Publikationsserver der Universitätsbibliothek Marburg

Titel:Optical Properties of Quasiperiodically Arranged Semiconductor Nanostructures
Autor:Werchner, Marco
Weitere Beteiligte: Kira, Mackillo (Prof. Dr.)
Veröffentlicht:2009
URI:https://archiv.ub.uni-marburg.de/diss/z2010/0123
URN: urn:nbn:de:hebis:04-z2010-01231
DOI: https://doi.org/10.17192/z2010.0123
DDC: Physik
Titel (trans.):Optische Eigenschaften quasiperiodisch angeordneter Halbleiternanostrukturen
Publikationsdatum:2010-04-27
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Semiconductor-Bloch-Equation, Fibonacci-Folge, Coulomb-Streuung, Halbleiter-Bloch-Gleichungen, Mikroskopische Theorie, Optisches Spektrum, Quasikristall, microscopic theory, Übertrag, Cluster-Theorie, Halbleiter, Resonanz-Tunneleffekt, Übergitter

Summary:
This work consists of two parts which are entitled "One-Dimensional Resonant Fibonacci Quasicrystals" and "Resonant Tunneling of Light in Silicon Nanostructures". A microscopic theory has been applied to investigate the optical properties of the respective semiconductor nanostructures. The studied one-dimensional resonant Fibonacci quasicrystals consist of GaAs quantum wells (QW) that are separated by either a large spacer L or a small one S. These spacers are arranged according to the Fibonacci sequence LSLLSLSL... The average spacing satisfies a generalized Bragg condition with respect to the 1s-exciton resonance of the QWs. A theory, that makes use of the transfer-matrix method and that allows for the microscopic description of many-body effects such as excitation-induced dephasing caused by the Coulomb scattering of carriers, has been applied to compute the optical spectra of such structures. Based on an appropriate single set of fixed sample parameters, the theory provides reflectance spectra that are in excellent agreement with the corresponding measured linear and nonlinear spectra. A pronounced sharp reflectivity minimum is found in the vicinity of the heavy-hole resonance both in the measured as well as in the calculated linear 54-QW spectra. Such sharp spectral features are suitable for application as optical switches or for slow-light effects. Hence, their properties have been studied in detail. Specifically, the influence of the carrier density, of the QW arrangement, of a detuning away from the exact Bragg condition, of the average spacing as well as of the ratio of the optical path lengths of the large and small spacers L and S, respectively, and of the QW number on the optical properties of the samples have been studied. The features of measured spectra could have been attributed to different sample properties related to the sample setup. Additionally, self-similarity among reflection spectra corresponding to different QW numbers that exceed a Fibonacci number by one is observed, which identifies certain spectral features as true fingerprints of the Fibonacci spacing. In the second part, resonant tunneling of light in stacked structures consisting of alternating parallel layers of silicon and air have been studied theoretically. While usually total internal reflection is expected for light shined on a silicon-air interface under an angle larger than the critical angle, light may tunnel through the air barrier due to the existence of evanescent waves inside the air layers if the neighboring silicon layer is close enough. This tunneling of light is in analogy to the well-known tunneling of a quantum particle through a potential barrier. In particular, the wave equation and the stationary Schrödinger equation are of the same form. Hence, the resonant tunneling of light can be understood in analogy to the resonant tunneling of e.g. electrons as well. The characteristic feature of resonant tunneling is a complete transmission through the barrier at certain resonance energies. The transmission, reflection, and propagation properties of the samples have been determined numerically using a transfer-matrix method. Analytical expressions for the energetic resonance positions have been derived and are in excellent agreement with the numerical simulations. Special attention has been drawn to the lowest resonance out of a series of resonant-tunneling resonances. There, light has been observed to be concentrated within silicon layers the extension of which is smaller than the corresponding wavelength of the light. Specifically, the quality factor is large at the resonance energies, so that the resonant light leaves the sample delayed, which allows for the study of slow light. A detailed investigation of how the sample geometry influences the optical properties of the sample has been presented. In particular, it has been outlined how to design a sample to obtain certain desired optical properties. The optical properties that are related to the resonant tunneling strongly rely on the (mirror-)symmetry of the samples. If asymmetries - especially of the silicon wells inside the air barrier - are present in the sample setup, the resonant-tunneling efficiency is diminished. Such asymmetries are unavoidable in the production of the samples. Therefore, a parameter range has been identified in which reasonable transmission above a transmission probability of 50% can be expected taking typical fluctuations caused by the production process into account. Silicon-based resonant-tunneling structures of a setup proposed by the presented theory have already been fabricated and first experiments are under way. This will allow for theory-experiment comparisons.

Bibliographie / References

  1. M. Schäfer. Microscopic Theory of Coherent and Incoherent Optical Properties of Semiconductor Heterostructures. PhD thesis, Philipps-Universität Marburg, 2008.
  2. M. Kira and S. W. Koch. Quantum-optical spectroscopy of semiconductors. Phys. Rev. A, 73:013813, 2006.
  3. L. Schneebeli, M. Kira, and S. W. Koch. Characterization of Strong Light-Matter Coupling in Semiconductor Quantum-Dot Microcavities via Photon-Statistics Spectroscopy. Phys. Rev. Lett., 101:097401, 2008.
  4. K.-D. Hof, C. Rossler, S. Manus, J. P. Kotthaus, A. W. Holleitner, D. Schuh, and W. Wegscheider. Dynamic photoconductive gain effect in shallow-etched Al- GaAs/GaAs quantum wires. Phys. Rev. B, 78:115325, 2008.
  5. D. S. Chemla and J. Shah. Many-body and correlation effects in semiconductors. Phys. Rev. Lett., 60:1645–1648, 1988.
  6. S. C. Glotzer and A. S. Keys. A tale of two tilings. Nature, 454:420–421, 2008.
  7. I. I. Smolianinov, C. C. Davic, and A. V. Zayats. Light-controlled photon tunneling. Appl. Phys. Lett., 81:3314–3316, 2002.
  8. J. Fricke. Transport Equations Including Many-Particle Correlations for an Arbi- trary Quantum System. Ann. Phys. (N.Y.), 252:479–498, 1996.
  9. S. J. Poon. Electronic properties of quasicrystals an experimental review. Adv. Phys., 41:303–363, 1992.
  10. F. Rossi. Coherent phenomena in semiconductors. Semicond. Sci. Technol., 13:147–168, 1998.
  11. N. D. Mermin. Copernican Crystallography. Phys. Rev. Lett., 68:1172–1175, 1992.
  12. J. F. McMillan, X. Yang, N. C. Panoiu, R. M. Osgood, and C. W. Wong. Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides. Appl. Phys. Lett., 77:4089–4091, 2000.
  13. M. Duneau and A. Katz. Quasiperiodic Patterns. Phys. Rev. Lett., 54:2688–2691, 1985.
  14. T. Gruner and D.-G. Welsch. Photon tunneling through absorbing dielectric bar- riers. Opt. Commun., 134:447–454, 1997. XXXIII Literaturverzeichnis
  15. G. Khitrova, H. M. Gibbs, M. Kira, and S. W. Koch ans A. Scherer. Vacuum Rabi splitting in semiconductors. Nature Physics, 2:81–90, 2006.
  16. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature, 432:200–203, 2004.
  17. W. W. Chow, S. W. Koch, and M. Sargent III. Semiconductor-Laser Physics. Springer, Berlin, first edition, 1994.
  18. A. M. Steinberg and R. Y. Chiao. Subfemtosecond determination of transmission delay times for a dielectric mirror (photonic band gap) as a function of the angle of incidence. Phys. Rev. A, 51:3525–3528, 1995.
  19. T. Ogawa and Y. Kanemitsu. Optical properties of low-dimensional materials. World Scientific, Singapore, first edition, 1995.
  20. A. A. Tseng. Recent developments in micromilling using focused ion beam tech- nology. J. Micromech. Microeng., 14:R15–R34, 2004.
  21. M. Kira and S. W. Koch. Many-body correlations and excitonic effects in semi- conductor spectroscopy. Prog. Quantum Elec., 30:155–296, 2006.
  22. X. Sun, J. Liu, L. C. Kimerling, and J. Michel. Direct gap photoluminescence of n-type tensile-strained Ge-on-Si. Appl. Phys. Lett., 95:011911, 2009.
  23. L. Schultheis, A. Honold, J. Kuhl, K. Köhler, and C. W. Tu. Optical dephasing of homogeneously broadened two-dimensional exciton transitions in GaAs quantum wells. Phys. Rev. B, 34:9027–9030, 1986.
  24. C. W. Luo, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, and K. H. Ploog. Phase-Resolved Nonlinear Response of a Two-Dimensional Electron Gas under Femtosecond Intersubband Excitation. Phys. Rev. Lett., 92:047402, 2004.
  25. A. Schülzgen, R. Binder, M. E. Donovan, M. Lindberg, K. Wundke, H. M. Gibbs, G. Khitrova, and N. Peyghambarian. Direct Observation of Excitonic Rabi Oscil- lations in Semiconductors. Phys. Rev. Lett., 82:2346–2349, 1999. XXV Literaturverzeichnis
  26. J. Liu, X. Sun, L. C. Kimerling, and J. Michel. Direct-gap optical gain of Ge on Si at room temperature. Opt. Lett., 34:1738–1740, 2009.
  27. C. Kittel. Einführung in die Festkörperphysik. Oldenbourg Verlag, München Wien, 14th edition, 2005.
  28. J. Bardeen and W. H. Brattain. The transistor, a semi-conductor triode. Physical Review, 74:230–231, 1948.
  29. VIII Literaturverzeichnis [26] T. H. Maiman. Stimulated Optical Radiation in Ruby. Nature, 187:493–494, 1960.
  30. R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson. Coherent Light Emission From GaAs Junctions. Phys. Rev. Lett., 9:366–368, 1962.
