Publikationsserver der Universitätsbibliothek Marburg

Titel:Molekulare Mechanismen der Spindel-Kontrollpunkt-Inhibierung und der chromosomalen Instabilität
Autor:Stolz, Aline Katharina
Weitere Beteiligte: Bastians, Holger (PD Dr.)
Veröffentlicht:2010
URI:https://archiv.ub.uni-marburg.de/diss/z2010/0389
URN: urn:nbn:de:hebis:04-z2010-03895
DOI: https://doi.org/10.17192/z2010.0389
DDC:610 Medizin
Titel (trans.):Molecular mechanisms of the spindle checkpoint inhibition and chromosomal instability
Publikationsdatum:2010-08-02
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Tumor,, Tumor,, CIN, CIN, Spindel checkpoint, GÖ6976, Spindle checkpoint, GÖ6976

Zusammenfassung:
Während der Mitose werden die Schwesterchromatiden gleichmäßig auf zwei Tochterzellen verteilt, was für den Erhalt einer Euploidie essentiell ist. Eine chromosomale Instabilität, die fortwährende Fehlverteilung von Chromosomen, als Grundlage der Aneuploidie, ist jedoch ein Hauptkennzeichen von Tumorzellen. Dies deutet auf häufige Tumor-assoziierte Defekte in der Mitose hin. In der Tat wurde gezeigt,dass eine chromosomale Instabilität direkt zur Tumorgenese beitragen kann. Es ist dahervon größter Bedeutung, die molekularen Mechanismen der chromosomalen Instabilität zu verstehen und die Gene zu identifizieren, deren Veränderung zu einer aberranten Progression der Mitose beitragen. In unserer Arbeitsgruppe wurde CHK2 als ein Tumorsuppressorgen identifiziert, das für den Erhalt einer chromosomalen Stabilität essentiell ist und in meiner Arbeit habe ich eine neue mitotische Funktion von Chk2 charakterisiert. Die Chk2 Kinase, der zuvor eine Funktion im DNA-Beschädigungs-Signalweg zugeschrieben wurde, wird nicht nur nach einer DNA-Beschädigung, sondern auch während der Mitose aktiviert. Ich konnte zeigen, dass Chk2 für die normale Progression der Mitose und für die ordnungsgemäße Ausbildung einer mitotischen Spindel erforderlich ist. Eine Minderexpression oder der Verlust der Kinasefunktion von CHK2 führen zu Defekten in der Spindelstruktur, welche mit einer zeitlichen Verzögerung in der Prometaphase assoziiert sind. In Folge dieser transienten Spindeldefekte wird die Ausbildung von isolierten, sogenannten „lagging“ Chromosomen in der Anaphase, die nicht ordnungsgemäß auf die Tochterzellen segregiert werden können, gefördert. Sowohl das Auftreten dieser isolierten Chromosomen als auch die chromosomale Instabilität konnte durch eine ektopische Expression von MCAK, einer Mikrotubuli-Depolymerase, die eine zentrale Funktion bei der Korrektur fehlerhafter Anheftungen von Chromosomen an die mitotische Spindel erfüllt, unterdrückt werden. Bemerkenswerterweise werden diese nicht korrekt an die mitotische Spindel angehefteten Chromosomen, die durch den Verlust von CHK2 induziert werden, nicht von einem mitotischen Kontrollmechanismus, dem sogenannten Spindel-Kontrollpunkt, erkannt und tragen damit direkt zur Ausbildung der Aneuploidie bei. Meine Ergebnisse zeigen, dass Chk2 überraschenderweise eine zentrale Funktion bei der Ausbildung der mitotischen Spindel erfüllt, die eine Voraussetzung für die ordnungsgemäße Anheftung der Chromosomen und für den Erhalt der chromosomalen Stabilität darstellt. Somit könnte diese neue mitotische Funktion von Chk2 zu dessen Tumorsuppressor-Funktion beitragen, die bislang wenig verstanden ist. Neben ihrer fundamentalen Rolle für den Erhalt einer chromosomalen Stabilität stellt die Mitose eine wichtige Zielstruktur für die anti-Tumor Therapie dar. Anti-mitotisch wirksame Chemotherapeutika wie das Taxol und verschiedene Vinca-Alkaloide, die seit langem in der Klinik eingesetzt werden, binden an Mikrotubuli und hemmen die Spindeldynamik. Dies führt zu einer gestörten Chromosomen-Aufreihung, die der Spindel-Kontrollpunkt detektiert und in Folge die weitere mitotische Progression hemmt. Unsere Arbeitsgruppe konnte zeigen, dass der Spindel-Kontrollpunkt nicht nur eine zentrale Rolle zur Vermittlung des mitotischen Arrests, sondern auch für die Chemotherapie-aktivierte Apoptose spielt. Da Krebszellen häufig Fehlfunktionen des Spindel-Kontrollpunktes aufweisen, können diese somit sowohl zu Chromosomen- Fehlverteilungen als auch zu Chemotherapie-Resistenzen führen. Um solche Therapieresistenten Tumorzellen anzugreifen, könnte die in verschiedenen Maus- und Zellkulturmodellen gezeigte Essentialität des mitotischen Spindel-Kontrollpunktes als Grundlage eines neuen Therapiekonzeptes genutzt werden. Dabei könnte der Signalweg des Spindel-Kontrollpunktes direkt als Zielstruktur für die Tumor Therapie dienen. Unsere Arbeitsgruppe hat die Indolokarbazol-Verbindung Gö6976 als einen Inhibitor des Spindel-Kontrollpunktes identifiziert, der Apoptose in Tumorzellen induziert. In meiner Arbeit habe ich diesen pharmakologischen Inhibitor des Spindel-Kontrollpunktes charakterisiert. Dabei habe ich gezeigt, dass Gö6976 in vitro und in vivo die mitotischen Kinasen Aurora A und Aurora B hemmt. Die Hemmung von Aurora A durch Gö6976 verursacht dabei Defekte im Spindelaufbau und der Chromosomen-Aufreihung während die gleichzeitige Hemmung von Aurora B zu einer Aufhebung der Spindel-Kontrollpunk-Funktion führt, was schließlich den mitotischen Austritt der beschädigten Zelle bewirkt. Diese duale Hemmung zweier mitotischer Kinasen, die am Spindel-Kontrollpunkt beteiligt sind, führt letztendlich zu einer effizienten und Tumor-selektiven Induktion von Apoptose und dies erfolgt unabhängig von der Spindel-Kontrollpunkt-Aktivität. Daraus ergibt sich ein neues, vielversprechendes Therapie-Konzept, in dem der mitotische Spindel-Kontrollpunkt und seine assoziierten mitotischen Kinasen als neue Zielstruktur genutzt werden und in dem Resistenz-Mechanismen vermieden werden, die sich aufgrund von Fehlfunktionen des Spindel-Kontrollpunktes ergeben.

Bibliographie / References

  1. Zhang, X; Lan, W; Ems-McClung, SC; Stukenberg, PT und Walczak, CE (2007). Aurora B phosphorylates multiple sites on mitotic centromere-associated kinesin to spatially and temporally regulate its function. Mol Biol Cell, 18, 3264-3276.
  2. Rieder, C; Cole, R; Khodjakov, A und Sluder, G (1995). The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J. Cell Biol., 130, 941-948.
  3. Tang, Z; Bharadwaj, R; Li, B und Yu, H (2001). Mad2-Independent inhibition of APCCdc20 by the mitotic checkpoint protein BubR1. Dev Cell, 1, 227-237.
  4. Stewart, S und Fang, G (2005). Destruction box-dependent degradation of aurora B is mediated by the anaphase-promoting complex/cyclosome and Cdh1. Cancer Res, 65, 8730-8735.
  5. Meijers-Heijboer, H; Wijnen, J; Vasen, H; Wasielewski, M; Wagner, A; Hollestelle, A; Elstrodt, F; van den Bos, R; de Snoo, A; Fat, GT; Brekelmans, C; Jagmohan, S; Franken, P; Verkuijlen, P; van den Ouweland, A; Chapman, P; Tops, C; Moslein, G; Burn, J; Lynch, H; Klijn, J; Fodde, R und Schutte, M (2003). The CHEK2 1100delC mutation identifies families with a hereditary breast and colorectal cancer phenotype. Am J Hum Genet, 72, 1308-1314.
  6. Wong, J; Lerrigo, R; Jang, CY und Fang, G (2008). Aurora A regulates the activity of HURP by controlling the accessibility of its microtubule-binding domain. Mol Biol Cell, 19, 2083-2091.
  7. Chromatin-associated protein phosphatase 1 regulates aurora-B and histone H3 phosphorylation.
  8. Tanaka, TU; Rachidi, N; Janke, C; Pereira, G; Galova, M; Schiebel, E; Stark, MJ und Nasmyth, K (2002). Evidence that the Ipl1-Sli15 (Aurora kinase-INCENP) complex promotes chromosome bi-orientation by altering kinetochore-spindle pole connections. Cell, 108, 317-329.
  9. Zachariae, W; Shevchenko, A; Andrews, PD; Ciosk, R; Galova, M; Stark, MJ; Mann, M und Nasmyth, K (1998). Mass spectrometric analysis of the anaphase-promoting complex from yeast: identification of a subunit related to cullins. Science, 279, 1216-1219.
  10. Yamano, H; Gannon, J; Mahbubani, H und Hunt, T (2004). Cell cycle-regulated recognition of the destruction box of cyclin B by the APC/C in Xenopus egg extracts. Mol Cell, 13, 137-147.
  11. van Vugt, MA; Bras, A und Medema, RH (2004). Polo-like kinase-1 controls recovery from a G2 DNA damage-induced arrest in mammalian cells. Mol Cell, 15, 799-811.
  12. van Vugt, MA und Medema, RH (2005). Getting in and out of mitosis with Polo-like kinase-1.
  13. van Vugt, MA; Bras, A und Medema, RH (2005). Restarting the cell cycle when the checkpoint comes to a halt. Cancer Res, 65, 7037-7040.
  14. Weaver, BA und Cleveland, DW (2006). Does aneuploidy cause cancer? Curr Opin Cell Biol, 18, 658-667.
  15. Ruchaud, S; Carmena, M und Earnshaw, WC (2007). Chromosomal passengers: conducting cell division. Nat Rev Mol Cell Biol, 8, 798-812.
  16. Vogel, C; Kienitz, A; Muller, R und Bastians, H (2005). The Mitotic Spindle Checkpoint Is a Critical Determinant for Topoisomerase-based Chemotherapy. J Biol Chem, 280, 4025-4028.
  17. TTK/hMps1 participates in the regulation of DNA damage checkpoint response by phosphorylating CHK2 on threonine 68. J Biol Chem, 280, 7748-7757.
  18. Perez de Castro, I; de Carcer, G und Malumbres, M (2007). A census of mitotic cancer genes: new insights into tumor cell biology and cancer therapy. Carcinogenesis, 28, 899-912.
  19. Takemoto, A; Murayama, A; Katano, M; Urano, T; Furukawa, K; Yokoyama, S; Yanagisawa, J; Hanaoka, F und Kimura, K (2007). Analysis of the role of Aurora B on the chromosomal targeting of condensin I. Nucleic Acids Res, 35, 2403-2412.
  20. Pharmacologic abrogation of the mitotic spindle checkpoint by an indolocarbazole discovered by cellular screening efficiently kills cancer cells. Cancer Res, 69, 3874-3883.
  21. Nishimura, Y und Yonemura, S (2006). Centralspindlin regulates ECT2 and RhoA accumulation at the equatorial cortex during cytokinesis. J Cell Sci, 119, 104-114.
  22. McGuinness, BE; Hirota, T; Kudo, NR; Peters, JM und Nasmyth, K (2005). Shugoshin prevents dissociation of cohesin from centromeres during mitosis in vertebrate cells. PLoS Biol, 3, e86.
  23. Stolz, A; Ertych, N; Kienitz, A; Vogel, C; Schneider, V; Fritz, B; Jacob, R; Dittmar, G; Weichert, W; Petersen, I und Bastians, H (2010). The CHK2-BRCA1 tumor suppressor pathway ensures chromosomal stability in human somatic cell. Nat Cell Biol, im Druck.
  24. Sasai, K; Katayama, H; Stenoien, DL; Fujii, S; Honda, R; Kimura, M; Okano, Y; Tatsuka, M; Suzuki, F; Nigg, EA; Earnshaw, WC; Brinkley, WR und Sen, S (2004). Aurora-C kinase is a novel chromosomal passenger protein that can complement Aurora-B kinase function in mitotic cells. Cell Motil Cytoskeleton, 59, 249-263.
  25. Barr, FA; Sillje, HH und Nigg, EA (2004). Polo-like kinases and the orchestration of cell division. Nat Rev Mol Cell Biol, 5, 429-440.
  26. Meraldi, P; Honda, R und Nigg, EA (2004). Aurora kinases link chromosome segregation and cell division to cancer susceptibility. Curr Opin Genet Dev, 14, 29-36.
  27. Jackman, M; Lindon, C; Nigg, EA und Pines, J (2003). Active cyclin B1-Cdk1 first appears on centrosomes in prophase. Nat Cell Biol, 5, 143-148.
  28. Sumara, I; Vorlaufer, E; Stukenberg, PT; Kelm, O; Redemann, N; Nigg, EA und Peters, JM (2002). The dissociation of cohesin from chromosomes in prophase is regulated by Polo-like kinase. Mol Cell, 9, 515-525.
  29. Arnaud, L; Pines, J und Nigg, EA (1998). GFP tagging reveals human Polo-like kinase 1 at the kinetochore/centromere region of mitotic chromosomes. Chromosoma, 107, 424-429.
  30. Mundt, KE; Golsteyn, RM; Lane, HA und Nigg, EA (1997). On the regulation and function of human polo-like kinase 1 (PLK1): effects of overexpression on cell cycle progression. Biochem Biophys Res Commun, 239, 377-385.
  31. Stevens, C; Smith, L und La Thangue, NB (2003). Chk2 activates E2F-1 in response to DNA damage. Nat Cell Biol, 5, 401-409.
  32. Sullivan, A; Yuille, M; Repellin, C; Reddy, A; Reelfs, O; Bell, A; Dunne, B; Gusterson, BA; Osin, P; Farrell, PJ; Yulug, I; Evans, A; Ozcelik, T; Gasco, M und Crook, T (2002). Concomitant inactivation of p53 and Chk2 in breast cancer. Oncogene, 21, 1316-1324.
  33. Joukov, V; Groen, AC; Prokhorova, T; Gerson, R; White, E; Rodriguez, A; Walter, JC und Livingston, DM (2006). The BRCA1/BARD1 heterodimer modulates ran-dependent mitotic spindle assembly. Cell, 127, 539-552.
  34. Stucke, VM; Sillje, HH; Arnaud, L und Nigg, EA (2002). Human Mps1 kinase is required for the spindle assembly checkpoint but not for centrosome duplication. Embo J, 21, 1723-1732.
  35. Musacchio, A und Salmon, ED (2007). The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol, 8, 379-393.
  36. Murata-Hori, M und Wang, YL (2002). The kinase activity of aurora B is required for kinetochore-microtubule interactions during mitosis. Curr Biol, 12, 894-899.
  37. Percy, MJ; Myrie, KA; Neeley, CK; Azim, JN; Ethier, SP und Petty, EM (2000). Expression and mutational analyses of the human MAD2L1 gene in breast cancer cells. Genes Chromosomes Cancer, 29, 356-362.
  38. Murata-Hori, M; Fumoto, K; Fukuta, Y; Iwasaki, T; Kikuchi, A; Tatsuka, M und Hosoya, H (2000). Myosin II regulatory light chain as a novel substrate for AIM-1, an aurora/Ipl1p-related kinase from rat. J Biochem, 128, 903-907.
  39. Significance of MAD2 expression to mitotic checkpoint control in ovarian cancer cells. Cancer Res, 62, 1662-1668.
  40. Mao, Y; Abrieu, A und Cleveland, DW (2003). Activating and silencing the mitotic checkpoint through CENP-E-dependent activation/inactivation of BubR1. Cell, 114, 87-98.
  41. Yuce, O; Piekny, A und Glotzer, M (2005). An ECT2-centralspindlin complex regulates the localization and function of RhoA. J Cell Biol, 170, 571-582.
  42. Rajagopalan, H und Lengauer, C (2004). Aneuploidy and cancer. Nature, 432, 338-341.
  43. Johnson, IS; Wright, HF; Svoboda, GH und Vlantis, J (1960). Antitumor principles derived from Vinca rosea Linn. I. Vincaleukoblastine and leurosine. Cancer Res, 20, 1016-1022.
  44. Mehlhop, P und Gardner, AL (1982). A rapid field technique for preparing ant chromosomes for karyotypic analysis. Stain Technol, 57, 99-101.
  45. Stolz, A. und Bastians, H. (2009). A role for Chk2 after DNA damage in mitosis? Cell Cycle, 9: 25 -26.
  46. Miyoshi, Y; Iwao, K; Egawa, C und Noguchi, S (2001). Association of centrosomal kinase STK15/BTAK mRNA expression with chromosomal instability in human breast cancers. Int J Cancer, 92, 370-373.
  47. Miki, Y; Swensen, J; Shattuck-Eidens, D; Futreal, PA; Harshman, K; Tavtigian, S; Liu, Q; Cochran, C; Bennett, LM; Ding, W und et al. (1994). A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science, 266, 66-71.
  48. Wang, HC; Chou, WC; Shieh, SY und Shen, CY (2006). Ataxia telangiectasia mutated and checkpoint kinase 2 regulate BRCA1 to promote the fidelity of DNA end-joining. Cancer Res, 66, 1391-1400.
  49. Shiloh, Y (2001). ATM and ATR: networking cellular responses to DNA damage. Curr Opin Genet Dev, 11, 71-77.
  50. Shiloh, Y (2003). ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer, 3, 155-168.
  51. Shiloh, Y (2003). ATM: ready, set, go. Cell Cycle, 2, 116-117.
  52. Marumoto, T; Zhang, D und Saya, H (2005). Aurora-A -a guardian of poles. Nat Rev Cancer, 5, 42-50.
  53. Sankaran, S; Crone, DE; Palazzo, RE und Parvin, JD (2007). Aurora-A kinase regulates breast cancer associated gene 1 inhibition of centrosome-dependent microtubule nucleation. Cancer Res, 67, 11186-11194.
  54. Jiang, Y; Zhang, Y; Lees, E und Seghezzi, W (2003). AuroraA overexpression overrides the mitotic spindle checkpoint triggered by nocodazole, a microtubule destabilizer. Oncogene, 22, 8293-8301.
  55. Steigemann, P; Wurzenberger, C; Schmitz, MH; Held, M; Guizetti, J; Maar, S und Gerlich, DW (2009). Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell, 136, 473-484.
  56. Yasui, Y; Urano, T; Kawajiri, A; Nagata, K; Tatsuka, M; Saya, H; Furukawa, K; Takahashi, T; Izawa, I und Inagaki, M (2004). Autophosphorylation of a newly identified site of Aurora-B is indispensable for cytokinesis. J Biol Chem, 279, 12997-13003.
  57. Wu, X und Chen, J (2003). Autophosphorylation of checkpoint kinase 2 at serine 516 is required for radiation-induced apoptosis. J Biol Chem, 278, 36163-36168.
  58. Yanai, A; Arama, E; Kilfin, G und Motro, B (1996). Ayk1, a novel mammalian gene related to Drosophila aurora centrosome separation kinase, is specifically expressed during meiosis.
  59. Starita, LM; Machida, Y; Sankaran, S; Elias, JE; Griffin, K; Schlegel, BP; Gygi, SP und Parvin, JD (2004). BRCA1-dependent ubiquitination of gamma-tubulin regulates centrosome number.
  60. Ouchi, M; Fujiuchi, N; Sasai, K; Katayama, H; Minamishima, YA; Ongusaha, PP; Deng, C; Sen, S; Lee, SW und Ouchi, T (2004). BRCA1 phosphorylation by Aurora-A in the regulation of G2 to M transition. J Biol Chem, 279, 19643-19648.
  61. Wang, Q; Liu, T; Fang, Y; Xie, S; Huang, X; Mahmood, R; Ramaswamy, G; Sakamoto, KM; Darzynkiewicz, Z; Xu, M und Dai, W (2004). BUBR1 deficiency results in abnormal megakaryopoiesis. Blood, 103, 1278-1285.
  62. Visintin, R; Prinz, S und Amon, A (1997). CDC20 and CDH1: a family of sustrate-specific activators of APC-dependent proteolysis. Sci., 278, 460-463.
  63. Noton, E und Diffley, JF (2000). CDK inactivation is the only essential function of the APC/C and the mitotic exit network proteins for origin resetting during mitosis. Mol Cell, 5, 85-95.
  64. Sherr, CJ und Roberts, JM (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev, 13, 1501-1512.
  65. Pray, TR; Parlati, F; Huang, J; Wong, BR; Payan, DG; Bennett, MK; Issakani, SD; Molineaux, S und Demo, SD (2002). Cell cycle regulatory E3 ubiquitin ligases as anticancer targets. Drug Resist Updat, 5, 249-258.
  66. Yao, X; Abrieu, A; Zheng, Y; Sullivan, KF und Cleveland, DW (2000). CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint. Nat Cell Biol, 2, 484-491.
  67. Wood, KW; Sakowicz, R; Goldstein, LS und Cleveland, DW (1997). CENP-E is a plus end- directed kinetochore motor required for metaphase chromosome alignment. Cell, 91, 357-366.
  68. Centromere-associated protein-E is essential for the mammalian mitotic checkpoint to prevent aneuploidy due to single chromosome loss. J Cell Biol, 162, 551-563.
  69. Becker, M.*, Stolz, A.*, Ertych, N.* und Bastians, H. (2010). Centromere localization of INCENP-Aurora B is sufficient to support spindel checkpoint function. Cell Cycle, im Druck. (*gleichberechtigte Erstautoren)
  70. Sankaran, S und Parvin, JD (2006). Centrosome function in normal and tumor cells. J Cell Biochem, 99, 1240-1250.
  71. Winey, M und Huneycutt, BJ (2002). Centrosomes and checkpoints: the MPS1 family of kinases.
  72. McGowan, CH (2002). Checking in on Cds1 (Chk2): A checkpoint kinase and tumor suppressor. Bioessays, 24, 502-511.
  73. Bartek, J; Lukas, C und Lukas, J (2004). Checking on DNA damage in S phase. Nat Rev Mol Cell Biol, 5, 792-804.
  74. Bartek, J und Lukas, J (2003). Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell, 3, 421-429.
  75. Bartek, J; Falck, J und Lukas, J (2001). CHK2 kinase--a busy messenger. Nat Rev Mol Cell Biol, 2, 877-886.
  76. Antoni, L; Sodha, N; Collins, I und Garrett, MD (2007). CHK2 kinase: cancer susceptibility and cancer therapy -two sides of the same coin? Nat Rev Cancer, 7, 925-936.
  77. Shannon, KB und Salmon, ED (2002). Chromosome dynamics: new light on Aurora B kinase function. Curr Biol, 12, R458-460.
  78. Masuda, A und Takahashi, T (2002). Chromosome instability in human lung cancers: possible underlying mechanisms and potential consequences in the pathogenesis. Oncogene, 21, 6884- 6897.
  79. Nakayama, K (1998). Cip/Kip cyclin-dependent kinase inhibitors: brakes of the cell cycle engine during development. Bioessays, 20, 1020-1029.
  80. Michaelis, C; Ciosk, R und Nasmyth, K (1997). Cohesins: Chromosomal proteins that prevent premature separation of sister chromatids. Cell, 91, 35-45.
  81. Xia, G; Luo, X; Habu, T; Rizo, J; Matsumoto, T und Yu, H (2004). Conformation-specific binding of p31(comet) antagonizes the function of Mad2 in the spindle checkpoint. Embo J, 23, 3133-3143.
  82. Sanchez, Y; Wong, C; Thoma, RS; Richman, R; Wu, Z; Piwnica-Worms, H und Elledge, SJ (1997). Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science, 277, 1497-1501.
  83. Petersen, I; Kotb, WF; Friedrich, KH; Schluns, K; Bocking, A und Dietel, M (2009). Core classification of lung cancer: Correlating nuclear size and mitoses with ploidy and clinicopathological parameters. Lung Cancer.
  84. Vogel, C; Kienitz, A; Hofmann, I; Muller, R und Bastians, H (2004). Crosstalk of the mitotic spindle assembly checkpoint with p53 to prevent polyploidy. Oncogene, 23, 6845-6853.
  85. Sironi, L; Mapelli, M; Knapp, S; De Antoni, A; Jeang, KT und Musacchio, A (2002). Crystal structure of the tetrameric Mad1-Mad2 core complex: implications of a 'safety belt' binding mechanism for the spindle checkpoint. Embo J, 21, 2496-2506.
  86. Johnson, DG und Walker, CL (1999). Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol, 39, 295-312.
  87. Piekny, A; Werner, M und Glotzer, M (2005). Cytokinesis: welcome to the Rho zone. Trends Cell Biol, 15, 651-658.
  88. Sudo, T; Nitta, M; Saya, H und Ueno, NT (2004). Dependence of paclitaxel sensitivity on a functional spindle assembly checkpoint. Cancer Res, 64, 2502-2508.
  89. Kaestner, P; Stolz, A und Bastians, H (2009). Determinants for the efficiency of anticancer drugs targeting either Aurora-A or Aurora-B kinases in human colon carcinoma cells. Mol Cancer Ther, 8, 2046-2056.
  90. O'Neill, T; Giarratani, L; Chen, P; Iyer, L; Lee, CH; Bobiak, M; Kanai, F; Zhou, BB; Chung, JH und Rathbun, GA (2002). Determination of substrate motifs for human Chk1 and hCds1/Chk2 by the oriented peptide library approach. J Biol Chem, 277, 16102-16115.
  91. Seo, GJ; Kim, SE; Lee, YM; Lee, JW; Lee, JR; Hahn, MJ und Kim, ST (2003). Determination of substrate specificity and putative substrates of Chk2 kinase. Biochem Biophys Res Commun, 304, 339-343.
  92. Parrilla-Castellar, ER; Arlander, SJ und Karnitz, L (2004). Dial 9-1-1 for DNA damage: the Rad9-Hus1-Rad1 (9-1-1) clamp complex. DNA Repair (Amst), 3, 1009-1014.
  93. Bakkenist, CJ und Kastan, MB (2003). DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature, 421, 499-506.
  94. Shirane, M; Harumiya, Y; Ishida, N; Hirai, A; Miyamoto, C; Hatakeyama, S; Nakayama, K und Kitagawa, M (1999). Down-regulation of p27(Kip1) by two mechanisms, ubiquitin-mediated degradation and proteolytic processing. J Biol Chem, 274, 13886-13893.
  95. Mitchison, T und Kirschner, M (1984). Dynamic instability of microtubule growth. Nature, 312, 237-242.
  96. Tang, CJ; Lin, CY und Tang, TK (2006). Dynamic localization and functional implications of Aurora-C kinase during male mouse meiosis. Dev Biol, 290, 398-410.
  97. Banin, S; Moyal, L; Shieh, S; Taya, Y; Anderson, CW; Chessa, L; Smorodinsky, NI; Prives, C; Reiss, Y; Shiloh, Y und Ziv, Y (1998). Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science, 281, 1674-1677.
  98. Maliga, Z; Kapoor, TM und Mitchison, TJ (2002). Evidence that monastrol is an allosteric inhibitor of the mitotic kinesin Eg5. Chem Biol, 9, 989-996.
  99. Mills, GB; Schmandt, R; McGill, M; Amendola, A; Hill, M; Jacobs, K; May, C; Rodricks, AM; Campbell, S und Hogg, D (1992). Expression of TTK, a novel human protein kinase, is associated with cell proliferation. J Biol Chem, 267, 16000-16006.
  100. Ashar, HR; James, L; Gray, K; Carr, D; Black, S; Armstrong, L; Bishop, WR und Kirschmeier, P (2000). Farnesyl transferase inhibitors block the farnesylation of CENP-E and CENP-F and alter the association of CENP-E with the microtubules. J Biol Chem, 275, 30451-30457.
  101. Motwani, M; Li, X und Schwartz, GK (2000). Flavopiridol, a cyclin-dependent kinase inhibitor, prevents spindle inhibitor-induced endoreduplication in human cancer cells. Clin Cancer Res, 6, 924-932.
  102. Newcomb, EW (2004). Flavopiridol: pleiotropic biological effects enhance its anti-cancer activity. Anticancer Drugs, 15, 411-419.
  103. Vischioni, B; Oudejans, JJ; Vos, W; Rodriguez, JA und Giaccone, G (2006). Frequent overexpression of aurora B kinase, a novel drug target, in non-small cell lung carcinoma patients. Mol Cancer Ther, 5, 2905-2913.
  104. Wiese, C und Zheng, Y (1999). Gamma-tubulin complexes and their interaction with microtubule-organizing centers. Curr Opin Struct Biol, 9, 250-259.
  105. Shichiri, M; Yoshinaga, K; Hisatomi, H; Sugihara, K und Hirata, Y (2002). Genetic and epigenetic inactivation of mitotic checkpoint genes hBUB1 and hBUBR1 and their relationship to survival. Cancer Res, 62, 13-17.
  106. Strohmaier, H; Spruck, CH; Kaiser, P; Won, KA; Sangfelt, O und Reed, SI (2001). Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature, 413, 316-322.
  107. Disruption of the Rad9/Rad1/Hus1 (9-1-1) complex leads to checkpoint signaling and replication defects. Oncogene, 23, 5586-5593.
  108. Yu, H; King, RW; Peters, J-M und Kirschner, MW (1996). Identification of a novel ubiquitin- conjugating enzyme involved in mitotic cyclin degradation. Curr. Biol., 6, 455-466.
  109. Identification of frequent impairment of the mitotic checkpoint and molecular analysis of the mitotic checkpoint genes, hsMAD2 and p55CDC, in human lung cancers. Oncogene, 18, 4295- 4300.
  110. Schatz, CA; Santarella, R; Hoenger, A; Karsenti, E; Mattaj, IW; Gruss, OJ und Carazo-Salas, RE (2003). Importin alpha-regulated nucleation of microtubules by TPX2. EMBO J, 22, 2060-2070.
  111. Rajagopalan, H; Jallepalli, PV; Rago, C; Velculescu, VE; Kinzler, KW; Vogelstein, B und Lengauer, C (2004). Inactivation of hCDC4 can cause chromosomal instability. Nature, 428, 77- 81.
  112. Kaitna, S; Mendoza, M; Jantsch-Plunger, V und Glotzer, M (2000). Incenp and an aurora-like kinase form a complex essential for chromosome segregation and efficient completion of cytokinesis. Curr Biol, 10, 1172-1181.
  113. Marti, A; Wirbelauer, C; Scheffner, M und Krek, W (1999). Interaction between ubiquitin-protein ligase SCF SKP2 and E2F-1 underlies the regulation of E2F-1 degradation. Nature Cell Biol., 1, 14- 19.
  114. Sakuno, T; Tada, K und Watanabe, Y (2009). Kinetochore geometry defined by cohesion within the centromere. Nature, 458, 852-858.
  115. Vigneron, S; Prieto, S; Bernis, C; Labbe, JC; Castro, A und Lorca, T (2004). Kinetochore localization of spindle checkpoint proteins: who controls whom? Mol Biol Cell, 15, 4584-4596.
  116. Maiato, H und Sunkel, CE (2004). Kinetochore-microtubule interactions during cell division. Chromosome Res, 12, 585-597.
  117. Kongressbeiträge in Poster-Form:
  118. Matsuoka, S; Huang, M und Elledge, SJ (1998). Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science, 282, 1893-1897.
  119. Michel, LS; Liberal, V; Chatterjee, A; Kirchwegger, R; Pasche, B; Gerald, W; Dobles, M; Sorger, PK; Murty, VV und Benezra, R (2001). MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature, 409, 355-359.
  120. Malumbres, M und Barbacid, M (2005). Mammalian cyclin-dependent kinases. Trends Biochem Sci, 30, 630-641.
  121. Rogakou, EP; Boon, C; Redon, C und Bonner, WM (1999). Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol, 146, 905-916.
  122. Schuyler, SC und Pellman, D (2001). Microtubule "plus-end-tracking proteins": The end is just the beginning. Cell, 105, 421-424.
  123. Jordan, MA und Wilson, L (2004). Microtubules as a target for anticancer drugs. Nat Rev Cancer, 4, 253-265.
  124. Mollinedo, F und Gajate, C (2003). Microtubules, microtubule-interfering agents and apoptosis. Apoptosis, 8, 413-450.
  125. Margolis, RL und Wilson, L (1998). Microtubule treadmilling: what goes around comes around. Bioessays, 20, 830-836.
  126. Pines, J (2006). Mitosis: a matter of getting rid of the right protein at the right time. Trends Cell Biol, 16, 55-63.
  127. Peng, CY; Graves, PR; Thoma, RS; Wu, Z; Shaw, AS und Piwnica-Worms, H (1997). Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science, 277, 1501-1505.
  128. Jordan, MA; Wendell, K; Gardiner, S; Derry, WB; Copp, H und Wilson, L (1996). Mitotic block induced in HeLa cells by low concentrations of paclitaxel (Taxol) results in abnormal mitotic exit and apoptotic cell death. Cancer Res, 56, 816-825.
  129. Schvartzman, JM; Sotillo, R und Benezra, R (2010). Mitotic chromosomal instability and cancer: mouse modelling of the human disease. Nat Rev Cancer, 10, 102-115.
  130. Schmidt, M und Bastians, H (2007). Mitotic drug targets and the development of novel anti- mitotic anticancer drugs. Drug Resist Updat, 10, 162-181.
  131. Nigg, EA (2001). Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol, 2, 21-32.
  132. Jelluma, N; Brenkman, AB; van den Broek, NJ; Cruijsen, CW; van Osch, MH; Lens, SM; Medema, RH und Kops, GJ (2008). Mps1 phosphorylates Borealin to control Aurora B activity and chromosome alignment. Cell, 132, 233-246.
  133. Miller, CW; Ikezoe, T; Krug, U; Hofmann, WK; Tavor, S; Vegesna, V; Tsukasaki, K; Takeuchi, S und Koeffler, HP (2002). Mutations of the CHK2 gene are found in some osteosarcomas, but are rare in breast, lung, and ovarian tumors. Genes Chromosomes Cancer, 33, 17-21.
  134. Pujana, MA; Han, JD; Starita, LM; Stevens, KN; Tewari, M; Ahn, JS; Rennert, G; Moreno, V; Kirchhoff, T; Gold, B; Assmann, V; Elshamy, WM; Rual, JF; Levine, D; Rozek, LS; Gelman, RS; Gunsalus, KC; Greenberg, RA; Sobhian, B; Bertin, N; Venkatesan, K; Ayivi-Guedehoussou, N; Sole, X; Hernandez, P; Lazaro, C; Nathanson, KL; Weber, BL; Cusick, ME; Hill, DE; Offit, K; Livingston, DM; Gruber, SB; Parvin, JD und Vidal, M (2007). Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat Genet, 39, 1338-1349.
  135. Wade, RH (2009). On and around microtubules: an overview. Mol Biotechnol, 43, 177-191.
  136. Yu, R; Lu, W; Chen, J; McCabe, CJ und Melmed, S (2003). Overexpressed pituitary tumor- transforming gene causes aneuploidy in live human cells. Endocrinology, 144, 4991-4998.
  137. Okada, H und Mak, TW (2004). Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer, 4, 592-603.
  138. Ohashi, S; Sakashita, G; Ban, R; Nagasawa, M; Matsuzaki, H; Murata, Y; Taniguchi, H; Shima, H; Furukawa, K und Urano, T (2006). Phospho-regulation of human protein kinase Aurora-A: analysis using anti-phospho-Thr288 monoclonal antibodies. Oncogene, 25, 7691-7702.
  139. Minoshima, Y; Kawashima, T; Hirose, K; Tonozuka, Y; Kawajiri, A; Bao, YC; Deng, X; Tatsuka, M; Narumiya, S; May, WS, Jr.; Nosaka, T; Semba, K; Inoue, T; Satoh, T; Inagaki, M und Kitamura, T (2003). Phosphorylation by aurora B converts MgcRacGAP to a RhoGAP during cytokinesis. Dev Cell, 4, 549-560.
  140. Seki, A; Coppinger, JA; Du, H; Jang, CY; Yates, JR, 3rd und Fang, G (2008). Plk1-and beta- TrCP-dependent degradation of Bora controls mitotic progression. J Cell Biol, 181, 65-78.
  141. Yang, S; Kuo, C; Bisi, JE und Kim, MK (2002). PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCds1/Chk2. Nat Cell Biol, 4, 865-870.
  142. Tsvetkov, L; Xu, X; Li, J und Stern, DF (2003). Polo-like kinase 1 and Chk2 interact and co- localize to centrosomes and the midbody. J Biol Chem, 278, 8468-8475.
  143. Petronczki, M; Lenart, P und Peters, JM (2008). Polo on the Rise-from Mitotic Entry to Cytokinesis with Plk1. Dev Cell, 14, 646-659.
  144. Tyers, M und Jorgensen, P (2000). Proteolysis and the cell cycle: with this RING I do thee destroy. Curr Opin Genet Dev, 10, 54-64.
  145. Ran stimulates spindle assembly by altering microtubule dynamics and the balance of motor activities. Nat Cell Biol, 3, 221-227.
  146. Reed, SI (2003). Ratchets and clocks: the cell cycle, ubiquitylation and protein turnover. Nat Rev Mol Cell Biol, 4, 855-864.
  147. Pan, J und Yeung, SC (2005). Recent advances in understanding the antineoplastic mechanisms of farnesyltransferase inhibitors. Cancer Res, 65, 9109-9112.
  148. Nonaka, N; Kitajima, T; Yokobayashi, S; Xiao, G; Yamamoto, M; Grewal, SI und Watanabe, Y (2002). Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast. Nat Cell Biol, 4, 89-93.
  149. Reduced expression and impaired kinase activity of a Chk2 mutant identified in human lung cancer. Cancer Res, 61, 5362-5365.
  150. regulate the cyclin threshold for mitotic entry in Xenopus early embryonic cell cycles. Cell Cycle, 5, 2268-2274.
  151. Yu, H (2002). Regulation of APC-Cdc20 by the spindle checkpoint. Curr Opin Cell Biol, 14, 706-714.
  152. van der Vaart, B; Akhmanova, A und Straube, A (2009). Regulation of microtubule dynamic instability. Biochem Soc Trans, 37, 1007-1013.
  153. Nakayama, KI und Nakayama, K (2005). Regulation of the cell cycle by SCF-type ubiquitin ligases. Semin Cell Dev Biol, 16, 323-333.
  154. Schwarz, JK; Lovly, CM und Piwnica-Worms, H (2003). Regulation of the Chk2 protein kinase by oligomerization-mediated cis-and trans-phosphorylation. Mol Cancer Res, 1, 598-609.
  155. Sumara, I; Gimenez-Abian, JF; Gerlich, D; Hirota, T; Kraft, C; de la Torre, C; Ellenberg, J und Peters, JM (2004). Roles of polo-like kinase 1 in the assembly of functional mitotic spindles. Curr Biol, 14, 1712-1722.
  156. Peters, J-M (1998). SCF and APC: the Yin and Yang of cell cycle regulated proteolysis. Curr. Opin. Cell Biol., 10, 759-768.
  157. Ang, XL und Wade Harper, J (2005). SCF-mediated protein degradation and cell cycle control.
  158. Nomoto, S; Haruki, N; Takahashi, T; Masuda, A; Koshikawa, T; Fujii, Y und Osada, H (1999). Search for in vivo somatic mutations in the mitotic checkpoint gene, hMAD1, in human lung cancers. Oncogene, 18, 7180-7183.
  159. Martiny-Baron, G; Kazanietz, MG; Mischak, H; Blumberg, PM; Kochs, G; Hug, H; Marme, D und Schachtele, C (1993). Selective inhibition of protein kinase C isozymes by the indolocarbazole Go 6976. J Biol Chem, 268, 9194-9197.
  160. Song, L; Li, D; Liu, R; Zhou, H; Chen, J und Huang, X (2007). Ser-10 phosphorylated histone H3 is involved in cytokinesis as a chromosomal passenger. Cell Biol Int, 31, 1184-1190.
  161. Nasmyth, K; Peters, JM und Uhlmann, F (2000). Splitting the chromosome: cutting the ties that bind sister chromatids. Science, 288, 1379-1385.
  162. Squire, CJ; Dickson, JM; Ivanovic, I und Baker, EN (2005). Structure and inhibition of the human cell cycle checkpoint kinase, Wee1A kinase: an atypical tyrosine kinase with a key role in CDK1 regulation. Structure, 13, 541-550.
  163. Moritz, M; Braunfeld, MB; Guenebaut, V; Heuser, J und Agard, DA (2000). Structure of the gamma-tubulin ring complex: a template for microtubule nucleation. Nat Cell Biol, 2, 365-370.
  164. Zhou, J und Giannakakou, P (2005). Targeting microtubules for cancer chemotherapy. Curr Med Chem Anticancer Agents, 5, 65-71.
  165. Peters, JM (2006). The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol, 7, 644-656.
  166. Peters, JM (2002). The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol Cell, 9, 931-943.
  167. Vader, G und Lens, SM (2008). The Aurora kinase family in cell division and cancer. Biochim Biophys Acta.
  168. Severson, AF; Hamill, DR; Carter, JC; Schumacher, J und Bowerman, B (2000). The aurora- related kinase AIR-2 recruits ZEN-4/CeMKLP1 to the mitotic spindle at metaphase and is required for cytokinesis. Curr Biol, 10, 1162-1171.
  169. Nettles, JH; Li, H; Cornett, B; Krahn, JM; Snyder, JP und Downing, KH (2004). The binding mode of epothilone A on alpha,beta-tubulin by electron crystallography. Science, 305, 866-869.
  170. Parvin, JD (2009). The BRCA1-dependent ubiquitin ligase, gamma-tubulin, and centrosomes.
  171. Yeh, YH; Huang, YF; Lin, TY und Shieh, SY (2009). The cell cycle checkpoint kinase CHK2 mediates DNA damage-induced stabilization of TTK/hMps1. Oncogene, 28, 1366-1378.
  172. Jallepalli, PV; Lengauer, C; Vogelstein, B und Bunz, F (2003). The Chk2 tumor suppressor is not required for p53 responses in human cancer cells. J Biol Chem, 278, 20475-20479.
  173. Sampath, SC; Ohi, R; Leismann, O; Salic, A; Pozniakovski, A und Funabiki, H (2004). The chromosomal passenger complex is required for chromatin-induced microtubule stabilization and spindle assembly. Cell, 118, 187-202.
  174. Peters, JM; Tedeschi, A und Schmitz, J (2008). The cohesin complex and its roles in chromosome biology. Genes Dev, 22, 3089-3114.
  175. Zhou, BB und Elledge, SJ (2000). The DNA damage response: putting checkpoints in perspective. Nature, 408, 433-439.
  176. Jablonski, SA; Chan, GK; Cooke, CA; Earnshaw, WC und Yen, TJ (1998). The hBUB1 and hBUBR1 kinases sequentially assemble onto kinetochores during prophase with hBUBR1 concentrating at the kinetochore plates in mitosis. Chromosoma, 107, 386-396.
  177. Wysong, DR; Chakravarty, A; Hoar, K und Ecsedy, JA (2009). The inhibition of Aurora A abrogates the mitotic delay induced by microtubule perturbing agents. Cell Cycle, 8, 876-888.
  178. Pinsky, BA; Kung, C; Shokat, KM und Biggins, S (2006). The Ipl1-Aurora protein kinase activates the spindle checkpoint by creating unattached kinetochores. Nat Cell Biol, 8, 78-83.
  179. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc, 93, 2325-2327.
  180. Przewloka, MR und Glover, DM (2009). The kinetochore and the centromere: a working long distance relationship. Annu Rev Genet, 43, 439-465.
  181. Moore, A und Wordeman, L (2004). The mechanism, function and regulation of depolymerizing kinesins during mitosis. Trends Cell Biol, 14, 537-546.
  182. Tsvetkov, LM; Tsekova, RT; Xu, X und Stern, DF (2005). The Plk1 Polo box domain mediates a cell cycle and DNA damage regulated interaction with Chk2. Cell Cycle, 4, 609-617.
  183. Oshimori, N; Ohsugi, M und Yamamoto, T (2006). The Plk1 target Kizuna stabilizes mitotic centrosomes to ensure spindle bipolarity. Nat Cell Biol, 8, 1095-1101.
  184. Rubin, CI und Atweh, GF (2004). The role of stathmin in the regulation of the cell cycle. J Cell Biochem, 93, 242-250.
  185. Pinsky, BA und Biggins, S (2005). The spindle checkpoint: tension versus attachment. Trends Cell Biol, 15, 486-493.
  186. Peset, I und Vernos, I (2008). The TACC proteins: TACC-ling microtubule dynamics and centrosome function. Trends Cell Biol, 18, 379-388.
  187. Voorhoeve, PM und Agami, R (2003). The tumor-suppressive functions of the human INK4A locus. Cancer Cell, 4, 311-319.
  188. Melchionna, R; Chen, XB; Blasina, A und McGowan, CH (2000). Threonine 68 is required for radiation-induced phosphorylation and activation of Cds1. Nat Cell Biol, 2, 762-765.
  189. Meraldi, P; Draviam, VM und Sorger, PK (2004). Timing and checkpoints in the regulation of mitotic progression. Dev Cell, 7, 45-60.
  190. Tubulin dynamics in cultured mammalian cells. J Cell Biol, 99, 2175-2186.
  191. Pickart, CM und Eddins, MJ (2004). Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta, 1695, 55-72.
  192. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science, 286, 971-974.
  193. Varley, J und Haber, DA (2003). Familial breast cancer and the hCHK2 1100delC mutation: assessing cancer risk. Breast Cancer Res, 5, 123-125.
  194. Saeki, A; Tamura, S; Ito, N; Kiso, S; Matsuda, Y; Yabuuchi, I; Kawata, S und Matsuzawa, Y (2002). Frequent impairment of the spindle assembly checkpoint in hepatocellular carcinoma. Cancer, 94, 2047-2054.
  195. Bartkova, J; Horejsi, Z; Koed, K; Kramer, A; Tort, F; Zieger, K; Guldberg, P; Sehested, M; Nesland, JM; Lukas, C; Orntoft, T; Lukas, J und Bartek, J (2005). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature, 434, 864-870.
  196. Jallepalli, PV; Waizenegger, IC; Bunz, F; Langer, S; Speicher, MR; Peters, JM; Kinzler, KW; Vogelstein, B und Lengauer, C (2001). Securin is required for chromosomal stability in human cells. Cell, 105, 445-457.
  197. Zhuang, J; Zhang, J; Willers, H; Wang, H; Chung, JH; van Gent, DC; Hallahan, DE; Powell, SN und Xia, F (2006). Checkpoint kinase 2-mediated phosphorylation of BRCA1 regulates the fidelity of nonhomologous end-joining. Cancer Res, 66, 1401-1408.
  198. Wheatley, SP; Carvalho, A; Vagnarelli, P und Earnshaw, WC (2001). INCENP is required for proper targeting of Survivin to the centromeres and the anaphase spindle during mitosis. Curr Biol, 11, 886-890.
  199. Petermann, E und Caldecott, KW (2006). Evidence that the ATR/Chk1 pathway maintains normal replication fork progression during unperturbed S phase. Cell Cycle, 5, 2203-2209.
  200. Wheatley, SP; Henzing, AJ; Dodson, H; Khaled, W und Earnshaw, WC (2004). Aurora-B phosphorylation in vitro identifies a residue of survivin that is essential for its localization and binding to inner centromere protein (INCENP) in vivo. J Biol Chem, 279, 5655-5660.
  201. Tsai, MY; Wiese, C; Cao, K; Martin, O; Donovan, P; Ruderman, J; Prigent, C und Zheng, Y (2003). A Ran signalling pathway mediated by the mitotic kinase Aurora A in spindle assembly. Nat Cell Biol, 5, 242-248.
  202. Moore, A und Wordeman, L (2004). C-terminus of mitotic centromere-associated kinesin (MCAK) inhibits its lattice-stimulated ATPase activity. Biochem J, 383, 227-235.
  203. Meraldi, P und Sorger, PK (2005). A dual role for Bub1 in the spindle checkpoint and chromosome congression. Embo J, 24, 1621-1633.
  204. Zhao, WM und Fang, G (2005). MgcRacGAP controls the assembly of the contractile ring and the initiation of cytokinesis. Proc Natl Acad Sci U S A, 102, 13158-13163.
  205. Takai, H; Naka, K; Okada, Y; Watanabe, M; Harada, N; Saito, S; Anderson, CW; Appella, E; Nakanishi, M; Suzuki, H; Nagashima, K; Sawa, H; Ikeda, K und Motoyama, N (2002). Chk2- deficient mice exhibit radioresistance and defective p53-mediated transcription. Embo J, 21, 5195-5205.
  206. Xu, X; Tsvetkov, LM und Stern, DF (2002). Chk2 activation and phosphorylation-dependent oligomerization. Mol Cell Biol, 22, 4419-4432.
  207. Vader, G; Kauw, JJ; Medema, RH und Lens, SM (2006). Survivin mediates targeting of the chromosomal passenger complex to the centromere and midbody. EMBO Rep, 7, 85-92.
  208. Zhao, H; Watkins, JL und Piwnica-Worms, H (2002). Disruption of the checkpoint kinase 1/cell division cycle 25A pathway abrogates ionizing radiation-induced S and G2 checkpoints. Proc Natl Acad Sci U S A, 99, 14795-14800.
  209. Wassmann, K; Liberal, V und Benezra, R (2003). Mad2 phosphorylation regulates its association with Mad1 and the APC/C. Embo J, 22, 797-806.
  210. Petretti, C; Savoian, M; Montembault, E; Glover, DM; Prigent, C und Giet, R (2006). The PITSLRE/CDK11p58 protein kinase promotes centrosome maturation and bipolar spindle formation. EMBO Rep, 7, 418-424.
  211. Tulu, US; Fagerstrom, C; Ferenz, NP und Wadsworth, P (2006). Molecular requirements for kinetochore-associated microtubule formation in mammalian cells. Curr Biol, 16, 536-541.
  212. Salmon, ED; Cimini, D; Cameron, LA und DeLuca, JG (2005). Merotelic kinetochores in mammalian tissue cells. Philos Trans R Soc Lond B Biol Sci, 360, 553-568.
  213. Lange, J; Martin, C; Sahasrabudhe, S; Reinhardt, M; Natt, F; Hall, J; Mickanin, C; Labow, M; Chanda, SK; Cho, CY und Schultz, PG (2006). Genome-wide functional analysis of human cell- cycle regulators. Proc Natl Acad Sci U S A, 103, 14819-14824.
  214. Maddox, PS; Portier, N; Desai, A und Oegema, K (2006). Molecular analysis of mitotic chromosome condensation using a quantitative time-resolved fluorescence microscopy assay.
  215. Mori, D; Yano, Y; Toyo-oka, K; Yoshida, N; Yamada, M; Muramatsu, M; Zhang, D; Saya, H; Toyoshima, YY; Kinoshita, K; Wynshaw-Boris, A und Hirotsune, S (2007). NDEL1 phosphorylation by Aurora-A kinase is essential for centrosomal maturation, separation, and TACC3 recruitment. Mol Cell Biol, 27, 352-367.
  216. Manfredi, MG; Ecsedy, JA; Meetze, KA; Balani, SK; Burenkova, O; Chen, W; Galvin, KM; Hoar, KM; Huck, JJ; LeRoy, PJ; Ray, ET; Sells, TB; Stringer, B; Stroud, SG; Vos, TJ; Weatherhead, GS; Wysong, DR; Zhang, M; Bolen, JB und Claiborne, CF (2007). Antitumor activity of MLN8054, an orally active small-molecule inhibitor of Aurora A kinase. Proc Natl Acad Sci U S A, 104, 4106-4111.
  217. Variable levels of chromosomal instability and mitotic spindle checkpoint defects in breast cancer. Am J Pathol, 161, 391-397.
  218. Sotillo, R; Hernando, E; Diaz-Rodriguez, E; Teruya-Feldstein, J; Cordon-Cardo, C; Lowe, SW und Benezra, R (2007). Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell, 11, 9-23.
  219. Masuda, A; Maeno, K; Nakagawa, T; Saito, H und Takahashi, T (2003). Association between mitotic spindle checkpoint impairment and susceptibility to the induction of apoptosis by anti- microtubule agents in human lung cancers. Am J Pathol, 163, 1109-1116.
  220. Moasser, MM; Sepp-Lorenzino, L; Kohl, NE; Oliff, A; Balog, A; Su, DS; Danishefsky, SJ und Rosen, N (1998). Farnesyl transferase inhibitors cause enhanced mitotic sensitivity to taxol and epothilones. Proc Natl Acad Sci U S A, 95, 1369-1374.
  221. Maxwell, CA; Keats, JJ; Crainie, M; Sun, X; Yen, T; Shibuya, E; Hendzel, M; Chan, G und Pilarski, LM (2003). RHAMM is a centrosomal protein that interacts with dynein and maintains spindle pole stability. Mol Biol Cell, 14, 2262-2276.
  222. Manning, AL; Ganem, NJ; Bakhoum, SF; Wagenbach, M; Wordeman, L und Compton, DA (2007). The kinesin-13 proteins Kif2a, Kif2b, and Kif2c/MCAK have distinct roles during mitosis in human cells. Mol Biol Cell, 18, 2970-2979.
  223. Wirth, KG; Wutz, G; Kudo, NR; Desdouets, C; Zetterberg, A; Taghybeeglu, S; Seznec, J; Ducos, GM; Ricci, R; Firnberg, N; Peters, JM und Nasmyth, K (2006). Separase: a universal trigger for sister chromatid disjunction but not chromosome cycle progression. J Cell Biol, 172, 847-860.
  224. Wong, J und Fang, G (2006). HURP controls spindle dynamics to promote proper interkinetochore tension and efficient kinetochore capture. J Cell Biol, 173, 879-891.
  225. Jeganathan, K; Malureanu, L; Baker, DJ; Abraham, SC und van Deursen, JM (2007). Bub1 mediates cell death in response to chromosome missegregation and acts to suppress spontaneous tumorigenesis. J Cell Biol, 179, 255-267.
  226. Wordeman, L; Wagenbach, M und von Dassow, G (2007). MCAK facilitates chromosome movement by promoting kinetochore microtubule turnover. J Cell Biol, 179, 869-879.
  227. Rieder, CL; Schultz, A; Cole, R und Sluder, G (1994). Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle. J. Cell Bio., 127, 1301-1320.
  228. Yang, M; Li, B; Tomchick, DR; Machius, M; Rizo, J; Yu, H und Luo, X (2007). p31comet blocks Mad2 activation through structural mimicry. Cell, 131, 744-755.
  229. Mountain, V; Simerly, C; Howard, L; Ando, A; Schatten, G und Compton, DA (1999). The kinesin-related protein, HSET, opposes the activity of Eg5 and cross-links microtubules in the mammalian mitotic spindle. J Cell Biol, 147, 351-366.
  230. Wittmann, T; Wilm, M; Karsenti, E und Vernos, I (2000). TPX2, A novel xenopus MAP involved in spindle pole organization. J Cell Biol, 149, 1405-1418.
  231. Sudakin, V; Chan, GK und Yen, TJ (2001). Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol, 154, 925-936.
  232. Barber, TD; McManus, K; Yuen, KW; Reis, M; Parmigiani, G; Shen, D; Barrett, I; Nouhi, Y; Spencer, F; Markowitz, S; Velculescu, VE; Kinzler, KW; Vogelstein, B; Lengauer, C und Hieter, P (2008). Chromatid cohesion defects may underlie chromosome instability in human colorectal cancers. Proc Natl Acad Sci U S A, 105, 3443-3448.
  233. Jin, J; Ang, XL; Ye, X; Livingstone, M und Harper, JW (2008). Differential roles for checkpoint kinases in DNA damage-dependent degradation of the Cdc25A protein phosphatase. J Biol Chem, 283, 19322-19328.
  234. Yvon, AM; Wadsworth, P und Jordan, MA (1999). Taxol suppresses dynamics of individual microtubules in living human tumor cells. Mol Biol Cell, 10, 947-959.
  235. Overexpression of Separase induces aneuploidy and mammary tumorigenesis. Proc Natl Acad Sci U S A, 105, 13033-13038.
  236. Ricke, RM; van Ree, JH und van Deursen, JM (2008). Whole chromosome instability and cancer: a complex relationship. Trends Genet, 24, 457-466.
  237. Bakhoum, SF; Thompson, SL; Manning, AL und Compton, DA (2009). Genome stability is ensured by temporal control of kinetochore-microtubule dynamics. Nat Cell Biol, 11, 27-35.
  238. Silkworth, WT; Nardi, IK; Scholl, LM und Cimini, D (2009). Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. PLoS One, 4, e6564.
  239. Seki, A; Coppinger, JA; Jang, CY; Yates, JR und Fang, G (2008). Bora and the kinase Aurora a cooperatively activate the kinase Plk1 and control mitotic entry. Science, 320, 1655-1658.
  240. Baker, DJ; Jin, F; Jeganathan, KB und van Deursen, JM (2009). Whole chromosome instability caused by Bub1 insufficiency drives tumorigenesis through tumor suppressor gene loss of heterozygosity. Cancer Cell, 16, 475-486.
  241. Shieh, SY; Ahn, J; Tamai, K; Taya, Y und Prives, C (2000). The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev, 14, 289-300.
  242. Pfleger, CM und Kirschner, MW (2000). The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1. Genes Dev, 14, 655-665.
  243. Takai, H; Tominaga, K; Motoyama, N; Minamishima, YA; Nagahama, H; Tsukiyama, T; Ikeda, K; Nakayama, K und Nakanishi, M (2000). Aberrant cell cycle checkpoint function and early embryonic death in Chk1(-/-) mice. Genes Dev, 14, 1439-1447.
  244. Skoufias, DA; Andreassen, PR; Lacroix, FB; Wilson, L und Margolis, RL (2001). Mammalian mad2 and bub1/bubR1 recognize distinct spindle-attachment and kinetochore-tension checkpoints. Proc Natl Acad Sci U S A, 98, 4492-4497.
  245. Piehl, M; Tulu, US; Wadsworth, P und Cassimeris, L (2004). Centrosome maturation: measurement of microtubule nucleation throughout the cell cycle by using GFP-tagged EB1. Proc Natl Acad Sci U S A, 101, 1584-1588.
  246. Zhang, J; Willers, H; Feng, Z; Ghosh, JC; Kim, S; Weaver, DT; Chung, JH; Powell, SN und Xia, F (2004). Chk2 phosphorylation of BRCA1 regulates DNA double-strand break repair. Mol Cell Biol, 24, 708-718.
  247. Complete loss of the tumor suppressor MAD2 causes premature cyclin B degradation and mitotic failure in human somatic cells. Proc Natl Acad Sci U S A, 101, 4459-4464.
  248. Aristarkhov, A; Eytan, E; Moghe, A; Admon, A; Hershko, A und Ruderman, JV (1996). E2-C, a cyclin-selective ubiquitin carrier protein required for the destruction of mitotic cyclins. Proc. Nat.
  249. Moshe, Y; Boulaire, J; Pagano, M und Hershko, A (2004). Role of Polo-like kinase in the degradation of early mitotic inhibitor 1, a regulator of the anaphase promoting complex/cyclosome. Proc Natl Acad Sci U S A, 101, 7937-7942.
  250. Ohi, R; Sapra, T; Howard, J und Mitchison, TJ (2004). Differentiation of cytoplasmic and meiotic spindle assembly MCAK functions by Aurora B-dependent phosphorylation. Mol Biol Cell, 15, 2895-2906.
  251. Yen, TJ; Compton, DA; Wise, D; Zinkowski, RP; Brinkley, BR; Earnshaw, WC und Cleveland, DW (1991). CENP-E, a novel human centromere-associated protein required for progression from metaphase to anaphase. EMBO J, 10, 1245-1254.
  252. Zhao, H und Piwnica-Worms, H (2001). ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Mol Cell Biol, 21, 4129-4139.
  253. Murray, AW (2004). Recycling the cell cycle: cyclins revisited. Cell, 116, 221-234.
  254. Weaver, BA; Silk, AD; Montagna, C; Verdier-Pinard, P und Cleveland, DW (2007). Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell, 11, 25-36.
  255. Shapiro, GI (2006). Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol, 24, 1770-1783.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten