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Zusammenfassung

In unserer normalen Umgebung finden wir typischerweise ausschlieSlich Kor-
per, die eine dreidimensionale Struktur aufweisen. Die Erklarung von elektro-
nischen Phanomenen in solchen dreidimensionalen Strukturen war daher fiir
eine lange Zeit der Hauptfokus der Festkorperphysik. Ein grofler Durchbruch
wurde auf diesem Gebiet im Jahre 1956 durch den russischen Physiker Lev
Davidovich Landau erzielt. Er formulierte die Theorie der Fermi-Fliissigkeit.
Diese besagt, dass bei niedrigen Temperaturen und fiir ausreichend kleine
Anregungsenergien in einem Festkorper Quasiteilchen entstehen die eine di-
rekte Korrespondenz zu den Elektronen in einem freien Elektronengas haben.
Sie besitzen die selbe Ladung und den selben Spin wie die freien Elektronen,
haben jedoch eine renormierte Masse und eine endliche Lebensdauer.

Die zunehmende Miniaturisierung in der modernen Industrie hat jedoch dazu
gefiihrt, dass man in vielen Anwendungen mit immer mehr Materialien in
Kontakt kommt, die effektiv weniger als drei Dimensionen besitzen. So
stellte man sehr bald fest, dass bei effektiv eindimensionalen Materialien
die Fermifliissigkeitstheorie ganzlich versagt. Dies ist in erster Linie darauf
zuriick zu fiihren, dass die Bewegungsmoglichkeiten von Teilchen in einer Di-
mension massiv eingeschrankt sind und daher eine Anregung eines Teilchens
zwangslaufig auch eine Anregung der umgebenen Teilchen erzwingt. Dieses
sehr spezielle Verhalten wurde im Jahre 1963 von Joaquin Mazdak Lut-
tinger vorhergesagt. Er formulierte die Theorie der nach ihm benannten
Luttinger-Fliissigkeit. Diese besagt, dass in einem eindimensionalen Mater-
ial eine Aufspaltung der Freiheitsgrade in ein ladungstragendes und spinloses
Quasiteilchen, das Holon, und in ein ladungsfreies, aber Spin tragendes Qu-
asiteilchen, das Spinon, stattfindet.

Diese Aufspaltung in Spin- und Ladungsfreiheitsgrade wird deutlich bei der
Betrachtung von winkelaufgelosten Spektralfunktionen. Die Eigenschaften
dieser Spektralfunktion bestimmen zum Beispiel das Verhalten eines Mate-
rials unter Streuexperimenten wie der Photonen-, der Elektronen- oder der
Neutronenstreuung. Auch optische und Leitungseigenschaften eines Materi-
als sind durch seine Spektralfunktion bestimmt.
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Diese Arbeit beschaftigt sich daher mit der Vorhersage von winkelaufgelosten
Spektralfunktionen in verschiedenen Phasen von eindimensionalen Modell-
systemen. Um eine solche Vorhersage zu ermoglichen, benotigen wir eine
Methode um Modellsysteme, die die selben physkalischen Eigenschaften zeigen
wie die tatsachlichen 1023-Teilchen-groien Festkorper, effizient zu berech-
nen. Zu diesem Zweck entwickelte Steven White zu Beginn der 90er Jahre
die Dichte-Matrix-Renomierungs-Gruppe. Dies ist eine numerische Meth-
ode zur Berechnung von Zustanden in eindimensionalen Modellsystemen.
Im Rahmen dieser Arbeit wurden neue Methoden der Quanteninformations-
theorie, namlich die Quantenentropie, verwendet, um zuerst ein Phasendia-
gramm fiir ein bekanntes und grundlegendes quantenmechanisches Modell,
das erweiterte Hubbard-Modell, zu etablieren. Im weiteren wurde die bereits
erwahnte Dichte-Matrix-Renomierungs-Gruppe um die Funktionalitat, die
Zeitentwicklung von quantenmechanischen Zustanden zu berechnen, erweit-
ert. Dies wurde dann genutzt, um winkelaufgeloste Spektralfunktionen in
den verschiedenen im Modell vorkommenden Phasen zu berechnen. Die so
erzeugten Daten kénnen in Zukunft mit Ergebnissen aus Streuexperimenten
verglichen werden und dienen so unter anderem zur Klassifizierung von Ma-
terialien in verschiedenen Modellklassen sowie zur Vorhersage von Eigen-
schaften der in die entsprechende Modellklasse gehérenden Materialien.
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Chapter 1

Introduction

A central issue in natural sciences such as chemistry, materials science, and
physics is understanding and predicting the relations between material prop-
erties on the one hand and their structure and composition on the other. The
exact knowledge of these relations would allow one to construct materials in
such a way that they exhibit all properties that one deems desirable and none
of those which are deemed undesirable in a given context.

Since the field of solid state physics is, as far as we know, completely
described by quantum mechanics, we could, in principle, exactly determine
all of the properties of any given material by solving the time dependent
Schroedinger equation

oY N p? N

. B 2 e

Zha B _; QmiVi +i'z—1 Vig(Imi = 75) | ¥ (1.1)
— =

for the many-particle wave function (7, ...,7y,t). Here i Tuns over all

particles in the system and V;; describes the interaction between particle ¢
and particle j.

Unfortunately, due to the number of particles that are present in a typical
material (N > 10??), this knowledge is generally not particularly useful be-
cause finding an analytic solution of the full Schroedinger equation (1.1) has
proven to be almost impossible even for relatively simple choices of V; ;. The
only option one is left with in these cases is to drastically simplify the prob-
lem at hand by making approximations which leave the interesting physics
intact while dramatically reducing the level of complication and therefore
allowing for an analytical or numerical solution of the problem.

In recent years, a number of methods have made it possible to produce
many additional materials with lower dimensionality than that of our three-
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dimensional surroundings. In these zero-, one-, and two-dimensional ma-
terials, one commonly encounters properties and electronic structures that
differ tremendously from those of truly three-dimensional materials. Since
such low-dimensional materials include, for example, quantum dots, quan-
tum wires, modern semiconductors, high-temperature superconductors, and
fullerene nanotubes, they find application in many modern device starting
from superconducting wires as the means to transport current up to the most
efficient solar cells and the most advanced CPUs.

While approximative techniques work reasonably well in many cases, for
three-dimensional materials, this is, unfortunately, typically not the case in
one dimension due to the collective nature of the excitations. In the limit
of extremely low excitation energies, the Luttinger-liquid theory describes
the dynamics of these systems very well, but for almost all other non-trivial
cases, it turns out that one needs to treat the full problem of interacting
electrons because neglecting or strongly approximating the electron-electron
interaction yields results which deviate qualitatively from experimental data.

Over the last 15 years, it has turned out that numerical methods are es-
pecially well-suited for calculating the properties of one-dimensional models
to very high precision. One of these methods, the Density Matrix Renormal-
ization Group (DMRG) [4, 5], is extended and then used as part of this thesis
to calculate dynamical correlation functions, which are then used to predict
angle resolved spectral functions and density of states for one-dimensional
systems.

1.1 Structure of the Thesis

This thesis consists of three main parts.

Part I. The first part gives an introduction to the basic theory that governs
one-dimensional many-body physics. Chapter 2 introduces the most impor-
tant models that are used to describe one-dimensional systems and outlines
their most important properties. Various extensions to these models and
their effect on the underlying physics are explained briefly.

Chapter 3 deals with the most important effects that are present in one-
dimensional systems and contrasts them to the behavior of three-dimensional
systems. The concept of a Luttinger-liquid is explained and its derivation is
outlined briefly. Here different quantum phases are explained as well as what
kind of phase transitions can occur at zero temperature and why.

In Chapter 4, the various measured quantities that have been calculated
in this thesis are explained in detail, and a short discussion of why these
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are sensible quantities to measure and how they can be used is given. Also
briefly discussed are what assumptions have to be made to be able to use
the calculated data for finite systems to make reasonable predictions for
macroscopic (infinite) systems.

Part II. In Part II of this thesis, the methods and algorithms developed and
used to calculate the results presented here are discussed in detail. Chapter
5 gives an introduction to the DMRG and explains how it came to be. It
outlines the evolution of different algorithms into what we know today as the
DMRG and points out what advantages the DMRG has over its predecessors.

Chapter 6 gives a detailed insight into how the DMRG works. In this
chapter we also address various implementation issues, give detailed expla-
nations of the two main DMRG algorithms, and point out various problems
that standard DMRG implementations have to cope with.

In Chapter 7, we discuss recent developments in DMRG-related methods.
We show that these new developments not only make it easier to understand
and implement the standard DMRG algorithm, but also partially succeed in
eliminating some of the problems mentioned in the previous chapter. This
chapter should also allow the reader to gain a more intuitive understanding
of how and why the DMRG works.

Chapter 8 explains how the DMRG algorithm can be extended to allow
for the evolution of a given quantum state in time. It describes the two most
widely-used algorithms, one of which has been implemented as part of this
thesis, and also discusses the pitfalls related to calculating time evolution
within the DMRG.

In Chapter 9, we discuss how to further extend the time evolution scheme
explained in the previous chapter to allow for the calculation of dynamical
correlation functions, a method also implemented as part of this thesis. We
explain the necessary additions and modifications to the existing algorithm
and outline what problems can arise and why.

Part III. In the last part of this thesis, we describe the results obtained
using the methods that have been implemented here. Chapter 10 starts by
comparing results obtained from the newly implemented methods to results
calculated for the same model with the same parameters but using an en-
tirely different algorithm which is based on a minimization principle, thereby
demonstrating the validity of the method used here.

Chapter 11 gives a detailed picture of the phase diagram in the one-
dimensional half-filled extended Hubbard model which has been obtained
using quantum information entropy measurements. Also discussed briefly is
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why other, more straightforward measures fail.

In Chapter 12, we present the density of states and the angle resolved
spectral functions for the different phases which occur in the extended Hub-
bard model. We also explain their most prominent features and how they
depend on the values of the model parameters.

Finally we summarize and discuss our newly found results and conclude
with an outlook covering physical and numerical challenges in Chapter 13.

1.2 Publications

Some parts of this thesis have already been published or are being prepared
for publication at the time of writing. The related publications are:

o Quantum information analysis of the phase diagram of the half-filled
extended Hubbard model
C. Mund, O. Legeza, and R. M. Noack
Physical Review B 79, 245130 (2009)

e Dynamics of the half-filled extended Hubbard model
C. Mund and R. M. Noack

m preparation
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Chapter 2
Models

In the field of solid state physics, one usually has to deal with an extremely
large number of atoms, each of which is composed of a nucleus and of elec-
trons. To find an exact solution for any state in a material, all of the-
ses particles and their mutual interactions would have to be described by a
Hamiltonian, which would then, in turn, have to be solved exactly. While
the formulation of such a Hamiltonian is, in principle, possible, solving it is
not.

Therefore, the first step to finding reasonable and calculable results is
finding sensible approximations to the full Hamiltonian which simplify calcu-
lations as much as possible while still retaining the important physics. One of
the most common approximations is the single-particle approximation, e.g.,
Hartree or Hartree-Fock [6], where it is assumed that the interactions be-
tween the aforementioned particles are weak enough so that it is reasonable
to assume that the influence of a particular particle on the other particles is
so small that the induced change in the other particles will in turn have a
negligible influence on the first particle. In these cases the particle in focus
can be viewed as moving in a static potential caused by all the other parti-
cles. The field of strongly interacting systems however concerns itself with
those kinds of materials where these interactions between different particles
are so strong that such an approximation leads to qualitatively wrong re-
sults. In these cases different approximations have to be found. Two of the
most straightforward approximation which are possible are:

The Born Oppenheimer Approximation [7] makes use of the high
ratio between nuclear and electronic masses. It assumes that due to this
high ratio it is sensible to think about the nuclei as stationary in comparison
to the electrons. Because of that the full wave function can be considered a
product of the electronic wave function and the nuclear wave function.
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|¢> - |¢>nuclear ® |77Z}>e1ectronic (21)

Hence if one is only interested in the electronic behaviour of a material
one can treat the nuclear part of the wave function as being constant in
time and only calculate the electronic part. Other effects that are excluded
by the Born Oppenheimer approximation such as vibrations of the lattice
can usually be treated by adding phonons to the system as long as they are
comparably small.

The Tight-Binding Approximation assumes that one can, in principle,
divide electrons into two classes. Those which are tightly bound to a specific
atomic site are called core electrons. These electrons are basically fixed to
their respective atomic site and are therefore of negligible importance for
the calculation. The other class, the valence electrons, are loosely bound to
their respective atomic sites and have the possibility of tunneling between
the different sites which is usually referred to as hopping. With these two
approximations one arrives at the tight binding model [8].

2.1 Tight Binding Model

The tight binding model treats the aforementioned valence electrons as be-
ing localized at particular sites and usually only allows for nearest-neighbor
hopping between those sites with a set hopping amplitude . As an example
the Hamiltonian for a one-dimensional tight binding model with N sites is
given below in second quantization formulation.

N-1
th =—1 Z Z (C;’[—&—l,acz‘p + CI,O'CZ'-Fl,O') . (22>

i=1 o=1,|

Here the operators cjya /¢i» create/annihilate an electron on site ¢ with spin
o, and t is the hopping amplitude, which corresponds directly to the overlap
between the different atomic orbitals and therefore to the kinetic energy in
the system.

Here and in the remainder of this thesis units will be used so that A =1
and so that the lattice spacing a is set to unity. The operators C;-r’U and ¢; »
fulfill the usual fermionic anti-commutation relations.
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|:cg-7a-7 cjya',:| = 57’7] 5070, (2'3)
+
T — —
where [-- -], denotes anti-commutators.

A complete analytic solution of Hamiltonian (2.2) is possible through
Fourier transformation which translates the operators into momentum space
and is given in appendix A. Since the tight binding model is one of the very
few models which are solvable exactly and, in the case of the one-dimensional
tight binding model, with relative ease, it can be very useful for comparison
with numerically generated data to verify the proper functioning of one’s
algorithm.

2.2 Hubbard Model

One of the most straightforward extensions to the tight binding model is to
take into account the Coulomb interaction between the different electrons.
In the simplest case, only interactions local to each site are taken into ac-
count. This yields the Hubbard model, which was proposed independently
by Gutzwiller [9], Kanamori [10], and Hubbard [11] in 1963. The Hubbard
Hamiltonian, given here for a one dimensional chain with 2 spin species (T, | ),
is

HHub——tZZ<ZH“U “”H(,)JrUznmn,,l (2.4)

i=1 o=T,]

The first term is the same kinetic energy term as in the tight binding model
(2.2). The second term in the sum is the on-site interaction, where n;, is

T

the number operator (nw Ci oCi U)

Despite its apparent simplicity, the one-dimensional Hubbard model al-
ready contains an abundance of physical phenomena, some of which will be
outlined in Section 3.1. It is believed that the two-dimensional Hubbard
model captures the physics that is necessary to explain High T, supercon-
ductivity, even though this is not proven yet [12]. Although it has not been
possible so far to solve the two-dimensional Hubbard model analytically and
even numerical access is very limited, the one-dimensional Hubbard model
has been solved analytically via Bethe-Ansatz [13].
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Two important properties of the Hubbard model that can easily be de-
duced starting from the formulation of the Hamiltonian (2.4) are going to be
explained in the following.

Spin rotational symmetry describes the fact that the Hamiltonian is
invariant under spin rotations. We can, for example, consider a spin inversion
function

fse : Endc(F) — Ende(F) (2.5)
CiaT | — Ci7l
Ci:l — CiaT

] ]
iy TG

1 T

Gl 7T G

where End¢(F) denotes the space of endomorphisms of Fock space F over
the field C.

It can then be easily seen that the Hubbard Hamiltonian (2.4) is invariant
under this transformation function, due to the commutative property of the
summation and bosonic character of the number operator. Hence

fse (Huun) = Hiup. (2.6)

Since no particular spin direction stands out, we are not only restricted to
spin inversions but arbitrary rotations in spin space work as well. Since the
group of rotations in spin space is represented by unitary 2x2 matrices with
a determinant of 1, this kind of symmetry is commonly referred to as SU(2)
symmetry.

Particle-hole symmetry is the name for the fact that in the case of
half-filling the Hubbard Hamiltonian (2.4) is invariant under a particle hole
transformation defined as

forn o Ende(F) — Ende(F) (2.7)
Cig /7 (_]‘>Z CI,O’
C’JL'[,U L (_1)Z ci,cr'

This is easily seen because
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fon (Hub) ——tzz< l+10w cwcHlU)—kUZ MCzTCzLCIL
:—tzz <z+10' ’Lo'+czo. Z+1U>+UZ(1_ni7T)(1_ni,l)

i=1 o=T1,| i=1
N
=t Z ( Cit1,06Ci0 ;raci—i-l,(f) +U Z (1 — My — Nyt niani,l)
i=1 o=T,| i=1
= Hyuw, + UN —UN,
=0
where N is the number operator while N denotes the number of lattice sites.
One should note that UN — UN = 0 only holds true at half-filling.

The particle hole symmetry of the Hubbard Hamiltonian (2.4) is also the
reason for its density of states being reflection symmetric around U/2. This
symmetry is due to the fact that the process of creating a hole and creating
an electron are equivalent; therefore, the upper and the lower Hubbard band
necessarily have to be indistinguishable. This reflection symmetry is also
used in Chapter 10 as a test for the validity of our method.

2.3 Common Extensions to the Hubbard Model

In this section we will examine the most common extensions that can be
made to the Hubbard Hamiltonian and some of the physical results which
those yield.

2.3.1 Extended Hubbard Model

In the extended Hubbard model, an additional term is added to the Hubbard
Hamiltonian which introduces nearest-neighbor Coulomb interaction. The
Hamiltonian of the one- dimensional extended Hubbard model reads

EH__tZ Z <l+10‘ za'_l—cza z+10>

i=1 o=T,]
N-1
+U Z N 1N | (2.8)
=1
N-1

+V Z Ty 1M,

i=1



12 CHAPTER 2. MODELS

where n; = n;; + n; is the density operator on site 7. The addition of
a nearest-neighbor interaction leads to a much richer phase diagram which
includes a charge-density-wave (CDW) phase for U < 2V, a spin-density-
wave phase (SDW) for U > 2V, and even a bond-order-wave phase (BOW)
for appropriate values of U and V' around U =~ 2V [2, 14].

The CDW phase is characterized by a modulated charge density py. In
the hopping ¢ — 0 limit on a periodic lattice with open boundary conditions
at half filling one would find alternating doubly occupied and empty sites.
The CDW phase is an insulating phase with non-zero charge and spin gaps
which are in the £ — 0 limit easily determined to be equal to 4V and 3V —U
respectively. The order parameter associated with a CDW phase is

me = %Z (=1)" (n,), (2.9)

where n; = n;; +n; . Also (-) denotes here and from hereon out the ground
state expectation value.

The SDW phase is like the CDW phase a density-wave phase, but

prp(r) = %po(F) [1 + Acos(@ - 7) |, (2.10)

rather than the charge density. Here A is the amplitude and @ is the wave
vector of the spin density wave. The SDW phase has a finite charge gap
which is equal to U in the ¢ — 0 limit but has a vanishing spin gap. The
order parameter associated with a SDW phase is

Mg Z “(nig—ngy) . (2.11)

The BOW phase displays an alternating pattern in the kinetic bond en-
ergy. It typically appears as a transitional phase between a CDW and a SDW
phase [2, 15]. Tt has a finite spin and charge gap and the associated order
parameter is

1 )
mBo = N (_1)Z <CI+10 za + C’LO‘ i+1 0'> . (212)

70'

All of these phases appear for positive U and V, i.e., for repulsive on-site
and nearest-neighbor interaction, respectively. For negative U and V', the
phase diagram also includes a variety of superconducting phases [16].
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2.3.2 Ionic Hubbard Model

The Tonic Hubbard model features an additional alternating on-site potential.
Such a potential is, as the name suggests, appropriate for ionic lattices with
two alternating species of atoms. The Hamiltonian for the Ionic Hubbard
model reads

2

EH_ —t <z+lo‘ 10'+CZO' H—la)
1o=1,l

+UZ”M”@1+ ZZ nw

i=1 o=T,|

i3

(2.13)

Interestingly enough the alternating on-site potential has a very similar phys-
ical effect to a repulsive nearest-neighbor interaction. It can be seen fairly
easily by examining the t — 0 limit that the system will be in a CDW phase
for U <« ¢ and in a SDW phase for finite ¢ and U > §. It has also been
shown [15] that a BOW phase emerges for appropriate values of U and 9
between those two phase.

2.3.3 Peierls Hubbard Model

The Peierls Hubbard Model is used to model a dimerized lattice in which the
distance between two atoms is alternating. Its Hamiltonian is

HPH—_tZZ <1+ )<z+10 zo+cza z+10>

i=1 o=1,| Nl (214)

+U Z ni,Tnm,
i=1

with § < 2. In the U = 0 limit, the alternating hopping amplitude causes the
previously metallic tight binding energy dispersion to split up into an upper
and a lower Peierls band and therefore become an insulator at half filling.
Since there is an energy gain associated with the lowering of the lower Peierls
band near the gap, the dimerization of a lattice can happen spontaneously
if the energy savings due to the lowering of the lower Peierls band outweighs
the energy cost of rearranging the atoms. This is commonly referred to as
the Peierls transition [17].
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2.3.4 The t-t' Hubbard model

The t-t' Hubbard model is a Hubbard model with additional next-nearest-
neighbour hopping. Its Hamiltonian is

N-1
Hyy=—t Z Z (C;'f+1,oci,o + CzT,aCiH,a)

i=1 o=1,]

N-2
—t Z Z (Cj+2,aci,a + Cz,aci+2,a> (2.15)

i=1 o=1,]
N-1

‘|—U Z NNy, -
=1

This model can either be regarded as a chain of atoms with a finite probability
for an electron to hop two sites at once, which makes sense for ¢’ < t, or as
a system of two coupled chains as shown in Fig. 2.1, which is a good starting
point when ¢ > ¢.

Figure 2.1: Depiction of the ¢-t' Hubbard model as a system of two coupled
chains.

It, like the tight binding model, is exactly solvable via Fourier transfor-
mation in the case of U = 0. One then finds the dispersion relation to be

e(k) = —2t cos(k) — 2t' cos(2k). (2.16)

This dispersion relation shows us that for sufficiently large fillings and ¢ >
0.25 or for sufficiently small fillings and ' < —0.25 the system has four Fermi
points, yielding metallic behaviour. For U # 0, a metallic behaviour can only
be found for sufficiently large ¢" and sufficiently small U. This is a significant
difference to the Hubbard model (2.4), which is only metallic at U = 0. An
insulating phase with a nonzero spin gap can be found in the same regime
for larger U. For further information the reader is referred to Refs. [18] and
[19] and references therein.
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Phenomena

3.1 1D Physics

In typical three-dimensional solids, the Coulomb interaction is of the same
order of magnitude as the kinetic energy, and it is usually not possible to
see one as dominant and the other one as negligible. Therefore, perturbation
theory cannot be used. Fortunately, however, the effects of the Coulomb
interaction in higher dimensions are, at least for small excitation energies,
almost perfectly described by Landau’s Fermi liquid theory [20]. In Fermi
liquid theory, the excitations can be described as quasi-particles, which are
essentially electrons dressed with density fluctuations in the form of particle-
hole excitations. Since these quasi-particles are composed of particle-hole
excitations, which are basically bosons, and one electron, they still behave
like fermions. These quasi-particles can be considered to be free and have a
direct correspondence to the free electron excitations of the non-interacting
system. Essentially, they can be viewed as electrons with a renormalized
mass; therefore, each excitation is directly associated with the creation of
one or more of these electron like quasi-particles.

Unfortunately, these convenient properties do not hold true for one di-
mensional systems. This is mainly due to the fact that in one dimension
the possibility for excitations stemming from a single particle does not exist.
Hence all excitations have the form of collective motion, i.e., collective modes.
This fact alone makes the existence of Landau quasi-particles impossible and
therefore invalidates the concept of Fermi-liquid theory in one dimension.

Here the Tomonaga-Luttinger-liquid theory is used to explain the low-
frequency behaviour. It is based on the Tomonaga-Luttinger model which
is based on some very insightful approximations. A short outline of these
approximations will be given here and the reader is referred to Ref. [21] for

15
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further information.

If we assume that the interactions are much smaller than the bandwidth
of the model treated and if we are only interested in the low-energy physics
of this model, it is a reasonable approximation to linearize the dispersion
relation near the two Fermi points. This makes sense because interactions
far below the Fermi edge are forbidden by Pauli blocking and interactions
far above the Fermi edge are not possible because we are considering only
low-energy processes. Due to this, it is reasonable to introduce left-moving
and right-moving fermions leading to the Tomonaga-Luttinger Hamiltonian

ke
Hi= Y E(erk — kp)e! w0 + Hi, (3.1)
k;r=R,L
where e = 1 for right-moving particles and ¢;, = —1 for left-moving particles

and Hy, is the part of the Hamiltonian containing the interactions. The
interaction part can be written as [21]

1
Hny = 20 E : V<Q)Clt:+qclt:'—qckfck7 (3.2)
k7kl7q

where (2 is the Volume of the system and CL /¢, creates/annihilates an electron
with momentum k. One should note that the most important processes here
are the ones close to the Fermi surface. This fact restricts the possible terms
in the interaction to four different classes [22], i.e.,

Hiw = Hy + Hy + Hy + Hy (3.3)
with the terms:

1. Scattering of particles either in the vicinity of the left or the right Fermi
point (amplitude g4):

1 0,0 T t
M=ar 977 (ool
U,U’,kl,kg,q (3.4>

oot
+ lkhalkzﬂ’rkzﬂ-q,a’rkl —q,0 )

2. Scattering of one particle in the vicinity of the left/right Fermi point
and of the other particle in the vicinity of the other Fermi point (am-
plitude g5):

1 /
Hy, = — g%l It

kg,a’rkg—&-q,a’

z (3.5)

k1,0 k1 —q,0°

0,0’ ,k1,k2,q
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3. Backscattering of a particle in which a left-moving particle is scattered
into a right-moving particle and vice versa (amplitude g¢;):

]- 0,0’ T T
Hy =+ 91 Thy ol o Thot 2kt q.00 Uer—20p— g0 (3.6)
0,00 k1 ,k2,q

4. Umklapp process in which two right-moving particles are scattered to
two left-moving particles and vice versa (amplitude g3). This process
is only possible at half band filling (4k; = 27):

1 /
_ oo (1 T
H3 - 2, g3 <Tk1,Urkg,a’lkg—2k:p+q,a’lk1+2kp—q—27r,o + hC) .

o,0’ k1,k2,q
(3.7)

In all four equations above T,Tw /74, creates/annihilates a particle in the vicin-

ity of the right Fermi point and l,Tw /1., creates/annihilates a particle in the
vicinity of the left Fermi point. The naming of the different terms g; — g4
has a historical origin, leading to the term g-ology. Solving this model for
electrons with spin yields two different velocities, one for the charge degrees
of freedom and one for the spin degrees of freedom. This clearly shows that
the notion of electron-like quasi-particles like those found in Fermi liquids
is not sensible in Luttinger liquids. Instead, there is a separation of the
elementary excitations into charge degrees of freedom (holons) and spin de-
grees of freedom (spinons). This, together with the fact that the one-particle
spectral function does not show typical Fermi-liquid pole structure, indicat-
ing the lack of electron-like quasi-particles is the most prominent feature of
one-dimensional systems.

3.2 Phase Transitions

Phase transitions are transitions of a substance between two qualitatively
different states. These transitions more often than not involve symmetry-
breaking. In classical physics, phase transitions are driven by thermal fluc-
tuations. The different types of transitions are classified by whether the
transition involves latent heat (first order transition) or not (continuous tran-
sition). In addition, there is a special class of continuous phase transition
which do not involve symmetry-breaking. Such transitions are usually re-
ferred to as infinite-order phase transitions. The most well-known example
of an infinite order transition is the Kosterlitz Thouless transition in the
two-dimensional classical XY-model [23].
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There are clearly no thermal fluctuations in quantum mechanical systems
at zero temperature (7" = 0); instead, a quantum phase transition is driven
by quantum fluctuations due to the Heisenberg uncertainty principle. For a
Hamiltonian that depends on the parameter A,

H=H(), (3.8)

there are possibly some distinct critical values of A at which phase transitions
occur (A;). The phases on either site of such a phase transition are typically
distinguishable through an order parameter which is nonzero inside one of the
phases and zero outside. Some examples of such order parameters are given
in Egs. (2.9),(2.11), and (2.12). Since the classification of quantum phase
transitions through latent heat is obviously not sensible, one typically uses
a classification scheme that is closely related to the now deprecated Ehren-
fest classification for classical phase transitions. The ground-state energy is
viewed as the quantum mechanical equivalent to the free energy in classi-
cal phase transitions. Hence, phase transitions which have a discontinuity
in the first derivative of the ground-state energy are regarded as first-order
phase transitions. Those with a discontinuity in the second derivative of the
ground-state energy are second-order transitions and those that are analytical
in all derivatives of the ground-state energy are usually termed infinite-order
or Kosterlitz Thouless transitions [23].

Unfortunately, the classification of phase transitions using the scheme
outlined above is not always easily possible. Especially for numerically gen-
erated data, a small discontinuity is very hard to resolve in any derivative.
Therefore it is useful to realize that other quantities can be used to determine
the order of a phase transition. One of these quantities is, for example, the
functional character of the size of the energy gap Ap with respect to the
distance to the critical point \. at which the phase transition occurs. For
infinite-order transitions, the energy gap Ag opens exponentially, i.e., as

A

~
A Ao ?

Ag (3.9)
where A and ¢ are model-dependent parameters. This equation only holds
true for A near \.. For second-order transitions the gap opens with a power-

law dependence
Ap ~ JIXN = AJ?, (3.10)

where J corresponds to the energy scale of the underlying model and 2z and
v are critical exponents.

Even though it has not been rigorously proven, it can be strongly argued
[24] that all second-order quantum phase transitions belong to universality
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Zero-field specific heat Cg ~ |t|=
Zero-field magnetization M ~ (—t)?
Zero-field isothermal susceptibility —xr ~ [t|™7
Critical isotherm (¢t = 0) H ~ |M|’sign(M)
Correlation length En~ |t

Pair correlation function at 7T, G(7) ~ 1/rd=2+n

Table 3.1: Commonly used critical exponents for a magnetic system.

classes which are independent of the microscopic details of the underlying
model. Instead, they depend only on the dimensionality of the system and
on the symmetries of the model of interest. These universality classes posses
characteristic critical exponents. One of the reasons why this assumption is
sensible is that for certain models (e.g., the Ising model) a mapping exists
from the d-dimensional quantum model to a d+ 1-dimensional classical model
[24]. Hence, we can relate the quantities and the associated critical exponents
for the quantities as well.

Some of the most commonly used quantities for a magnetic system are
given in Table 3.1 [25]. Here t is the normalized distance to the critical
temperature

T-—T.,
=7

which translates to the normalized distance to the critical parameter value

t

in quantum systems.
These critical exponents are not completely independent but obey the
inequalities [25]

a+28+v2>2 (3.11)
a+pB(1+4+6)>2 (3.12)
vy<(2—-nv (3.13)
dv > 2 — « (3.14)
V> 85— 1), (3.15)

where d is the dimensionality of the classical system. For the two-dimensional
Ising model with [25]

a=0 15}

= ool

60 =15 v

one can verify that the above listed inequalities actually hold as equalities.
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The one critical exponent which has not yet been discussed is the dynamic
critical exponent z, which appears, for example, in Eq. (3.10). It links the
correlation length with the energy gap as

Ap ~ &7 (3.16)

These critical exponents are widely used to classify second-order phase tran-
sitions such as those shown in Ref. [15].



Chapter 4

Measured Quantities

4.1 Quantum Entropy

Quantum entropy is a fairly recent concept stemming mainly from quantum
information theory. It is closely related to the classical concept of entropy in
that there is a very close relation between information and structure and the
gain in entropy for erasing such. There are various measures of quantum en-
tropy, such as the concurrence [26], the negativity [27] or the Von Neumann
entropy [28]. Although they these are all, in principle, equivalent, we will
discuss and use solely the Von Neumann entropy in this thesis, mostly be-
cause it has the closest relation to the DMRG procedure, as will be explained
more thoroughly in Sec. 6.

The Von Neumann entropy is defined directly through the eigenvalues of
the density matrix. If we consider an arbitrary ensemble of quantum states
expressed through a density matrix

p= ij|¢j>(1/)j|7 (4.1)

where the coeflicients p; are the weights of |1);) in the ensemble and hence
fulfill the relation
d.pi=1,

J

then the corresponding Von Neumann entropy is defined as

S = —ij In(p;). (4.2)

From this definition, it is directly clear that, for an ensemble which only con-
tains one state, the corresponding Von Neumann entropy is S = 0 whereas for

21
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an ensemble of N equally weighted states, the corresponding Von Neumann

entropy is
Al 1
S=-)" v (ﬁ) = In(N).

j=1

While there are different uses for entropy measurements, one of the main uses
is the measurement of entanglement in a pure quantum state. This is done
by dividing the quantum state into two parts and then measuring the entropy
in one of the two subsystems. The more the two blocks are entangled, the
larger a value the entropy measurement will yield.

The Schmidt decomposition is the theorem which assures us that if we
divide a system into two parts we do not have to worry about getting different
results for the entropy in the different parts of system. It states that every
state [1) ap which is defined on H4 ® Hp can be written as

W) =Y /Bili)ali)s, (4.3)

J

where p; are the weights of the states |j) in subsystem A as well as of the
states |j') in subsystem B. Therefore, we know for certain that

Sa =58

regardless of the partitioning scheme we chose. This property of the quantum
entropy is extensively used in Chapter 6.

Another useful property of quantum entropy is that the value of the
quantum entropy depends on what phase a system is in. Therefore it has
become apparent in recent work [16, 29] that quantum entropy measurements
can be used to detect quantum phase transitions (QPTSs) in various one-
dimensional models with high precision and reliability. Unfortunately, one
always has to have access to the reduced density matrix p4,p of at least one
of the subsystems.

Given a general description of a quantum state on two systems H4 ® Hp
it can always be expressed as

V) ap = Z Cijli)a ®15) B (4.4)

where C;; is a matrix with complex entries and |¢) and |j) represent orthonor-
mal bases on subsystems A and B, respectively. The reduced density matrix
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of subsystem A is then given by

pa = Trp (|9)(¥])
= Z(J’W)(MJ) (4.5)

= ZCC*

Zl,]

If we now imagine one of the subsystems to be very large and the other one
to be very small, then we either have to sum over a lot of states |j) in the
trace or we end up with a very large reduced density matrix, neither of which
is desirable. Therefore, it is useful to realize that is is also possible to express
the density matrix of a subsystem in terms of projectors from all possible
states in that subsystem to all possible states in that subsystem,

(ilpali’) = (W|Pyil) = (Y] (ZI ® [7) (| @ (@ !) [¢). (4.6)

For simple subsystems and an appropriate choice of the basis |i), the operator
Py ; can be expressed in terms of relatively simple operators so that its matrix
elements can be directly calculated using the corresponding observables [30].

In the following, we will describe the three most useful types of quantum
entropy for detecting QPTs in numerical calculation marked by different
choices of subsystems.

4.1.1 Omne-site entropy

In order to form the one-site entropy, which we will denote S;(1), the subsys-
tem A is simply taken to be a particular single site [. Since the Hamiltonians
we usually deal with (e.g., the extended Hubbard Hamiltonian (2.8)) contain
no spin-flip processes, the reduced density matrix can be obtained directly
in diagonal form if we take the spin occupation basis (|0),| 1),| 1),| T1)) as
the basis states |i) in Eq. (4.6). In this basis, we can directly obtain the
eigenvalues from the expectation values of the four operators [30]

(Ll T = (agmay),

(Ll 1) (1 = ngp)nyy ),
(Tlp 1) = (g (1 —my)),
and (0]p:|0) (1 =mup)(X—ny))-

The one-site entropy is relatively easy to calculate because it requires only
four local measurements on site . While the one-site entropy is useful for
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characterizing first-order QPT's in some cases, it is typically not well-suited
for determining higher-order QPTs because anomalies, e.g., kinks or jumps
in the entropy profile, are often only discernible for large system sizes and are
sometimes not present at all [29, 31]. In particular, changes in inter-site bond
strength have no influence on the one-site entropy. Since the one-site entropy
necessarily only depends on quantities that are localized on that one site (in
fact, only on the average occupancy and on the average double occupancy),
it cannot contain spatial information that is nonlocal.

4.1.2 Two-site entropy

It is therefore often useful to examine the Von Neumann entropy associated
with a larger subsystem. One convenient choice of subsystem A is that of
two sites p and ¢, i.e., the two-site entropy S,,. In Chapter 11 we will
be particularly interested in characterizing a BOW phase, which, for open
boundary conditions, will have a broken bond-centered spatial symmetry.
Thus, in this case, we are principally interested in the behavior of the two-
site entropy for different bonds, i.e., we take p and ¢ to be pairs of nearest-
neighbor sites. Therefore, the two-site entropy will typically be denoted as
Sp(2), meaning S, 1.

The two-site entropy can be obtained by calculating and diagonalizing
the reduced density matrix for the two sites. As for the one-site density ma-
trix, its matrix elements in the occupation number basis can be expressed
straightforwardly in terms of expectation values localized on the two sites
by considering the projector of Eq. (4.6). However, the result is necessarily
somewhat more complicated than for the one-site density matrix. Since spin
and particle number are conserved quantum numbers in Hamiltonian (2.8),
the resulting reduced density matrix is block diagonal (rather than diagonal
as for the one-site case) and has 26 independent matrix elements; for de-
tails, see Ref. [30]. Hence, 26 independent measurements, followed by the
appropriate matrix diagonalization and the summation of Eq. (4.2), must be
performed for every two-site entropy calculated.

Note that calculating all N(N —1) two-site entropies on an N site system
would be prohibitively expensive for large system sizes. While considering
only nearest-neighbor bonds reduces this to N — 1, it is usually sufficient
to calculate the entropy of the two pairs of innermost sites, Sy/2—1(2) and
Sny2(2), i.e., two bonds chosen to be in the middle of the system to minimize
boundary effects.
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4.1.3 Block entropy

The block entropy is also based on splitting the system into two subsystems
A and B. However, subsystem A is now taken to contain the [ contiguous
sites 1 to [ and subsystem B to contain the remainder, sites [ + 1 to N.
(Other choices of sets of contiguous sites are also possible.) We then calculate
the Von Neumann entropy S(I) using Eq. (4.2) for [ € 1,..., N. Note that
calculating the projector Py ; of Eq. (4.6) would be prohibitively complicated
and expensive. Here we instead calculate the density matrix directly from
the wave function using Eq. (4.5). Fortunately, the wave function for all
divisions of the system [ is readily available in the appropriate finite-system
step of the DMRG algorithm, and, in fact, the corresponding Von Neumann
entropy is intimately related to the approximation made in the DMRG [32].
This will also be explained in detail in Sec. 6.

Unlike the two-site entropy, which has an finite upper bound (In 16 for
Hubbard-like models), the block entropy generally grows as O (In N) for crit-
ical one-dimensional systems [33] (but scales to a finite value for non-critical
systems). Although such a potential divergence would at first glance seem
favorable for studying QPTs, the situation is actually more complicated:
boundary effects from open boundary conditions should have a stronger in-
fluence on the block entropy than on a more locally defined quantity such
as the one-site or two-site entropy. It is therefore not clear which of these
entropies can more accurately detect QPTs, but it seems sensible to ex-
pect that fast-growing peaks are better detected by the block entropy, while
non-diverging anomalies, such as discontinuities in derivatives, can be more
precisely determined by the two-site entropy.

4.2 Spectral Function & Density of States

The single-particle spectral function provides us with direct information
about the quasi-particle excitations of a system. It is therefore not only
interesting from a theoretical point of view, but it is also interesting to com-
pare to spectral functions measured directly in experiments [34].

The spectral function A(k,w) and the density of states p(w) can both be
calculated from the retarded Green’s function

Gip(t) = —i0(t) ([A(t), BO)]..), (4.7)

where the commutator or anti-commutator is chosen depending on whether
A and B are bosonic or fermionic operators, respectively.
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Using this notation, the single particle spectral function for a fermionic
model is given as

Ak, w) = -~ < / et () dt) (4.82)

T 00

:%m</ooo <¢‘ [ck Ll ] ‘¢>) (4.8D)

where ¢, (0) creates a fermion with momentum £ at time 0 and ¢, () annihi-
lates a fermion with momentum £ at time ¢.

The density of states gives us information about how many states are
accessible in an infinitesimal interval around a certain energy w. It is therefore
given as the integral over k of the spectral function,

plw) = /07r A(k,w) dk. (4.9)

Having an accurate description of the density of states, one can easily read
off important information such as the band gap and the bandwidth of bands
that are present.

4.2.1 Finite Systems

One problem that must be dealt with is that one calculates the retarded
Green’s function on a finite system but is actually interested in the spectral
function of a macroscopic (infinite) system. In a finite system, the angle re-
solved spectral function is calculated from the dynamical correlation function

Alk,w) = %% (/OOO it <w] (1), ¢(0)] \w>>
_ %% (/0“ GMNLH ZN_:sin(kj)sin(kl) (0| [0, ¢/ 0)] ‘w>> ,

where the transformation of the creation and annihilation operators (¢ and
¢ ) is taken from the derivation in appendix A, and N is the number of sites
in the system.

It is clear from Eq. (4.10) that, for certain values of k, the sites in the
middle of the system [ ~ N/2 contribute very little to the spectral functions.
However, we can only use sites near the middle of the system for the position
of the creation operator [ because boundary effects would already be visible

(4.10)
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in the Green’s function at very small times if we were to choose [ to be
close to the system boundaries. This leaves us somewhat in a pickle because
we cannot calculate the dynamical correlation function for all j and [ due
to the above-mentioned boundary problems as well as due to computational
constraints. The solution is to assume stationarity in the correlation function,

h (e @) = (oo el 0]) (a.11)

where r = [ — j and where the latter expression only depends on r and not on
t. With this assumption, we can reformulate the expression for the spectral
function in a way that eliminates this problem. For simplicity, we show this
for only a part of equation (4.10):

XN: sin(kl) sin(kj) <Cz (t)c;(0)>

jl=1
l=g+r Z ‘sin(kj) sin(k(j + 1)) <cj+r(t)c;(0)>
= Z 'sin(kj) (sin(kyj) cos(kr) + cos(kj) sin(kr)) <cj+r(t)c;(0)>
s Z cos(kr) <c%+r(t)c% (O)> ZsinQ(kj) (4.12)
r=—g+1 J=0 ~—

2

+ Z sin(kr) <c12v+r(t)czv(0)>ZSin(/fj)COS<kj)

7”:7%«#1 J=0

A ;?) >
7
L+1
_ T
= Z COS(/{T‘)<C%+ (t)c%(())> 5
r=—"41

Here (-) is used as an abbreviation for (¢] - |¢).
Using this approximation, the spectral function can be written as

2

Ak,w) = —%% /000 et 22: cos(kr) <1/)‘ [C%M(t),c&(())} ‘1/}>

(4.13)
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This allows us to calculate the dynamical correlation function only for a few
sites in the middle of the system and then average over these sites, yielding
results for a system in the thermodynamic limit. The size of the system only
restricts the resolution in frequency. This will be explained in more detail in
Sec. 9.3.2.



Part 11

Methods and Implementation
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In this part, we will introduce some of the numerical approaches used
in condensed matter physics, especially those closely related to the DMRG.
In particular, we will explain the analytical and numerical methods contain-
ing the basic ideas used within the DMRG framework as well as how the
DMRG developed out of them. We will then give a detailed explanation of
the DMRG as used in ground-state calculations and its two main algorithms.
While discussing these two algorithms, we will also point out their shortcom-
ings and give some insight as to why the standard DMRG algorithms have
difficulties dealing with certain systems, e.g., two-dimensional systems or sys-
tems with periodic boundary conditions. We will then explain some recent
developments that have yielded algorithms that are equivalent to the DMRG
and that possess the potential to eliminate these problems. In discussing the
advantages of these newly developed algorithms over the old ones, we will
also enable the reader to gain a better and more intuitive understanding of
the concepts behind the DMRG and its associated algorithms.

After elucidating the workings of the standard DMRG, we will explain
how to carry out the time evolution of a quantum state within the DMRG
framework. We will then explain how to use the capability of time evolving
a quantum state to obtain angle-resolved spectral data as well as densities of
states for most one-dimensional models that can be represented in second-
quantized form. Finally, we will address the problem of obtaining data for a
system in the thermodynamic limit by carrying out measurements on small
finite systems.
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Chapter 5

Evolution of the DMRG

As already discussed in Chapter 2, in condensed matter physics, one usu-
ally treats a system consisting of particles on a lattice, with a Hamiltonian
that allows for hopping between the different sites as well as an interaction
between the different particles. The Hilbert space H corresponding to such
a system is the tensor product of the degrees of freedom |s) on each site of
the lattice. Therefore, in an N-site system, the corresponding Hilbert space
would have the form

H=Hi®H: ® - ® Hup, (5.1)

where H; denotes the local Hilbert space on site i. Evidently, the dimension
of the Hilbert space grows exponentially with the number of sites in the
system. If we assume that every site ¢ has the same number of degrees of
freedom, then the entire Hilbert space has dimension

dim (H) = dim (H,)" . (5.2)

5.1 Exact Diagonalization

Even though the dimension of the Hilbert space grows exponentially with
the number of sites in the system, it is still possible to find particular states,
e.g., the ground state, for small system sizes exactly, using certain optimized
algorithms. This task can be accomplished by iterative exact diagonalization
algorithms, two of which will be described in the following.

5.1.1 Lanczos Diagonalization

The Lanczos algorithm [35] is, first and foremost, an orthogonalization pro-
cedure on a vector-space basis. It can be thought of as containing two main

33



34 CHAPTER 5. EVOLUTION OF THE DMRG

steps. The first step is to start with a randomly chosen start vector |1g) and
then build up the corresponding Krylov space,

{|¢0>7 HWJO)a H2|¢0>7 H3|¢O>a"'}v (53)

where H is the matrix we want to diagonalize. The second step is to orthog-
onalize the Krylov space with a regular Gram-Schmidt orthogonalization
algorithm.

In the above steps, there is no gain in efficiency in comparison to a full
diagonalization of the matrix. Fortunately the two steps outlined above can
be combined into one, iterative, step, in which one starts with the random
vector |1h) and then generates a sequence of vectors using the recursion
relation

[¥ns1) = Hl$n) — anltn) — by lthn-1) (5-4)
where a,, = %
o " <wnfl’wn71>’

with |[¢_1) = 0 and by = 0. Using this relation, in which the Lanczos
vectors are not normalized, one can terminate the recursion when the new
vector [1),) is smaller then a predetermined stopping criterion for the norm

V{Unltn) <e

It can be shown [35] that our matrix H takes on a tridiagonal form,

Qo bl 0
bl aq bQ
f{n = b2 as . > (55)
. b,
0 b, an

in this new basis of normalized Lanczos vectors. The matrix H can be
diagonalized much faster because it is smaller (typically 100 x 100 at most)
and because of its tridiagonal form. One should keep in mind that H is not
equal to H in the new basis but is instead only an approximation to H with
an error of roughly e.

Unfortunately, although the Lanczos basis is orthogonal, in principle,
numerical roundoff errors cause the basis vectors to lose orthogonality fairly
quickly in finite precision arithmetic, and spurious eigenvalues appear in the
resulting tridiagonal matrix. To counter this effect, one usually calculates
only the first 100 Lanczos vectors and then restarts the method with the
current approximation for the target vector as the new starting vector.
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5.1.2 Davidson Diagonalization

Davidson diagonalization [36, 37] is similar to Lanczos diagonalization in
the sense that one starts with a random starting vector and then applies an
iterative procedure to build up a subspace of the vector space in which the
matrix H, which is to be diagonalized, is well approximated. The difference
between Davidson diagonalization and Lanczos diagonalization lies in the
iterative procedure that is used to build up the subspace. In the Lanczos
procedure, the component of the approximated residual vector

7y = H|r) — Ml te), (5.6)

that is orthogonal to the already built-up part of the vector subspace is taken,
where |sz> is the approximation to the target vector |¢;) in the subspace, and
A is the corresponding eigenvalue in that subspace. Davidson proposed the
following alternate iterative scheme to build up the subspace. The correction
vector to WQ is given by .
|2) = |} — [ew). (5.7)
Therefore, ~
(H = Xe) [2) = = (H — M) [¥). (5.8)

Thus, the correct correction vector |z) can be determined exactly using
[2) = = (H = X)), (5.9)

Since finding the inverse of (H — Ax) involves the same amount of numerical
effort as fully diagonalizing H, this does not yet lead to a gain in efficiency.
Davidson’s idea, was to approximate |z) as

H=—(D-%) I, (5.10)

where D is a diagonal matrix containing diagonal elements of H. Therefore,
the Davidson diagonalization works best if H is diagonally dominant and,
even though one can find pathological cases where the Lanczos algorithm
outperforms the Davidson algorithm, the Davidson algorithm has proven to
converge faster and be more stable than the Lanczos algorithm in almost all
cases in condensed matter physics.

In the following, we will briefly outline the steps of an iteration of the
Davidson procedure [36].

1. To find the kth eigenvalue and eigenvector, start with [ randomly chosen
orthogonal vectors [¢1), ..., |1;), where [ > k.
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. Form and store the vectors H|iy),..., H|ty;) and build the matrix

Hy; = (i H|y).

Diagonalize H using a standard dense matrix diagonalization method
and select the kth eigenvalue )x,(f) and the corresponding eigenvector

l
o).

Form the residual vector

l

@) =Y (I Hlv) = laf)x 1) )

i=1
Here |oz§€l))i denotes the ith component of the vector |a§€l)>.

Calculate the norm of |¢;) and compare it to a preset maximum error
criterion €. If \/(q|q) < €, accept the last eigenvalue )\g) and eigen-

! . :
vector |oz,(€)>; otherwise, continue.

Form the correction vector

e) = (A0 = D) la.

where D contains the diagonal elements of H. Then form |¢;,1) by
orthogonalizing |c;) against all previous vectors |¢;), i = 1,...,1 and
then normalizing it.

Start again with step 2, but taking | — [ 4 1.

In practice one usually performs a small number of Davidson steps (typically
less than 20) and then restarts the procedure with

) = Z i) j|15)-

Restarting the algorithm after a few steps helps to keep the memory used to
a minimum, but can slightly increase computation time.

5.2 The Renormalization Group

The name “Renormalization Group” has its historical roots in the high en-
ergy physics of the 1960s. It stems from the fact that the Renormalization-
Group idea was originally developed to describe the high energy behaviour
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of renormalized electrodynamics [38]. Unfortunately, the implications stem-
ming from that name are very misleading, because the Renormalization
Group has neither the underlying properties of a mathematical group nor
does it use renormalization in the quantum field theoretic sense. In fact,
ever since K. Wilson realized the potential of the Renormalization Group for
describing the scaling behaviour of critical phenomena, it has been mostly
used in that field of physics.

The general idea of the Renormalization Group is still the same, though.
It is the scaling in a particular set of variables to obtain the degrees of freedom
that are important for the description of the physics of the model at hand.
This is most easily seen in the real-space renormalization of a lattice spin
system, which we will use to outline this idea here.

Let us consider a two-dimensional square lattice. We assume that a spin
is present on each lattice site and that nearest-neighbour spins interact with
coupling constant J, e.g., as in the Ising model. Let us further assume
that the physical behaviour that we are interested in, e.g., magnetic order,
is described by a function H(J,T'), where T is the temperature and J the
coupling constant.

O O] [0 Q]f|0 o]0 ©
o O[O _JOl|lo_Of o _©
O O] [0 Q||| o]0 ©
o O [0 _JOl|lo_Of o _©
O O] [0 Q||| O]l ©
o O [0 _J|lo_o o _©
O O] [0 Q||| O] |0 ©
O O |0 Ol o |o ©

Figure 5.1: Block-spin transformation on a two-dimensional square lattice.

As depicted in Fig. 5.1, we divide the system into 2x2 blocks and then
describe the system in terms of these new block variables, which are effective
spins again. Let us now assume that the behaviour of this new system can
again be described by a function of the same form as H(T,J), but with
renormalized variables 7" and J’. We have thereby reduced the number
of degrees of freedom in the system, but (hopefully) have still retained the
important physics. This is called a scaling transformation.
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For the Ising model, which is described by the Hamiltonian

N
Higog = Y 5757, (5.11)
(4,9)

where the sum over ¢ and j runs over nearest neighbours and S7 measures
the spin in z-direction on site 7, there are three fixed points for which the
physics of the system does not change under such a scaling transformation.

1. T—0and J — 0o = complete magnetic order (ferromagnetism).
2. T —ooand J — 0 = completely random order (paramagnetism).

3. Somewhere in between, at T'= T, and J = J., there is a critical point
at which the phase transition between the two above-mentioned phases
occurs and at which the system is also invariant under the scaling
transformation.

5.3 The Numerical Renormalization Group

Wilson originally invented the Numerical Renormalization Group (NRG) to
treat impurity problems, specifically, the Kondo problem and the single-
impurity Anderson model. We are only going to outline the basic algorithm
of the NRG here and refer the reader to Refs. [39, 40] for further information.
The basic idea of the NRG is quickly stated. It is to represent a target
state, that we want to calculate, not in the full basis of the Hilbert space but
instead to only keep the ground state and a fixed number of low lying excited
states and use those as a basis to represent it. Now, one could obviously argue
that if we already knew the ground state and low lying excitations, we would
have already solved the system, so what we actually use are the ground state
and low lying excitations of an approximation to the system.
The method works as follows:

1. Begin with a system that is small enough to be diagonalized exactly.

2. Diagonalize the Hamiltonian Hj, of the system of size L and find the
ground state and the m—1 lowest-lying excited states. For this purpose,
exact diagonalization routines are used.

3. Transform all operators of interest to the basis of the m lowest-energy
eigenstates:

A, =01A,0,.
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Here Oy, contains in its columns the eigenvectors. One should note that
the Hamiltonian takes a diagonal form after this transformation, but
this is not necessarily the case for other operators.

4. Add a new site to the system and form new operators Ay i on the new
product basis created by this.

5. Start over at step 2 and replace H; with Hy 4

In terms of the renormalization group framework, the rescaling is done here
by adding additional sites to the system, whereas one identifies a fixed point
when a set number of the lowest energies become independent of the length
L of the system. Unfortunately, such behaviour is only to be expected from
impurity problems but is, in general, not seen in more complicated tight-
binding-like Hamiltonians. Even more problematic is the fact that the choice
of the m eigenstates with the lowest energy of a system with size L are not
necessarily a good basis for the ground state of a system with size L + 1.
This is even true for one of the simplest model in condensed matter physics,
the tight binding model (2.2). As an example we can consider one particle
on such a tight binding chain [41]. It can be seen directly that, if expressed
in the real-space basis, the Hamiltonian of an L site system would read

0 —t 0

Hy, = —t 0 - : (5.12)
—t

where t is the hopping element between the different sites. Furthermore, it
can be easily verified that the wave functions for such a system take the form

¥ (1) = N sin ( L”Iﬁ) , (5.13)

where N is a normalization constant, L is the size of the system, and n
corresponds to the nth energy level.
Now if we construct a Hamiltonian for a system of twice the size it will

simply be
H, T
= (). (5.14)

where
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One could argue here that doubling the size of the system is unreasonable
since only one site is typically added in a NRG step, but, because of the
nature of the problem, adding one site in a interacting system amounts to
the same increase in the number of degrees of freedom as doubling the system
size in this problem. For this problem it is clear that what is shown in Fig.
5.2, namely that the lowest eigenstates for a system of size L are not a good
basis for a system of size 2L, since no small number of eigenstates of the
system of size L can be used to express the ground-state of the system of size
2L. This is also clearly visible from Table 5.1 which compares results from

0.35 T T
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Figure 5.2: The ground-state wave function for a particle on a tight binding
chain for two 16-site blocks and one 32-sites block.

exact diagonalization with results from NRG [3].
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Exact NRG

E, | 2.3508 x 1079 | 1.9207 x 102
E; | 9.4032 x 1076 | 1.9209 x 102
E, | 2.1157 x 107° | 1.9214 x 1072
Es | 3.7613 x 1075 | 1.9217 x 102

Table 5.1: Lowest energies after 10 block size increases for the single particle
on a tight binding chain keeping the 8 lowest states as a basis [3].
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Chapter 6
DMRG

The problems of the NRG we have discussed in Sec. 5.3 show us that forming
a new reduced basis from the energetically lowest states for a system of size L
is, in general, not a good choice if we want to represent a low energy state for
a system of a different size. So the difficult question remains: Which degrees
of freedom are most important to keep in order to find a good approximation
for a given target state?

The answer that the DMRG gives us to this question, is that the impor-
tant states we should retain are those states that carry most of the entan-
glement. This raises the question: What exactly is meant by entanglement
quantitatively and how do we identify those states?

The answer to this question is given by the Schmidt decomposition, which
has already been described in Sec. 4.1. The Schmidt decomposition tells us
that if we consider a pure state |¢)) on an arbitrary system, and we divide this
system into two parts, then the reduced density matrices of these two parts
will have identical non-zero eigenvalues. These eigenvalues are the weights
of the corresponding eigenvectors in that subsystem and can therefore be
seen as a measure of the importance of these eigenvectors in describing the
state of the entire system. Therefore, those eigenvectors which have a high
eigenvalue in the reduced density matrix are the ones that we referred to
earlier as carrying the most entanglement. Another way of saying the same
thing in a more mathematical way is that the eigenstates which correspond
to high eigenvalues are those that are most important for approximating the
pure state [¢) of the entire system. This can be seen by expressing a pure
state on a bipartite system as

W) as =Y /Dili)ali)s- (6.1)

J

The best possible approximation |1/~1> for |¢), in a least square sense, with
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a fixed number of states m, is formed by keeping the eigenstates with the
largest eigenvalues p;. The error made in this approximation is

X = Mll) = )12 (6.2)

= |22 VBl = 3 VBl ali)e (6.3)
= | 3= vBlal)s)| | (6.4)

where m < N = min (dim(A4), dim(B)).

The states |j) and |j’) both form an orthonormal basis on their respective
subsystems. All p;’s have to be positive and real because of the fact that the
density matrix is hermitian and because of their interpretation as weights.
Thus, we directly find that

X2 =) — [0y = Zp] (6.5)

j=m+1

This proves that the best possible approximation to |¢) is formed by keeping
the eigenstates corresponding to the m largest eigenvalues. It is also obvious
from Eq. (6.5) that the error made in the approximation can be measured
by the discarded weight 2.

6.1 Truncation Schemes

There are different schemes that one can employ for choosing the number of
states m to be kept. Typically, there are three different methods used, two
of which are very straightforward.

1. Keeping a constant number of states is the simplest possible scheme.
It was extensively used historically. However, this is the worst trunca-
tion scheme from an efficiency point of view, since the calculation time
is highly dependent on the number of states m kept. In fact, as we
will point out later, for large m the computation time 7" o< m3. On the
other hand, this truncation scheme is the simplest to implement.

2. Keeping the discarded weight fixed is also fairly straightforward and
can greatly increase efficiency, especially when the target state can be
represented accurately by a fairly small number of eigenstates. This
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is sometimes not clear, a priori. Using this approach, one needs to be
aware of a problem that can occur when, during the buildup of the
system, too few states are used. In this case, there is the possibility
that the algorithm is not able to converge to the true ground-state
ultimately, i.e., that is gets stuck in a local energy minimum instead.
Therefore, when using this method, one has to make an appropriate
choice for the minimum number of states to be kept. This choice can
vary depending on the model.

3. Keeping the Von Neumann entropy constant [42] is an approach
which is not as straightforward, but which is, in fact, very similar to
keeping the discarded weight constant, because the Von Neumann en-
tropy (4.2) is very closely related to the weights of the reduced density
matrix. This scheme is used mainly if one wants to make quantum
entropy measurements, because in that case it is important to assure
that changes in the quantum entropy are due to parameter dependent
changes in the system and not due to the truncation scheme used.

It should also be mentioned that, regardless of the truncation scheme used,
the entire approximation relies on the fact that the weights p; in the reduced
density matrix fall off quickly enough. Otherwise, we would either have
a comparatively poor approximation to the true wave function or would
need to keep an exceedingly large number of states, making the computation
unfeasible for larger systems. It has become evident in the past [40] that
these weights fall off especially slowly for periodic boundary conditions. An
explanation for this fact will be given in Sec. 7.6. Also, the DMRG does
not perform well in two dimensions, because the number of block states one
needs to keep depends exponentially on the width of the system. We will
elaborate on what causes both problems and present possible solutions in
Chapter 7.

6.2 Quantum Numbers and Symmetries
One way to greatly improve performance and to reduce memory usage in

DMRG runs is to make use of the symmetries present in a model. If, for
example, the number operator,

N = Z > nig, (6.6)

i=1 U:T)l
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or the operator for the z-component of the total spin,
N
So= (nag —ny), (6.7)

=1

commutes with the Hamiltonian, i.e.,
[H,N|=0=[H,S.], (6.8)

then the matrix representation of the Hamiltonian H as well as the reduced
density matrix p are block-diagonal. Each of these blocks corresponds to a
particular set of quantum numbers (N, S,). Since, in practice, we are usually
interested in the properties of a target state with a certain particle number
and overall spin, we can reduce the basis of the Hilbert space that we need to
consider and, therefore, the size of all operators as well as the wave function
greatly. This approach can, in general, be used for all Abelian symmetries
present in a given model and could therefore also be used for some of the
symmetries mentioned in Sec. 2.2. However, the two symmetries mentioned
above are those most commonly used. This is especially the case because,
typically, local symmetries are not as straight forward to implement and are
easily broken in many models, e.g., through impurities.

6.3 DMRG Algorithms

In this section, the two DMRG Algorithms [4, 5], the infinite system and the
finite system algorithm, and the different steps of these algorithms will be
discussed in a systematic fashion.

6.3.1 The Infinite System Algorithm

The infinite system algorithm in its original form [4] was designed to built
up a system to a size as large as possible and observe the behaviour of
interesting observables f(L) in connection to the increasing size of the system
L. Unfortunately, the infinite system algorithm suffers from convergence
problems, for many systems. We will elaborate on these problems later in
this section. The infinite system algorithm, or variations thereof, is still
indispensable, since a good starting point for the finite system algorithm
cannot be easily guessed in the case of larger systems. Therefore, it is needed
to build up a system of suitable size that can be used as a starting point for
the finite system algorithm.

The infinite system algorithm works as follows:
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. Start with a superblock of size L that is small enough to be exactly

diagonalized. This superblock contains a system block of size [ and a
environment block of size I’ with [ + 1" = L.

. Build the superblock Hamiltonian H:

(a) Construct the Hamilton operator on the system block H =
(1|H|i"), where [i),]i’) are the basis states on the system block.
Save this matrix in blocks sorted according to quantum numbers,

~ NSNSSS. 55
: 1 2 ,1 2
ie., H., S

(b) Build the Hamilton operator on the environment block Hj;; =
(j|H|j"), where |j),|j’) are the basis states on the environment
block. Save this matrix in blocks sorted according to quantum

~ NRNRSR SR
numbers, i.e., H; ° 7%

(¢) Build the operators describing the interaction between the blocks,

Ly = (i|I]¢"y and I;; = (j|I|j") on each block and save them sorted

~NJ N3 Si 185, ~NENESE SE,

according to quantum numbers: I, and I, j,l

It is important to note that N; and N, are the particle number be-
fore and after the operator is applied, while S, ; and S, 5 refer to the
spin in the z-direction before and after the application of the operator,
respectively.

Diagonalize the superblock Hamiltonian Hj to find the ground state
with the quantum numbers we are interested in. For the diagonaliza-
tion, either a Lanczos or Davidson diagonalization algorithm can be
used. These algorithms are described in detail in Sec. 5.1. The most
time-consuming operation that has to be carried out in all exact diag-
onalization algorithms is the multiplication Hp|¢)). This is done as a
sum over all Hamilton operator blocks multiplied with the correspond-
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ing block in the wave function. Therefore,

S 1
¢N2N2Rsz2 52_ HN1N2SSz31 226 Q/)NSNlRstlsf:l
i'j Ji’
ij
NPN{E
S21STh

Z ~ NRNQRSfl,SR NPN{isZ Sk,
+ 522/ wz‘y

NSNR
Sflsfl

i N§S§1 o N§ FN{INGTST ST, | NPN{TSD, ST
+ > (ED)MT ) Y .
ij
NP Nt
53,88

Several things are important to point out here:

First, the state |¢)) can be written as a matrix because it is expressed
in the product basis of the two blocks, i.e.,

) = Zwm ® |).

Second, the (pm1 is negative for fermions and positive for bosons and
is introduced to ensure that the (anti-)commutation relations between
different operators remain valid.

Third, to get the full representation of a state with particular quantum
numbers [¢))V5: | it is necessary to iterate over all possible combinations
of these quantum numbers on the different blocks, i.e., N5 + Nff = N
and 5’22 + sz =9,.

Fourth, it is noteworthy that, even though for the Hamiltonian N; =
Ny and S,; = 5,2 a general notation has been used that allows for
Ny # Ny and S, 1 # S, 9 since this is, in principle, possible for general
operators.

. Form the reduced density matrix for the different quantum numbers on

the system block as

NSSS NSNRSssR NSNRSSSR
> (o)
jNERSE

Sqs
. Diagonalize pZNi, % for all quantum numbers to obtain the eigenvalues

and the corresponding eigenvectors. Keep the m eigenvectors with the
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largest eigenvalues and at least one eigenvector for each set of quantum
numbers so that every set of quantum numbers can gain additional
weight during the course of the calculation.

6. Save the chosen eigenvectors and use them to transform the Hamilton
operator (and other operators, e.g., observables) in the system block to
the new basis:

X l N O (6.9)

G NUNFS2.88, (ON§s§2)TXNstss SS, NFSS,
NSSZ . . . .

Here the O;" ™ contain the chosen eigenvectors in their columns and

would therefore be unitary transformations if m = dim(H).

7. If needed, save the transformed operators for later use in the finite
system algorithm.

8. The part that takes the most effort to understand correctly as well as
to implement in an efficient way is adding two blocks. In this step,
we have to distinguish between three different cases. If we have two
blocks, block A and block B, then an operator can act only on block A,
only on block B, or on both blocks. To describe these three cases, we
will only use the particle number as a quantum number, because this
saves notation effort and the generalization to spins is straightforward
as long as a clear particle order is used.

(a) The operator X acts only on block A. This means

N{*N3NB S N{Ns'  oNB

Here I%? is the identity matrix on block B in the subspace with

NAAB

NAN
quantum number Ng. The new operators X | 5? are expressed

in the new basis of the extended system but, in general, several of
these operators fulfill the relations N{*4+N? = N, and Nj'+ N? =
Ns. Therefore the new operator X j&% must be built up from all

of the operators which fulfill this condition, i.e.,

(0, V| (LN —1] ... (N0
0, N2) X0 o, Xavn v,
Xévjf]? = [1,N,—1) Xg’i’glfle,Ngq Xi\’igl_llefl,Ngfl

|N270> Xﬁi’gzyo
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The operator Y acts only on block B. This means

AnTBaTB B arB
Yoot = )M o vyt

Here IY" is the identity matrix on block A in the subspace with
AnBnB
quantum number N4. The new operators Yfﬁ BNl N2 are expressed

in the new basis of the extended system, but the same problem
as for the operators on block A arises here, too. Several of the
newly build operators could fulfill the relations N4 + NZ = N,
and N4 + NP = N, and therefore the new operator Yﬁ? must
be build from all of the operators which fulfill this condition, i.e.,

(0, Ny|  (1,Ny—1| ... (Ny,0|
0,N2) | Yarp™ 0
,N1—1,Na—
VRN LNy 0 e
|N2’O> Yﬁ£105N1,N2

The operator Z acts on both blocks. This means

NANANENE min(NA,Ng) N Ng NP NG
ZaiB = (£1) R\ ® Zg )

NANANENE . .
The new operators Z,; p* ' 2 are expressed in the new basis of
the extended system, but, as in the two previous cases, several of
the newly built up operators could fulfill the relations Ni* + NP =
Nj and N2A+N B — N, and therefore the new operator Z ﬁ]g must
be built up from all of the operators which fulfill this condition,
as

<0;N1| <1,N1—1| <N1,0|
0. N. ZO,O,Nl,Nz Zl,o,qu,N2
ZN1N2 |1 ’]\’7 i>1> Zoﬁlj\fliN2—1 Zl,fll,—i]_\flf—l,Ng—1
ArB T 152 A+B A+B
| N2, 0) 710200

Build Hy .o by adding two full sites between the system and the
environment block using the method outlined above starting from
the representation of H; on these blocks. With the new Hamil-
tonian on the system and environment block, start over at step 3
and repeat steps 3-8 until the desired system size is reached.
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As mentioned in the beginning of this section, the infinite system al-
gorithm was originally designed to observe the dependence of interesting
observables on the system size L. In the best case the resulting function
f(L), that describes the measurements, would follow a previously expected
functional form or become L-independent for sufficiently large system sizes.
Unfortunately this does not always occur for all interesting observables. This
is mainly due to two reasons:

1. Some observables converge very slowly, e.g., logarithmically with sys-
tem size towards the thermodynamic limit. Therefore, if the exact
functional form of this system-size dependence is not known, an ex-
trapolation to the thermodynamic limit is very difficult.

2. Since the system size changes continuously, it is not assured that the
selection of basis states that was made earlier in the algorithm is still
a sufficiently good choice for the system which is now larger.

The second problem, at least, can be solved by using an algorithm that
always treats a system of the same size and converges further towards the
true target state. This is the idea of the finite system algorithm.

6.3.2 The Finite System Algorithm

The finite system algorithm picks up where the build-up process, i.e., the
infinite system algorithm, leaves off [4]. It takes a system of a given, fixed
size and reevaluates the choice for the degrees of freedom on each site to
make a better choice. Hence, allowing for a better approximation of the
target state.

For the finite system algorithm, one proceeds as follows:

1. Use H;*, which has been stored during the build-up phase, two single
sites, and H?_ L—(i+2) TO build a new superblock which is the same size
L as in the previous step.

2. Repeat steps 3-6 from the build-up phase to optimize the basis of the
new left block A, which now consists of the old block A plus a single
site. Store the newly found basis for the left block and set (I — [+ 1).

3. Repeat steps 1-2 until the entire system from left to right (I = L — 3)
is gone through.

4. Change direction and reverse the roles of A and B. This means to use
the stored versions of H*, and add two sites in the middle. This builds
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up block B, reduces block A, and still leaves the overall system size L
constant.

5. Repeat steps 1-2 with the roles of A and B reversed and set (I — [ —1)
at the end of each step, until the entire system from right to left is gone
through (I =1,I'=L — 3).

6. Change direction again and reverse the roles of A and B. Start over at
step 3.

7. Repeat step 3-6 until sufficient convergence has been reached, e.g., the
ground-state energy does not change significantly anymore from one
step to the next.

A pictorial representation for the finite system algorithm is given in Fig. 6.1,
where solid lines denote a full basis and dashed lines denote a reduced basis.
Red lines indicate the system block, which basis is optimized in that par-
ticular step, whereas blue lines denote the environment block, which is only
used to provide an environment.

6.4 The Wave Function Transformation

The most time-consuming part of a DMRG calculation is always finding the
ground state with an exact iterative diagonalization procedure as described
in Sec. 5.1. All iterative diagonalization procedures have the feature that
the number of iterations needed strongly depends on how close the starting
vector is to the true target state. For a general step in the finite system
algorithm, a very good starting guess is available: the calculated target state
from the previous step in the finite system algorithm. Unfortunately, this
wave function cannot be used in a straightforward manner, because it is
given in the basis of the previous step, and therefore needs to be transformed
to its representation in the basis of the current step. This is where the wave
function transformation comes into play [4, 43].

Let us consider the basis of the superblock at a step [ during a finite
system sweep, which can be written as

|y S141 Si42 Bies) = |au) @ |5141) @ [S142) @ |Biys), (6.10)

where |oy) is the basis of block A containing sites 1,...,1, |s;11) and |s;12) are
the bases of the single sites at position [ + 1 and [ + 2, and |5;43) is the basis
of block B containing sites [ + 3, ..., L. If the algorithm is in a left-to-right
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Figure 6.1: A pictorial representation of the finite system DMRG algorithm.
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phase at this point, the basis in which the wave function would be needed in
the next step is

|1 Sit2 Si4s Biya)- (6.11)
Therefore, we need to transform the original product basis o) & |s;41) to

the new basis |aq1), the basis of the density matrix eigenvectors. Hence, we
can write the transformation as

) = Y Lol o) @ [siea). (6.12)
AL,S14+1
Here the transformation matrices L4} can be viewed as dim(|s;41))

K i alv§l+lzal+l K
different matrices, each of dimension dim(|a;41)) x dim(|a;)).

As we have discussed in Sec. 6.3.1, the matrices that perform this function
are the O matrices used in the basis transformation. They are therefore used
in place of the L matrices. We also know that the right block was built up
in a similar fashion, which is why we can write

_ 1+3
|Bry3) = Z R i b S143) © [Bira), (6.13)
8143,81+4
where Rl;fg BriaBres 18 equal to the hermitian conjugate of the corresponding

O matrices, that transformed the basis on that block to its current state in
the first place. If we now write

) = > b(onsie siea Bies) [ st siee Bigs), (6.14)

QLy8141,5142,01+3

we can easily find, by inserting Zam |ags1) {ayy1], that

Y (i, Siv2, S1435 Bia) & (6.15)

} : I+1 143
Lal7sl+1,al+1 1/} (al’ Si+1, Si42, BH‘?’) R81+3ﬁl+4ﬁl+3'
ar,S141,01+3

This transformation is only approximate because the basis of the old right
block |B13) was truncated when it was built up. Therefore, the inverse
transformation is not unitary in the new basis of the single site and the right
block, |s;43) ® B114). Even though this is only an approximate transforma-
tion, it usually still leads to a considerable speed up (approximately a factor
of 20-50) due to the fact that much fewer iterations are needed in the ex-
act diagonalization algorithm. In addition, it also allows one to relax the
convergence criterion in the exact diagonalization, because it is considerably
less likely that the diagonalization routine converges to a local minimum; the
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starting vector is generally qualitatively correct and thus has a large overlap
with the true target state.

The disadvantage of this transformation is, that, to be able to carry
it out at every step in the finite system algorithm, one needs to store the
transformation matrices (O matrices) at each step. Although storing such a
large amount of data could potentially be very expensive in terms of memory,
here, these matrices are only needed so rarely, that it is possible to save
them on hard disk with almost no loss of efficiency. In addition, saving all
of the transformation matrices allows one to transform all operators needed
for measurements after convergence to the ground state has been achieved,
which, in turn, saves memory during the DMRG run.

6.5 Measurements

So far we have discussed in detail how to find a good approximation v for a
given target state within the DMRG, but it is clearly only of use if we can
determine the value of observables afterwards. Hence we need to be able to
calculate the matrix element

(Y] Al) (6.16)

for an arbitrary operator A.

In general, operators, which should be known to the best accuracy pos-
sible, are measured at the end of the DMRG run. Since, at this point, the
superblock is in one particular state with a basis which is specifically chosen
to optimally represent the target state, there is no simple relation between
the original basis, which is just a tensor product of the bases on the different
sites, and the now optimized basis. Therefore, before we are able to make
a measurement, we must use the stored transformation matrices (O matri-
ces, see Eq. (6.9)) to transform the relevant operators to the basis of the
superblock. After this is done, Eq. (6.16) can be used directly to calculate
the expectation value of the operator A.

In the special case of local operators, which act on two adjacent sites at
most, it is possible to calculate the above matrix element at the step of the
DMRG procedure at which that particular local operator acts on the two
sites which have just been added to the system. If, for example, we want
to measure an operator A;;4;, which acts on the sites [ and [ 4+ 1, we can
calculate its expectation value when the superblock basis is given as

lou—1) ® |s1) @ [S141) @ |Brg2),

because at that point the representation of this operator is directly known.
The measurement can then be carried out directly after the diagonalization
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step. This does have the drawback though, that, since the measurements
for local operators are done at different times during the DMRG sweeps, the
operators that are measured early during the sweep are measured using a
less converged wave function, than the operators measured during the end of
the sweep. For this reason local operators, which are measured at different
points during a sweep, are not suitable for comparison with each other.

Summary

In this chapter, we have described the basic idea of the DMRG algorithm,
its different truncation schemes, and the details of the algorithm including
using Abelian quantum numbers. We have also discussed the most important
optimizations as well as how to measure observables with a converged target
state.

A better intuition as to why the DMRG algorithm described here performs
especially well on one-dimensional systems with open boundary conditions
and why the convergence is significantly worse for periodic boundary condi-
tions and for two-dimensional system will be build in the next chapter. We
will also discuss recent developments which partially overcome these prob-
lems, such as matrix product states [43, 44] and projected entangled pair
states [45, 46].



Chapter 7

DMRG using Tensor Networks

While the DMRG has proven to be extremely useful in the past two decades
for one-dimensional quantum systems with open boundary conditions, it
has great difficulties treating two-dimensional systems or even large one-
dimensional systems with periodic boundary conditions. Recently, it has
been shown that DMRG can also be described as a variational method over
the class of matrix product states (MPS) [43, 47]. The MPS have a natu-
ral extension to higher dimensions or one-dimensional lattices with periodic
boundary conditions. In the following, we will describe the DMRG algorithm
as a variational optimization of a MPS in terms of tensor networks.

7.1 Tensors

What is a tensor? Unfortunately, the term is somewhat ambiguous, and
this can sometimes lead to misunderstandings. The basic problem is that
there are different default meanings for the word tensor in mathematics and
in physics. In physics, the word “tensor” is often used to describe what
mathematicians would call a tensor field. A tensor field associates a different
mathematical tensor with each point in a geometric space, i.e., a tensor
field varies continuously with position. An example is the stress tensor.
Furthermore, even in mathematics there are two different notions of what a
tensor is. The basic definition is, though, that a tensor is an element of a
tensor product.

Let V and W be vector spaces over a common field K. Then the tensor
product

VoW (7.1)

is also a vector space. Let E = {e;|i € I} be abasisof V and F' = {f;|j € J}

27
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be a basis of W. Their Cartesian product,
ExF:{Qﬁﬁ)heLjeJ}, (7.2

is then isomorphic to a basis for V@ W.
The first of the two notions mentioned above is that a tensor of rank
(m,n), typically denoted 7,7*, on a vector space V' is an element in

TeTM(V)=V® - VeV ---aV, (7.3)

m n

where V denotes the dual space over V containing the linear functionals
f:V—K. (7.4)

This notation of a tensor is, for example, typically used in the mathematical
description of general relativity.

The other notion of a tensor is that if we have s distinct vector spaces,
Vi,..., Vi, then a tensor 7 is an element of

This last notion of a tensor is used in the following and it should be clear
that, given finite bases By, ..., Bson Vi,...,V,, anelement 71 € Vi ®---QV,
can always be expressed as a multi-indexed-array

A

115--452s

in these bases. For these multi-indexed-array representations of a tensor, we
also introduce a graphical representation, shown in Fig. 7.1.

>

Figure 7.1: From left to right: A two-legged, three-legged, four-legged and
five-legged tensor.

Here we have depicted two-legged, three-legged, four-legged, and five-legged
tensors, where each leg that comes out of a vertex is the graphical represen-
tation for an array index. That the use of this graphical representation is
immensely useful will become clear in the following.
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7.2 Matrix Product States

A matrix product state [43, 44, 47] is a way to describe a quantum state |1))
approximately or exactly as a product of matrices. If we consider a lattice of
n sites, each of which contains d, degrees of freedom, then the appropriate

MPS would be
ds
)y = > Tr (AV[s1]AP[s] ... A™[s,]) |51 52 .. 50), (7.6)
{si}=1

where the matrices A[s;] are typically square matrices, one for each degree of
freedom s; on each site. If we assume that each matrix has dimension m x m
then this state cannot describe an arbitrary state in the full Hilbert space
when

(ds>n71

p—
An equivalent formulation of a matrix product state that makes it easier to
see the connection it has to tensors and their graphical representation, is

ds
1 2 3 n
) = Z Z Agl?ﬂAgl’)@’szAgz’)i&% . Agnzhsn\sl S9 S3...8,). (7.7)

{s;}=111,i2,i3,...

m <

Here there is an array with two indices at the beginning and the end of the
matrix product and all other arrays have three indices. That is why we can
represent this equation in terms of a tensor diagram such as that shown in
Fig. 7.2. Here an index 7, between two tensors indicates that the legs left

s> s> s s>

o

Il I2 |3 (L] In—l

Figure 7.2: A matrix product state represented in terms of tensor diagrams.

and right of it are both named 7. If we would now contract all the connecting
links (links with the same name) in the diagram, which would be equivalent
to summing over all iy,...,7,_; in (7.7), we would get, as a result, a tensor
of size dim (H), where H denotes the entire Hilbert space. Therefore, the
size of i1, ...,1,_1 determines the extent of the approximation that is made
by writing a quantum state |¢)) as a MPS.
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7.3 Matrix Product Operators

Matrix product operators (MPO) [48] are a natural extension of matrix prod-
uct states in which the operators are expressed as a matrix product and,
hence, can be expressed via tensors and tensor diagrams as well. A typical
Hamiltonian can then be written as

- ¥ g g® g™ (7.8)
Sl,sll,il il,sz,sé,iz Tp—1,5n,5h" '

515000381, 8] yereyShy 115025000501

where Hi(f)l s, 4, contains the terms of the Hamiltonian acting on site k, s
— 19k

are the degrees of freedom on site & which the operator projects from, and
s). are the degrees of freedom on site k which the operator projects to.
The tensor diagram for a typical MPO can be seen in Fig. 7.3.

|s> |s> |s> |S;>

|S> |S> |S> s>

Figure 7.3: A matrix product operator represented as a tensor diagram.

As a typical example for a term in such an MPO, a term from a Heisenberg
Hamiltonian,

N-1 N
Hyeis = Y (JoSTST, + J,SUSY + L.S3S7,) + Y uSs, (7.9)
j+1 j=1
is given:
1
Sy
Hy o= S 0 7 (7.10)
Sk
where ST = S*+4iSY and S~ = S*—iSY are the spin raising and spin lowering

operators respectively, S, SY, and S* are the operators which measure the
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spin in x,y and z direction, p is the local magnetization in z direction,
Ji = Jy — Jy, and Jo = J, + J,. It is also noteworthy that each of the
elements in the matrix (7.10) is again a matrix. This explains the notation
of these terms in the tensors diagram as having four indices.

If we now let the MPO seen in Fig. 7.3 act on the MPS seen in Fig. 7.2,
and then contract all the links that appear twice, we see that we, again, get
a MPS. This is, of course, to be expected since letting an operator act on a
state should result in a state again.

7.4 Singular Value Decomposition

To understand DMRG in terms of tensor networks it is essential to also un-
derstand the Singular Value Decomposition (SVD) [49, 50] and its use within
the DMRG framework. Let us consider a four legged tensor as depicted in
Fig. 7.4, which we would get by contracting the tensors corresponding to
two sites, and thereby making all the degrees of freedom on these two sites
available. Let us now assume that we have optimized the state represented
by these two tensors and want to disjoin them, while only keeping m states
between them. To achieve that and still having an optimal approximation to
the original state is exactly what we need the SVD for.

| Sk> | Sk+1>

l-1 I+t

Figure 7.4: A contracted pair of tensors corresponding to two sites.

Unfortunately, the SVD acts on matrices. Therefore, we need to find a
way to map our four legged tensor onto a matrix. This is done by combining
the two leftmost indices, ix_; and sg, into an index m and the two rightmost
indices, sxy1 and ixy1, into an index n, as depicted in Fig. 7.5. It is obviously
necessary for the mapping function to be bijective. After the indices are
combined, we can view the tensor as a matrix A with the indices m and n.
Now the SVD decomposes the matrix A into two other matrices as

A=UxVT, (7.11)

where U is an dim(m) x dim(m) matrix containing the left singular vectors
in its columns, V' is a dim(n) x dim(n) matrix containing the right singular
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ik—1®|sk> -m Nn= |Sk+1> ® lisr

Figure 7.5: A four legged tensor with the indices combined to form a matrix.

vectors in its columns, and ¥ is a dim(m) x dim(n) matrix which holds the
singular values in its diagonal elements. If we now make the identification
B =U and C = XVT we can write

Am,n = Z Bm,ikcik,n- (712)
i
This allows us to draw the tensor diagram as shown in Fig. 7.6 where we

have reverted the mapping of the two left and two right indices onto m and
n.

| Sk> | Sk+1>

l-1 I I+t

Figure 7.6: The two tensors from Fig. 7.4 now disjoint.

We can see here, that, just like in Chapter 6, we get the best approximation
to the original matrix/tensor if we keep the m left and right singular vectors
that correspond to the highest singular values. This allows for the same
truncation schemes as described in Sec. 6.1.

7.5 The DMRG Algorithm

For the sake of simplicity and brevity, we will discuss only the finite system
algorithm here, since a good grasp of the finite size algorithm should enable
anybody to understand the idea of the infinite system algorithm as well, be-
cause it has a similar structure and is based on the same principles.

In a matrix-product formulation the finite system algorithm proceeds as fol-
lows.
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1. Choose a subspace of two sites to optimize.
2. Contract all links in this subspace that can be contracted (see Fig. 7.4).

3. Use an iterative exact diagonalization routine (see Sec. 5.1) to find
the target state on the chosen subspace. It is important to note that,
to achieve this, the Hamiltonian must only act on that subspace and
nowhere else. A tensor diagram for such a Hamiltonian is shown in
Fig. 7.7.

4. Use the SVD to disjoin the tensors in the chosen subspace and truncate
to the desired number of states.

5. Start over at step 1.

Figure 7.7: Tensor network diagram of a Hamiltonian which only acts on two
sites.

It should now be clear that using MPS greatly simplifies the DMRG
algorithm. In particular, one should note that two of the most difficult steps
in the DMRG, the basis transformation described in Sec. 6.3.1 and the wave
function transformation described in Sec. 6.4, are done completely implicitly
and do not put any strain on the programmer. The other advantages of
MPS, such as better convergence for periodic boundary conditions and two-
dimensional systems, will be described in the following.

7.6 Periodic Boundary Conditions

The fact that periodic boundary conditions are hard to treat using the DMRG
can be described in two different ways. It is an empirical fact that the
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eigenvalues of the reduced density matrix fall off more slowly for periodic
boundary conditions, than they do for open boundary conditions. Therefore,
we need to keep a higher number of states m to get the same accuracy for
systems of the same size. Hence, we are restricted to treating smaller systems
if we require the same accuracy as for open boundary conditions.

Another way of explaining the same fact in a more intuitive but also more
hand-waving way is to say that the interactions between the first and the
last site have to be encoded into the entire system because there is no direct
connection between those two sites in the representation of the target state.
This additional information, which is encoded in the system, increases the
entanglement between the two blocks, independent of where the superblock
is cut, and therefore the number of states m that must be kept to reach a
given accuracy in the approximation increases.

The evident way to approach this is to use a representation that contains
such a connection between the first and the last site. Then, the necessary
information about the interactions between these two sites can be encoded
there directly and therefore does not increase the entanglement within the
system as much. Using MPS, such a representation naturally has the form
of a ring state. An example of such a state is shown in 7.8.

Figure 7.8: An MPS ring state, used to better represent a target state with
periodic boundary conditions.

7.7 Two-Dimensional Systems

The poor performance of the DMRG algorithm for two dimensions is mainly
due to the fact that two-dimensional systems have to be mapped onto one-
dimensional systems in order to apply the DMRG algorithm. For this pur-
pose, a path through the system must be chosen. The DMRG algorithm is
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then performed along this path. A typical example of such a mapping is
shown in Fig. 7.9, where the red dashed line denotes the system block, the
blue dashed line denotes the restblock, and the two solid blocks are the two
single sites, which are reintroduced into the system in that particular step.
The dotted line shows the path the algorithm takes through the system.
In such a system, the number of states one needs to keep to reach a cer-

O 0>0 0>0i0>0 !
‘0 0 o ofolo o
VA YA A Vo
'O 0 O OO0 O,
' 0>0 0>010>0 O

Figure 7.9: A superblock in a two-dimensional system. The system block
has a red and the restblock a blue outline. Dashed lines stand for truncated,
solid lines for full bases.

tain accuracy rises exponentially with the system width [51, 52]. Therefore,
calculations are only possible for small system width and can only poorly
approximate real two-dimensional materials.

The root of the problem is the same as for periodic boundary conditions.
If we consider, for example, the first and the eighth site in Fig. 7.9, we can
immediately see that, since these two sites are direct neighbours, they will
interact strongly, but the mapping onto a one-dimensional chain places them
seven sites apart. Therefore, the information coming from the interaction
between these two sites has to be encoded into all the intermediate links.
This fact is true for all sites in the system and obviously greatly increases
the entanglement between the system block and the rest block at any given
step of the algorithm, forcing us to keep many more states to reach a desired
accuracy.

As in the case of periodic boundary conditions, MPS can be naturally
extended to accommodate the additional needs of two-dimensional systems.
These extended states are called projected entangled pair states.
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7.7.1 Projected Entangled Pair States

Projected entangled pair states (PEPS) [45, 46] use higher dimensional ten-
sors, e.g., five-dimensional tensors for two-dimensional systems on a square
lattice, to encode all the information between two sites directly. A represen-
tation of such a state in the form of tensor diagrams is depicted in Fig. 7.10.
Here the links between the different sites encode the interaction between

Figure 7.10: A PEPS state for a two-dimensional system.

them and, the links sticking out upwards represent the degrees of freedom
on that particular site. It can be shown that the computational complexity
of simulating a PEPS grows only polynomially with its size [53], and, for the
DMRG, algorithms have been devised that grow with m!® in computational
complexity, where m is the number of states kept in the links between sites.

Summary

In this chapter we have described the DMRG algorithm in terms of tensor
networks. For this purpose we introduced matrix product states and ex-
plained how they can be used to approximate arbitrary quantum states. We
then introduced matrix product operators, which represent regular linear op-
erators on a Hilbert space as a product of matrices. To simplify notations and
alleviate the problems of understanding the DMRG algorithm we introduced
a diagram representation for matrix product states and matrix product oper-
ators. Using these diagrams we then explained the original DMRG algorithm
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in a step-by-step fashion. Lastly we explained extensions to the DMRG al-
gorithm, namely ring states and projected entangled pair states, that allow
for a faster and more precise treatment of system with periodic boundary
conditions and two-dimensional systems.
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Chapter 8

Time Evolution

In quantum mechanics, the time evolution of a system is governed by the
time-dependent Schroedinger equation

.0
i) = Hlw). Y

When the Hamiltonian H is time-independent, Eq. (8.1) has the formal so-
lution

(1)) = e="(0)). (8.2)
Hence, to calculate the exact time evolution operator e *#* one would have
to know all of the eigenvalues of H as well as the according eigenvectors.
Since the DMRG and the exact diagonalization algorithms are both based on
finding extremal eigenstates in a reduced Hilbert space, solving H completely
to obtain all eigenvalues would render the whole exercise moot. Therefore,
one is left with two options [54]:

1. Iteratively solve Eq. (8.1) using a differential equation solver.
2. Find a suitable approximation for e=#* and then use Eq. (8.2).

For the first method, various differential equation solvers have been de-
vised in the past, e.g., Runge-Kutta. Therefore, we will discuss two possibil-
ities in the following, that utilize the second method.

8.1 Time Evolution Using Exact Diagonaliza-
tion

One way of approximating e~ is to approximate H using an iterative

exact diagonalization procedure as discussed in Sec. 5.1. Afterwards, H is
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diagonalized and the resulting diagonal matrix can be exponentiated. After
this is done, one has to transform the exponentiated diagonal matrix back
to the original basis of H. As an example, we will discuss this in more detail
using a Lanczos diagonalization algorithm.

Let us consider a given Hamilton matrix H for which we want to find the
exponential e 7. We build the tridiagonal approximation H to H and store
the corresponding Lanczos vectors in the columns of a matrix V. Since H is
considerably smaller than H, it can be fully diagonalized, yielding all of its
eigenvalues and eigenvectors:

H = 0X0".

Here ¥ is the diagonal matrix containing the eigenvalues of H, and O contains
the eigenvectors of H in its columns. Thus, the exponential e~** is a diagonal
matrix with

(e—iEt) C_ ei®)t
This yields
[¥(1)) = e [1(0)) VO e OT VT [4(0)). (8.3)

The error made in this approximation can be shown to have an upper
bound [55] given by

€ = [[(@®)) — [(t))approx | (8.4)
< 12exp (—%) (i—[:) ) (8.5)
with n > %pt, (8.6)

where p = Eax — Emin 18 the width of the spectrum of H, n is the number of
Lanczos vectors used, and e is the Euler number. To keep the overall error
small, one usually splits a desired time interval T" up into many short time
steps dt and performs the time evolution stepwise.

8.2 Time Evolution Using Trotter Decompo-
sition

The DMRG algorithm can be conveniently used with a second-order Trotter

decomposition [56],

e—int ~ e_iHodddt/Ze_iHevendte_iHodddt/2. (87)
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Here we have grouped the Hamiltonian into local Hamiltonians on odd and
even bonds. For this grouping to be possible, the Hamiltonian cannot have
more then nearest-neighbor interaction terms. The “~” sign indicates that
this decomposition is not exact but that the error € is, in fact, O(dt?). At any
given step in the DMRG algorithm, the two central sites in the superblock
are represented in a full basis. Therefore, the term in the Hamiltonian that
acts on that bond can be applied exactly. A drawback of the Trotter de-
composition is that, to complete a time step of size dt, one has to carry
out at least three sweeps through the system, one sweep each for applying
e~ tHoaad!/2 tyice, separated by one sweep for applying e *Hevend  Therefore,
depending on the model, either the Lanczos expansion of et or the Trotter
decomposition could be more efficient.

8.3 Basis Adaptation

One problem that has not yet been discussed is how well a time-evolved vector
can be represented in a basis that is optimized to represent a specific target
vector. The answer is, plain and simple, worse and worse with increasing time
if the vector is not an eigenvector of the Hamiltonian H. The obvious solution
to this problem is that the new vector should be mixed into the density matrix
after each time step to ensure that it is represented sufficiently well within
the chosen subspace of the Hilbert space. The problem with this answer is
that an increasing number of other states must get mixed into the density
matrix. Since we already know that many of the degrees of freedom for time-
evolved states do not overlap with the original target state (otherwise a basis
adaption wouldn’t even be necessary), it is not surprising that the number
of states that one needs to keep would increase extremely fast if this were
done. The idea that is usually used to circumvent this problem, at least to
some degree, is to adapt the basis during each time step only to the states
at the beginning and at the end of the time step. Thus, for the step

[ (t +dt)) = e yp(t)), (8.8)

we would only adapt the basis to |¢)(t+dt)) and |1)(¢)) thereby discarding all
the other degrees of freedom from previous time steps. This is fortunately not
a problem since these degrees of freedom are not needed anymore. Different
basis adaption schemes are typically used when a Trotter decomposition time
evolution scheme is used. In that case usually not only the first and the last
step in the time evolution but also all intermediate steps are mixed into
the density matrix. Similar ideas have also been used for time evolution
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algorithms that iteratively solve the Schroedinger equation (8.1), e.g., Runge-
Kutta, but as long as the degrees of freedom which are important for states
that are needed in a time evolution step are present the basis adaption works
similarly well for all kinds of time evolution schemes.

In general, making a sudden change in the Hamiltonian of a system which
is in the ground-state, throws the system into an initial state that is higher
in energy, and therefore makes the target state we want to evolve in time a
superposition of many excited states. That is why the basis adaption still
does not rid us completely of the problem of having to keep more states for
an accurate representation of our time evolved target state [¢(¢)) than we
needed to represent the ground-state. It does significantly raises the accuracy
in comparison to not adapting the basis, though.



Chapter 9

Dynamics

The prediction of dynamical correlation functions is a very important task for
theoretical physics because such quantities are typically measured by scatter-
ing experiments. Therefore, predictions for dynamical correlation functions
are among the quantities that are comparably easy to verify experimentally.
Unfortunately, the prediction of dynamical correlation functions is, especially
in condensed matter physics, a very challenging task and is possible analyt-
ically only to a very limited extend.

The zero-temperature dynamical response of a system is fully determined
by its retarded Green’s function (4.7) and is given by the Fourier transform
of the time-ordered Greens function with a small imaginary part, added to
achieve convergence,

G ponr () = GY s () + Gy 4 () (0.1)
1
U o +
G4 () = tim (0 \A EE Tyl \ o) 92)
1
L o .
G a(e) = tim (0 ]A e ot () D)

Here G% 4i(w) denotes the part of the Green’s function corresponding to

excitations which are higher in energy, and GﬁT 4(w) denotes excitations
lower in energy. What is measured in scattering experiments is the spectral
function, which is the imaginary part of the dynamical correlation function

0 0) = 9 (Gl () 04)
= [ [AT[ )6 (w + Bo — En). (9.5)

A short derivation of the above two formulae can be found in appendix B.
In the following, we will introduce three numerical methods based on the
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DMRG which all are suitable to predict dynamical correlation functions and
which take different approaches to calculate Eq. (9.5).

9.1 Continued Fraction Method

A fairly straightforward way of calculating (9.3) is to use the Lanczos method.

If we choose ]

[ug) = WAWJ) (9.6)

as our starting vector and then build up the corresponding Krylov space as
{|uo), H|uo), H?*|uo), H?|ug), ... }, (9.7)

we are not only tridiagonalizing H, but also the resolvent operator

1

: 0.8
Eo+w+in—H (98)

In this basis, the dynamical correlation function is directly given as [57]

. (V| AAT|Y)
Goaui(z=w+in) = : (9.9)
1
z Qo b%
zZz—q — ———————.
Z— Qa9 — ...

This expression is derived in Appendix D.

The method has some drawbacks, though. As pointed out in Sec. 5.1, the
Lanczos diagonalization algorithm usually loses orthogonality after a fairly
small number of steps. Therefore, the continued fraction expansion cannot
necessarily be carried out long enough to find all important poles. It only
works if the weights of the poles decrease sufficiently fast. Also, the result-
ing spectral function will consist of delta peaks which have to be convolved
with a broadening function, e.g., a Lorentzian, to give a smooth spectrum.
This makes it very difficult to determine boundaries in the density of states
and, therefore, for example, gaps precisely. In addition, if the operator A is
momentum dependent, e.g., cz, then the calculation has to be repeated for
each k.

9.2 Dynamical DMRG

The dynamical DMRG (DDMRG) determines the dynamical correlation func-
tion via a variational principle [58]. We will follow [59, 60] for its description.
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It is evident from Eq. (9.3) that if we know the correction vector, defined as

1

9a(e i) = g AN), (9.10)

we can easily calculate the dynamical correlation function. The correction
vector can be split up into its real and its imaginary parts,

[Yalw +in)) = [Xa(w +in)) +i[Yalw + in)), (9.11)
which are related to one another by
, H—-FEy—w .
| Xa(w +in)) = ————|Va(w + in)) (9.12)

due to the properties of the underlying Green’s function. Knowing this, the
problem of calculating Eq. (9.3) can be expressed as an inhomogeneous linear
equation

[(Bo +w — H)? +0*] [¢) = —n Al), (9.13)
which has the unique solution
|¢) = [Ya(w +in)), (9.14)
because
. 1
S (Gara(w+in)) = - <¢ ’AT T —77H)2 i A‘ 1/)> : (9.15)

Solving Eq. (9.13) can be accomplished by using iterative algorithms such
as these described in Sec. 5.1. Such algorithms yield approximate results
containing at least a numerical error on the order of the stopping criterion e.
Since

S (G aleo 1)) = ——(WIATYa(w + i), (9.16)

the error in the spectrum would then be proportional to €. Instead, one can
formulate the problem as a minimization problem in which one treats the
functional

Wan(w, 0) = ((Eo +w — H)* + n?|¢) +n([AT|6) +n(g|Al).  (9.17)

This functional has a well-defined and non-degenerate minimum given by

|Omin) = [Ya(w + i), (9.18)
for any n # 0 at any fixed frequency w. This yields
Wan(w, @) = —mn Lyt a(w +in). (9.19)

The DDMRG algorithm, which is based on these considerations now proceeds
as follows:
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1. Find the ground state |¢)) and the ground-state energy Fy on a given
superblock.

2. Calculate Aly).

3. Minimize the functional W ,(w, ¢) using a minimization method, e.g.,
a conjugate gradient method, yielding |Ya(w + in)).

4. Calculate | X 4(w + in)) using (9.12).

5. Include |¢), AlY), |Ya(w+in)) and | X s(w+in)) in the density matrix
as target states and build a new system block.

6. Start over with step 1 until the ground state as well as the functional
Wan,(w, @) are converged to their respective minima.

Using this method, very precise results for a given w can be obtained. Un-
fortunately, the calculation optimizes the reduced basis of the Hilbert space
for a certain w and, the calculation therefore has to be repeated for every w.
There are certain optimizations possible such as picking a “smart” starting
vector or including states with different w in the density matrix and interpo-
lating, but these optimization won’t be discussed here. The reader is referred
to Refs. [59] and [60] and references therein for further reading.

9.3 Time Evolution and Fourier Transforma-
tion

The final DMRG method for calculating dynamical correlation functions that
we will discuss here makes use of the time-evolution capability of the DMRG
[54] described in Chapter 8. It calculates the retarded Green’s function (4.7)
directly as

Gt (1) = —i0() ([A(1), AT(0)], ) (9.20)
= —i0(t) (™50 (W[ A|x (1)) % e~ B (— )] Al))

with |x(t)) := e HEAT|y)).

We can see here that, if we time-evolve Af|)), we only need to multiply |¢)
by et to obtain all the necessary ingredients to form the retarded Green’s
function. A few issues must nevertheless be addressed. If one wants to
measure the matrix element ()| A|x(t)) for different operators A, for example,
these A either must be adapted to the correct basis before a measurement
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can be made, or, if they are local operators, the matrix element must be
measured when the sites A acts on are the two exactly treated sites in the
DMRG algorithm (see Sec. 6.3.1). Also, to avoid strong boundary effects in
the behavior of the retarded Green’s function, one should take into account
the speed with which the perturbation, caused by Af, travels through the
system and choose the length of the time interval for the time evolution 7" to
be short enough so that the perturbation is not reflected from the end of the
system. This effectively limits the resolution in w for the spectral function.
This issue will be discussed in more detail later.

9.3.1 Extrapolation in Time

One way to counter this effect is to carry out a time evolution for a cer-
tain time 7" and then extrapolate to larger times either using some a priori
knowledge of the model and the corresponding Green’s function or, if nothing
is known about the model, using linear prediction [61]. The idea of linear
prediction is to use the last p points in a data series to predict the value of
the next point. The value of the predicted point is given by

p

F(n) == ax(n—i). (9.21)

=1

The parameters a; must be chosen using an appropriate method. The most
common method uses a root-mean-square or autocorrelation criterion. Using
the root-mean-square method, we minimize

x =Y (x(n) = &(n))’ (9.22)

for the data points we already know. This yields the equations

P
Y aR(i—j)=—-R(j), Jj=1,...,p, (9.23)
i=1

where R(i) is the autocorrelation, defined as

E — Mz —1) — T
Ry = B4 =)ot =) = )} 021
O’flf

where p, denotes the arithmetic mean of the data series z, and o, is its
standard deviation.
Eq. (9.23) can also be written in matrix form as
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where R is the autocorrelation or Toeplitz matrix with (R); ; = R(i—j), and
r is the autocorrelation vector with r; = R(j). From this it is clear that a is
given by

a=—R1r (9.26)

where R™! always exists because the Toeplitz matrix is symmetric. It should
be noted that this kind of prediction only works well if the extrapolated signal
is stationary, meaning that R(i) is independent of the contiguous subset of
the data we choose to calculate it from, or, in other words, if the signal has
no strong non linear effects.

9.3.2 Discrete Fourier Transform

To transform the raw data for the retarded Green’s function (4.7) that we
obtain from the time evolution to the spectral function (9.5) we desire, we
must carry out a Fourier transform. Unfortunately, we only have a finite
set of data points, and they have a discrete spacing and a limited range.
Therefore, we are limited to performing a discrete Fourier transform (DFT),
which imposes limits on the frequency resolution and on the maximum value
of the energy domain.

Aw="— 2

W= (9.27)
s

0=— 2

where 2 and T are the maximum energy and time, and Aw and At are
the intervals between points in energy and time respectively. It should now
be clear, that the maximum time 7T for time evolution is limited on small
systems, due to boundary effects, in turn, limiting the resolution Aw in
energy. Therefore, to achieve a high resolution in energy, a large numerical
effort is necessary because the calculation time scales linearly with the system
size and with the length of the time evolution. In addition, more states m
must be kept as the system size or length in time is increased, and the
numerical effort scales as m?. In total, the computation time therefore scales
as (’)(@).

A big advantage of this method is that a different operator A can be
measured at every step in the DMRG algorithm. We can, for example, make
measurements for each wave number & in one run for the case AT = c,t. This
speeds up calculations tremendously.
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Spurious Values in the Spectral Function

A problem that one encounters when using time evolution to calculate the
retarded Green’s function is that, on the one hand, there is a limit as to
how far one can go in time due to accuracy constraints and due to boundary
effects. On the other hand, when one calculates the retarded Green’s function
up to a certain point in time, one can never be sure all oscillations in the
system that are important have been resolved. In fact, for any finite system,
there is a recurrence time after which a perturbed system returns to its
original state. This recurrence time grows extremely fast with system size
and is therefore virtually impossible to reach with numerical time-evolution
schemes. In the following, we will discuss the effect of taking the Fourier
transform of a Green’s function that is only calculated up to a limited point
in time as well as how it can be compensated to some extent.

For this purpose, we have artificially created a signal which is similar but
not identical to the Fourier transformation of the retarded Green’s function
of the tight binding model (2.2). This signal is shown in Fig. 9.1. If we now
take the inverse Fourier transformation of this signal, we get a signal that
corresponds to the actual retarded Green’s function that we would measure
with our program if the underlying model had a density of states as depicted
in the lower picture in Fig. 9.1. The real part of this signal is shown in
Fig. 9.2. The imaginary part is very similar to the real part and is therefore
not shown.

Now we cut off the signal shown in Fig. 9.2 at the red vertical line and
Fourier transform back to the frequency domain. As can be seen, the Fourier
transform of the truncated signal in Fig. 9.3 shows some values which are
smaller than zero and are thus clearly spurious at approximately z = 40 (blue
line). This “overshooting” is due to the truncation of the time signal at a
certain point in time and can, to some extent, be compensated by multiplying
the signal with a filter function, e.g., a Kaiser window [62], before Fourier
transforming (green line). While this reduces the magnitude of the spurious
negative values, it does not compensate them completely. It should also be
pointed out that these kinds of errors do not shift the positions of the peaks
nor do they significantly change the height of the peaks, as long as a good
filter function is used.

Such spurious values will appear again in the results shown in Chapter 12,
but one should keep in mind that they are artifacts that are solely due to the
discrete Fourier transformation and due to the calculation of the retarded
Green’s function over a finite time range. They are therefore unavoidable
and do not stem from problems in the algorithm or the data analysis.
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Figure 9.1: Real and imaginary part of the example signal.



9.3. TIME EVOLUTION AND FOURIER TRANSFORMATION 81

15000 H .

10000 4

5000 g

Re(G)
o

-5000 - .

-10000 .

-15000 .

0 50 100 150 200
t

Figure 9.2: Real part of the inverse Fourier transform of the signal in Fig. 9.1.
The red line denotes the artificial cut-off.
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Figure 9.3: Fourier transform of signal shown in Fig. 9.2. The Fourier trans-
form of the full signal, the truncated signal and the truncated signal multi-
plied with a Kaiser filter function are as indicated in the legend.
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9.4 Implementation Issues

It should also be noted that all the methods described above need to be able
to handle operators that change quantum numbers. While this is obviously no
problem from an analytical point of view, it leads to technical complications
in the DMRG. As we have already pointed out in Chapter 6, to keep the
size of the Hilbert space we are dealing with as small as possible we have
restricted our Hilbert space to a certain set of quantum numbers. If we
now were to apply an operator that changes quantum numbers to a state
within this Hilbert space, the resulting state would not be within that set
of quantum numbers any more. Therefore, before being able to apply such
an operator one has to build a new superblock with a new basis suitable
to represent states with this new set of quantum numbers. While this is
somewhat difficult from a programming point of view, it contains no notable
pitfalls from a physical point of view and will therefore not be discussed here
any further.
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In modern physics, there exists a wide variety of materials that are quasi-
one-dimensional in first approximation and therefore exhibit features that
can only be explained by treating them as such. Some more widely known
examples of such materials are metal atoms that are aligned in a chain [63],
carbon-based systems, typically referred to as carbon nanotubes and car-
bon nanowires [64], charged crystalline compounds that consist of differently
charged chains separating one from another (e.g., Ky PtS; or CaNiN) [65] as
well as organic charge transfer salts (e.g., TTF — TCNQ) [66]. All of these
materials have in common that they behave as one-dimensional systems up
to certain excitation energies. However, most of them exhibit properties
that cannot be completely described within the framework of a Luttinger-
liquid (see Sec. 3.1). Instead, one also needs to take the full interactions in
the system into account. Therefore, the Hubbard model and its extensions
described in chapter 2 are comparatively good models for describing these
quasi-one-dimensional materials and already exhibit most of the properties
stemming from the full electron-electron interaction.

In this part of the thesis, we will apply the majority of the methods that
have been described in Part IT and that have partially been implemented as
part of this thesis, to the Hubbard (2.4) and to the extended Hubbard model
(2.8). First, we will consider a test case for which the phase diagram and the
spectral function have been calculated previously using a different method [1]
to demonstrate that the methods proposed here yield correct results. In the
next chapter, we will use the different measures of quantum entropy described
in Sec. 4.1 to establish a consistent picture of the different phases and of the
order of the phase transitions in the extended Hubbard model. We will also
point out why some other measures fail at the same task. Finally, we will
use time evolution and subsequent Fourier transformation, as described in
Chapter 8 and 9, to calculate the spectral function and the density of states
for the extended Hubbard model starting from previously known results and
exploring the changes in the aforementioned functions over a broad spectrum
of parameters and encompassing various phase transitions. The calculation
of spectral functions is especially important because it is possible to measure
them via angle-resolved photoemission spectroscopy (ARPES) [67], thereby
enabling comparison between theory and experiment.
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Chapter 10

Tests

In 2007, E. Jeckelmann and H. Benthien published results for the spectral
function of the half-filled Hubbard and for the extended Hubbard model
in the limit V' < U using the DDMRG method [1] described in Sec. 9.2.
Since the DDMRG is a method based on an entirely different algorithm
than the time evolution algorithm used in this thesis, it is well suited for
a comparison. As part of the above mentioned article, the angle-resolved
spectral function of the Hubbard model (2.4) at U/t = 7.74 was calculated.
In the following, we will compare these calculations with our own in oder to
investigate the validity of the newly developed method. We will only conduct
a qualitative comparison because a quantitative comparison would not be
able to clarify if the measured error stems from the DDMRG calculations
or from the calculations conducted in this thesis. A direct comparison with
analytical results is not possible here, because such results only exist for the
cases U = 0 and U — oo. Neither of these cases can be calculated within
the DMRG for numerical reasons.

In Fig. 10.1 we show a density plot of the spectral function for the Hub-
bard model at U/t = 7.74 obtained in Ref. [1] and the same plot obtained
by the time evolution method described in Chapter 9. It can be seen that
all the important features are clearly visible. Most of the weight is in the
spinon and in the first holon branch, denoted S and H, respectively, in the
upper image of Fig. 10.1; the other two holon branches H' and H” are also
clearly visible in the lower image. The discrepancy in the energy axis is due
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Figure 10.1: Angle-resolved spectral function of the Hubbard model for U/t =
7.74. (a) Results from Jeckelmann et al. [1] and (b) results obtained in this
thesis.



91

to the different formulations of the Hamiltonian. In Jeckelmann’s article [1]

N-1
Hyuwp, = —t Z Z (C;'r—i-l,crci,o + CzT,aCz‘+1,a>

i=1 o=1,|

N—-1 1 1
U W TS il T 5 |
w03 (i 3) (mi—3)

whereas in our calculation (2.4) was used as the Hamiltonian, thereby shifting
the energy spectrum up by U/2.

Both the upper and the lower Hubbard band are shown in the lower image
in Fig. 10.1. This leads to another consistency check as follows. We have
shown in Sec. 2.2 that the half-filled Hubbard model (2.4) is particle-hole
symmetric. Therefore, we know that the density of states must be symmetric
around U/2t = 3.87. That this is actually the case can be seen in Fig. 10.2. In

(10.1)

0.04

0.035

0.03 - .

0.025

DoS

0.02 |- 4

0.015 - g

0.01 - 4

0.005

o

wit

Figure 10.2: The density of states for the half-filled Hubbard model with
U/t =17.74.

fact, the main source of asymmetries in this figure are discretization effects.
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Chapter 11

Phases in the Extended
Hubbard Model

In this chapter, we present results for the phase diagram of the extended
Hubbard model, which has been the subject of a few recent studies [14, 2, 16,
68]. These results have been obtained using quantum entropy measurements,
which have been described in Sec. 4.1. With the help of these measurements,
we are able to determine the phase boundaries as well as, to some degree,
the order of the phase transitions. We first consider the behavior of the
two-site and block entropies. In order to map out the phase boundaries, we
sweep over a grid of different values for U and V' in the extended Hubbard
Hamiltonian (2.8). Since the phase transitions are expected to lie around
U = 2V, we choose to sweep V' from V/t = 2 to V/t = 5.5 in steps of 0.5
for a number of values of U/t to pass through the phase transition lines in a
direction which is closer to perpendicular.

11.1 Computational Details

The DMRG calculations used to obtain the following results have been car-
ried out using the finite-system algorithm [4, 5, 3] on systems with open
boundary conditions with the number of lattice sites N ranging from N = 32
to N = 512. Open rather than periodic boundary conditions have been used
for two reasons: First, as we already pointed out in Chapter 6, the DMRG is
substantially more accurate for open boundary conditions for a given compu-
tational effort. Second, since open boundary conditions explicitly break the
translational invariance, a corresponding spontaneously broken symmetry of
the ground state, which, strictly speaking, can only occur in the thermody-
namic limit, appears in the entropy profiles of finite-sized systems [69, 70].
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This is, for example, the case for the BOW phase.

Since only ground-state properties are required to calculate the Von Neu-
mann entropies, we need only calculate the ground-state wave function and
the appropriate observables for the half-filled system. We have used dy-
namic block-state selection (DBSS), which chooses the size of the Hilbert
space retained in each truncation by keeping the block entropy of the dis-
carded density-matrix eigenstates constant [71]. It is important to do this
because the accuracy of the Von Neumann entropy as calculated using the
approximate DMRG wave function in Eq. (4.5) is directly related to the en-
tropy threshold used. In our calculations we have used a threshold for the
quantum information loss of y < 107!, which yields extremely precise re-
sults and requires a maximum of approximately m = 3000 block states to be
retained. In general, we estimate that the errors due to the truncation in the
DMRG calculations are negligible in comparison to the uncertainties arising
from the finite-size scaling.

11.2 Entropy Profiles

For all sweeps, we find that two peaks develop in both the two-site entropy,
Fig. 11.1, and in the block entropy, Fig. 11.2, for sufficiently large systems.
Note that the second peak in the block entropy can only be seen at system
sizes of N = 96 and larger. This slow size dependence might be the reason
why this phase was not seen by Deng et. al. [16].

We interpret the peak at lower U as marking the CDW-BOW phase
transition at the corresponding system size, and the peak at larger U as
indicating the BOW-SDW phase transition. The differing shapes of the two
peaks are consistent with the picture that the CDW-BOW transition is first
order in this parameter regime [2|, while the BOW-SDW transition shows
characteristics of an infinite-order transition.

The interpretation that the intervening phase is a BOW phase is sup-
ported by the behavior of the two-site entropy for two adjacent sites (odd
and even bonds) in the center of the lattice, plotted for the largest sys-
tem size, N = 512, in Fig. 11.1. The dimerization entropy is given by
D, = Snja41(2) — Sny2(2), which is the difference between the two N = 512
curves. It is clear that this difference reaches a marked maximum between
the two peaks associated with the phase transitions. Finite-size extrapola-
tion (not shown) indicates that D, remains finite in the thermodynamic limit
in the intermediate phase.

The positions of the two peaks in the two-site or block entropy can then
be extrapolated to the thermodynamic limit. While the functional form
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Figure 11.1: Two-site entropy Sn/241(2) for V/t = 3, plotted as a function
of U/t. System sizes range from N = 64 to N = 512 sites.
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S(N/2 + 1)

5.4 5.6 5.8 6 6.2 6.4 6.6
U/t

Figure 11.2: Block entropy at the center of the chain S(N/2+1) for V/t =3
and system sizes from N = 64 to N = 512 sites.
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of this extrapolation is not exactly known, using a fourth-order polynomial
yields stable results, with a rapid falloff in coefficient size for higher orders.
Therefore, the behavior is predominantly linear. This can be seen in Fig. 11.3.
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BOW-SDW (B) @
I
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Figure 11.3: Finite-size extrapolation of the peaks in Figs. 11.1 and 11.2 to
the thermodynamic limit, 1/L — 0, using fourth order polynomials in 1/L.
“2s” labels the two-site entropy and “B” the block entropy.

11.3 The CDW-BOW Transition

A comparison of Figs. 11.1 and 11.2 clearly shows that the peaks in the block
entropy at lower U are sharper and higher than those in the two-site entropy.
In addition, the position of the peaks in the block entropy match the jump
in the one-site entropy (see Fig. 11.4) better than the position of the peak
in the two-site entropy. Therefore, we conclude that the block entropy is,
in general, a better indicator for the position of the CDW-BOW transition
than the two-site entropy. As can be seen in Fig. 11.3, the fits to the two-site
and the block entropies (the two lower curves) match almost exactly in the
thermodynamic limit, so that this issue is virtually irrelevant here.

A more difficult issue is to determine where nature of the CDW-BOW
transition changes from first-order to continuous. This can best be investi-
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gated using the finite-size extrapolation of the one-site entropy. In Fig. 11.4,
we show the one-site entropy extrapolated to the thermodynamic limit using
a polynomial of cubic order. It is apparent that the entropy has a jump at the
transition point when V/t > 4, a clear indication of a first-order transition.
At approximately V/t = 3, the transition is close to becoming continuous in
that a jump is no longer present. For smaller values of V/t (not shown), it is
clearly continuous. Therefore, we conclude that the first-order-to-continuous
bi-critical point must occur somewhere near, but below V/t = 3. Note that
it is difficult to determine the location of this point with more accuracy
because one would have to determine whether or not an increasingly small
jump is present in the finite-size extrapolated data as the bi-critical point is
approached on a sufficiently finite grid.

V/t=3.00 —
1.4 | V/t=3.50 1
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Sni2(1)

0.8 ]

uh

Figure 11.4: Extrapolated one-site entropy Sn/2(1) plotted as a function of
U/t for various values of V/t.

11.4 The BOW-SDW Transition

The BOW-SDW transition is believed to be infinite-order [21] and is therefore
much harder to characterize. While we were able to obtain a fairly good
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estimate for the position of the CDW-BOW transition just by examining
the bond order parameter, this is not possible for the BOW-SDW transition,
as will be discussed in Sec. 11.5. It can be seen in Figs. 11.1 and 11.2 that
the maxima corresponding to the BOW-SDW transition (the peaks at higher
U/t) are much broader. Therefore, small errors in the numerical calculations
would have a bigger influence on the result than for the case of the CDW-
BOW transition.

Results for the phase boundaries are shown in Fig. 11.5, plotted in the
tilted V-U phase, i.e., with axes 2V /U and U, so that the transition region
is discernible. Included are data from Ref. [2] in which the phase boundaries
were determined from the spin and charge exponents calculated using QMC
methods. There is generally very good agreement for the location of the
CDW-BOW transition, with some deviation of the results from the two-site
entropy at smaller U/t values. As we have argued above, the block entropy is
a better indicator of the position of this transition because the peak is better
developed and grows more rapidly with system size.
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Figure 11.5: The phase diagram in the tilted U-V-plane, showing phase
boundaries determined using the two-site entropy (2s), the block entropy
(B), and including results from Ref. [2], determined from QMC calculations.
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For the BOW-SDW transition, the two-site and the block entropies coin-
cide perfectly upon scaling for higher U and V' values, where only a first-order
transition is present, as can be seen in Fig. 11.5. However, there is a discrep-
ancy in the position of the peaks in the infinite-system extrapolations of the
two-site and the block entropies (see Fig. 11.3) for smaller values of U and
V. This occurs for the entire range of parameter values in which a BOW
phase and, therefore, an infinite-order transition is present. This is proba-
bly partially due to uncertainty in localizing the broad peak in the entropies
corresponding to the BOW-SDW transition. In addition, due to the strong
increase of the block entropy with system size below U/t ~ 4, we cannot treat
systems of more than a few hundred lattice sites for fixed y = 1071, leading
to increased uncertainty in the finite-size extrapolation. For U/t < 3, the
second peak in the entropy functions develop only for N > 96, quite severely
limiting the extrapolation to infinite system size. We therefore display the
phase diagram only for U/t > 3 in Fig. 11.5

11.5 Bond-Order-Parameter Results

One could argue that using the bond order parameter (2.12) to determine
the extent of the bond-ordered phase would be the most straightforward way
and should be used. Whether the bond order parameter is finite or vanish-
ing in the thermodynamic limit would determine whether a given point in
parameter space is bond ordered or not, and a grid of such points can be
used to determine the phase boundaries. Unfortunately, there are two major
problems with this strategy. First, the transition between the BOW and
SDW phases is expected to be infinite-order, and we indeed find behavior
characteristic of an infinite-order transition. This means that the extrapo-
lated bond order parameter tends to zero exponentially as the BOW-to-SDW
transition is approached. Second, while it is know that the bond order pa-
rameter is linear in 1/N in the CDW phase and proportional to 1/v/N in the
SDW phase, the analytic form of the finite-size scaling in the BOW phase is
not known and changes nature as the transition is approached.

To investigate whether the bond order parameter is a suitable measure
for determining the extension of the BOW, we have carried out calculations
to very high precision. The resulting data is sufficiently accurate so that it
can be regarded as essentially exact for a particular system size for fitting
purposes. We have carried out the extrapolation to the infinite-system limit
by fitting to three different functions: a polynomial in 1/N, a polynomial in
1/ V'N, and a power law of the form 1 /N®. The extrapolated data is shown
in Fig. 11.6. In the CDW phase, to the left of the transition indicated by



11.5. BOND-ORDER-PARAMETER RESULTS 101

vertical lines, the fit to a polynomial in 1/N gives the best result, yielding the
expected value, zero, to the best accuracy. In the SDW phase, for U/t 2 8,
the polynomial fit in 1/v/N and the fit to a power law work better, yielding
the expected value of zero to within reasonable accuracy. This is indicative
of a scaling whose dominant term falls off more slowly than 1/N. In the
intermediate region, i.e., in the BOW phase, the results differ significantly,
with both the fit to powers of 1/ V/N and the power-law fit extrapolating to
spurious negative values. In addition, the power-law fit is clearly unstable
in the BOW region. While the fit to a polynomial in 1/N seems to be more
stable, it clearly overestimates the bond order parameter significantly in both
the SDW phase and in most of the BOW region. Therefore, we conclude
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Figure 11.6: Bond order parameter B extrapolated to the thermodynamic
limit using fits to three different functions: fit to a third-order polynomial
in 1/N (Poly), fit to a third-order polynomial in 1/v/N (Sqrt Poly), and fit
to a power law 1/N* (Power-law) with « a fitting parameter, plotted as a
function of U/t. The vertical lines indicate the transition point determined
using the two-site entropy (2s) and the block entropy (B).

that the behavior of the bond order parameter can be used to confirm the
position of the CDW-BOW phase transition but is notoriously unreliable for
determining the location of the BOW-SDW phase transition. [14, 2]
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11.6 Phase Diagram and Discussion

We now summarize the current state of knowledge of the phase diagram of
the half-filled extended Hubbard model and discuss open issues and uncer-
tainties. The overall phase diagram is relatively well understood; our results
are depicted in Fig. 11.7. The presence of the SDW phase at 2V < U and
the CDW phase at 2V > U have been long understood, as well as the fact
that the transition occurs at 2V = U. The picture of there being a single
first-order transition line at strong U and V' [72] is also well-established. Our
work lends support to a picture in which an intermediate BOW phase is
present between the CDW and SDW phases for intermediate to small U and
V'; our results indicate that this phase is present for V/t < 5. At this point,
we find that the first-order CDW-SDW transition line bifurcates into a first-
order CDW-BOW transition line and an infinite-order BOW-SDW transition
line. The CDW-BOW transition line remains first-order at a bi-critical point
at somewhat smaller V/t, below which it becomes continuous, presumably
second-order. These results are in reasonable agreement with the results of
Refs. [2] and [14]. We therefore regard these features of the phase diagram
as being well-established.

We now discuss details of the phase transition more quantitatively. As
we have seen in Fig. 11.5, there is not much uncertainty in the position of
the CDW-BOW phase transition. The remaining interesting question for
this transition is the location of the bi-critical point, i.e., exactly where the
phase-transition line goes from being first-order to being continuous (presum-
ably second-order). However, as we have pointed out in Sec. 11.3, entropy
measurements can only roughly determine that this point occurs at around
V/t = 3 and are not an ideal measurement to locate it more accurately.
While other authors have obtained putatively more accurate values for the
location of this bi-critical point [14, 2], we point out that the inaccuracies
in the method used here reflect intrinsic limitations of the numerical meth-
ods, which stem both from the DMRG truncation error as well as from the
limitations of working with finite systems.

The exact position of the BOW-SDW phase-transition line is also some-
what uncertain. There is a small but significant discrepancy in our cal-
culations between the values obtained from the two-site-entropy and those
obtained from the block-entropy; however, both of these extrapolated values
seem to converge smoothly to the same line at the tri-critical point. The
most likely explanation for the discrepancy in the extrapolations lies in the
finite-size extrapolation, i.e., more precise results could be obtained if larger
system sizes could be treated. The deviations between the two values for the
transition line can be taken as a rough estimate of the uncertainty in the
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position of the line. In addition, both of these values deviate from those of
Ref. [2] (see Fig. 11.5), a deviation to larger values of V| i.e., to a narrower
BOW phase, in both cases.
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Figure 11.7: The phase diagram in the U-V-Plane obtained from our calcu-
lations. On this scale, uncertainties in the position of the transition lines are
smaller or about the size of the symbols. The phase in the narrow region
between the two transition lines is BOW.

In summary, the DMRG method, coupled with the use of single-site,
two-site, and block entropies, is a powerful, relatively unbiased method to
determine subtle properties of phase diagrams such as that of the extended
Hubbard model at half filling. However, the limitations of the numerical re-
sults reflect the intrinsic limitations of the method and the problem studied.
In particular, three aspects of the phase diagram studied here remain difficult
to pin down numerically: the exact position at which the CDW-SDW line bi-
furcates into CDW-BOW and BOW-SDW transition lines, the position of the
bi-critical point at which the CDW-BOW transition goes from first to second
order, and the exact position of the infinite-order BOW-SDW transition. In
addition, our calculations make clear that quantitative determination of the
transition lines become very difficult in the region of small U and V, at least
for real space DMRG. In the parameter regions with U,V < ¢t momentum
space DMRG could be used successfully.
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Chapter 12

Spectral Functions and Density
of States

In this chapter, we will present one-particle spectral functions and densities of
states calculated for the extended Hubbard model (2.8) at different values of
U/t and V/t. We will examine the typical features of these spectral functions
and densities of states within the SDW and CDW phase and will also give an
intuitive explanation for the most important features. We will also closely
examine the transition region between the two phases, which exhibits a BOW
phase.

The theoretical calculation of angle resolved spectral functions is espe-
cially important since it makes a strong connection to the experimental side
of physics. That is, because spectral functions are measured fairly directly in
angle resolved photoemission spectroscopy (ARPES) [73, 74], in comparison,
for example, to measuring spin-spin correlation functions directly, which is
virtually impossible.

12.1 Computational Details

The results in this chapter have been calculated using the finite system al-
gorithm of the DMRG [4, 5, 3] on a 64 site system with open boundary
conditions to calculate the ground-state wave function. The time evolution
algorithm described in Sec. 8.1 was then applied to calculate the retarded
Green’s function of the system. Comparably small system sizes and open
boundary conditions were used because the time evolution is extremely ex-
pensive computationally and therefore treating larger system sizes and/or
periodic boundary conditions would not have been feasible. Using smaller
systems, on the other hand, would have limited the resolution in energy and
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momentum significantly. The system sizes were therefore chosen to be as
large as possible while still keeping the computational cost reasonable.

The dynamic block state selection (DBSS) scheme, described in chapter
6, was used to carry out the truncation of density-matrix eigenstates. A
discarded weight- or entropy-based truncation algorithm is especially advan-
tageous here because it allows for a dynamic increase of block states during
the time evolution. This is usually necessary because a perturbation traveling
through the system typically increases the correlations between different sys-
tem parts and, therefore, also increases the number of block states one needs
to maintain a given level of accuracy in the calculation. Here a maximum
number of m = 800 block states were kept during the calculation, limiting
the accuracy to roughly ¢ = 10~° during the time evolution. The time evo-
lution itself was performed in a series of 200 time steps, each of which had a
duration of At = 0.15, yielding a total evolution time of T" = 30. A longer
time could not have been chosen, because extending the time evolution to
longer times would have introduced strong boundary effects into the results,
which would have been undesirable. To approximate e~ 4! in every step of
the time evolution, 10 Lanczos vectors were used, keeping the error in the
time evolution itself of the order of the truncation error or below.

The above mentioned values for the time evolution yield a maximum re-
solvable energy of 2 = T ~ 20.94. This value is large enough to treat the
model and the parameter values chosen. The energy resolution obtained is
Aw = 2% ~ (0.21. Obviously, a better resolution in energy is always prefer-
able, but as we have already pointed out in Sec. 9.3.2, an increase in energy
resolution also increases the computation time tremendously (computation
time o< O(ﬁ) Therefore, a reasonable trade-off between computational
effort and energy resolution was made.

It also needs to be noted that the following results do not stem from
calculations for a perturbation on a single site. Instead, calculations were
performed for the four middle sites of the system for each set of parameters
and the results were then averaged over these sites, yielding a significant
increase in precision, especially for system with a dimerized or otherwise
periodic, e.g., incommensurate, ground state.

12.2 The Spin-Density-Wave Phase

The SDW phase shows a periodic modulation in the expectation value of
a spin component, e.g., (S,). In the case of the half-filled Hubbard and
extended Hubbard model with open boundary conditions the SDW phase
is typically commensurate with a periodicity of 2a, where a is the lattice
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constant. A simplified depiction of a SDW can be seen in Fig. 12.1.

} | i | }
| V | V |

Figure 12.1: A simplified depiction of a SDW.

Within a SDW phase the important features of the spectral function,
such as shape and distribution of the energy bands, do not change. This can
be seen by a comparison of Fig. 10.1(b) and Fig. 12.2(a). It is important
to note, though, that while Fig. 10.1(b) depicts the spectral function of the
Hubbard model (2.4) at U/t = 7.74, Fig. 12.2(a) shows the spectral function
of the extended Hubbard model (2.8) at U/t = 8 and V/t = 0.5. We can
therefore see that a perturbation of the Hubbard model ground state with a
small V, i.e., a weak nearest-neighbour repulsion, does not cause a significant
change in the features of the spectral function.

The biggest discernible difference is that the upper and the lower band
are both shifted upwards in energy due to the additional V' term. It is also
notable that, even though the additional V' term formally breaks the particle-
hole symmetry in the system, the density of states remains in a mostly sym-
metric shape as long as the system is in a SDW phase, as can be seen in
Figs. 12.6-12.9. Only for larger values of V', close to the phase transition,
are asymmetries clearly distinguishable, as seen in Fig. 12.9(b). Figs. 12.2-
12.5 also clearly show that most of the excitation weight is clustered in the
spinon branch and the first holon branch starting at k£ = 0 and extending up
to k = § = kp in the lower band, whereas most of the excitation weight is
between krp and 7 in the upper band. This tendency dramatically increases
for larger values of V' until the two other holon branches, H and H”, com-
pletely disappear close to the phase transition. It can also be seen that the
gap shrinks continuously with increasing V' until it eventually vanishes right
on the transition line to the CDW phase (not shown). This is even clearer
in Figs. 12.6-12.9 were the outer peaks, clearly visible in Fig. 12.6, showing
the weight in H” slowly disappear and the charge gap shrinks under U/t = 3
in Fig. 12.9(b). These findings are also consistent with the behavior of the
charge gap in Ref. [2].
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Figure 12.2: Angle-resolved spectral function A(k,w) of the half-filled ex-
tended Hubbard model at U/t = 8 and V/t from 0.5 to 1.
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Figure 12.3: Angle-resolved spectral function A(k,w) of the half-filled ex-
tended Hubbard model at U/t = 8 and V/t from 1.5 to 2.
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Figure 12.4: Angle-resolved spectral function A(k,w) of the half-filled ex-
tended Hubbard model at U/t = 8 and V/t from 2.5 to 3.
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Figure 12.5: Angle-resolved spectral function A(k,w) of the half-filled ex-
tended Hubbard model at U/t = 8 and V/t from 3.5 to 4.
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Figure 12.6: Density of states N (w) of the half-filled extended Hubbard model
at U/t =8 and V/t from 0.5 to 1.
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Figure 12.7: Density of states N (w) of the half-filled extended Hubbard model
at U/t =8 and V/t from 1.5 to 2.
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Figure 12.8: Density of states N (w) of the half-filled extended Hubbard model
at U/t =8 and V/t from 2.5 to 3.
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Figure 12.9: Density of states N (w) of the half-filled extended Hubbard model
at U/t = 8 and V/t from 3.5 to 4.
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12.3 The Charge-Density-Wave Phase

A CDW phase exhibits a modulated pattern in charge density as described in
Sec. 2.3.1. In a half-filled extended Hubbard model, the typical modulation
frequency is % leading to a wavelength of 2a, just as in the SDW phase.
Fig. 12.10 shows a graphical representation of a typical CDW phase.

In the CDW phase, the spectral function and the density of states are
completely different from those in the SDW phase. As can be seen in
Figs. 12.14-12.16, there is clearly no sign of symmetry between the upper
band and the lower band anymore, and the spectral functions shown in
Figs. 12.11-12.13 have a completely different structure. They are dominated
by a band of lower excitations that is found at a frequency of roughly U and
a band of upper excitations that is centered around a frequency of 4. Both
of these bands show only a very small dispersion in k. These excitation bands
can be easily understood if we consider the atomic limit. If we assume that a
CDW phase, as depicted in Fig. 12.10, is present and we insert a particle at
one of the empty sites, we have to pay an energy of V for every particle on
an adjacent site, hence 4V. Whereas if we assume that we remove a particle
from the state shown in Fig. 12.10, wait for some time, and then force it back
onto the same position, we have to pay an amount of energy approximately
equal to U. And, in fact, the lower excitation band is the Fourier transform of
GQRA(W)’ see Eq. (9.3), and the upper excitation band is the Fourier trans-

form of GX,AT (w), see Eq. (9.2). More interesting are the excitations that
! p p
| !

Figure 12.10: Simplified depiction of a CDW phase.

appear at frequencies of about 2V and 3V for k = 7/2 and have a dispersion
in such a form that the two bands of excitations meet at k = 7. It would be a
very interesting question to investigate if these excitations which seem to be
of excitonic nature are due to the finite system size or if they also appear in
experimental studies. For other parameter regions, the existence of excitons
has already been predicted [75, 76]. Unfortunately, much larger system sizes
are not feasible for spectral function calculations with the DMRG because,
as we already pointed out in Sec. 9.3.2, the computational cost for spectral
functions grows approximately as the fifth power of the time evolution length
and, even if the time evolution length is not increased with the system size,
the computational cost still grows with the fourth power of the length of
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the system because the algorithm for fixed m is linear in the system size,
and the required number of states kept m scales approximately with system
size. Omne should also keep in mind that this should in principle not be an
issue, because a perturbation of a finite system should approximately have
the same effect as on an infinite system as long as the perturbation does not
reach the system boundaries in the process of the time evolution. We can
also see that, the majority of the weight of the lower band at a frequency
of U is between 0 and kr = 7, whereas most of the weight of the bands at
2V, 3V and 4V is between kr and 7. It is noteworthy that secondary bands
appear above and right below the upper band and also below the lower band
for larger values of U. Unfortunately, we have not been able to find a simple
explanation for those bands. This would make it even more interesting to
know if these bands can be found in experimental studies as well.

In Figs. 12.15 and 12.16, one can see that the excitations around 2V and
3V gain weight for larger U. This makes sense because the strong on-site
interaction U causes a deviation from the clear CDW pattern depicted in
Fig. 12.10 and therefore leads to more sites which are not strictly doubly
occupied. Thus, less energy needs to be paid if one wants to add a particle
on an adjacent site. It is also noteworthy that the spectral function becomes
more and more symmetric about k& = 7/2 for smaller values of U. This is
explained by the fact that the system would be in a fully dimerized state
at U = 0 and, therefore, the excitation spectrum would then be completely
reflection symmetric about k = 7/2 = kp.

These findings for the spectral function in the CDW phase agree with the
findings of Aichhorn et al. [77] but are more detailed. The lack of detail in
Ref. [77] is due to the fact that a variational cluster approach that is based
on dynamical mean field theory (DMFT), is used. This method is only exact
in the limit of infinite dimensions and the calculation is restricted to a cluster
size of N = 12.
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(b) U/t =2

Figure 12.11: Angle-resolved spectral function A(k,w) of the half-filled ex-
tended Hubbard model for V/t = 4 and U/t from 1 to 2.
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(b) U/t =4

Figure 12.12: Angle-resolved spectral function A(k,w) of the half-filled ex-
tended Hubbard model for V/t =4 and U/t from 3 to 4.
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(b) U/t =6

Figure 12.13: Angle-resolved spectral function A(k,w) of the half-filled ex-
tended Hubbard model for V/t = 4 and U/t from 5 to 6.
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Figure 12.14: Density of states N(w) of the half-filled extended Hubbard
model for V/t =4 and U/t from 1 to 2.
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Figure 12.15: Density of states N(w) of the half-filled extended Hubbard
model for V/t =4 and U/t from 3 to 4.
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Figure 12.16: Density of states N(w) of the half-filled extended Hubbard
model for V/t =4 and U/t from 5 to 6.
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12.4 The Transition Region

The features in the transition region are especially interesting because ana-
lytical calculations are virtually impossible in this parameter regime; as far
as we know no other numerical data for the angle-resolved spectral function
is available.

We can see that the separation of the spectral weight into the different
branches disappears as the transition point is approached either coming from
the SDW or from the CDW phase. One can observe that the system passes
through a state that has a spectral function very similar to the spectral func-
tion of a small-U Hubbard model. This can be seen by comparing Figs.
12.18(b), 12.19(a), 12.23(b) and 12.24(a) with Fig. 12.25. This similarity is
due to the fact that the effects of the repulsive on-site interaction U and
the repulsive nearest-neighbor interaction V' compensate each other at half
filling around U ~ 2V, leaving the system in a state that exhibits properties
which are very similar to the ground state of the Hubbard model at small
U. While the similarities between the Hubbard model at small U and the
extended Hubbard model are striking, the spectral functions are not identi-
cal. In comparison to the spectral function of the small-U Hubbard model
(Fig. 12.25), we see that in the extended Hubbard model (Figs. 12.18(b),
12.19(a), 12.23(b), and 12.24(a)) the spectral weight of the excitation bands
is significantly more smeared out as k — 0 and k — 7.

We can conclude, though, that many features of the angle-resolved spec-
tral function of the half-filled extended Hubbard model are still not well
understood. This is especially true in the phase transition region. Further
investigations as well as verification by experiments would be sensible.
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(b) U/t = 7.25

Figure 12.17: Angle-resolved spectral function A(k,w) of the half-filled ex-
tended Hubbard model for V/t = 4 and U/t from 7 to 7.25.
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(b) U/t =777

Figure 12.18: Angle-resolved spectral function A(k,w) of the half-filled ex-
tended Hubbard model for V/t = 4 and U/t from 7.5 to 7.77.
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(a) U/t = 7.86

20

.

512

(b) U/t =8

Figure 12.19: Angle-resolved spectral function A(k,w) of the half-filled ex-
tended Hubbard model for V/t = 4 and U/t from 7.86 to 8.
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Figure 12.20: Density of states N(w) of the half-filled extended Hubbard
model for V/t =4 and U/t from 7 to 7.25.
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Figure 12.21: Density of states N(w) of the half-filled extended Hubbard
model for V/t =4 and U/t from 7.5 to 7.77.
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Figure 12.22: Density of states N(w) of the half-filled extended Hubbard
model for V/t = 4 and U/t from 7.86 to 8.
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(b) U/t = 5.75

Figure 12.23: Angle-resolved spectral function A(k,w) of the half-filled ex-
tended Hubbard model for V/t = 3 and U/t from 5 to 5.75.
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(b) U/t =7

Figure 12.24: Angle-resolved spectral function A(k,w) of the half-filled ex-
tended Hubbard model for V/t = 3 and U/t from 6 to 7.
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Figure 12.25: Angle-resolved spectral function A(k,w) of the half-filled Hub-
bard model at U/t = 2.
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Figure 12.26: Density of states N(w) of the half-filled extended Hubbard
model for V/t = 3 and U/t from 5 to 5.75.
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Figure 12.27: Density of states N(w) of the half-filled extended Hubbard
model for V/t =3 and U/t from 6 to 7.



136 CHAPTER 12. SPECTRAL FUNCTIONS AND DENSITY OF STATES



Chapter 13

Conclusion

13.1 Achievements

The results presented in this thesis consist of two primary parts: In the first
part, we have used recently developed quantum-information-based measures
within the DMRG (see Sec. 4.1) to calculate the ground-state phase diagram
of the one-dimensional extended Hubbard model (2.8). In particular, we
have examined the phase transition region in which there is a competition
between two phases, showing antiferromagnetic and charge-ordered behavior,
respectively. Here we have been able to lend significant support to a recently
proposed picture that predicts the existence of a phase featuring alternating
bond strength between the two above mentioned phases [2]. Our findings for
the phase diagram as well as a discussion of the results and a comparison
with previous results are detailed in Chapter 11.

In the second part, we have explained the implementation and adaption
of recent ideas for calculating experimentally relevant dynamical response
functions using the DMRG. These ideas are based on time-evolving a quan-
tum mechanical system directly to obtain the dynamical response of the
system, e.g., the retarded Greens function. Using these ideas, we have pro-
ceeded to calculate the angle-resolved spectral function and the density of
states for the extended Hubbard model. This is important for understanding
and interpreting the results of various scattering experiments such as angle-
resolved photoemission or electron scattering. Indications are that these new
methods will allow for significantly faster calculations of dynamical response
functions. In Chapters 8 and 9 we have explained in detail the theory and
algorithms used in our calculations. In Chapter 12, we have presented the
calculated data for the angle-resolved spectral functions and the density of
states of the extended Hubbard model (2.8). The calculations have been con-
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ducted over a broad range of parameters covering all three phases found in
the system. Our findings from the first part of this thesis have been used to
choose appropriate parameters. In the charge-ordered phase, we have been
able to resolve features in the photoemission spectrum that were previously
not seen. These features seem to be excitons but further investigation might
be needed to determine this.

Additionally, we have discussed recent developments of DMRG algorithms
in Chapter 7. These newly developed algorithms have the potential to
overcome the problems recent implementations of DMRG algorithms have
with one-dimensional systems with periodic boundary conditions and two-
dimensional systems. We have explained the basic idea behind these new
matrix-product-based methods and have shown how the DMRG can be seen
as a subclass of the group of matrix-product-based methods. A working
DMRG program using tensor networks has also been implemented as part of
this thesis.

13.2 Outlook

There are many opportunities for application and development of these meth-
ods. The most important of these possibilities is outlined in the following.

1. The easiest and most straightforward possible extension to this thesis
would be to use the newly developed algorithms, i.e., the functionality
to calculate dynamical response functions, on other models to calcu-
late their excitation spectrum. These models could include spin mod-
els, bosonic systems, narrow ladder systems or a combination of the
above and would allow very precise predictions for the excitation spec-
trum of real materials. An interesting area of application would be the
newly discovered spin Bose metals, because their dynamic properties
are completely unknown right now.

2. The time evolution algorithm can also be applied along the imaginary
time axis to simulate states at finite temperature. Since relatively
few low-lying excited states carry the majority of the weight in an
ensemble at low temperatures, the Lanczos time evolution is the most
promising in this respect. Being able to calculate properties for finite
temperature systems is very useful because most experiments take place
at temperatures significantly above 0 K.

3. To develop and implement the algorithms presented here in a momen-
tum space (k space) based DMRG program would be an effective way
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for examining the dynamical properties of a system with spatial long-
range correlations, e.g., the Hubbard model for U < ¢, because these
systems usually exhibit only short-range interactions in k-space and,
therefore, converge quickly within the DMRG algorithm.

4. An efficient implementation of the DMRG and related algorithms us-
ing tensor networks, as presented in Chapter 7, would be the most
promising endeavor at this point because it would allow for the treat-
ment of systems with periodic boundary conditions with much higher
efficiency. It might also be possible, if massive parallelism is used,
to calculate larger two-dimensional systems than what is possible with
DMRG algorithm currently. This functionality could be one of the first
steps in explaining high-T,. superconductivity.

5. Also, all algorithms presented here can easily be adapted to run in
the context of a tensor-based DMRG program and could then be used
on the systems which cannot be efficiently treated with a standard
DMRG implementation. For example, using periodic boundary condi-
tions would rid one of the previously mentioned problem of having to
average multiple sites when calculating spectral functions in a system
with a dimerized ground state.
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Appendix A

Solution of the Tight Binding
Model

The analytic solution of the tight binding model (2.2) with open boundary
conditions (OBC) on a one-dimensional chain of length L is presented in the
following.

Ansatz:

c} = Nz sin(kj)c).
k=0

c; = NZsin(k:j)ck.
k=0

We have OBC = sin(0) = sin (k(L + 1)) = 0.

nm
k=7 +1
L
= c; = NZsin(knj)cL
nz()
and ¢; = NZsin(knj)ck.
n=0
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Normalization:
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Inserting this Ansatz into the Hamiltonian, yields

j=1 n,m=0
L
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n,m=0
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Considering m # n :
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For half filling the retarded Greens function is:
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Appendix B

Fourier Transformation of the
Green’s Function

The retarded Green’s function is defined as

Gt () = =i0(t) (o |[A(1), AT0)] | vo)

= —i0(1) | (ol A(t)AT(0)[3ho) + (1o AT(0)A(t)]4bo )

J/ ( J/

'

Gf:fzf{(t) Grra®
=Gt = [ ar o
——i [ at il AT e
— /OOO dt €' (o e A e Ally)
I /0 " dt (o I 4 miHT AT
— / "t (o] A B Ay
0

= —i lim [ dt (o] AeWTTHFETHE AT |

n—0+ Jg

= lim (o] A (w +1in+ By — H)™' Af|yy) .

n—0T
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= Gk = [ aree
_ /0 " dt (o] AO) A1)
— i /OOO dt " (gho| AT ™™ Ae™ " [ghy)
e at e
0
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oo
=—i lim [ dt (spo| AT e/ EotHE 410
n—0% Jo
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Appendix C

Spectral Representation of the
Green’s Function

The spectral density is defined as

Sa(t) = 5-GwllA(), BO) o)

(ol A()AT(0)[tbo) = D (ol A(£)[tbn) (| AT(0) [ ¢20)
- iw e A e ™M, ) (1] At i)
= Z Yol Althn) (| AT[g) e Eo= 5"
= Z\ ] Al[gpg) [ e Fo=Ent,

(ol A (O)A(®) o) = 3 (vl ATO) ) Wl A(E) i)
= STl 4 )
S ATl Al
S Al e

1
= Saull 2—<Z| (Ol )| 507504 3 Ay 7 En>>.
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= Saat(w) = / dt €Sy 41 (t)

—0o0

=" [l ATlwo)|” 6w — (Eo — Ey))
+ Z ‘<¢n|A|¢O>|2 6(w — (En — Eb)).

With the spectral representation of the retarded Green’s function
> Saar(w)
G (w) = lim dw' —————
ot (w) Jw A
2
i o | (@alATI0)|
= lim

n—0t w — (EO — En) + ZT]

D AR,
n—0t w — (B, — Ey) +in

and the Dirac identity

1 1
lim — =P —imd(x — x9),
n—0+ T — Tg + 1 T — X

where P is identifies the principal value, we get the spectral representation
of the retarded Green’s function

1
Sa,at (w) = —%9( fjffm (w))-



Appendix D

Continued Fraction Method

The upper part of the Green’s function is defined as
GZAT (w+in + Eo) = (o] A (w + in+ Ey — H) ™" Af|uy)
_1
luo) = ((1ho| AAT|voo)) 2 Algho)

|un) = H"|uo).
AAT
= GZ,AT (w+in+ Ey) = Wl Wbé
1
Z — ag — b%
z—aq — ——————.
Z— Qa9 — ...

Now we consider
(z—H)(z—H)™ =1d.
If we express this in the basis of |u,), then

Z(z — H)pn (2 — H),_L; = Opmp-

n

Thus, for p =0,
Z(Z - H)mnxn — Um0

with z, = (z — H) 5.
= 20 = (uo|(z — H) " |ug).

Cramer’s rule:

If Av =b
" det(A)’
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where A; is the matrix A where the ith column is replaced by b.

N det(Bo)
T = ————————
07 det(z — H)
o det(Dl) . 1
" (2= a0)det(Dy) + b1 det(Da) 2 — g + by el
det(Dg) . _bl det(EQ)
det(D;) (2 — ay) det(Ey) + by det(Fs)’
1
= Ty =
Z — ag — b%
0 , det(Fy)
T P et(By)
with:
1 —bh 0
0 z—a; —by
BO — 10 —b2 Z — Q9 ’
Z — a7 —b2 0
—bg Z — Q9 —b3
Dl - 0 —bg Z — as )
—b;  —by 0
0 Z — Q9 —bg
D2 - 0 —bg zZ — as ’
Z — Q9 —bg 0
—b3 Z — as —b4
El - 0 —b4 Z — Q4 )
—by  —bs 0
0 Z — as —b4
and E2 = 0 —b4 Z—ay




Bibliography

1]

[4]

[5]

(6]

[7]

8]

[9]

H. Benthien and E. Jeckelmann. Spin and charge dynamics of the one-
dimensional extended hubbard model. Physical Review B (Condensed
Matter and Materials Physics), 75(20):205128, 2007.

Anders W. Sandvik, Leon Balents, and David K. Campbell. Ground
state phases of the half-filled one-dimensional extended hubbard model.
Physical Review Letters, 92(23):236401, 2004.

Reinhard M. Noack and Salvatore R. Manmana. Diagonalization- and
numerical renormalization-group-based methods for interacting quan-
tum systems. In Adolfo Avella and Ferdinando Mancini, editors, LEC-
TURES ON THE PHYSICS OF HIGHLY CORRELATED ELEC-
TRON SYSTEMS IX: Ninth Training Course in the Physics of Corre-
lated Electron Systems and High-Tc Superconductors, volume 789. AIP,
2005.

Steven R. White. Density matrix formulation for quantum renormaliza-
tion groups. Phys. Rev. Lett., 69(19):2863-2866, Nov 1992.

Steven R. White. Density-matrix algorithms for quantum renormaliza-
tion groups. Phys. Rev. B, 48(14):10345, 1993.

Attila Szabo and Niels S. Ostlund. Modern Quantum Chemistry: Intro-
duction to Advanced Electronic Structure Theory. McGraw-Hill, 1989.

M. Born and R. Oppenheimer. Zur quantentheorie der molekiile. An-
nalen der Physik, 4(84):457-484, 1927.

Neil W. Ashcroft and David N. Mermin. Solid State Physics. Thomson
Learning, January 1976.

Martin C. Gutzwiller. Effect of correlation on the ferromagnetism of
transition metals. Phys. Rev. Lett., 10(5):159-162, Mar 1963.

155



156

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[22]

BIBLIOGRAPHY

Junjiro Kanamori. Electron correlation and ferromagnetism of transition
metals. Progress of Theoretical Physics, 30(3):275-289, 1963.

J. Hubbard. Electron correlations in narrow energy bands. Proc. Roy.
Soc. A, 276(1365):238-257, Nov 1963.

P. W. ANDERSON. The Resonating Valence Bond State in La2Cu0O4
and Superconductivity. Science, 235(4793):1196-1198, 1987.

Elliott H. Lieb and F. Y. Wu. Absence of mott transition in an exact
solution of the short-range, one-band model in one dimension. Phys.
Rev. Lett., 20(25):1445-1448, Jun 1968.

Satoshi Ejima and Satoshi Nishimoto. Phase diagram of the one-
dimensional half-filled extended hubbard model. Phys. Rev. Lett.,
99(21):216403, 2007.

S. R. Manmana, V. Meden, R. M. Noack, and K. Schonhammer. Quan-
tum critical behavior of the one-dimensional ionic hubbard model. Phys.
Rev. B, 70(15):155115, Oct 2004.

Shu-Sa Deng, Shi-Jian Gu, and Hai-Qing Lin. Block-block entanglement
and quantum phase transitions in the one-dimensional extended hubbard
model. Physical Review B (Condensed Matter and Materials Physics),
74(4):045103, 2006.

R. E. Peierls. Quantum Therory of Solids. Oxford University Press,
1955.

S. Daul and R. M. Noack. Phase diagram of the half-filled hubbard chain
with next-nearest-neighbor hopping. Phys. Rev. B, 61(3):1646-1649, Jan
2000.

G. I. Japaridze, R. M. Noack, D. Baeriswyl, and L. Tincani. Phases and
phase transitions in the half-filled t-t” hubbard chain. Physical Review
B (Condensed Matter and Materials Physics), 76(11):115118, 2007.

L. D. Landau. Theory of fermi-liquids. Sov. Phys. JETP, 1957.

Thierry Giamarchi. Quantum Physics in One Dimension. Oxford Sci-
ence Publications, 2004.

Florian Gebhard. The Mott Metal-Insulator Transition. Springer, 1997.



BIBLIOGRAPHY 157

[23] J M Kosterlitz and D J Thouless. Ordering, metastability and phase
transitions in two-dimensional systems. Journal of Physics C: Solid
State Physics, 6(7):1181-1203, 1973.

[24] Subir Sachdev. Qunatum Phase Transitions. Cambridge University
Press, 1999.

[25] J.M. Yeomans. Statistical Mechanics of Phase Transtions. Oxford Sci-
ence Publications, 1992.

[26] William K. Wootters. Entanglement of formation of an arbitrary state
of two qubits. Phys. Rev. Lett., 80(10), Mar 1998.

[27] G. Vidal and R. F. Werner. Computable measure of entanglement. Phys.
Rev. A, 65(3), Feb 2002.

[28] John Preskill. Lecture notes for physics 229: Quantum information and
computation, 1998.

[29] O. Legeza and J. S6lyom. Two-site entropy and quantum phase transi-
tions in low-dimensional models. Phys. Rev. Lett., 96(11):116401, 2006.

[30] Jorg Rissler, Reinhard M. Noack, and Steven R. White. Measuring
orbital interaction using quantum information theory. Chemical Physics,
323:519, Apr 2006.

[31] Shi-Jian Gu, Shu-Sa Deng, You-Quan Li, and Hai-Qing Lin. Entan-
glement and quantum phase transition in the extended hubbard model.
Phys. Rev. Lett., 93(8), 2004.

[32] O. Legeza and J. Sélyom. Optimizing the density-matrix renormaliza-
tion group method using quantum information entropy. Phys. Rev. B,
68(19), Nov 2003.

[33] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev. Entanglement in quan-
tum critical phenomena. Phys. Rev. Lett., 90(22), Jun 2003.

[34] J. T. Stewart, J. P. Gaebler, and D. S. Jin. Using photoemission spec-
troscopy to probe a strongly interacting fermi gas. Nature, 454, 2008.

[35] C. Lanczos. An iteration mathod for the solution of the eigenvalue
problem of linear differential and integral operators. Journal of Research
of the National Bureau of Standards, 45, 1951.



158 BIBLIOGRAPHY

[36] Ernest R. Davidson. The iterative calculation of a few of the lowest
eigenvalues and corresponding eigenvectors of large real-symmetric ma-
trices. Journal of Computational Physics, 17(1), 1975.

[37] Gerard L. G. Sleijpen, Albert G. L. Booten, Diederik R. Fokkema, and
Henk A. van der Vorst. Jacobi-davidson type methods for generalized
eigenproblems and polynomial eigenproblems. BIT Numerical Mathe-
matics, Sep. 1996.

[38] John Cardy. Scaling and Renormalization in Statistical Physics. Cam-
bride Lecture Notes in Physics, 1996.

[39] Kenneth G. Wilson. The renormalization group: Critical phenomena
and the kondo problem. Rev. Mod. Phys., 47(4), Oct 1975.

[40] I. Peschel, X. Wang, M. Kaulke, and K. Hallberg, editors. Density-
Matriz Renormalization - A New Numerical Method in Physics. Springer
Verlag, 1999.

[41] S. R. White and R. M. Noack. Real-space quantum renormalization
groups. Phys. Rev. Lett., 68(24):3487-3490, Jun 1992.

[42] O. Legeza, J. Roder, and B. A. Hess. Controlling the accuracy of
the density-matrix renormalization-group method: The dynamical block
state selection approach. Phys. Rev. B, 67(12):125114, Mar 2003.

[43] Stellan Ostlund and Stefan Rommer. Thermodynamic limit of density
matrix renormalization. Phys. Rev. Lett., 75(19):3537-3540, Nov 1995.

[44] F. Verstraete and J. I. Cirac. Matrix product states represent ground
states faithfully. Physical Review B (Condensed Matter and Materials
Physics), 73(9):094423, 2006.

[45] F. Verstraete and J.I. Cirac. Renormalization algorithms for quantum-
many body systems in two and higher dimensions. arXiv:cond-
mat/0407066.

[46] Norbert Schuch, Michael M. Wolf, Frank Verstraete, and J. Ignacio
Cirac. Computational complexity of projected entangled pair states.
Physical Review Letters, 98(14):140506, 2007.

[47] U. Schollwéck. The density-matrix renormalization group. Rev. Mod.
Phys., 77(1):259-315, Apr 2005.



BIBLIOGRAPHY 159

[48]

[52]

[53]

[54]

[an P McCulloch. From density-matrix renormalization group to matrix
product states. Journal of Statistical Mechanics: Theory and Fxperi-
ment, 2007(10):P10014, 2007.

C. Eckart and G. Young. The approrimation of one matriz by another
of lower rank. Psychometrika, 1936.

G. W. Stewart. On the early history of the singular value decomposition.
SIAM Review, 35(4):551-566, 1993.

Shoudan Liang and Hanbin Pang. Approximate diagonalization using
the density matrix renormalization-group method: A two-dimensional-
systems perspective. Phys. Rev. B, 49(13):9214-9217, Apr 1994.

R. M. Noack, S. R. White, and D. J. Scalapino. Correlations in a two-
chain hubbard model. Phys. Rev. Lett., 73(6):882-885, Aug 1994.

Norbert Schuch, Michael M. Wolf, Frank Verstraete, and J. Ignacio
Cirac. Computational complexity of projected entangled pair states.
Physical Review Letters, 98(14):140506, 2007.

Steven R. White and Adrian E. Feiguin. Real-time evolution using the
density matrix renormalization group. Phys. Rev. Lett., 93(7):076401,
Aug 2004.

Marlis Hochbruck and Christian Lubich. On Krylov subspace approxi-
mations to the matrix exponential operator. SIAM Journal on Numer-
ical Analysis, 34(5):1911-1925, 1997.

Masuo Suzuki. Relationship between d-dimensional quantal spin sys-
tems and (d+1)-dimensional ising systems equivalence, critical expo-
nents and systematic approximants of the partition function and spin
correlations . Prog. Theor. Phys., 56(5):1454-1469, 1976.

Elbio Dagotto. Correlated electrons in high-temperature superconduc-
tors. Rev. Mod. Phys., 66(3):763-840, Jul 1994.

Till D. Kithner and Steven R. White. Dynamical correlation func-
tions using the density matrix renormalization group. Phys. Rev. B,

60(1):335-343, Jul 1999.

Eric Jeckelmann. Dynamical density-matrix renormalization-group

method. Phys. Rev. B, 66(4):045114, Jul 2002.



160

[60]

[61]

[62]

[63]

[64]

[70]

[71]

BIBLIOGRAPHY

E. Jeckelmann, F. Gebhard, and F. H. L. Essler. Optical conductivity
of the half-filled hubbard chain. Phys. Rev. Lett., 85(18):3910-3913, Oct
2000.

Steven R. White and Ian Affleck. Spectral function for the s = 1 heisen-
berg antiferromagetic chain. Physical Review B (Condensed Matter and
Materials Physics), 77(13):134437, 2008.

A. V. Oppenheim, R. W. Schafer, and J. R. Buck. Discrete-time signal
processing. Prentice Hall, 1999.

P. Gambardella, A. Dallmeyer, K. Maiti, M. C. Malagoli, W. Eber-
hardt, K. Kern, and C. Carbone. Ferromagnetism in one-dimensional
monatomic metal chains. Nature, 416(6878):301-304, Mar. 2002.

Xinluo Zhao, Yoshinori Ando, Yi Liu, Makoto Jinno, and Tomoko
Suzuki. Carbon nanowire made of a long linear carbon chain inserted
inside a multiwalled carbon nanotube. Phys. Rev. Lett., 90(18):187401,
May 2003.

Michael Springborg. Quasi-one-dimensional materials: polymers and
chains. Journal of Solid State Chemistry, 176(2):311-318, 2003.

Seiichi Kagoshima, Hiroshi Nagasawa, and Takashi Sambongi. One-
Dimensional Conductors. Springer Verlag, 1988.

V. G. Lifshits, Alexander A. Saranin, A. V. Zotov, and M. Katayama.
Surface Science: An Introduction. Springer Verlag, 2003.

S. Glocke, A. Klimper, and J. Sirker. Half-filled one-dimensional ex-
tended hubbard model: Phase diagram and thermodynamics. Physical
Review B (Condensed Matter and Materials Physics), 76:155121, 2007.

N. Laflorencie, E. S. Sgrensen, M.-S. Chang, and I. Affleck. Boundary
effects in the critical scaling of entanglement entropy in 1d systems.
Phys. Rev. Lett., 96(100603), 2006.

0. Legeza, J Sélyom, L. Tincani, and R. M. Noack. Entropic analysis
of quantum phase transitions from uniform to spatially inhomogeneous
phases. Phys. Rev. Lett., 99(11):087203, 2007.

O. Legeza and J. Sélyom. Quantum data compression, quantum in-
formation generation, and the density-matrix renormalization-group

method. Phys. Rev. B, 70(20):205118, 2004.



BIBLIOGRAPHY 161

[72] P. G. J. van Dongen. Extended hubbard model at strong coupling. Phys.
Rev. B, 49(12):7904-7915, Mar 1994.

[73] R. Claessen, M. Sing, U. Schwingenschlogl, P. Blaha, M. Dressel, and
C. S. Jacobsen. Spectroscopic signatures of spin-charge separation in

the quasi-one-dimensional organic conductor ttf-tecnq. Phys. Rev. Lett.,
88(9):096402, Feb 2002.

[74] H. W. Yeom, Y. K. Kim, E. Y. Lee, K.-D. Ryang, and P. G. Kang.
Robust one-dimensional metallic band structure of silicide nanowires.
Phys. Rev. Lett., 95(20):205504, Nov 2005.

[75] Eric Jeckelmann. Optical excitations in a one-dimensional mott insula-
tor. Phys. Rev. B, 67(7):075106, Feb 2003.

[76] K. W. Kim, G. D. Gu, C. C. Homes, and T. W. Noh. Bound excitons
in SroCuOg3. Physical Review Letters, 101(17):177404, 2008.

[77] M. Aichhorn, H. G. Evertz, W. von der Linden, and M. Potthoff. Charge
ordering in extended hubbard models: Variational cluster approach.
Phys. Rev. B, 70(23):235107, Dec 2004.



162 BIBLIOGRAPHY



Danksagung

Zunachst danke ich meinem Doktorvater Prof. Reinhard Noack. Ohne die
Aufnahme in seine Arbeitsgruppe, sowie seinen ausfiihrlichen Erklarungen
und Ratschlagen, insbesondere wahrend meiner Einarbeitungszeit, ware diese
Arbeit nicht moglich gewesen.

Auch der restlichen Arbeitsgruppe, Dr. habil. Jorg Biinemann, Dipl. Phys.
Tobias Schickling und Prof. Dr. Florian Gebhard, gilt mein Dank fiir wieder-
holte Diskussion und eine gute Arbeitsatmosphére. Ein besondere Dank geht
hier an Dipl. Phys. Daniel Ruhl, der mir durch sein fortwéhrendes Interesse,
sowie eine immer vorhandene Diskussions- und Erklarungsbereitschaft eine
standige Reflexionsmoglichkeit und ein deutlich besseres Verstandiss vieler
Sachverhalte ermoglichte.

Last but not least gilt mein Dank meinen Eltern Inge und Klaus Mund,
sowie all meinen Freunden, fiir ihre bestandige seelische und moralische Un-
terstiitzung wiahrend der gesamten Promotionszeit.

163



164 DANKSAGUNG



Lebenslauf

Personlich Daten

Name: Cornelius Mund

Adresse: Wendelgasse 2
35037 Marburg
Deutschland

Geburtsdatum: 15.07.1982

Tel.: +49 6422 897359

eMail: Cornelius. Mund@physik.uni-marburg.de
Ausbildung

Name der Institution Abschluss

Stiftsschule St. Johann Amdneburg Abitur

Philipps Universitat Marburg Vordiplom

Philipps Universitat Marburg (weiteres Studium der Physik)
University of Massachusetts Dartmouth Master of Science
Philipps Universitat Marburg Promotion
Arbeitsverhltnisse

Arbeitgeber von - bis
Grundwehrdienst 07/02 - 03/03
Wissenschaftlicher Mitarbeiter 11/06 - 12/09

Marburg, December 14, 2009

165

von - bis
7/93 - 06/02
4/03 - 10/04
11/04 - 8/05
9/05 - 9/06
10/06 - 12/09



