Publikationsserver der Universitätsbibliothek Marburg

Titel:Ökologie methanotropher Bakterien: Räumliche Verteilung und Funktion methanotropher Bakterien in Feuchtgebieten.
Autor:Krause, Sascha
Weitere Beteiligte: Frenzel, Peter (Prof. Dr.)
Veröffentlicht:2010
URI:https://archiv.ub.uni-marburg.de/diss/z2010/0139
URN: urn:nbn:de:hebis:04-z2010-01394
DOI: https://doi.org/10.17192/z2010.0139
DDC: Biowissenschaften, Biologie
Titel(trans.):Ecology of methanotrophs: Spatial distribution and functioning of methanotrophs in wetlands
Publikationsdatum:2010-05-27
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Methanoxidierende Bakterien, Biogeographie, Biogeography, Räumliche Verteilung, Diversity, Vielfalt, Methane oxidizing bacteria, Spatial distribution

Summary:
Methan ist neben CO2 das wichtigste Treibhausgas, dessen relatives Treibhauspotential ungefähr ein drittel höher liegt als das von CO2. Der Großteil atmosphärischen Methans wird dabei aus biogenen Methanquellen freigesetzt, zum Beispiel renaturierte Mülldeponien, Feuchtgebiete oder Reisfelder. Methanotrophe Bakterien (MOB) können die Methanemission hier um bis zu 80 % reduzieren. Infolgedessen ist ihre Physiologie, Diversität und Ökologie in zahlreichen Studien untersucht worden. Es fehlen jedoch grundlegende Studien über die räumliche Verteilung von MOB in ihrer Umwelt. Des Weiteren sind die Populationsdynamiken von MOB und die Beteiligung spezifischer Taxa an der Methanoxidation bisher wenig verstanden. Zudem beginnt man erst jetzt zu erkennen, dass Umweltstörungen einen signifikanten Effekt auf die Stabilität und Funktion mikrobieller Lebensgemeinschaften haben. Die Zusammenhänge von Diversität und Funktion und die Regulation der MOB durch natürliche und/oder anthropogene Umweltfaktoren sind bisher jedoch kaum untersucht worden. In dieser Arbeit wurde das pmoA Gen als phylogenetischer und funktioneller Marker verwendet, um MOB in Umweltproben zu detektieren. Während es speziell an das Reisfeld adaptierte pmoA Genotypen zu geben scheint, können sich methanotrophe Lebensgemeinschaften in Reisfeldern derselben Region deutlich unterscheiden. Der Einfluss von Umweltgradienten variiert in Agrar- und natürlichen Ökosystemen und muss bei der Planung von Experimenten berücksichtigt werden. Am Beispiel von Reisfeldern konnte gezeigt werden, dass MOB keine großskalige räumliche Strukturierung aufwiesen und sowohl eine systematische als auch eine Zufallsprobennahme repräsentativ ist. Zudem konnten Populationdynamiken nach der Flutung eines Reisfeldes nachgewiesen werden, obwohl die Methanoxidationrate konstant blieb. Eine artenreiche mikrobielle „seed bank“ scheint für die Erhaltung der Funktion in solchen dynamischen Ökosystemen eine große Rolle zu spielen. Betrachtet man sich die methanotrophe Lebensgemeinschaft unter verschieden Energieflüssen und dem Effekt von Stickstoffdüngung, so hat die Düngung keinen Effekt auf die methanotrophen Lebensgemeinschaften. Es werden jedoch unter verschiedenen Energieflüssen aus der „seed bank“ unterschiedliche MOB aktiviert. Es scheint, dass Arten der Gattung Methylobacter und Arten deren pmoA Sequenzen zu einem Cluster mit Umweltsequenzen aus Reisfeldern gehören, speziell an Habitate mit hoher Methankonzentration adaptiert sind. MOB scheinen sehr widerstandsfähig zu sein und Änderungen in Energieflüssen scheinen einen größeren Effekt auf die methanotrophe Lebensgemeinschaft zu haben.

Zusammenfassung:
Methane is the second most important greenhouse gas after CO2 exerting a radiative forcing about a third of that of CO2. Most of the atmospheric methane is released from biogenic sources such as landfills, natural wetlands and rice fields. Methane emission from these sources would be significantly higher without the activity of methanotrophs that oxidize the biogenically produced methane, thus reducing the methane emissions up to 80 %. Consequently, the physiology, diversity and ecology of methanotrophs have been studied. However, influences of biogeographical patterns and spatial hetero-geneities on the methanotrophic community are poorly investigated. Furthermore, little is known about population dynamics and contribution of specific taxa to methane oxidation. The effect of environmental disturbances on the stability and function of microbial communities has just begun to be realized. However, a link between diversity and function and the regulation of methanotrophic communities by natural and/or anthropogenic factors are not known in detail. In this thesis the pmoA gene was used as a functional and phylogenetic marker for the identification of methanotrophs from environmental samples. On a global scale certain pmoA genotypes seem to be specifically adapted to paddy fields while at closely geographically located field sites methanotrophic communities revealed different community patterns. The influence of environmental gradients varies between different habitats and has to be considered when designing experimental studies. In the studied agroecosystem, population structure showed no spatial pattern implying that both a systematic and random sampling design would be adequate. We observed a succession of methanotrophs, however, the oxidation performance stayed relatively stable. Hence, a diverse microbial seed bank of methanotrophs seems to play an important role in maintaining the function in such a dynamic ecosystem. From this seed bank different methanotrophs are activated under high and low energy fluxes. We identified species of the genus Methylobacter and an environmental cluster strictly affiliated with paddy soils that seem to be adapted to high methane environments. Methanotrophic community was not significantly affected by nitrogen fertilization under different energy flows. We suggest that methanotrophs are quite resilient, and that changes in the energy flow have major effects for the community structure.

Bibliographie / References

  1. Bodrossy, L., Stralis-Pavese, N., Konrad-Koszler, M., Weilharter, A., Reichenauer, T.G., Schofer, D., and Sessitsch, A. (2006) mRNA-based parallel detection of active methanotroph populations by use of a diagnostic microarray. Appl Environ Microbiol 72: 1672-1676.
  2. Ramette, A. and Tiedje, J.M. (2007) Biogeography: An emerging cornerstone for understanding prokaryotic diversity, ecology, and evolution. Microb Ecol 53: 197-207.
  3. Steenbergh, A.K., Meima, M.M., Kamst, M., and Bodelier, P.L.E. (2009) Biphasic kinetics of a methanotrophic community is a combination of growth and increased activity per cell. FEMS Microbiol Ecol: doi:10.1111/j.1574-6941.2009.00782.x.
  4. Semrau, J.D., DiSpirito, A.A., and Yoon, S. (2010) Methanotrophs and copper. FEMS Microbiol Rev: doi:10.1111/j.1574-6976.2010.00212.x.
  5. Murase, J., and Frenzel, P. (2008) Selective grazing of methanotrophs by protozoa in a rice field soil. FEMS Microbiol Ecol 65: 408-414.
  6. Conrad, R. (2009) The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol 1: 279-284.
  7. Sait, M., Hugenholtz, P., and Janssen, P.H. (2002) Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation- independent surveys. Environ Microbiol 4: 654-666.
  8. Dunfield, P.F., Yimga, M.T., Dedysh, S.N., Berger, U., Liesack, W., and Heyer, J. (2002) Isolation of a Methylocystis strain containing a novel pmoA-like gene. FEMS Microbiol Ecol 41: 17-26.
  9. Krause, S. and Frenzel, P. (2009). Activity and composition of the methanotrophic community in a flooded rice field soil. Internal METHECO meeting, September 2009, Abisko, Schweden (Vortrag).
  10. Studium der Biologie am Fachbereich Biologie/Chemie der Universität Osnabrück Bachelor of Science in Biologie (Biologie der Organismen) Titel der Bachelor Arbeit: Habitat preferences of Cepero's groundhopper, Tetrix ceperoi (BOLÍVAR, 1887) (2004).
  11. Master of Science in Biologie (Biologie der Organismen) Titel der Master Arbeit: Population trends of Orthoptera in northwestern Germany (2006).
  12. Orientierungsstufe Schulzentrum Lingen (Ems) 1993 – 2001 Gymnasium Johanneum Lingen (Ems) Hochschulstudium: 2001 – 2006
  13. Walter, K.M., Zimov, S.A., Chanton, J.P., Verbyla, D., and Chapin, F.S. (2006) Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443: 71-75.
  14. Conrad, R., and Rothfuss, F. (1991) Methane oxidation in the soil surface layer of a flooded ride field and the effect of ammonium. Biol Fertil Soils 12: 28-32.
  15. Green, J.L., Bohannan, B.J.M., and Whitaker, R.J. (2008) Microbial biogeography: From taxonomy to traits. Science 320: 1039-1043.
  16. Anhang Workshops ESF Workshop " Microbial diversity and ecosystem functioning " . März 2007, Wassercluster Lunz, Österreich.
  17. Krause, S. and Frenzel, P. (2009). Microbial ecology at the microcosm level: Activity and population dynamics of methanotrophic bacteria during early succession in a flooded rice field soil. VAAM Jahrestagung, März 2009, Bochum, Deutschland (Poster).
  18. Krause, S. and Frenzel, P. (2009). Microbial ecology on the microcosm level: Activity and population dynamics of methanotrophic bacteria during early succession in a flooded rice field soil. European Geosciences Union General Assembly, April 2009, Wien, Österreich (Vortrag).
  19. Krause, S. and Frenzel, P. (2009). Microbial ecology: Structure and functioning of methanotrophs in a flooded rice field soil. Internal METHECO meeting, Januar 2009, Nieuwersluis, Niederlande (Vortrag).
  20. Krüger, M., Frenzel, P., and Conrad, R. (2001) Microbial processes influencing methane emission from rice fields. Glob Change Biol 7: 49-63.
  21. Franklin, R.B., and Mills, A.L. (2003) Multi-scale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field. FEMS Microbiol Ecol 44: 335-346.
  22. Praktikum bei Prof. Dr. Peter Frenzel am Max-Planck-Institut für Terrestrische Mikrobiologie in Marburg Promotion: 2007 – 2010 Promotionsstudium am Fachbereich Biologie der Phillips- Universität Marburg Doktorarbeit bei Prof. Dr. Peter Frenzel am Max-Planck- Institut für Terrestrische Mikrobiologie in Marburg und Mitglied der International Max Planck Research School (IMPRS) Anhang Beiträge zu wissenschaftlichen Tagungen (nur Promotion)
  23. Shrestha, P.M., Noll, M., and Liesack, W. (2007) Phylogenetic identity, growth- response time and rRNA operon copy number of soil bacteria indicate different stages of community succession. Environ Microbiol 9: 2464–2474.
  24. Ho, A., Lüke, C., and Frenzel P. Recovery of methanotrophs from disturbance: population dynamics, evenness, and functioning. ISME J: submitted February 2010. Klappenbach, J.A., Dunbar, J.M., and Schmidt, T.M. (2000) rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol 66: 1328-1333.
  25. Bowman, J.P., Sly, L.I., Nichols, P.D., and Hayward, A.C. (1993) Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int J Syst Bacteriol 43: 735-753.
  26. Andrews, J.H., and Harris, R.F. (1986) r-selection and K-selection and microbial ecology. Advances in Microbial Ecology 9: 99-147.
  27. Krause, S. and Frenzel P. (2007). Spatial heterogeneity of methanotrophs: a geostatistical analysis of pmoA-based T-RFLP patterns in a paddy soil. First EuroDiversity annual conference, Oktober 2007, Paris, Frankreich (Poster).
  28. Radajewski, S., Ineson, P., Parekh, N.R., and Murrell, J.C. (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403: 646-649.
  29. Noll, M., Matthies, D., Frenzel, P., Derakshani, M., and Liesack, W. (2005) Succession of bacterial community structure and diversity in a paddy soil oxygen gradient. Environ Microbiol 7: 382-395.
  30. Bowman, J. (2006) The methanotrophs–The families Methylococcaceae and Methylocystaceae. In: Dworkin M., Falkow S., Rosenberg E., Schleifer K.H., and Strackebrandt E. (eds). The Prokaryotes. Springer: New York, pp. 266-289.
  31. Levin, S.A. (1992) The problem of pattern and scale in ecology. Ecology 73: 1943-1967.
  32. Prosser, J.I., Bohannan, B.J.M., Curtis, T.P., Ellis, R.J., Firestone, M.K., Freckleton, R.P. et al. (2007) The role of ecological theory in microbial ecology. Nat Rev Micro 5: 384-392.
  33. Murase, J., and Frenzel, P. (2007) A methane-driven microbial food web in a wetland rice soil. Environ Microbiol 9: 3025-3034.
  34. Chen, Y., Dumont, M.G., McNamara, N.P., Chamberlain, P.M., Bodrossy, L., Stralis- Pavese, N., and Murrell, J.C. (2008) Diversity of the active methanotrophic community in acidic peatlands as assessed by mRNA and SIP-PLFA analyses. Environ Microbiol 10: 446-459.
  35. Lüke, C., Krause, S., Cavigiolo, S., Greppi, D., Lupotto, E., and Frenzel, P. (2009) Biogeography of wetland rice methanotrophs. Environ Microbiol (in press).
  36. Lüke, C., Bodrossy, L., Lupotto; E., and Frenzel P. Methanotrophic bacteria associated to rice roots: The cultivar effect assessed by T-RFLP and microarray analysis. (In preparation).
  37. Dufrene, M., and Legendre, P. (1997) Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monographs 67: 345-366.
  38. Bourne, D.G., McDonald, I.R., and Murrell, J.C. (2001) Comparison of pmoA PCR primer sets as tools for investigating methanotroph diversity in three Danish soils. Appl Environ Microbiol 67: 3802-3809.
  39. Bodrossy, L., Stralis-Pavese, N., Murrell, J.C., Radajewski, S., Weilharter, A., and Sessitsch A. (2003) Development and validation of a diagnostic microbial microarray for methanotrophs. Environ. Microbiol. 5: 566-582.
  40. Manefield, M., Whiteley, A.S., Griffiths, R.I., and Bailey, M.J. (2002) RNA stable isotope probing, a novel means of linking microbial community function to Phylogeny.
  41. Bosse, U., and Frenzel, P. (1997) Activity and distribution of methane-oxidizing bacteria in flooded rice soil microcosms and in rice plants (Oryza sativa). Appl Environ Microbiol 63: 1199-1207.
  42. Murase, J., Noll, M., and Frenzel, P. (2006) Impact of protists on the activity and structure of the bacterial community in a rice field soil. Appl Environ Microbiol 72: 5436-5444.
  43. Wawer, C., Jetten, M.S.M., and Muyzer, G. (1997) Genetic diversity and expression of the [NiFe] hydrogenase large-subunit gene of Desulfovibrio spp. in environmental samples. Appl Environ Microbiol 63: 4360-4369.
  44. Knief, C., Kolb, S., Bodelier, P.L.E., Lipski, A., and Dunfield, P.F. (2006) The active methanotrophic community in hydromorphic soils changes in response to changing methane concentration. Environ Microbiol 8: 321-333.
  45. Bodelier, P.L.E., Gillisen, M.J.B., Hordijk, K., Damste, J.S.S., Rijpstra, W.I.C., Geenevasen, J.A.J., and Dunfield, P.F. (2009) A reanalysis of phospholipid fatty acids as ecological biomarkers for methanotrophic bacteria. Isme J 3: 606-617.
  46. Bodelier, P.L.E., Hahn, A.P., Arth, I., and Frenzel, P. (2000a) Effects of ammonium- based fertilisation on microbial processes involved in methane emission from soils planted with rice. Biogeochemistry 51: 225-257.
  47. Bodelier, P.L.E., Roslev, P., Henckel, T., and Frenzel, P. (2000) Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature 403: 421-424.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten