Publikationsserver der Universitätsbibliothek Marburg

Titel:Molekularbiologische und biochemische Untersuchungen von Hydroxycinnamoyltransferasen aus Coleus blumei und Glechoma hederacea
Autor:Sander, Marion
Weitere Beteiligte: Petersen, Maike (Prof. Dr.)
Veröffentlicht:2010
URI:https://archiv.ub.uni-marburg.de/diss/z2010/0168
DOI: https://doi.org/10.17192/z2010.0168
URN: urn:nbn:de:hebis:04-z2010-01685
DDC: Pflanzen (Botanik)
Titel (trans.):Molecular and biochemical investigations on hydroxycinnamoyltransferases from Coleus blumei and Glechoma hederacea
Publikationsdatum:2010-07-08
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Lignin, Chlorogensäure, Coleus, Rosmarinic acid, BAHD-acyltransferase, Rosmarinsäure, Lamiaceae, Hydroxycinnamoyltransferase, Glechoma, BAHD-Acyltransferase, Lignin, Chlorogenic acid, Hydroxycinnamoyltransferase

Zusammenfassung:
Hydroxyzimtsäureester sind bedeutende sekundäre Inhaltsstoffe der Lamiaceae. Neben Hydroxycinnamoylshikimat und -chinat, die im Pflanzenreich nahezu ubiquitär verbreitet sind, ist Rosmarinsäure hauptsächlich in den Boraginaceae und der Unterfamilie Nepetoideae der Lamiaceae zu finden. Die Biosynthesewege dieser Phenylpropanderivate sind aufgrund weitgehend verstanden. Die Hydroxycinnamoyltransferasen (HCTs), die an der Biosynthese dieser Ester beteiligt sind, gehören zur Superfamilie der BAHD-Acyltransferasen und übertragen Hydroxyzimtsäurereste von Hydroxycinnamoyl-CoA-Derivaten auf verschiedene Akzeptoren (HST: Shikimat, HQT: Chinat, RAS: Hydroxyphenyllactat). Dabei sind sie in der Regel sehr spezifisch für ihre Substrate. Mit der Klonierung einer cDNA aus Coleus blumei, die für eine Hydroxycinnamoyl-CoA: Hydroxyphenyllactat Hydroxycinnamoyltransferase (CbRAS) codiert, gelang es Berger et al. (2006) erstmals, das Gen des charakteristischen Enzyms der Rosmarinsäurebiosynthese zu isolieren. Aus derselben Pflanzenart konnte in dieser Dissertation die cDNA, die für eine Hydroxycinnamoyl-CoA:Shikimat Hydroxycinnamoyltransferase (CbHST) codiert, isoliert werden. Beide Proteine wurden in E. coli heterolog exprimiert und die Substratspezifitäten untersucht. Beide HCTs besitzen eine breitere Substratspezifiät als erwartet und können neben Estern auch Amide bilden. Die CbHST überträgt CoA-aktivierte Zimtsäuren (p-Cumaroyl-CoA, Caffeoyl-CoA, Cinnamoyl-CoA, Feruloyl-CoA und Sinapoyl-CoA) auf Shikimat, nicht aber auf Chinat oder die Akzeptorsubstrate der CbRAS. Mit 3-Hydroxyanthranilsäure, 2,3-Dihydroxybenzoesäure, 3-Hydroxybenzoesäure und 3-Aminobenzoesäure wurde ebenfalls eine Produktbildung beobachtet. Die CbRAS überträgt dieselben CoA-aktivierten Zimtsäuren (außer Sinapoyl-CoA) auf D-p-Hydroxyphenyllactat (pHPL), D-Dihydroxyphenyllactat (DHPL) und D-Phenyllactat, nicht aber auf Chinat oder Shikimat. Die D-Aminosäuren D-Phenylalanin, D-Tyrosin und D-DOPA sind ebenfalls Substrate der CbRAS. Die Km-Werte für ein spezifisches Substrat waren immer abhängig von dem zweiten, konstant gehaltenen Substrat. Dies ist ein Hinweis für die Plastizität der aktiven Zentren (induced fit). Die Koexistenz beider Enzyme in einer Pflanzenart, die ausgeprägte Substratspezifität und der Vergleich der enzymkinetischen Parameter führt zu dem Ergebnis, dass es sich bei der CbHST und der CbRAS um spezifische Enzyme der Monolignol- (CbHST) bzw. der Rosmarinsäuresynthese (CbRAS) handelt, deren bevorzugtes Donorsubstrat p-Cumaroyl-CoA ist. Zur Identifizierung von funktionell und/oder strukturell wichtigen Aminosäuren wurden gezielt die CbRAS-Mutanten H152A, D156A, D377A, R285A, W380L und L136P generiert. Die Einzelmutationen in diesen konservierten Bereichen führten zu einer drastischen Reduktion der Enzymaktivität (Restaktivität unter 1%). Vermutlich ist das H152 des 152HxxxD156-Motivs die katalytische Base. Es wurden zwei verschiedene Aufreinigungsverfahren entwickelt, mit deren Hilfe die CbRAS im zweistelligen mg-Bereich bis zur apparenten Homogenität aufgereinigt werden konnte. In ersten Kristallisationsversuchen wuchsen erste kleine Kristalle, bei denen es sich wahrscheinlich um CbRAS-Proteinkristalle handelt. Glechoma hederacea produziert Rosmarinsäure und Chlorogensäure nebeneinander. Daher ist sie für die Untersuchung aller drei Biosynthesewege geeignet. Durch Nukleotidsequenzvergleich von bekannten RAS, HST und HQT wurden degenerierte Primer abgeleitet, die unter Verwendung der RACE-PCR-Technik zur selketiven Amplifikation von sechs cDNA-Klonen führten. Die translatierten Proteinsequenzen weisen die für BAHD-Acyltransferasen typischen konservierten Motive HxxxD und DFGWG auf. Drei Enzyme konnten funktionell in E. coli exprimiert werden: GhRAS-l ist eine Hydroxycinnamoyl-CoA:Hydroxyphenyllactat Hydroxycinnamoyltransferase, die spezifisch p-Cumaroyl-CoA und Caffeoyl-CoA auf pHPL und DHPL, nicht aber auf Shikimat oder Chinat überträgt. Die GhHST-k und die GhHST-l übertragen die beiden CoA-aktivierten Säuren selektiv auf Shikimat, nicht aber auf pHPL, DHPL oder Chinat. Die GhRAS-k mit 91% Sequenzidentität zur aktiven GhRAS-l war in Enzymtests nicht aktiv. Ein Pseudogen wird vermutet. Die putative GhHQT-k und die putative GhHQT-l weisen die höchste Aminosequenzähnlichkeit (50 % und 45 %) zur HQT aus Cynara cardunculus auf. Sie waren in Enzymtests jedoch nicht aktiv. Daher bleibt fraglich, ob es sich um HQTs oder um Enzyme mit bislang unbekannter Enzymaktivität handelt. Die Verwandtschaftsverhältnisse der isolierten RAS-, HST- und putativen HQT-Sequenzen aus Coleus und Glechoma zu bekannten BAHD-Acyltransferasen zeigt die enge evolutionäre Beziehung der HCTs zueinander und gibt einen Hinweis, dass RAS, HST und HQT möglicherweise durch Genverdopplung und Diversifikation auseinander hervorgegangen sind.

Bibliographie / References

  1. Petersen M, Häusler E, Karwatzki B, Meinhard J (1994). The biosynthesis of rosmarinic acid in suspension cultures of Coleus blumei. Plant Cell Tiss. Organ Cult. 38: 171-179
  2. Yu XH, Gou JY, Liu CJ (2009) BAHD superfamily of acyl-CoA dependent acyltransferases in Populus and Arabidopsis: bioinformatics and gene expression. Plant Mol Biol 70:421-442
  3. Shadle G, Chen F, Reddy MSS, Jackson L, Nakashima J, Dixon RA (2007) Down-regulation of hydroxycinnamoyl CoA:shikimate hydroxycinnamoyl transferase in transgenic alfalfa affects lignification, development and forage quality. Phytochemistry 68:1521-1529
  4. Petersen M (1991) Characterization of rosmarinic acid synthase from cell cultures of Coleus blumei. Phytochemistry 30:2877-2881
  5. Unno H, Ichimaida F, Suzuki H, Takahashi S, Tanaka Y, Saito A, Nishino T, Kusunoki M, Nakayama T (2007) Structural and mutational studies of anthocyanin malonyltransferases establish the features of BAHD enzyme catalysis. J Biol Chem 282:15812-15822
  6. Chang J, Lou J, He G (2009) Regulation of polyphenols accumulation by combined overexpression/silencing key enzymes of phenylpropanoid pathway. Acta Boichim Biophys Sin 41:123-130
  7. Okada T, Hirai MY, Suzuki H, Yamazaki M, Saito K (2005) Molecular characterization of a novel quinolizidine alkaloid O-tigloyltransferase: cDNA cloning, catalytic activity of recombinant protein and expression analysis in Lupinus plants. Plant Cell Physiol 46:233- 244
  8. D'Auria JC, Gershenzon J (2005) The secondary metabolism of Arabidopsis thaliana: growing like a weed. Curr Opin Plant Biol 8:308-316
  9. Ma X, Koepke J, Panjikar S, Fritzsch G, Stöckigt J (2005) Crystal structure of vinorine synthase, the first representative of the BAHD superfamily. J Biol Chem 280:13576-13583
  10. Dexter R, Qualley A, Kish CM, Je Ma C, Koeduka T, Nagegowda DA, Dudareva N, Pichersky E, Clark D (2007) Characterization of a petunia acetyltransferase involved in the biosynthesis of the floral volatile isoeugenol. Plant J 49:265-275
  11. Berger A, Meinhard J, Petersen M (2006) Rosmarinic acid synthase is a new member of the superfamily of BAHD acyltransferases. Planta 224:1503-1510
  12. Dudareva N, D'Auria JC, Nam KH, Raguso RA, Pichersky E (1998) Acetyl-CoA: benzylalcohol acyltansferase–an enzyme involved in floral scent production in Clarkia breweri. Plant J 14:297-304
  13. Bayer A, Ma XY, Stockigt J (2004) Acetyltransfer in natural product biosynthesis–functional cloning and molecular analysis of vinorine synthase. Bioorg Med Chem 12:2787-2795
  14. Stehle F, Brandt W, Schmidt J, Milkowski C, Strack D (2008) Activities of Arabidopsis sinapoylglucose:malate sinapoyltransferase shed light on functional diversification of serine carboxypeptidase-like acyltransferases. Phytochemistry 69:1826-1831
  15. Souleyre EJ, Greenwood DR, Friel EN, Karunairetnam S, Newcomb RD (2005) An alcohol acyl transferase from apple (cv Royal Gala), MpAAT1, produces esters involved in apple fruit flavor. FEBS J 272:3132-3144
  16. Yang Q, Trinh HX, Imai S, Ishihara A, Zhang L, Nakayashiki H, Tosa Y, Mayama S (2004) Analysis of the involvement of hydroxyanthranilate hydroxycinnamoyltransferase and caffeoyl-CoA 3-O-methyltransferase in phytoalexin biosynthesis in oat. Mol Plant Microbe Interact 17:81-89
  17. Burhenne K, Kristensen BK, Rasmussen SK (2003) A new class of N-hydroxycinnamoyltransferases. Purification, cloning, and expression of a barley agmatine coumaroyltransferase (EC 2.3.1.64). J Biol Chem 278:13919-13927
  18. Nevarez DM, Mengistu YA, Nawarathe IN, Walker K (2009) An N-Aroyltransferase of the BAHD Superfamily His Broad Aroyl CoA Specificity in vitro with Analogues of N-Dearoylpaclitaxel. J. Am. Chem. Soc. 131:5994-6002
  19. Sullivan ML (2009) A Novel Red Clover Hydroxycinnamoyl Transferase Has Enzymatic Activities Consistent with a Role in Phaselic Acid Biosynthesis. Plant Physiol 150:1866- 1879
  20. Fujiwara H, Tanaka Y, Fukui Y, Nakao M, Ashikari T, Kusumi T (1997) Anthocyanin 5-aromatic acyltramsferase from Gentiana triflora. Purification, characterization and its role in anthocyanin biosynthesis. Eur J Biochem 249:45-51
  21. Nakayama T, Suzuki H, Nishino T (2003) Anthocyanin acyltransferases: specificities, mechanism, phylogenetics and applications. J Mol Catal B Enzym 23:117-132
  22. Sanbongi C, Osakabe N, Natsume M, Takizawa T, Gomi S, Osawa T (1998) Antioxidative polyphenols isolated from Theobroma cacao. J Agric Food Chem 46:454-457
  23. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein-dye binding. Anal Biochem 72:248- 254
  24. Tabelle 16: Auflistung der biochemisch und genetisch chakaterisierten BAHD-Acyltransferasen inklusive der Akzessionsnummern. Die Klasseneinteilung entspricht den Ergebnissen der phylogenetischen Analyse (siehe Kapitel 3.11.4)
  25. Ph. Eur. (2009) 6. Ausgabe, 4. Nachtrag, amtliche Ausgabe, Deutscher Apotheker Verlag Stuttgart Pichersky E, Gang DR (2006) Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Science 311:808-811
  26. Cooper TG (1981). Biochemische Arbeitsmethoden. Verlag de Gruyter, Berlin
  27. Adam KP (1995) Caffeic acid derivatives in fronds of the lady fern (Athyrium filix-femina).
  28. Suzuki H, Nakayama T, Yamaguchi M, Nishido T (2004) cDNA cloning and characterization of two Dentranthema x Morifllium anthocyanin malonyltransferases with different functional activities. Plant Sci 166:89-96
  29. Eberle D, Ullmann P, Werck-Reichhart D, Petersen M (2009) cDNA cloning and functional characterization of CYP98A14 and NADPH cytochrome P450 reductase from Coleus blumei involved in rosmarinic acid biosynthesis. Plant Mol Biol 69:239-253
  30. Suzuki H, Nakayama T, Yonekura-Sakakibara K, Fukui Y, Nakamura T, Nishino T (2002) cDNA cloning, heterologous expressions, and functional characterization of malonyl- CoA:anthocyanidin 3-O-glucoside –6''-O-malonyltransferase from Dahlia flowers. Plant Physiol 130:2142-2151
  31. Shaw WV (19929 Cemical anatomy of antibiotic resistence: chloramphenicol acetyltransferase. Sci Prog 76:565-580
  32. Yang Q, Reinhard K, Schiltz E, Matern U (1997) Characterization and heterologous expression of hydroxycinnamoyl/benzoyl-CoA:anthranilate N-hydroxycinnamoyl/ benzoyltransferase from elicited cell cultures of carnation, Dianthus caryophyllus L. Plant Mol Biol 35:777-789
  33. D'Auria JC, Chen F, Pichersky E (2002) Characterization of an acyltransferase capable of synthesizing benzylbenzoat and other volatile esters in flowers and damaged leaves of Clarkia breweri. Plant Physiol 130:466-476
  34. Stöckigt J, Zenk MH (1975) Chemical syntheses and properties of hydroxycinnamoyl‐coenzyme A derivates. Z Naturforsch 30c:352-358
  35. Sondheimer E (1964) Chlorogenic acid and related depsides. Bot Rev 30:667-712
  36. Lepepelley M, Cheminade G, Tremillon N, Simkin A, Caillet V, McCarthy J (2007) Chlorogenic acid synthesis in coffee: An analysis of CGA content and real-time RT-PCR expression of HCT, HQT, C3H1, and CCoAOMT1 genes during grain development in C. canephora. Plant Sci. 172:978-996 hol acyltransferase (MdAAT2) from Apple (cv. Golden Delicious). Phytochemistry 67:658-667
  37. Peng XX, Bai GB, Li WD (submitted 2009). Cloning and characterization of a cDNA coding a hydroxycinnamoyl transferase involved in chlorogenic acid biosynthesis in Lonicera japonica.
  38. Xia Y, Nikolau BJ, Schnable PS (1996) Cloning and characterization of CER2, an Arabidopsis gene that affects cuticular wax acuumulation 8:1291-1304
  39. CoA:quinate hydroxycinnamoyl transferase from higher plants. Phytochemistry 18:929-
  40. Rogers R (2008) Coleus: rainbow foliage for containers and gardens. Timber Press, Inc.
  41. Petersen M (2007) Current status of metabolic phytochemistry. Phytochemistry 68:2847- 2860
  42. Petersen M (1997) Cytochrome P450-dependent hydroxylation in the biosynthesis of rosmarinic acid in Coleus. Phytochemistry 45:1165-1172
  43. DAC (2009) Deutscher Arzneimittel-Codex, Deutscher Apothekerverlag Stuttgart D'Auria JC (2006) Acyltransferases in plants: a good time to be BAHD. Curr Opin Plant Biol 9:331-340
  44. Acyltransferasen erstellt. Die gefundenen Verwandtschaftsverhältnisse sind mit den von D´Auria (2006) beschriebenen Ergebnissen vergleichbar. Daher wurde die damals eingeführte Nummerierung der Klassen beibehalten. Als Basis für den Stammbaum dienten Proteinsequenzen aus der UniProt-Datenbank, deren Substratspezifität bekannt ist.
  45. Abkürzungen Klasse I: At3AT1 Arabidopsis thaliana Cumaroyl-CoA:Cyanidin-3-O-glucose Hydroxycinnamoyltransferase; At3AT2 Arabidopsis thaliana Cumaroyl-CoA:Cyanidin-3-O-glucose Hydroxycinnamoyltransferase; MtMAT3 Medicago truncatula Isoflavon-7-O-glykosid Malonyltransferase; MtMAT1 Medicago truncatula Isoflavon-7-O-glykosid Malonyltransferase; At5MaT Arabidopsis thaliana Malonyl- CoA:Anthocyan-5-O-glucosid 6´´-O-Malonyltransferase; Dm3MAT2 Dendranthema x morifolium Anthocyanidin-3- O-glucosid 3´´,6´´-O-Dimalonyltransferase; Dm3MAT1 Dendranthema x morifolium Anthocyanidin-3-O-glucosid 6´´-O-Malonyltransferase; Sc3MaT Senecia curentus Malonyl-CoA:Anthocyanidin 3-O-glucosid 6´´-O- Malonyltransferase; Dv3MAT Dhalia variabilis Malonyl-CoA:Anthocyanidin-3-O-glucosid 6´´-O- Malonyltransferase; Dv3MAT2 Dahlia variabilis Malonyl-CoA:Anthocyanidin-3-O-glucosid 6´´-O- Malonyltransferase; Dm3MAT3 Dendranthemum x morifolium Anthocyanidin-3-O-glucosid 6´´-O- Malonyltransferase; Pf3AT Perilla frutescens Hydroxycinnamoyl-CoA:Anthocyanin-3-O-glucosid 6´´-O- Hydroxycinnamoyl-transferase; Ss3MAT Salvia splendens Anthocyanin-3-O-glucosid 6´´-O- Hydroxycinnamoyltransferase; Pf5MaT Perilla frutescens Anthocyanin-5-O-glucosid 6´´-O-Malonyltransferase; Ss5MaT Salvia splendens Malonyl-CoA:Anthocyanin-5-O-Glucosid 6´´´-O-Malonyltransferase; Gt5AT Gentiana triflora Hydroxycinnamoyl-CoA:Anthocyanin-5-O-glucosid 6´´´-O-Acyl-transferase; NtMAT1 Nicotiana tabacum Malonyl-CoA:Flavonoid/Naphtholglucosid Acyltransferase; Vh3MAT2 Verbena hybrida Quercetin-3-O-glucosid 6´´-O-Malonyltransferase; Vh3MAT1 Verbena hybrida Flavonol-3-O-glucosid 6´´-O-Malonyltransferase; Lp3MAT1 Lamium purpureum Flavonol-3-O-glucosid 6´´-O-Malonyltransferase; Klasse II: -Klasse III: CbBEAT Clarkia breweri Acetyl-CoA:Benzylalkohol Acetyltransferase; CcBEAT1-3 Clarkia concinna Acetyl-CoA:Benzylalkohol Acetyltransferasen; PsSalAT Papaver somniferum Salutaridinol 7-O-Acetyltransferase; CmAAT4 Cucumis melo Alkohol Acyltransferase; RhAAT1 Rosa hybrida Acetyl-CoA:Geraniol Acetyltransferase; SAAT Strawberry Alkohol Acyltransferase; VAAT Fragaria vesca Alkohol Acyltransferase; DAT Deacetylvindolin 4-O-Acetyltransferase; MAT Minovincinin 19-O-Acetyltransferase; RsVS Rauwolfia serpentina Vinorin-synthase; Ss5MaT2 Salvia splendens Malonyl-CoA:Anthocyanin-5-O-glucosid 6´´´-O-Malonyltransferase; Klasse IV: ACT Agmatin Cumaroyltransferase; Klasse Va: AtHHT1 Arabidopsis thaliana Hydroxycinnamoyl-CoA:ω-Hydroxysäure Hydroxycinnamoyl-transferase; DBBT Benzoyl-CoA:Taxan 2α-O-Benzoyltransferase; TAT Taxa-4(20),11(12)-dien- 5α-ol O-Acetyltransferase; DBAT 10-Deacetylbaccatin-III 10-O-Acetyltransferase; BAPT Baccatin III O- Phenylpropanoyltransferase; DBNTBT N-Debenzoyl-2´-deoxy-paclitaxel:N-Benzoyltransferase; AtSDT Arabidopsis thaliana Spermidin Disinapoyltransferase; AtSCT Arabidopsis thaliana Spermidin Dicumaroyltransferase; BanAAT Banana Alkohol Acyltransferase; CmAAT1 Cucumis melo Alkohol Acyltransferase; HMT/HLT Tigloyl-CoA:(-)-13α- hydroxymultiflorin/(+)-13α-hydroxylupanin O-Tigloyltransferase; CHAT (Z)-3-Hexen-1ol-O-Acetyltransferase; MpAAT1 Malus pumila Alkohol Acyltransferase; MdAAT2 Malus domestica Alkohol Acyltransferase; AMAT Anthraniloyl-CoA:Methanol Anthraniloyltransferase; CbBEBT Clarkia breweri Benzoyl-CoA:Benzylalkohol Benzoyltransferase; CmAAT3 Cucumis melo Alkohol Acyltransferase; NtBEBT Nicotiana tabacum Benzoyl- CoA:Benzylalkohol Benzoyltransferase; BPBT Benzoyl-CoA:benzylalkohol/phenylethalon Benzoyltransferase; Klasse Vb: CcHQT Cynara cardunculus Hydroxycinnamoyl-CoA:Chinat Hydroxycinnamoyltransferase; AtHCT Arabidopsis thaliana Hydroxycinnamoyl-CoA:Shikimat/Chinat Hydroxy-cinnamoyltransferase; TpHCT1 Trifolium pratense Hydroxycinnamoyl-CoA:Shikimat/Chinat Hydroxycinnamoyltransferase; TpHCT2 Trifolium pratense HydroxycinnamoylCoA:Maleinsäure Hydroxycinnamoyltransferase; NtHST Nicotiana tabacum Hydroxycinnamoyl- CoA:Shikimat Hydroxycinnamoyltransferase; CcHCT Coffea canephora Hydroxycinnamoyl-CoA:Shikimat/ Chinat Hydroxycinnamoyltransferase; CbHST Coleus blumei Hydroxycinnamoyl-CoA:Shikimat Hydroxycinnamoyltransferase; GhHST-k Glechoma hederacea Hydroxycinnamoyl-CoA:Shikimat Hydroxycinnamoyltransferase; GhHST-l Glechoma hederacea Hydroxycinnamoyl-CoA:Shikimat Hydroxycinnamoyltransferase; AsHHT1Avena sativa Hydroxycinnamoyl-CoA:Hydroxy-anthranilat N- Hydroxycinnamoyltransferase; NtHQT Nicotiana tabacum Hydroxycinnamoyl-CoA:Chinat Hydroxycinnamoyl- transferase; CsHQT1 Cynara scolymus Hydroxycinnamoyl-CoA:Chinat Hydroxycinnamoyltransferase; LjHQT Lonicera japonica Hydroxycinnamoyl-CoA:Chinat Hydroxycinnamoyltransferase; GhHQT-k Glechoma hederacea Hydroxycinnamoyltransferase ?; GhHQT-l Glechoma hederacea Hydroxycinnamoyltransferase?; CbRAS Coleus blumei Rosmarinsäuresynthase (Hydroxycinnamoyl-CoA-Hydroxyphenyllactat Hydroxycinnamoyltransferase); LaRAS Lavandula angustifolia Rosmarinsäuresynthase; MoRAS Melissa officinalis Rosmarinsäuresynthase; GhRAS-l Glechoma hederacea Rosmarinsäuresynthase; GhRAS-k Glechoma hederacea Rosmarin-säuresynthase Pseudogen?; HCBT Hydroxycinnamoyl/Benzoyl-CoA:Anthranilat N-Hydroxycinnamoyltransferase; AtSHT Arabidopsis thaliana Feruloyl-CoA:Spermidin Hydroxycinnamoyltransferase; Klasse VI: CFAT Coniferylalkohol Acetyltransferase Klasse VII: FsTRI10 Fusarium sporotichioides Trichothecen 3-O-Acetyltransferase; FgTRI101Fusarium graminearum Trichothecen 3-O-Acetyltransferase;
  46. Niggeweg R, Michael A, Martin C (2004) Engineering plants with increased levels of the antioxidant chlorogenic acid. Nature Biotechnol 22:746-754
  47. St Pierre B, De Luca V (2000) Evolution of acyltransferase genes: origin and diversification of the BAHD superfamily of acyltransferases involves in secondary metabolism. Recent Advances in Phytochemistry 34:285-315
  48. Petersen M, Abdullah Y, Benner J, Eberle D, Gehlen K, Hücherig S, Janiak V, Kim KH, Sander M, Weitzel C, Wolters S (2009) Evolution of rosmarinic acid biosynthesis. Phytochemistry 70:1663-1679
  49. Rogers SO, Bendich AJ (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified tissues. Plant Mol Biol 5:69-76
  50. El-Sharkawi I, Manriquez D, Flores FB, Regad F,Bouzayen M, Latche A, Pech JC (2005) Functional characterization of a melon alcohol acyl-transferase gene family involved in the biosynthesis of ester volatiles. Identification of the crucial role of the threonine residue for enzyme activity. Plant Mol Biol 59:354-362
  51. Stehle F, Stubbs MT, Strack D, Milkowski C (2008) Heterologous expression of a serine carboxypeptidase-like acyltransferase and characterization of the kinetic mechanism. FEBS J 275:775-787
  52. Facchini PJ, Hagel J, Zulak K. (2002) Hydroxycinnamic acid amide metabolism: Physiology and biochemistry. Can J Bot 80:577-589
  53. D´Auria JC, Reichelt M, Luch K, Svatos A, Gershenzon J (2007) Identification and characterization of the BAHD acyltransferase malonyl-CoA: Anthocyanidin 5-O-glucoside- 6´´-O-malonyltransferase (At5MAT) in Arabidopsis thaliana. FEBS Lett 581:872-878
  54. Suzuki H, Sawada S, Watanabe K, Nagae S, Yamaguchi M, Nakayama T, Nishido T (2004) Identification and chracterization of a novel anthocyanin malonyltransferase from scarlet sage (Salvia splendens) flowers: an enzyme that is phylogenetically separated from other anthocyanin acyltransferases. Plant J 38:994-1003
  55. Suzuki H, Sawada S, Yonekura-Sakakibara K, Nakayama T, Yamaguchi M, Nishido T (2003) Identification of a cDNA encoding malonyl-CoenzymeA:anthocyanidin 3-O-glucoside 6''- O-malonyltransferase from cineraria (Senescia curentus) flowers. Plant Biotechnol 20:229234
  56. Petersen M, Metzger JW (1993) Identification of the reaction products of rosmarinic acid synthase from cell cultures of Coleus blumei by ion spray mass spectrometry and tandem mass spectrometry. Phytochem Anal 4:131-134
  57. Aharoni A, Keizer LPC , Bouwmeester HJ, Sun ZK, Alvarez-Huerta M, Verhoeven HA, Blaas J, van Houwelingen A, De Vos RCH, Van der Voet H et al. (2000) Identification of the SAAT gene involves in strawberry flavor biogenesis by use of DNA microarrays. Plant Cell 12:647-661
  58. Meinhard E J (1995). Identifizierung und Reinigung der Rosmarinsäure-Synthase aus Zellkulturen von Coleus blumei. Dissertation Heinrich-Heine-Universität Düsseldorf
  59. Tebayashi S, Ishihara A, Tsuda M, Iwamura H (2000) Induction of clovamide by jasmonic acid in red clover. Phytochemistry 54:387-392
  60. Scarpati ML, Oriente G (1958) Isolamento e constituzione dell'acido rosmarinico (dal rosmarinus off.). Ric Sci 28:2329-2333
  61. Stark T, Hofmann T (2005) Isolation, structure determination, synthesis, and sensory activity of N-phenylpropenoyl-L-amino acids from cocoa (Theobroma cacao). J Agric Food Chem 53:5419-5428
  62. Funktionelle Charakterisierung von Enzymen des Sekundärstoffwechsels in Lavendel (Lavandula angustifolia) und Erdbeere (Fragaria x ananassa). Dissertation Technische-Universität München
  63. Suzuki H, Nakayama T, Yonekura-Sakakibara K, Fukui Y, Nakamura N, Nakao M, Tanaka Y, Yamaguchi M, Kusumi T, Nishino T (2001) Malonyl-CoA:anthocyanin 5-O-glucoside-6'''- O-malonyltransferase from scarlet sage (Salvia splendens) flowers–enzyme purification, gene cloning, expression, and characterization. J Biol Chem 276:49013-49019
  64. Murata T, Sasaki K, Sato K, Yoshizaki F, Yamada H, Mutoh H, Umehara K, Miyase T, Warashina T, Aoshima H, Tabata H, Matsubara K (2009) Matrix metalloproteinase-2 inhibitors from Clinopodium chinense var. parviflorum. J Nat Prod 72:1379-1384
  65. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molicular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599
  66. Fridman E, Pichersky E (2005) Metabolomics, genomics, proteomics, and the identification of enzymes and their substrates and products. Curr Opin Blant Biol 8:242-248
  67. Clé C, Hill LM, Niggeweg R, Martin CR, Guisez Y, Prinsen E, Jansen MAK (2008) Modulation of chlorogenic acid biosynthesis in Solanum lycopersicon: consequences for phenolic accumulation and UV-tolerance. Phytochemistry 69:2149-2156
  68. Waters ER (2003) Molecular adaptation and the origin of land plants. Mol Phylogen Evol 29:456-463
  69. Laflamme P, St Pierre B, De Luca V (2001) Molecular and biochemical analysis of a Madagaskar periwinkle root-specific minovicinine-19-hydroxy-O-acetyltransferase. Plant Physiol 125:189-198
  70. Yonekura-Sakakibara K, Tanaka Y Fukuchi-Mizutani M, Fujiwara H, Fukui Y Ashikari T, Murakami Y, Yamaguchi M, Kusumi T, Nishino T (2000) Molecular and biochemical characterization of a novel hydroxycinnamoyl-CoA:anthocyanin 3-O-glucodide-6''-O- acyltransferase from Perilla frutescens. Plant Cell Physiol 41:495-502
  71. Okada T, Hirai MY, Suzuki H, Yamazaki M, Saito K (2005) Molecular cloning and characterization of tigloyl-CoA:13 alpha-hydroxymultiflorine/13 alpha-hydroxylupanine O-tigloyltransferase from Lupinus albus: the first gene identification involves in quinolizidine alkaloid biosynthesis. Plant Cell Physiol 46:55
  72. Taguchi G, Shitchi Y, Shirasawa S, Yamamoto H, Hayashida N (2005) Molecular cloning, characterization and downregulation of an acyltransferase that catalyses the malonylation of flavonoid and naohthol glucosides in tabacco cells. Plant J 42:481-491
  73. Walker K, Schoendorf a, Croteau R (2000) Molecular cloning of a taxa-4(20), 11(12)-dien- 5alpha-ol-O-acetyl transferase cDNA from Taxus an functional expression in Escherichia coli. Arch Biochem Biophys 374:371-380
  74. Kaufmann M, Wink, M (1994). Molecular systematics of the Nepetoideae (family Labiatae): phylogenetic implications from rbcL gene sequences. Z. Naturforsch., C: J. Biosci. 49(9- 10):635-645
  75. Petersen M, Simmonds MSJ (2003) Molecules of interest: Rosmarinic acid. Phytochemistry 62:121-125
  76. Walker K, Fujisaki S, Long R, Croteau R (2002) Molekular cloning and heterologous expression of the C13 pheynylpropanoid side chain-CoA acyltransferase that functions in taxol biosynthesis. Proc Natl Acad Sci USA 99:12715-12720
  77. Baba S, Osakabe N, Natsume M, Terao J (2004) Orally administered rosmarinic acid is present as the conjugated and/or methylated forms in plasma, and is degraded and metabolized to conjugated forms of caffeic acid, ferulic acid and m-coumaric acid. Life Sci 75:165-178
  78. Walker K, Ketchum REB, Hezari M, Gatfield D, Goleniowski M, Barhol A, Contreau R (1999) Partial purification and characterization of acetyl coenzyme A: taxa-4(20), 11(12)-dien- 5alpha-ol-O-acetyl transferase that catalyses the first acylation step of taxol biosynthesis. Arch Biochem Biophys 364:273-279
  79. Ulbrich B, Zenk MH (1979) Partial purification and properties of hydroxycinnamoyl-
  80. Vogt T (2010) Phenylpropanoid Biosynthesis. Mol Plant 3:2-20
  81. Fellenberg C, Boettcher C, Vogt T (2009) Phenylpropanoid polyamine conjugate biosynthesis in Arabidopsis thaliana flower buds. Phytochemistry 70:1392-1400
  82. Suzuki H, Nakayama T, Nishino T (2003) Proposed mechanism and functional amino acid residues of malonyl-CoA:anthocyanin 5-O-glucoside –6''-O-malonyltransferase from flowers of Salvia splendens, a member of the versatile plant acyltransferase family. Biochemistry 42:1764-1771
  83. Fujiwara H, Tanaka Y, Fukui Y, Ashikari T, Yamaguchi M, Kusumi T (1998) Purification and characterization of anthocyanin 3-aromatic acyltransferases from Perilla frutescens. Plant Sci 137:87-94
  84. Dubois M, Bailly F, Mbemba G, Mouscadet JF, Debyser Z, Witvrouw M, Cotelle P (2008) Reaction of Rosmarinic Acid with Nitrile Ions in Acidic Conditions: Discovery of Nitro-and Dinitrorosmarinic Acids as New Anti-HIV-1 Agents. J Med Chem 51:2575-2579
  85. Weitzel C (2009) Rosmarinsäure-Biosynthese in Suspensionskulturen von Melissa officinalis L.. Dissertation Philipps-Universität Marburg
  86. Ober D (2005) Seeing double: gene duplication and diversification in plant secondary metabolism. Trend Plant Sci 10:444-449
  87. Seit 01 / 2007
  88. Milkowski C, Strack D (2004) Serine carboxypeptidase-like acyltransferases. Phytochemistry 65:517-524
  89. Bolanos-Garcia VM, Davies OR (2006) Structural analysis and classification of native proteins from E. coli commonly co-purified by immobilised metal affinity chromatography. Biochim Biophys Acta 1760:1304-1313
  90. Stöckigt J, Santosh P (2007) Structural biology in plant natural product biosynthesis- architecture of enzymes from monoterpenoid indole and tropane alkaloid biosynthesis.
  91. Walker K, Croteau R (2000) Taxol biosynthesis: molecular cloning of a benzoyl-CoA: taxane 2-alpha-O-benzoyltransferase cDNA from Taxus and functional expression in Escherichia coli. Proc Natl Acad Sci USA 97:13591-13596
  92. Franke R, Humphreys JM, Hemm MR, Denault JW, Ruegger MO, Cusumano JC, Chapple C, (2002) The Arabidopsis REF8 gene encodes the 3-hydroxylase of phenylpropanoid metabolism. Plant J 30:33-45
  93. Wang J, De Luca V (2005) The biosynthesis and regulation of biosynthesis of Concord grape fruit esters, including foxy methyl anthranilate. Plant J 44:606-619
  94. Clifford MN, Knight S (2004) The cinnamoyl-amino acid conjugates of green robusta coffee beans. Food Chem 87:457-463
  95. De Luca V, Laflamme P (2001) The expanding universe of alkaloid biosynthesis. Curr Opin Plant Biol 4:225-233
  96. Schoch GA, Morant M, Abdulrazzak N, Asnaghi C, Goepfert S, Petersen M, Ullmann P, wreck-Reichardt D (2006) The meta-hydroxylation step in the phenylpropanoid pathwax. A new level of complexity in the pathway and its regulation. Environ Chem Lett 4:127-136
  97. Cotelle P, Hervé V (2003) The reaction of methyl isoferulate with FeCl 3 or Ag 2 O-hypothesis on the biosynthesis of lithospermic acids and related nor an neolignans. Tetrahedron Lett 44:3289-3292
  98. St. Pierre B, Laflamme P, Alarco AM, De Luca V (1998) The terminal O-acetyltransferase involved in vindoline biosynthesis defines a new class of proteins responsible for coenzyme A -dependent acyl transfer. Plant J 14:703-713
  99. Widén B, Widén M (2000) Enzyme variation and inheritance in Glechoma hederacea (Lamiaceae), a diploidized tetraploid. Hereditas 132:229-241
  100. Friedt W (1978) Untersuchungen an autotetraploiden Gersten unter besonderer Berücksichtigung der Diploidisierung I Fertilität, Vitalität und Kornertrag.
  101. Nam KH, Dudareva N, Pichersky E (1999) Characterization of benzylalcohol acetyl- transferases in scented and non-scented Clarkia species. Plant Cell Physiol 40:916-923
  102. Comino C, Lanteri S, Portis E, Acquadro A, Romani A, Hehn A, Larbat R, Bourgaud F (2007) Isolation and functional characterization of a cDNA coding a hydroxycinnamoyltransferase involved in phenylpropanoid biosynthesis in Cynara cardunculus L.. BMC Plant Biol 7:14
  103. Comino C, Hehn A, Moglia A, Menin B, Bourgaud F, Lanteri S, Portis E (2009) The isolation and mapping of a novel hydroxycinnamoyltransferase in the globe artichoke chlorogenic acid pathway. BMC Plant Biol 9:30
  104. Petersen M, Alfermann AW (1988) Two new enzymes of rosmarinic acid biosynthesis from cell cultures of Coleus blumei: Hydroxyphenylpyruvate reductase and rosmarinic acid synthase. Z Naturforsch 43c:501-504
  105. 05 / 2006 bis 10 / 2006
  106. Schoch G, Goepfert S, Morant M, Hehn A, Meyer D, Ullmann P, Werck-Reichhart D (2001) CYP98A3 from Arabidopsis thaliana is a 3'-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J Biol Chem 276:36566-36574
  107. Ellis BE, Towers GHN (1970) Biogenesis of rosmarinic acid in Mentha. Biochem J 118:291
  108. Walker K, Long R, Croteau R (2002) The final acylation step in taxol biosynthesis: cloning of the taxoid C13-side-chain N-benzoyltransferase from Taxus. Proc Natl Acad Sci USA 99:9166-9171
  109. Kang S, Kang K, Chung GC, Choi D, Ishihara A, Lee DS, Back K. (2006) Functional analysis of the amine substrate specificity domain of pepper tyramine and serotonin N-hydroxycinnamoyltransferases. Plant Physiol 140:704-715
  110. Walker K, Croteau R (2000) Molecular cloning of a 10-deacetylbaccatin III-10-O-acetyl transferase cDNA from Taxus and functional expression in Escherichia coli. Proc Natl Acad Sci USA 97:583-587
  111. Xia Y, Nikolau BJ, Schnable PS (1997) Developmental and hormonal regulation of the Arabidopsis CER2 gene that codes for a nuclear-localized protein required for the normal accumulation of cuticular waxes. Plant Physiol 115:925-937
  112. Besseau S, Hoffmann L, Geoffroy P, Lapierre C, Pollet B, Legrand M (2007) Flavonoid Accumulation in Arabidopsis Repressed in Lignin Synthesis Affects Auxin Transport and Plant Growth. Plant Cell 19:148-163
  113. Wagner A, Ralph J, Akiyama T, Flint H, Phillips L, Torr K, Nanayakkara B, Te Kiri L (2007) Exploring lignification in conifers by silencing hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyltransferase in Pinus radiata. Proc Natl Acad Sci USA 104:11856-11861
  114. Luo J, Fuell C, Parr A, Hill L, Bailey P, Elliott K, Fairhurst SA, Martin C, Michael AJ (2009) A novel polyamine acyltransferase responsible for the accumulation of spermidine conjugates in Arabidopsis seed. Plant Cell 21:318-333
  115. Beekwilder J, Alvarez-Huerta M, Neef E, Verstappen FW, Bouwmeester HJ, Aharoni A (2004) Functional characterization of enzymes forming volatile esters from strawberry and banana. Plant Physiol 135:1865-1878
  116. Dudereva N, Pichersky E, Gershenzon J. (2004) Biochemistry of plant volatiles. Plant Physiol 135:1893-1902
  117. Boatright J, Negre F, Chen XL, Kish CM, Wood B, Peel G, Orlova I, Gang D, Rhodes D, Dudereva N (2004) Understanding in vivo benzenoid metabolism in Petunia petal tissue. Plant Physiol 135:1993-2011
  118. Chomczynski P, Sacchi N (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate phenol-chloroform extraction. Anal Biochem 162:156‐159
  119. Martone PT, Estevez JM, Lu F, Ruel K, Denny MW, Somerville C, Ralph J (2009) Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr Biol 19:169-175
  120. Boudet AM (2000) Lignins and lignifications: Selected issues. Plant Physiol Biochem 38:81- 96


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten