote computing device to deploy and run a task, e.g. uploading a media asset for ana-

lyzing and indexing the meta data. ODIX should support the remote task processing on-demand by

providing a shared computing environment to utilize provided computing resources with concur-

rently running applications. A particular challenge is the handling of multi-session task processing,

e.g. shielding private data while sharing common resources.

Distributed Task Processing On-Demand. In distributed computing scenarios, various computing

devices are bundled to process complex and lengthy tasks, e.g. for analyzing large collections of

measuring data. ODIX should support the distributed task processing on-demand by providing a

federated computing environment to enable the seamless interaction and collaboration of networked

computing devices. Particular challenges are the changing composition of the federation and the

lack of a central authority to rule the computing nodes.

5.1.2 Approach

The ODIX approach is based on the self-managing operation of a computing system to prepare re-

quired application environments for launching Internet applications on-demand. In this context, the

realization greatly benefits from the features of an Autonomic Cross-Platform Operating

Environment (ACOE) as implemented by the Crossware Development Kit (XDK), presented in

Chapter 3 and Chapter 4, respectively. The resulting system architecture of ODIX is shown in Fig-

ure 5.2.

On top of the XDK, the ODIX implementation addresses the on-demand task processing goals

presented in Section 5.1.1 and is comprised of several components, as outlined below.

5. ODIX- The On-Demand Internet Computing System 237

Figure 5.2: On-Demand Internet Computing System (ODIX)

On-Demand Application Engine. A core component of ODIX is the On-Demand Application

Engine that has to be initially installed on the task-processing computing system. It implements the

basic functions for launching distinct Internet applications on-demand, for managing concurrently

processed tasks and for integrating the overall task processing into the currently engaged computing

system, e.g. by selecting and using locally installed native executables for processing a task.

Internet Application Workbench. For local task processing on-demand, the Internet Application

Workbench can be dynamically retrieved and installed on the currently employed desktop compu-

ting system. While it mimics the operation of a native GUI desktop like MS Windows, it likewise

supports the seamless integration of the task processing into the installed desktop operating system,

e.g. by using legacy application windows of the graphical desktop interface.

Internet Application Factory. For remote task processing on-demand, the Internet Application

Factory is typically installed on a computing system in advance and is meant as an application serv-

er for running dynamically deployed tasks. It provides a network service interface to control the

task processing using a remote computing device while supporting multi-tasking operation at the

same time, e.g. sharing the computing device with several sessions.

Internet Application Federation. For distributed task processing on-demand, the Internet

Application Federation enables the self-organization of networked peers and the distribution of

238 5. ODIX- The On-Demand Internet Computing System

tasks on peer nodes running the Internet Application Factory. In this context, it implements dynamic

load balancing across distinct peer nodes and introduces an overlay network communication system

for bridging network boundaries, e.g. allowing peers behind firewalls to share their resources.

5.1.3 Operation

The ODIX implementation is built on top of the XDK and can be basically run on any Java-capable

computing device. Before the actual use, however, a suitable ODIX environment has to be deployed

and setup, as illustrated in the basic deployment scheme shown in Figure 5.3.

Figure 5.3: Basic Deployment Scheme

Following the user role definitions in Section 2.3.3, there is a system administrator, a runtime

installer, an assembly deployer and a user. First, the system administrator installs and configures an

appropriate operating system to fit the built-in hardware components of the computing device (1).

This step is usually performed during the basic device setup and is not actually part of the ODIX

deployment process. Next, the runtime installer installs a suitable Java Runtime Environment (JRE)

and deploys the ODIX core components, e.g. extracting a self-contained ODIX program archive and

linking scripts for launching ODIX (2). Besides common ODIX applications for administering

ODIX, there are no particular applications deployed so far. This is performed by the assembly

deployer who copies all potentially required crosslets on the computing device (3). Actually, the

5. ODIX- The On-Demand Internet Computing System 239

crosslets are not immediately installed but simply stored into a directory that acts as a simple file

system based crosslet repository. Later on, when ODIX is launched and the user attempts to start a

not yet installed ODIX application (4), ODIX can determine the required crosslets and retrieve them

from the local crosslet repository for assembling the ODIX application (5). Depending on the usage

scenario, there are various specialized deployment schemes conceivable, as presented below.

Stationary Deployment. An administrator prepares ODIX to run on dedicated stationary compu-

ting devices, e.g. for users in a personal computing scenario, as shown in Figure 5.4.

Figure 5.4: Stationary Deployment of ODIX

The setup procedure is similar to a regular program installation and is typically performed by

manually retrieving the self-contained ODIX program archive, e.g. from the Internet or DVD, and

extracting it into a local directory of the computing device. As a result, every user has a separate

installation of ODIX and there is no need of an Internet connection unless the user wants to retrieve

new crosslets from an Internet crosslet repository. Usually, the same person will complete the tasks

of the system administrator, runtime installer and assembly deployer. This deployment scheme also

represents an out-of-the-box application of ODIX since no particular network infrastructure or serv-

er installations are needed. On the other side, administering a large number of standalone computing

devices gets tedious and in an enterprise environment, a system administrator will likely set up a

main crosslet repository on a department server and configure the ODIX installations to retrieve

updates from there.

240 5. ODIX- The On-Demand Internet Computing System

Portable Deployment. Another deployment scheme is the portable installation which focuses on

setting up an ODIX installation on a portable file system that can be alternately attached to different

computing devices, e.g. for supporting nomadic employees in an enterprise computing scenario, as

shown in Figure 5.5.

Figure 5.5: Portable Deployment of ODIX

The idea is to decouple the ODIX installation from the running computing device and to allow

the launching of ODIX directly from the portable file system, e.g. a USB stick. A user may then

move from one computing device to another and launch the same ODIX environment everywhere

similarly. In contrast to the stationary deployment, the user settings and installed crosslets are stored

on the portable file system that is moved as well. This is similar to the SVM approach in IoMega

v.Clone that captures and transfers the virtualized application environment of the user by using a

mobile disk [174]. As a result, the user takes the complete ODIX environment with him or her. This

especially facilitates the usage in untrusted computing environments like in an Internet Cafe or pub-

lic library. In this context, a particular variant of this deployment scheme is to put several JRE in-

stallations on the stick to meet potentially used computing device requirements, e.g. supporting a

Linux or a MS Windows environment likewise. This would release system administrators to main-

tain distinct JRE installations on every computing device and similarly allows users to move to un-

known computing systems without assuming the proper installation of a JRE.

5. ODIX- The On-Demand Internet Computing System 241

Roaming Deployment. The stationary and portable installation schemes are suitable for a small

number of computing devices and users, e.g. which are supported by administrators in an enterprise

environment. The roaming use scheme allows virtually an unlimited number of users to launch

ODIX on any Internet computing devices with an appropriate JRE installed, e.g. for running ODIX

in a public computing scenario, as shown in Figure 5.6.

Figure 5.6: Roaming Deployment of ODIX

First, an assembly deployer puts the ODIX code on a web server and configures a correspond-

ing Java Network Launch Protocol (JNLP) configuration file. Next, additional crosslets that may be

requested by the users are deployed on the web server as well. In contrast to the stationary and port-

able deployment scheme, there is no particular runtime installer since this task is performed by the

JNLP implementation, usually Sun Java Web Start. As a result, if the user wants to launch ODIX,

he or she directs the local JRE installation to download the JNLP configuration file from the web

server that activates the local Java Web Start installation that starts ODIX. This is usually done by

using a regular web browser and visiting a web page on the web server. After ODIX is started, it

takes over control and may retrieve the user profile from a local profile directory or from a remote

profile server to customize the application environment of the user. In the latter case, ODIX sup-

ports the nomadic restoration of the personal settings by using roaming user profiles [see Section

4.5.2]. As a result, a user that has logged into ODIX on one computing device will encounter the

same environment on the next computing device he or she logs in.

242 5. ODIX- The On-Demand Internet Computing System

5.2 On-Demand Application Engine

In this section, the On-Demand Application Engine is presented and the use case, features and im-

plementation are described.

5.2.1 Use Case

The overall aim is to support on-demand task processing by dynamically selecting, deploying and

running appropriate applications on heterogeneous computing resources yet unknown when the

computing system is set up, as illustrated in Figure 5.7.

Figure 5.7: On-Demand Task Processing

The On-Demand Application Engine is installed in advance on an Internet computing system

and represents the basic operating environment to run applications on-demand. It receives task de-

scriptions and launches appropriate applications to perform the requested processing in a self-

managing way. The engine entails a simple command-line shell interface that can be used with non-

graphical terminals to administer the system installation, to issue task processing requests and to

monitor the application execution. Moreover, the engine represents the common runtime foundation

for the more specialized implementations of ODIX like the Internet Application Workbench [see

Section 5.3] and the Internet Application Factory [see Section 5.4]. In effect, the On-Demand

Application Engine transforms the employed computing devices into uniform task-processing en-

gines. Custom task processing is enabled by performing the required application deployment in the

background and dealing with heterogeneous computing resources without user intervention.

5. ODIX- The On-Demand Internet Computing System 243

5.2.2 Features

From the developer's point of view, the On-Demand Application Engine inherits the low-level fea-

tures of the XDK concerning deployment, composition, hosting, customization, interconnection and

migration of Internet applications. From the user's point of view, the high-level features of the ap-

plication engine are as follows.

On-Demand Operating Environment. By installing the application engine, a Java-based operat-

ing environment is established on top of heterogeneous computing systems. A user can manage and

launch applications in the same way on different nodes on-demand without being concerned about

the application deployment and configuration. In this context, a command-line shell offers to con-

trol the engine and execute custom application scripts, e.g. while installing a software package.

Seamless System Integration. The application engine does not replace the regular operating sys-

tem but extends it with new functions by using various system hooks. First of all, the specific

processing of documents is extended by ODIX using the Java activation framework that lets users

seamlessly open, edit and print documents with dynamically selected ODIX applications on-

demand. In turn, the application engine can launch native applications for processing a given task.

Multi-Tenant and Multi-Tasking Support. In contrast to regular Java runtime environments, the

application engine introduces an advanced task management system and allows multiple users to

process different tasks at the same time. Moreover, various user sessions may be started and run

multiple users applications in the foreground while particular applications can be run as application

services in the background, e.g. offering access on local computing resources to remote parties.

5.2.3 Implementation

The implementation of the On-Demand Application Engine is based on the XDK framework and

adds various components to support the on-demand launching and multi-tasking execution of dif-

ferent application types, as illustrated in Figure 5.8.

The On-Demand Application Engine allows running task executables in distinct runtime envi-

ronments and with different configurations. For example, if a task can be processed by a native Li-

nux binary and a Java application, the application engine may prefer the native binary on compati-

ble computing platforms and elsewise switch to the Java variant. The active operation mode is de-

termined by evaluating the local system settings and the profile configurations. The system settings

contain configurations for initializing the XDK and the application engine. The profile configura-

244 5. ODIX- The On-Demand Internet Computing System

tions of the user, the computing platform and the applications are stored in the profile registry and

used to deduce the self-managing behaviour when processing a given task, as described in Section

4.5.2.

Figure 5.8: On-Demand Application Engine

Framework Controller. The XDK is actually an extensible application framework that is not in-

tended to run solely but which is embedded and initialized by a specific application system. As part

of the On-Demand Application Engine, a framework controller is added on top of the XDK that

starts its initialization and reads in particular system settings, e.g. scripts for automatically launch-

ing system- and user-specific applications at engine start.

Command Interpreter. Besides extending the On-Demand Application Engine dynamically by

loading software components during runtime, a command interpreter allows running user-customi-

zable scripts, e.g. for starting runtime services one-by-one or for executing distinct processing

statements defined in a task workflow script. A particular objective of the command interpreter is

the provision of an interactive command-line shell to the user.

Service Manager. The On-Demand Application Engine primarily executes task-related applica-

tions that are launched after having received a task description and that are stopped when the task is

completed. In addition, common services are run in the background to support the actual task

processing applications, e.g. a peer lookup service or task migration service. To this end, a service

manager is introduced that launches and controls regular applications as background services.

5. ODIX- The On-Demand Internet Computing System 245

5.2.4 Application

The On-Demand Application Engine is not supposed to be used directly by regular users but to

launch specific ODIX applications on top of it. From this point of view, a very basic application is

the ODIX application console that can be used by administrators to manage an ODIX installation

and its resources, as shown in Figure 5.9.

Figure 5.9: Console Administration of the On-Demand Application Engine

The administrator starts ODIX with a particular parameter to launch the ODIX application con-

sole (1) which provides scripting access to the local ODIX resources like profile and crosslet reposi-

tories (2). At the beginning, the application console executes the ODIX Autostart Script from which

an exemplary excerpt is shown in Figure 5.10.

Figure 5.10: Exemplary Excerpt of the ODIX Autostart Script

246 5. ODIX- The On-Demand Internet Computing System

First, various ODIX services are started in the background, e.g. checking for updated crosslets

in the network after the peer discovery service and router service have been started. Then, an inter-

active shell is opened that allows entering commands and executing further scripts on the com-

mand-line, as shown in Figure 5.11.

Figure 5.11: ODIX Command Line Shell

The screen shot exemplary shows how the user can retrieve a list of all installed crosslets by is-

sueing the command xar list and how to check the current memory allocation with system

-memory. Various commands are available to launch a specific ODIX application or pass a task

description that is processed on-demand. The ODIX console also allows administrators to open a

shell to remote ODIX installations, e.g. running on server blades without a screen and keyboard

device connected.

As a result, the ODIX application engine represents a cross-platform application environment

that supports thread-based multi-tasking by running Java applications inside a shared JVM or

process-based multi-tasking by running native applications as regular programs on the operating

system level. In conjunction with a crosslet repository infrastructure, it may be used as a particular

application deployment and launching tool, e.g. for running Java services in the background and

applying software patches on heterogeneous computer systems.

5. ODIX- The On-Demand Internet Computing System 247

5.3 Internet Application Workbench

In this section, the Internet Application Workbench is presented and the use case, features, imple-

mentation and application are described. Various parts of the work on the workbench approach have

been already published and carried on in [274, 275, 279, 281, 283, 284, 382].

5.3.1 Use Case

The aim of the Internet Application Workbench is to enable local task processing on-demand [see

Section 2.5.1] by providing a pervasive computing environment across distinct Internet computing

devices, as shown in Figure 5.12.

Figure 5.12: Local Task Processing On-Demand

A user can instantaneously employ a computing device to process his or her tasks without ma-

nually installing related applications in advance, e.g. simply by logging into the system and getting

seamless access to his or her application preferences and document files. While in use, the device is

typically not shared but exclusively used, e.g. a desktop computing system at home. However, pub-

lic computing resources like downloaded code assemblies may be shared and reused by other users

the next time they log in. A related application scenario is nomadic computing in which users may

move from one computing device to another (personal mobility). From there, a particular need

emerges to customize each computing device according to the preferences of the current user, e.g.

applying a personalized desktop layout scheme. By using the Internet Application Workbench, a

248 5. ODIX- The On-Demand Internet Computing System

user can engage various computing devices to process his or her tasks while having the illusion of a

pervasive desktop computing system [274].

5.3.2 Features

From the user's point of view, the Internet Application Workbench represents a graphical user inter-

face to launch applications on desktop computing systems in a similar way as in well-known desk-

top environments, e.g. MS Windows or Linux KDE. From the developer's point of view, the work-

bench eases the deployment of desktop applications in a cross-platform operating environment,

such as a heterogeneous enterprise network or the Internet. The major features are as follows.

Graphical User Interface. The workbench provides a GUI that can be customized in many ways.

First, the workbench can be run in desktop-mode providing a fully-featured desktop user interface,

e.g. with task bar and window manager. Second, the workbench can be run in sidebar-mode and

transparently integrating application windows into the native desktop interface. And third, the

workbench may be also run in application-mode hosting all application windows as internal frames.

Instantaneous Operation. The Internet Application Workbench has not to be installed and set up

in advance but it can be dynamically deployed and run instanteneously on any Java-enabled compu-

ting system. The core components of the application workbench are packaged into a single assem-

bly that can be easily distributed, e.g. for running the workbench directly from a portable USB stick

or for retrieving a single executable file from the Internet.

Pervasive Computing Environment. Another major feature is the synchronization of user settings

and documents across distinct desktop computing system. In particular, the workbench allows users

to configure an application on one computing system and to restore the application settings on

another computing system, e.g. by dynamically retrieving suitable code components and applying

related settings in the synchronized user profile.

5.3.3 Implementation

The implementation of the Internet Application Workbench is based on the On-Demand Applica-

tion Engine (ODAE) and adds the ability to issue task processing requests using a graphical desktop

interface, as illustrated in Figure 5.13.

The workbench and its graphical user interface are implemented in pure Java using standard

Java Swing components that are part of a standard JRE installation. Due to this, there is no depen-

5. ODIX- The On-Demand Internet Computing System 249

dency to the locally installed native GUI libraries, e.g. from MS Windows or Linux KDE. And the

look-and-feel (L&F) of the workbench is uniform across heterogeneous computing devices [see

screen shot in Section 5.3.4].

Figure 5.13: Internet Application Workbench

Multi-Session Desktop Manager. The ODIX multi-session desktop manager is a regular ODIX

application and launched immediately after the initialization of the ODAE. It is able to manage dis-

tinct graphical desktops and application windows on the same screen device by using the multi-

session support of the XDK. To this end, a particular window manager API is introduced that has to

be used by ODIX application developer to benefit from the ODIX desktop management.

Task Applications. While the application workbench offers users to launch custom user

applications from a personalized application menu, the workbench also utilizes the application ex-

ecution engine to determine a suitable task application for a given task description. By using the

standardized Java Activation Framework (JAF) approach, the task handling of the application

workbench interacts seamlessly with the underlying legacy operating system [see Section 4.5.1].

Remote Profile Registry. To synchronize the user and application settings across heterogeneous

computing systems, the application workbench utilizes the XDK roaming profile implementation

[see Section 4.5.2]. At startup, the workbench presents a login dialog to authenticate the user and to

check for an updated user profile in the remote profile registry. Afterwards, the local user profile is

synchronized, if needed, and the workbench is customized accordingly.

250 5. ODIX- The On-Demand Internet Computing System

5.3.4 Application

The Internet Application Workbench is supposed to support local task processing on-demand and in

this context, a related application scenario is nomadic computing and the provision of a pervasive

application environment on the desktop computer. The environment seamlessly moves with the user

as she or he switches to another desktop computer system and expects her or his customized envi-

ronment without particular intervention [276]. From this point of view, the roaming deployment

scheme [see Section 5.1.3] using the Java Web Start approach is usually preferred, as shown in Fig-

ure 5.14.

Figure 5.14: Nomadic Computing with the ODIX Application Workbench

A customer uses a legacy Internet browser with Java plugin installed (1) and visits a regular

web server with an appropriately configured JNLP file (2). The local Java Web Start installation

launches the ODIX workbench on top of the ODAE (3). When the user logs in, the workbench re-

trieves his or her user profile from a remote profile server and restores the personal settings of the

user (4). In this context, the crosslets referred in the user profile are checked and, if needed for the

current computing device, retrieved and installed automatically from a remote crosslet repository

(5). After all, the workbench opens a graphical user interface, as shown in Figure 5.15.

5. ODIX- The On-Demand Internet Computing System 251

Figure 5.15: Desktop User Interface of the ODIX Application Workbench

The screen shot shows the application workbench in desktop mode where it manages the ODIX

task windows in a separate desktop background and covers the backing GUI. The desktop interface

is composed of a taskbar at the bottom similar to MS Windows or Linux KDE, a navigation pane

on the left side and a working pane on the right side. A user can customize the Look&Feel and store

the personal preferences into his or her user profile. The next time the workbench is started, e.g. on

another computing device, the user preferences are loaded after login and the interface is restored to

the last configuration. Another operation mode of the application workbench is the sidebar mode

and the seamless integration in the backing GUI, e.g. MS Windows. Then, only the ODIX sidebar,

on the left in Figure 5.15, is displayed and can be extended with widgets, e.g. an analog clock, a

stock market ticker, RSS reader and so on. If an ODIX application is launched, it uses the window

manager of the backing GUI and therefore enhances the illusion of the seamless integration in the

user's desktop computing environment. Overall, the user can switch to different operating modes

and select the integration level of the application workbench into the underlying desktop window

252 5. ODIX- The On-Demand Internet Computing System

system. In conjunction with the cross-platform synchronization of the user profiles, the user gets the

illusion of a nomadic desktop environment.

ODIX Software Deployment. A basic ODIX feature is the self-managing deployment and installa-

tion synchronization of software components across distinct computing systems by using the XDK

Crosslet approach [see Section 4.2.1]. In this context, various ODIX applications allow users to

inspect and change the crosslet installations by using a graphical crosslet manager, shown in Figure

5.16.

Figure 5.16: ODIX Crosslet Manager

The user can check and modify the installed crosslets, e.g. by manually searching a suitable

crosslet and trigger the installation. Similar to well-known package manager, such as RPM, the

crosslet manager resolves missing dependencies and performs the crosslet installation in a self-

managing way. With the same application, a developer can upload a new crosslet to any crosslet

repository and thus deploy it without knowing the actual target computing system on which the

crosslet will be eventually resolved and installed. As a result, the ODIX Application Workbench is

a Rich Client Platform that supports local task processing on-demand by retrieving suitable applica-

tions from the Internet on-the-fly or on user request.

5. ODIX- The On-Demand Internet Computing System 253

5.4 Internet Application Factory

In this section, the Internet Application Factory is presented and the use case, features, realization

and application are described. Various parts of the work on the factory approach have been already

published in [66, 235, 281, 318].

5.4.1 Use Case

The goal of the Internet Application Factory is to enable remote task processing on-demand [see

Section 2.5.2] by providing a shared computing environment on dedicated application servers, as

shown in Figure 5.17.

Figure 5.17: Remote Task Processing On-Demand

Various users can concurrently utilize one or more remote application server to process their

tasks. Typically, a local computing device is used to deploy the task and to retrieve the task results

at the end of the processing, e.g. by sending task processing requests via a web browser and down-

loading the results after task completion. While the access on common computing resources may be

shared during runtime, e.g. compatible code components needed to run user applications, others

may be protected against mutual access, e.g. session and task data. A particular challenge of the

multi-session operation is the concurrent hosting and interaction of user applications that are not

known the time the application server is set up. A related application scenario is utility computing in

254 5. ODIX- The On-Demand Internet Computing System

which computing resources are shared and utilized on-demand to decrease the overall costs [67]. By

using the Internet Application Factory, a remote application server can be utilized on-demand to

run yet unknown applications for the concurrently processing of various user tasks.

5.4.2 Features

The Internet Application Factory enables the on-demand utilization and sharing of remote compu-

ting resources by introducing a self-managing application server. From the user's point of view, the

factory is a task processing server that has not to be configured in advance but can be employed like

a universal computing resource. From the administrator's point of view, the self-managing factory

approach eases the setup of remote computing devices. The major features are as follows.

Shared Resource Utilization. A computing device running the Internet Application Factory can

host multiple user sessions and process individual tasks in secured application environments. In

contrast to single job assignments, the factory increases the utilization of high-performance compu-

ting devices by enqueuing incoming task processing requests. The actual processing may be priori-

tized according to a given policy configuration, e.g. by favoring gold-level customers.

Remote Task Control. An Internet Application Factory may be installed on any computing device

accessible via the Internet. The user interaction is performed by using a remote task control applica-

tion that enables the controlling and monitoring of the ongoing task processing. After task comple-

tion, the task data is written to the given location and can be downloaded afterwards. In addition, a

web service interface enables the integration in third-party applications.

Transparent Application Provision. Since an Internet Application Factory is designed to process

yet unknown tasks on-demand, there is no way to deploy required applications in advance. Instead,

a task processing engine is installed that receives the tasks, checks locally available applications and

retrieves missing software components. The actual application provision is performed in a transpa-

rent manner, e.g. by determining and reusing suitable applications installed and run before.

5.4.3 Implementation

Like the Internet Application Workbench [see Section 5.3], the implementation of the Internet Ap-

plication Factory is based on the On-Demand Application Engine (ODAE). It introduces a task ex-

ecution service for handling and controlling remote task processing requests, as shown in Figure

5.18.

5. ODIX- The On-Demand Internet Computing System 255

In contrast to the application workbench, the application factory does not limit the effective use

to single users who have acquired the hosting computing device. Various users may remotely con-

nect to the factory and enqueue new task descriptions without having physical access to the ma-

chine. In addition, the factory does not require a screen device and thus it is particularly suited to be

deployed and run on server blades such as found in high-performance computing centers.

Figure 5.18: Internet Application Factory

Task Execution Service. This is the main component of the application factory and handles incom-

ing task descriptions by managing a task queue for every attached user session. It is a regular ODIX

service that runs in the background and normally requires no user intervention. Besides a

scheduling interface, the execution service offers a monitoring interface that can be used to track

and control the task queues, e.g. via a browser window or a web service connection.

Task Queue. Every user session gets a task queue associated that organizes the incoming user tasks

by their priority and competes with other task queues for shared computing resources, e.g. CPU

cycles and network bandwidth. A task queue controls the running task applications of the user ses-

sion, and may suspend and resume task applications to match the current task priorities, e.g. for

running low-priority tasks only in the idle time of the task queue.

Adaptive Application Deployment. The task applications needed to process incoming tasks are

installed by using the XDK Crosslet approach [see Section 4.2.1]. The crosslet approach helps to

256 5. ODIX- The On-Demand Internet Computing System

reuse local software components and to retrieve task applications that share as many software as-

semblies with other task applications as possible. The implementation goal is not to retrieve the best

application for processing a single task but the ones that utilize the computing system at best.

5.4.4 Application

The basic idea of the application factory is the support of remote task processing on-demand ac-

cording to the utility computing approach [67]. The application factory is launched on a shared

computing device that can be remotely accessed and that is able to concurrently process issued task

descriptions, as shown in Figure 5.19.

Figure 5.19: Utility Computing with ODIX Application Factory

In a straightforward scenario, a customer may use a legacy Internet browser and visit the task

control web page of the application factory. He or she can enter the task data in a web form, e.g.

from where to load the task input data, which is then submitted to the ODIX application factory (1),

as shown in Figure 5.20.

5. ODIX- The On-Demand Internet Computing System 257

Figure 5.20: Simple Task Deployment

 A task description is created and enqueued for processing. After an appropriate task applica-

tion has been determined, required crosslets are downloaded from remote crosslet repositories (2)

and installed in a self-managing way. The task is processed and the task output data is written to the

given location. The resulting ODIX task description of the example is shown in Figure 5.21.

Figure 5.21: ODIX Task Description

The task description specifies the task properties and parameters that are evaluated by ODIX to

compose and launch a suitable task application via the application execution engine [see Section

4.5.1]. The section properties contains common task property elements whereas the section

parameters entails task-specific statements. In the example, the task description requests the

conversion of a video stream by using the type video/mp4 and the command convert. In the

section parameters, the command options format, input and output specifies the conver-

sion of the video to video/flash and the locations from where to load the input video and to

258 5. ODIX- The On-Demand Internet Computing System

where write the output video. This simple method is similar to the common program activation

scheme found in regular operating systems like MS Windows. It particularly enables ODIX to reuse

existing programs, like the GNU tool convert, and pass the task data as in the Common Gateyway

Interface (CGI) approach [368].

Besides using a web browser, a customer may also use the advanced ODIX Remote Tasking

Admin to deploy tasks and control their processing on an application factory, as shown in Figure

5.22. The application window shows in the upper table the list of known ODIX application factories

and the lower table contains the deployed tasks of the selected factory. The customer can inspect the

task descriptions and control the execution of his or her tasks, e.g. suspending, resuming and abort-

ing tasks. Further, new application factories can be explicitly added and enqueued tasks can be ma-

nually moved from one factory to another.

Figure 5.22: ODIX Remote Task Admin

Every peer node gets a representative performance rank, e.g. by evaluating the CPU type and

memory amount or manually set by the node administrator. The absolute utilization value of the

peer node is dynamically calculated by using the Java Management Extensions (JMX) that allows

installing advanced runtime monitors in the JVM, e.g. for determining the allocated memory, active

thread count, CPU time, number of loaded classes and so on [342]. All measured runtime data are

evaluated and normalized to create a relative utilization value, as shown as horizontal bars in the

upper table in Figure 5.22. The normalization is simply done by dividing the absolute utilization

5. ODIX- The On-Demand Internet Computing System 259

value by the performance rank of the peer node, i.e. peer nodes with a higher performance rank will

be favorized among peer nodes with the same relative load.

Finally, application developers may use a web service interface to access the task processing

services and integrate them in legacy applications and existing computing infrastructure, e.g. as a

service plugin in a media processing system or a service instance in a common Enterprise Service

Bus (ESB) installation. In fact, the task control web page shown in Figure 5.20 is part of a Java serv-

let that controls the attached application factory via its web service interface.

260 5. ODIX- The On-Demand Internet Computing System

5.5 Internet Application Federation

In this section, the Internet Application Federation is presented and the use case, features, realiza-

tion and application are described. Various parts of the work on the federation approach have been

already published and carried on in [66, 235, 281, 318].

5.5.1 Use Case

The aim of the Internet Application Federation is to enable distributed task processing on-demand

[see Section 2.5.3] by providing a federated execution environment in which tasks are dynamically

deployed on various computing nodes, as shown in Figure 5.23.

Figure 5.23: Distributed Task Processing On-Demand

In a large distributed computing environment, many computing nodes may be available for

processing tasks. This can be used to split and to deploy complex tasks to multiple nodes at the

same time for increasing the overall throughput. In addition, the task overloading of single nodes

can be avoided by balancing the tasks within a group of computing nodes, e.g. using a task schedu-

ler before task deployment and proactive migration support during ongoing task processing. A re-

lated application scenario is public computing in which yet unknown Internet computing devices are

utilized to process a large number of user tasks. A major challenge is the transparent employment of

5. ODIX- The On-Demand Internet Computing System 261

loosely coupled and separately managed computing systems to run and connect suitable applica-

tions, e.g. crossing platform and network boundaries. By using the Internet Application Federation,

a user can deploy multiple tasks to an Internet peer federation that transparently handles deployment

and balancing of user tasks as well as required code distribution to perform the task.

5.5.2 Features

The Internet Peer Federation enables the grouping of distinct Internet computing devices into a self-

managing computing federation by using a peer-to-peer interconnection approach. From the user's

point of view, the federation acts as a single huge computing system that hides the presence of indi-

vidual computing nodes and different network connections. The implementation also supports the

self-managing migration of task processes across various nodes.

Federated Internet Peers. The grouping of Internet computing devices is performed by using a

self-managing super peer organization approach. Selected peers are configured with each other's

network address and form an initial super peer network. After starting up the Internet application

factory, a regular peer performs a peer discovery and joins the peer federation by connecting to a

super peer, e.g. located in the same Intranet and determined by using a multi-cast approach.

Overlay Network Communication. A peer federation is typically spread across various networks

with different connection parameters and firewall settings. For peer inter-communication, an over-

lay network communication approach is used that allows peers to dynamically negotiate a suitable

network protocol, e.g. by using the Java method streaming approach. In addition, particular super

peers may be used as relay station to allow connecting peers behind a firewall.

Balanced Task Processing. A particular feature of the Internet Peer Federation is the ability to bal-

ance the task processing across various peers. A super peer permanently monitors the load of the

connected peers and if a new processing request is received, it delegates the task to a peer that is

able to process the task. If the overall throughput could be increased by including additional peers,

e.g. having joined the federation recently, the super peer may migrate running tasks to another peer.

5.5.3 Implementation

The implementation of the Internet Application Federation is based on the On-Demand Application

Engine (ODAE) and introduces various services to enable automatic task distribution across various

Internet Application Factories, as shown in Figure 5.24.

262 5. ODIX- The On-Demand Internet Computing System

The application federation is basically composed of several nodes with different responsibili-

ties. A master node (location A) controls various worker nodes (location B and C) that operate as

application factories [see Section 5.4]. The master node is well-known to clients and acts as the task

scheduling node that distributes incoming task processing requests to the application factories ac-

cording to an autonomic load balancing policy.

Figure 5.24: Internet Application Federation

Federation Service. This service dynamically groups unmanaged peers to a task processing federa-

tion. The default implementation establishes a super peer network following the SG-1 approach

[245]. Every application factory that is supposed to be included in a federation, installs a corres-

ponding federation service. By replacing the service implementation with another one, different

peer grouping approaches can be run, such as a multi-cast packet discovery solution in an Intranet.

Router Service. The service implementation is based on the virtual object communication approach

of the XDK [see Section 4.6] and adds the ability to route peer messages over multiple peers, simi-

lar to the TCP/IP router approach. The routing uses Java Remote Method Streams and may dynami-

cally bridge different network protocols. Once established, an existing communication channel be-

tween two peers is shared among distinct applications and in both directions.

5. ODIX- The On-Demand Internet Computing System 263

Load Balancer. The distribution and migration of running tasks is performed by the load balancer

service. In a simple implementation, it tracks all known peers of a federation and it delegates in-

coming task processing requests to every peer in a round-robin fashion. While monitoring the peers

for processing a task, the load balancer service may also migrate single tasks from one peer to

another by using the XDK Ad-Hoc Execution Migration approach [see Section 4.7].

5.5.4 Application

The application federation is designed to support the distributed task processing on-demand as pro-

posed in the public and cloud computing approaches [220]. Various application factories can be

manually or dynamically grouped, e.g. by using a super peer network implementation like SG-1

[245], and used to distribute incoming task processing requests on multiple computing devices, as

shown in Figure 5.25.

Figure 5.25: Public Computing with the ODIX Application Federation

A customer sends a task description to a master federation node (1) without actually knowing

the factories being part of the federation. As with ODIX application factories, this can be easily

done by using a regular Internet browser and uploading the task data via a web form [see Section

5.4.4]. Depending on the task processing requirements and load distribution policy, the federation

determines one or multiple suitable factories (2) and delegates the task processing (3, 4). The fur-

ther processing workflow is similar to the one implemented by the ODIX application factories, i.e.

retrieving required crosslet components and launching a suitable task processing application (5).

264 5. ODIX- The On-Demand Internet Computing System

After the task has been processed, the results are returned to the delegating master node and stored

until the customer retrieves the processed data, e.g. by visiting the federation control web page and

downloading the task output data or following a URL, e.g. pointing to a location on a shared file

server in an enterprise network. In addition to the federation control web page, the ODIX

Federation Admin application allows administrators to inspect the current federation organization

and monitor the utilization of every node by using a rich client interface, as shown in Figure 5.26.

Figure 5.26: ODIX Federation Admin

The left pane shows the discovered peer federations, e.g. managed by super peers or manually

grouped by an administrator, the right upper table lists the peers of the selected federation and their

properties, e.g. number of processed tasks and their relative utilization [see Section 5.4.4], and the

right lower table contains information about the tasks of the selected peer or the entire federation. If

a peer node is added to the federation, a peer description is sent to the master node to register the

available resources on the peer, as shown in Figure 5.27.

In the excerpt, the peer node provides information about its CPU, memory, installed native op-

erating system, the version of the installed JRE and ODIX. This can be particularly used by the

master node to distribute native task applications, e.g. MS Windows applications, on peer nodes

capable to run the program executable. Due to varying task processing efforts, task application re-

quirements and available peer resources, it is difficult to calculate the resulting load of a peer node

before the task application has been deployed and launched [208, 323].

5. ODIX- The On-Demand Internet Computing System 265

Figure 5.27: Excerpt of a Federation Peer Description

There are advanced load-balancing approaches for P2P networks [136] and that particularly

tackle performance prediction, e.g. by using utility functions to enable autonomic workload map-

ping in a cloud-based distributed computing system [292]. The ODIX application federation, how-

ever, uses a simple self-managing load-balancing approach that first reads in all static performance

indices of the available peer nodes and monitors their relative utilization values. If a task processing

request is to be deployed by the master node, it selects the peer node with the least relative load.

Later on, the master node monitors the current load of all processing peers and may dynamically

migrate running task applications from an overloaded peer to another by using the XDK Ad-hoc

Execution Migration approach. Of course, this is only possible with supported ODIX applications

as described in Section 4.7. Further, task applications are only migrated across the peers of the same

federation which means that a peer federation as a whole may become overloaded. In this case, dis-

tinct task applications may also be temporarily suspended and their task data is written to disk. Fi-

nally, if the master node realizes that a peer node is no longer part of the federation, it redeploys the

tasks to another node and marks the previous task deployment as invalid.

266 5. ODIX- The On-Demand Internet Computing System

5.6 Summary

In this chapter, the On-Demand Computing System (ODIX) has been described that is designed to

support local task processing, remote task processing and distributed task processing in the Internet,

as introduced in Chapter 2. It is based on the idea of building an Autonomic Cross-Platform

Operating Environment (ACOE), which has been presented in Chapter 3, to enable on-demand task

processing in a public computing scenario. By using the Crossware Development Kit (XDK) pre-

sented in Chapter 4, ODIX benefits from various self-managing features towards deployment and

composition, hosting and customization, and interconnection and migration of related Internet ap-

plications, as briefly discussed below.

On-Demand Application Engine. The ODIX implementation is based on an On-Demand

Application Engine that provides the basic functions to launch distinct Internet applications on-

demand, to manage concurrently processed tasks and to integrate the overall task processing into

the currently engaged computing system. Based on the XDK, ODIX can be run on any Java-capable

computing device and supports stationary, portable and roaming deployment depending on the use

case. In this context, it should be pointed out that ODIX is an integrated implementation and the set

up of a JRE is the only prerequisite. After deploying the engine, all further ODIX components can

be retrieved from the Internet while being online. In particular, the application engine automatically

installs application packages needed to process an on-demand computing task by evaluating the task

description. In comparison to existing solutions like Eclipse Equinox, the application engine is not

limited to deploy and run Java applications only. It can evaluate the local operating system, prepare

additional application environments and launch custom executables, e.g. by retrieving an optimized

native library to run a computational task. From this point of view, ODIX may be used as a generic

software installer that supports cross-platform application management in a heterogeneous and spa-

tially distributed environment. However, the proprietary packaging of code assemblies and applica-

tion description represent the major disadvantages compared to established approaches like Java

Web Start and OSGI-based solutions.

Internet Application Workbench. Based on the On-Demand Application Engine, the Internet

Application Workbench has shown the support for local task processing on-demand by using a

graphical user interface. This approach eases the regular user interaction and offers the seamless

integration into the desktop computing environment, e.g. by being launched as sidebar application,

hosting graphical widgets and opening legacy application windows. From a user's point of view, the

application workbench represents a rich client computing system that can be easily deployed using

5. ODIX- The On-Demand Internet Computing System 267

Java Web Start and a regular Internet browser. In addition to related rich client implementations

like Eclipse RCP, the application workbench utilizes the XDK roaming profile approach and offers

the synchronization of user settings and documents. In a nomadic use context, the application work-

bench provides the illusion of a pervasive application environment. However, this is only valid for

ODIX applications being specifically implemented to be used in the workbench and for third-party

Java applications using the regular Java preferences approach. User preferences of native applica-

tions that rely on operating system features, such as the MS Windows registry, are not synchro-

nized. From a developer's point of view, the application workbench enables the integrated and col-

laborating execution of multiple graphical desktop applications in an integrated environment. The

seamless integration of application windows, however, is only possible for ODIX applications using

the workbench API and the ODIX window management.

Internet Application Factory. Another ODIX component is the Internet Application Factory that

supports the remote task processing on-demand by offering access to a shared remote computing

resource and introducing a task execution service to handle multi-session task processing. For this

purpose and in contrast to the application workbench, an administrator has to deploy and set up the

application factory manually on a dedicated computing device first, e.g. on a high-performance

server. There is no way to deploy the application factory on a remote computing system without

administrator intervention. In this context, the administrator will also have to adjust the computing

policies for different users, e.g. the task priority and available computing time. A particular feature

of the application factory is the ability to manually control the task execution, e.g. to temporarily

suspend a task execution. However, this is only possible for ODIX applications that have been im-

plemented using the XDK thread execution control. In this context, security concerns arise from the

concurrent execution of multiple task processes in the same JVM which have been not addressed in

this thesis. Distinct task applications may influence each other in terms of thread scheduling, memo-

ry allocation and resource deadlocks. Further, the performance rank setting and the evaluation of

runtime properties to calculate the relative utilization value of the application factory assumes that

ODIX is installed on a dedicated computing device. A different approach is needed if the applica-

tion factory is run on a multi-purpose device, e.g. in the background on a desktop computer system.

Internet Application Federation. The Internet Application Federation supports distributed task

processing on-demand by connecting multiple application factories and balancing the task deploy-

ment. The setup of an application federation is quite simple by installing the ODIX federation ser-

vice on every participating application factory and initiating the building of a dynamically managed

268 5. ODIX- The On-Demand Internet Computing System

super peer network. By using the XDK remote method streaming implementation, the federation

interconnection is not limited to a specific protocol but can negotiate the connection parameters

during the peer inclusion phase. Moreover, the ODIX router service let the hosting application fac-

tory act as a network router between factories without direct connection, e.g. two machines sepa-

rated by firewalls. From this point of view, the application federation is a self-managed peer federa-

tion that automatically negotiates network protocols and routes. The disadvantage is the proprietary

realization that complicates the integration of the ODIX federation implementation in an existing

public or cloud computing installation. A distinct feature of the application federation is the ability

to balance running task applications between multiple application factories by monitoring the rela-

tive load of the peers and using the XDK ad-hoc execution migration implementation. Of course,

this is only valid for ODIX applications that support the suspension and streaming of task threads.

In this context, there is no protection against data loss due to unexpected server shutdown or crash.

In summary, ODIX represents a pure Java implementation to support on-demand task process-

ing in a heterogeneous network environment and is applicable out-of-the box to enable personal,

application and terminal mobility. The application engine allows installing additional ODIX com-

ponents from the Internet in a self-managing way and launching suitable Internet applications on-

demand to process a submitted task not known in advance. The support of local, remote and distri-

buted task processing on-demand has been shown with the integrated implementation of the appli-

cation workbench, factory and federation, respectively. Besides particularly implemented ODIX

applications, legacy Java and native program executables can also be run to utilize existing task

applications in ODIX.

6. Conclusions 269

6. Conclusions

In this section, the contributions and highlights of the thesis are briefly summarized. The lessons

learned are described and evaluated with respect to the goals of the work. Various suggestions about

future work follow afterwards.

6.1 Summary

The overall goal of this thesis has been the design and implementation of an Autonomic Cross-

Platform Operating Environment (ACOE) to support On-Demand Internet Computing (ODIC). This

has been achieved and practically demonstrated by a Java realization of the Crossware

Development Kit (XDK) and the On-Demand Internet Computing System (ODIX), respectively.

The thesis has started with the illustration of the shift from resource-centric to task-centric

computing and it then presented the vision of ODIC [see Chapter 2]. The unpredictable constella-

tion of application requirements and platform capabilities has been identified as the basic challenge

to launching Internet applications on-demand. It has been shown that traditional Internet computing

approaches support distinct facets of ODIC in isolated application scenarios only.

As a remedy, the introduction of an ACOE has been proposed to automate the resource provi-

sioning by introducing a self-managing integration middleware [see Chapter 3]. It decouples the

setup of the application environment needed to run the application from the administration of the

computing system currently employed by the user. Existing solutions have been examined that

turned out to be limited in supporting the elaborated cross-platform features and self-managing be-

havior.

Afterwards, a related Java realization of the XDK has been presented and the autonomic appli-

cation has been illustrated for distinct components [see Chapter 4]. In particular, the self-managed

deployment, composition, hosting, customization, interconnection and migration of Internet appli-

cations have been separately described and compared with related work. Altogether, it has been

shown that the XDK represents an integrated and customizable Java solution to establish an ACOE.

Finally, the Java realization of ODIX for supporting on-demand local task processing, remote

task processing and distributed task processing in the Internet has been presented [see Chapter 5].

The related use of various components, namely the Internet Application Workbench, the Internet

Application Factory and the Internet Application Federation, has been described, and the suitability

of ODIX to support the distinct on-demand facets of ODIC has been shown.

270 6. Conclusions

6.2 Lessons Learned

During the work on this dissertation, various insights have been gained that explain some interest-

ing specifics of the autonomic approach, the system implementation, the application development

and the practical usage, as described below.

Autonomic Approach. The XDK has been basically designed to operate in a self-managing way

according to the autonomic computing approach of IBM. For this purpose, various autonomic man-

agers have been introduced to monitor and control the autonomic operations. In this thesis, each

manager currently uses simple analyzers and deterministic planners that evaluate the runtime para-

meters and separately adjust the respective operation according to given configuration files. In prac-

tice, this approach has proven to be sufficient for realizing isolated autonomic features and the cor-

rect operation could be easily observed. In an integrated application system and cross-platform op-

erating infrastructure, however, the overall setup tends to become quite complex. With a large num-

ber of autonomic assets it is not obvious to the developer how the overall system operates, e.g.

which applications actually use a code component in a multi-tasking environment and how network

messages are routed via different hops in a self-organized peer federation. As a result, the use of

autonomic approaches greatly facilitates system handling in a changing environment. On the other

hand, the developers lose control and understanding about internal operations. In practice, this

makes it difficult to design and test an integrated autonomic computing system.

System Implementation. The vision of launching Internet applications on-demand has required the

implementation of an integrated application system that concurrently addresses various runtime

concerns. Although there are Java libraries and application frameworks for dedicated purposes, it

has been difficult to integrate them into an autonomic computing system without modifying and

extending their internal implementation, e.g. to add autonomic managers, sensors and effectors. As

a lesson learned, legacy code components cannot be easily reconfigured into autonomic elements.

Further issues have come up with the transformation of the legacy JVM into a multi-tasking envi-

ronment. The lack of deterministic thread signalling and separated memory spaces imposed the in-

troduction of a new Java thread control and object isolation approach. The support of transparent

object interconnection and execution migration has also required much development effort. After

all, the core implementation of XDK and ODIX has grown up to about 350.000 lines of code and

4000 Java classes. Nevertheless, the core limitations of the JVM, such as non-preemptive thread

scheduling, are still in place and cannot be changed unless the JVM itself is modified. In fact, multi-

tasking execution is only reasonable for cooperative applications and non-critical use cases.

6. Conclusions 271

Application Development. The goal of the thesis has been the support of ODIC by implementing

distinct on-demand facets, such as deployment, hosting and migration on-demand. This has been

achieved for Java applications following the XDK and ODIX programming models. While the de-

velopment rules are easy to follow, however, it has turned out that it is hard to convince application

developers to write ODIX applications and components that can be run in the proprietary ODIX

environment only. The same is valid for the transformation of existing Java applications unless par-

ticular on-demand features are needed, e.g. transparent object interconnection. As a remedy for

enabling on-demand task processing with legacy applications, a small wrapper has been added that

handles the incoming task processing requests and generates appropriate application calls, e.g. via a

command-line interface. In this context, it has become an important feature that legacy code assem-

blies can be easily encapsulated in crosslet archives and decorated with configuration statements

describing the deployment, composition and hosting requirements. This provides a starting set of

code assemblies that can be used to deploy and run existing applications on-demand. Against this

background, it has become obvious that a common specification for defining the assembly labels is

needed. Otherwise, every developer defines his or her own set of assemblies, the same code compo-

nent is potentially deployed multiple times and there is only little or no reuse of cached assemblies.

Practical Usage. Since ODIX is based on an integrated application system, no particular installa-

tion and configuration of third-party software components is necessary other than a legacy JVM. In

particular, the automated installation via Java Web Start represents an easy and elegant way to dep-

loy ODIX on new Internet computing systems while being online. In practice, there has been no

problem to run ODIX on various computing systems, and thus to deploy and launch task applica-

tions on-demand. In contrast to the supposed permanent execution of ODIX and waiting for task

processing requests in the background, however, it has been necessary to restart the JVM from time

to time. Due to buggy component implementations, memory leaks and deadlocks may occur and

render the whole JVM unusable. In fact, a lesson is to launch legacy Java applications that do not

rely on the ODIX framework in a separate process. Besides supporting on-demand task processing,

it turned out that ODIX can be used to maintain general software installations on distinct computing

systems, e.g. in an enterprise network. In this case, legacy software installation packages are encap-

sulated in a crosslet archive and distributed to a crosslet repository. On relevant computing systems,

ODIX is launched in the background and checks for new crosslets. If an update is available, the user

is notified and asked for permission to retrieve and perform the software update. In this sense,

ODIX may be used as a cross-platform software update service and may help to deal with heteroge-

neous computer installations, e.g. by evaluating centrally managed user and platform profiles.

272 6. Conclusions

In conclusion, the Java implementations XDK and ODIX can be used out-of-the-box to deploy

and run an on-demand computing infrastructure. Their self-managing operation follows the auto-

nomic computing approach and has proven to be suitable for supporting ODIC. The particular ob-

jective to launch Internet applications on-demand could be achieved and successfully demonstrated.

Besides the development and use of specific Java-based ODIX applications, the ODIX workbench,

factory and federation implementations have shown that legacy Java applications and native appli-

cations likewise can be used by ODIX to offer on-demand task processing. From this point of view,

it has turned out that most appliances benefit from the self-managing deployment, composition and

hosting features of ODIX that do not impose modifications of existing code on application develop-

ers. In contrast, the self-managing customization, interconnection and migration features can be

utilized by Java applications that follow the ODIX programming model.

6. Conclusions 273

6.3 Future Work

Based on the results of this thesis, the establishment of an Autonomic Cross-Platform Operating

Environment (ACOE) represents a feasible approach to support On-Demand Internet Computing

(ODIC). For advancing the present solution, there are several activities and suggestions for future

work, as described below.

First of all, there are various options to improve the autonomic operation of the XDK. Its self-

managing implementation is still based on simple configuration policies and controlling distinct

low-level autonomic managers. By using a rules engine, an autonomic manager could determine the

next actions by following a rule-based policy that allows specifying complex behaviour schemes

[398]. Another promising idea is to group autonomic managers and to define high-level autonomic

policies, such as utility functions [193, 375] and goal-based policies [148]. This would ease the

overall configuration and free developers to define lots of low-level autonomic operations. In an

advanced realization, it would allow administrators to focus on enabling on-demand business needs,

e.g. the definition of Service Level Agreements (SLA) to favor task processing requests and optimize

the overall profit [393]. The introduction of security and privacy policies could close the security

gap not yet addressed in this work. In particular, the collaboration of distinct low-level autonomic

elements to detect and manage security frauds on the system or network level is a challenging re-

search task in terms of using compatible security policy definitions, establishing mutual trust and

coordinating the planning of autonomic actions [57]. A related issue is to enable the spatial man-

agement and dissemination of autonomic polices in a distributed environment, e.g. by introducing a

policy deployment model as described in [90]. In particular, the setup of autonomic operations in the

ODIX application federation, e.g. running in an enterprise network, could benefit from centrally

organized policies. A future implementation should consider the use of Java Management

Extensions (JMX) for including remote autonomic management features in the XDK [1]. Concern-

ing mobile and nomadic application scenarios, the consideration of changing system environments

and the adjustment of self-managing policies according to varying user goals is another direction of

future work [114, 132]. Currently, the XDK takes into account the present platform configuration to

set up a suitable operating environment for launching user applications. However, this is done with-

out adjusting the actual self-managing policy, e.g. due to different user goals when working at the

office, at home or on the move. In this context, the prediction of user actions is another research

direction for adapting and configuring the self-managing operation of the XDK, as proposed in the

proactive computing approach of Intel [376].

274 6. Conclusions

Besides refining the overall autonomic operation of the XDK, many details of the actual fea-

ture implementations could be extended to match new research ideas, ongoing software advance-

ments and dedicated application requirements. A major idea is to adopt the widely accepted OSGI

standard for supporting Java application deployment and composition by using individual OSGI

bundles [262]. For simple Java applications, the XDK could be extended with an OSGI bundle

handler to access Java classes encapsulated within an OSGI bundle. In complex scenarios, the ap-

plication execution engine could also launch an external OSGI container, e.g. Apache Felix [13], to

run an OSGI application. A related development suggestion is to integrate and apply distinct XDK

features in advanced and widely used application frameworks, such as Eclipse Equinox and Spring

[95, 330]. The use of semantic technologies to describe, link and resolve resources is another idea.

For example, semantic user profiles could be applied to deduce user preferences in nomadic appli-

cation scenarios by inventing a preferences ontology and using semantic languages [325]. Another

future extension of ODIX is to validate mobile code when migrating execution units. The same is

valid for regular code deployment among computing nodes of various application federations that

are spread across distinct organizations, e.g. by using digital signatures and a Public Key

Infrastructure (PKI) [176] as well as the introduction of a secure deployment protocol like S-

CODEP [147]. In this context, the concurrent hosting of multiple task applications within the same

JVM may also influence other applications in terms of thread scheduling, memory allocation and

resource deadlocks. Concerning task application migration, load balancing and privacy issues, fur-

ther research is needed. For example, when to reuse an already running JVM and when to launch a

separate JVM, e.g. by grouping multiple task applications per customer in a JVM instance and

tracking the state of the JVM using the Java Monitoring and Management Extensions [342].

Another strong focus of future work is the evaluation of ODIX for its suitability in various task

processing scenarios. A current activity is the implementation of ODIX applications for processing

specific media indexing tasks in the research project CONTENTUS [66]. The related evaluation will

investigate the use of ODIX application federations to perform uncertain processing tasks with par-

ticular respect to self-managing selection, deployment and running of suitable ODIX applications. It

will also examine the options to migrate lengthy media indexing tasks and apply load-balancing

strategies within the federation. A different evaluation of ODIX will be conducted in the research

project MEDIAGRID [235]. It will focus on the effort to deploy and integrate ODIX application

factories in existing computing infrastructures, e.g. Grid and Cloud installations. In this context, the

ODIX approach to provide an on-demand computing infrastructure is particularly complemented

with the Platform-as-a-Service (PaaS) idea [218]. Further investigations are needed how ODIX can

6. Conclusions 275

utilize related Cloud computing technologies, such as Amazon EC2 or Google AppEngine [9, 143],

and scale on various computing nodes on-demand. A further evaluation could pick up the cloud

computing idea of Software-as-a-Service (SaaS) [220] and examine the suitability of the ODIX ap-

plication workbench to provide pervasive access on user applications and documents uploaded to

the cloud. Instead of using an Internet browser and server-bound rich client techniques like AJAX

[293], the entire applications are downloaded to the client computer and locally executed while still

retrieving the documents from a remote site.

Finally, the XDK and ODIX features may also be used to support different application scena-

rios, such as autonomic personal computing [23]. For example, an administrator of an enterprise

network could install ODIX on every desktop computer and automate remote software installations

by uploading new software updates to a common crosslet repository. A cross-platform application

installer could be used to download and update specific software installations automatically while

evaluating the target platform configuration, e.g. to deploy native program packages for MS Win-

dows and Linux installations. Moreover, a public network of crosslet repositories may be estab-

lished to deploy and synchronize software components between different sites. This could also be

used by software vendors to upload new applications to a pay-per-download service similar to the

AppStore invented for Apple's iPhone [17] or the Java Store by Sun [346]. Last but not least, the

use of the ODIX application engine on mobile Internet devices is another topic for future work as

they become more powerful over time and considering the emerging Java-capable smart phones,

e.g. running Google's Android [142]. A promising application scenario is to run and exchange

cross-platform widgets without using a remote crosslet repository, e.g. by directly transmitting the

code components between two side-by-side located smart phones via a Bluetooth connection.

7. References 277

7. References

1. Abdellatif, T., Danes, A. Automating the Management of J2EE Servers Using a JMX-based

Management System. Transactions on Systems Science and Applications. Special Issue on

Self-Organizing Communications. Vol. 2, Nr. 3. pp. 289-296.

2. Adobe AIR

http://www.adobe.com/products/air/

3. Agarwal, M., Bhat, V., Liu, H., Matossian, V., Putty, V., Schmidt, C., Zhang, G., Zhen, L.,

Parashar, M., Khargharia, B., Hariri, S. AutoMate: Enabling Autonomic Applications on the

Grid. Proc. of the 5th Intl. Active Middleware Services Workshop (AMS). IEEE 2003. pp.

48-57.

4. Aglets

http://www.trl.ibm.com/aglets/

5. Aksit, M. Dynamic, Adaptive and Reconfigurable Systems Overview and Prospective Vision.

Proc. of the 23rd Intl. Conference on Distributed Computing Systems Workshops. IEEE 2003.

pp. 84-89.

6. Al-Bar, A. Wakeman, I. Camel: A Mobile Applications Framework. Proc. of the Intl.

Conference on Computer Networks and Mobile Computing. IEEE 2003. pp. 214-223.

7. Al-Bar, A. Wakeman, I. A Survey of Adaptive Applications in Mobile Computing. Proc. of

the 21st Intl. Conference on Distributed Computing Systems (ICDCS). IEEE 2001. pp. 246-

251.

8. Aldrich, J., Dooley, J., Mandelsohn, S., Rifkin, S. Providing Easier Access to Remote Objects

in Client-Server Systems. Proc. of the Annual Hawaii Intl. Conference on System Sciences.

IEEE 1998. pp. 366-375.

9. Amazon EC2

http://aws.amazon.com/ec2/

10. Anderson, D. P. BOINC: A System for Public-Resource Computing and Storage. Proc. of the

Intl. Workshop on Grid Computing. IEEE. 2004. pp. 4-10.

11. Anderson, D.P., Cobb. J., Korpels, E., Lebofsky, M., Werthimer, D. SETI@home: An

Experiment in Public-Resource Computing. Communications of the ACM. Vol. 45, Nr. 11.

ACM 2002. pp. 56-61.

12. AntHill

http://www.cs.unibo.it/projects/anthill/

http://www.trl.ibm.com/aglets/
http://www.cs.unibo.it/projects/anthill/

278 7. References

13. Apache Felix

http://felix.apache.org

14. Apache Maven

http://maven.apache.org

15. Apache Server Framework Avalon

http://jakarta.apache.org/avalon/framework/index.html

16. Apache Tomcat

http://jakarta.apache.org.

17. Apple AppStore

http://www.apple.com/iphone/appstore/

18. Astley, M., Sturman, D., Agha, G. Customizable Middleware for Modular Distributed

Software. Communications of the ACM. Vol. 44, Nr. 5. ACM 2001. pp. 99-107.

19. Autonomous Remote Cooperating Agents.

http://osweb.iit.unict.it/ARCA

20. Avvenuti, M., Vecchio, A. Embedding Remote Object Mobility in Java RMI. Proc. of the 8th

Intl. Workshop on Future Trends of Distributed Computing Systems (FTDCS 2001). IEEE

2001. pp. 98-104.

21. Balasubramanian1, J., Natarajan, B., Schmidt, D. C., Gokhale, A., Parsons, J., Deng, G.

Middleware Support for Dynamic Component Updating. Proc. of the 7th Intl. Symposium on

Distributed Objects and Applications (DOA). LNCS 3761. Springer 2005. pp. 978-996.

22. Balfanz, D., Gong, L. Experience with Secure Multi-Processing in Java. Proc. of the Intl.

Conference on Distributed Computing Systems (ICDCS). IEEE 1998. pp. 398-405.

23. Bantz, D. F., Bisdikian, C., Challener, D., Karidis, J. P., Mastrianni, S., Mohindra, A., Shea,

D. G., Vanover, M. Autonomic Personal Computing. IBM Systems Journal. Vol. 42, Nr. 1.

IBM 2003. pp. 165-176.

24. Barak, A., La'adan O. The MOSIX Multicomputer Operating System for High Performance

Cluster Computing. Journal of Future Generation Computer Systems. Vol. 13, No. 4-5.

Elsevier 1998. pp. 361-372.

25. Barett, R. Maglio, P. P. Intermediaries: An Approach to Manipulating Information Streams.

IBM System Journal. Vol. 38, Nr. 4. IBM 1999. pp. 629-641.

26. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I.,

Warfield, A. Xen and the Art of Virtualization. Proc. of the 19th ACM Symposium on

Operating Systems Principles. ACM 2003. pp. 164-177.

http://felix.apache.org/
http://maven.apache.org/
http://jakarta.apache.org/avalon/framework/index.html
http://jakarta.apache.org/
http://osweb.iit.unict.it/ARCA

7. References 279

27. Barr, M., Eisenbach, S. Safe Upgrading without Restarting. Proc. of the Intl. Conference on

Software Maintenance. IEEE 2003. pp. 129-137.

28. Batista, T., Rodriguez, N. Dynamic Reconfiguration of Component-Based Applications. Proc.

of the Intl. Symposium on Software Engineering for Parallel and Distributed Systems. IEEE

2000. pp. 32-39.

29. Bay, T. G., Eugster, P., Oriol, M. Generic Component Lookup. Proc. of the Intl. Conference

on Component-Based Software Engineering. LNCS 4063. Springer 2006. pp. 182-197.

30. Bellavista, P., Corradi, A., Montanari, R., Stefanelli, C. Dynamic Binding in Mobile

Applications. IEEE Internet Computing. Vol. 7, Nr. 2. IEEE 2003. pp. 34-42.

31. Benslimane, D., Dustdar, S., Sheth, A. Services Mashups - The New Generation of Web

Applications. IEEE Internet Computing. Vol. 12, Nr. 5. IEEE 2008. pp. 13-15.

32. Berkeley Open Infrastructure for Network Computing (BOINC)

http://boinc.berkeley.edu/

33. Bettini, L., Nicola, R. Translating Strong Mobility into Weak Mobility. Proc. of the 5th Intl.

Conference on Mobile Agents. LNCS 2240. Springer 2001. pp. 182-197.

34. Bettini, L. A Java Package for Transparent Code Mobility. Proc. of the Intl. Workshop on

Scientific Engineering of Distributed Java Applications. LNCS 3409. Springer 2005. pp. 112-

122.

35. Bialek, R., Jul, E., Schneider, J.-G., Jin, Y. Partitioning of Java Applications to Support

Dynamic Updates. Proc. of the Asia-Pacific Software Engineering Conference (APSEC’04).

IEEE 2004. pp. 616-623.

36. Binder, W, Hulaas, J., Villazón, A., Vidal, R. Portable Resource Control in Java: The

JSEAL2 Approach. Proc. of the ACM Conference on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA 2001). ACM 2001. pp. 139-155.

37. Blair, G. S., Blair, L. Issarny, V., Tuma, P., Zarras, A. The Role of Software Architecture in

Constraining Adaptation in Component-Based Middleware Platforms. Middleware 2000.

LNCS 1795. Springer 2000. pp. 164-184.

38. Blair, G. S., Costa, F., Coulson, G., Delpiano, F., Duran, H., Dumant, B., Horn, F.,

Parlavantzas, N., Stefani, J.-B. The Design of a Resource-Aware Reflective Middleware

Architecture. Meta-Level Architecture and Reflection 1999. LNCS 1616. Springer 1999. pp.

115-134.

39. Blair, G. S., Coulson, G., Blair, L., Duran-Limon, H., Grace, P., Moreira, R., Parlavantzas, N.

Reflection, Self-Awareness and Self-Healing in OpenORB. Proc. of the First Workshop on

Self-Healing Systems. ACM 2002. pp. 9-14.

280 7. References

40. Blair, G. S., Coulson, G., Robin, P., Papathomas, M. An Architecture for Next Generation

Middleware. Proc. of Intl. Conferenece on Distributed Systems Platforms and Open

Distributed Processing (Middleware 98). Springer 1998. pp. 191-206.

41. Blau, J. Microsoft: Community Computing is on the Way. IDG News Service. 22.11.2005.

http://www.networkworld.com/news/2005/112205-community-computing.html

42. Blohm, H. Hierarchical Arrangement of Modified Class Loaders and Token Driven Class

Loaders and Methods of Use. United States Patent 7.536.412.B2. 2009.

43. Bouchenak, S., Hagimont, D. Pickling Threads State in the Java System. Proc. of the Intl.

Conference on Technology of Object-Oriented Languages (TOOLS). IEEE 2000. pp. 22-32.

44. Braun, P. The Migration Process of Mobile Agents - Implementation, Classification, and

Optimization. PhD Thesis. Friedrich-Schiller-Universität Jena 2003.

45. Braun, P. Rossak, W. Mobile Agents - Basic Concepts, Mobility Models, and the Tracy

Toolkit. Elsevier 2005.

46. Brazier, F.M.T., Overeinder, B.J., Steen, M., van Wijngaards, N.J.E. Supporting Internet-

Scale Multi-Agent Systems. Data & Knowledge Engineering. Vol. 41, Nr. 2-3. Elsevier 2002.

pp. 229-245.

47. Bouchenak, S., Hagimont, D., Krakowiak, S., Palma, N., Boyer, F. Experiences Implementing

Efficient Java Thread Serialization, Mobility and Persistence. Software - Practice &

Experience. Vol. 34, Nr. 4. Wiley & Sons 2004.

48. Brazier, F. M. T., Kephart, J. O., Van Dyke Parunak, H., Huhns, M. N. Agents and Service-

Oriented Computing for Autonomic Computing: A Research Agenda. IEEE Internet

Computing. Vol. 13, Nr. 3. IEEE 2009. pp. 82-87.

49. Buckley, A. JSR 294: Improved Modularity Support in the Java Programming Language. Sun

Microsystems. http://jcp.org/en/jsr/detail?id=294

50. Bursell, M., Hayton, R., Donaldson, D., Herbert, A. A Mobile Object Workbench. Proc. of the

Intl. Workshop on Mobile Agents. LNCS 1477. Springer 1998. pp. 136-147.

51. Carlegren, F., Diaz, A. L., McCrimmon, T. Operating Environment Essentials for an On

Demand Breakthrough. IBM DeveloperWorks. IBM 2004.

http://www-106.ibm.com/developerworks/library/i-odoe2/

52. Carzaniga, A, Picco, G.P., Vigna, G. Designing Distributed Applications with Mobile Code

Paradigms. Proc. of the 19th Intl. Conference on Software Engineering. (ICSE’97). ACM

Press 1997. pp. 22-32.

53. Caughey, S. J., Hagimont, D., Ingham, D. B. Deploying Distributed Objects on the Internet.

Advances in Distributed Systems. LNCS 1752. Springer 2000. pp. 213-237.

http://www.networkworld.com/news/2005/112205-community-computing.html
http://jcp.org/en/jsr/detail?id=294
http://www-106.ibm.com/developerworks/library/i-odoe2/

7. References 281

54. Chakravarti, A., Wang, X., Hallstrom, J. O., Baumgartner, G. Implementation of Strong

Mobility for Multi-Threaded Agents in Java. Intl. Conference on Parallel Processing. IEEE

2003. pp. 321-330.

55. Chen, X., Simons, M. A Component Framework for Dynamic Reconfiguration of Distributed

Systems. Proc. of the Intl. Conference on Component Deployment (CD 2002). LNCS 2370.

Springer 2002. pp. 82-96.

56. Chess, D. M. Security Issues in Mobile Code Systems. Mobile Agents and Security. LNCS

1419. Springer 1998. pp. 1-14.

57. Chess, D. M., Palmer, C. C., White, S. R. Security in an Autonomic Computing Environment.

IBM Systems Journal. Vol. 42, Nr. 1. IBM 2003. pp. 5-18.

58. Chester, T. M. Cross-Platform Integration with XML and SOAP. IEEE IT Professional. Vol.

3, Nr. 5. IEEE 2001. pp. 26-34.

59. Chien, A., Calder, B., Elbert, S., Bhatia, K. Entropia: Architecture and Performance of an

Enterprise Desktop Grid System. Journal of Parallel and Distributed Computing. Vol. 63, Nr.

5. Elsevier 2003. pp. 597-610.

60. Clark, D. Face-to-Face with Peer-to-Peer Networking. IEEE Computer. Vol. 34, Nr. 1. IEEE

2001. pp. 18-21.

61. Clark, D. Network Nirvana and the Intelligent Device. IEEE Concurrency. Vol. 7, Nr. 2. IEEE

1999. pp. 16-19.

62. Clarke, M., Blair, G. S., Coulson, G., Parlavantzas, N. An Efficient Component Model for the

Construction of Adaptive Middleware. Proc. of the Intl. Conference on Middleware 2001.

LNCS 2218. Springer 2001. pp. 160-178.

63. Cohen, G. A., Chase, J. S., Kaminsky, D. L. Automatic Program Transformation with JOIE.

Proc. of the USENIX Annual Technical Symposium. USENIX 1998. pp. 167-178.

64. Condor - High Throughput Computing

http://www.cs.wisc.edu/condor/

65. di Constanzo, A., de Assuncao, M., D., Buyya, R. Harnessing Cloud Technologies for a

Virtualized Distributed Computing Infrastructure. IEEE Internet Computing. Vol. 13, Nr. 5.

pp. 24-33.

66. CONTENTUS

http://www.iais.fraunhofer.de/contentus.html

67. Coombes, R., Siddiqi, J. A Framework for IT as a Utility. Proc. of the Intl. Conference on

Information Technology: New Generation. IEEE 2008. pp. 218-223.

http://www.cs.wisc.edu/condor/
http://www.iais.fraunhofer.de/contentus.html

282 7. References

68. Cornell, G., Horstmann, C. S. Core Java. SunSoft Press 1996.

69. Corwin, J., Bacon, D.F., Grove, D., Murthy, C. MJ: A Rational Module System for Java and

its Applications. Proc. of the ACM SIGPLAN Conference on Object-Oriented Programming,

Systems, Languages and Applications (OOPSLA). ACM 2003. pp. 241-254.

70. Costa, F., Blair, G. S., Coulson, G. Experiments with Reflective Middleware. Proc. of the

ECOOP 1998. LNCS 1543. Springer 1998. pp. 390-391.

71. Coulson, G., Blair, G. S., Clarke, M., Parlavantzas, N. The Design of a Configurable and

Reconfigurable Middleware Platform. Distributed Computing. Vol. 15, Nr. 2. Springer 2002.

pp. 109-126.

72. Cunsolo, V. D., Distefano, S., Puliafito, A., Scarpa, M. Cloud@Home - Bridging the Gap

between Volunteer and Cloud Computing. Proc. of the Intl. Conference on Intelligent

Computing. LNCS5754. Springer 2009. pp. 423-432.

73. Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S. Unraveling the

Web Services Web. An Introduction to SOAP, WSDL, and UDDI. IEEE Internet Computing.

Vol. 6, Nr. 2. IEEE 2002. pp. 86-93.

74. Czajkowski, G. Application Isolation in the Java Virtual Machine. Proc. the ACM SIGPLAN

Conference on Object-Oriented Programming Systems, Languages and Applications

(OOPSLA). ACM 2000. pp. 354-366.

75. Czajkowski, G., Daynes, L. Multitasking without Compromise: A Virtual Machine Evolution.

Proc. the ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages

and Applications (OOPSLA). ACM 2001. pp. 125-138.

76. Czajkowski, G., Daynes, L., Nystrom, N. Code Sharing among Virtual Machines. Proc- of the

European Conference on Object-Oriented Programming (ECOOP). ACM 2002. pp. 155-177.

77. Czajkowski, G., Daynes, L., Titzer, B. A Multi-User Virtual Machine. Proc. of the USENIX

2003 Annual Technical Conference. USENIX 2003. pp. 85-98.

78. Czajkowski, G., Hahn, S., Skinner, G., Soper, P., Bryce, C. A Resource Management

Interface for the Java Platform. TR-2003-24. Sun Microsystems 2003.

79. Damianou, N., Dulay, N., Lupu, E., Sloman, M. The Ponder Policy Specification Language.

Proc. of the 2nd Intl. Workshop on Policies for Distributed Systems and Networks

(Policy'01). LNCS 1995. Springer 2001. pp. 18-38.

80. David, P.-C., Ledoux, T. An Infrastructure for Adaptable Middleware. Prof. of the 4th. Intl.

Symposium on Distributed Objects and Applications (DOA). LNCS 2519. Irvine, USA.

Springer 2002. pp. 773-790.

7. References 283

81. Daynes, L., Czajkowski, G. Sharing the Runtime Representation of Classes across Class

Loaders. Proc. of the European Conference on Object-Oriented Programming (ECOOP).

LNCS 3586. Springer 2005. pp. 97-120.

82. Dearle, A. Toward Ubiquitous Environments for Mobile Users. IEEE Internet Computing.

Vol. 2, Nr. 1. IEEE 1998. pp. 22-32.

83. Dearle, A., Kirby, G. N. C. , McCarthy, A., Diaz y Carballo, J. C. A Flexible and Secure

Deployment Framework for Distributed Applications. Proc. of the Intl. Conference on

Component Deployment (CD 2004). LNCS 3083. Springer 2004. pp. 219-233.

84. Deploy Directory.

http://www.quest.com/deploydirector/.

85. Diaz y Carballo J.C., Dearle A., Connor R.C.H. Thin Servers - An Architecture to Support

Arbitrary Placement of Computation in the Internet. Proc. of the Intl. Conference on

Enterprise Information Systems (ICEIS 2002). ICEIS 2002. pp. 1080-1085.

86. Dikaiakos, M. D., Pallis, G., Katsaros, D., Mehra, P., Vakali. A. Cloud Computing -

Distributed Internet Computing for IT and Scientific Research. IEEE Internet Computing.

Vol. 13, Nr. 5. IEEE 2009. pp. 10-13.

87. Dillenberger, W., Bordwekar, R., Clark, C., Durand, D., Emmes, D., Gohda, O., Howard, S.,

Oliver, M., Samuel, F., St. John, R. Building a Java virtual machine for server applications:

The JVM on OS/390. IBM Systems Journal. Vol. 39, No 1. 2000. pp. 194-210.

88. DistrIT

http://distrit.sourceforge.net/

89. Dittmar, T. Ad-Hoc Migration aktiver Java Komponenten in einem verteilten Anwendungs-

system. Diploma Thesis. University of Marburg 2005.

90. Dulay, N., Lupu, E., Sloman, M., Damianou, N. A Policy Deployment Model for the Ponder

Language. Proc. of the Intl. Symposium on Integrated Network Management. IEEE 2001. pp.

14-18.

91. Durnant, B. Tran, F., Horn, F., Stefani, J. B. Jonathan: An Open Distributed Processing

Environment in Java. Proc. of the Intl. Conference on Distributed Systems Platforms and

Open Distributed Processing (Middleware 98). Springer 1998. pp. 175-190.

92. Eberhard, J., Tripathi, A. Efficient Object Caching for Distributed Java RMI Applications.

Proc. of the Intl. Conference on Middleware. LNCS 2218. Springer 2001. pp. 15-35.

93. Echidna

http://ostatic.com/echidna

94. Eckel, B. Thinking in Java. Prentice Hall 2000.

http://distrit.sourceforge.net/

284 7. References

95. Eclipse Equinox

http://www.eclipse.org/equinox/

96. Eclipse Rich Client Platform (RAP)

http://www.eclipse.org/rcp/

97. Eclipse Rich AJAX Platform (RAP)

http://www.eclipse.org/rap/

98. Edwards, W. K., Grinter, R. E. At Home With Ubiquitous Computing - Seven Challenges.

Proc. of the Intl. Conference on Ubiquitous Computing. LNCS 2201. Springer 2001. pp. 256-

272.

99. Einstein@home

http://einstein.phys.uwm.edu/

100. Eisenbach, S., Kayhan, D., Sadler, C. Keeping Control of Reusable Components. Proc. of the

Intl. Working Conference on Component Deployment (CD 2004). LNCS 3083. Springer

2004. pp. 144-158.

101. Ellahi, T. N., Hudzia, B., McDermott, L., Kechadi, T. Transparent Migration of Multi-

Threaded Applications on a Java Based Grid. Prof. of the Intl. Conference on Web

Technologies, Applications, and Services (WTAS 2006). IASTED 2006.

102. Erwin, D., Snelling, D. UNICORE: A Grid Computing Environment. Proc. of the Intl.

Conference Euro-Par. LNCS 2150. Springer 2001. pp. 825-834.

103. Eucalyptus

http://open.eucalyptus.com/

104. Eugster, P. T., Baehni, S. Abstracting Remote Object Interaction in a Peer-to-Peer

Environment. Proc. of the Intl. Symposium on Computing in Object-oriented Parallel

Environments (ISCOPE). ACM 2002. pp. 46-55.

105. Exymen - Extend Your Media Editor Now

http://www.exymen.org

106. eyeOS - Cloud Computing Platform

http://www.eyeos.org

107. FairThreads - Framework for Concurrent and Parallel Programming

http://www-sop.inria.fr/mimosa/rp/FairThreads/index.html

108. Farley, J. Microsoft .NET vs. J2EE: How Do They Stack Up. O'Reilly 2001.

http://www.eclipse.org/equinox/
http://www.eclipse.org/rcp/
http://www.eclipse.org/rap/
http://einstein.phys.uwm.edu/
http://open.eucalyptus.com/
http://www.exymen.org/
http://www.eyeos.org/
http://www-sop.inria.fr/mimosa/rp/FairThreads/index.html

7. References 285

109. Fedak, G., Germain, C., Neri, V., Cappello, F. XtremWeb: A Generic Global Computing

Platform. Proc. of the Intl. Symposium on Cluster Computing and the Grid. IEEE 2001. pp.

582-587.

110. Fellenstein, C. On Demand Computing - Technologies and Strategies. IBM Press. 2005.

111. Figueiredo, R., Dinda, P., Fortes, J. A Case for Grid Computing on Virtual Machines. Proc. of

the Intl. Conference on Distributed Computing Systems (ICDCS). IEEE 2003. pp. 550-559.

112. Flammia, G. Peer-to-Peer Is Not For Everyone. IEEE Intelligent Systems. Vol. 16, Nr. 3.

IEEE 2001. pp. 78-79.

113. Fleury, M., Reverbel, F. The JBoss Extensible Server. Proc. of the ACM Intl. Middleware

Conference. LNCS 2672. Springer 2003. pp 344-373.

114. Floch, J., Stav, E., Hallsteinsen, S. Interfering Effects of Adaptation: Implications on Self-

Adapting Systems Architecture. Proc. of the Intl. Conference on Distributed Applications and

Interoperable Systems (DOA). LNCS 4025. Springer 2006. pp. 64-69.

115. Folding@HOME

http://folding.stanford.edu/

116. Foster, I. The Anatomy of the Grid: Enabling Scalable Virtual Organizations. Proc. of the 1st

Intl. Symposium on Cluster Computing and the Grid. IEEE 2001. pp. 6-7.

117. Foster, I., Kesselman, C. Globus: A Metacomputing Infrastructure Toolkit. Intl. Journal of

Supercomputer Applications. Vol. 11, Nr. 2. MIT Press 1997. pp. 115-128.

118. Foster, I., Kesselman, C., Nick, J. M., Tuecke, S. Grid Services for Distributed System

Integration. IEEE Computer. Vol. 35, Nr. 6. IEEE 2002. pp. 37-46.

119. Foster, I., Zhao, Y., Raicu, I., Lu, S. Cloud Computing and Grid Computing 360-Degree

Compared. Proc. of the Intl. Workshop on Grid Computing Environments IEEE 2008. pp. 1-

10.

120. Foundation for Intelligent Physical Agents (FIPA)

http://www.fipa.org/

121. Fox, G. Peer-to-Peer Networks. IEEE Computing in Science & Engineering. Vol. 3, Nr. 3.

IEEE 2001. pp. 75-77.

122. Fox, G., Gannon, D. Computational Grids. IEEE Computing in Science & Engineering. Vol.

3, Nr. 4. IEEE 2001. pp. 74-77.

123. Franz, M. Dynamic Linking of Software Components. IEEE Computer. Vol. 30, Nr. 3. IEEE

1997. pp. 74-81.

http://folding.stanford.edu/

286 7. References

124. Fraser, K. A., Hand, S. M., Harris, T. L., Leslie, I. M., Pratt, I. A. The XenoServer Computing

Infrastructure. Technical Report UCAM-CL-TR-552. University of Cambridge, Computer

Laboratory. January 2003.

125. Friese, T., Smith, M., Freisleben, B. Hot Service Deployment in an Ad Hoc Grid

Environment. Proc. of the Intl. Conference on Service-Oriented Computing. ACM 2004. pp.

75-83.

126. Fugetta, A. Picco, G.P., Vigna, G. Understanding Code Mobility. IEEE Transactions on

Software Engineering. Vol. 24, Nr. 5. IEEE 1998. pp. 342-361.

127. Fünfrocken, S. Transparent Migration of Java-based Mobile Agents: Capturing and

Reestablishing the State of Java Programs. Proc. of the 2nd Intl. Workshop on Mobile

Agents. LNCS 1477. Springer 1998. pp. 26-37.

128. Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra, J. J., Squyres, J. M., Sahay, V.,

Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R. H., Daniel, D. J., Graham, R. L.,

Woodall, T. S. Open MPI: Goals, Concept, and Design of a Next Generation MPI

Implementation. In 11th European PVM/MPI. LNCS 3241. Springer, 2004. pp. 97-104.

129. Gamma, E., Helm, R, Johnson, R., Vlissides, J. Design Patterns - Elements of Reusable

Object-Oriented Software. Addison-Wesley 1995.

130. Ganek, A. G., Corbi, T. A. The Dawning of the Autonomic Computing Era. IBM Systems

Journal. Vol. 42, Nr. 1. IBM 2003. pp. 5-18.

131. Gavalda, C. P., Lopez, P. G., Andreu, R., M. Deploying Wide-Area Applications Is a Snap.

IEEE Internet Computing. Vol. 11, Nr. 2. IEEE 2007. pp. 72-79.

132. Geihs, K. Selbst-Adaptive Software. Informatik Spektrum. Springer 2007. pp. 133-145.

133. Gil, J.-M., Choi, S.-J. A Peer to Peer Grid Computing System Based on Mobile Agents. Proc.

of the Intl. Conference on Agent and P2P Computing. LNAI 4461. Springer 2008. pp. 175-

186.

134. gLite - Lightweight Middleware for Grid Computing

http://glite.web.cern.ch/glite/

135. The Globus Project

http://www.globus.org

136. Godfrey, B., Lakshminarayanan, K., Surana, S. Karp, R., Stoica, I. Load Balancing in

Dynamic Structured P2P Systems. P2P Computing Systems. Vol. 63, Nr. 3. Elsevier 2006. pp.

217-240.

http://www.globus.org/

7. References 287

137. Goldsack, P., Guijarro, J., Lain, A., Mecheneau, G., Murray, P., Toft, P. SmartFrog:

Configuration and Automatic Ignition of Distributed Applications. HP Labs, Bristol, UK.

http://www.hpl.hp.com/research/smartfrog/

138. Golm, M., Felser, M., Wawersich, C. The JX Operating System. Proc. of the USENIX Annual

Technical Conference. 2002. pp. 45-58.

139. Gong, L. Secure Java Class Loading. IEEE Internet Computing. Vol. 2, Nr. 6. IEEE 1998. pp.

56-61.

140. Gong, L. JXTA: A Network Programming Environment. IEEE Internet Computing. Vol. 5, Nr.

3. IEEE 2001. pp. 88-95.

141. Goodwill, J. Apache Jakarta Tomcat. APress. 2001.

142. Google Android

http://www.android.com/

143. Google AppEngine

http://code.google.com/appengine/

144. Google Web Toolkit

http://code.google.com/webtoolkit/

145. Graupner, S., Kotov, V., Andrzejak, A., Trinks, H. Service-Centric Globally Distributed

Computing. IEEE Internet Computing. Vol. 7, Nr. 4. IEEE 2003. pp. 36-43.

146. Great Internet Prime Search (GIMPS)

http://www.mersenne.org/

147. Grechanik, M., Perry, D. E. Secure Deployment of Components. Proc. of the Intl. Conference

on Component Deployment (CD 2004). LNCS 3083. Springer 2004. pp. 175-189.

148. Greenwood, D., Rimassa, G. Autonomic Goal-Oriented Business Process Management. Proc.

of the Intl. Conference on Autonomic and Autonomous Systems. IEEE 2007. pp. 43-48.

149. GridGain

http://www.gridgain.com/

150. Grossmann, R. L. The Case for Cloud Computing. IEEE IT Professional. Vol. 11, Nr. 2. IEEE

2009. pp. 23-27.

151. Grimshaw, A., Ferrari, A., Knabe, F., Humphrey, M. Wide-Area Computing: Resource

Sharing on a Large Scale. IEEE Computer. Vol. 32, Nr. 5. IEEE 1999. pp. 29-37.

152. Grimshaw A. S., Wulf W. A. The Legion Vision of a Worldwide Virtual Computer.

Communications of the ACM. Vol. 40, Nr. 1. ACM 1997. pp. 39-45.

http://www.android.com/
http://code.google.com/webtoolkit/
http://www.mersenne.org/

288 7. References

153. Griss, M. L., Pour, G. Accelerating Development with Agent Components. IEEE Computer.

Vol. 34, Nr. 5. IEEE 2001. pp. 37-43.

154. Gruber, O., Hargrave, B. J., McAffer, J., Rapicault, P., Watson, T. The Eclipse 3.0 Platform:

Adopting OSGi Technology. IBM Systems Journal. Vol. 44, Nr. 2. IBM 2005. pp. 289-299.

155. Grundy, J. Storage and Retrieval of Software Components Using Aspects. Proc. of 23rd

Australasian Computer Science Conference. IEEE 2000. pp. 95-103.

156. Gupta, R., Talwar, S., Agrawal, D. P. Jini Home Networking: A Step Toward Pervasive

Computing. IEEE Computer. Vol. 35, Nr. 8. IEEE 2002. pp. 34-40.

157. Guy-Ari, G. Empower RMI with TRMI. JavaWorld. Nr. 9. IDG 2002.

http://www.javaworld.com/javaworld/jw-08-2002/jw-0809-trmi_p.html

158. Hall, M. Core Servlets and JavaServer Pages (JSP). Prentice Hall/Sun Microsystems Press

2000.

159. Hall, R. S. A Policy-Driven Class Loader to Support Deployment in Extensible Frameworks.

Proc. of the Intl. Workshop on Component Deployment (CD 2004). LNCS 3083. Springer

2004. pp. 81-96.

160. Hall, R. S., Heimbigner, D, Wolf, A. L. A Cooperative Approach to Support Software

Deployment Using the Software Dock. Proc. of the 21st Intl. Conference on Software

Engineering (ICSE 1999). Los Angeles, USA. ACM 1999. pp. 174-183.

161. Hallenborg, K., Kristensen, B. B. Jini Supporting Ubiquitous and Pervasive Computing. Proc.

of the 5th Intl. Symposium on Distributed Objects and Applications (DOA). LNCS 2888.

Springer 2003. pp. 1110-1132.

162. Hammel, M. Dynamische Lokalisierung und Bindung von migrierenden Web Services.

Diploma Thesis. University of Siegen 2002.

163. Hanssen, O., Eliassen, F. A Framework for Policy Bindings. Proc. of the Intl. Conference on

Distributed Objects and Applications (DOA 1999). IEEE 1999. pp. 2-11.

164. Har'El, Z., Rosberg, Z. Java Class Broker - A Seamless Bridge from Local to Distributed

Programming. Journal of Parallel and Distributed Computing. Vol. 60, Nr. 10. Elsevier

Science 2000. pp. 1223-1237.

165. Hawblitzel, C., Chang, C-C., Czajkowski, G., Hu, D., von Eicken, T. Implementing Multiple

Protection Domains in Java. Proc. of the USENIX Annual Conference. 1998. pp. 22.

166. Hayton, R., Herbert, A. FlexiNet: A Flexible, Component-Oriented Middleware System.

Advances in Distributed Systems. LNCS 1752. Springer 2000. pp. 497-508.

167. Helal, S. Pervasive Java. IEEE Pervasive Computing. Vol. 1, Nr. 1. IEEE 2002. pp. 82-85.

http://www.javaworld.com/javaworld/jw-08-2002/jw-0809-trmi_p.html

7. References 289

168. Holder, O., Ben-Shaul, I., Gazit, H. Dynamic Layout of Distributed Applications in FarGo.

Proc. of the 21st Intl. Conference on Software Engineering. ACM 1999. pp. 163-173.

169. Huebscher, M.C., McCann, J.A. A Survey of Autonomic Computing - Degrees, Models, and

Applications. ACM Computing Surveys. Vol 40, Nr. 3. ACM 2008. pp. 1-31.

170. Huhns, M. N., Singh, M. P. Service-Oriented Computing: Key Concepts and Principles. IEEE

Internet Computing, Vol. 9, Nr. 1. IEEE 2005. pp. 75-81.

171. Hunter, J., Crawford, W., Ferguson, P. Java Servlet Programming. O’Reilly & Associates

1998.

172. IBM World Community Grid

http://www.worldcommunitygrid.org/

173. Illmann, T., Kruger, T., Kargl, F., Weber, M. Transparent Migration of Mobile Agents using

the Java Platform Debugger Architecture. Proc. of the Intl. Conference on Mobile Agents.

LNCS 2240. Springer 2001. pp. 198-212.

174. IoMega. v.Clone - Take your PC Virtually Anywhere

http://protection-suite.iomega-web.com/vclone

175. Ishida, T. Towards Computation over Communities. Community Computing and Support

Systems. LNCS 1519. Springer 1998. pp. 1-10.

176. Ismail, L. Authentication Mechanisms for Mobile Agents. Proc. of the Intl. Conference on

Availability, Reliability and Security. IEEE 2007. pp. 246-253.

177. Izatt, M., Chan, P. Ajents: Towards an Environment for Parallel, Distributed and Mobile

Java Applications. Java Grand Conference. ACM 1999. pp. 15-24.

178. JADE

http://sharon.cselt.it/projects/jade/

179. JBOSS Application Server

http://www.jboss.org

180. JNode - Java New Operating System Design Effort

http://www.jnode.org

181. JOS - Java Operating System

http://jos.sourceforge.net

182. Jsh - The Open Source Java Application Launcher

http://gerard.collin3.free.fr/index.html

http://www.worldcommunitygrid.org/
http://sharon.cselt.it/projects/jade/
http://www.jboss.org/
http://www.jnode.org/
http://jos.sourceforge.net/
http://gerard.collin3.free.fr/index.html

290 7. References

183. JPPF - Java Parallel Processing Framework

http://www.jppf.org

184. JX - The Fast and Flexible Java OS

http://www.jxos.org/

185. Jeon, H., Petrie, C., Cutkosky, M. R. JATLite: A Java Agent Infrastructure with Message

Routing. IEEE Internet Computing. Vol. 4, Nr. 2. IEEE 2000. pp. 87-96.

186. Jiang, X., Xu, D. SODA: A Service-On-Demand Architecture for Application Service Hosting

Utility Platforms. Proc. of the Conference on High Performance Distributed Computing

(HPDC). Seattle, USA. IEEE 2003. pp. 174-183.

187. Jonas

http://jonas.ow2.org

188. Kebbal, D., Bernard, G. Component Search Service and Deployment of Distributed

Applications. Proc. of the 3rd Intl. Symposium on Distributed Objects and Applications

(DOA). IEEE 2001. pp. 125-134.

189. Keith, W. Core Jini. Prentice Hall 1999.

190. Keller, A., Badonnel, R. Automating the Provisioning of Application Services with the

BPEL4WS Workflow Language. Proc. of the Intl. Conference on Utility Computing. LNCS

3278. Springer 2004. pp. 15-27.

191. Kephart, J. O., Chess, D. M. The Vision of Autonomic Computing. IEEE Computer. Vol. 36,

Nr. 1. IEEE 2003. pp. 41-50.

192. Kephart, J. O. Research Challenges of Autonomic Computing. Proc. of the Intl. Conference on

Software Engineering (ICSE). ACM 2005. pp. 15-22.

193. Kephart, J. O., Das, R. Achieving Self-Management via Utility Functions. Internet Computing.

Vol. 11, Nr. 1. IEEE 2007. pp. 40-47.

194. Kern, S., Braun, P., Fensch, C., Rossak, W. Class Splitting as a Method to Reduce Migration

Overhead of Mobile Agents. Proc. of the Intl. Symposium on Distributed Objects and

Applications (DOA). LNCS 3291. Springer 2004. pp. 1358-1375.

195. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Videira Lopes C., Loingtier, J.-M., and

Irwin, J. Aspect-Oriented Programming. Proc. of the European Conference on Object-

Oriented Programming (ECOOP). LNCS 1241. Springer 1997. pp. 220-242.

196. Kindberg, T., Barton J. A Web-Based Nomadic Computing System. Pervasive Computing.

Vol. 34, Nr. 4. Elsevier 2001. pp. 443-456.

http://www.jppf.org/
http://www.jxos.org/

7. References 291

197. Kindberg, T., Fox, A. System Software for Ubiquitous Computing. IEEE Pervasive

Computing. Vol. 1, Nr. 1. IEEE 2002. pp. 70-81.

198. Kleinrock, L. Nomadic Computing - An Opportunity. ACM SIGCOMM Computer

Communication Review. Vol. 25, Nr. 1. ACM 1995. pp. 36-40.

199. Kleinrock, L. Nomadic Computing and Smart Spaces. IEEE Internet Computing. Vol. 4, Nr.

1. IEEE 2000. pp. 52-53.

200. Kniesel, G., Costanza, P., Austermann, M. JMangler - A Framework for Load-Time

Transformation of Java Class Files. Proc. of the Workshop on Source Code Analysis and

Manipulation. IEEE 2001. pp. 100-110.

201. Kon, F., Campbell, R. H. Dependence Management in Component-Based Distributed

Systems. IEEE Concurrency. Vol. 8, Nr. 1. IEEE 2000. pp. 26-36.

202. Kortuem, G, Fickas, S., Segall, Z. On-Demand Delivery of Software in Mobile Environments.

Proc. of the Nomadic Computing Workshop. 1997.

203. Koster, R., Black, A. P., Huang, J., Walpole, J., Pu, C. Thread Transparency in Information

Flow Middleware. Middleware 2001. LNCS 2218. Springer 2001. pp. 121-140.

204. Kotsovinos, E. Global Public Computing. Technical Report. University of Cambridge 2005.

205. Koutsonikola, V., Vakali, A. LDAP: Framework, Practices, and Trends. IEEE Internet

Computing. Vol. 8, Nr. 5. IEEE 2004. pp. 66-72.

206. Kozuch, M., Satyanarayanan, M., Bressoud, T., Helfrich, C., Sinnamohideen, S. Seamless

Mobile Computing on Fixed Infrastructure. IEEE Computer. Vol. 32, Nr. 7. IEEE 2004. pp.

65-72.

207. Kumara, M. H. W., He, P., Sun, X. An Agent-Based Approach for Universal Personal

Computing. Proc. of the Intl. Conference on Circuits and Systems. IEEE 2000. pp. 18-21.

208. Kuperberg, M., Krogmann, K., Reussner, R. Performance Prediction for Black-Box

Components Using Reengineered Parametric Behaviour Models. Proc. of the Intl. Conference

on Component Based Software Engineering. LNCS 5282. Springer 2008. pp. 48-63.

209. Kurzyniec, D., Sunderam, V. Flexible Class Loader Framework: Sharing Java Resources in

Harness System. Proc. of the Intl. Conference on Computer Science. LNCS 2073. Springer

2001. pp. 375-384.

210. Kurzyniec, D., Wrzosek, T., Sunderam, V., Sominski,A. RMIX: A Multiprotocol RMI

Framework for Java. Proc. of the Parallel and Distributed Processing Symposium (IPDPS'03).

IEEE 2003. pp. 140.

292 7. References

211. Lai, A., Nieh, J. Limits of Wide-Area Thin-Client Computing. Proc. of the Intl. Conference on

Measurements and Modeling of Computer Systems. ACM 2002. pp. 228-239.

212. Lange, D. B. Oshima, M. Programming and Deploying Java Mobile Agents with Aglets.

Addison-Wesley 1998.

213. von Laszewski, G., Blau, E., Bletzinger, M., Gawor, J., Lane, P., Martin, S., Russel M.

Software, Component, and Service Deployment in Computational Grids. LNCS 2370.

Springer 2002. pp. 244-256.

214. Lau, K.-K., Wang, Z. A Taxonomy of Software Component Models. Proc. of the

EUROMICRO Conference on Software Engineering and Advanced Applications. IEEE 2005.

pp. 88-95.

215. Lawton, G. Developing Software Online With Platform-as-a-Service Technology. IEEE

Computer. Vol. 41, Nr. 6. IEEE 2008. pp. 13-15.

216. Lawton, G. New Ways to Build Rich Internet Applications. IEEE Computer. Vol. 41, Nr. 8.

IEEE 2008. pp. 10-12.

217. Lea, D. Concurrent Programming in Java: Design Principles and Patterns. Addison-Wesley

1999.

218. Leavitt, N. Is Cloud Computing Really Ready for Prime Time. IEEE Computer. Vol. 42, Nr.

1. IEEE 2009. pp. 15-20.

219. Lee, C., Lim, S. H., Lim, S. S., Park, K. H. Autonomous Management of Clustered Server

Systems Using JINI. Proc. of the Intl. Conference on Utility Computing. LNCS 3278.

Springer 2004. pp. 124-134.

220. Lenk, A., Klems, M., Nimis, J., Tai, S., Sandholm, T. What's inside the Cloud? An

Architectural Map of the Cloud Landscape. Proc. of the Intl. Workshop on Software

Engineering Challenges of Cloud Computing. IEEE 2009. pp. 23-31.

221. Li, Y., Leung, V. C. M. Supporting Personal Mobility for Nomadic Computing over the

Internet. ACM SIGMOBILE Mobile Computing and Communications Review. Vol. 1, Nr. 1.

ACM 1997. pp. 22-31.

222. Li, Y., Leung, V. C. M. A Framework for Universal Personal Computing. Proc. of the Intl.

Conference on Universal Personal Communication. IEEE 1996. pp. 769-773.

223. Liang, S., Bracha, G. Dynamic Class Loading In The Java Virtual Machine. Proc. of the

Conference on Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA). ACM 1998. pp. 36-44.

7. References 293

224. Linaje, M., Preciado, J. C., Sanchez-Figueroa, F. Engineering Rich Internet Application User

Interfaces over Legacy Web Models. IEEE Internet Computing. Vol. 11, Nr. 6. IEEE 2007.

pp. 53-59.

225. Lindholm, T., Yellin, F. The Java Virtual Machine Specification. Addison-Wesley. 1999.

226. Lindfors, J., Fleury, M. JMX: Managing J2EE with Java Management Extensions. SAMS

2002.

227. Little, M. C., Wheater, S. M. Building Configurable Applications in Java. Proc. of Intl.

Conference on Configurable Distributed Systems. INSPEC 1998. pp. 172-179.

228. Lopes, R., F., Silva, F. J. Strong Migration in a Grid based on Mobile Agents. Transactions

on Systems. Vol. 4, Nr. 10. WSEAS 2005. pp. 1687-1694.

229. Maassen, J., van Nieuwpoort, R., Veldema, R., Bal, H., Kielmann, T., Jacobs, C., Hofman, R.

Efficient Java RMI for Parallel Programming. Transactions on Programming Languages and

System. Vol. 23, Nr. 6. ACM 2001. pp. 747-775.

230. Makimoto, T., Eguchi, K., Yoneyama, M. The Cooler The Better: New Directions in Nomadic

Age. IEEE Computer. Vol. 34, Nr. 4. IEEE 2001. pp. 38-42.

231. Manoel, E., Brumfield, S. C., Converse, M., DuMont, M., Hand, L., Lilly, G., Moeller, M.,

Nemati, A., Waisanen, Al. Provisioning On Demand: Introducing IBM Tivoli Intelligent

ThinkDynamic Orchestrator. IBM Redbook 2003.

232. Marvic, R., Merle, P., Geib, J.-M. Towards a Dynamic CORBA Component Platform. Proc. of

the 2nd Intl. Symposium on Distributed Objects and Applications (DOA 2000). IEEE 2000.

pp. 305-314.

233. McKinley, P. K, Sadjadi, S. M., Cheng, B. H. C. Composing Adaptive Software. IEEE

Computer. Vol. 37, Nr. 7. IEEE 2004. pp. 56-64.

234. McLean, S., Williams, K., Naftel, J. Microsoft .NET Remoting. Microsoft Press. 2002.

235. MEDIAGRID

http://www.d-grid-ggmbh.de/index.php?id=112

236. Merino, L. R., Lopez, L., Fernandez, A., Cholvi, V. DANTE: A Self-Adapting Peer-to-Peer

System. Proc. of the Intl. Conference on Agent and P2P Computing. LNAI 4461. Springer

2008. pp. 31-42.

237. Meyer, B. .NET is coming. IEEE Computer. Vol. 34, Nr. 8. IEEE 2001. pp. 92-97.

238. Microsoft Silverlight

http://www.microsoft.com/silverlight/

http://www.microsoft.com/silverlight/
http://www.microsoft.com/silverlight/

294 7. References

239. Microsoft Windows Registry

http://en.wikipedia.org/wiki/Windows_Registry/

240. Milenkovic, M., Robinson, S. H., Knauerhase, R. C., Barkai, D., Garg, S., Tewari, V.,

Anderson, T. A., Bowman, M. Toward Internet Distributed Computing. IEEE Computer. Vol.

36, Nr. 5. IEEE 2003. pp. 38-46.

241. Milojicic, D., Douglis, F., Paindaveine, Y., Wheeler, R., Zhou, S. Process Migration. ACM

Computing Surveys. Vol. 32, Nr. 3. ACM 2000. pp. 241-299.

242. Monson-Haefel, R. Enterprise JavaBeans. 2nd edition. O’Reilly 2000.

243. Montanari, R., Tonti, G., Stefanelli, C. Policy-Based Separation of Concerns for Dynamic

Code Mobility Management. Proc. of the 27th Intl. Conference on Computer Software and

Applications. IEEE 2003. pp. 82-90.

244. Montanari, R., Lupu, E., Stefanelli, C. Policy-Based Dynamic Reconfiguration of Mobile-

Code Applications. IEEE Computer. Vol. 37, Nr. 7. IEEE 2004. pp. 73-80.

245. Montresor, A. A Robust Protocol for Building Superpeer Overlay Topologies. Proc. of the 4th

Intl. Conference on Peer-to-Peer Computing. IEEE 2004. pp. 202-209.

246. Moreau, L., Ribbens, D. Mobile Objects in Java. Scientific Programming. Vol. 10, Nr. 1.

ACM 2002. pp. 91-100.

247. Mühlenschulte, Albrecht. Lokalisierung von Ressourcen in einem P2P Netzwerk. Student

Thesis. University of Marburg 2006.

248. Müller, H. A., Kienle, H. M., Stege, U. Autonomic Computing Now You See It, Now You

Don’t. Design and Evolution of Autonomic Software Systems. Proc. of the Intl. Summer

Schools on Software Engineering. LNCS 5413. Springer 2009. pp. 32-54.

249. Munch-Ellingsen, A., Eriksen, D. P., Andersen, A. Argos, an Extensible Personal Application

Server. Prof. of the Intl. Conference on Middleware 2007. LNCS 4834. Springer 2007. pp.

21-40.

250. Murch, R. Autonomic Computing. IBM Press 2004.

251. Myers, B. A. Using Hand-Held Devices and PCs Together. Communications of the ACM.

ACM 2001. pp. 34-41.

252. Narasimhan, P., Moser, L. E., Melliar-Smith, P. M. Using Interceptors to Enhance CORBA.

IEEE Computer. Vol. 32, Nr. 7. IEEE 1999. pp. 62-68.

253. Neable, C. The .NET Compact Framework. IEEE Pervasive Computing. Vol. 1, Nr. 4. IEEE

2002. pp. 84-87.

http://www.mersenne.org/

7. References 295

254. Netx

http://jnlp.sourceforge.net/netx/compare.html.

255. Nichols, D. Using Idle Workstations in a Shared Computing Environment. ACM SIGOPS

Operating Systems Review. Vol. 21, Nr. 5. ACM 1987, pp. 5-12.

256. NOMADS

http://www.coginst.uwf.edu/projects/nomads/index.html

257. Novell Mono

http://www.mono-project.com

258. Oaks, S. Wong, H. Java Threads. O’Reilly & Assoc. 1997.

259. OASIS. Web Services Resource Framework (WSRF)

http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-01.pdf

260. Object Component Desktop

http://ocd.sourceforge.net/docs/index.html.

261. Open Grid Service Architecture

http://www.globus.org/ogsa/

262. OSGi The Dynamic Module System for Java. OSGi Alliance 2009

http://osgi.org.

263. Orfali, R., Harkey, D. Client/Server Programming with Java and CORBA. 2nd edition. John

Wiley & Sons, Inc. 1998.

264. O'Sullivan, D., Wade, V., Lewis, D. Understanding as We Roam. IEEE Internet Computing.

Vol. 11, Nr. 2. IEEE 2007. pp. 26-33.

265. Paal, S., Kammüller, R., Freisleben, B. Distributed Extension of Internet Information Systems.

Proceedings of the 13th IASTED International Conference on Parallel and Distributed

Computing and Systems (PDCS 2001). Anaheim, USA. IASTED 2001. pp. 38-43.

266. Paal, S., Kammüller, R., Freisleben, B. Dynamic Composition of Web Server Functionality

over the Internet. Proceedings of the 6th Intl. WebNet World Conference of the WWW,

Internet, and Intranet (Webnet 2001). Orlando, USA. AACE 2001. pp. 967-972.

267. Paal, S., Kammüller, R., Freisleben, B. Java Class Separation for Multi-Application Hosting.

Proceedings of the 3rd Intl. Conference on Internet Computing (IC 2002). Las Vegas, USA.

CSREA 2002. pp. 259-266.

268. Paal, S., Kammüller, R., Freisleben, B. Java Class Deployment with Class Collections.

Proceedings of the 3rd Intl. Conference on Objects, Components, Architectures, Services and

Applications for a Networked World (NODE 2002). Erfurt, Germany. 2002. pp. 144-158.

http://jnlp.sourceforge.net/netx/compare.html
http://www.coginst.uwf.edu/projects/nomads/index.html
http://www.mono-project.com/
http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-01.pdf
http://ocd.sourceforge.net/docs/index.html
http://www.globus.org/ogsa/
http://osgi.org/

296 7. References

269. Paal, S., Kammüller, R., Freisleben, B. Customizable Deployment, Composition and Hosting

of Distributed Java Applications. Proceedings of the 3rd Intl. Conference on Distributed

Objects and Applications (DOA 2002). LNCS 2519. Irvine, USA. Springer 2002. pp. 845-

865.

270. Paal, S., Kammüller, R., Freisleben, B. Java Class Deployment with Class Collections.

Objects, Components, Architectures, Services, and Applications for a NetworkedWorld.

LNCS 2591. Erfurt, Germany. Springer 2003. pp. 135-151.

271. Paal, S., Kammüller, R., Freisleben, B. Java Remote Object Binding with Method Streaming.

Proceedings of the 4th Intl. Conference on Objects, Components, Architectures, Services and

Applications for a Networked World (NODE 2003). Erfurt, Germany, 2003. pp. 230-244.

272. Paal, S., Kammüller, R., Freisleben, B. Separating the Concerns of Distributed Deployment

and Dynamic Composition in Internet Application Systems. Proceedings of the 4th Intl.

Conference on Distributed Objects and Applications (DOA 2003). LNCS 2888. Catania, Italy.

Springer 2003. pp. 1292-1311.

273. Paal, S., Kammüller, R., Freisleben, B. Self-Managing Remote Object Interconnection.

Proceedings of the 15th Intl. Conference and Workshop on Database and Expert Systems

Applications (DEXA 2004). Zaragoza, Spain. IEEE 2004. pp. 758-763.

274. Paal, S., Kammüller, R., Freisleben, B. A Cross-Platform Application Environment for

Nomadic Desktop Computing. Proceedings of the Intl. Conference on Objects, Components,

Architectures, Services, and Applications for a NetworkedWorld (NODE 2004). LNCS 3263.

Erfurt, Germany. Springer 2004. pp. 185-200.

275. Paal, S., Kammüller, R., Freisleben, B. Supporting Nomadic Desktop Computing using an

Internet Application Workbench. Proceedings of the 5th Intl. Conference and Workshop on

Distributed Objects and Applications (DOA 2004). Larnaca, Cyprus. Springer 2004. pp. 40-

43.

276. Paal, S., Novak, J., Freisleben, B. Kollektives Wissensmanagement in virtuellen

Gemeinschaften. Wissensprozesse in der Netzwerkgesellschaft. transcript Verlag 2004. pp.

119-143.

277. Paal, S., Kammüller, R., Freisleben, B. Dynamic Software Deployment with Distributed

Application Repositories. 14. Fachtagung Kommunikation in Verteilten Systemen (KiVS

2005). Informatik aktuell. Kaiserlautern, Germany. Springer 2005. pp. 41-52.

278. Paal, S., Kammüller, R., Freisleben, B. Application Object Isolation in Cross-Platform

Operating Environments. Proceedings of the 6th Intl. Symposium on Distributed Objects and

Applications (DOA 2005). LNCS 3761. Agia Napa, Cyprus. Springer 2005. pp. 1047-1064.

7. References 297

279. Paal, S., Kammüller, R., Freisleben, B. An Autonomic Cross-Platform Operating Environment

for On Demand Internet Computing. Demonstration on the 6th International Middleware

Conference (MW 2005). Grenoble, France. 2005.

280. Paal, S., Kammüller, R., Freisleben, B. Crosslets: Self-Managing Application Deployment in

a Cross-Platform Operating Environment. Proceedings of the 3rd Intl. Conference on

Component Deployment (CD 2005). LNCS 3798. Grenoble, France. Springer 2005. pp. 51-

65.

281. Paal, S., Kammüller, R., Freisleben, B. Crossware: Integration Middleware for Autonomic

Cross-Platform Internet Application Environments. Journal on Integrated Computer-Aided

Engineering. Vol. 13, Nr. 1. IOS Press 2006. pp. 41-62.

282. Paal, S., Kammüller, R., Freisleben, B. Self-Managing Application Composition for Cross-

Platform Operating Environments. Proceedings of the 2nd IEEE Intl. Conference on

Autonomic and Autonomous Systems (ICAS 2006). Silicon Valley, USA. IEEE 2006. p. 37.

283. Paal, S., Bröcker, L., Borowski, M. Supporting On-Demand Collaboration in Web-Based

Communities. Proceedings of the 17th IEEE Intl. Conference on Database and Expert Systems

Applications (DEXA 2006). Krakow, Poland. IEEE 2006. pp. 293-298.

284. Paal, S. ODIX: An On-Demand Internet Application Workbench. Proceedings of the 9th Intl.

Conference on Internet Computing (ICOMP 2008). Las Vegas, USA. CSREA 2008. pp. 342-

348.

285. Pairot, C., Garcia, P., Mondejar, R., Skarmeta, A. F. Building Wide-Area Collaborative

Applications on Top of Structured Peer-to-Peer Overlays. Proc. of the 14th Intl. Workshops

on Enabling Technologies: Infrastructures for Collaborative Enterprises. IEEE 2005. pp. 350-

355.

286. Papazoglou, M.P., Georgakopoulos, D. Service Oriented Computing. Communications of

ACM. Vol. 46, Nr. 10. ACM 2003. pp. 24-28.

287. Parameswaran, M., Susarla, A., Whinston, A. B. P2P Networking: An Information-Sharing

Alternative. IEEE Computer. Vol. 34, Nr. 7. IEEE 2001. pp. 31-38.

288. Parker, D., Cleary, D. A P2P Approach to ClassLoading in Java. Proc of the Intl. Conference

on Agents and Peer-to-Peer Computing. LNAI 2872. Springer 2003. pp. 144-149.

289. Parkin, M., Brooke, J. M. A PDA Client for the Computational Grid. Concurrency: Practice

and Experiences. Vol. 19, Nr. 9. John Wiley & Sons, Ltd. 2006. pp. 1317-1331.

290. Parlavantzas, C.G., Blair, G. An Extensible Binding Framework for Component-Based

Middleware. Proc. of the Intl. Conference on Enterprise Distributed Objects Computing.

IEEE 2003. pp. 252.

298 7. References

291. Pashtan, A., Heusser, A., Scheuermann, P. Personal Service Areas for Mobile Web

Applications. IEEE Internet Computing. IEEE 2004. Vol. 8, Nr. 6. pp. 34-39.

292. Paton, N. W., de Aragao, M. A. T., Lee, K., Fernandes, A., Sakellariou, R. Optimizing Utility

in Cloud Computing through Autonomic Workload Execution. IEEE Bulletin of the Technical

Committee on Data Engineering. Vol. 32, Nr. 1. IEEE 2009. pp. 51-58.

293. Paulson, L. D. Building Rich Web Applications with AJAX. IEEE Computer. Vol. 38, Nr. 10.

IEEE 2005. pp. 14-17.

294. Picco, G. P. Mobile Agents: An Introduction. Journal on Microprocessors and Microsystems.

Vol. 25, Nr. 2. Elsevier 2001. pp. 65-74.

295. Ponzo, J., Hasson, L. D., George, J., Thomas, G., Gruber O. et. al. On Demand Web-Client

Technologies. IBM Systems Journal. Vol. 43, Nr. 2. IBM 2004. pp. 297-315.

296. PowerUpdate

http://www.zerog.com/products_pu.html.

297. Psotta, R. Automatische Konfiguration von heterogenen Internet-Anwendungssystemen für

plattformtransparente Benutzerumgebungen. Diploma Thesis. University of Marburg 2004.

298. Puder, A. A Code Migration Framework for AJAX Applications. Proc. of the Intl. Conference

on Distributed Applications and Interoperable Systems. LNCS 4025. Springer 2006. pp. 138-

151.

299. Qi, R., Wang, Z., Li, S. JMobile: A Lighweight Transparent Migration Mechanism for Mobile

Agents. Proc. of the Intl. Conference on Wireless Communications, Networking and Mobile

Computing (WiCOM 2008). IEEE 2008. pp. 1-4.

300. Richardson, T., Stafford-Fraser, Q., Wood, K. R., Hopper, A. Virtual Network Computing.

IEEE Internet Computing. Vol. 2, Nr. 1. IEEE 1998. pp. 33-38.

301. Richmond, M., Noble, J. Reflections on Remote Reflection. Proc. of the 24th Australasian

Computer Science Conference (ACSC). IEEE 2001. pp. 163-170.

302. Rinat, R., Smith, S. Modular Internet Programming with Cells. Proc. of the ECOOP 2002.

LNCS 2374. Springer 2002. pp. 257-280.

303. Ripeanu, M., Iamnitchi, A., Foster, I. Mapping the Gnutella Network. IEEE Internet

Computing. Vol. 6, Nr. 1. IEEE 2002. pp. 50-57.

304. Roberts, L. G. Beyond Moore's Law: Internet Growth Trends. IEEE Computer. Vol. 33, Nr. 1.

IEEE 2000. pp. 117-119.

http://www.zerog.com/products_pu.html

7. References 299

305. Roscoe, T., Lyles, B. Distributing Processing without DPEs: Design Considerations for

Public Computing Platforms. Proc. of the ACM SIGOPS European Workshop: Beyond the

PC - New Challenges for the Operating System. ACM 2000. pp. 235-240.

306. Rowstron, A., Druschel, P. Pastry: Scalable, Decentralized Object Location and Routing for

Large-Scale Peer-to-Peer Systems. Proc. of the Intl. Conference on Middleware (MW 2001).

LNCS 3347. Springer 2001. pp. 329-350.

307. Royon, Y., Frenot, S., Le Mouel, F. Virtualization of Service Gateways in Multi-Provider

Environments. Proc. of the Intl. Conference on Component Based Software Engineering.

LNCS 4063. Springer 2006. pp. 385-392.

308. Rubin, A. D., Geer, D. E. Mobile Code Security. IEEE Internet Computing. Vol. 2, Nr. 6.

IEEE 1998. pp. 30-34.

309. Ruth, P., Jiang, X., Xu, D., Goasguen, S. Virtual Distributed Environments in a Shared

Infrastructure. IEEE Computer. Vol. 38, Nr. 5. IEEE 2005. pp. 63-69.

310. Sadjadi, S. M., McKinley, P. K., Cheng, B. H. C., Stirewalt, R. E. TRAP/J: Transparent

Generation of Adaptable Java Programs. Proc. of the 6th Intl. Symposium on Distributed

Objects and Applications (DOA). LNCS 3291. Springer 2004. pp. 1243-1261.

311. Sakamoto, T., Sekiguchi, T., Yonezawa, A. Bytecode Transformation for Portable Thread

Migration in Java. Proc. of the Joint Symposium on Agent Systems, Mobile Agents, and

Applications. LNCS 1882. Springer 2000. pp. 443-481.

312. Santos, N., Marques, P., Silva, L. M., Silva, J. G. A Framework for Smart Proxies and

Interceptors in RMI. Proc. of the Intl. Conference on Parallel and Distributed Computing

Systems. IASTED 2002. pp. 1-18.

313. Satoh, I. Self-Deployment of Distributed Applications. Proc. of the Intl. Conference on

Scientific Engineering of Distributed Java Applications (FIDJI 2004). LNCS 3409. Springer

2004. pp. 48-57.

314. Satyanarayanan, M. Pervasive Computing: Vision and Challenges. Personal Communication.

IEEE 2001. pp. 10-17.

315. Satyanarayanan, M., Gilbert, B., Toups, M., Tolia, N., Surie, A., O’Hallaron, D. R., Wolbach,

A., Harkes, J., Perrig, A., Farber, D. J., Kozuch, M. A., Helfrich, C. J., Nath, P., Lagar-

Cavilla, H.-A. Pervasive Personal Computing in an Internet Suspend/Resume System. IEEE

Internet Computing. Vol. 11, Nr. 2. IEEE 2007. pp. 16-25.

316. Satyanarayanan, M., Kozuch, M. A., Helfrich, C. J., O'Halleron, D. R. Towards Seamless

Mobility on Pervasive Hardware. Pervasive and Mobile Computing, Vol. 1, Nr. 2. Elsevier

2005. pp. 157-189.

300 7. References

317. Schmeck, H. Organic Computing - A New Vision for Distributed Embedded Systems. Proc. of

the Intl. Symposium on Object-Oriented Real-Time Distributed Computing (ISORC 2005).

IEEE 2005. pp. 201-203.

318. Schmidt, K. Verteilte On-Demand Prozessierung von Multimediadaten. Diploma Thesis.

University of Siegen 2010.

319. Schulze, B., Madeira, E. Migration Transparency in Agent Systems. IEICE/IEEE Special

Issue on Autonomous Decentralized Systems. Vol. E83-B, Nr. 5. IEEE 2000. pp. 942-950.

320. Seacord, R. C., Hissam, S. A., Wallnau, K. C. AGORA: A Search Engine for Software

Components. IEEE Internet Computing. Vol. 2, Nr. 6. IEEE 1998. pp. 62-70.

321. Secure and Open Mobile Agent

http://lia.deis.unibo.it/Research/SOMA/

322. Seely, S. SOAP: Cross Platform Web Service Development Using XML. Prentice Hall.

Hartford, Wisconsin. 2001.

323. Sharma, V. S., Jalote, P. Deploying Software Components for Performance. Proc. of the Intl.

Conference on Component Based Software Engineering. LNCS 5282. Springer 2008. pp. 32-

47.

324. Silver, N. Jtrix: Web Services beyond SOAP. JavaWorld. IDG 2002. Nr. 5.

http://www.javaworld.com/javaworld/jw-05-2002/jw-0503-jtrix_p.html

325. Sinner, A., Kleemann, T., von Hessling, A. Semantic User Profiles and their Applications in a

Mobile Environment. Proc. of Artificial Intelligence in Mobile Systems (AIMS). 2004.

326. Smith, M., Friese, T., Freisleben, B. Towards a Service-Oriented Ad Hoc Grid. Proc. of the

Intl. Symposium on Parallel and Distributed Computing. IEEE 2004. pp. 201-208.

327. Smith, D. E., Nair, R. The Architecture of Virtual Machines. IEEE Computer. Vol. 38, Nr. 5.

IEEE 2005. pp. 32-38.

328. Sotomayor, B., Montero, R. S., Foster, I. Virtual Infrastructure Management in Private and

Hybrid Clouds. IEEE Internet Computing. Vol. 13, Nr. 5. IEEE 2009. pp. 14-22.

329. Spotswood, M. System and Method for using a Classloader Hierarchy to Load Software

Applications. United States Patent 2004/0255293 A1. 2004.

330. Spring Framework

http://www.springsource.com.

331. Srinivas, R. N. Java Web Start to the Rescue. JavaWorld. IDG 2001. Nr. 7 .

http://www.javaworld.com/javaworld/jw-07-2001/jw-0706-webstart_p.html.

http://lia.deis.unibo.it/Research/SOMA/
http://www.javaworld.com/javaworld/jw-05-2002/jw-0503-jtrix_p.html
http://www.javaworld.com/javaworld/jw-07-2001/jw-0706-webstart_p.html

7. References 301

332. van Steen, M., Homburg, P., Tanenbaum, A. S. Globe: A Wide-Area Distributed System.

IEEE Concurrency. Vol. 7, Nr. 1. IEEE 1999. pp. 70-78.

333. di Stefano, A., Santoro, C. NetChaser: Agent Support for Personal Mobility. IEEE Internet

Computing. Vol. 4, Nr. 2. IEEE 2000. pp. 74-79.

334. Stoica, I. Morris, R., Karger, D., Kaashoek, M. Balakrishnan, H. Chord: A Scalable Peer-to-

Peer Lookup Service for Internet Applications. Proc. of the Conference on Applications,

Technologies, Architectures, and Protocols for Computer Communication. ACM 2001. pp.

149-160.

335. Sudmann, N. P., Johansen, D. Software Deployment Using Mobile Agents. Proc. of the Intl.

Conference on Component Deployment (CD 2002). LNCS 2370. Springer 2002. pp. 97-107.

336. Sun Enterprise Java Beans Technology

http://java.sun.com/products/ejb/

337. Sun Java Class Data Sharing

http://java.sun.com/j2se/1.5.0/docs/guide/vm/class-data-sharing.html

338. Sun Java Community Process. JSR-121: Application Isolation API Specification.

http://jcp.org/jsr/detail/121.jsp

339. Sun Java Dynamic Proxy Classes

http://java.sun.com/j2se/1.3/docs/guide/reflection/proxy.html

340. Sun Java Thread Primitive Deprecation

http://java.sun.com/j2se/1.5.0/docs/guide/misc/threadPrimitiveDeprecation.html

341. Sun JavaFX

http://java.sun.com/javafx/

342. Sun Java Management Extensions (JMX)

http://java.sun.com/products/JavaManagement/

343. Sun Java Naming and Directory Interface (JNDI)

http://java.sun.com/products/jndi/

344. Sun Java Preferences API

http://java.sun.com/javase/6/docs/technotes/guides/preferences/

345. Sun Java Server Faces

https://javaserverfaces.dev.java.net/

346. Sun Java Store

http://java.com/en/store/

http://java.sun.com/products/ejb/
http://java.sun.com/j2se/1.5.0/docs/guide/vm/class-data-sharing.html
http://jcp.org/jsr/detail/121.jsp
http://java.sun.com/j2se/1.3/docs/guide/reflection/proxy.html
http://java.sun.com/j2se/1.5.0/docs/guide/misc/threadPrimitiveDeprecation.html
http://java.sun.com/javafx/
http://java.sun.com/javase/6/docs/technotes/guides/preferences/
http://java.com/en/store/

302 7. References

347. Sun Jini

http://www.jini.org

348. Suri, N., Bradshaw, J., Breedy, M., Groth, P., Hill, G., Jeffers, R., and Mitrovich, T. An

Overview of the NOMADS Mobile Agent System. Proc. of the 2nd Intl. Symposium on Agent

Systems and Applications. ACM 2000. pp. 94-100.

349. Suri, N., Bradshaw, J. M., Breedy, M. R., Groth, P. T., Hill, G. A., Jeffers, R. Strong Mobility

and Fine-Grained Resource Control in NOMADS. Proc. of the Joint Symposium on Agent

Systems, Mobile Agents, and Applications. LNCS 1882. Springer 2000. pp. 2-15.

350. Talia, D. The Open Grid Service Architecture - Where the Grid Meets the Web. IEEE Internet

Computing. Vol. 6, Nr. 6. IEEE 2002. pp. 67-71.

351. Talwar, V., Wu, Q., Pu, C., Yan, W., Jung, G., Milojicic, D. Comparison of Approaches to

Service Deployment. Proc. of the Intl. Conference on Distributed Computing Systems.

(ICSCS). IEEE 2005. pp. 543-552.

352. Tate, B. Better, Faster, Lighter Java. O'Reilly. 2004.

353. TeamDrive

http://www.teamdrive.net/

354. Thain, D., Tannenbaum, T., Livny, M. Distributed Computing in Practice: The Condor

Experience. Concurrency and Computation: Practice and Experience. Vol. 17, No. 2-4. Wiley

2005. pp. 323-356.

355. Thomas, R. Autonomic Software Deployment in verteilten Internet-Anwendungssystemen.

Diploma Thesis. University of Marburg 2007.

356. Tilevich, E., Smaragdakis, Y. J-Orchestra: Automatic Java Application Partitioning. Proc. of

the 16th European Conference on Object-Oriented Programming (ECOOP). LNCS 2374.

Malaga, Spain. Springer 2002. pp. 178-204.

357. Trautweiler, M. Transparent Runtime Evolution of Components. Master Thesis. ETH Zürich

2004.

358. Truyen, E. Robben, B., Vanhaute, B., Coninx, T., Joosen, W., Verbaeten, P. Portable Support

for Transparent Thread Migration in Java. Proc. of the Joint Symposium on Agent Systems,

Mobile Agents, and Applications. LNCS 1882. Springer 2000. pp. 377-426.

359. Truman, T. E., Pering, T., Doering, R., Brodersen, R. W. The InfoPad Multimedia Terminal:

A Portable Device for Wireless Information Access. IEEE Transaction on Computers. Vol. 47,

Nr. 10. IEEE 1998. pp. 1073-1087.

360. Unger, T. Dynamische Verteilung und Komposition von Internet Anwendungen. Diploma

Thesis. University of Siegen 2004.

http://www.teamdrive.net/

7. References 303

361. UNICORE - Uniform Interface to Computing Resources

http://www.unicore.eu/

362. Utsch, G. Aufbau einer erweiterbaren Benutzerverwaltung und Softwarekonfiguration über

Verzeichnisdienste in Java. Diploma Thesis. University of Siegen 1998.

363. Vahdat, A., Anderson, T., Dahlin, M., Culler, D., Belani, E., Eastham, P., Yoshikawa, C.

WebOS: Operating System Services for Wide Area Applications. Intl. Symposium on High

Performance Distributed Computing. IEEE 1998. pp. 52-63.

364. Vallecillo, A. RM-ODP: The ISO Reference Model for Open Distributed Processing.

DINTEL Edition on Software Engineering. 2001. Nr. 3. pp. 69-99.

365. Vaughan-Nichols, S. J. Developing the Distributed Computing OS. IEEE Computer. Vol. 35,

Nr. 9. IEEE 2002. pp. 19-21.

366. Vaughan-Nichols, S. Web Services: Beyond the Hype. IEEE Computer. Vol. 35, Nr. 2. IEEE

2002. pp. 18-21.

367. Venners, B. Inside The Java 2 Virtual Machine. McGraw-Hill 1999.

368. Venkitachalam, G., Chiueh, T. High Performance Common Gateway Interface Invocation.

Proc. of the Intl. Workshop on Internet Applications. IEEE 1999. pp. 4-11.

369. Viega, J. Cloud Computing and the Common Man. IEEE Computer. Vol. 42, Nr. 8. IEEE

2009. pp. 106-108.

370. Vinoski, S. CORBA: Integrating Diverse Applications within Distributed Heterogeneous

Environments. IEEE Communications. Vol. 35, Nr. 2. IEEE 1997. pp. 46-55.

371. Vinoski, S. Chain of Responsibility. IEEE Internet Computing. Vol. 6, Nr. 6. IEEE 2002. pp.

80-83.

372. Vouk, M. A. Cloud Computing – Issues, Research and Implementations. Proc. of the Intl.

Conference on Information Technology Interfaces. ITI 2008. pp. 31-40.

373. Waldo, J. Alive and Well: Jini Technology Today. IEEE Computer. Vol. 33, Nr. 6. IEEE

2000. pp. 107-109.

374. Waldo, J. The Jini Architecture for Network-Centric Computing. Communications of the

ACM. Vol. 42, Nr. 7. ACM 1999. pp. 76-82.

375. Walsh, W. E., Tesauro, G., Kephart, J. O., Das, R. Utility Functions in Autonomic Computing.

Proc. of the Intl. Conference on Autonomic Computing. IEEE 2004. pp. 70-77.

376. Want, R., Perint, T., Tennenhouse, D. Comparing Autonomic and Proactive Computing. IBM

Systems Journal. Vol. 42, Nr. 1. IBM 2003. pp. 129-135.

http://www.unicore.eu/

304 7. References

377. Watson, M. Sun One Services (Professional Middleware). Hungry Minds. 2002.

378. Wege, C. Portal Server Technology. IEEE Internet Computing. Vol. 6, Nr. 3. IEEE 2002. pp.

73-77.

379. Weiser, M. Ubiquitous Computing. IEEE Computer. Vol. 26, Nr. 10. IEEE 1993. pp. 71-72.

380. Weiser, M. The Computer for the 21st Century. IEEE Pervasive Computing. Vol. 1, Nr. 1.

IEEE 2002. pp. 19-25.

381. White, S. R., Hanson, J. E., Whalley, I., Chess, D. M., Kephart, J. O. An Architectural

Approach to Autonomic Computing. Proc. of the Intl. Conference on Autonomic Computing

(ICAC 2004). IEEE 2004. pp. 2-9.

382. WIKINGER.

http://www.wikinger-escience.de

383. Wikipedia. Sun Java Web Start

http://de.wikipedia.org/wiki/Java_Web_Start.

384. Wikipedia. Roaming User Profile

http://en.wikipedia.org/wiki/Roaming_user_profile.

385. Wikipedia. Virtual Machine.

http://en.wikipedia.org/wiki/Virtual_machine

386. Wojciechowski, P.T., Sewell, P. Nomadic Pict: Language and Infrastructure Design for

Mobile Agents. IEEE Concurrency. Vol. 8, Nr. 2. IEEE 2000. pp. 42-52.

387. Wood, K. R. et al. Global Teleporting with Java: Toward Ubiquitous Personalized

Computing. IEEE Computer. Vol. 30, No. 2. IEEE 1997. pp. 53-59.

388. Wright, J. M., Dietrich, J. B. Requirements for Rich Internet Application Design

Methodologies. Proc. of the Intl. Conference on Web Information System Engineering. LNCS

5175. Springer 2008. pp. 106-119.

389. X Window System

http://www.x.org

390. Xito AppManager

http://xito.sourceforge.net/

391. Zachariadis, S. Mascolo, C., Emmerich W. SATIN: A Component Model for Mobile Self-

Organisation. Proc. of the 5th Intl. Conference on Distributed Applications (DOA 2004).

LNCS 3291. Agia, Napa, Cyprus. Springer 2004. pp. 1303-1321.

http://www.wikinger-escience.de/
http://en.wikipedia.org/wiki/Roaming_user_profile
http://en.wikipedia.org/wiki/Virtual_machine
http://www.x.org/
http://xito.sourceforge.net/

7. References 305

392. Zachary, J. Protecting Mobile Code in the Wild. IEEE Internet Computing. Vol. 7, Nr. 2.

IEEE 2003. pp. 78-82.

393. Zhang, L., Ardagna, D. SLA Based Profit Optimization in Autonomic Computing Systems.

Proc. of the Intl. Conference on Service Oriented Computing. ACM 2004. pp. 173-182.

394. Zhao, B. Y., Kubiatowicz, J. D., Joseph, A. D. Tapestry: An Infrastructure for Fault Resilient

Wide-Area Location and Routing. TR UCB//CSD-01-1141. U. C. Berkeley 2001.

395. Zhu, J., Törö, M., Leung, V., Vuong, S. Supporting Universal Personal Computing on

Internet with Java and CORBA. Proc. of the Intl. Workshop on Java for High-Performance

Network Computing. ACM 1998. pp. 1007-1013.

396. Zhu, W., Wang, C. L., Lau, F. JESSICA2: A Distributed Java Virtual Machine with

Transparent Thread Migration Support. Proc. of the 4th Intl. Conference on Cluster

Computing, IEEE 2002. pp. 381-388.

397. Zhu, W., Wang, C. L., Lau, F. Lightweight Transparent Java Thread Migration for

Distributed JVM. Proc. of the Intl. Conference on Parallel Processing. IEEE 2003. pp. 465-

472.

398. Zhou, Y., Zhao, Q., Perry, M. Reasoning over Ontologies of On Demand Service. Proc. of the

Intl. Conference on e-Technology, e-Commerce and e-Service. IEEE 2005. pp. 381-384.

Erklärung

Ich versichere, dass ich meine Dissertation

"An Autonomic Cross-Platform Operating Environment

 for On-Demand Internet Computing"

selbständig, ohne unerlaubte Hilfe angefertigt und mich dabei keiner anderen als der von mir aus-

drücklich bezeichneten Quellen und Hilfen bedient habe.

Die Dissertation wurde in der jetzigen oder einer ähnlichen Form noch bei keiner anderen Hoch-

schule eingereicht und hat noch keinen sonstigen Prüfungszwecken gedient.

(Ort / Datum) (Unterschrift mit Vor- und Zuname)

Curriculum Vitae

Stefan Paal

Saarstrasse 1a

50677 Köln

Geburtsdatum

Geburtsort

Familienstand

Staatsangehörigkeit

26.05.1969

Germersheim/Rheinland-Pfalz

ledig

deutsch

August 1975 - Juni 1985

Mittlere Reife

Grundschule Lustadt, Gymnasium Germersheim

August 1985 - Juli 1988

Informationselektroniker

Berufsausbildung, BASF AG Ludwigshafen

August 1988 - Juni 1989

Fachhochschulreife

Fachoberschule Elektrotechnik Neustadt/Weinstrasse

Oktober 1990 - Oktober 1995

Dipl.-Ing. Elektrotechnik

Universität Siegen, Studium der Elektrotechnik

Dezember 1995 - November 2000

Wissenschaftlicher Mitarbeiter

Universität Siegen

Seit Dezember 2000

Wissenschaftlicher Mitarbeiter

Fraunhofer Gesellschaft, Sankt Augustin

Köln, den 28. April 2010

Stefan Paal

	Introduction
	Motivation
	Background
	Evolution
	Vision

	Focus
	Goal
	Challenges
	Subject

	Overview
	Contributions
	Publications
	Thesis Map

	Towards On-Demand Internet Computing
	Introduction
	Internet
	Definition
	Characteristics
	Challenges

	Internet Computing
	Application Scenarios
	Assets
	User Roles

	On-Demand Internet Computing
	From Resource-Centric to Task-Centric Computation
	Facets
	Vision

	Related Approaches
	Local Task Processing
	Remote Task Processing
	Distributed Task Processing

	Summary

	An Autonomic Cross-Platform Operating Environment
	Introduction
	Subject
	Idea
	Objectives

	Cross-Platform Operation
	Virtual Machine
	Features
	Cross-Platform Operating Environment

	Self-Managing Operation
	Autonomic Computing
	Features
	Self-Managing Infrastructure

	Supporting Solutions
	Single Computing
	Enterprise Computing
	Community Computing
	Public Computing
	Results

	Summary

	XDK - The Crossware Development Kit
	Introduction
	System Architecture
	Java Realization
	Components

	Distributed Code Deployment
	Self-Descriptive Crosslets
	Motivation
	Features
	Approach
	Realization
	Autonomic Application
	Related Work

	Java Class Collections
	Motivation
	Features
	Approach
	Realization
	Autonomic Application
	Related Work

	Dynamic Software Composition
	Java Class Spaces
	Motivation
	Features
	Approach
	Realization
	Autonomic Application
	Related Work

	Java Loadable Modules
	Motivation
	Features
	Approach
	Realization
	Autonomic Application
	Related Work

	Shared Application Hosting
	Adaptive Resource Broker
	Motivation
	Features
	Approach
	Realization
	Autonomic Application
	Related Work

	Java Task Spaces
	Motivation
	Features
	Approach
	Realization
	Autonomic Application
	Related Work

	Pervasive Environment Customization
	Application Execution Engine
	Motivation
	Features
	Approach
	Realization
	Autonomic Application
	Related Work

	Roaming User Profiles
	Motivation
	Features
	Approach
	Realization
	Autonomic Application
	Related Work

	Virtual Object Interconnection
	Java Method Streams
	Motivation
	Features
	Approach
	Realization
	Autonomic Application
	Related Work

	Java Object Spaces
	Motivation
	Features
	Approach
	Realization
	Autonomic Application
	Related Work

	Ad Hoc Execution Migration
	Java Thread Controller
	Motivation
	Features
	Approach
	Realization
	Autonomic Application
	Related Work

	Java Execution Units
	Motivation
	Features
	Approach
	Realization
	Autonomic Application
	Related Work

	Summary

	ODIX - The On-Demand Internet Computing System
	Introduction
	Goals
	Approach
	Operation

	On-Demand Application Engine
	Use Case
	Features
	Implementation
	Application

	Internet Application Workbench
	Use Case
	Features
	Implementation
	Application

	Internet Application Factory
	Use Case
	Features
	Implementation
	Application

	Internet Application Federation
	Use Case
	Features
	Implementation
	Application

	Summary

	Conclusions
	Summary
	Lessons Learned
	Future Work

	References