  31. C. J. Chen. Introduction to Scanning Tunneling Microscopy. Oxford University Press, first edition, 1993.
  32. T. Rappen, U.-G. Peter, M. Wegener, and W. Schäfer. Polarization dependence of dephasing processes: A probe for many-body effects. Phys. Rev. B, 49:10774– 10777, 1994.
  33. C. Lange, N. S. Köster, S. Chatterjee, H. Sigg, D. Chrastina, G. Isella, H. von Känel, M. Schäfer, M. Kira, and S. W. Koch. Ultrafast nonlinear optical response of photoexcited Ge/SiGe quantum wells: Evidence for a femtosecond transient population inversion. Phys. Rev. B, 79:201306(R), 2009.
  34. M. Hübner, J. P. Prineas, C. Ell, P. Brick, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch. Optical Lattices Achieved by Excitons in Periodic Quantum Well Structures. Phys. Rev. Lett., 83:2841–2844, 1999.
  35. J. R. Danielson, Y.-S. Lee, J. P. Prineas, J. T. Steiner, M. Kira, and S. W. Koch. Interaction of Strong Single-Cycle Terahertz Pulses with Semiconductor Quantum Wells. Phys. Rev. Lett., 99:237401, 2007.
  36. S. G. Pavlov, U. Böttger, H.-W. Hübers, R. Kh. Zhukavin, K. A. Kovalevsky, V. V. Tsyplenkov, V. N. Shastin, N. V. Abrosimov, and H. Riemann. Low-threshold terahertz Si:As laser. Appl. Phys. Lett., 90:141109, 2007.
  37. R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leiten- storfer. How many-particle interactions develop after ultrafast excitation of an electronhole plasma. Nature, 414:286–289, 1986.
  38. J. Chamings, A. R. Adams, S. J. Sweeney, B. Kunert, K. Volz, and W. W. Stolz. Temperature dependence and physical properties of Ga(NAsP)/GaP semiconduc- tor lasers. Appl. Phys. Lett., 93:101108, 2008.
  39. M. Kira, F. Jahnke, and S. W. Koch. Quantum Theory of Secondary Emission in Optically Excited Semiconductor Quantum Wells. Phys. Rev. Lett., 82:3544–3547, 1999.
  40. S. Tomita, T. Yokoyama, H. Yanagi, B. Wood, J. B. Pendry, M. Fujii, and S. Ha- yashi. Resonant photon tunneling via surface plasmon polaritons through one- dimensional metal-dielectric metamaterials. Opt. Express, 16:9942–9950, 2008.
  41. T. B. Norris, J.-K. Rhee, C.-Y. Sung, Y. Arakawa, M. Nishioka, and C. Weisbuch. Time-resolved vacuum Rabi oscillations in a semiconductor quantum microcavity. Phys. Rev. B, 50:14663–14666, 1994.
  42. Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann. Room-Temperature Optical Nonlinearities in GaAs. Phys. Rev. Lett., 57:2446– 2449, 1986.
  43. J.-K. Rhee, D. S. Citrin, T. B. Norris, Y. Arakawa, and M. Nishioka. Femtosecond dynamics of semiconductor-microcavity polaritons in the nonlinear regime. Solid State Commun., 97:941–946, 1996.
  44. Jenks, and P. A. Thiel. Adhesion properties of decagonal quasicrystals in ultrahigh vacuum. Phil Mag., 86:945–950, 2006.
  45. F. Jahnke, M. Kira, S. W. Koch, G. Khitrova, E. K. Lindmark, T. R. Nelson, D. V. Wick, J. D. Berger, O. Lyngnes, and H. M. Gibbs. Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime. Phys. Rev. Lett., 77:5257–5260, 1996.
  46. M. Ghulinyan, C. J. Oton, Z. Gaburro, P. Bettotti, and L. Pavesi. Porous silicon free-standing coupled microcavities. Appl. Phys. Lett., 82:1550–1552, 2003.
  47. S. Leinß , T. Kampfrath, K. v.Volkmann, M. Wolf, J. T. Steiner, M. Kira, S. W. Koch, A. Leitenstorfer, and R. Huber. Terahertz Coherent Control of Optically Dark Paraexcitons in Cu 2 O. Phys. Rev. Lett., 101:246401, 2008.
  48. W. Schäfer, R. Lövenich, N. A. Fromer, and D. S. Chemla. From Coherently Excited Highly Correlated States to Incoherent Relaxation Processes in Semicon- ductors . Phys. Rev. Lett., 86:344–347, 2001.
  49. K. Ishizaki and S. Noda. Manipulation of photons at the surface of three- dimensional photonic crystals. Nature, 460:367–370, 2009.
  50. S. Haacke, R. A. Taylor, R. Zimmermann, I. Bar-Joseph, and B. Deveaud. Reso- nant Femtosecond Emission from Quantum Well Excitons: The Role of Rayleigh Scattering and Luminescence. Phys. Rev. Lett., 78:2228–2231, 1997. XIII Literaturverzeichnis
  51. C. Ell, J. Prineas, T. R. Nelson Jr., S. Park, H. M. Gibbs, G. Khitrova, S. W. Koch, and R. Houdré. Influence of Structural Disorder and Light Coupling on the Excitonic Response of Semiconductor Microcavities. Phys. Rev. Lett., 80:4795– 4798, 1998.
  52. G. R. Hayes, J. L. Staehli, U. Oesterle, B. Deveaud, R. T. Phillips, and C. Ciuti. Suppression of exciton-polariton light absorption in multiple quantum well Bragg structures. Phys. Rev. Lett., 83:2837–2840, 1999.
  53. V. Savona andL. C. Andreani, P. Schwendimann, and A. Quattropani. Quantum well excitons in semiconductor microcavities: Unified treatment of weak and strong coupling regimes. Solid State Commun., 93:733–739, 1995.
  54. J. P. Prineas, W. J. Johnston, M. Yildirim, J. Zhao, and A. L. Smirl. Tunable slow light in Bragg-spaced quantum wells. Appl. Phys. Lett., 89:241106, 2006.
  55. M. Lindberg and S.W. Koch. Effective Bloch Equations for Semiconductors. Phys. Rev. B, 38:3342, 1988.
  56. Müller, and K. Köhler. Quantum Beats of Excitons in Quantum Wells. Phys. Rev. Lett., 64:1801–1804, 1990.
  57. M. Kira, F. Jahnke, and S. W. Koch. Microscopic Theory of Excitonic Signatures in Semiconductor Photoluminescence. Phys. Rev. Lett., 81:3263–3266, 1998.
  58. Ph. Ebert, K.-J. Chao, Q. Niu, and C. K. Shih. Dislocations, Phason Defects, and Domain Walls in a One-Dimensional Quasiperiodic Superstructure of a Metallic Thin Film. Phys. Rev. Lett., 83:3222–3225, 1999.
  59. J. Y. Park, D. F. Ogletree, M. Salmeron, R. A. Ribeiro, P. C. Canfield, C. J. Jenks, and P. A. Thiel. Tribological properties of quasicrystals: Effect of aperiodic versus periodic surface order. Phys. Rev. B, 74:024203, 2006.
  60. H. R. Sharma, M. Shimoda, A. R. Ross, T. A. Lograsso, and A. P. Tsai. Real- space observation of quasicrystalline Sn monolayer formed on the fivefold surface of icosahedral Al-Cu-Fe quasicrystal. Phys. Rev. B, 72:045428, 2005.
  61. T. Kitatani, K. Nakahara, M. Kondow, K. Uomi, and T. Tanaka. A 1.3-µm GaIn- NAs/GaAs Single-Quantum-Well Laser Diode with a Hight Characteristic Tem- perature over 200 K. Jpn. J. Appl. Phys., 39:L86–L87, 2000.
  62. Abitur am Gymnasium Edertalschule 2000 Beginn des Diplomstudiengangs Physik an der Philipps-Universität Marburg 2002 Vordiplom im Fach Physik 2005
  63. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia. A continuous-wave Raman silicon laser. Nature, 433:725–728, 2005.
  64. F. Nori and J. P. Rodriguez. Acoustic and electronic properties of one-dimensional quasicrystals. Phys. Rev. B, 34:2207–2211, 1986.
  65. Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab. Active control of slow light on a chip with photonic crystal waveguides. Nature, 438:65–69, 2005.
  66. Z. Lin, M. Goda, and H. Kubo. A family of generalized Fibonacci lattices: self- similarity and scaling of the wavefunction. J. Phys. A, 28:853–866, 1995.
  67. G. D. Purvis III and R. J. Bartlett. A full coupled-cluster singles and doubles model: The inclusion of disconnected trrples. J. Chem. Phys., 76:1910–1918, 1981.
  68. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia. A high-speed silicon optical modulator based on a metal-oxide- semiconductor capacitor. Nature, 427:615–618, 2004.
  69. Y. Fu, L. Ana, F. Zhoua, Y. Zhaoa, D. Yanga, and Y. Gao. AlCuCr quasicrystalline coatings prepared by low power plasma spraying. Surf. Coat. Technol., 202:4964– 4970, 2008.
  70. F. E. Harris, H. J. Monkhorst, and D. L. Freeman. Algebraic and Diagramma- tic Methods in Many-Fermion Theory. Oxford University Press, New York, first edition, 1992.
  71. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson. All-optical control of light on a silicon chip. Nature, 431:1081–1084, 2004.
  72. N. Yamamoto, K. Akahane, S.-I. Gozu, and N. Ohtani. All-optical control of the resonant-photon tunneling effect observed in GaAs/AlGaAs multilayered structu- res containing quantum dots. Appl. Phys. Lett., 87:231119, 2005.
  73. N. Yamamoto and N. Ohtani. All-Optical Switching and Memorizing Devices Using Resonant Photon Tunneling Effect in Multi-Layered GaAs/AlGaAs Struc- tures. Jap. J. Appl. Phys., 43:1393–1397, 2004.
  74. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Pa- niccia. An all-silicon Raman laser. Nature, 433:292–294, 2005.
  75. R. Y. Chiao, P. G. Kwiat, and A. M. Steinberg. Analogies between electron and photon tunneling -A proposed experiment to measure photon tunneling times. Physica B, 175:257–262, 1991.
  76. D. M. Chapin, C. S. Fuller, , and G. L. Pearson. A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power. J. Appl. Phys., 25:676–677, 1954.
  77. B. Chen, W. Wang, X.-J. Wang, J.-Y. Zhang, and Z. Fan. A Novel 1.3-µm High T 0 AlGaInAs/InP Strained-Compensated Multi-Quantum Well Complex-Coupled Distributed Feedback Laser Diode. Jpn. J. Appl. Phys., 38:5096–5100, 1999.
  78. D. Hulin, A. Mysyrowicz, A. Antonetti, A. Migus, W. T. Masselink, H. Morkoc, H. M. Gibbs, and N. Peyghambarian. An ultrafast all optical gate with subpico- second on and off response time. Appl. Phys. Lett., 49:749–751, 1986.
  79. L. Pauling. Apparent icosahedral symmetry is due to directed multiple twinning of cubic crystals. Nature, 317:512–514, 1985.
  80. M. Theunissen, J. A. Appels, and W. Verkulyen. Application of preferential elec- trochemical etching of silicon to semiconductor device technology. J. Electrochem. Soc., 117:959–, 1970.
  81. H. Kroemer. A proposed class of heterojunction injection lasers. Proc. IEEE, 51:1782–1783, 1963.
  82. J. Mikhael, J. Roth, L. Helden, and C. Bechinger. Archimedean-like tiling on decagonal quasicrystalline surfaces. Nature, 454:501–504, 2008.
  83. S. Reyntjens and R. Puers. A review of focused ion beam applications in micro- system technology. J. Micromech. Microeng., 11:287–300, 2001.
  84. R. K. P. Zia and W. J. Dallas. A simple derivation of quasi-crystalline spectra. J. Phys. A: Math. Gen, 18:L341–L345, 1985.
  85. A.-P. Tsai, A. Inoue, and T. Masumoto. A Stable Quasicrystal in Al-Cu-Fe System. Jpn. J. Appl. Phys., 26:L1505–L1507, 1987.
  86. W. Li and S. M. Sadeghi. Asymmetric coherent photon tunneling filter in an optical waveguide structure. Opt. Quant. Electron., 39:773–780, 2007.
  87. B. C. Richards, J. Hendrickson, J. Sweet, G. Khitrova, D. Litvinov, D. Gerthsen, B. Myer, S. Pau, D. Sarid, M. Wegener, E. L. Ivchenko, A. N. Poddubny, and H. M. Gibbs. Attempts to grow optically coupled Fibonacci-spaced InGaAs/GaAs quantum wells result in surface gratings. Opt. Express, 16:21512–21521, 2008.
  88. S. L. Miller. Avalanche Breakdown in Germanium. Phys. Rev., 99:1234–1241, 1955.
  89. A.-P. Tsai. " Back to the future An account discovery of stable quasicrystals. Acc. Chem. Res., 36:31–38, 2003.
  90. S. D. Baranovskii and A. L. Efros. Band Edge Smearing in Solid Solutions. Sov. Phys. Semicond., 12:1328–1330, 1978.
  91. N. Peyghambarian, H. M. Gibbs, J. L. Jewell, A. Antonetti, A. Migus, D. Hulin, and A. Mysyrowicz. Blue Shift of the Exciton Resonance due to Exciton-Exciton Interactions in a Multiple-Quantum-Well Structure. Phys. Rev. Lett., 53:2433– 2436, 1984.
  92. E. L. Ivchenko, A. I. Nesvizhskii, and S. Jorda. Bragg reflection of light from quantum-well structures. Phys. Solid State, 36:1156–1161, 1994.
  93. B. Jalali. Can silicon change photonics? Phys. Stat. Sol. a, 205:213–224, 2008.
  94. D. J. Sordelet, S. D. Widener, Y. Tang, and M. F. Besser. Characterization of a commercially produced Al-Cu-Fe-Cr quasicrystalline coating. Mater. Sci. Eng. A, 294–296:834–837, 2000.
  95. W. S. Boyle and G. E. Smith. Charge coupled semiconductor devices. Bell Syst. Tech. J., 49:587–593, 1970.
  96. M. Kira and S. W. Koch. Cluster-expansion representation in quantum optics. 78:022102, 2008.
  97. T. Stroucken, A. Knorr, P. Thomas, and S. W. Koch. Coherent dynamics of radiatively coupled quantum-well excitons. Phys. Rev. B, 53:2026–2033, 1996.
  98. T. Meier, P. Thomas, and S. W. Koch. Coherent Semiconductor Optics – From Basic Concepts to Nanostructure Applications. Springer, Berlin, first edition, 2006.
  99. Jr. N. Holonyak and S. F. Bevacqua. Coherent (visible) light emission from Ga(As 1x P x ) junctions. Appl. Phys. Lett., 1:82–83, 1962.
  100. M. Hübner, J. Kuhl, T. Stroucken, A. Knorr, S. W. Koch, R. Hey, and K. Ploog. Collective Effects of Excitons in Multiple-Quantum-Well Bragg and Anti-Bragg Structures. Phys. Rev. Lett., 76:4199–4202, 1996.
  101. S. Schmitt-Rink and D. S. Chemla. Collective Excitations and the Dynamical Stark Effect in a Coherently Driven Exciton System. Phys. Rev. Lett., 57:2752–2755, 1986.
  102. M. Schmiedeberg and H. Stark. Colloidal Ordering on a 2D Quasicrystalline Sub- strate. Phys. Rev. Lett., 101:218302, 2008.
  103. M. Kira. Complementary quantum dynamics. Report Series in Theoretical Physics, University of Helsinki, HU-TFT-IR-95-3:1–115, 1995.
  104. R. Dingle. Confined Carrier Quantum States in Ultrathin Semiconductor He- terostructures. In H.-J. Queisser, editor, Festkörperprobleme XV, pages 21–48. Pergamon Vieweg, Braunschweig, 1975.
  105. H. Yonezu. Control of structural defects in group III-V-N alloys grown on Si. Semicond. Sci. Technol., 17:762–768, 2002.
  106. J. Paldus, J. ˇ Cížek, and I. Shavitt. Correlation Problems in Atomic and Molecular Systems. IV. Extended Coupled-Pair Many-Electron Theory and Its Application to the BH 3 Molecule. 5:50–67, 1972.
  107. W. Hoyer, M. Kira, S. W. Koch, J. Hader, and J. V. Moloney. Coulomb effects on quantum-well luminescence spectra and radiative recombination times. J. Opt. Soc. Am. B, 24:1344–1353, 2007.
  108. P. Brick, C. Ell, M. Hübner J. P. Prineas, G. Khitrova, H. M. Gibbs, C. Sieh, T. Meier, F. Jahnke, A. Knorr, and S. W. Koch. Coulomb Memory Effects and Higher-Order Coulomb Correlations in the Excitonic Optical Stark Effect. Phys. Stat. Sol. A, 178:459–463, 2000. XXIX Literaturverzeichnis [318] A. Liu and C. Z. Ning. Near-infrared laser pumped intersubband THz laser gain in InGaAs-AlAsSb-InP quantum wells. Appl. Phys. Lett., 76:1984–1986, 2000.
  109. G. E. Moore. Cramming more components onto integrated circuits. Electronics, 38:114–117, 1965.
  110. L. Chow and K. H. Guenther. Critical field patterns in optical Fibonacci multi- layers. J. Opt. Soc. Am. A, 10:2231–2235, 1993. XXIII Literaturverzeichnis [243] T. Hattori, N. Tsurumachi, S. Kawato, and H. Nakatsuka. Photonic dispersion relation in a one-dimensional quasicrystal. Phys. Rev. B, 50:4220–4223, 1994.
  111. J. M. Vigoureux and F. Ba¨Ba¨ıda. Critical size of multi-resonant optical tunneling structures. Application to nonradiative effects. Optics Commun., 101:297–302, 1993. XXXV Publications Papers @BULLET M. Werchner, M. Schafer, M. Kira, S.W. Koch, J. Sweet, J.D. Olitzky, J. Hend- rickson, B.C. Richards, G. Khitrova, H.M.Gibbs, A.N. Poddubny, E.L. Ivchenko, M. Voronov, and M. Wegener, One dimensional resonant Fibonacci quasicrystals: noncanonical linear and canonical nonlinear effects, Opt. Express 17, 6813 (2009)
  112. L. X. He, Y. K. Wu, and K. H. Kuo. Decagonal quasicrystals with different periodicities along the tenfold axis in rapidly solidified Al 65 Cu 20 M 15 (M=Mn, Fe, Co or Ni). J. Mater. Sci. Lett., 7:1284–1286, 1988.
  113. O. Boyraz and B. Jalali. Demonstration of a silicon Raman laser. Opt. Express, 12:5069–5273, 2004.
  114. A. Beutelspacher and B. Petri. Der Goldene Schnitt. Spektrum Akademischer Verlag, Heidelberg, second edition, 1996.
  115. C. Brenner, S. Hoffmann, M. R. Hofmann, M. Salhi, M. Koch, A. Klehr, G. Erbert, G. Tränkle, J. T. Steiner, M. Kira, and S. W. Koch. Detection of THz radiation with semiconductor diode lasers. Appl. Phys. Lett., 91:101107, 2007.
  116. I. Kuznetsova, T. Meier, S. T. Cundiff, and P. Thomas. Determination of ho- mogeneous and inhomogeneous broadening in semiconductor nanostructures by two-dimensional Fourier-transform optical spectroscopy. Phys. Rev. B, 76:153301, 2007.
  117. K. C. Kao and G. A. Hockham. Dielectric fibre surface waveguides for optical frequencies. Proc. IEEE, 113:1151–1158, 1966.
  118. S. Babin, A. Bugrov, S. Cabrini, S. Dhuey, A. Goltsov, I. Ivonin, E.-B. Kley, C. Peroz, H. Schmidt, and V. Yankov. Digital optical spectrometer-on-chip. Appl. Phys. Lett., 95:041105, 2009.
  119. B. Kunert, K. Volz, and W. Stolz. Dilute nitride Ga(NAsP)/GaP-heterostructures: toward a material development for novel optoelectronic functionality on Si- substrate. Phys. Stat. Sol. b, 244:2730–2739, 2007.
  120. A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W. T. Masselink, and H. Mor- koc. " Dressed Excitons¨Excitons¨ın a Multiple-Quantum-Well Structure: Evidence for an Optical Stark Effect with Femtosecond Response Time. Phys. Rev. Lett., 56:2748– 2751, 1986.
  121. J. Zhang, L. Peia, H. Dua, W. Lianga, C. Xua, and B. Lu. Effect of Mg-based spherical quasicrystals on microstructure and mechanical properties of AZ91 alloys. J. Alloys Compd., 453:309–315, 2008.
  122. Y. B. Yu. Effects of Electron-Phonon Interaction on Linear and Nonlinear Optical Absorption in Cylindrical Quantum Wires. Commun. Theor. Phys., 49:1615–1618, 2008.
  123. S. Rudin and T. L. Reinecke. Effects of exciton-acoustic-phonon scattering on optical line shapes and exciton dephasing in semiconductors and semiconductor quantum wells. Phys. Rev. B, 66:085314, 2002.
  124. S. He and J. D. Maynard. Eigenvalue Spectrum, Density of States, and Eigen- functions in a Two-Dimensional Quasicrystal. Phys. Rev. Lett., 62:1888–1891, 1989.
  125. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus. Electric field dependence of optical absorption near the band gap of quantum-well structures. Phys. Rev. B, 32:1043–1060, 1985.
  126. A. Wojs, P. Hawrylak, S. Fafard, and L. Jacak. Electronic structure and magneto- optics of self-assembled quantum dots. Phys. Rev. B, 54:5604–5608, 1996.
  127. M. Y. Azbel. Energy spectrum of a conduction electron in a magnetic field. Sov. Phys. JETP, 19:634, 1964.
  128. B. Deveaud, F. Clérot, N. Roy, K. Satzke, B. Sermage, and D. S. Katzer. Enhanced radiative recombination of free excitons in GaAs quantum wells. Phys. Rev. Lett., 67:2355–2358, 1991.
  129. W. Hoyer, M. Kira, S. W. Koch, H. Stolz, S. Mosor, J. Sweet, C. Ell, G. Khitrova, and H. M. Gibbs. Entanglement between a Photon and a Quantum Well. Phys. Rev. Lett., 93:067401, 2004.
  130. X.-L. Wang and V. Voliotis. Epitaxial growth and optical properties of semicon- ductor quantum wires. J. Appl. Phys., 99:121301, 2006.
  131. S. Siggelkow, W. Hoyer, M. Kira, and S. W. Koch. Exciton formation and stability in semiconductor heterostructures. Phys. Rev. B, 69:073104, 2004.
  132. M. Kira, W. Hoyer, T. Stroucken, and S. W. Koch. Exciton Formation in Semicon- ductors and the Influence of a Photonic Environment. Phys. Rev. Lett., 87:176401, 2001.
  133. J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, A. N. Poddubny, E. L. Ivchenko, M. Wegener, and H. M. Gibbs. Excitonic polaritons in Fibonacci quasi- crystals. Opt. Express, 16:15382–15387, 2008.
  134. I. Galbraith, R. Chari, S. Pellegrini, P. J. Phillips, C. J. Dent, A. F. G. van der Meer, D. G. Clarke, A. K. Kar, G. S. Buller, C. R. Pidgeon, B. N. Murdin, J. Allam, and G. Strasser. Excitonic signatures in the photoluminescence and terahertz absorption of a GaAsAl x Ga 1x As multiple quantum well. Phys. Rev. B, 71:073302, 2005.
  135. R. Zimmermann and E. Runge. Exciton lineshape in semiconductor quantum structures with interface roughness. J. Lumin., 60/61:320–323, 1994.
  136. D. S. Citrin. Exciton radiative decay and polaritons in multiquantum wells: quantum-well-to-superlattice crossover. Solid State Commun., 89:139–143, 1994.
  137. W. Man, M. Megens, P. J. Steinhardt, and P. M. Chaikin. Experimental measure- ment of the photonic properties of icosahedral quasicrystals. Nature, 436:993–996, 2005.
  138. P. Guéret, E. Marclay, and H. Meier. Experimental observation of the dynamical image potential in extremely low GaAs/Al x Ga 1x As/GaAs tunnel barriers. Appl. Phys. Lett., 53:1617–1619, 1988.
  139. K. Kimura and S. Takeuchi. Experimental Studies of Electronic Transport in Quasicrystals. In Ref. [227], pages 325–359.
  140. M. Gardner. Extraordinary nonperiodic tiling that enriches the theory of tiles. Sci Amer., 236:110–121, 1977.
  141. D. Golde, M. Wagner, D. Stehr, H. Schneider, M. Helm, A. M. andrews, T. Roch, G. Strasser, M.'Kira, and S. W. Koch. Fano Signatures in the Intersubband Tera- hertz Response of Optically Excited Semiconductor Quantum Wells. Phys. Rev. Lett., 102:127403, 2009.
  142. A. Bonvalet, J. Nagle, V. Berger, A. Migus, J.-L. Martin, and M. Joffre. Femtose- cond Infrared Emission Resulting from Coherent Charge Oscillations in Quantum Wells. Phys. Rev. Lett., 76:4392–4395, 1996.
  143. A. Y. Cho. Film Deposition by Molecular Beam Techniques. J. Vacuum Science and Technol., 8:S31–S38, 1971.
  144. B. Kunert, S. Reinhard, J. Koch, M. Lampalzer, K. Volz, and W. Stolz. First demonstration of electrical injection lasing in the novel dilute nitride Ga(NAsP)/GaP-material system. Phys. Stat. Sol. c, 3:614–618, 2006.
  145. T. Klein and O. G. Symko. Formation of AlCuFe quasicrystalline thin films by solid state diffusion. Appl. Phys. Lett., 64:431–433, 1994.
  146. A. Haibel, G. Nimtz, and A. A. Stahlofen. Frustrated total reflection: The double- prism revisited. Phys. Rev. E, 63:047601, 2000.
  147. M. Brasken, M. Lindberg, D. Sundholm, and J. Olsen. Full configuration inter- action calculations of electron-hole correlation effects in strain-induced quantum dots. Phys. Rev. B, 61:7652–7655, 2000.
  148. GaAs/GaAlAs surface emitting IR LED with Bragg reflector grown by MOCVD.
  149. A. R. Reinberg, L. A. Riseberg, R. M. Brown, R. W. Wacker, and W. C. Holton. GaAs: Si LED Pumped Yb-Doped YAG Laser. Appl. Phys. Lett., 19:11–13, 1971.
  150. R. D. Diehl, W. Setyawan, and S. Curtarolo. Gas adsorption on quasicrystalline surfaces. J. Phys.: Condens. Matter, 20:314007, 2008. [199] D. Rouxel and P. Pigeat. Surface oxidation and thin film preparation of AlCuFe quasicrystals. Prog. Surf. Sci., 81:488–514, 2006.
  151. B. A. Joyce and C. T. Foxon. Growth and doping kinetics in molecular-beam epitaxy. Japan. J. Appl. Phys., 16:17–23, 1977.
  152. P. G. Howard. Hand held bar code reader with modulated laser diode and detector. U. S. Patent No. 4,694,182, filed on February 27, 1986. IX Literaturverzeichnis
  153. J. Feng, Y. Y. Zhu, and N. B. Ming. Harmonic generations in an optical fibonacci superlattice. Phys. Rev. B, 41:5578–5582, 1990.
  154. I. Németh, B. Kunert, W. Stolz, and K. Volz. Heteroepitaxy of GaP on Si: Correla- tion of morphology, anti-phase domain structure and MOVPE growth conditions. J. Crystal Growth, 310:1595–1601, 2008.
  155. H. Sugawara, M. Ishikawa, and G. Hatakoshi. High-efficiency InGaAlP/GaAs visible light-emitting diodes. Appl. Phys. Lett., 58:1010–1012, 1991.
  156. A.-P. Tsai and M. Yoshimura. Highly active quasicrystalline Al-Cu-Fe catalyst for steam reforming of methanol. Appl. Catal. A, 214:237–241, 2001.
  157. A.-P. Tsai, A. Niikura, A. Inoue, and T. Masumoto. Highly Ordered Structure of Icosahedral Quasi-Crystals in Zn-Mg-RE (RE-Equivalent-to-Rare Earth Metals) Systems . Phil. Mag. Lett., 70:169–175, 1994.
  158. R. Dragila, B. Luther-Davies, and S. Vukovic. High Transparency of Classically Opaque Metallic Films. Phys. Rev. Lett., 55:1117–1120, 1985.
  159. P. Villars, J. C. Phillips, and H. S. Chen. Icosahedral Quasicrystals and Quantum Structural Diagrams. Phys. Rev. Lett., 57:3085–3088, 1986.
  160. P. J. Steinhardt. Icosahedral Solids: A New Phase of Matter? Science, 238:1242– 1247, 1987.
  161. L. Pauling. Icosahedral Symmetry. Science, 239:963–963, 1988.
  162. XXVIII Literaturverzeichnis [304] W. Hoyer, M. Kira, and S. W. Koch. Influence of Coulomb and phonon interac- tion on the exciton formation in semiconductor heterostructures. Phys. Rev. B, 67:155113, 2003.
  163. M. Schafer, W. Hoyer, M. Kira, S.W. Koch, and J. V. Moloney. Influence of dielectric environment on quantum-well luminescence spectra. J. Opt. Soc. Am., B 25:187–195, 2008.
  164. I. Waldmueller, W. W. Chow, and A. Knorr. Influence of radiative coupling on coherent Rabi intersubband oscillations in multiple quantum wells. Phys. Rev. B, 73:035433, 2006.
  165. D. Ammerlahn, B. Grote, S. W. Koch, J. Kuhl, M. Hubner, R. Hey, and K. Ploog. Influence of the dielectric environment on the radiative lifetime of quantum-well excitons. Phys. Rev. B, 61:4801–4805, 2000.
  166. A. L. Schawlow and C. H. Townes. Infrared and Optical Masers. Phys. Rev, 112:1940–1949, 1958.
  167. E. Yablonovitch. Inhibited Spontaneous Emission in Solid-State Physics and Elec- tronics. Phys. Rev. Lett., 58:2059–2062, 1987.
  168. S. Haas T. Stroucken, M. Hübner, J. Kuhl, B. Grote, A. Knorr, F. Jahnke, S. W. Koch, R. Hey, and K. Ploog. Intensity dependence of superradiant emission from radiatively coupled excitons in multiple-quantum-well Bragg structures. Phys. Rev. B, 57:14860–14868, 1998.
  169. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan. Interactions between Light Waves in a Nonlinear Dielectric. Phys. Rev., 127:1918–1939, 1962.
  170. P. Debye and P. Scherrer. Interference on inordinate orientated particles in roent- gen light. Physikalische Zeitschrift, 17:277, 1916.
  171. XXX Literaturverzeichnis [333] A. Thränhardt, C. Ell, S. Mosor, G. Rupper, G. Khitrova, and H. M. Gibbs. Interplay of phonon and disorder scattering in semiconductor quantum wells. Phys. Rev. B, 68:035316, 2003.
  172. M. Kira, I. Tittonen, and S. Stenholm. Invariant time object in particle tunnelling. Europhys. Lett., 33:689–694, 1996.
  173. P. Guéret, E. Marclay, and H. Meier. Investigation of possible dynamic polarizati- on effects on the transmission probability of n-GaAs/Al x Ga 1−x As/n-GaAs tunnel barriers. Solid State Commun., 68:977–979, 1988.
  174. S. J. Pearton. Ion implantation in III-V semiconductor technology. Int. J. Mod. Phys. B, 7:4687–4761, 1993.
  175. J. S. Williams. Ion implantation of semiconductors. Mater. Sci. Eng. A, 253:8–15, 1998.
  176. I. Hayashida, M. B. Panish, P. W. Foy, and S. Sumski. Junction Lasers Which Operate Continuously at Room Temperature. Appl. Phys. Lett., 17:109–111, 1970.
  177. B. Dubost, J.-M. Lang, M. Tanaka, P. Sainfort, and M. Audier. Large AlCuLi sin- gle quasicrystals with triacontahedral solidification morphology. Nature, 324:48– 50, 1986.
  178. G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia. Laser Digital Cinema Projector. J. Display Technol., 4:314–318, 2008.
  179. J. Ting. Laser pointer. U. S. Patent No. D,403,451, filed on November 24, 1997.
  180. R. J. Haüy. Les molécules intégrantes qui sont censéescenséesêtre les plus petits solides que l'on puisse extraire d'un minéral. in Observation sur la physique, 1782.
  181. S. John. Light control at will. Nature, 460:337–337, 2009.
  182. T. Nakamura, K. Kiyohashi, and H. Suzuki. Light detector for camera using a GaAs 1x P x photo diode. Solid-St. Electron., 22:639–644, 1978.
  183. M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada. Lightwave propagation through a 120 @BULLET sharply bent single-line-defect photonic crystal waveguide. Appl. Phys. Lett., 76:952–954, 2000. XVII Literaturverzeichnis [151] J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell. Photonic Band Gap Guidance in Optical Fibers. Science, 282:1476–1478, 1998.
  184. F. Rossi and E. Molinari. Linear and nonlinear optical properties of realistic quantum-wire structures: The dominant role of Coulomb correlation. Phys. Rev. B, 53:16462–16473, 1996.
  185. J. Feldmann, G. Peter, E. O. Göbel, P. Dawson, K. Moore, C. Foxon, and R. J. Elliott. Linewidth dependence of radiative exciton lifetimes in quantum wells. Phys. Rev. Lett., 59:2337–2340, 1987.
  186. W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor. Localization of light waves in Fibonacci dielectric multilayers. Phys. Rev. Lett., 72:633–636, 1994.
  187. M. Kohmoto, B. Sutherland, and K. Iguchi. Localization of optics: Quasiperiodic media. Phys. Rev. Lett., 58:2436–2438, 1987.
  188. L. Esaki. Long journey into tunneling. Rev. Mod. Phys., 46:237–244, 1974.
  189. S. D. Hersee and J. P. Duchemin. Low-Pressure Chemical Vapor Deposition. Annu. Rev. Materi. Sci., 12:65–80, 1982.
  190. N. Baer, C. Gies, J. Wiersig, and F. Jahnke. Luminescence of a semiconductor quantum dot system. Euro. Phys. J. B, 50:411–418, 2006.
  191. W. Hoyer, C. Ell, M. Kira, S. W. Koch, S. Chatterjee, S. Mosor, G. Khitrova, H. M. Gibbs, and H. Stolz. Many-body dynamics and exciton formation studied by time-resolved luminescence. Phys. Rev. B, 72:075324, 2005.
  192. Schmitt-Rink, C. Ell, and H. Haug. Many-body effects in the absorption, gain, and luminescence spectra of semiconductor quantum-well structures. Phys. Rev. B, 33:1183–1189, 1986.
  193. A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao. Measurement of the single-photon tunneling time. Phys. Rev. Lett., 71:708–711, 1993.
  194. D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn. Metallic Phase with Long- Range Orientational Order and No Translational Symmetry. Phys. Rev. Lett., 53:1951, 1984.
  195. P. D. Dapkus. Metalorganic Chemical Vapor Deposition. Annu. Rev. Materi. Sci., 12:243–269, 1982.
  196. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson. Micrometre-scale silicon electro- optic modulator. Nature, 435:325–327, 2005.
  197. M. Kira and S. W. Koch. Microscopic theory of optical excitations, photolumine- scence, and therahertz response in semiconductors. Eur. Phys. J. D, 36:143–157, 2005.
  198. Diplom im Fach Physik ; Thema der Diplomarbeit: " Microscopic Theory of Quantum Electrodynamical Spectroscopy in Multiple Quantum-Well Systems " 2005
  199. J. S. Kilby. Miniaturized Self-Contained Circuit Modules and Method of Fabri- cation. U. S. Patent No. 3,138,744, filed on May 06, 1959. issued on June 23, 1964.
  200. B. R. Koch, A. W. Fang, O. Cohen, and J. E. Bowers. Mode-locked silicon evane- scent lasers. Opt. Express, 15:11225–11233, 2007. [137] M. N. Sysak, H. Park, A. W. Fang, J. E. Bowers, R. Jones, O. Cohen, O. Raday, and M. J. Paniccia. Experimental and theoretical thermal analysis of a Hybrid Silicon Evanescent Laser. Opt. Express, 15:15041–15046, 2007.
  201. W. Shockley and G. L. Pearson. Modulation of Conductance of Thin Films of Semi-Conductors by Surface Charges. Phys. Rev., 74:232–233, 1948.
  202. A. Y. Cho and J. R. Arthur. Molecular beam epitaxy. Prog. Solid State Chem., 10:157–191, 1975.
  203. A. N. Saxena. Monolithic Concept and the Inventions of Integrated Circuits by Kilby and Noyce. In NSTI-Nanotech 2007 – Technical Proceedings of the 2007 Nanotechnology Conference and Trade Show, volume 3, pages 460–474, 2007.
  204. E. L. Ivchenko, M. M. Voronov, M. V. Erementchouk, L. I. Deych, and A. A. Lisyansky. Multiple-quantum-well-based photonic crystals with simple and com- pound elementary supercells. Phys. Rev. B, 70:195106, 2004.
  205. L. A. Nagahara, T. Thundat, and S. M. Lindsay. Nanolithography on semicon- ductor surfaces under an etching solution. Appl. Phys. Lett., 57:270–272, 1990.
  206. J. Feng, X. Zhang, Y. Wang, Z. Y. Li, B. Cheng, and D.-Z. Zhang. Negative refraction and imaging using 12-fold-symmetry quasicrystals. Phys. Rev. Lett., 94:247402, 2005.
  207. R. C. Reddick, R. J. Warmack, and T. J. Ferrell. New Form of Scanning Optical Microscopy. Phys. Rev. B, 39:767–770, 1989.
  208. T. Ishimasa, H.-U. Nissen, and Y. Fukano. New Ordered State Between Crystalline and Amorphous in Ni-Cr Particles. Phys. Rev. Lett., 55:511–513, 1985.
  209. L. Esaki. New Phenomenon in Narrow Germanium p-n Junctions. Phys. Rev., 109:603–604, 1958.
  210. A.-P. Tsai, A. Inoue, and T. Masumoto. New quasicrystals in Al 65 Cu 20 M 15 (M = Cr, Mn or Fe) systems prepared by rapid solidification. J. Mater. Sci. Lett., 7:322–326, 1988.
  211. O. Lyngnes, J. D. Berger, J. P. Prineas, S. Park, G. Khitrova, H. M. Gibbs, F. Jahn- ke, M. Kira, and S. W. Koch. Nonlinear emission dynamics from semiconductor microcavities in the nonperturbative regime. Solid State Commun., 104:297–300, 1997.
  212. G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch. Nonlinear optics of normal-mode-coupling in semiconductor microcavities. Rev. Mod. Phys., 71:1591– 1639, 1999.
  213. M. Soljači´Soljači´c, C. Luo, J. D. Joannopoulos, and S. Fan. Nonlinear photonic crystal microdevices for optical integration. Opt. Lett., 28:637–639, 2004.
  214. T. Shih, K. Reimann, M. Woerner, T. Elsaesser, I. Waldmüller, A. Knorr, R. Hey, and K. H. Ploog. Nonlinear response of radiatively coupled intersubband transiti- ons of quasi-two-dimensional electrons. Phys. Rev. B, 72:195338, 2005.
  215. M. Henini. NTT all-optical switch for ultra-fast processing. III-Vs Review, 9:68– 70, 1996.
  216. X. Huang, Y. Wang, and C. Gong. Numerical investigation of light-wave localiza- tion in optical Fibonacci superlattices with symmetric internal structure. J. Phys.: Condens. Matter, 11:7645–7651, 1999.
  217. S. Hayashi, H. Kurokawa, and H. Oga. Observation of Resonant Photon Tunneling in Photonic Double Barrier Structures. Opt. Rev., 6:204–210, 1999.
  218. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa. Observation of the Cou- pled Exciton-Photon Mode Splitting in a Semiconductor Quantum Microcavity. Phys. Rev. Lett., 69:3314–3317, 1992.
  219. M. D. Webb, S. T. Cundiff, and D. G. Steel. Observation of time-resolved pi- cosecond stimulated photon echoes and free polarization decay in GaAs/AlGaAs multiple quantum wells. Phys. Rev. Lett., 66:934–937, 1991.
  220. K. B. Mc Afee, E. J. Ryder, W. Shockley, and M. Sparks. Observations of Zener Current in Germanium p-n Junctions. Phys. Rev., 83:650–651, 1951.
  221. M. Werchner, M. Schafer, M. Kira, S. W. Koch, J. Sweet, J. D. Olitzky, J. Hend- rickson, B. C. Richards, G. Khitrova, H. M. Gibbs, A. N. Poddubny, E. L. Ivchenko, XXVII Literaturverzeichnis M. Voronov, and M. Wegener. One dimensional resonant Fibonacci quasicrystals: noncanonical linear and canonical nonlinear effects. Opt. Express, 17:6813–6828, 2009.
  222. P. Kramer and R. Neri. On Periodic and Non-periodic Space Fillings of E m Ob- tained by Projection. Acta cryst. A, 40:580–587, 1984.
  223. M. A. Bravais. On the Systems Formed by Points Regularly Distributed on a Plane or in Space. Dover Publications, Mineola, New York, first edition, 2005. Translation by A. J. Shaler of the original Mémoire sur les systèmes formés par des points distributésrégulì erement sur un plan ou dans l'espace, published in Paris in 1850 in Journal de l' ´ Ecole Polytechnique, Cahier 33, Tome XIX, pages 1–128.
  224. J. Palmer. Optical data storage: Polarization and wavelength-resolved recording comes of age. Laser Focus World, 45:22, 2009.
  225. C. M. Goldstein. Optical Disk Technology and Information. Science, 215:862–868, 1982.
  226. M. M. Burns, J. M. Fournier, and J. A. Golovchenko. Optical Matter: Crystalli- zation and Binding in Intense Optical Fields. Science, 249:749–754, 1990.
  227. E. L. Ivchenko. Optical spectroscopy of semiconductor nanostructures. Alpha Science International, Harrow, UK, 2005.
  228. M. Hase, M. Egashira, N. Shinya, H. Miyazaki, K. M. Kojima, and S. Uchida. Optical transmission spectra of two-dimensional quasiperiodic photonic crystals based on Penrose-tiling and octagonal-tiling systems. J. Alloys Comp., 342:455– 459, 2002.
  229. E. Hecht. Optics. Addison Wesley, San Francisco, CA, USA, 4th edition, 2002.
  230. D. Popovic, D. Naumovic, M. Bovet, C. Koitzsch, L. Schlapbach, and P. Aebi. Oxidation of AlPdMn quasicrystal surfaces . Surf. Sci., 492:294–304, 2001.
  231. M. Kira, I. Tittonen, and S. Stenholm. Particle Characteristics of Conventional and Resonant Tunneling. Physica Scripta, 54:549–562, 1996.
  232. XVIII Literaturverzeichnis [168] J. W. Cahn, D. Gratias, and D. Shechtman. Pauling's model not universally accepted. Nature, 319:102–103, 1986.
  233. X. Fu, Y. Liu, P. Zhou, and W. Sritrakool. Perfect self-similarity of energy spectra and gap-labeling properties in one-dimensional Fibonacci-class quasilattices. Phys. Rev. B, 55:2882–2889, 1997.
  234. Y. S. Chan, C. T. Chan, and Z. Y. Liu. Photonic Band Gaps in Two Dimensional Photonic Quasicrystals. Phys. Rev. Lett., 80:956–959, 1998.
  235. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan. Photonic crystals: putting a new twist on light. Nature, 386:143–149, 1997.
  236. Z. M. Stadnik. Physical Properties of Quasicrystals. Springer, Berlin, first edition, 1999.
  237. H. Mizuta and T. Tanue. Physics and Applications of Resonant Tunnelling Diodes. Cambridge University Press, Cambridge, first edition, 2003.
  238. T. F. Krauss. Planar photonic crystal waveguide devices for integrated optics. Phys, Stat. Sol. a, 197:688–702, 2003.
  239. G. Smolinsky, R. P. Chang, and T. M. Mayer. Plasma etching of III-V compound semiconductor materials and their oxides. J. Vac. Sci. Technol., 18:12–16, 1981.
  240. T. Rappen, G. Mohs, and M. Wegener. Polariton dynamics in quantum wells studied by femtosecond four-wave mixing. Phys. Rev. B, 47:9658–9662, 1993.
  241. K. Tada, S. Nishimura, and T. Ishikawa. Polarization-independant optical wave- guide intensity switch with parabolic quantum-well. Appl/ Phys. Lett., 59:2778– 2780, 1991.
  242. K. Hayashida, T. Dotera, A. Takano, and Y. Matsushita. Polimeric Quasicry- stal: Mesoscopic Quasicrystalline Tiling in ABC Star Polymers. Phys. Rev. Lett., 98:195502, 2007.
  243. A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Luth, H. F. Arrand, and T. M. Benson. Porous silicon multilayer optical waveguides. Thin Solid Films, 276:143–146, 1996.
  244. @BULLET M. Schäfer, M. Werchner, M. Kira, and S. W. Koch, Poster: Multi Quantum-Well Luminescence, Cliff-Hotel Sellin, Rügen, Germany (March 14-17, 2004) XL Persönlicher Werdegang Name Marco Werchner 1987–1991
  245. F. Brunner, E. Innerhofer, S. V. Marchese, T. Südmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller. Powerful red- green-blue laser source pumped with a mode-locked thin disk laser. Opt. Lett., 29:1921–1923, 2004.
  246. M. Born and E. Wolf. Principles of Optics. Cambridge University Press, seventh edition, 1999.
  247. J. Ledieu, J. T. Hoeft, D. E. Reid, J. A.Smerdon, R. D. Diehl, T. A. Lograsso, A. R. Ross, and R. McGrath. Pseudomorphic Growth of a Single Element Quasiperiodic Ultrathin Film on a Quasicrystalline Substrate. Phys. Rev. Lett., 92:135507, 2004.
  248. T. Ito and S. Okazaki. Pushing the limits of lithography. Nature, 406:1027–1031, 2000.
  249. F. Schwabl. Quantenmechanik (QM I): Eine Einführung. Springer, Berlin, seventh edition, 2007.
  250. Y. H. Ahn, S. B. Choe, J. C. Woo, D. S. Kim, S. T. Cundiff, J. M. Shacklet- te, and Y. S. Lim. Quantum Interference of Virtual and Real Amplitudes in a Semiconductor Exciton System. Phys. Rev. Lett., 89:237403, 2002.
  251. E. Merzbacher. Quantum Mechanics. Wiley, New York, first edition, 1961.
  252. M. Y. Azbel. Quantum Particle in One-Dimensional Potentials with Incommen- surate Periods. Phys. Rev. Lett., 43:1954–1957, 1979.
  253. C. Weisbuch and B. Vinter. Quantum Semiconductor Structures: Fundamentals and Applications. Academic Press, London, first edition, 1991.
  254. T. Feldtmann, L. Schneebeli, M. Kira, and S. W. Koch. Quantum theory of light emission from a semiconductor quantum dot. Phys. Rev. B, 73:155319, 2006.
  255. M. Schäfer, M. Werchner, W. Hoyer, M. Kira, and S.W. Koch. Quantum Theory of Luminescenence in Multiple-Quantum-Well Bragg structures. Phys. Rev. B, 74:166315, 2006.
  256. F. Tassone, F. Bassani, and L. C. Andreani. Quantum-well reflectivity and exciton- polariton dispersion. Phys. Rev. B, 45:6023–6030, 1992.
  257. R. Lifshitz. Quasicrystals: A Matter of Definition. Foundations of Physics, 33:1703–1711, 2003.
  258. M. Senechal. Quasicrystals and geometry. Cambridge University Press, Cambridge, third edition, 2009.
  259. D. Levine and P. J. Steinhardt. Quasicrystals: A New Class of Ordered Structures. Phys. Rev. Lett., 53:2477–2480, 1984.
  260. C. Janot. Quasicrystals. A Primer. Clarendon Press, Oxford, UK, second edition, 1994.
  261. D. Levine and P. J. Steinhardt. Quasicrystals. I. Definition and structure. Phys. Rev. B, 34:596–616, 1986.
  262. XXII Literaturverzeichnis [227] D. P. Di Vincenzo and P. J. Steinhardt. Quasicrystals – The State of the Art. World Scientific, Singapore, second edition, 1999.
  263. P. A. Thiel. Quasicrystal surfaces. Annu. Rev. Phys. Chem., 59:129–152, 2008.
  264. J. E. S. Socolar, P. J. Steinhardt, and D. Levine. Quasicrystals with arbitrary orientational symmetry. Phys. Rev. B, 32:5547–5550, 1985.
  265. R. Merlin, K. Bajema, R. Clarke, F. Y. Juang, and P. K. Bhattacharya. Quasipe- riodic GaAs-AlAs Heterostructures. Phys. Rev. Lett., 55:1768–1770, 1985.
  266. L. Guidoni, C. Triché, P. Verkerk, and G. Grynberg. Quasiperiodic Optical Lattice. Phys. Rev. Lett., 79:3363–3366, 1997. XXI Literaturverzeichnis
  267. S. N. Zhu, Y. Y. Zhu, and N. B. Ming. Quasi-Phase-Matched Third-Harmonic Generation in a Quasi-Periodic Optical Superlattice. Science, 278:843–846, 1997.
  268. S. T. Cundiff, A. Knorr, J. Feldmann, S. W. Koch, E. O. Göbel, and H. Nickel. Rabi Flopping in Semiconductors. Phys. Rev. Lett., 73:1178–1181, 1994.
  269. E. Hanamura. Rapid radiative decay and enhanced optical nonlinearity of excitons in a quantum well. Phys. Rev. B, 38:1228–1234, 1988.
  270. XII Literaturverzeichnis [85] E. O. Göbel, H. Jung, J. Kuhl, and K. Ploog. Recombination Enhancement due to Carrier Localization in Quantum Well Structures. Phys. Rev. Lett., 51:1588–1591, 1983.
  271. E. L. Ivchenko, M. A. Kaliteevski, A. V. Kavokin, and A. I. Nesvizhskii. Reflection and absorption spectra from microcavities with resonant Bragg quantum wells. J. Opt. Soc. Am. B, 13:1061–1068, 1996.
  272. [320] m. Choi, K.-C. Je, S.-Y. Yim, and S.-H. Park. Relative strength of the scree- ned Coulomb interaction and phase-space filling on exciton bleaching in multiple quantum well structures. Phys. Rev. B, 70:085309, 2004.
  273. International Union of Crystallography. Report of the executive committee for 1991. Acta. Cryst. A, 48:922–946, see p. 928, 1992.
  274. B. Grote, C. Ell, S. W. Koch, H. M. Gibbs, G. Khitrova, J. P. Prineas, and J. Shah. Resonance Rayleigh scattering from semiconductor heterostructures: The role of radiative coupling. Phys. Rev. B, 64:045330, 2001.
  275. Y. Jiang, C. Niu, and D. L. Lin. Resonance tunneling through photonic quantum wells. Phys. Rev. B, 59:9981–9986, 1999.
  276. A. N. Poddubny, L. Pilozzi, M. M. Voronov, and E. L. Ivchenko. Resonant Fibo- nacci quantum well structures in one dimension. Phys. Rev. B, 77:113306, 2008.
  277. L. L. Chang, L. Esaki, and R. Tsu. Resonant tunneling in semiconductor double barriers. Appl. Phys. Lett., 24:593–595, 1974.
  278. F. Capasso, K. Mohammed, and A. Y. Cho. Resonant Tunneling Through Doublke Barriers, Perpendicular Quantum Transport Phenomena in Superlattices, and Their Device Applications. IEEE J. Quantum Electr., QE-22:1853–1869, 1986.
  279. P. J. Steinhardt. Response: Icosahedral Symmetry. Science, 239:963–964, 1988.
  280. D. S. Chemla and D. A. B. Miller. Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures. J. Opt. Soc. Am. B, 2:1155– 1173, 1985.
  281. K. A. Schouhamer Immink. The Compact Disk Story. J. Audio Eng. Soc., 46:458– 465, 1998.
  282. Y. Y. Zhu and N. B. Ming. Second-harmonic generation in a Fibonacci optical superlattice and the dispersive effect of refractive index. Science, 42:3676–3679, 1990.
  283. S. W. Koch and W. W. Chow. Semiconductor Laser Fundamentals: Physics of the Gain Materials. Springer, Berlin, first edition, 1999.
  284. Zh. I. Alferov and R. F. Kazarinov. Semiconductor Laser with Electrical Pumping. U.S.S.R. Patent No. 181737, 1963.
  285. W. Schäfer and M. Wegener. Semiconductor optics and transport phenomena. Springer, Berlin, first edition, 2002.
  286. K. H. Seeger. Semiconductor Physics. An Introduction. Springer, Berlin, seventh edition, 1999.
  287. H. T. Grahn. Semiconductor Superlattices – Growth and Electronic Properties. World Scientific, Singapore, first edition, 1995.
  288. K. Ebert, R. Duschl, O. G. Schmidt, U. Denker, and R. Haug. Si-based resonant inter-and intraband tunneling diodes. J. Crystal Growth, 227–228:770–776, 2001.
  289. R. A. Soref. Silicon-based optoelectronics. Proc. IEEE, 81:1687–1706, 1993.
  290. A. G. Rickman. Silicon Integrated Optics and Sensor Applications. Sensor Review, 14:27–29, 1994.
  291. J. Stone, C. A. Burrus, A. G. Dentai, and B. I. Miller. Single-crystal Nd: YAG fiber laser end-pumped CW with a light-emitting diode. Opt. Commun., 18:87–87, 1976.
  292. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O'Faolain, and T. F. Krauss. Slow light enhancement of nonlinear effects in silicon engeneered photonic crystal waveguides. Opt. Express, 17:2944–2953, 2009.
  293. Zh. I. Alferov, V. M. Andreev, and V. D. Rumyantsev. Solar photovoltaics: Trends and prospects. Semiconductors, 38:899–908, 2004.
  294. W. Ohashi and F. Spaepen. Stable Ga-Mg-Zn quasi-periodic crystals with penta- gonal dedecahedral solidification morphology. Nature, 330:555–556, 1987.
  295. A. R. Kortan, F. A. Thiel, H. S. Chen, A. P. Tsai, A. Inoue, and T. Masumoto. Stable tenfold faceted single-grain decagonal quasicrystals of Al 65 Cu 15 Co 20 . Phys. Rev. B, 40:9397–9399, 1989.
  296. M. I. Nathan, W. P. Dumke, G. Burns, Jr. F. H. Dill, and Gordon Lasher. Stimu- lated emission of radiation from GaAs p-n junctions. Appl. Phys. Lett., 1:62–64, 1962.
  297. Z. S. Yang, N. H. Kwong, R. Binder, and A. L. Smirl. Stopping, storing, and releasing light in quantum-well Bragg structures. J. Opt. Soc. Am. B, 22:2144– 2156, 2005.
  298. John. Strong localization of photons in certain disordered dielectric superlatti- ces. Phys. Rev. Lett., 58:2486–2489, 1987.
  299. N. Fang, H. Lee, C. Sun, and X. Zhang. Sub-diffraction-limeted optical imaging with a silver superlense. Science, 308:534–537, 2005.
  300. E. A. Barbosa and J. F. Cavalho. Surface analysis by two-diode laser photorefrac- tive holography. Appl. Phys. B, 87:417–423, 2007.
  301. R. W. Peng, X. Q. Huang, F. Qiu amd M. Wang, A. Hu, S. S. Jiang, and M. Mazzer. Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers. Appl. Phys. Lett., 80:3063–3065, 2002.
  302. J. Todd, R. Merlin, R. Clarke, K. M. Mohanty, and J. D. Axe. Synchroton X-Ray Study of a Fibonacci Superlattice. Phys. Rev. Lett., 57:1157, 1986.
  303. V. Agarwal and J. A. del Río. Tailoring the photonic band gap of a porous silicon dielectric mirror. Appl. Phys. Lett., 82:1512–1514, 2003.
  304. @BULLET M. Werchner, M. Schäfer, W. Hoyer, M. Kira, and S. W. Koch, Talk: Microsco- pic Investigations of Luminescence from Muliple Quantum-Well Structures, DPG spring meeting Regensburg, Germany (March 26-30, 2007) XXXIX Publications @BULLET M. Schäfer, M. Werchner, W. Hoyer, M. Kira, and S. W. Koch, Talk: Radiative Li- fetime of Excitons in Multi Quantum-Well Systems, DPG spring meeting Dresden, Germany (March 26-31, 2006)
  305. @BULLET M. Werchner, M. Schäfer, W. Hoyer, M. Kira, and S. W. Koch, Talk: Quantum- optical and classical spectroscopy with radiatively coupled quantum wells, DPG spring meeting Frankfurt, Germany (March 13-17, 2006)
  306. S. A. Kucharski and R. J. Bartlett. The coupled-cluster single, double, triple, and quadruple excitation method. J. Chem. Phys., 97:4284–4288, 1992.
  307. W. L. Bragg. The diffraction of short electromagnetic waves by a crystal. Proc. Camb. Phil. Soc., 17:43–57, 1913.
  308. V. Elser. The Diffraction Pattern of Projected Structures. Acta. Cryst. A, 42:36– 43, 1986.
  309. P. S. Peercy. The drive to miniaturization. Nature, 406:1023–1026, 2000.
  310. W. Shockley, J. Bardeen, and W. H. Brattain. The electronic theory of the tran- sistor. Science, 108:678–679, 1948.
  311. N. Chekurov, K. Grigoras, A. Peltonen, S. Franssila, and I. Tittonen. The fabri- cation of silicon nanostructures by local gallium implantation and cryogenic deep reactive ion etching. Nanotechnology, 20:065307, 2009.
  312. The investigated samples have been grown by and the experiments have been performed in the group of Prof. H. M. Gibbs and Prof. G. Khitrova at the College of Optical Sciences, The University of Arizona, Tucson.
  313. L. C. L. Y. Voon and M. Willatzen. The k·p method: Electronic Properties of Semiconductors. Springer, Berlin, first edition, 2009.
  314. J. M. Luck, C. Godreche, A. Janner, and T. Janssen. The nature of the atomic surfaces of quasiperiodic self-similar structures. J. Phys. A, 26:1951–1999, 1993.
  315. R. Zimmermann. Theory of Dephasing in Semiconductor Optics. Phys. Stat. Sol. B, 173:129–137, 1992.
  316. D. R. Fredkin and G. H. Wannier. Theory of Electron Tunneling in Semiconductor Junctions. Phys. Rev., 128:2054–2061, 1962.
  317. H. Miyazaki and M. Inoue. Theory of Self-Similarity in the Reflectivity Spectrum of a Fibonacci Superlattice. Solid State Commun., 72:241–244, 1989.
  318. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller. Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures. Phys. Rev. B, 32:6601–6609, 1985.
  319. A. K. Jonscher. The physics of the tunnel diode. Br. J. Appl. Phys., 12:654–659, 1961.
  320. L. V. Iogansen. The possibility of Resonance Transmission of Electrons in Crystals Through a System of Barriers. Soviet Physics: JETP, 18:146, 1964.
  321. M. Bosi and C. Pelosi. The potential of III-V semiconductors as terrestrial pho- tovoltaic devices. Prog. Photovolt.: Res. Appl., 15:51–68, 2007.
  322. R. W. Cahn. The science of dirt. Nature Mater., 1:3–4, 2002.
  323. J.-C. Dousse and Ch. Rhême. The Si photodiode: An inexpensive though high- performing α detector. Am. J. Phys., 51:452–455, 1983.
  324. W. L. Bragg. The Structure of Some Crystals as Indicated by Their Diffraction of X-rays. Proc. Roy. Soc. Lond., A89:248–277, 1913.
  325. W. H. Bragg and W. L. Bragg. The Structure of the Diamond. Proc. Roy. Soc. Lond., A89:277–291, 1913.
  326. F. Z. Henari, K. Morgenstern, W. J. Blau, V. A. Karavanskii, and V. S. Dneprovs- kii. Third-order optical nonlinearity and all-optical switching in porous silicon. Appl. Phys. Lett., 67:323–325, 1995.
  327. M. Holzer. Three classes of one-dimensional, two-tile Penrose tilings and the Fi- bonacci Kronig-Penney model as a generic case. Phys. Rev. B, 38:1709–1720, 1988.
  328. K. Kono, S. Nakada, Y. Narahara, and Y. Ootuko. Transmission spectra of 3rd sound in a Fibonacci lattice. J. Phys. Soc. Jpn., 60:368–371, 1991.
  329. A. Ledermann, L. Cademartiri, M. Hermatschweiler, C. Toninelli, G. A. Ozin, D. S. Wiersma, M. Wegener, and G. von Freymann. Tree-dimensional silicon inverse photonic quasicrystals for infrared wavelengths. Nature Mater., 5:942–945, 2006.
  330. C. W. Bates Jr. Tunneling Current in Esaki Diodes. Phys. Rev., 121:1070–1071, 1961.
  331. R. Tsu and L. Esaki. Tunneling in a Finite Superlattice. Appl. Phys. Lett., 22:562– 564, 1973.
  332. F. J. García de Abajo, G. Gómez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov. Tunneling Mechanism of Light Transmission through Metallic Films. Phys. Rev. Lett., 95:067403, 2005.
  333. G. Guan, H. Jiang, Y. Zhang H. Li, H. Chen, and S. Zhu. Tunneling modes of photonic heterostructures consisting of single-negative materials. Appl. Phys. Lett., 38:114–117, 1965.
  334. T. E. Hartmann. Tunneling of a Wave Packet. J. Appl. Phys., 33:3427–, 1962.
  335. Ch. Spielmann, R. Szip—'ocs, A. Stingl, and F. Krausz. Tunneling of Optical Pulses through Photonic Band Gaps. Phys. Rev. Lett., 73:2308–2311, 1994.
  336. E. H. Hauge and J. A. Stovneng. Tunneling times: a critical review. Rev. Mod. Phys., 61:917–936, 1989.
  337. J. P. Prineas, J. Y. Zhou, J. Kuhl, H. M. Gibbs, G. Khitrova, S. W. Koch, and A. Knorr. Ultrafast ac Stark effect switching of the active photonic band gap from Bragg-periodic semiconductor quantum wells. Appl. Phys. Lett., 81:4332–4334, 2002.
  338. R. Binder, S. W. Koch, M. Lindberg, and N. Peyghambarian. Ultrafast Adiabatic Following in Semiconductors. Phys. Rev. Lett., 65:899–902, 1990.
  339. J. Shah. Ultrafast spectroscopy of semiconductors and semiconductor nanostruc- tures. Springer, Berlin, first edition, 1996.
  340. J.-C. Diels and W. Rudolph. Ultrashort Laser Pulse Phenomena – Fundamentals, Techniques, and Applications on a Femtosecond Time Scale. Academic Press, San Diego, second edition, 2006.
  341. Y. Y. Zhu, N. B. Ming, and W. H. Jiang. Ultrasonic spectrum in Fibonacci acoustic superlattices. Phys. Rev. B, 40:8536–8540, 1989.
  342. W. Schottky. Vereinfachte und erweiterte Theorie der Randschichtgleichrichter. Z. Phys., 118:539–592, 1942.
  343. T. R. Chen, W. Hsin, and N. Bar-Chaim. Very high power InGaAsP/InP distri- buted feedback lasers at 1550 nm wavelength. Appl. Phys. Lett., 72:1269–1271, 1998.
  344. B. Freedman, G. Bartal, M. Segev, R. Lifshitz, D. N. Christodoulides, and J. W. Fleischer. Wave and defect dynamics in nonlinear photonic quasicrystals. Nature, 440:1166–1169, 2006.
  345. G. Bastard. Wave mechanics applied to semiconductor heterostructures. Mono- graphies de physique. LesLeséditions de physique, Les Ulis, first edition, 1988.
  346. D. Hulin, A. Mysyrowicz, A. Antonetti, A. Migus, W. T. Masselink, H. Morkoc, H. M. Gibbs, and N. Peyghambarian. Well-size dependence of exciton blue shift in GaAs multiple-quantum-well structures. Phys. Rev. B, 33:4389–4391, 1986.
  347. R. Lifshitz. What is a crystal? Z. Kristallogr., 222:313–317, 2007.
  348. P. P. Ewald. Zur Begründung der Kristalloptik; Teil III: Die Kristalloptik der Röntgenstrahlen. Ann. Phys., 54:519–556, 1917.
  349. Hu. Highly stable three-band white light from an InGaN-based blue light-emitting diode chip precoated with (oxy)nitride green/red phosphors. Appl. Phys. Lett., 90:123503, 2007.
  350. G. Malpuech, A. Kavokin, W. Langbein, and J. M. Hvam. Resonant Rayleigh Scattering of Exciton-Polaritons in Multiple Quantum Wells. Phys. Rev. Lett., 85:650–653, 2000.
  351. T. Kuhn and F. Rossi. Analysis of coherent and incoherent phenomena in photo- excited semiconductors: A Monte Carlo approach. Phys. Rev. Lett., 69:977–980, 1992.
  352. K.-C. Je, T. Meier, F. Rossi, and S. W. Koch. Theory of quasiequilibrium nonlinear optical absorption in semiconductor superlattices. Appl. Phys. Lett., 67:2978–2980, 1995.
  353. L. Dal Negro1, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma. Light Transport through the Band- Edge States of Fibonacci Quasicrystals. Phys. Rev. Lett., 90:055501, 2003.
  354. K. J. Franke, H. R. Sharma, W. Theis, P. Gille, Ph. Ebert, and K. H. Rieder. Quasicrystalline Epitaxial Single Element Monolayers on Icosahedral Al-Pd-Mn and Decagonal Al-Ni-Co Quasicrystal Surfaces. Phys. Rev. Lett., 89:156104, 2002.
  355. J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel. Strong coupling in a single quantum dot-semiconductor microcavity system. Nature, 432:197–200, 2004.
  356. A. Haché and M. Burgeois. Ultrafast all-optical switching in silicon-based photonic crystal. Appl. Phys. Lett., 77:4089–4091, 2000.
  357. M. Kira, F. Jahnke, W. Hoyer, and S. W. Koch. Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures. Prog. Quantum Elec., 23:189–279, 1999.
  358. H. Haug and S. W. Koch. Quantum Theory of the Optical and Electronic Properties of Semiconductors. World Scientific Publishing, Singapore, fifth edition, 2009.
  359. L. Sainimei. Cryogenic deep reactive ion etching of silicon micro and nanostruc- tures. PhD thesis, Helsinki University of Technology, 2009.
  360. P. J. Lu and P. J. Steinhardt. Decagonal and Quasi-Crystalline Tilings in Medieval Islamic Architecture. Science, 315:1106–1110, 2007.
  361. S. M. Sze and K. N. G. Kwok. Physics of semiconductor devices. Wiley & Sons, 2006 edition, 2006.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten