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Summary 
Fungal plant pathogens affect the quality of food and feed produced from infected 

plants and cause substantial yield losses every year. Especially fungi infecting cereal 

crops represent an ernormous thread. The biotrophic fungus Ustilago maydis is the 

causative agent of the smut disease on maize. Molecular pathways essential for the 

initiation of fungal pathogenicity, like mating of two compatible sporidia, the 

establishment of an infectious dikaryon and the penetration process leading to plant 

infection are intensively studied in U. maydis. However, the strategies used by the 

fungus to proliferate within the plant and to deal with the hostile environment, are 

vastly unknown. This dissertation investigates the complex molecular interplay 

between Ustilago maydis and its host plant in more detail, focusing on three different 

aspects. 

In U. maydis the initiation of sexual development and pathogenicity is controlled by 

two homedomain proteins bE and bW, which form an active transcription factor after 

fusion of two compatible sporidia. By constructing temperature-sensitive bE proteins, 

I was able to demonstrate that also the proliferation of U. maydis within the plant is 

regulated by the b mating type transcription factor (2.1). The inactivation of the 

bW/bE complex within the plant stops fungal development and leads to the 

deregulation of secreted proteins, which are believed to interfere with plant defense 

responses.   

U. maydis establishes a compatible biotrophic relationship with its host. To analyze 

the plant cell responses towards this forced interaction, global expression analysis 

and metabolic profiling were performed monitoring a time-course of infection (2.2). 

Expression analyses revealed an initial recognition of U. maydis by the maize plant, 

leading to the induction of basal plant defense responses. After U. maydis has 

penetrated the plant these defense responses are suppressed, suggesting an active 

interference with the plant immune system. Moreover, during disease progression U. 

maydis infected maize leaves do not develop into photosynthetically active source 

tissues, but maintain the characteristics of a nutrient sink. Like typical plant nutrient 

sinks the infected area is supplied with sucrose that is feeding the fungus.  

As nutrient availability determines the fitness of the pathogen, it also determines the 

pathogens success to conquer the plant. Thus, biotrophic fungi like U. maydis have 

to develop strategies to feed on nutrients provided by a living host plant. By 

identifying two U. maydis sugar transporters, Srt1 and Hxt1, as necessary for full 
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fungal virulence, I was able to analyze which plant-derived carbohydrates are crucial 

for biotrophic development (2.3; 2.4). Srt1, a novel kind of sucrose transporter, is 

exclusively expressed during infection. Its unusual high sucrose affinity is well suited 

to compete with plant-derived sucrose uptake systems at the plant/fungus interfacen 

(2.3). Hxt1 utilizes hexoses glucose, fructose and mannose, and with lower affinity 

also galactose and xylose. Deletion of hxt1 reduces fungal pathogenicity, influences 

growth and hampers monosaccharide-dependent gene regulation. Moreover, 

expression analysis revealed that Hxt1 has a dual function as monosaccharide-

transporter and -sensor (2.4). As double-deletion mutants of hxt1 and srt1 fail to 

induce severe disease symptoms, both uptake of sucrose and its cleavage products 

glucose and fructose are crucial for in planta development of U. maydis (2.4).  

U. maydis is recognized by the maize plant already prior to infection, resulting in the 

induction of basal plant defense responses. However, as soon as the fungus 

penetrates the plant these defense responses are manipulated by U. maydis, most 

probably caused by the action of fungal secreted proteins interfering with recognition 

and defense pathways. During disease progression, the infected maize tissue 

remains a sucrose-dependent nutrient sink, which lacks photosynthetic activity. This 

sink supplies U. maydis with sucrose and hexoses utilized by Srt1 and Hxt1 to 

promote fungal growth. Initiation and maintenance of the biotrophic interaction, 

including the expression of secreted proteins necessary to manipulate the host, are 

regulated by a complex transcription cascade, which is controlled by the bE/bW 

heterodimer. The b-cascade not only regulates fungal proliferation and differentiation, 

but also adapts the fungal needs towards changing plant tissues.  
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Zusammenfassung   
Pflanzenpathogene Pilze beeinträchtigen die Qualität von Nahrungsmitteln für 

Mensch und Tier und verursachen jedes Jahr erhebliche Ernteausfälle. Speziell 

Pilze, die Getreidepflanzen infizieren, stellen ein erhebliches wirtschaftliches Problem 

dar. Der biotrophe Pilz Ustilago maydis ist der Erreger des Maisbeulenbrandes. Für 

die Initiation pilzlicher Pathogenität essentielle molekulare Mechanismen, wie die 

Fusion zweier kompatibler Sporidien, die Etablierung des infektiösen Dikaryons 

sowie des Penetrationsprozesses, welcher die Infektion der Pflanze einleitet, werden 

in U. maydis intensiv erforscht. Die Details, wie sich der Pilz in der Pflanze ausbreitet 

und sich an die unwirtliche Pflanzenumgebung anpasst, sind jedoch weitgehend 

unbekannt. Diese Dissertation untersucht das molekulare Wechselspiel zwischen 

Ustilago maydis und seiner Wirtspflanze und verfolgte dabei drei verschieden 

Ansätze.   

Die Initiation der sexuellen Entwicklung und Pathogenität wird in U. maydis von den 

beiden Homeodomänproteinen bE und bW kontrolliert, welche einen aktiven 

Transkriptionsfaktor nach Fusion zweier kompatibler Sporidien bilden. Durch 

Konstruktion von temperatursensitiven bE-Proteinen war es möglich zu zeigen, dass 

auch innerhalb der Pflanze die Entwicklung von U. maydis von dem b-Heterodimer 

reguliert wird (2.1). Eine Inaktivierung des bW/bE-Komplexes innerhalb der Pflanze 

stoppt das pilzliche Wachstum und führt zu einer Deregulation von sekretierten 

Proteinen, welche wahrscheinlich die Abwehrmechanismen der Pflanze 

manipulieren. 

U. maydis etabliert ein enges, biotrophes Abhängigkeitsverhältnis mit seinem Wirt. 

Um die Reaktion der Pflanzenzellen während dieser Interaktion zu untersuchen, 

wurden globale Expressions- und Metabolomanalysen über den gesamten 

Infektionsverlauf durchgeführt (2.2). Die Expressionsanalysen zeigten eine frühe 

Erkennung von U. maydis durch die Maispflanze, welche grundlegende 

Abwehrreaktion induziert. Nach Penetration der Pflanze durch U. maydis werden 

diese Abwehrreaktionen unterdrückt, was auf einen aktiven Eingriff des Pilzes in das 

pflanzliche Immunsystem hindeutet. Weiterhin zeigten die Analysen, dass sich mit 

U. maydis infizierte Maisblätter nicht zu photosynthetisch aktiven Geweben 

entwickeln, sondern ihre Nährstoffe aus anderen Teilen der Pflanze beziehen. Zur 

Deckung des Kohlenhydratbedarfs wird typischerweise Saccharose in solche 

Gewebe importiert, was sich auch in den infizierten Bereichen beobachten lies.  
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Da die Nährstoffverfügbarkeit die Fitness eines Pathogens bestimmt, ist sie auch 

ausschlaggebend für die erfolgreiche Entwicklung innerhalb der Wirtspflanze. 

Entsprechend müssen biotrophe Pilze wie U. maydis Strategien entwickeln, um sich 

von den Nährstoffen des Wirtes zu ernähren. Durch die Identifizierung von Srt1 und 

Hxt1, zwei für die pathogene Entwicklung von U. maydis notwendigen Zucker-

transportern, war es mir möglich zu analysieren, welche pflanzlichen Kohlenhydrate 

entscheidend für die biotrophe Entwicklung sind (2.3; 2.4). Srt1, ein neuartiger 

Saccharosetransporter, wird ausschließlich während der Infektion exprimiert. Durch 

seine ungewöhnlich hohe Affinität zu Saccharose ist Srt1 bestens geeignet, um mit 

pflanzlichen Saccharosetransportsystemen zu konkurrieren (2.3). Hxt1 transportiert 

die Hexosen Glukose, Fruktose und Mannose, und mit niedrigerer Affinität auch 

Galaktose und Xylose. Die Deletion von hxt1 reduziert die Pathogenität von U. 

maydis, beeinflusst sein Wachstum und behindert Monosaccharid-abhängige 

Genregulation. Expressionsanalysen in hxt1-Deletionsmutanten zeigten, dass Hxt1 

als Monosaccharidtransporter und -sensor fungiert (2.4). Da hxt1 und srt1 Doppel-

deletionsmutanten nahezu überhaupt keine Krankheitssymptome nach Infektion 

induzieren, ist sowohl die Aufnahme von Saccharose als auch die ihrer Spaltprodukte 

notwendig für die pathogene Entwicklung von U. maydis.  

Die Pflanze erkennt U. maydis bereits auf der Pflanzenoberfläche, woraufhin sie 

Abwehrmechanismen einleitet. Nach Infektion mit U. maydis werden diese 

Reaktionen manipuliert, wahrscheinlich durch die Aktivität sekretierter, pilzlicher 

Proteine. Während der Krankheitsentwicklung ist das infizierte Maisgewebe von 

Nährstoffimport abhängig, da es keine photosynthetische Aktivität aufweist. Der 

Kohlenhydratbedarf wird hierbei von Saccharose gedeckt, welche direkt (Srt1) und 

indirekt (Hxt1) von U. maydis aufgenommen wird und als Nahrungsquelle dient. Die 

Einleitung und Aufrechterhaltung der biotrophen Interaktion, sowie die Expression 

von sekretierten Proteinen, die für die Manipulation des Wirtes notwendig sind, 

werden von einer komplexen Transkriptionskaskade reguliert, die durch das bW/bE-

Heterodimer kontrolliert wird. Die b-Kaskade reguliert somit nicht nur das Wachstum 

und die Differenzierung des Pilzes, sondern auch seine Anpassung an verschiedene 

Pflanzengewebe.   
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 1. General Introduction    
The General Introduction focuses on the lifestyle of Ustilago maydis and highlights 

the advantages and disadvantages of the model pathosystem Ustilago maydis/Zea 

mays. Furthermore, it reviews the current knowledge about molecular mechanisms of 

plant pathogen interactions.   

  

1.1 The Maize Pathogen Ustilago maydis   
Biotrophic fungi usually require a high degree of specification towards their host 

plants to successfully establish a close interaction. The biotroph Ustilago maydis is 

specialized to infect only two Zea mays species, maize and teosinte (Zea mays ssp. 

mays and ssp. mexicana). During its dimorphic lifecycle, U. maydis changes from 

saprophytic to biotrophic growth, which is accompanied by a morphological transition 

from yeast to hypha. In the saprophytic stage, the haploid yeast cells (sporidia) grow 

by budding (Figure 1.1-1A). Fusion of two sexually compatible sporidia results in a 

filamentously growing dikaryon (Figure 1.1-1A). This fusion event and the 

establishment of the infectious dikaryon is mediated by the two mating type loci a and 

b (Figure 1.1-1A; Banuett and Herskowitz, 1989; Spellig et al., 1994b).  

The a locus encodes a pheromone receptor system that regulates cell-to-cell 

recognition and the fusion of two compatible sporidia (Bölker et al., 1992; Hartmann 

et al., 1996). The b locus encodes two unrelated homedomain proteins bE and bW 

that trigger an intracellular recognition event. bE and bW dimerize, when originating 

from different alleles, and form an active transcription factor which maintains the 

dikaryon and initiates pathogenic development (Kämper et al., 1995; Romeis et al., 

2000; Brachmann et al., 2003). The initiation of pathogenicity via a functional bE/bW 

complex has been shown conclusively. Its role during subsequent biotrophic 

development is described inSection 2.1. 

The dikaryotic hypha is the infectious form of U. maydis. Initially, only the apical cell 

of the hypha is filled with cytoplasm leaving behind empty fungal sections (Banuett 

and Herskowitz, 1994). Cell division is stalled until the fungus has invaded its host 

plant by means of a specialized infection structure (Figure 1.1-1A; Snetselaar and 

Mims, 1992; Snetselaar and Mims, 1993; Banuett and Herskowitz, 1994). This 

appressoria-like structure marks the point of penetration into the host cell, which is 

most likely facilitated by concentrated secretion of cell wall degrading enzymes that 

soften the plant cell wall (Christensen, 1963; Snetselaar and Mims, 1992; Snetselaar 
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and Mims, 1993; Doehlemann et al., 2008b). In contrast, fungi that develop true 

appressoria use mechanical force by generating high turgor pressure within the 

appressorial cell to enter the plant (reviewed by Deising et al., 2000). 

  
Figure 1.1-1 Life cycle of Ustilago maydis. (A) Life cycle of U. maydis published by Feldbrügge 
et al. (2004). The area shaded in light yellow indicates processes that are strictly dependent on 
the plant. Blue and red nuclei indicate different a and b mating types and are used to visualize 
the haploid, dikaryotic and diploid phases during the life cycle. In the centre of the diagram an 
infected corn ear with typical disease symptoms is shown. In the lower part of the tumor the black 
teliospores are visible. When the diploid spores germinate they undergo meiosis and produce 
haploid sporidia. (B) and (C) show a longitudinal section through a U. maydis infected maize 
leave 7 dpi. In (C) fungal hyphae are highlighted in red, visualizing that proliferation of U. maydis 
is directed to the vascular bundles after penetration (R. Wahl and M. Rath, unpublished data). (D) 
and (E) show a cross section of an U. maydis infected maize leave. In (E) fungal hyphae are 
highlighted in red, showing massive spreading within the vascular bundle (R. Wahl and M. Rath, 
unpublished data). 
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During plant penetration by U. maydis the host plasma membrane invaginates and 

surrounds the invading hypha (Snetselaar and Mims, 1992). An interaction zone 

develops between plant and fungal membranes that is thought to be involved in the 

exchange of signaling molecules. During the U. maydis infection this interaction zone 

also seems to be involved in nutrient uptake as the fungus does not develop 

specialized feeding structures like the haustoria found after rust and downy mildew 

infection.  

Recently, a comprehensive genome analysis has revealed that U. maydis is poorly 

equipped with plant cell wall degrading enzymes (Doehlemann et al., 2008b). Indeed, 

the fungus has sufficient plant cell wall degrading enzymes to soften and penetrate 

the plant cell walls; however, it is unlikely that U. maydis feeds on carbohydrates 

derived from this digestion (Doehlemann et al., 2008b). It was observed that U. 

maydis hyphae prefer to proliferate in the vascular bundles, the nutrient transport 

routes in plants (Figure 1.1-1B-E; R. Wahl and M. Rath, unpublished data), 

suggesting that U. maydis primarily feeds on the nutrients transported in these 

tissues. Sections 2.3 and 2.4 shed new light on the nature of the carbon sources and 

the mode of their uptake by U. maydis during in planta growth (Feldbrügge et al., 

2004; Klosterman et al., 2007; Doehlemann et al., 2008b). Moreover, Section 2.2 

describes how the maize metabolism is reprogrammed to promote biotrophic 

development of U. maydis. 

Although U. maydis hyphae traverse plant cells, the plant tissue remains alive, there 

is no apparent host defense response during the infection process and, to date, no 

resistant corn or teosinte lines are known. The analysis of the U. maydis genome 

sequence revealed the presence of clustered genes encoding secreted proteins that 

are induced during the biotrophic stage (Kämper et al., 2006). Several of these 

clusters are required for pathogenic development, but their distinctive functions have 

not been identified (Kämper et al., 2006). After U. maydis infection an active 

suppression of maize defense responses was observed (see section 2.2). It has been 

discussed that secreted U. maydis effector proteins are responsible for this 

interference with the host defense mechanisms.  

At later stages of infection, hyphae grow both intra- and intercellularly (Banuett and 

Herskowitz, 1996). Ongoing hyphal proliferation results in the formation of plant galls 

(commonly designated as tumors) (Figure 1.1-1A). As Ustilago maydis infects 

juvenile, meristematic tissue, tumors preferably appear only at the maize cobs, but 

also at leaves and other aerial parts of the plant (Christensen, 1963; Snetselaar and 
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Mims, 1992; Snetselaar and Mims, 1993). Tumor development is associated with 

both plant cell enlargement and enhanced cell divisions, processes normally 

triggered by the plant hormones auxin and gibberellin. However, Reineke et al. 

(2008) reported that production of the auxin indole-3-acetic acid by U. maydis is not 

crucial for the formation of plant tumors (Reineke et al., 2008).  

Within these tumors the hyphal cells start to differentiate. The hyphae become 

fragmented and round up until finally, upon karyogamy, the diploid teliospores are 

formed (Figure 1.1-1A; Banuett and Herskowitz, 1996). The biotropic stage of U. 

maydis is completed after the tumor breaks open and the black teliospores are 

spread out by wind or the distribution of maize kernels for example (Figure 1.1-1A). 

The fungal spores are very resistant to environmental stress and able to remain 

dormant in the soil for several years. When they are getting attached to new juvenile, 

meristematic plant tissues again, a basidium is formed, meiosis and mitosis take 

place and new sporidia are released (Figure 1.1-1A). Finally, the life cycle of U. 

maydis is complete when two compatible sporidia meet and fuse continuing the cycle  

(Christensen, 1963). 

 

1.2 Ustilago maydis/Zea mays: A Model System to Study Mechanism 

of Compatibility 
Ustilago maydis belongs to the class of Ustilagomycetes, bacidiomycete plant 

parasites called smuts. The term smut derives from the massive amount of black 

teliospores produced by this group of fungi during plant infection. The best 

characterized members of over 1,000 known species of smut fungi are those which 

are parasitic on cereal crops, like Ustilago hordei, U. nigra and U. nuda (barley), U. 

scitaminea (sugar cane), U. avenae and U. kolleri (oats), U. tritici and Tilletia caries 

(wheat), and Sporisorium reilianum and Ustilago maydis (maize). These biotrophic 

grass pathogens lead to significant annual crop loses and are therefore of economic 

interest. U. maydis generally infects about 2% of the maize plants in a field. Due to 

the large amount of maize grown in the United States, this equals to several 100 

million U.S. dollars per year (reviewed by Martinez-Espinoza et al., 2002). 

U. maydis is not only a worthy model organism because of the economic importance 

of smut fungi. The fungus is closely related and has a biotrophic lifecycle comparable 

to rust fungi, another economic threat also belonging to the basidiomycota 

(Urodinomycetes; Singh et al., 2006). These fungi are obligate biotrophs and, unlike 
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U. maydis, not cultivable under axenic conditions. Moreover, U. maydis is not only an 

interesting model to investigate economically harmful, but also beneficial fungi. 

Mycorrhizal fungi are biotrophic plant symbionts used to improve crop yields. Like 

rusts they are not amendable to directed reverse genetic approaches. Therefore, the 

U. maydis pathosystem provides insight towards elucidating the molecular processes 

that takes place in various obligate biotrophic systems. 

The molecular interplay between basidiomycete pathogens and economic important 

crop plants is, despite its economic importance, relatively poor investigated. Most 

crop plants are monocotyledones grasses, like barley (Hordeum vulgare), wheat 

(Triticum spp.), rice (Oryza sativa) and maize, which are different from the extensively 

studied dicotyledones model plants like Arabidopsis thaliana, Medicago truncatula 

and Nicotiana tabaccum. Thus, maize, one of the most cultivated crop plants 

worldwide, represents another significant reason to study the U. maydis/Zea mays 

pthosystem. Recently, the genome sequence of maize was released 

(www.maizesequence.org), which transforms the Ustilago/maize interaction into a 

valuable system to study pathogen/crop interactions in more detail.  

A further benefit of the U. maydis pathosystem is the short reproduction time of the 

fungus in planta, giving rise to fungal spores only 14 days after infection. Thus, the 

complete examination of the biotrophic stage is a fast process. Moreover, 

solopathogenic haploid U. maydis strains exist, which are able to infect the plant 

without a compatible mating partner further alleviating the investigation of biotrophic 

development (Bölker et al., 1995; Kämper et al., 2006).  

The other great advantage of U. maydis as a model for pathogenic interactions is that 

the initial stages of plant infection can be simulated under axenic conditions. The 

pheromone dependent cell-to-cell recognition, the subsequent cell fusion and the b-

dependent establishment of the infectious dikaryon can be monitored on charcoal 

containing media plates (Rowell, 1955; Puhalla, 1968). Moreover, inducible 

transcription of the b genes, controlled by arabinose or nitrate inducible promoters, 

allows the investigation of b-dependent gene expression in liquid culture (Brachmann 

et al., 2001; Scherer et al., 2006). Recently, Mendoza-Mendoza et al. (2009) 

described a method to induce appressoria formation in U. maydis after application of 

fatty acids on hydrophobic surfaces (Mendoza-Mendoza et al., 2009). 

U. maydis grows not only biotrophically within the plant, but also saprotrophically as 

haploid yeast that can be propagated in axenic culture with short generation times. 

The fact that U. maydis possesses a very efficient homologous recombination system 
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makes the fungus highly susceptible to genetic manipulation (reviewed in Holliday, 

2004). In 2003, the genome of U. maydis was sequenced and extensively annotated 

making targeted genetic approaches easy to perform 

(http://mips.gsf.de/genre/proj/ustilago/; Kämper et al., 2006). In addition to the 

standard toolbox of molecular and biochemical methods a custom made Affymetrix 

Ustilago genome array is available to perform global transcriptome analyses (Kämper 

et al., 2006).  

The investigation of the Ustilago/maize model system has the potential to quickly 

generate knowledge about how biotrophic plant pathosystems work, contributing to 

the protection of cultivated crops against pathogenic threats. 

 

1.3 Plant Pathogen Interactions 

1.3.1 The Plant Immune System  

Disease resistance in plants relies to one end on a constant shield, which consists of 

physical barriers such as the wax cuticle and the epidermal cell walls, as well as 

chemical barriers like antimicrobial phytoanticipins. This shield is supposed to stop 

pathogens already on the plant surface prior to penetration or directly after 

penetration by avoiding the formation and establishment of infectious structures. 

When the pathogen is able to overcome the first layer of defense, an additional layer 

of defense is induced (reviewed by Dangl and Jones, 2001; Jones and Takemoto, 

2004; Mysore and Ryu, 2004; Nürnberger and Lipka, 2005; Jones and Dangl, 2006).  

The critical processes are the proper recognition of a pathogen and induction of 

adequate defense responses. As some of these responses have deleterious effects 

on the plant itself, they have to be tightly controlled. Induced responses include 

expression of specific pathogenicity related (PR) genes, production of secondary 

metabolites (i.e. phytoalexins), and the reinforcement of cell walls with callose and 

lignins. Additionally, so called hypersensitive responses (HR), as the production of 

reactive oxygen species (ROS) and localized cell death, can be induced. If these 

defense responses are effective, the plant is considered a non-host, which is 

resistant towards the specific pathogen (reviewed by Dangl and Jones, 2001; Jones 

and Takemoto, 2004; Mysore and Ryu, 2004; Nürnberger and Lipka, 2005; Jones 

and Dangl, 2006).  
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This basal plant defense machinery is induced by the recognition of conserved 

molecules that are commonly found in a variety of microbial species, but that are 

absent from the host species. Such pathogen associated molecular patterns 

(PAMPS) include bacterial, fungal and oomycete factors as chitin, b-glucans, 

ergosterol and flagellin (Baureithel et al., 1994; Granado et al., 1995; Ito et al., 1997; 

Felix et al., 1999; Yamaguchi et al., 2000; Klarzynski et al., 2000). In addition, plant 

cell wall degradation products appearing upon pathogen attack are used as 

endogenous elicitors to induce basal plant defense responses (Vorwerk et al., 2004). 

PAMP-mediated recognition is triggered by so-called pattern recognition receptors 

(PRR), which are either plant plasma membrane spanning receptor-like kinases or 

receptor-like proteins lacking a kinase domain. Both of which can contain 

extracellular leucine-rich repeat (LRR)-domains or LysM-motifs for signal perception 

(reviewed by Dangl and Jones, 2001; Göhre and Robatzek, 2008).  

Pathogens have managed to overcome the PAMP-induced basal resistance system 

of the plant by evolving virulence factors that are either enabling them to evade or to 

suppress plant defense responses (reviewed by Chang et al., 2004; Abramovitch and 

Martin, 2004). In that case the plant is converted to a host plant, which is susceptible 

towards the pathogen. Yet, during co-evolution plants have developed specific 

disease resistances towards pathogens. Specific resistance proteins, cellular LRR 

receptor-like proteins or by transmembrane LRR receptor-like kinases (R proteins), 

recognize the corresponding virulence factors (or effectors) of pathogens in a gene-

for-gene manner (Dangl and Jones, 2001; Espinosa and Alfano, 2004; Jones and 

Takemoto, 2004; Chang et al., 2004; Abramovitch and Martin, 2004; Göhre and 

Robatzek, 2008).  

R protein-mediated disease resistance is effective against biotrophic pathogens that 

are dependent on living host tissue, but not against necrotrophs that kill their hosts 

(see also 1.3.3). Activation of the salicylic acid (SA)-dependent signaling pathway 

upon pathogen recognition leads to expression of defense-related genes like PR1, to 

ROS production, and programmed cell death, resulting in depletion of nutrients to 

biotrophs (Seo et al., 2001; Glazebrook et al., 2003). In the case of necrotrophs, 

however, programmed cell death would be supportive for the life-style of the 

pathogen.  

Additional plant hormone pathways induced upon pathogen attack are the ethylene 

(ET) and/or jasmonate (JA) pathways that are both also involved in response to 

wounding. These responses do not include cell death and are associated with 
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induction of tryptophan biosynthesis, the accumulation of secondary metabolites and 

the induction of plant genes encoding defensins, hevein-like proteins and chitinases 

(Penninckx et al., 1998; Thomma et al., 1998; Brader et al., 2001; Glazebrook et al., 

2003). It has been suggested that plant defense responses may be specifically 

adapted to attacking pathogens, with SA-dependent defenses acting against 

biotrophs, and JA- and ET-dependent responses acting against necrotrophs 

(reviewed by Glazebrook, 2005; Wasternack, 2007).   

  

1.3.2 Small Secreted Effectors: The Pathogens Tools to Manipulate Its Host  

Plant pathogens need various sets of secreted proteins to support their life styles. 

Secreted plant cell wall degrading or modifying enzymes, for example, are involved in 

the penetration process and during the cell-to-cell passage to spread inside the plant 

(Toth and Birch, 2005; Kikot et al., 2008; Doehlemann et al., 2008b). Furthermore, 

secreted lytic proteases were found to modify host proteins in order to counter the 

host defense responses (Monod et al., 2002; Xia, 2004; Shindo and Van der Hoorn, 

2008). Secreted nucleases are thought to degrade plant RNAs and DNA to inhibit 

plant responses (Müller et al., 2008). And finally, secreted metabolic enzymes such 

as invertases might be used by the pathogen to redirect the host metabolism towards 

its needs (Voegele et al., 2006; Horst et al., 2008; Müller et al., 2008). 

In addition, pathogens possess a large variety of small secreted effector proteins with 

so far unknown function. In bacteria relatively small numbers of these genes are 

found, whereas oomycete and fungal genomes harbor several hundred genes coding 

for putative secreted proteins (Kamoun, 2006; Kämper et al., 2006; Stavrinides et al., 

2008; Müller et al., 2008; Tyler, 2009). The effectors are thought to be transferred 

into the host cell where they manipulate the hosts recognition and defense systems 

(reviewed by Morgan and Kamoun, 2007; Zhou and Chai, 2008; Birch et al., 2008; 

Müller et al., 2008).  

Plant pathogenic bacteria live in the intercellular space of the plant and use 

conserved type III secretion systems to inject small secreted effector molecules 

directly into the host cells. These secreted effector molecules were shown to 

specifically modulate the above described recognition pathways and the hormone 

signaling of the plant (reviewed by Zhou and Chai, 2008). The Pseudomonas 

syringae effector AvrPtoB promotes the degradation of Fen and Prf, which are crucial 

components of programmed cell death (Rosebrock et al., 2007). AvrRpt2 modulates 
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the auxin pathway to enhance plant susceptibility (Fu et al., 2007). Another step of 

manipulating the host towards the needs of the pathogen was discovered for 

Xanthomonas species. The AvrBs3 family effectors contain nuclear-localization, 

DNA-binding and transcriptional activation domains. Thus, these effectors are able to 

enter the host nucleus and alter gene expression to enhance susceptibility towards 

the pathogen (Schornack et al., 2006; Yang et al., 2006; Sugio et al., 2007; Römer et 

al., 2007; Kay et al., 2007; Kay and Bonas, 2009).   

The secreted effectors of plant pathogenic oomycetes possess in addition to an N-

terminal signal peptide, which is required for secretion from the pathogen, an RXLR 

motif followed by an acidic region (D/E residues) also found in malaria parasites 

(Rehmany et al., 2005; Morgan and Kamoun, 2007; Birch et al., 2008). After 

secretion of these oomycete effectors into the host apoplast, the RXLR leader 

sequence was shown to be required for targeting the effector protein into the 

cytoplasm of host cells (Whisson et al., 2007). Yet, the mechanism as well as the 

machinery, which are required for the translocation of RXLR-containing effectors into 

the host cells are still unknown (Morgan and Kamoun, 2007; Birch et al., 2008; Tyler, 

2009). Birch et al. (2008) reported that the RXLR motif was also found in 315 

Arabidopsis thaliana proteins of which 20 % were conserved or members of the 

endocytosis cycle, suggesting that endocytosis might be involved in the uptake of 

RXLR effector proteins by the host cells. Even though RXLR proteins were identified 

to influence virulence of the respective pathogen their function is largely unknown. 

Bos et al. (2006) were able to relate the function of the Phytophthora infestans RXLR 

effector Avr3 with INF1-induced cell death suppression in Nicotiana benthamiana 

(Bos et al., 2006). Other oomycete effectors are thought to manipulate host gene 

expression like the above described bacterial effectors as they contain nuclear 

localization signals (NLS), however, functional proof is missing (Morgan and 

Kamoun, 2007).  

The genome sequences of fungal plant pathogens often comprise of several 

hundred, some even close to a thousand secreted proteins with unknown function, 

which are in most cases pathogen specific (Dean et al., 2005; Kämper et al., 2006; 

Hane et al., 2007). Except from a common N-terminal secretion signal peptide it is 

currently unknown how fungal effectors localize to their site of action within the host 

plant. Fungi lack a bacterial secretion machinery-like system and a common RXLR-

like host targeting peptide has not been discovered yet. Nevertheless, the Uromyces 

fabae effector RTP1 was detected in the host cytoplasm suggesting a route for 

uptake and a function within the host cell (Kemen et al., 2005). Several secreted 
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proteins were found to be crucial for fungal virulence (Jia et al., 2000; Westerink et 

al., 2004; Kemen et al., 2005; Rooney et al., 2005; Kämper et al., 2006; Catanzariti et 

al., 2006; Dodds et al., 2006; Bolton et al., 2008; Doehlemann et al., 2009). 

Moreover, the virulence function of some of these effectors has been linked to 

interaction with the cognate R gene products or inhibition of proteases required for 

plant disease resistance (Jia et al., 2000; Westerink et al., 2004; Rooney et al., 

2005). 

As effectors are directed to plant cells to overcome disease resistance, their genes 

are, like the cognate R genes from plants, subject to high evolutionary selection, 

causing a high degree of diversity (Win et al., 2007). Putative functions are therefore 

hard to predict. However, the mere number of these effectors would lead one to 

expect a high level of functional redundancy, which might finally simplify the 

classification of this diverse group of proteins.  

  

1.3.3 Carbon Acquisition of Fungal Pathogens during Plant Infection  

Most of the research dealing with the molecular interaction of pathogens and their 

host plants has focused on the above described plant defense responses and the 

strategies of pathogens to enter their hosts. A far less studied, but not less important 

aspect of a phytopathogenic interaction is the nutrient acquisition of the pathogen 

within the host plant. As nutrient availability determines the fitness of the pathogen, it 

also determines the pathogens success to conquer the plant. Fungal plant pathogens 

have developed two major strategies to acquire nutrients from their respective hosts. 

Necrotrophic fungi kill the plant cells after plant infection and feed on the host tissue 

as saprotrophs. In contrast, biotrophic fungi manipulate their hosts to feed on its 

resources, while keeping the plant cells alive. A third group of fungal pathogens, 

called hemibiotrophs, uses a combination of both strategies to complete their 

lifecycle. They first develop a biotrophic lifestyle to spread within the plant, and in a 

second phase switch to necrotrophism.  

During a biotrophic interaction the pathogen has to develop well-adapted strategies 

to get access to nutrients, while the host tissue is staying alive. The obligate 

biotrophic rust and powdery mildew fungi, which are strictly dependent on the host 

tissue for growth and reproduction, form similar to symbiotic arbuscular mycorrhiza 

fungi specialized feeding structures to access plant derived nutrients (review by 
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Panstruga, 2003; Parniske, 2008). These so called haustoria are thought to function 

predominantly to promote fungal hexose and amino acid uptake.  

In the Uromyces fabae/Vicia fabae interaction a hexose transporter (HXT1p) and 

three amino acid transporters (AAT1p, AAT2p and AAT3p) were found to be 

specifically expressed in haustoria (Hahn et al., 1997; Voegele et al., 2001; Struck et 

al., 2002; Struck et al., 2004). Functional analysis revealed that HXT1p functions as a 

proton co-transporter specific for glucose and fructose. Furthermore, a haustoria-

induced, secreted invertase of U. fabae was discovered, which is thought to act in 

combination with HXT1p by promoting the uptake of glucose and fructose through 

prior cleavage of sucrose (Voegele, 2006). Yet, the importance of the transporters 

and the invertase of U. fabae for biotrophic development has never been addressed 

in the homologous system, as rusts are not amendable to reverse genetic 

approaches (Voegele et al., 2001).  

The same holds true for the ectomycorrhizal fungi Amanita muscaria, Tuber borchii, 

and Geosiphon pyriformis. Although, hexose transporters were identified as 

specifically expressed during symbiosis in those fungi, their impact on fungal 

symbiosis is currently unknown (Nehls et al., 1998; Schüssler et al., 2006; Polidori et 

al., 2007). Nevertheless, the uptake of sucrose-derived hexoses seems to be a 

common feature of plant pathogenic fungi, as it was not only observed in biotrophic 

but also in necrotrophic interactions. It is suggested that Sclerotinia sclerotiorum, a 

necrotroph of sunflower, uses a fungal invertase for sucrose cleavage and two 

hexose transporters, Sshxt1 and Sshxt2 for subsequent uptake of glucose and 

fructose during infection (Jobic et al., 2007). 

Apart from the strategy to differentiate specialized feeding structures, which is not 

realized by all fungal biotrophs, a biotrophic interaction is accompanied with the 

establishment of a metabolic sink. Plant sink tissues like roots are dependent on 

sucrose import from photosynthetically active source tissues (reviewed by Winter and 

Huber, 2000; Koch, 2004). Apoplastic invertase activity is described to influence a 

transition from source to sink tissue at fungal infection sites (reviewed by Panstruga, 

2003; Hückelhoven, 2005; Biemelt and Sonnewald, 2006). Both, secreted fungal 

invertases, as well as plant cell wall invertases have been found to be induced after 

fungal infection, and thought to mediate a source to sink transition (Heisteruber et al., 

1994; Chou et al., 2000; Fotopoulos et al., 2003).  

Upon enhanced sucrose cleavage, sucrose export is reduced and in turn sucrose 

unloading in the vicinity of fungal hyphae is increased (Tetlow and Farrar, 1992; 
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Ayres et al., 1996; Tang et al., 1999). Increased sucrose uptake was observed in 

Arabidopsis thaliana leaves infected with powdery mildew (Fotopoulos et al., 2003). 

Due to enhanced invertase activity the increased unloading of sucrose at infection 

sites comes along with elevated levels of free hexoses (von Schaewen et al., 1990; 

Sonnewald et al., 1991). As a result not only fungal hexose transporters are 

specifically expressed in sink tissues (Nehls et al., 1998; Voegele et al., 2001; 

Schüssler et al., 2006; Polidori et al., 2007), but also plant hexose transporters are 

induced, most likely to compete with the fungal transporters (Tang et al., 1996; 

Fotopoulos et al., 2003). 

In addition to this direct competition by plant hexose transporters, which should 

restrict carbon access of the pathogen, plants are able to sense “aberrant” pathogen-

induced carbon compositions to trigger defense responses. Increased hexose levels 

were found to trigger PR gene expression and systemic acquired resistance (Herbers 

et al., 1996b; Herbers et al., 1996a; Rolland et al., 2006). Likewise, enhanced 

invertase activity has been reported to influence PR genes expression (Heineke et 

al., 1992; Roitsch et al., 2003; Schaarschmidt et al., 2007; Kocal et al., 2008). In rice 

plants, elevated sucrose-levels led to PR gene expression and increased resistance 

against pathogens (Murillo et al., 2003; Gómez-Ariza et al., 2007). In general, the 

plant appears to be able to sense a pathogen-induced source to sink transition upon 

which a defense response reaction is performed. Accordingly, the pathogen has to 

develop strategies to cope with such recognition events based on the plants carbon 

level. To be successful the pathogen either has to block the induced defense 

responses or utilize the signaling carbohydrate molecules fast enough to not trigger a 

response.  

 

1.4 Focus of this Work 

The topic of this dissertation, “Biotrophic Development of Ustialgo maydis and the 

Response of Its Host Plant Maize”, covers a broad range of subjects, which can be 

addressed from different angles to answer questions as: Why is there no effective 

plant defense response upon U. maydis infection? Is U. maydis actively interfering 

with plant defense responses? How does U. maydis manage to feed on the plant? Is 

there active reprogramming of the maize metabolism by the fungus and which carbon 

sources are taken up by the fungus? To answer these questions three different 

approaches were carried out, all of which are described in section 2.  
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Section 2.1 (The Ustilago maydis b Mating Type Locus Controls Hyphal Proliferation 

and Expression of Secreted Virulence Factors in Planta) addresses the function of 

the bE/bW heterodimer during biotrophic growth. The two unrelated homedomain 

proteins bE and bW form an active transcription factor which was shown to initiate 

sexual development and pathogenicity (Kämper et al., 1995; Romeis et al., 2000; 

Brachmann et al., 2003). By constructing temperature sensitive b alleles, I was able 

to show that the b heterodimer also controls in planta proliferation of U. maydis and 

regulates secreted effectors important for fungal virulence.  

Section 2.2 (Reprogramming a Maize Plant: Transcriptional and Metabolic Changes 

Induced by the Fungal Pathogen Ustilago maydis) describes changes of the maize 

transcriptome and metabolome in response to U. maydis infection. Down-regulation 

of plant defense and cell death related genes after fungal penetration revealed an 

active interference with the plants immune system by U. maydis. Next to changes in 

hormone signalling, the interplay between fungus and host involved induction of 

antioxidant and secondary metabolism. The prevention of source leaf establishment 

after infection indicated that U. maydis relies on sugar import rather then on active 

photosynthese to nourish on the plants resources.  

Sections 2.3 and 2.4 (2.3 - A Novel High Affinity Sucrose Transporter is Required for 

Fungal Virulence and Avoids Extracellular Glucose Signaling in Biotrophic 

Interactions; 2.4 - Hxt1, a Monosaccharide Transporter and Sensor Required for 

Virulence of the Maize Pathogen Ustilago maydis) elucidate which fungal sugar 

transporters and which types of carbon sources are important to promote growth of 

U. maydis during biotrophic development. I identified two sugar transporter genes, 

srt1 and hxt1 as required for fungal development in planta. Functional 

characterization revealed that Srt1 is specific for sucrose and Hxt1 has high affinities 

to hexoses, concluding that U. maydis nourishes on the plants transport sugar 

sucrose as well as its cleavage products. 

The subsections describe specific topics, dealing with the complex interplay between 

U. maydis and its host plant maize. Next to research results and discussion, they 

include a detailed introduction and experimental procedures to explain why and how 

the underlying research was carried out.  
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2. Results  
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Summary  

Sexual development in fungi is controlled by mating type loci that prevent self-

fertilization. In the phytopathogenic fungus Ustilago maydis, the b mating type locus 

encodes two homeodomain proteins, termed bE and bW. After cell fusion, a 

heterodimeric bE/bW complex is formed, but only if the proteins are derived from 

different alleles. The bE/bW complex is required and sufficient to initiate pathogenic 

development as a prerequisite for sexual reproduction; for later stages of pathogenic 

development, however, its role was unclear. To analyze b function during in planta 

development, we generated a temperature-sensitive bEts protein with a single amino 

acid alteration flanking the homeodomain. bEts strains are stalled in pathogenic 

development at restrictive temperature in planta, and hyphae develop enlarged, 

bulbous cells at their tips that contain multiple nuclei, indicating a severe defect in cell 

division. DNA array analysis of bEts mutant strains in planta revealed a b-dependent 

regulation of genes encoding secreted proteins that were shown to influence fungal 

virulence. Our data demonstrate that in U. maydis the b heterodimer is not only 

essential to establish the heterodikaryon after mating of two compatible sporidia and 

to initiate fungal pathogenicity, but also to sustain in planta proliferation and ensure 

sexual reproduction. 
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2.1.1 Introduction 

Mating is an essential step in the life cycle of all sexually reproducing organisms. In 

fungi, sexual compatibility is controlled by mating-type genes, which function to 

prevent self-fertilization and ensure the genetic variability of the population. In the 

Basidiomycete Ustilago maydis, the causal agent of the smut disease on maize 

plants, mating is accompanied with a dramatic change of life style. The haploid cells, 

called sporidia, grow by budding and are strictly saprophytic. Mating of two of such 

sporidia leads to the formation of a dikaryon that grows filamentously and requires 

the plant host for further propagation.  

The mating reaction is controlled by two independent mating type loci that are termed 

a and b (for review see Kronstad and Staben, 1997). The biallelic a locus encodes a 

pheromone/pheromone receptor system mediating recognition and cell fusion events  

(Bölker et al., 1992; Spellig et al., 1994a). Subsequently, the b mating type locus 

controls filamentous growth, maintenance of the dikaryon and the initiation of the 

pathogenic program as a prerequisite for sexual development. b encodes two 

homeodomain proteins, bE and bW, that show no homology to each other, with the 

exception of the conserved homeodomain DNA binding domain. However, since for 

both bE and bW proteins the allelic differences cluster within the N-terminal region, 

the proteins share a similar structure with a variable, N-terminal domain and a highly 

conserved C-terminal region. These variable dimerization domains facilitate the 

formation of a transcriptional active bW/bE complex, but only if the proteins are 

derived from different alleles (Schulz et al., 1990; Gillissen et al., 1992; Kämper et al., 

1995). The active b heterodimer is necessary and sufficient to initiate the pathogenic 

life style of U. maydis, as shown by means of a haploid strain that carries compatible 

bE and bW alleles (Bölker et al., 1995). This solopathogenic strain infects the plant 

without a compatible mating partner.   

The homeodomains of the b heterodimer have been shown to bind to a specific DNA 

sequence (b-binding site) in the promoter regions of b-responsive genes (Romeis et 

al., 2000; Brachmann et al., 2001). Such b-responsive genes have been identified in 

several attempts (Bohlmann et al., 1994; Schauwecker et al., 1995; Wösten et al., 

1996; Urban et al., 1996; Brachmann et al., 2001; Brachmann et al., 2003), but with 

the exception of kpp6 (involved in appressoria formation; Brachmann et al., 2003) 

none of them has been linked to pathogenic development.  

Recently, about 350 b-regulated genes have been identified by monitoring the 

expression profiles of U. maydis genes during a 12 hours time course after b 
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induction using DNA microarray analysis (M. Scherer and J. Kämper, unpublished 

data). Within these data sets three genes have been identified, which are expressed 

in presence of an active bE/bW heterodimer and which have an impact on filament 

formation or pathogenic development. clp1 encodes a protein with unknown function 

that is involved in cell cycle progression and cell division after plant penetration 

(Scherer et al., 2006). rbf1 encodes a zinc-finger transcription factor that is required 

for the regulation of the majority of b-dependent genes (Scherer et al., 2006; M. 

Scherer and J. Kämper, unpublished data). The third gene, biz1, encodes a zinc 

finger transcription factor that was shown to be involved in appressoria formation and 

cell cycle arrest (Flor-Parra et al., 2006). In addition, several b-regulated genes 

functioning in cell cycle control, mitosis or DNA replication were identified, consistent 

with the observation that b induction leads to a cell cycle arrest, which is released 

after plant penetration (García-Muse et al., 2003; Scherer et al., 2006; Cánovas and 

Pérez-Martín, 2009).  

The expression of a compatible b heterodimer is required for the initiation of 

pathogenic development. However, it is unclear whether this central regulator is also 

required at the developmental stages succeeding plant penetration. It is known that 

the bE and bW genes are expressed during biotrophic development of the fungus 

(Quadbeck-Seeger et al., 2000), but it is unclear which genes are expressed in a b-

responsive manner during in planta development. To get insights into the function of 

bE/bW during in planta development of U. maydis, we generated temperature-

sensitive b alleles via random PCR mutagenesis.  

The temperature-sensitive bE allele (bEts) prevents fungal proliferation in planta at 

restrictive temperature, while fungal development is not altered at permissive 

temperature. At restrictive conditions in planta, fungal tip cells are enlarged and 

contain multiple nuclei, demonstrating the requirement of b for cell division. In planta 

DNA microarray expression analysis comparing the bon and the boff state revealed a 

b-dependent transcription network important for the expression of secreted proteins 

previously shown to influence pathogenicity (Kämper et al., 2006). Our data 

demonstrate that the b heterodimer is essential during in planta development of U. 

maydis, affecting fungal proliferation and the biotrophic interaction with the host plant. 
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2.1.2 Results 

Generation of Temperature-sensitive b Alleles 

In order to generate temperature sensitive (ts) mutant alleles encoding bE and bW, 

we applied in vitro mutagenesis to alter DNA fragments encompassing the N-terminal 

dimerization domain of bW and the N-terminal dimerization domain and 

homeodomain of bE, respectively (Figure 2.1-1A; see Experimental Procedures). 

Alterations in the dimerization domains could possibly interfere with protein-protein 

interactions of bW and bE, resulting in an instable complex at higher temperatures 

unable to accomplish its regulatory function. Mutations within the homeodomain 

could effect or prevent DNA binding.  

The mutagenized fragments were cloned into autonomously replicating U. maydis 

plasmids to restore the complete open reading frames (ORFs) under control of the 

native promoter regions. Mutant libraries of bW1- and bE2-plasmids were 

transformed into U. maydis strain FBD11-21 (a1a2/b2b2) or FBD12-3 (a1a2/b1b1), 

respectively. Strains harboring the bW1 or bE2 plasmids express an active bW1/bE2 

complex, which is indicative through the induction of filamentous growth on charcoal 

containing media plates (PDC, see Experimental Procedures). A total of 

approximately 30.000 bE2- and 20.000 bW1 mutants were screened for filamentous 

growth at 22 °C and budding growth at 31 °C by means of replica plating.  

Two strains with mutant bE2 alleles (FBD12-3 + pFSbE2ts52 and FBD12-3 + 

pFSbE2ts98) showing a ts-dependent growth phenotype were identified. In both 

cases, filamentous growth was induced at permissive temperature, while cells grew 

by budding at restrictive temperature (Figure 2.1-1B). Sequence analysis of the two 

mutant bE2ts fragments revealed three missense mutations in each of the alleles. 

Both mutant-alleles shared one mutation leading to an exchange of serine to proline 

at position 183, located at the border of the third α-helix of the homeodomain of bE2 

(Figure 2.1-1C). To test whether this mutation causes the ts-phenotype, directed 

PCR mutagenesis was performed to alter serine to proline at position 183 in the wild 

type bE2 allele. The resulting bE2ts183P allele revealed the same temperature 

sensitivity as observed for the alleles bE2ts52 and bE2ts98 (Figure 2.1-1B).  
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Figure 2.1-1: Temperature-sensitive b alleles generated by random PCR mutagenesis. (A) 
Schematic presentation of the bE2 and bW1 genes. Regions chosen for random PCR 
mutagenesis (flanked by restriction sites) are displayed as bidirectional arrows. Positions of the 
variable dimerization-domain (DD) and homeodomains (HD) are indicated as ovals. In bW1 the 
dimerization domain, and for bE2 the dimerization- and homeodomain were mutagenized. (B) b-
induced growth on charcoal containing plates at permissive (22°C) and restrictive temperature 
(31°C). Strain FBD12-3 + pNEBbW1UH harbors a non-compatible bE1/bW1 combination and 
grows non-filamentous at both temperatures. Strain FBD12-3 + pFSbE2 harbors an active 
bW1/bE2 complex and growth filamentous at both temperatures. Strains carrying plasmids with 
temperature sensitive bE2 alleles grow filamentously only at permissive temperature. The single 
amino acid exchange from serine to proline at position 183 in bE2tsP183 is sufficient to abolish b 
function in FBD12-3 + pFSbE2tsP183 at 31°C. The white scale bar corresponds to 1mm. (C) 
Alignment of the mutated regions of the temperature sensitive bE variants bE2ts52 and bE2ts98 
with the wild type bE2. Dimerization- and homeodomains are indicated in light grey and dark grey 
boxes, respectively. Position and nature of generated amino acid exchanges are highlighted in 
black. The exchange of the wild type serine to proline at the border of the third helix of the 
homeodomain (position 183) leads to the temperature sensitivity of both bE2ts52 and bE2ts98. 

  

The b Heterodimer is Essential for Biotrophic Development of Ustilago maydis 

To test the effects of the bE2ts183P allele at restrictive temperature during in planta 

development of U. maydis, we introduced the bE2ts allele and the wild type bE2 gene 

as a control into U. maydis stain FB1otef:pra2 (a1pra2/b1). This strain expresses an 

active pheromone/pheromone receptor system (mfa1, pra2), which is important to 

achieve increased virulence (Bölker et al., 1995), and the bE1 and bW1 genes of 

which the latter is needed to form the complex with bE2ts183P.  
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In the obtained strains RAbE2ts and RAbE2, the bE genes are expressed at 

permissive and restrictive temperature to a similar extend, respectively. Expression of 

bE is increased in RAbE2ts compared to RAbE2, due to additional, ectopically 

integrated copies of the bE2ts gene (Figure 2.1-2A,B).  

 

Figure 2.1-2: Temperature inactivation of bE2ts disturbs transcriptional activity and 
abolishes tumour formation. (A) Growth of the solopathogenic strains RAbE2 harboring the 
wild type bE2 gene as control and RAbE2ts harboring the temperature-sensitive bE2tsP183 allele 
at permissive (22°C) and restrictive temperature (31°C). The progenitor strain FB1otef:pra2 was 
used as negative control. (B) Northern Blot analysis of bE2 and bE2tsP183 expression at 
permissive and restrictive temperature. In both strains bE2 expression is not altered due to the 
temperature shift; in strain FB1otef:pra2  used as negative control no bE2 expression is visible. 
The constitutively expressed ppi gene was used as loading control. (C) Nothern blot analysis of 
b-dependent gene expression at permissive and restrictive temperature. While the control strain 
RAbE2 expresses the b-dependent genes clp1 and dik6 at both temperatures, in RAbE2ts both 
genes are expressed only at permissive temperature, but not at restrictive temperature. In the 
negative control strain FB1otef:pra2 no expression of the b-dependent genes is observed. The 
constitutively expressed ppi gene serves as loading control. (D) Pathogenic development of the 
temperature-sensitive strain RAbE2ts and its wild type control RAbE2 at permissive and 
restrictive condition. Plants were infected with both strains, respectively, and either kept 
constantly at permissive, constantly at restrictive temperature, or were shifted from permissive to 
restrictive temperature 1, 2, and 4 dpi. Pictures were taken 7 dpi. After infection with RAbE2, 
tumours develop under all tested conditions, whereas infection with RAbE2ts does not induce 
tumours when plants are kept or shifted to restrictive conditions. Tumour development of both 
strains appears normal at permissive temperature. 

 

To address whether bE2ts183P alters the function of the bE/bW heterodimer as a 

transcriptional activator at restrictive temperature, we investigated the expression of 

the b-dependently expressed genes dik6 and clp1. Both genes have b-binding sites 
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located within their promoter regions and are thought to be regulated directly by the b 

heterodimer (Bohlmann et al., 1994; Scherer et al., 2006). Transcripts of both genes 

were detected under permissive and restrictive conditions in the control strain 

RAbE2. However, in RAbE2ts dik6 and clp1 were only expressed under permissive 

conditions, arguing for an attenuated transcriptional activity of the bW1/bE2ts183P 

complex at 31 °C (Figure 2.1-2C).   

To address the function of the b heterodimer during biotrophic development, maize 

plants were infected with RAbE2ts and RAbE2 at 22 °C and shifted to restrictive 

temperature (31 °C) at different time points (0, 1, 2, 4 days post infection, dpi). Tumor 

development of plants infected with the temperature-sensitive strain was compared to 

plants infected with the respective wild type control strain at 7 dpi (Figure 2.1-2D). 

When shifted to restrictive temperature, all plants infected with RAbE2ts developed 

chlorosis, but no (0 and 1 dpi) or drastically reduced tumor symptoms (2 and 4 dpi), 

when compared to plants infected with RAbE2. Grown at permissive temperature (22 

°C), plants developed symptoms that were indistinguishable in infections with 

RAbE2ts or RAbE2 (Figure 2.1-2D). These results clearly demonstrate an essential 

role of the b heterodimer for fungal proliferation during biotrophic development of U. 

maydis.  

   

Figure 2.1-3: Temperature-dependent 
inactivation of b function in planta 
abolishes fungal proliferation. (A) Clorazol 
Black E staining of RAbE2 and RAbE2ts 
hyphae in planta at restrictive and permissive 
temperature 3 dpi (kept at 22°C or shifted to 
31°C at 2dpi). The control strain RAbE2 
shows no differences of hyphal development 
at both temperatures. Hyphal morphology of 
RAbE2ts is indistinguishable from that of 
RAbE2 at permissive temperature, whereas 
at restrictive temperatures the tip cells of 
hyphae are severely enlarged (white arrows). 
(B) Visualization of nuclei by expression of a 
nuclear localized 3xGFP after switching off b 
activity 2.5 dpi. After 2 dpi, infected plants 
were shifted from permissive (22°C) to 
restrictive (31°C) conditions for 12 hours or 
kept at 22°C as control. Hyphal cells of the 
haploid strain RAbE2 contain one nucleus at 
both temperatures; RAbE2ts hyphae 
resembled the phenotype of RAbE2 at 
permissive temperatures, whereas at 
restrictive temperature (31°C) the enlarged 
hyphal tip cells contain multiple nuclei (white 
arrows). The white scale bars corresponds to 
20 µm.  
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To study the role of the b heterodimer during in planta proliferation in more detail, we 

examined the growth of RAbE2ts-filaments microscopically after infection at 

permissive and restrictive temperatures. Chlorazol Black E staining of fungal hyphae 

revealed that proliferation of RAbE2ts under permissive condition was comparable to 

that of infections with RAbE2 (Figure 2.1-3A). However, at restrictive conditions, the 

RAbE2ts cells were found to be enlarged, especially the tip cells of proliferating 

hyphae (Figure 2.1-3A). To visualize nuclei, RAbE2ts was transformed with a triple 

GFP construct fused to a nuclear localization site (NLS) expressed by the strong 

plant inducible promoter of the mig2-5 gene  (Zheng et al., 2008). Under permissive 

conditions, hyphae were composed of cells containing single nuclei as observed 

previously in the solo-pathogenic strains (Scherer et al., 2006). Under restrictive 

conditions, enlarged cells were visible that contained multiple nuclei (Figure 2.1-3B), 

indicating that a dysfunctional b heterodimer leads to a cell division defect, while cell 

cycle and nuclear divisions persist.  

 

The b Heterodimer Affects the Regulation of Pathogenicity Factors in Planta 

To investigate the influence of the b heterodimer on the U. maydis transcriptome 

during in planta proliferation, we performed a DNA array analysis using an Affymetrix 

U. maydis gene chip. After infections with the solopathogenic strain RAbE2ts, fungal 

biomass in whole leave samples were insufficient to dissolve the transcriptome of U. 

maydis due to the high background of plant-derived mRNA (data not shown). 

Therefore, strains RAb1ts (a1, bW1bE1ts) and RAb2ts (a2, bW2bE2ts) were 

constructed. These compatible strains were able to develop an infectious dikaryon 

harboring the compatible, temperature-sensitive b heterodimers bW1/bE2ts and 

bW2/bE1ts. At permissive temperature, infections with a mixture of RAb1ts and 

RAb2ts gave symptoms comparable to that of infections with the compatible wild type 

strains FB1 (a1b1) and FB2 (a2b2) (data not shown), yielding fungal biomass 

sufficient for DNA array analysis. As expected, pathogenic development of the 

RAb1ts/RAb2ts dikaryon was stalled at restrictive temperature (Figure 2.1-4A).  
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Figure 2.1-4: b inactivation in planta alters the expression of genes important for fungal 
virulence. (A) Time series of enlarged tip cell formation starting 4 dpi after infection with 
RAb1ts/RAb2ts crossings to determine the time point for expression analysis after b inactivation 
in planta. 3 hours after the temperature shift to 31°C no enlarged tip cells are visible, 6 hours 
after shift the tip cells start to enlarge (black arrows), and 9 hours after the shift most tip cells are 
enlarged (black arrows); 12 hours after shift the phenotype was not significantly altered when 
compared to 9 hours (black arrows). The white scale bar corresponds to 50 µm. (B) Correlation 
Matrix of U. maydis microarrays performed with RNA from plant tumors obtained from infections 
with crossings of FB1/FB2 and RAb1ts/RAb2ts; compared are the bon and boff states at 
permissive and restrictive conditions 5 dpi, respectively. The correlation matrix was calculated 
with expression values of all genes represented on the DNA chip to display similarities in gene 
expression of a single array compared to all others. The colour scale bar indicates the similarity 
of one array compared to another (red=equal, green=different). The first cluster is formed by 
three experiments of RAbE1ts/RAbE2ts crossings at 31°C indicating that these independent 
experiments are most similar to each other. The same holds true for the second cluster of the 
three FB1/FB2 experiments at 31°C. A third cluster is formed by the two experiments with wild 
type infection FB1/FB2 and the mutant infection RAbE1ts/RAbE2ts performed at permissive 
conditions. Expression profiles of both strains are similar at permissive conditions, whereas their 
profiles differ significantly at restrictive conditions. Furthermore, the effect of temperature on gene 
expression is more significant then the effect of b inactivation, as arrays with plants infected at 
31°C are more similar to each other then to those infected at 22°C. Comparison of FB1/FB2 to 
RAbE1ts/RAbE2ts at 31°C is most suitable to analyze bon and boff states in planta. (C) Pie chart 
of differentially expressed genes after b inactivation comparing bon and boff states at 31°C in 
planta. Categories classifying individual genes are indicated in the Figure legend. Numbers of 
differentially expressed genes belonging to the individual categories are displayed in the chart. 
The number of genes within the two subgroups of secreted proteins (green) is significantly 
enriched (p-Value of 7.6 x 10-12; only probe sets identified by Target-P were considered (34); see 
Experimental Procedures).   
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For DNA array expression analysis, plants were infected with either a mixture of 

RAb1ts and RAb2ts or of FB1 and FB2. Array analysis of the two infection 

experiments 5 dpi (120 hours) at permissive temperature (22 °C) revealed 

comparable transcription profiles (Figure 2.1-4B). The effect of b-dependent 

regulation during biotrophic proliferation was addressed by shifting the temperature of 

FB1/FB2 and RAb1ts/RAb2ts infections from 22 °C to 31 °C after 111 hours past 

infection for a period of 9 hours. This period was sufficient to stall proliferation for the 

majority of RAb1ts/RAb2ts hyphae (Figure 2.1-4A).  

A total of 81 genes appeared to be differentially expressed after switching off the 

function of the bE/bW heterodimer (for filter criteria see Experimental Procedures, 

Table 2.1-S1). We did not observe a significant alteration of specific functional 

categories among the deregulated genes. However, a group of 42 genes (52 %) 

coding for predicted secreted proteins was significantly enriched, including the most 

down-regulated gene um05027 (Figure 2.1-4C, Table 2.1-S2, criteria for prediction of 

secreted proteins see Experimental Procedures). 12 of these genes have been 

described previously as part of in planta induced gene clusters for secreted proteins, 

several of which were shown to be important for full fungal virulence (Table 2.1-S2; 

Kämper et al., 2006). 10 of the genes organized in the clusters 2A (2 genes - 

increased virulence), 6A (2 genes - reduced virulence), 9A (1 gene - unaffected) and 

19A (5 genes - markedly reduced virulence) were down-regulated, whereas only 2 

genes affecting cluster 2B (unaltered virulence) were induced  (Kämper et al., 2006); 

Table 2.1-S2). Only 10 of the 42 genes coding for potentially secreted proteins have 

a functional annotation, three of which encoding for cell wall degrading enzymes 

(endoglucanase, um06332; endochitinase, um06190; pectine lyase, um10671; 

Tables 2.1-S1, S2).  

Of the 350 b-dependently regulated genes recently identified by DNA microarray 

analysis monitoring b induction in axenic culture (M. Scherer and J. Kämper, 

unpublished data), only 14 were found to be differentially expressed after 

temperature restriction of b activity in planta (Table 2.1-S3). One of these genes is 

clp1, a direct target gene of the b heterodimer (Scherer et al., 2006) and the third 

most down-regulated gene (10-fold) after switching off b activity in planta. 

Furthermore, we observed an induction of the pheromone and the pheromone 

receptor genes (mfa1, mfa2, pra1 and pra2; Table 2.1-S3) known to be down-

regulated by an active b complex in axenic culture (Urban et al., 1996). In 

accordance, 18 pheromone-dependent genes were also up-regulated (Table 2.1-S3; 

Urban et al., 1996; Zarnack et al., 2008). 
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 2.1.3 Discussion 

A Serine/Proline Exchange at the Border of the Third Helix of the bE Homeodomain 

Leads to Temperature Sensitivity of the bE/bW Heterodimer 

bE2ts183P, a temperature-sensitive allele of bE2, harbors a single mutation, leading to 

an amino acid exchange at the border of the third α-helix of the homeodomain. 

Helices I and II of homeodomains have structural and stabilizing functions, while helix 

III is involved in direct target sequence recognition by contacting base residues within 

the major groove of the DNA (Wolberger et al., 1991). 3D structure analysis of the 

homeodomains of Antennapedia from Drosophila melanogaster and MATa1 from 

Saccharomyces cerevisiae revealed that the positions corresponding to proline 183 

in bE are part of the last loop of the DNA binding α-helices (Figure 2.1-S1A, B). The 

α-amonium group of proline is covalently bound to the δ-carbon atom; therefore, the 

amino acid is sterically rather constricted, which often leads to the “breaking” of a 

helix. Thus, the observed temperature sensitivity of bE2ts183P is most likely caused by 

a helix destabilizing effect, leading to a non-functional DNA recognition helix. The 

thermo-instability observed for the mutant helix III in bE is apparently not a general 

effect, as the introduction of proline at the respective position of the bW1 

homeodomain did not lead to temperature sensitivity (data not shown). However, the 

bW and bE homeodomains belong to different subclasses (Schlesinger et al., 1997). 

The bE domain belongs to an atypical homeodomain class with less similarity to the 

consensus and additional spacer sequence between helix II and III. The bW domain 

belongs to the group of “classical” homeodomains with strong conservation 

throughout the whole domain. It would be worthwhile to test for temperature 

sensitivity in other atypical homeodomain proteins as the S. cerevisae MATα2 

protein. 

 

Temperature Inactivation of the b Heterodimer during in Planta Development of U. 

maydis Blocks Fungal Proliferation  

We could show that the b heterodimer is not only essential to establish the 

heterodikaryon after mating of two compatible sporidia and to initiate fungal 

pathogenicity, but also to sustain in planta proliferation and ensure sexual 

reproduction. Shutting off the activity of the b heterodimer during in planta 

development of the fungus leads to an enlargement of fungal tip cells that contain 

multiple nuclei, indicating a defect in cell division. One of the previously described 
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functions of the b heterodimer is the control of the mitotic cell cycle. In axenic culture, 

induced expression of an active bE/bW heterodimer leads to a G2 cell cycle arrest, 

reminiscent to the G2 arrest observed after fusion of two sporidia in the resulting 

dikaryon (Snetselaar and Mims, 1992; García-Muse et al., 2003; Scherer et al., 2006; 

Cánovas and Pérez-Martín, 2009). However, after plant penetration, the cell cycle 

arrest must be released to allow hyphal proliferation. bE/bW expression can be 

detected during the entire biotrophic phase (Quadbeck-Seeger et al., 2000; M. 

Vranes and J. Kämper, unpublished data). It is thought that the function of the 

heterodimer is modulated by action of Clp1, a protein that was shown to counteract b 

function (Scherer et al., 2006). Clp1 is expressed within the nucleus at the time point 

of cell cycle release upon plant penetration; however, the “plant signal” triggering this 

event is still unknown (Scherer et al., 2006). Clp1 was also found to be essential for 

the formation of clamps, a specialized structure necessary for the distribution of 

nuclei and cell division in planta, and subsequently for cell division of the dikaryotic 

hyphae in planta (Scherer et al., 2006). It is well possible that the loss of b function in 

the bEts-strains (controlling cell cycle) and of the b-dependently regulated gene clp1 

(controlling b function and cell division) leads to an uncoupling of cell cycle and 

cytokinesis, which would account for the multinucleated, enlarged tip cells formed 

after inactivation of b.  

 

Pheromone-dependent Genes are De-repressed Due to b Inactivation in Planta 

We observed the up-regulation of a total of 23 genes upon b-inactivation that were 

previously shown to be induced via the pheromone pathway (Table 2.1-S3; Hartmann 

et al., 1996; Urban et al., 1996; Zarnack et al., 2008). It has been shown that 

formation of an active b heterodimer leads to the repression of the pheromone and 

pheromone-receptor genes  (Urban et al., 1996; Hartmann et al., 1999). Since the 

infectious dikaryon harbors a compatible combination of both pheromone- (mfa1 and 

mfa2) and both receptor-genes  (pra1 and pra2) it is conceivable that, upon b- 

inactivation, the de-repression of the pheromone/receptor genes leads to an 

activation of a-dependent genes. One of the a-dependently induced genes 

upregulated upon b-inactivation is rbf1  (Zarnack et al., 2008). Rbf1 encodes a 

transcription factor that serves as a central node in the b-regulatory cascade, 

involved in the regulation of the majority of b-dependently regulated genes (M. 

Scherer and J. Kämper, unpublished data; Scherer et al., 2006). Thus, the 
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derepression of the a-pathway maintains the expression of rbf1, resulting in 

expression of b-regulated genes even after b-inactivation.  

 

The b Heterodimer is Necessary for the Regulation of Secreted Proteins Important for 

Fungal Virulence during Pathogenic Development 

Secreted proteins of plant pathogenic bacteria, oomycetes and fungi have been 

shown to play crucial roles for the establishment of the different pathogenic lifestyles 

(Kämper et al., 2006; Chisholm et al., 2006; Kamoun, 2006; O'Connell and 

Panstruga, 2006; Birch et al., 2006; Catanzariti et al., 2006; Ridout et al., 2006; 

Kamoun, 2007; Morgan and Kamoun, 2007). For U. maydis, up to 750 proteins have 

been predicted to be secreted, dependent on the stringency of the method used for 

secretion signal prediction (MUMDB; Müller et al., 2008; Kämper et al., 2006). 

Recently, we have shown that several of these predicted proteins were (1) 

specifically expressed during in planta development and (2) organized as clusters 

within the U. maydis genome (Kämper et al., 2006). In total 12 of these clusters of U. 

maydis-specific secreted proteins have been identified, of which 5 were found to be 

crucial for pathogenic development (Kämper et al., 2006).  

52 % (42) of the genes differentially expressed in the bEts strains encode proteins 

with a bioinformatic prediction to be secreted. We identified 12 genes organized in 5 

of the described secreted clusters, among these 5 of the 26 genes of the largest 

identified “cluster 19” (Table 2.1-S2). Since not all genes were affected by the b 

heterodimer within these 5 clusters, we have to assume additional regulatory circuits 

that lead to the in planta expression of the entire cluster (Table 2.1-S2). Intriguingly, b 

inactivation affects 3 out of the 5 clusters that were shown to be crucial for 

pathogenic development of U. maydis (clusters 2A, 6A and 19; Table 2.1-S2; Kämper 

et al., 2006). Although it is currently not known which of the genes in the clusters are 

responsive for the observed pathogenicity phenotypes, our finding clearly indicates 

that the b heterodimer plays an essential role for the regulation of secreted proteins 

important for fungal virulence.  

Most of the genes differentially regulated by b in planta, including the genes coding 

for secreted proteins, are not expressed after b induction in axenic culture (M. 

Scherer and J. Kämper, unpublished data), indicating that additional plant-specific 

signals and regulators modify b-mediated transcription. We have identified three 

genes coding for putative transcription factors (um06257, um10500, um01523) as 
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down-regulated after b inactivation during biotrophic growth (Table 2.1-S1). It is well 

possible that these regulators integrate additional environmental cues into the b-

dependent regulatory cascade to adapt the fungus to changing environmental 

conditions as the plant surface or different plant tissues.  

Our results support the function of the b mating type locus as the determinant for 

pathogenic development. The b heterodimer can be positioned as master regulator 

within a transcriptional network for the spatial and temporal control of cell cycle and 

cell division, but, as we show now, also for genes required to establish and maintain 

the biotrophic interaction with its host plant.    
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2.1.4 Experimental Procedures 

Strains and Growth Conditions 

Escherichia coli strain TOP10 (Invitrogen) was used for cloning purposes. Ustilago 

maydis cells were grown at 28°C in YEPS (Tsukuda et al., 1988) as pre-cultures for 

mating assays and plant infections. Mating assays were performed at 22°C 

(permissive) or 31°C (restrictive) temperature as described by Gillissen et al. (1992) 

on 1% charcoal containing potato dextrose (PDC) medium (Difco) or complete 

medium (Holliday, 1974). For screening of the plasmid library used for bE or bW 

mutagenesis all U. maydis strains harboring plasmids were grown in Hygromycin-

containing media (200 µg/ml). U. maydis strains used in this study are listed in Table 

2.1-1.  

 

Table 2.1-1: Strains used in this work   

Strain Relevant Genotype Reference 
FBD11-21 a1a2/b2b2 Banuett and Herskowitz, 1989 
FBD11-21 + 
pNEBbW1UH 

a1a2/b2b2 + bW1 This work 

FBD11-21 + 
pNEBbW1UH mut. lib. 

a1a2/b2b2 + bW1mut This work 

FBD12-3  a1a2/b1b1 Banuett and Herskowitz, 1989 
FBD12-3  + 
pNEBbW1UH 

a1a2/b1b1 + bW1 This work 

FBD12-3 + pFSbE2 a1a2/b1b1 + bE2mut This work 
FBD12-3 + pFSbE2 
mutant library 

a1a2/b1b1 + bE2 This work 

FBD12-3 + 
pFSbE2ts52 

a1a2/b1b1 + bE2ts52 This work 

FBD12-3 + 
pFSbE2ts98 

a1a2/b1b1 + bE2ts98 This work 

FBD12-3 + 
pFSbE2tsP183 

a1a2/b1b1 + bE2tsP183 This work 

FB1otef:pra2  a1pra2/b1 Müller unpublished 
RAbE2  a1pra2/b1bE2 This work 
RAbE2_ nls3gfp a1pra2/b1bE2; Pmig2-5: NLS-

3xeGFP 
This work 

RAbE2ts  a1pra2/b1bE2ts This work 
RAbE2ts_nls3gfp a1pra2/b1bE2ts; Pmig2-5: NLS-

3xeGFP 
This work 

FB1 a1/b1 Banuett and Herskowitz, 1989 
FB2 a2/b2 Banuett and Herskowitz, 1989 
JB1   a1/∆b1 Scherer et al., 2006 
JB2 a2/∆b2 This work 
RAb1ts a1/bW1bE1ts This work 
RAb2ts a2/bW2bE2ts This work 
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Plasmid and Strain Constructions 

Plasmid pCR-Blunt-II-TOPO (Invitrogen) was used for cloning, subcloning, and 

sequencing of genomic fragments and fragments generated by PCR. Plasmid 

pFSbE2 (Kämper et al., 1995) was used to construct the bE2 mutant libraries and the 

plasmids pFSbE2ts52, -ts98 and -tsP183, in all cases a 642 bp HindIII-XbaI bE2 

fragment was cloned into the vector backbone (primer pairs: RW11 5′-CAC TCC 

CAC CTT TAG CCT CTA ACA-3′ and RW12 5′-CGC CAT ACT TGA TCC AGC TGA 

TC-3′). Plasmid pNEBUH (Weinzierl, 2001) was used for cloning of the bW1 gene 

including a 439 bp 5′-region upstream the open reading frame. The bW1 gene was 

amplified from pbW1-pcx (Kämper et al., 1995) in three individual reactions to insert 

the restriction sites needed for random PCR mutagenesis (359 bp KasI-KpnI 

fragment, primer pairs RW1 5′-AGG CGC CTT TGC TGG ATC GTT TCG-3′and RW2 

5′-GGG GAG ACA AAA GGG GTA CCT GAG-3′; 530 bp KpnI-EcoRI fragment, 

primer pairs RW3 5′-CAT CCT CAG GTA CCC CTT TTG TCT-3′ and RW4 5′-GCC 

TGC TCC AGA ATTCGG ACT GCT-3′; 1661 bp EcoRI-SphI fragment, primer pairs 

RW5 5′-AGC AGT CCG AAT TCT GGA GCA GG-3′ and RW6 5′-GGC ATG CGA 

GAA TTG TGA AAA GTA-3′). The three fragments were introduced into pNEBUH to 

yield plasmid pNEBbW1UH which was used to construct the bW1 mutant libraries; for 

this purpose, the 530 bp KpnI-EcoRI fragment was mutagenized by misincorporation-

PCR (primer pairs bW1rPCR1 5′-GGC GCA AGG AAA TGA ATG TGT GTG-3′ and 

bW1rPCR2 5′-TGC TTT GGC TTG AGT CCA GTG ACC-3′). The respective bE2 and 

bW1 plasmids were transformed in FB11-21 and FB12-3 for screening purposes 

(Banuett and Herskowitz, 1989). The strains RAbE2 and RAbE2ts were constructed 

by stable, ectopic integration of SspI-linearized plasmids pFSbE2 and pFSbE2P183 

in the genome of FB1otef:pra2, respectively. FB1otef:pra2 is an FB1 derivative 

(Banuett and Herskowitz, 1989) in which the otef:pra2 construct was integrated into 

the ip-locus (Loubradou et al., 2001); Müller, unpublished data). Plasmid pUThsp 

(Brachmann et al., 2001) was used as backbone to clone the 3376 bp NotI Pmig2-

5:NLS-3xeGFP fragment from pMS76 (Scherer et al., 2006). The resulting plasmid 

pRWnlsGfp was linearized with SspI and ectopically integrated in RAbE2 and 

RAbE2ts, respectively. For the construction of pUmbE/bW, an FseI-linker was 

introduced into the StuI site of pSL1180 (Pharmacia); subsequently, a 1533 bp NotI-

XhoI bW2 fragment and a 1398 bp FseI/EcoRI fragment of bE2 were integrated into 

the respective sites. The EcoRI site is located 607 bp 3´of the open reading frame of 
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bE2, the XhoI site was generated close to a HaeII site 573 bp 3´of bW2. 

Recombinant PCR was used to integrate synonymous mutations to generate the FseI 

and NotI sites at amino acid position 234 to 235 in bE2 and at position 338 to 339 in 

bW2, respectively. Subsequently, the carboxin-resistance gene was inserted as 

EcoRV/SmaI fragment from pCBX122 (Keon et al., 1991), allowing targeted 

integration into the ip-locus of U. maydis (Loubradou et al., 2001). The resulting 

plasmid, pUmbE/bW, harbors the constant regions of bE2 and bW2 with unique NotI 

and FseI sites. 2.2 kb fragments of the b1 and b2 locus comprising the N-terminal 

regions of bE (from amino acid 236) and bW (from amino acid 339) as well as the 

promoter region were amplified using primer pairs W2Not339 (5′-GCA CGC GGC 

CGC ATG TAA TCA AAG-3′) and E2Fse235 (5′-GAG TGG CCG GCC GAG GTT 

GTC TG-3′), generating synonymous mutations that introduce an FseI site at amino 

acid position 235/236 in bE and a NotI site at amino acid position 338/339 in bW. 

Digestion of the PCR products with NotI and FseI allows cloning into plasmid 

pUmbE/bW to reconstitute functional b alleles, resulting in the plasmids pTHEA2 

(bW1bE1) and pTHEB5 (bW2bE2). Plasmids pTHEA2 and pTHEB5 were used for 

construction of bW1bE1ts and bW2bE2ts constructs, respectively. The bE2ts mutation 

was integrated by cloning a 182 bp XhoI/XbaI fragment from pFSbE2tsP183 

containing the bE2ts-mutation and parts of the homeodomain. The resulting plasmids 

pRAb1ts and pRAb2ts were linearized with AgeI for integration into the ip-locus 

(Loubradou et al., 2001) of strains JB1 (a1∆b1; Scherer et al., 2006) and JB2 (a2∆b2; 

FB2 derivative, in which the b2 locus was substituted as described for JB1 by 

Scherer et al., 2006). The resulting stains were named RAb1ts and RAb2ts, 

respectively. Sequence analysis of fragments generated by PCR was performed with 

an automated sequencer (ABI 373A; Applied Biosystems) and standard bioinformatic 

tools.  

 

DNA and RNA Procedures 

Molecular methods followed described protocols (Sambrook et al., 1989). Random 

PCR mutagenesis was performed following the protocol from Spee et al., 1993. 

Transformation of U. maydis protoplasts with the indicated plasmids was performed 

as described previously (Tsukuda et al., 1988). DNA isolation from U. maydis and 

transformation procedures were performed as described (Schulz et al., 1990). 

Homologous recombination into the ip-locus was verified by DNA gel blot analysis 

(Loubradou et al., 2001). For Northern analysis, RNA isolation from charcoal plates 
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was performed as described (Schmitt et al., 1990). RNA gel blot analysis was 

performed as described previously (Garrido et al., 2004). 32P-labeld probes used for 

detection: bE2 (PCR product of primers RW11, RW12), clp1 (Scherer et al., 2006), 

dik6 and ppi as loading control (Brachmann et al., 2001). Detection of radioactive 

signals was performed with a STORM 840 PhosphorImager and ImageQuant 5.2 

software (Molecular Dynamics). 

  

Microscopy 

Microscopic analysis was performed using a Zeiss Axioplan 2 microscope. 

Photomicrographs were obtained with an Axiocam HrM camera, and the images 

were processed with Axiovision (Zeiss) and Photoshop (Adobe). Chlorazole Black E 

staining of fungal cells in planta was performed as described (Brachmann et al., 

2003). GFP was observed by fluorescence microscopy (excitation/emission for eGFP: 

450-490 nm/515-565 nm)  

 

RNA Isolation for DNA Array Expression Analysis 

U. maydis infected maize plants (Early Golden Bantam) were grown in a 

phytochamber in a 15 h/9 h light-dark cycle; light period started/ended with 1h 

ramping of light intensity. Prior to infection with U. maydis temperature was 28°C 

(light) and 20°C (dark). Plantlets were individually sown in pots with potting soil 

(Fruhstorfer Pikiererde) and infected 7 days after sowing, 1 h before end of the light 

period, as described (Brachmann et al., 2001). After infection the plants were kept at 

22°C (permissive temperature) or 31°C (restrictive temperature) depending on the 

requirements. Samples used for RNA preparation were collected 1 h before the end 

of the light period and directly frozen in liquid nitrogen for three independently 

replicates. For each experiment, 10 plants were sampled. Total RNA was extracted 

using Trizol reagent (Invitrogen) according to the manufacturer’s instructions. RNA 

samples to be used for microarray analyses or real-time RT-PCR were further column 

purified (RNeasy; Qiagen) and the quality checked using a Bioanalyzer with an RNA 

6000 Nano LabChip kit (Agilent).   
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DNA Microarray   

Affymetrix Gene ChipR Ustilago genome arrays were done in three biological 

replicates, using standard Affymetrix protocols (staining: EukGe2V4 protocol on 

GeneChip Fluidics Station 400; scanning on Affymetrix GSC3000). Expression data 

were submitted to GeneExpressionOmnibus (http://www.ncbi.nlm.nih.gov/geo/), 

Accession GSE16501. Data analysis was performed using Affymetrix Micro Array 

Suite 5.1, the R bioconductor package (http://www.bioconductor.org/) and dChip1.3 

(http://biosun1.harvard.edu/complab/dchip/), as described by Eichhorn et al. (2006). 

Probe sets present in at least two of the replicates were defined as “expressed”, 

resulting in 48 % (3263 out of 6795) present calls in both wild type and temperature 

sensitive strains. We considered changes >2-fold with a difference between 

expression values >50 and a corrected p-value <0.01 as significant. For genes 

displayed by more then one probe set, the probe set giving the strongest signal 

intensity was chosen. Functional enrichment analyses were performed with the 

functional distribution tool integrated in the Ustilago maydis genome database 

(http://mips.gsf.de/cgi-bin/proj/funcatDB/). Enrichment analysis of secreted proteins 

was performed calculating the total number of secreted proteins expressed in the wild 

type background 5 dpi (only considering the 754 genes containing Target-P signals, 

see below). 395 probe sets (about 12 % of the expressed probe sets) representing 

secreted proteins were identified to be present under these conditions. 

Hypergeometrical distribution analysis was performed and p-Values below 0.01 were 

considered to be significant.    

 

Quantitative Real-Time PCR Analysis 

For cDNA synthesis, the SuperScript III first-strand synthesis SuperMix assay 

(Invitrogen) was employed, using 1 µg of total RNA. qRT-PCR was performed on a 

Bio-Rad iCycler using the Platinum SYBR Green qPCR SuperMix-UDG (Invitrogen). 

Cycling conditions were 2 min 95°C, followed by 45 cycles of 30 sec 95°C/ 30 sec 

65°C / 30 sec 72°C. rbf1 expression was analyzed in the RNA probes used for the 

DNA-array analysis. The U. maydis actin (um11232) and eIF2B (um04869) genes 

were used as references. Primer sequences of rbf1 are described by (Scherer et al., 

2006). Primer sequences were rt-eIF-2B-F (5´-ATC CCG AAC AGC CCA AAC-3´) 

and rt-eIF-2B-R (5´ ATC GTC AAC CGC AAC CAC-3´) for eIF2B, rt-actin-F (5'-CAT 

GTA CGC CGG TAT CTC G-3') and rt-actin-R (5'-CTC GGG AGG AGC AAC AAT C-

3') for the actin gene.  
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Prediction of Secreted Proteins 

Classical secretion signals (TP) were predicted with Target-P 

(http://www.cbs.dtu.dk/services/TargetP/). RC-values indicate the reliability classes (1 

- 5), with class 1 having the highest probability to be secreted (Table 2.1-S2; 

Emanuelsson et al., 2000). RC=3 was used as cut-off. A complete list of 754 Ustilago 

maydis proteins that encompass this criteron can be obtained at the MIPS Ustilago 

maydis Database (http://mips.gsf.de/genre/proj/ustilago/Search/listTargetP. 

html?target=Secretory%20pathway). Non-classical secretion (SP) was predicted with 

Secretome-P (http://www.cbs.dtu.dk/services/SecretomeP/). Obtained NN-scores 

indicate the prediction reliability (0-1), with 1 having the highest probability to be 

secreted (Table 2.1-S2; Bendtsen et al., 2004). A NN-score >0.5 was used as cut-off. 
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2.1.5 Supplementary Information   

A file containing the Supplementary Material of section 2.1 is available on data-CD 

deposited in section 5 of this thesis. The file includes Figure 2.1-S1 and Tables 2.3-

S1 to S3.   

 

Figure 2.1-S1: Mutation from serine to proline at amino acid position 183 in the bE 

protein most likely affects the structure of DNA-binding helix III of the homeodomain. 

Table 2.1-S1: U. maydis genes differentially expressed in response to b inactivation 

in planta. 

Table 2.1-S2: U. maydis genes differentially expressed in response to b inactivation 

in planta: genes encoding proteins predicted to be secreted. 

Table 2.1-S3: U. maydis genes differentially expressed in response to b inactivation 

in planta: genes that are pheromone- and/or b-dependent in axenic culture. 
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Summary 

The fungal pathogen Ustilago maydis establishes a biotrophic relationship with its 

host plant maize. Hallmarks of the disease are large plant tumours in which fungal 

proliferation occurs. Previous studies suggested that classical defence pathways are 

not activated. Confocal microscopy, global expression profiling and metabolic 

profiling now shows that U. maydis is recognized early and triggers defence 

responses. Many of these early response genes are down-regulated at later time 

points whereas several genes associated with cell death suppression are induced. 

The interplay between fungus and host involves changes in hormone signalling, 

induction of antioxidant and secondary metabolism, as well as the prevention of 

source leaf establishment. Our data provide novel insights into the complexity of a 

biotrophic interaction. 
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2.2.1 Introduction 

Plant pathogenic fungi have developed different strategies to cope with the plant 

environment. While necrotrophic fungi kill plant cells rapidly after infection to feed on 

the dead tissue, biotrophic fungi acquire nutrients from living plant tissue. The 

biotrophic relationship requires a highly specialized adaptation of the pathogen to the 

host plant. Hyphae of biotrophic fungi can grow intercellularly as well as 

intracellularly, thereby being ensheated by the plasma membrane of the host cell. 

Many biotrophic pathogens like rusts and powdery mildew fungi form specialized 

feeding structures, called haustoria (Hahn and Mendgen, 2001; Voegele et al., 2001). 

In these structures, a carbohydrate- and protein-containing interface is developed in 

between the hyphal cell wall and the plant plasma membrane that facilitates the 

exchange of signals and nutrients between fungus and host (Hahn and Mendgen, 

2001; Perfect et al., 1999; Mendgen and Hahn, 2002).  

Plants have developed multifaceted defence systems, many of which are induced 

only upon pathogen attack. These responses include induction of pathogenesis 

related (PR) genes, production of secondary metabolites as well as the reinforcement 

of cell walls. Associated with these responses are the production of reactive oxygen 

species (ROS) and the induction of localized cell death (hypersensitive response, 

HR).  

Induction of the basal plant defence machinery occurs upon the recognition of 

conserved molecules which are commonly found in a variety of microbial species, but 

are absent in the host. These pathogen associated molecular patterns (PAMPs) 

include for example fungal chitin, β-glucans and ergosterol. Specific virulence factors 

of the pathogen can be recognized by corresponding R (resistance) genes of the host 

plant. R gene–mediated resistance is associated with the activation of a salicylic acid 

(SA)-dependent signalling pathway that leads to expression of defence-related genes 

like PR1, the production of ROS, and programmed cell death. Other phytohormones 

involved in pathogen responses are ethylene (ET) and jasmonates (JA). For 

biotrophs, R gene–mediated defence responses and SA signalling are thought to 

result in resistance by restricting fungal growth in infected cells that have undergone 

hypersensitive cell death. Conversely, programmed cell death supports growth of 

necrotroph pathogens. Thus, plant defence responses appear specifically adapted to 

the attacking pathogen, with SA-dependent defences acting against biotrophs, and 

JA- and ET-dependent responses acting against necrotrophs (Greenberg and Yao, 

2004; Glazebrook, 2005; Jones and Dangl, 2006; O'Connell and Panstruga, 2006). 
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One of the best studied biotrophic pathogens is the smut fungus Ustilago maydis, 

that induces plant tumours on all aerial parts of its host plants maize and teosinte. 

The biotrophic stage of U. maydis is initiated after fusion of two haploid sporidia that 

form the infectious dikaryotic hyphae. Upon formation of a specialized infection 

structure, the appressorium, penetration of the host cell is most likely facilitated by 

plant cell wall degrading enzymes. During the early infection stage invading hyphae 

are surrounded by the host plasma membrane. At later stages, hyphae grow both 

intra- as well as intercellularly. Tumour development is associated with both plant cell 

enlargement and increased cell divisions (Callow and Ling, 1973; Banuett and 

Herskowitz, 1996; Doehlemann et al., 2008b); however, it is currently unknown how 

this is triggered by the fungus. Finally, within the tumour tissue the diploid teliospores 

are formed (Banuett, 1995; Martinez-Espinoza et al., 2002; Feldbrügge et al., 2004). 

In a previous study, a set of 12 maize genes differentially regulated upon U. maydis 

infection has been identified. From the nature of these genes it was inferred that U. 

maydis triggers a discrete plant defence program and interferes with the 

differentiation of plant tissue (Basse, 2005). We have studied the responses of maize 

to U. maydis infection by extensive transcriptional and metabolic profiling. Using the 

MapMan tool (Thimm et al., 2004) specifically adapted to maize, we visualized 

expressional changes of distinct biological pathways. These studies have revealed a 

complex interplay of U. maydis with its host plant resulting in massive changes in 

primary and secondary metabolism. 
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2.2.2 Results 

U. maydis is Recognized by Its Host during the Early Infection Phase 

To determine the most appropriate time points to perform the array analysis, we used 

confocal imaging to follow the course of infection using the U. maydis strain SG200 

which is able to infect plants without a mating partner (Kämper et al., 2006). The 

different stages of disease progression chosen for our study are depicted 

schematically in Figure 2.2-1A.  

 

Figure 2.2-1: Pathogenic development of U. maydis. (A) Schematic illustration of U. maydis 
development in maize: 12 hpi: Filaments form appressoria penetrating the epidermis. 24 hpi: 
Invading hyphae in the epidermal layer are surrounded by the plant plasma membrane. 2 dpi: 
Hyphae proliferate intracellularly within epidermis and mesophyll. 4 dpi: Beginning of tumour 
induction. Fungi grow both inter- and intra-cellularly. 8 dpi: Tumour formation. Hyphae form huge 
aggregates in the intercellular space. (B) Infection structure of U. maydis (arrow) 12hpi. The 
attacked maize epidermis cell is collapsing, indicated by disintegration of membrane structures. 
Hyphae and plant membranes were stained with WGA-AF488 (green) and FM4-64 (red), 
respectively. Bar: 25µm. (C) Cell-to-cell passage of SG200 Potef::2xRFP hyphae 
(red:cytoplasmic RFP fluorescence) in the epidermis is accompanied by locally increased cell 
wall autofluorescence (blue, see arrow). Bar: 5µm. (D, E) Plant cell wall autofluorescence in U. 
maydis colonized leaf tissue 4 dpi; arrows in (D) indicate intracellular hyphae. Collapsed 
mesophyll cells in (E), (arrows), show bright autofluorescence and are devoid of chlorophyll. (D) 
and (E) represent focal planes at the epidermal cell layer and in the mesophyll, respectively. 
Bars: 50µm 
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12 hours post infection (hpi) the majority of SG200 cells had formed filaments and 

appressoria. During this initial stage, we observed a small fraction of epidermal cells 

undergoing cell death, indicating that not all hyphae were able to establish a 

biotrophic interaction (Figure 2.2-1B). 24 hpi hyphae were found in the epidermal cell 

layer. This intracellular stage persisted at 2 dpi (days post infection) but was now 

associated with hyphal branching. Fungal cell-to-cell passage was associated with 

hyphal tip swelling (Figure 2.2-1C) reminiscent of appressoria. Except for the growing 

tips, hyphae were surrounded by autofluorescent material accumulating at sites of 

cell-to-cell passage and around older parts of the hyphae (Figure 2.2-1C), suggesting 

the elicitation of plant defences.  

4 dpi tumour development had commenced and hyphae had colonized meristematic 

tissue, growing both intra- and intercellularly (Figure 2.2-1A; Doehlemann et al., 

2008b). In colonized areas, strong autofluorescence and occasionally small areas 

with clusters of dead cells were detected (Figures 2.2-1D, E). 8 dpi tumours had 

increased in size and contained clusters of sporogenic hyphae. At this time point, 

anthocyanin accumulation was observed and autofluorescence persisted. Our 

analysis demonstrates that the infection by U. maydis elicits visible plant defence 

reactions throughout the various stages of biotrophic development. As the time points 

used in this microscopic study provided a comprehensive view of distinct steps in 

fungal development as well as the plant response, we have chosen the same stages 

for our subsequent studies. 

 

Changes in Host Gene Expression after U. maydis Infection 

For a comprehensive analysis of host cell responses, we have performed transcript 

profiling using the Affymetrix maize genome array. On this array, 13,339 genes are 

represented by 17,555 probsets. Under our experimental conditions, significant 

signals were obtained for 70.8% of the probe sets in at least one of the experiments; 

53.0% were present in all experiments. Plants were infected with SG200 and leaf 

samples were taken 12 and 24 hpi, as well as 2, 4 and 8 dpi in three independent 

experiments. Changes in gene expression were calculated relative to control plants 

inoculated with water. Statistical analysis revealed that 2891 genes were differentially 

regulated at least in one of the time points analyzed.   
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Figure 2.2-2: Functional categories of maize genes regulated upon U. maydis infection. (A) 
Bars in black and grey represent numbers of regulated genes relative to non-infected control 
leaves; grey and black bars indicate the number of genes with unknown and annotated function, 
respectively. Coloured bars give the relative distribution of genes within the BINs, as indicated on 
the right ordinate. The absolute numbers of genes within the different functional categories (BINs) 
are given in Table 2.2-S1. "8 dpi (inf -PS)" delineates differentially regulated genes in infected 
leaves compared to those in masked leaves. "24 hpi vs 2 dpi non-infected" delineates 
transcriptional changes in non-infected leaves at these time points. (B) Significant enrichment of 
genes of the indicated functional categories. BINs with an overrepresentation of regulated genes 
(Hypergeometric distribution, P-value < 0.001) are indicated in colour. Numbers represent the 
respective p-values. 

 

12 hpi, 208 genes were differentially regulated in infected leaves, of which 138 were 

functionally annotated. Of these, genes with a presumed function in stress response 

and redox regulation, including defence related genes, were significantly enriched 

(Figure 2.2-2, Table 2.2-S2). 24 hpi, the number of genes with significantly altered 

transcript levels in infected leaves decreased to 116 (Figure 2.2-2A), which reflects 

mostly the variation around the threshold level of 2-fold used as cut-off. Nevertheless, 

37 of the genes that were induced 12 hpi were significantly down-regulated 24 hpi, 
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and this down-regulation was in most cases maintained 2 dpi (Figure 2.2-3 and see 

below).  

The number of stress-associated genes remained significantly high 24 hpi, and 

genes involved in redox regulation became less prominent. Furthermore, an 

increased number of genes related to secondary metabolism were differentially 

regulated in infected leaves 24 hpi compared to 12 hpi (Figure 2.2-2B). 2 dpi, the 

number of differentially regulated genes increased to 575, of which 358 could be 

functionally annotated (Figure 2.2-2A, Table 2.2-S2). Besides genes of the functional 

categories "stress" and "secondary metabolism" that were already enriched during 

the earlier time points, genes associated with “cell wall metabolism” were over-

represented (Figure 2.2-2B). Furthermore, genes of the categories "protein 

metabolism", “transcription and RNA processing”, as well as "transport" were 

significantly enriched 2 dpi (Figure 2.2-2B), indicating the onset of a broad metabolic 

reprogramming in infected tissue. We also observed a slight, but not yet significant 

enrichment of genes involved in photosynthesis.  

4 and 8 dpi, the number of differentially regulated genes increased to 1582 and 2420, 

respectively (Table 2.2-S2). The number of defence related genes as well as genes 

involved in redox regulation increased further (Figure 2.2-2B). The major changes 

concerned the functional categories "PS and C4", "primary carbon metabolism", 

"protein metabolism" and "transcription and RNA-processing". Transcriptional 

changes were visualized by the MapMan tool adapted to maize, which allows an 

assignment to cellular processes (Figure 2.2-4). In the following we will discuss the 

most prominent processes that are subject to differential regulation. 

 

Plant Defence Responses to U. maydis Infection  

12 hpi, stress related genes were significantly overrepresented in infected plant 

tissue (Figure 2.2-2B). A rather unspecific defence reaction was elicited as several 

genes known to be induced by abiotic stresses like temperature, osmolarity and 

wounding were up-regulated. However, the majority of induced genes encode PR-like 

proteins (van Loon et al., 2006; Tables 2.2-S2, S3) at a time point when fungal 

hyphae had just started to penetrate the epidermis. This shows that U. maydis cells 

were recognized.  
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Figure 2.2-3: Down-regulation of 
early defence response to U. 
maydis. Hierarchical clustering of 
genes that are least two-fold 
down-regulated 24 hpi when 
compared to 12 hpi. Colours 
represent expression levels for 
each gene which are either above 
(red) or below (blue) the mean 
expression level (white) at the 
three time points given, according 
to the dChip 1.3 manual 
(http://biosun1.harvard.edu/compl

ab/dchip/manual.htm).   

 

 

 

  

 

From a total of 184 PR-like genes identified on the array, 34 genes representing most 

PR-gene classes were found to be induced (Table 2.2-S3). Furthermore two LRR 

genes were up-regulated (Zm.10830.1 and Zm.8200.1) as well as Zm.12900.1, 

encoding a protein similar to a receptor like kinase induced after rust infection of 

wheat  (Feuillet et al., 2003). The four most induced genes (200- to 700-fold) encode 

a terpene synthase (involved in isoprenoid synthesis; Zm.14496.1), endochitnase B 

(PR3- like; Zm.1595.1), a barwin-like protein (PR4-like; Zm.2227.1) and an 1,3 beta-

glucanase (PR2-like; Zm.791.1) (Table 2.2-S2). The Zm-mfs1 gene (major facilitator 

superfamily; Zm.18344.1), which is induced upon infection with the necrotrophic 

pathogen Cochliobolus carbonum (Simmons et al., 2003) was 26-fold induced 12 hpi 

as well. Zm-mfs2 (Zm.12717.1) expression was altered neither upon C. carbonum 

infection nor upon infection by U. maydis. The an2 gene (ZmAffx.12.1), which is up-

regulated after infection with Fusarium graminearum (Harris et al., 2005), was also 

induced by U. maydis 12 hpi, while an1 (Zm.228.1) expression was not altered. The 

corresponding rice orthologs encode ent-copalyl diphosphate synthases. an1 is 

involved in GA synthesis and an2 is required for phytoalexin synthesis (Prisic et al., 

2004). Both Zm-mfs1 and an2 expression decreased significantly 24 hpi.   

Further inspection of the genes induced 12 hpi revealed that 37 of these genes were 

down-regulated at least 2-fold in infected tissue at the 24 hr time point. Most of these 
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were defence related genes including three of the four most highly induced 

transcripts (Figure 2.2-3). This indicates that the primary plant response is attenuated 

when U. maydis starts colonizing epidermal cells.  

 

Figure 2.2-4: Overview of metabolic changes in infected leaves 8 dpi, visualized by 
MapMan. Genes significantly up- and down-regulated in infected tissues relative to non-infected 
tissue are indicated in red and blue, respectively. Scale bars display log fold changes.   

 

Interestingly, 12 hpi genes for Bax-inhibitor 1 (Zm.12293.1) and a cystatin 

(Zm.8113.1;), both involved in cell death suppression, were induced (Table 2.2-S4). 

This induction persisted at 2 to 8 dpi, and additionally two more cystatin genes 

(Zm.14795.1; Zm.14272.5) were induced in infected tissue. Conversely, one of the 

two metacaspases present on the array (Zm.18453) was significantly down-regulated 

at these time points (Table 2.2-S4). Taken together, these data suggest that U. 

maydis infection is accompanied by an inhibition of the plant cell death program.   

 

U. maydis Induced Changes in Hormone Signalling  

Of 25 genes annotated as being involved in jasmonate biosynthesis and responses, 

nine were significantly induced already 12 hpi, and expression levels were 
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maintained further for most of the genes (Figure 2.2-5). Up-regulation of jasmonate 

signalling is usually associated with an induction of plant defence genes like 

defensins, hevein-like proteins and chitinases (Penninckx et al., 1998; Thomma et al., 

1998; Glazebrook et al., 2003).  

 

Figure 2.2-5: Changes of transcripts involved in hormone signalling during U. maydis 
infection. Displayed are genes involved in hormone -metabolism and -responses, which are 
significantly differentially regulated in at least one time point. Colours represent expression levels 
of each gene which are either above (red) or below (blue) the mean expression level (white) of 
the 10 samples analysed, according to the dChip 1.3 manual 
(http://biosun1.harvard.edu/complab/dchip/manual.htm).    

 

Consistently, the maize orthologs of such genes were up-regulated after U. maydis 

infection (Table 2.2-S3). In contrast, PR1 (Zm.15280.1), one of the prime marker 

genes in SA-signalling and described to be induced by both necrotrophic and 

biotrophic pathogens (Morris et al., 1998), was not induced during the early U. 

maydis infection stages. Furthermore, a germin-like protein (Zm.12518.1), which in A. 

thaliana is SA-induced but repressed in response to methyl-jasmonate (Schenk et al., 

2000), was transiently induced 12 hpi and subsequently repressed (Figure 2.2-3).  

Interestingly, three genes involved in auxin biosynthesis and 19 auxin responsive 

genes were induced up to 44-fold 4 and 8 dpi (Figure 2.2-5, Table 2.2-S5). At these 
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timepoints, which coincide with the onset of massive cell division and enlargement, 

genes coding for gibberelin biosynthesis enzymes as well as GA responsive genes 

were also induced (Figure 2.2-5).   

 

Changes in Antioxidant Levels and Secondary Metabolite Synthesis during U. maydis 

Infection  

Abiotic and biotic stress coincides with changes in oxidation state and content of 

soluble antioxidants, with glutathione (GSH/GSSG) being the most sensitive 

component   (Ogawa, 2005). Seven glutathione S-transferase (GST) genes were 

induced already 12 hpi (Table 2.2-S2), including gst15 (Zm.545.1), a homologue to 

wheat gst1a that is induced upon pathogen attack (Dudler et al., 1991). 

Figure 2.2-6: Changes of 
antioxidant contents in response 
to infection with U. maydis. (A) 
Total glutathione contents in U. 
maydis-infected (grey bars) and 
control leaves (black bars) at the 
indicated time points post infection. 
(B) Reduction state of the 
glutathione pool. The solid areas 
represent reduced, the hatched 
areas oxidized glutathione. For all 
graphs, standard errors are 
displayed. 

  

To substantiate the transcriptome data, the contents of soluble (glutathione and 

ascorbic acid) and membrane bound antioxidants (tocopherols) were determined 

from the same material used for array analysis. Tocopherol and ascorbic acid 

contents did not change during the infection process (data not shown). Elevated GSH 

levels were observed 24 hpi and increased further during the infection process, while 

a high reduction state of the glutathione pool was maintained (Figure 2.2-6A, B). 

Increased levels of GSH have also been shown to coincide with the induction of PR 

genes in A. thaliana (Senda and Ogawa, 2004). Additionally, GSH plays a major role 

in secondary metabolite synthesis, mainly by regulating the key enzymes 

phenylalanin ammonium lyase (PAL) and chalcone synthase (CHS) (Loyall et al., 

2000; Gomez et al., 2004). 
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Figure 2.2-7: Transcriptional and metabolic changes in the shikimate and phenylpropanoid 
pathway. (A) Transcript accumulation for genes involved in the biosynthesis of secondary 
metabolites. Scale bar indicates up-regulation (red) and down-regulation (blue) in infected 
compared to non-infected tissue. Isoforms of the same enzyme are marked with a-c, where 
applicable. Gene annotations and abbreviations of the phenylpropanoid and flavonoid pathway 
are summarized in Table 2.2-S8 (B – D) Contents of phenylalanine, tyrosine and shikimate at 4 
and 8 dpi. (E) Activity of PAL at 8 dpi. (F – G) Total contents of anthocyanins (A534) and 
hydroxycinnamic acid derivatives (A290) at 4 and 8 dpi. Grey bars represent U. maydis infected 
leaves, black bars represent control leaves. Standard errors are displayed.  

 

Consistently, both PAL enzyme activity and transcript level were strongly increased in 

tumour tissue 8 dpi (Figure 2.2-7A, E). The substrates for PAL, phenylalanine and 

tyrosine, accumulated about 4- and 5-fold, respectively, 8 dpi in infected tissue 

(Figure 2.2-7B, C). Accumulation of these two amino acids was significantly higher 

than the average increase of most other amino acids, which was in the range of 2-3 

fold (data not shown). Consistently, many genes from the shikimate pathway were 

found to be induced in infected tissue starting 2 dpi (Figure 2.2-7A). Shikimate, an 

abundant key metabolite upstream of phenylalanine and tyrosine, increased about 8-

fold in tumour tissue compared to uninfected leaves 4 and 8 dpi (Figure 2.2-7D).   
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The major phenylpropanoid products downstream of PAL are hydroxycinnamic acid 

derivatives predominantly serving as building blocks of lignin and flavonoids, which 

represent potential phytoalexins, anthocyanins and UV protectants. Anthocyanins 

accumulated strongly in infected maize tissue (Figure 2.2-7F), which was also 

evident by visual inspection of infected tissue. Similarly, the overall content of 

hydroxycinnamic acid derivatives was increased in tumour tissue (Figure 2.2-7G), 

while the total content of flavonoids was not changed significantly 8 dpi (infected 

tissue: 114.45±9.81 A310/g FW; control tissue: 121.2 ± 6.9 A310/g FW) 8 dpi. The 

gene for leucoanthocyanidin dioxygenase (Zm.62.1), a key enzyme for anthocyanin 

synthesis, was induced about 15-fold at late infection stages (Table 2.2-S2).  

Induction of genes involved in lignin biosynthesis was observed already 12 hpi and 

increased further during the infection process. In tumour tissue (8 dpi) transcript 

levels for genes involved in almost all steps of lignin biosynthesis were significantly 

induced (Figure 2.2-S1). The enhanced synthesis of phenolic compounds, such as 

lignin, flavonoids and phenylpropanoids (Figure 2.2-7A) is reflected by the enhanced 

cell wall autofluorescence observed in U. maydis infected tissue (Figure 2.2-1C-E).  

 

Changes in Plant Primary Metabolism  

The experimental conditions used in our experiments resulted predominantly in the 

infection of the third leaf, which was initially still contained within the leaf whorl. One 

to two days later, when exposed to light, the onset of photosynthesis was expected to 

lead to a decrease in free hexose content, which in sink tissues is known to originate 

from cleavage of imported sucrose (Horst et al., 2008).   

Table 2.2-1: Carbohydrate contents in U. maydis infected and uninfected leaves.  

 24 hpi 4 dpi 8 dpi 

Contents* control infected control infected control infected 

hexoses 25.1 ± 0.7 23.2 ± 0.5 1.8 ± 0.3 5.0 ± 0.4 1.1 ± 0.5 26.6 ± 3.0 

sucrose 27.7 ± 1.5 23.2 ± 0.7 24.5 ± 2.0 30.4 ± 2.0 22.6 ± 1.1 29.6 ± 2.7 

hexoses / sucrose 0.9 ± 0.04 1.01 ± 0.04 0.07 ± 0.01 0.16 ± 0.01 0.05 ± 0.02 0.94 ± 0.11 

starch 3.3 ± 0.4 6.95 ± 0.9 75.8 ± 4.9 113.6 ± 7.6 63.3 ± 6.5 69.2 ± 6.1 

*Concentrations are given in µmol/g FW for sugars and µmol Glc units/g FW for starch. Standard 
errors are indicated. 
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To determine the influence of U. maydis on the sink-to-source transition, we 

measured free hexose and sucrose contents in infected and non-infected leaves 

(Table 2.2-1). Hexose content in infected and non-infected leaves decreased 4 dpi, 

reflecting the onset of photosynthetic activity. Whereas hexose levels remained low in 

control leaves after 8 days, they increased more than 20-fold in infected leaves at this 

time point (Table 2.2-1); sucrose contents were not altered by U. maydis infection. 

Consequently, this resulted in an increased hexose/sucrose ratio in tumour tissue 

(Table 2.2-1).  

 

Figure 2.2-8: Transcriptional changes 
in infected and non-infected tissue 
during maize leaf development. The 
total number of differentially expressed 
genes comparing two consecutive time 
points in non-infected (square) and 
infected (circle) leaves is plotted on the 
ordinate; triangles display the total 
number of differentially expressed genes 
comparing infected and non-infected 
leaves. Arrow indicates the time point 
when leaves become exposed to light. 

  

To follow the influence of U. maydis on normal leaf development, we determined 

transcriptional alterations in infected and non-infected leaves at 5 consecutive time 

points. In non-infected leaves the most dramatic changes (1678 genes) occurred at 

the onset of photosynthesis (equivalent to one and two days post infection), affecting 

mostly genes involved in protein and RNA synthesis, primary metabolism and 

photosynthesis (Figures 2.2-2, 2.2-8; Table 2.2-S6; Figure 2.2-S2A). In comparison, 

expression of only 376 genes was changed in infected leaves (Table 2.2-S6; Figure 

2.2-2). Notably, induction of photosynthesis-associated genes was strongly reduced 

in infected compared to non-infected leaves (Figures 2.2-S2A, B), indicating that 

normal development from sink to source tissue is impaired. At the same time, we 

observed significant changes in energy metabolism; both glycolysis and lipid 

metabolism were induced in tumours (Figure 2.2-4).  

To elucidate which of the observed effects resulted from the absence of 

photosynthesis and which were caused by an active metabolic reprogramming 

induced by U. maydis, we compared transcript profiles of infected, non-infected and 

masked leaves (shielded from light for 6 days) of the same age (8 dpi).  
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Figure 9: Transcriptional changes of 
genes related to primary metabolism in 
infected and masked leaves. Genes 
significantly up- and down-regulated are 
indicated in red and blue, respectively. Scale 
bars display log fold changes. (A) 
Differentially expressed genes involved in 
primary metabolism in tumour tissue 8 dpi 
compared to non-infected leaves. (B) 
Differentially expressed genes involved in 
primary metabolism in leave tissue covered 
with aluminium foil for 6 days compared to 
non-infected leaves; time point corresponds 
to 8 dpi. 

 

 

 

 

 

 

 

Induction of photosynthetic genes was absent in masked leaves when compared to 

non-infected leaves. Similarly, primary metabolism was down-regulated, with the 

exception of sucrose degradation that was found to be induced (Table 2.2-S7; Figure 

2.2-9B). A comparable induction of sucrose degradation was observed in infected 

leaves (Figure 2.2-9A), which in addition showed transcriptional induction of 

glycolysis and TCA cycle (Figure 2.2-9A, Table 2.2-S2). Induction of genes for 

hexose degradation was significantly less pronounced in masked leaves compared to 

tumour tissue, indicating higher energy consumption in the infected cells (Figure 2.2-

9).  

Comparison of genes differentially regulated in masked leaves to genes differentially 

regulated in tumour tissue identified 958 genes as exclusively regulated upon U. 

maydis infection (Table 2.2-S7). Although the functional distribution within this group 

did not change dramatically when compared to all differentially expressed genes 

(Figure 2.2-2A), a significant enrichment of defence related genes was observed 

among the genes induced more than 100 fold at 8 dpi (34 of 67; Table 2.2-S7).   
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2.2.3 Discussion 

We have analyzed changes in the maize transcriptome and metabolic changes in 

response to infection with the biotrophic pathogen U. maydis. We have focused on 

changes in distinct cellular processes, which were visualized by a novel version of 

the MapMan tool adapted to maize. We infer from our data that U. maydis is initially 

recognized and elicits plant defence reactions. With establishment of the biotrophic 

interaction, these initial responses are attenuated. Additionally, our data indicate that 

U. maydis interferes with normal leaf development and prevents the transition from 

sink to source leaves.  

 

U. maydis Induced Defence Responses and Cell Death Suppression in Maize 

The transient up-regulation of defence-associated genes in infected tissue suggests 

that U. maydis is recognized by the plant via conserved molecular patterns. The 

currently known PAMP receptors are LRR receptor kinases and receptor-like proteins 

with an extracellular LRR domain lacking a kinase domain. It has recently been 

shown that these PAMP receptors are transcriptionally up-regulated after elicitation 

(Zipfel et al., 2004; Zipfel et al., 2006). During the early phase of host colonization by 

U. maydis, we observed the up-regulation of two putative membrane bound LRR-like 

receptor kinases. The ortholog of one of them (Zm.10830.1) is induced in Sorghum 

bicolor after infection with the hemibiotrophic fungus Colletotrichum graminicola  

(Hipskind et al., 1996). The second gene (Zm.8200.1) encodes a SER kinase and 

thus belongs to a group that includes BAK1, which has recently been shown to act as 

a positive regulator in infection-induced cell death signalling (Chinchilla et al., 2007; 

Kemmerling et al., 2007). We also observed an induction of Zm.12900.1, encoding a 

protein similar to a receptor like kinase from wheat, which is induced after infection 

with the rust fungus Puccinia triticina (Feuillet et al., 2003). In analogy to these 

pathosystems, it is conceivable that the identified maize genes are involved in PAMP 

perception. 

With the onset of biotrophy 24 hpi, defence responses were attenuated and 

concomitantly, we observed a transcriptional induction of JA signalling components. 

The observed induction of genes encoding cell death suppressors such as cystatins 

(Solomon et al., 1999; Belenghi et al., 2003) and Bax-inhibitor 1 (Eichmann et al., 

2004) as well as the repression of caspases suggest an interference of U. maydis 

with cell death regulation.  
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The phytopathogenic bacterium P. syringae interferes with programmed cell death by 

translocation of the effector-protein AvrPtoB into host cells (Rosebrock et al., 2007). 

Similarly, several fungal Avr proteins have been shown to interact with their cognate 

R gene products in the cytoplasm of host cells (Jia et al., 2000; Dodds et al., 2006). 

Whether a similar mechanism is employed by U. maydis remains to be shown. In U. 

maydis novel secreted effectors have recently been shown to be important for 

virulence (Kämper et al., 2006). However, it is currently unknown wether these 

effectors target apoplastic or cytoplasmic plant targets. 

 

U. maydis Induced Changes in Hormone Signalling 

Plant hormone signalling is dramatically changed in response to pathogen attack. In 

compatible interactions with necrotrophic pathogens, JA signalling plays a minor role, 

and instead, SA-dependent cell death responses and the expression of a large set of 

defence genes including PR1 are observed (Seo et al., 2001). Biotrophic pathogens, 

on the other hand, induce JA and ethylene responses during compatible interactions. 

These responses do not lead to cell death and are associated with induction of 

tryptophan biosynthesis, the accumulation of secondary metabolites and the 

induction of plant genes encoding defensins (Brader et al., 2001; Glazebrook, 2005; 

Wasternack, 2007). Consistently, after U. maydis infection, PR1 expression was 

undetectable at early time points. At later time points, low expression of PR1 was 

detected, which likely reflects a mixed response caused by a small fraction of 

infected plant cells undergoing necrosis.  

Induction of JA signalling which antagonizes the SA pathway (Glazebrook, 2005) is 

detected immediately after infection. At the same time, activation of typical JA-

responsive defence genes such as defensins, hevein-like proteins and chitinases is 

observed (Penninckx et al., 1998; Thomma et al., 1998; Glazebrook et al., 2003). JA 

synthesis does not depend on the expression level of its biosynthetic genes, but on 

substrate availability of stored precursors (Wasternack, 2007). In line with this, we do 

not observe an induction of Zm.13677.1, a homologue to the OPR7 gene from rice 

that has been shown to be essential for JA synthesis (Tani et al., 2008).  

U. maydis-induced tumours contain elevated auxin levels (Turian and Hamilton, 

1960). Recently, it has been shown that auxin produced by U. maydis is unlikely to 

be important for tumour formation (Reineke et al., 2008). We now demonstrate 

transcriptional induction of both auxin synthesis and -responsive genes during tumour 
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development, suggesting that cell enlargement observed in U. maydis induced 

tumours is caused by elevated levels of auxin produced by the plant. Recent studies 

in A. thaliana demonstrated repression of auxin signalling by SA (Wang et al., 2007). 

SA-mediated repression of auxin levels leads to plant resistance, while inhibition of 

SA signalling allows auxin signalling, which, in turn, would promote fungal growth and 

host susceptibility. This is in agreement with the minor role of SA signalling in the 

maize/U. maydis interaction. 

 

Antioxidants and Secondary Metabolites 

The induction of GSTs by pathogens has been shown previously (Greenberg et al., 

1994; Hahn and Strittmatter, 1994; Levine et al., 1994; Marrs, 1996) and has been 

reported to occur very rapidly, preceding the induction of PR genes (Mauch and 

Dudler, 1993; Alvarez et al., 1998). Seven glutathione S-transferase genes (GSTs) 

were induced already 12 hpi. The antioxidative activity of GSTs has been proposed 

to reduce damage caused by pathogens, and to restrict cell death during HR (Mauch 

and Dudler, 1993). It is conceivable that some of the induced GSTs could be involved 

in scavenging oxygen radicals which result also from respiratory processes of the 

plant cell. Because it is not possible to implicate function or substrate specificity from 

the primary protein sequence (Wagner et al., 2002), the specific functions of the 

GSTs regulated during the infection process has to remain speculative. 

Although genes involved in glutathione synthesis (Glutathione synthetase, gsh1, 

Zm.3618.2 and glutamate-cysteine ligase, gsh2, Zm.9043.1) were not significantly 

regulated, glutathione contents were increased throughout infection. This could 

reflect the requirement for a higher antioxidative capacity in infected tissue, once the 

integrity of the photosynthetic apparatus is impaired in tumours. In addition, the 

enhanced glutathione levels could serve as a signal for defence gene induction, as it 

has been described for A. thaliana (Senda and Ogawa, 2004). 

Our data revealed that genes involved in secondary metabolism are significantly 

enriched at all time points analyzed. In particular, we observed an induction of genes 

of the shikimate pathway, as well as a 20-fold increase in PAL activity and an 

accumulation of the primary pathway products phenylalanine and tyrosine. PAL 

catalyzes the committed step in the biosynthesis of phenolic secondary metabolites 

of the phenylpropanoid class (comprising hydroxycinnamic acid derivatives (HCAs), 
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lignans and flavonoids). In accordance, we detected an accumulation of HCA 

derivatives and anthocyanins.  

HCA derivatives can serve as building blocks for lignin biosynthesis, and consistently, 

also genes involved in lignin and lignan synthesis were significantly induced during 

the late infection stages of U. maydis. This induction is likely to reflect the increased 

cell wall synthesis resulting from enhanced cell division and cell expansion within 

tumour tissue. In addition, U. maydis infected cells show enhanced cell wall 

epifluorescence, indicative of deposition of lignin and/or other phenolic compounds. 

Reinforcement of cell walls by phenolics has been shown to be part of a defence 

reaction against pathogens (Bruce and West, 1989; Nicholson and Epstein, 1991; 

Lange et al., 1995; Huang and Hartman, 1998; Egea et al., 2001). We hypothesize 

that this late response is also part of the mixed response discussed above where 

some cells elicit defence reactions while others do not. 

In parallel to HCAs, we observe an accumulation of anthocyanins in tissues infected 

with U. maydis, coinciding with the induction of leucoanthocyanidin dioxygenase 

gene expression. Anthocyanin accumulation is part of the response towards a variety 

of biotic and abiotic stress situations such as pathogen attack, waterlogging, high 

light, salinity or cold stress, etc. (Chalker-Scott, 1999). Considering that U. maydis as 

a biotroph does not get in direct contact with the anthocyanins localized in the 

vacuole, it is likely that the accumulation is an indirect stress response caused by the 

fungus. 

The induction of phenylpropanoid biosynthesis at late infection stages might reflect 

the increasing activity of the SA pathway at these time points and it is possible that 

some not yet described phenolic phytoalexins are produced along with then abundant 

phenolics. For instance, the hydroxamic acid DIMBOA, a derivative of the aromatic 

amino acid tryptophan and one of the known defence compounds in maize, has been 

described to be induced upon U. maydis infection, consistent with an increased 

expression of the gene for the initial biosynthesis step, Bx1 (Basse, 2005).  

Likewise, isoprenoids serve as phytoalexins, which exhibit antimicrobial properties 

and are synthesized in response to pathogen attack (VanEtten et al., 1994). Maize 

has probably a much smaller set of phytoalexins, when compared to other cereals as 

rice (Walton, 2001). Mining of public databases did not reveal any evidence for the 

key-enzymes for synthesis of polycyclic diterpenes, which is the major group of 

phytoalexins in rice. Nevertheless, induction of an ortholog of the an2 gene indicates 

that U. maydis triggers phytoalexin synthesis throughout the entire infection process.  
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Photosynthesis and Primary Metabolism 

U. maydis is known to infect young meristematic maize tissue, but is unable to infect 

differentiated source leaves (Wenzler and Meins, 1987). Between 1 and 2 dpi we 

observed a global induction of genes involved in light reaction, Calvin cycle, 

photorespiration, tetrapyrrole synthesis as well as sucrose and starch synthesis in 

non-infected leaves, which was not observed in infected leaves of the same age. This 

indicates that the transition from a juvenile sink tissue to a mature, photosynthetically 

active source tissue is blocked in infected leaves. This block is consistent with the 

recently described observation that U. maydis infected leaves are not able to 

establish C4 metabolism, but continue to perform C3 photosynthesis usually only 

observed in immature maize leaves (Horst et al., 2008). In addition, U. maydis 

infection is associated with pronounced chlorosis, and, concomitantly, with a decline 

in chlorophyll content and reduced CO2 assimilation rates of infected leaf tissue 

(Horst et al., 2008).  

In infected leaves, about 60% of the differentially expressed genes can be attributed 

to the down-regulation of the photosynthetic apparatus, as shown by comparison to 

masked leaves. Induction of sucrose degradation and reduction of sucrose synthesis 

was observed in infected and masked tissues, indicating that both rely on sucrose 

import from photosynthetic-active source tissues. Alterations specific for infected 

tissue comprise the induction of glycolysis and TCA cycle, which might indicate either 

an elevated flux of carbon skeletons into amino acid biosynthesis or an increased 

respiration of infected maize cells.  

The increase in free hexose content found in tumours is typical for a sink tissue. It is 

likely that the developing tumour itself generates a sink through active proliferation. 

The free hexoses within tumour cells then could be used by U. maydis as easily 

accessible carbon source. This strategy is in strict contrast to powdery mildew 

infections, where leaves remain source tissues (Scholes et al., 1994; Walters and 

McRoberts, 2006). In this case, the fungus aquires nutrients via haustoria from single 

epidermis cells, leaving the physiological state of the entire leaf largely unaltered. 

Based on the presented results, the key questions are how nutrients are partitioned 

between U. maydis and host cells and to which extent the host metabolism is actively 

reprogrammed by fungal effectors. For a more comprehensive understanding of 

these procecces, detailed analysis of single, U. maydis infected cells instead of 

complex infected tissues will be one of the major challenges for future research. 
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2.2.4 Experimental Procedures  

Fungal strains and Growth Conditions  

U. maydis SG200 (Kämper et al., 2006) and its derivative SG200 Potef::2xRFP 

expressing cytoplasmic RFP (Fuchs et al., 2006) were grown at 28°C in YEPS light 

medium (Tsukuda et al., 1988) and used in plant infections as described (Gillissen et 

al., 1992).  

 

Microscopy  

U. maydis hyphae were stained with WGA-AF 488 (Molecular Probes, Karlsruhe, 

Germany). Plant membranes were visualized using FM4-64 (Invitrogen, Karlsruhe, 

Germany): Samples were incubated in staining solution (4µg/ml FM4-64, 10µg/ml 

WGA-AF 488; 0.02% Tween20) for 30 min and washed in 1x PBS (pH 7.4). Confocal 

images were recorded on a TCS-SP5 confocal microscope (Leica, Bensheim, 

Germany); FM4-64: excitation: 561-nm and detection at 600-700 nm; WGA-AF 488: 

excitation 488 nm and detection at 500-540 nm. Autofluorescence of cell wall 

material was excited at 405 nm and detected at 415-460 nm. For RFP fluorescence 

of hyphae in maize tissue, an excitation of 561 nm and detection at 580-630 nm was 

used. 

 

Plant Material and RNA Preparation  

For U. maydis infections, maize plants (Early Golden Bantam) were grown in a 

phytochamber in a 15 h/9 h light-dark cycle; light period started/ended with 1h 

ramping of light intensity. Temperature was 28°C and 20°C, relative humidity 40% 

and 60% during light and dark periods, respectively, with 1 h ramping for both values. 

Plantlets were individually sown in pots with potting soil (Fruhstorfer Pikiererde, 

Lauterbach, Germany) and infected 7 days after sowing 1 h before end of the light 

period, as described (Brachmann et al., 2001); plants for 12 hpi samples were 

infected during the beginning of the light period. For three independently conducted 

experiments (biological replicates), samples used for both RNA preparation and 

metabolite measurements were collected 1 h before the end of the light period and 

directly frozen in liquid nitrogen. For each experiment, 30 plants were sampled and 

divided for the 12 hpi to 48 hpi samples into 3 subsets, for all other samples into 4 

subsets, respectively. Metabolite analysis was carried out independently for all these 
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subsets, i.e. technical replicates.  For RNA isolation, material from the subsets was 

pooled and ground in liquid nitrogen. RNA was extracted with Trizol (Invitrogen, 

Karlsruhe, Germany) and purified using an RNeasy kit (Qiagen, Hilden, Germany).  

 

DNA Microarray and Verification by Quantitative Real-Time PCR 

Affymetrix Gene chipR maize genome arrays were done in three biological replicates, 

using standard Affymetrix protocols (Midi_Euk2V3 protocol on GeneChip Fluidics 

Station 400; scanning on Affymetrix GSC3000). Expression data were submitted to 

GeneExpressionOmnibus (http://www.ncbi.nlm.nih.gov/geo/), Accession Number 

GSE10023. Data analysis was performed using Affymetrix Micro Array Suite 5.1, 

bioconductor (http://www.bioconductor.org/) and dChip1.3 

(http://biosun1.harvard.edu/complab/dchip/), as described (Eichhorn et al., 2006). We 

considered changes >2-fold with a difference between expression values >100 and a 

corrected p-value <0.001 as significant. For pathway analysis we used the MapMan 

tool optimized for maize. Expression changes in Mapman pathways were filtered by a 

p-value <0.001. 

To verify microarray results, selected genes were analyzed by qRT-PCR (Table 2.2-

S9). For cDNA synthesis, the SuperScript III first-strand synthesis SuperMix assay 

(Invitrogen, Karlsruhe, Germany) was employed, using 1 µg of total RNA. qRT-PCR 

was performed on a Bio-Rad iCycler using the Platinum SYBR Green qPCR 

SuperMix-UDG (Invitrogen, Karlsruhe, Germany). Cycling conditions were 2 min 

95°C, followed by 45 cycles of 30 sec 95°C / 30 sec 61°C / 30 sec 72°C. Primer 

sequences are listed in Table 2.2-S10. 

 

Metabolite Analysis 

Amino acids were extracted in 80% ethanol and determined by HPLC after 

derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate as described in 

Cohen and Michaud (1993). Soluble carbohydrates and starch were determined from 

the same extract by coupled enzymatic assays as described (Bergmeyer; Cohen and 

Michaud, 1993; Voll et al., 2003). Small thiols were extracted with 0.1 M HCl and 

quantified after derivatization with monobromobimane by HPLC (Summit Series, 

Dionex Corp., Sunnyvale, USA; equipped with a Luna 5u C18(2) column, 

Phenomenex Ltd., Aschaffenburg, Germany and a Dionex RF2000 fluorescence 
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detector). Separation of thiols was achieved with an isocratic mixture of 89% 100 mM 

potassium acetate, pH 5.5 and 11% methanol; detection was performed at 380 nm 

after excitation at 480 nm. Shikimate was extracted with perchloric acid (Häusler et 

al., 2000) and isolated by ion exchange chromatography using a Dionex IonPac 

AG11-HC (2 x 50mm) precolumn and two Dionex IonPac AS11-HC (2 x 250mm) 

columns on a Dionex ICS3000 system using a KOH step gradient (0 to 100 mM). The 

eluate was passed on to a mass spectrometer (API3200 Q-trap tandem MS, Applied 

Biosystems, Foster City, USA) and shikimate was detected and quantified by the 

transition m/z = 173 to m/z = 93 in the negative ion mode relative to standards. 

To determine the total content of phenolics, A534, A310 and A290 were measured 

spectrophotometrically in perchloric acid extracts (see above) and in 80% methanol 

extracts of the perchloric acid insoluble material to account for water soluble and 

water insoluble derivatives, respectively. The absorptions of both extracts were 

normalized to fresh weight and added to yield total content of phenolics. 

 

PAL Activity 

Leaf material was homogenized in extraction buffer (100 mM borate, pH 8.8, 0.1 mM 

PefaBloc, 5 mM β-mercaptoethanol, insoluble PVP) and incubated for 30 min on ice. 

After sonification for 30 s, the soluble fraction was desalted using Sephadex G25 

columns, and protein content was determined (Zor and Selinger, 1996) for 

normalization of activity. PAL activity was assayed in a buffer containing 240 µL of a 

100 mM L-phenylalanine solution, 80 µL extract and 80 µL 0.2 M borate buffer, pH 

8.8. The increase in released trans-cinnamic acid was monitored for 1 h at 290 nm 

and quantified using a standard curve. 
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2.2.5 Supplementary Information  

Files containing the Supplementary Material of section 2.2 are available on data-CD 

deposited in section 5 of this thesis. The files include Figures 2.2-S1 and S2 and 

Tables 2.2-S1 to S10.  

   

Figure 2.2-S1: MapMan: Lignin biosynthesis 8 dpi. 

Figure 2.2-S2: MapMan: Genes regulated during sink to source transition.  

Table 2.2-S1: Functional categories of maize genes regulated upon U. maydis 

infection 

Table 2.2-S2: Maize-genes with significant changes in expression in response to U. 

maydis infection. 

Table 2.2-S3: PR-like genes on the Affymetrix maize gene chip. 

Table 2.2-S4: Regulated genes involved in cell death regulation. 

Table 2.2-S5: Regulated genes associated to "hormone metabolism“. 

Table 2.2-S6: Genes regulated during sink to source transition. 

Table 2.2-S7: Influence of photosynthesis on gene regulation in U. maydis infected 

leaves.  

Table 2.2-S8: Genes involved in the shikimate pathway depicted in Figure 7. 

Table 2.2-S9: Verification of microarray results by qRT-PCR. 

Table 2.2-S10: Primers used for qRT-PCR. 
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Summary 

Plant pathogenic fungi cause massive yield losses and affect both quality and safety 

of food and feed produced from infected plants. The main objective of plant 

pathogenic fungi is to get access to the organic carbon sources of their carbon-

autotrophic hosts. However, the chemical nature of the carbon source(s) and the 

mode of uptake are largely unknown. Here we present a novel, plasma membrane-

localized sucrose transporter (Srt1) from the corn smut fungus Ustilago maydis and 

its characterization as a fungal virulence factor. Srt1 has an unusually high substrate 

affinity, is absolutely sucrose-specific, and allows the direct utilization of sucrose at 

the plant/fungal interface without extracellular hydrolysis; thus, without the production 

of extracellular monosaccharides known to elicit plant immune responses. srt1 is 

expressed exclusively during infection, and its deletion strongly reduces fungal 

virulence. This emphasizes the central role of Srt1 both for efficient carbon supply 

and for avoidance of apoplastic signals potentially recognized by the host. 
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2.3.1 Introduction 

Plant pathogenic fungi cause major yield losses and affect the quality and safety of 

food and feed produced from infected plant material. Different fungi have developed 

different strategies to deal with their hosts. Infected plants are either kept alive to 

ensure a prolonged supply of organic carbon and other compounds to the pathogen 

(biotrophic fungi), or they are destroyed and the pathogen feeds on dead or dying 

plant tissue (necrotrophic fungi). Other fungi start their infections as biotrophs and 

switch to necrotrophic behavior at later stages of infection or under certain 

environmental conditions (hemi-biotrophic fungi). Recognition of such pathogens by 

infected plants typically results in the production of reactive oxygen species (ROS) 

and in hypersensitive cell death (HR) (Glazebrook, 2005). Obviously, plant defense 

responses resulting in HR are very effective against biotrophic fungi, whereas 

necrotrophic pathogens might even benefit from host cell death. Therefore, plants 

use different defense responses for biotrophic or necrotrophic fungi (Glazebrook, 

2005; Kliebenstein and Rowe, 2008). The most important challenge for all pathogens 

is the development of strategies allowing the avoidance of signals potentially 

recognized by the host.   

The basidiomycete Ustilago maydis is a ubiquitous pathogen of maize (Zea mays), 

one of the world’s most important cereal crops (Martinez-Espinoza et al., 2002). As a 

biotrophic fungus, U. maydis depends on living plant tissue and, therefore, does not 

use aggressive virulence strategies (Mendgen and Hahn, 2002). During the infection 

process, fungal hyphae traverse plant cells without eliciting apparent host defense 

responses, a prerequisite for successful infection and the persistent growth and 

development of a biotroph on its living host. U. maydis hyphae invaginate the plasma 

membranes of invaded plant cells, resulting in narrow contact zones that are perfectly 

suited for the uptake of organic carbon by the fungus (Bauer et al., 1997). Infections 

with U. maydis lead to the formation of tumors that consist of proliferating plant cells 

and of fungal hyphae (Figures 2.3-1A and 1B). Comparisons of transcript and 

metabolite levels in U. maydis-infected with none-infected maize leaves revealed an 

inhibition or delay in the sink-to-source transition of infected leaves (Horst et al., 

2008; Doehlemann et al., 2008b), which is in line with the increased carbon demand 

of the forming tumor.  

So far all transport proteins identified in symbiotic or pathogenic fungus/plant 

interactions are specific for monosaccharides (Voegele et al., 2001; Schüssler et al., 

2006; Polidori et al., 2007) and catalyze the uptake of glucose or fructose and, to a 
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lesser extent, of other hexoses. It was speculated that these hexose transporters act 

in combination with fungal and/or plant-derived cell wall invertases to supply the 

pathogen with carbohydrates derived from extracellular sucrose hydrolysis. The 

impact of these transporters on the development of fungal pathogens within the host 

plant has never been proven. However, plants have evolved mechanisms to sense 

extracellular (apoplastic) changes in glucose concentrations, e.g. produced from 

extracellular sucrose hydrolysis, and to respond to these changes with the induction 

of defense responses (Herbers et al., 1996b; Ehness et al., 1997; Schaarschmidt et 

al., 2007; Kocal et al., 2008). Thus, feeding strategies avoiding invertase-derived 

glucose production in the apoplast might be advantageous especially for biotrophic 

fungi.  

  

Figure 2.3-1: U. maydis-induced tumor formation in maize and predicted structure of Srt1. 
(A) Ear tumors of a maize plant infected with U. maydis that caused tumor induction. (B) 
Uninfected (left) and U. maydis-infected, tumorous (middle) maize kernels, plus a tumor section 
(right) showing layers of black fungal teliospores. (C) Putative topology of Srt1. 

 

Here we present the identification and functional characterization of Srt1, a novel 

high affinity, sucrose-specific transporter from the biotroph U. maydis. We show that 

Srt1 represents a virulence factor essential for successful development of the fungus 

within its host, as infection of maize with Δsrt1 strains results in strongly reduced 

disease symptoms. The successful infection of maize by U. maydis without inducing 

defense responses is likely to result from efficient competition for apoplastic sucrose 

by the U. maydis Srt1 protein with the low-affinity plant sucrose transporters, and 

from the avoidance of apoplastic glucose signaling.  
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2.3.2 Results 

To address the relevance of sugar transporters for biotrophic development in U. 

maydis, we generated strains deleted for individual hexose transporters or hexose 

transporter-like proteins and assayed them for symptom development after syringe 

inoculation into young corn seedlings. Out of a total of 19 genes encoding hexose 

transporter-like proteins in the U. maydis genome (Figure 2.3-S1; Kämper et al., 

2006), two were identified to influence the virulence of U. maydis. Here we report the 

characterization of one of these genes (um02374, MIPS Ustilago maydis database, 

http://mips.gsf.de/genre/proj/ustilago/) that was named srt1 after functional 

characterization of the encoded protein (Figure 2.3-1C) as sucrose transporter. 

 

Deletion of srt1 Reduces Virulence of U. maydis, but Does Not Affect Plant 

Colonization or Fungal Growth on Axenic Media 

 

Figure 2.3-2: srt1 deletion does not affect U. maydis growth in axenic culture. Growth of 
SG200∆srt1 on glutamine minimal media containing the monosaccharides (A) glucose or (B) 
fructose or the disaccharides (C) sucrose or (D) maltose is not reduced compared to the wild type 
strain SG200. Cultures from liquid glutamine minimal medium (1% glucose) were spotted in a 
series of 10-fold dilutions on the media indicated.  

 

Compared to the progenitor strain SG200, a solopathogenic strain that can infect 

corn plants without a mating partner (Kämper et al., 2006), U. maydis strains deleted 

for srt1 (SG200Δsrt1) did not show altered growth on agar media supplemented with 

different carbon sources (Figure 2.3-2A to 2D). This is in line with the observation 

that srt1 is not expressed under these conditions (Figure 2.3-3D). Moreover, srt1 

expression is not induced on medium without any carbon source, demonstrating that 

it is not regulated by catabolite repression. In contrast, growth of wild type U. maydis 

in planta results in a rapid and strong expression of srt1 (Figure 2.3-3D). Expression 
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peaks at 4 days post infection (dpi) when most hyphae have reached the vascular 

bundles to spread inside the plant and when tumor formation is initiated. During 

earlier stages of infection only weak expression of srt1 was observed (Figure 2.3-3D). 

This suggests that plant-derived signals are needed for srt1 expression.  

Plant infection experiments with SG200 and SG200Δsrt1 revealed major differences. 

While infections with SG200 caused massive tumor formation (Figures 2.3-3A and 

3C), infection with SG200Δsrt1 resulted only in marginal disease symptoms. In most 

cases, infected plants showed no or only minute tumors (Figures 2.3-3B and 3C). 

With respect to tissue colonization, SG200Δsrt1 hyphae did not differ from SG200 

hyphae at the different developmental stages during disease progression (Figure 2.3-

S2).   

 

Figure 2.3-3: Srt1 is necessary 
for pathogenic development of 
U. maydis. (A) Tumor 
development on maize leaves 
infected with fungal wild type 
strain SG200 at 7 dpi. (B) 
Symptom development on maize 
leaves infected with SG200Δsrt1 
at 7 dpi. (C) Disease rating of 
plants infected with the wild type 
strain SG200 and three 
independent SG200Δsrt1 deletion 
mutants at 7 dpi. Percentage of 
plants showing large tumors, small 
tumors, or only chlorosis are color-
coded (n = total number of plants 
analyzed). (D) Expression profile 
(real time PCR) of srt1 in SG200 
grown on agar media 
supplemented with different 
carbon sources (left) or on plant 
tissue at different time points after 
infection. Gene expression was 
normalized to the expression of 
the constitutively expressed genes 
actin and eIF2B. Changes in srt1 
expression are displayed relative 
to the lowest expression value (dpi 
= days post infection). Error bars 
indicate the standard deviations of 
mean expression values. 
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Srt1 is an Energy-dependent, Sucrose-specific Transporter of the Fungal Plasma 

Membrane  

The intron-less srt1 gene encodes for a protein of 546 amino acids. Srt1 has 12 

predicted transmembrane domains (TMDs; Sonnhammer et al., 1998) and a large 

extracellular loop between TMD1 and TMD2 (Figure 2.3-1C), a typical structural 

feature of previously characterized fungal and plant hexose transporters (Schüssler 

et al., 2006; Büttner and Sauer, 2000). Sequence comparison revealed a moderate 

similarity (less than 30% identity) of Srt1 to a large group of transport proteins (Figure 

2.3-S3) that includes numerous well-characterized high-affinity monosaccharide 

transporters from plants and fungi as well as some low-affinity maltose transporters 

from Saccharomyces cerevisiae  (Cheng and Michels, 1991; Stambuk et al., 1999; 

Alves et al., 2008), Pichia angusta (synonym: Hansenula polymorpha; Viigand et al., 

2005) or Schizosaccharomyces pombe (Reinders and Ward, 2001). Phylogenetic 

analyses revealed that Srt1 is most closely related to a small group of so far 

uncharacterized proteins (Figure 2.3-S3). This group contains uncharacterized 

transporters from different Aspergillus species (up to 47% identity) and from two 

biotrophic relatives of U. maydis, Sporisorium reilianum (88% identity) and Ustilago 

hordei (81% identity).  

To functionally characterize Srt1, the gene was expressed in the monosaccharide 

transport-deficient S. cerevisiae strain EBY.VW4000 (Wieczorke et al., 1999), and 

uptake was analyzed with radiolabeled putative substrates (D-glucose, D-fructose, D-

ribose, D-xylose, D-galactose, mannitol, sorbitol, xylitol, myo-inositol). As Srt1 did not 

catalyze the uptake of any of these compounds, additional tests were performed with 
14C-sucrose and 14C-maltose. However, as yeast strain EBY.VW4000 encodes an 

extracellular invertase that slowly hydrolyzes extracellular sucrose, these Srt1 studies 

had to be performed in the invertase-deficient yeast strain SEY2102 (Emr et al., 

1983). In fact, transport activity could be measured with 14C-sucrose (Figure 2.3-4A), 

but no uptake was observed for 14C-maltose (Figure 2.3-S4).  

In competition analyses with an excess of unlabeled maltose (an alternative substrate 

of plant sucrose transporters), trehalose (an alternative substrate of yeast maltose 

transporters), raffinose (an alternative substrate of the sucrose-hydrolyzing enzyme 

invertase), or sucrose (as positive control), raffinose was the only alternative 

compound that caused a minor inhibition of sucrose uptake (Figure 2.3-4B). No 

transporter described so far, not even the very well characterized sucrose 
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transporters from higher plants (Sauer, 2007), showed such an extreme specificity for 

the disaccharide sucrose. 

In fungi, sucrose transport activities were so far only described as side activities of 

maltose or maltotriose transporters with broad specificity and low affinity (Reinders 

and Ward, 2001; Stambuk et al., 2000). In uptake analyses in S. cerevisiae and with 

wide range of different sucrose concentrations, the KM of Srt1 for sucrose was found 

to be ∼25 µM (Figure 2.3-4C). Thus, the affinity of Srt1 for sucrose is several 

hundred-fold to several thousand-fold higher than that of fungal maltose/maltotriose 

transporters (Reinders and Ward, 2001; Stambuk et al., 2000). Moreover, its affinity 

is also much higher than that of higher plant sucrose transporters (50-fold to 100-

fold), which catalyze sucrose uptake with KM-values in the millimolar range (Viigand 

et al., 2005).  

  

Figure 2.3-4: Srt1-dependent 14C-sucrose 
uptake in S. cerevisiae. (A) Uptake of 14C-sucrose 
by srt1-expressing (closed circles) and control cells 
(open circles). (B) Competition analysis (0.1-mM 
14C-sucrose) with different potential substrates 
added at 100-fold molar excess. (C) Michaelis-
Menten kinetics of sucrose uptake rates (pH 5.0) 
indicate a KM of ∼25 µM. Error bars represent 
standard error (n = 3). 
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For the yeast strain SEY2102, D-glucose represents the primary carbon source that 

can be both imported and metabolized. In contrast, sucrose can be imported when 

srt1 is expressed, but it cannot be hydrolyzed, as the strain is invertase deficient 

(Emr et al., 1983). If, however, sucrose uptake by Srt1 is energy-dependent, the 

available energy might be limiting and the determined sucrose transport rates might 

be sub-maximal. The simultaneous presence of 14C-sucrose and glucose as 

metabolizable energy source strongly enhanced sucrose uptake (Figure 2.3-5A), 

which is indicative for an energy-dependent transport. In addition to this glucose-

enhanced sucrose uptake, both the clear optimum of Srt1-driven sucrose transport at 

acidic pH values (Figure 2.3-5B) as well as the sensitivity to the protonophore 

carbonylcyanide m-chlorophenylhydrazone (CCCP; Figure 2.3-5C) underline that 

Srt1 is an active, energy-dependent H+-symporter. 

 

Figure 2.3-5: Transport characteristics of Srt1. (A) Transport is activated in the presence of 
the metabolizable carbon source glucose. (B) The pH-optimum for sucrose uptake by Srt1 is in 
the acidic pH range. (C) Sucrose uptake is sensitive to the protonophore CCCP, but not to the 
SH-group inhibitor PCMBS. (D) The plateau of sucrose accumulation in baker’s yeast results 
from an equilibrium of influx and efflux. Black symbols show the uptake of 14C-labeled sucrose 
and the onset of an immediate efflux, after replacement of labeled extracellular sucrose by 
unlabeled sucrose (black arrow). The grey region at the bottom of the graph shows the amount of 
sucrose that was sufficient to reach a concentration equilibrium of 14C-sucrose between the 
medium and the cell interior. White symbols show the onset of an immediate influx of 14C-labeled 
sucrose in an identical experiment that was started with unlabeled sucrose. The white arrow 
indicates the replacement of unlabeled extracellular sucrose by 14C-labeled sucrose. One of three 
experiments with identical results is presented. Error bars in (A) to (C) represent standard error 
(n = 3).  
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Expression of srt1 in a yeast strain (DBY2617) that possesses a cytoplasmatic but no 

secreted invertase (Carlson et al., 1981) enabled this strain not only to import 14C-

sucrose, but also to grow efficiently on sucrose as sole carbon source (Figure 2.3-

S5). This proves that Srt1 activity alone is sufficient to meet the carbon import 

requirements of these cells. Thus, Srt1 is a high affinity, high capacity transporter that 

catalyzes the uptake of sufficient sucrose to fuel the growth of fungal cells. 

Additional analyses of the subcellular localization in S. cerevisiae with a functional 

Srt1::GFP fusion protein demonstrated that, as expected from the transport tests 

(Figures 2.3-4 and 5) and complementation analysis (Figure 2.3-S5), Srt1::GFP 

localizes exclusively to the plasma membrane (Figure 2.3-6).  

 

Figure 2.3-6: Subcellular localization of 
Srt1 in S. cerevisae. A functional Srt1::GFP 
fusion protein expressed in S. cerevisiae 
cells is localized specifically in plasma 
membranes (see Experimental Procedures).  

 

 

 

Srt1 Differs from Plant Sucrose Transporters in Two Functional Aspects  

The primary physiological functions of plant sucrose transporters are the loading of 

sucrose into the phloem or the loading of sucrose into storage vacuoles, two 

processes that depend on the accumulation of high sucrose concentrations on one 

side of the respective membrane (Sauer, 2007). Uptake beyond a certain maximum 

is subject to feed back inhibition and total inactivation of sucrose transport. These 

activities of plant sucrose transporters can be inhibited very specifically by the SH-

group inhibitor p-chloro-mercuribenzene sulfonate (PCMBS) that does not affect plant 

hexose transporters (M'batchi and Delrot, 1984). The specificity of this inhibitor is so 

high that sucrose fluxes and phloem loading can be inhibited by PCMBS in whole 

plant or in intact plant tissues (Turgeon and Gowan, 1990).  

In contrast, Srt1 is a transporter that imports sucrose for immediate consumption, 

thus high intracellular concentrations of sucrose in U. maydis are unlikely to occur. In 

invertase-deficient srt1-expressing S cerevisiae cells, however, imported sucrose is 

not hydrolyzed, and Srt1 accumulates sucrose to concentrations higher than in the 

extracellular medium (more than 60-fold higher in Figure 2.3-5D). In contrast to plant 
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sucrose transporters, the resulting plateau does not result from feed back (“shut-off”) 

inhibition of sucrose uptake, but rather from an equilibrium of sucrose influx and 

sucrose efflux, a typical property of transporters that do not accumulate their 

substrates under physiological conditions (Komor et al., 1972; Eddy, 1982). 

Finally, in accordance with its closer phylogenetic similarity to plant and fungal 

hexose transporters, and unlike to sucrose transporters described in numerous plant 

species, Srt1 is also insensitive to PCMBS (Figure 2.3-5C). In summary, Srt1 

appears to be the prototype of a novel sucrose transporter that is unique with regards 

to its high specificity and its high affinity for sucrose, and that differs significantly in its 

functional behavior from sucrose transporters of higher plants. 
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2.3.3 Discussion 

The basidiomycete U. maydis is a biotrophic fungus that feeds on photoassimilated 

carbohydrates of maize to promote extensive fungal proliferation within the plant 

(Figure 2.3-1). Deletion analyses of genes encoding sugar transporter-like proteins in 

U. maydis led to the identification of srt1. Under axenic growth conditions on different 

carbon sources, including sucrose (Figure 2.3-3C), this gene is not or only weakly 

expressed. Infection of maize tissue, however, causes a rapid induction of srt1 

expression (Figure 2.3-3C) that peaks at 4 dpi, when tumor formation is initiated. In 

agreement with these expression data, deletion of srt1 neither affects axenic growth 

(Figure 2.3-2) nor the colonization of infected plants (Figure 2.3-S2), but it results in 

strongly reduced symptom formation at later stages of biotrophic development 

(Figures 2.3-3A to 3C). 

Functional analyses in different S. cerevisiae strains characterized Srt1 as a plasma 

membrane-localized (Figure 2.3-6), energy-dependent (Figure 2.3-5), high affinity 

(Figure 2.3-4C) sucrose transporter with unusually narrow substrate specificity 

(Figures 2.3-4B and S4). S. cerevisiae cells expressing srt1 do grow on sucrose as 

sole carbon source if they possess a cytoplasmatic invertase (Figure 2.3-S5), or they 

accumulate sucrose to high intracellular concentrations if this invertase is deleted 

(Figure 2.3-5D). This demonstrates that Srt1 is also a high capacity transporter that 

supplies rapidly growing fungal cells with carbon skeletons necessary for energy 

production and metabolism. 

Fungal sucrose transporters with comparable kinetic properties and transport 

characteristics have so far not been cloned or characterized. S. cerevisiae has 

transporters that accept several α-glucosides, including maltose, trehalose, 

maltotriose, melezitose, α-methylglucoside and sucrose. However, these transporters 

have KM-values for sucrose between 8 and 120 mM (Stambuk et al., 2000). 

Moreover, transporters with KM-values in this concentration range have to compete 

with the yeast extracellular invertase that hydrolyzes sucrose with a KM that is also in 

the millimolar range. 

In contrast to all of these transporters, Srt1 transports sucrose with high specificity 

and with an unusually low KM. The presented data demonstrate that the uptake of 

sucrose by Srt1 is not a possible side activity of this protein, but rather its only and 

exclusive function and that Srt1 activity is essential to develop full virulence of U. 

maydis.  
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Srt1 Enables U. maydis to Feed on Apoplastic Sucrose without Extracellular 

Hydrolysis  

The primary long-distance transport and storage form of assimilated carbon in most 

higher plants, including maize, is sucrose. Apoplastic sucrose concentrations were 

determined in several dicotyledonous plants and are typically in the low-millimolare 

range (Nadwodnik and Lohaus, 2008). Thus, a transporter with the properties of Srt1 

represents a perfect tool of a biotrophic fungus that resides the major part of its life 

cycle in the extracellular space of a living plant. The specificity and extremely high 

affinity of this transporter enables the pathogen to compete efficiently and 

successfully with the adjacent host cells for sucrose at the plant/fungus interphase 

(Figure 2.3-7). Srt1 is perfectly suited to out-compete both the plants sucrose 

transporters (SUC or SUT proteins; Sauer, 2007) with their comparatively low 

substrate affinities as well as the plants invertase (INV)/monosaccharide transporter 

(STP) system that is used to feed certain plant sink tissues (Figure 2.3-7; 

Sonnhammer et al., 1998). Like plant sucrose transporters, plant extracellular 

invertases have KM-values in the millimolar range (Roitsch and González, 2004). 

 

Figure 2.3-7: Model of the bidirectional competition for extracellular sucrose at the 
plant/fungus interface. Plants are known to use apoplastic sucrose either via plasma 
membrane-localized sucrose transporters (SUC or SUT proteins) or due to the activity of 
extracellular invertases (INV) via membrane-localized hexose transporters (STP or MST 
proteins). Srt1, a high-affinity sucrose H+-symporter, localizes to the fungal plasma membrane, 
and with its high substrate specificity and extremely low KM-value it enables the fungus to 
efficiently use sucrose from the plant/fungus interface. 
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Direct uptake of sucrose by a plant pathogenic fungus most likely provides a second, 

more strategic advantage over the uptake of monosaccharides produced by the 

activity of a secreted fungal invertase. It was reported repeatedly that invertase-

derived monosaccharides in the apoplast act as signaling molecules that trigger 

reduction of photosynthetic activity and induction of defense genes (Herbers et al., 

1996b; Ehness et al., 1997; Schaarschmidt et al., 2007; Kocal et al., 2008; Rolland et 

al., 2006; Roitsch et al., 2003; Heineke et al., 1992). Both responses are highly 

unfavorable for a biotrophic pathogen, as the first would reduce carbon availability 

and the second would harm the pathogen and stop the infection. The use of a 

sucrose transporter rather than of an invertase/hexose transporter system might, 

therefore, represent a mechanism of signal avoidance in an environment that is well 

prepared to sense and destroy potential pathogens.  

The exclusive induction of srt1 expression in tumor tissue implies that the transporter 

is specifically employed for sucrose uptake at the plant/fungal interface. During 

saprophytic growth on sucrose containing media the gene is neither expressed, nor 

needed, since ∆srt1 strains do not show reduced growth rates on media with sucrose 

as sole carbon source. As the presence of sucrose alone is not sufficient for srt1 

induction (Figure 2.3-3), we must assume additional plant signals triggering the 

expression. 

Srt1 is the first described fungal transporter that allows direct utilization of apoplastic 

sucrose without prior hydrolysis. During evolution of pathogenicity, especially of 

biotrophic fungi, this may have been a major step to successfully adapt to the hostile 

environment in host plants. The extremely high sucrose affinity and -specificity of Srt1 

has not only advantages to carbon acquisition of the pathogen, but also to prevent 

host plant defense responses by avoiding the production of signaling molecules in 

the plant apoplast.  
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2.3.4 Experimental Procedures 

Strains and Growth Conditions  

Escherichia coli strain TOP10 (Invitrogen) was used for cloning purposes. For plant 

infections, Ustilago maydis cells were grown at 28°C in YEPSL (Brachmann et al., 

2001). For RNA extraction, U. maydis was grown in glutamine minimal medium, 

which is based on the minimal medium described by Holliday (Holliday, 1974) with 30 

mM L-glutamine as nitrogen source. Plant infections with U. maydis were performed 

as described (Gillissen et al., 1992). The U. maydis strain used in this study is 

SG200, a haploid, solopathogenic strain that can infect maize plants without a mating 

partner (Kämper et al., 2006). S. cerevisiae strains used for analyses of Srt1 were 

EBY.VW4000 (Wieczorke et al., 1999), SEY2102 (Emr et al., 1983), D458-1B 

(Nikawa et al., 1991) and DBY2617 (Carlson et al., 1981). Cells were grown in 

minimal medium (0.67 % yeast nitrogen base w/o amino acids plus required amino 

acids depending on the strain) containing 2% maltose (EBY.VW4000) or glucose (all 

other strains) at 29 °C.  

 

DNA and RNA Procedures  

Molecular methods followed described protocols (Sambrook et al., 1989). DNA 

isolation from U. maydis and transformation procedures were performed as described 

(Schulz et al., 1990). Homologous integration of constructs was verified by gel blot 

analyses. Transformation of S. cerevisiae followed the protocol given in Gietz et al. 

(1992). Total RNA from U. maydis cells grown in axenic culture was extracted using 

Trizol reagent (Invitrogen) according to the manufacturer’s instructions. RNA samples 

to be used for real-time RT-PCR were further column purified (RNeasy; Qiagen) and 

the quality checked using a Bioanalyzer with an RNA 6000 Nano LabChip kit 

(Agilent).  

 

Deletion of srt1  

The deletion of srt1 was performed by a PCR-based approach (Kämper, 2004). The 

entire srt1 ORF was replaced by a hygromycin resistance cassette in strain SG200. 
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Cloning of srt1 and Expression in Yeast   

The srt1 open reading frame (ORF) was amplified from U. maydis genomic DNA 

using the primers 2374_EcoRI_for (5'-CAG AAT TCA AAA ATG GCG TCG TCT TCT 

CCC ATT CGT-3') and 2374_EcoRI_rev (5'-CAG AAT TCT CGG ACT GCC AAG 

TCA TTG TGG AC-3').  DNA was sequenced and cloned into the yeast/E. coli shuttle 

vector NEV-E (Sauer and Stolz, 1994) and the resulting plasmid was used for yeast 

transformation. For the fusion of Srt1 to the N-terminus of GFP, srt1 ORF was PCR-

amplified with primers that removed the stop codon. The resulting srt1 ORF was 

cloned upstream of the open reading frame of GFP in the yeast expression plasmid 

pEX-Tag (Meyer et al., 2000). 

 

Transport Studies with Radiolabeled Substrates 

Yeast cells were grown to an A600 nm of 1.0, harvested, washed twice with water and 

re-suspended in buffer to an A600 nm of 10.0. If not otherwise indicated, uptake 

experiments were performed in 50-mM Na-phosphate buffer pH 5.0 with an initial 

substrate concentration of 1-mM 14C-labeled sucrose (or another 14C-labeled or 3H-

labeled substrate). Cells were shaken in a rotary shaker at 29°C and transport tests 

were started by adding labeled substrate. Samples were withdrawn at given intervals, 

filtered on nitrocellulose filters (0.8 µm pore size) and washed with an excess of 

distilled H2O. Incorporation of radioactivity was determined by scintillation counting. 

Competition analyses were performed with 0.1-mM 14C-sucrose in the presence of 

10-mM competitor (100-fold excess). For analyses of the energy-dependence of 

sucrose transport, D-glucose was added to the yeast cells 2 min before the start of 

the experiment to a final concentration of 10 mM. For inhibitor analyses CCCP 

(carbonylcyanide m-chlorophenylhydrazone) or PCMBS (p-chloromercuribencene 

sulfonate) were used at final concentrations of 50 µM. 

For influx/efflux analyses in the plateau of sucrose accumulation (Figure 2.3-5D), 

identical amounts of yeast cells were incubated in two flasks with either 100-µM of 
14C-labeled sucrose or with unlabeled sucrose, and sucrose uptake was determined 

in the flask with the labeled substrate. When the plateau was reached (after 35 min), 

the cells were quickly pelleted and washed in Na-phosphate buffer (pH. 5.0). Cells 

from the unlabeled flask were then resuspended to the initial volume with 100-µM 
14C-sucrose, cells from the labeled flask with 100-µM unlabeled sucrose, and uptake 

experiments were continued.  
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Light Microscopy 

Light microscopic analyses were performed using a Zeiss Axioplan 2 microscope. 

Photomicrographs were obtained with an Axiocam HrM camera, and the images 

were processed with Axiovision (Zeiss) and Photoshop (Adobe). Chlorazole Black E 

staining of fungal cells in planta was performed as described (Brachmann et al., 

2003). 

 

Confocal Microscopy 

Subcellular localization of the Srt1::GFP fusion protein in yeast cells was determined 

by confocal microscopy (Leica TCS SPII; Leica Microsystems) and processed with 

the Leica Confocal Software 2.5 (Leica Microsystems). Emitted fluorescence was 

monitored at detection wavelengths longer than 510 nm. 

 

Quantitative Real Time PCR Analysis 

To analyze srt1 expression on different carbon sources, SG200 was grown in 

glutamine minimal media supplemented with the indicated amount of the respective 

carbon source to an OD600 of 1.0 for 6 h. Pre-cultures were grown overnight in 

glutamine minimal medium containing 1% of glucose. RNA samples were frozen in 

liquid nitrogen for two independently conducted replicates. RNA of maize plants 

infected with SG200 was prepared as described  (Doehlemann et al., 2008a). 

Samples were taken 0.5, 1, 2, 4 and 8 dpi. For cDNA synthesis, the SuperScript III 

first-strand synthesis SuperMix assay (Invitrogen) was used on 1 µg of total RNA. 

qRT-PCR was performed on a Bio-Rad iCycler using the Platinum SYBR Green 

qPCR SuperMix-UDG (Invitrogen). The U. maydis actin (um11232) and eIF2B 

(um04869) genes were used as references. Primer sequences were rt-eIF-2B-F (5´-

ATC CCG AAC AGC CCA AAC-3´) and rt-eIF-2B-R (5´ ATC GTC AAC CGC AAC 

CAC-3´) for eIF2B, rt-actin-F (5'-CAT GTA CGC CGG TAT CTC G-3') and rt-actin-R 

(5'-CTC GGG AGG AGC AAC AAT C-3') for the actin gene, and 2374_rt_for (5'-AGA 

CGC GTG GAA GGA CTT TCT TCG-3') and 2374_rt_rev (5'-CCT AGC TCG AAC 

TTT GAC CAC CGC-3') for srt1. 

 



Dissertation   2. Results  

80 

Phylogenetic Analysis 

For the phylogenetic analysis of the U. maydis Major Facilitator Superfamily (MFS) 

and for the identification of the 19 members of the U. maydis sugar transporter 

superfamily, 86 amino acid sequences of putative MFS members were obtained at 

MUMDB (IPR007114  Major facilitator superfamily; 

http://mips.gsf.de/genre/proj/ustilago/). Two sequences of U. maydis ammonium 

transporters were included as out-group (Figure 2.3-S1 and Table 2.3-S1). For 

comparative phylogenetic analysis of Srt1, the amino acid sequence was aligned with 

95 transporter sequences obtained by BLASTP analysis. This includes fungal and 

plant sequences with the highest similarity to Srt1, fungal and plant sequences with 

highest homology to Arabidopsis thaliana sucrose transporters, as well as fungal and 

plant ammonium transporter sequences as out-group (Figure 2.3-S3 and Table 2.3-

S2). Sequences were aligned with MAFFT version 6 using the global alignment G-

INS-i. A phylogenetic tree was calculated using the minimum linkage clustering 

method (http://align.bmr.kyushu-u.ac.jp/mafft/online/server/). TreeIllustrator 1.0.1 was 

used to visualize the Nexus formats of the MAFFT results.  
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2.3.5 Supplementary Information  

A file containing the Supplementary Material of section 2.3 is available on data-CD 

deposited in section 5 of this thesis. The file includes Figures 2.3-S1 to S5 and 

Tables 2.3-S1 and S2.  

  

Figure 2.3-S1: Phylogenetic analyses of the U. maydis Major Facilitator Superfamily 

(MFS).    

Figure 2.3-S2: SG200∆srt1 hyphae do not differ with respect to leaf colonization 

from SG200 hyphae at 4 and 7 dpi during disease progression.    

Figure 2.3-S3: Comparative phylogenetic analyses of Srt1.   

Figure 2.3-S4: 14C-Maltose is not a substrate for Srt1.  

Figure 2.3-S5: Srt1 complements the growth defect of S. cerevisiae strain DBY2617.    

Table 2.3-S1: Accession numbers, gene-numbers [MUMDB (IPR007114  Major 

facilitator superfamily; http://mips.gsf.de/genre/proj/ustilago/)] and predicted functions 

of the putative transport proteins used to calculate the phylogenetic tree shown in 

Figure S1.  

Table 2.3-S2: Accession numbers, putative or determined functions of the transport 

proteins used to calculate the phylogenetic tree shown in Figure S3.  
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Abstract 

Plant pathogenic fungi cause massive crop losses and therefore severe economic 

deficits. The smut Ustilago maydis, a ubiquitous pest of corn, is highly adapted to its 

host to parasitize on its organic carbon sources. Recently, we have identified the U. 

maydis sucrose transporter Srt1 as crucial for biotrophic development. Here we 

report the identification of Hxt1, a second member of the U. maydis sugar transporter 

family, which is of importance for full fungal virulence. Hxt1 mainly utilizes the 

hexoses glucose, fructose and mannose, and with lower affinity also galactose and 

xylose. Deletion of hxt1 in U. maydis reduces growth on the primary substrates of 

Hxt1 in contrast growth on its secondary substrates xylose and galactose is 

enhanced. Expression analysis revealed that monosaccharide-dependent regulation 

of transcription is hampered in hxt1 deletion mutants, leading to the expression of 

genes involved in the metabolism of the secondary substrates of Hxt1. Furthermore, 

we observed an induction of genes that were shown to be involved in mating and 

subsequent pathogenic development in hxt1 deletion mutants. Thus, we propose that 

Hxt1 has a dual function as monosaccharide-transporter and -sensor. While the 

sensor funtion of Hxt1 is most important to aid the initiation of pathogenicity at 

starvation conditions on the plant surface, its transport function is most important to 

feed the fungus in planta. 
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2.4.1 Introduction  

Phytopathogenic fungi infect their host plants to get access to plant-produced 

carbohydrates causing substantial yield losses every year. Two main strategies are 

used by the different fungal pathogens to realize plant infection and subsequent 

nutrient acquisition. Necrotrophic fungi kill their host plants to live saprophytically on 

the dead plant tissue. In contrast, biotrophic fungi establish a close relationship with 

their hosts, while keeping them alive. In biotrophic interactions fungal virulence is 

strongly dependent on nutrient availability during infection, as it affects the fitness of 

the pathogen. Thus, biotrophic fungi have to manipulate their hosts to redirect the 

plants metabolism and feed on its resources.  

The biotrophic basidiomycete Ustilago maydis is a ubiquitous pest of maize, one of 

the most cultivated crop plants worldwide. U. maydis infection causes the corn smut 

disease, resulting in the formation of large plant tumors filled with fungal teliospores. 

Sexual reproduction of U. maydi is essentially coupled to plant infection. Therefore, 

fusion of two sexually compatible sporidia and the formation of the infectious, 

filamentous dikaryon is controlled by two mating type loci a and b (Banuett and 

Herskowitz, 1989; Spellig et al., 1994b). The a-locus encodes a 

pheromone/pheromone receptor system that regulates cell-to-cell recognition and cell 

fusion (Bölker et al., 1992; Hartmann et al., 1996). The b-locus encodes two 

unrelated homedomain proteins bE and bW that dimerize, when derived from 

different alleles, and form an active transcription factor which initiates pathogenic 

development (Kämper et al., 1995; Romeis et al., 2000; Brachmann et al., 2003).  

After establishment of the infectious dikaryon on the plant surface, U. maydis 

penetrates the plant cuticle via specialized appressoria-like infection structures 

(Snetselaar and Mims, 1992; Snetselaar and Mims, 1993; Banuett and Herskowitz, 

1994). In planta U. maydis hyphae traverse plant cells without eliciting apparent host 

defense responses, a prerequisite for the establishment of a successful biotrophic 

interaction. An interaction zone develops between plant and fungal membranes that 

is thought to be involved in the exchange of signal molecules (Snetselaar and Mims, 

1993; Doehlemann et al., 2009). It is conceivable that this interaction zone is also 

involved in nutrient supply during biotrophic growth, since U. maydis does not 

develop specialized feeding structures as the haustoria observed during infections 

with rust fungi (Voegele et al., 2001). 

The most prominent sugar in plants is the disaccharide sucrose, which serves as 

transport and storage molecule. Although it is widely believed that sucrose-derived 
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hexoses are the most important carbon source for fungal plant pathogens, the true 

nature of carbohydrates utilized during plant infection remains obscure. In various 

pathosystems some effort was made to investigate which carbohydrates are utilized 

by fungal pathogens during infection. A hexose transporter (HXT1p) has been 

identified in the rust fungus Uromyces fabae that is expressed only in haustoria 

(Voegele et al., 2001). Heterologous expression of HXT1p in S. cerevisiae revealed 

that the protein functions as a proton co-transporter specific for glucose and fructose. 

The substrates of HXT1p are thought to result from cleavage of sucrose by the 

secreted invertase of U. fabae, which is also expressed in haustoria (Voegele et al., 

2006). However, as rust fungi are yet not amendable to reverse genetic approaches, 

the function of transporter and invertase during biotrophic development could not be 

addressed in the homologous system (Voegele et al., 2001).  

Similarly, in the ectomycorrhizal fungi Amanita muscaria, Tuber borchii, and 

Geosiphon pyriformis specific hexose transporters were identified as upregulated 

during symbiosis (Nehls et al., 1998; Schüssler et al., 2006; Polidori et al., 2007) and 

thus thought to be responsible for symbiotic sugar uptake. However, also in the 

mycorrhizal systems, a causal relationship between transporters and symbiotic 

development has not been established yet.  

Also in necrotrophic interactions, glucose and fructose are discussed to be the main 

carbon sources utilized by the pathogen. During infection of sunflower with the 

necrotrophic fungus Sclerotinia sclertiorum the sucrose content of the plant drops 

dramatically, as a result of the activity of a fungal invertase. Induction of two hexose 

transporters, Sshxt1 and Sshxt2, during this stage of fungal proliferation indicates 

that the fungus predominantly feeds on sucrose cleavage products (Jobic et al., 

2007).  

The best-studied system for sugar utilization is the yeast Saccharomyces cerevisiae. 

Uptake of glucose is facilitated through 17 closely related hexose transporters (Hxt 

genes; Ozcan and Johnston, 1999). Glucose, the predominantly utilized carbon 

source of S. cerevisiae is sensed by two glucose receptors Rgt2 and Snf3  (Ozcan et 

al., 1996; Vagnoli et al., 1998). Both proteins harbor an elongated cytoplasmatic C-

terminus, which is involved in signal transduction (for review see Forsberg and 

Ljungdahl, 2001; Gancedo, 2008). In addition, a cytoplasmatic glucose repression 

pathway exists that operates via the hexose kinase Hxk2, the protein kinase Snf1 

and the transcription factor Mig1 (Ostling and Ronne, 1998; Treitel et al., 1998; Smith 

et al., 1999; Papamichos-Chronakis et al., 2004).  
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Reasoned from the paucity of plant cell wall degrading enzymes compared to other 

fungal pathogens (Doehlemann et al., 2008b), it is unlikely that U. maydis feeds on 

carbohydrates derived from the digestion of plant cell wall material. A comprehensive 

transcriptome and metabolome analysis of the host plant revealed that U. maydis 

infection leads to a reprogramming of the host metabolism (Doehlemann et al., 

2008a). Mature maize leaves invaded by U. maydis develop sink, rather then source 

tissue characteristics. The carbon supply of the infected areas is not mediated by 

photosynthesis, but by sucrose import (Doehlemann et al., 2008a; Horst et al., 2008). 

Thus, it is likely that U. maydis uses sucrose and/or its cleavage products glucose 

and fructose as energy source within the plant. Recently, we have identified the U. 

maydis sucrose transporter Srt1 to be essential for full fungal virulence (see 2.3). 

Here we report the identification of Hxt1, a monosaccharide transporter 

predominantly for glucose and fructose, which is required for full fungal virulence. In 

addition to its function as a transporter, Hxt1 functions as a sensor for 

monosaccharides, as it was found to influence carbohydrate-dependent gene 

expression.  
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2.4.2 Results 

Hxt1 is a Hexose Transporter with High Affinity to Glucose and Fructose Required for 

Pathogenic Development of U. maydis 

In total we identified 19 sugar transporters in the U. maydis genome (see 2.3). To 

investigate their impact on fungal pathogenicity we performed deletion analyses in 

the haploid, solopathogenic strain SG200, which is infectious without an additional 

mating partner (Kämper et al., 2006). Deletion mutants of two of the identified 

transporter genes were reproducible hampered in pathogenic development, 

respectively. srt1 was described previously (see 2.3), the second transporter gene 

found to influence pathogenicity was um05023 (MIPS).  

 

Figure 2.4-1: U. maydis hxt1 deletion mutants show reduced virulence. (A) Disease rating of 
plants infected with the wild type strain SG200 (WT) and three independent SG200Δhxt1 deletion 
mutants (7 dpi). Percentage of plants with large tumors, small tumors, or with chlorosis are color-
coded (n = total number of plants analyzed; one of three independent experiments giving similar 
results is displayed). (B) Chlorazole Black E staining of maize leaves infected with SG200 (WT) 
and SG200∆hxt1 at 7 dpi. In both cases hyphae spread within the plant leave tissue. Arrows 
indicate fungal hyphae; scale bars: 20 µm.  

 

Plants were infected with 3 independent SG200 um05023 deletion mutants and 

tumor development was compared to SG200 wild type infections after 7 dpi (days 

post inoculation). The number of infected plants after inoculation with um05023 

deletion strains was decreased to about 60%, compared to 90 % after SG200 wild 

type infection (Figure 2.4-1A). Chlorazol Black E stainings of infected plant material 

were performed to visualize fungal hyphae during in planta growth 7 dpi. Hyphae of 
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∆um05023 strains were indistinguishable from SG200 wild type hyphae 7 dpi, 

revealing no obvious physiological differences during pathogenic development 

(Figure 2.4-1B).  

 

Figure 2.4-2: Hxt1 is related to glucose sensors and hexose transporters involved in 
biotrophic development of fungi. (A) Comparative phylogenetic analysis of Hxt1 (see 
Experimental Procedures). The transporters are separated in two major groups, one comprising 
transporter sequences similar to the yeast hexose transporters (Hxt-similar) and the other one 
comprising U. maydis transporters that are more distantly related to the first group (Hxt-
dissimilar). Within the Hxt-similar transporter group, Hxt1 forms a distinct group with receptor-like 
proteins (red box). Stars indicate proteins not represented as probe set on the Ustilago DNA-
microarray. Species and gene names are given, for accession numbers see Table 2.4-S1. (B) 
Putative topology of Hxt1 obtained with the topology prediction program TopPred 
(http://mobyle.pasteur.fr/cgi-bin/portal.py?form=toppred). The Hxt1 prediction corresponds to the 
typical structure of hexose transporter with 12 transmembrane helices (TM). (C) Protein length 
and function of Hxt1 and its homologues (D) Average hydropathy plot of the proteins given in (C) 
obtained with a multiple sequence alignment tool that marks transmembrane helices 
(http://www.tcdb.org/progs/msaTMS.php). All sequences contain 12 hydrophobic peaks indicating 
the TMs. Snf3, Rgt2 and Hgt4 possess a C-terminal extension involved in hexose signaling, 
which is not found in the U. maydis Hxt1 protein. 

 

The Um05023 protein is predicted to contain 12 transmembrane domains (TMDs) 

with a large extracellular loop between TMD1 and TMD2, which is typical for hexose 

transporters (Figure 2.4-2B; Sonnhammer et al., 1998; Schüssler et al., 2006). 

BLAST analysis revealed that the protein is most similar to the high affinity 

glucose/arabinose transporter Mst1 (53%) from A. muscari and to the high affinity 

glucose/fructose-transporter Hxt1 (49%) from U. fabae (Figure 2.4-2A; Voegele et al., 
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2001; Nehls et al., 1998). Furthermore, Um05023 shows significant similarities to the 

glucose sensors Rgt2 and Snf3 from S. cereviciae (42% and 39% identity on amino 

acid level, respectively) and to Hgt4 from Candida albicans (41% identity on amino 

acid level); however, in contrast to these sensors, neither Um05023 nor one of the 

other 18 potential sugar transporters from U. maydis possess a C-terminal extension 

that was shown to be involved in signal transduction (Figure 2.4-2A, 2C and 2D; 

Ozcan and Johnston, 1999; Brown et al., 2006). Because of its similarities to known 

hexose transporters we named Um05023 as Hxt1. 

 

Figure 2.4-3: Hxt1-dependent hexose uptake in S. cerevisiae. (A) Growth of S. cerevisiae 
strains EBYVW.4000 and EBYVW.4000 expressing Hxt1 (B) Uptake of 14C-glucose by hxt1-
expressing (closed circles) and control cells (open circles). (C) Michaelis-Menten kinetics of 
glucose uptake rates (pH 6.0) indicate a KM of ∼6.6 µM. (D) The pH-optimum for glucose uptake 
by Hxt1 is in the acidic pH range. (E) Glucose uptake is sensitive to the protonophors CCCP and 
DNP, but not to the SH-group inhibitor PCMBS. (F) Competition analysis (0.1-mM 14C-glucose) 
with different sugars added at 100-fold molar excess. Error bars represent standard error (n = 3).  

 

To functionally characterize U. maydis Hxt1, the protein was expressed in the S. 

cerevisiae strain EBY.VW4000, a deletion mutant of 22 genes encoding hexose-

utilizing transporter, which is unable to grow on hexoses (Wieczorke et al., 1999). 

Expression of Hxt1 in EBY.VW4000 resulted in enhanced growth on medium 

containing 1% glucose, 1% fructose or 1% galactose (Figure 2.4-3A). To characterize 

the kinetics of Hxt1, we measured the uptake of 14C-glucose in EBY.VW4000 (Figure 

2.4-3B). Hxt1 has a high glucose affinity (KM of 6.6 µM), which is about 70- and 50-

fold higher than the affinities of the homologous glucose transporters from A. 
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muscaria and U. fabae, respectively (Figure 2.4-3C; Nehls et al., 1998; Voegele et 

al., 2001). The 14C-glucose transport of Hxt1 has an optimum at acidic pH values and 

was found to be sensitive to the protonophore carbonylcyanide m-

chlorophenylhydrazone (CCCP) and 2,4-dinitrophenol (DNP), but not to the SH-group 

inhibitor p-chloromercuribencene sulfonate (PCMBS), suggesting that Hxt1 is an 

energy-dependent H+-symporter (Figure 2.4-3D and 3E). Competition assays with 

different hexoses, pentoses and polyols revealed a high affinity of Hxt1 to the 

hexoses fructose and mannose, and a lower affinity to the pentose xylose (Figure 

2.4-3F).  

 

Figure 2.4-4: hxt1 is constitutively high expressed. (A) hxt1 expression (quantitative real time 
PCR) in U. maydis SG200 grown in liquid media supplemented with different carbon sources 
(left) or on plant tissue at different time points after infection. Gene expression was normalized to 
the expression of the constitutively expressed genes actin and eIF2B (Experimental Procedures). 
Changes in hxt1 expression are displayed relative to the condition with lowest expression (dpi = 
days post infection). Error bars indicate the standard deviation of mean expression values. (B), 
(C), (D) and (E) display hxt1 expression by GFP fluorescence. The gfp gene was fused to and 
expressed by the hxt1 promoter in SG200 on selected artificial media and during in planta 
development as indicated.    

 

Since the Hxt1-homologs from U. fabae and A. muscari are specifically expressed 

during biotrophic development (Nehls et al., 1998; Voegele et al., 2001), we 

investigated expression of hxt1 in SG200 by quantitative real time PCR in strains 

grown in minimal media supplemented with high (1%) or low (0.07%) levels of 

glucose, 1% fructose, 1% xylose, or without any additional carbon source. In addition, 

we analyzed hxt1 expression in SG200 during plant infection at 0.5, 1, 2, 4, and 8 

dpi; non-infected plants were used as negative control. hxt1 was found to be 
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constitutively expressed, with slightly increased expression in media without sugar or 

supplemented with the pentose xylose (Figure 2.4-4A). Yet, hxt1 expression levels 

were similar during growth on glucose or fructose or during plant infection (Figure 

4A). In addition, a transcriptional fusion of the gfp gene to the hxt1 promoter revealed 

that hxt1 is highly expressed throughout all tested conditions (Figure 2.4-4B-E).  

 

Hxt1 and Srt1 Have Additive Effects on the Pathogenicity of U. maydis  

Srt1, the second U. maydis sugar transporter involved in pathogenic development, is 

specific for the uptake of sucrose, the main soluble carbon source in plants. Since 

Hxt1 transports glucose and fructose, both transporters compete for the same 

substrate, sucrose, either directly, or indirectly after its cleavage by invertases. To 

address the question whether both transporters have redundant functions, we 

generated the double deletion in strain SG200. In infections with SG200, 90% of the 

plants developed disease symptoms, compared to 60 % in SG200∆hxt infections 

and, 30 % in SG200∆srt1 infections (Figure 2.4-5A, B). The infection rate of the 

double deletion strains was further reduced: only 10 % of the infected plants 

developed marginal symptoms (Figure 2.4-5A, B).  

 

Figure 2.4-5: Hxt1 and Srt1 have additive affects during pathogenic development of U. 
maydis. (A) Disease rating of plants infected with the fungal wild type strain SG200 (WT), the 
transporter single deletion mutants SG200∆hxt1 and SG200∆srt1 as well as three independent 
double deletion mutants (SG200Δhxt1/∆srt1) at 7 dpi. Percentage of plants with different disease 
symptoms are color-coded (n = total number of plants analyzed; one of three independent 
experiments giving similar results is displayed). (B) Plant leaves infected with SG200 wild type, 
∆hxt1, ∆srt1 and ∆hxt1/∆srt1 strains. White arrows mark the developement of plant tumors, which 
are comparably small after infection with both single deletion mutants and not present after 
infection with double deletion mutants.  
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Hxt1 Senses Environmental Carbon Sources Independent from the Cytoplasmatic 

Glucose Repression Pathway  

To test whether deletion of hxt1 influences growth of U. maydis, we compared growth 

of SG200∆hxt1 to SG200 on media supplemented with different sugars as sole 

carbon source. Growth of U. maydis ∆hxt1-strains was reduced on glucose, fructose 

and mannose containing minimal media and also on media containing the 

disaccharide maltose, whereas growth on arabinose and sucrose was unaffected 

(Figure 2.4-6A). Interestingly, growth of SG200∆hxt1 on xylose and galactose was 

enhanced (Figure 2.4-6A). These results indicate that Hxt1 induces growth on its 

primary substrates, due to its uptake capability. However, in addition Hxt1 represses 

growth on its secondary substrates, indicating a sensor function, which influences the 

regulation of gene expression in response to environmental carbon sources.  

 

Figure 2.4-6: Growth of U. maydis hxt1 deletion mutants on different carbon sources and 
the influence of snf1. (A) Growth of SG200∆hxt1 on nitrate minimal media containing the 
indicated carbohydrate sources compared to the SG200 wild type strain. Green, red and black 
carbon source labels indicate reduced, enhanced and unaltered growth of SG200∆hxt1, 
respectively. (B) Growth of SG200∆snf1 and SG200∆hxt1/∆snf1 on nitrate minimal media 
containing the indicated carbohydrate sources compared to SG200 and SG200∆hxt1. Green 
carbon source labels indicate reduced growth of SG200∆hxt1/∆snf1 compared to SG200∆hxt1 
given in the grey box. Growth of SG200∆snf1 was comparable to SG200 under all conditions 
tested. For (A) and (B) cultures were grown in liquid complete medium, and spotted in a series of 
10-fold dilutions on the media indicated. 

 

In S. cerevisiae glucose is sensed by the glucose receptors Rgt2 and Snf3 (Ozcan et 

al., 1996; Vagnoli et al., 1998). In addition, a cytoplasmatic glucose repression 

pathway exists that operates via the transcription factor Mig1. Mig1 is inactivated by 

the kinase Snf1 under glucose-limiting conditions, which leads to a release of glucose 

repression (Ostling and Ronne, 1998; Treitel et al., 1998; Smith et al., 1999; 
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Papamichos-Chronakis et al., 2004; Ahuatzi et al., 2007). We were wondering if, 

similar to S. cerevisiae, glucose repression is released by Snf1 in U. maydis, and if 

the release of carbohydrate-mediated repression in hxt1 deletion strains is caused by 

Snf1.  

An U. maydis protein of 841 amino acids, highly similar to Snf1 of S. cerevisiae was 

identified by BLAST analysis (Um11293; 51% identity). Sequence comparison of 

various fungal Snf1 proteins revealed a high level of conservation in their N-terminal 

halfs (Figure 2.4-S1), which contain the AMP-activation sites of the kinases (Johnson 

et al., 1996; Cziferszky et al., 2003). In Snf1 of U. maydis this activation site is about 

94 % identical to the corresponding site of Snf1 in S. cerevisiae and also harbors 

Threonine207 (Figure 2.4-S1), phosphorylation of which is required for activation in S. 

cerevisiae  (McCartney and Schmidt, 2001). The C-terminal part of the protein is, with 

the exception of few conserved aa-stretches, highly divers. One of these conserved 

stretches contains Leucine564 (Figure 2.4-S1). The respective Leucine of the S. 

cerevisiae Snf1 was shown to be required for interaction with Snf4, the γ-subunit 

required for activation of the kinase complex (Jiang and Carlson, 1996; Momcilovic et 

al., 2008). Phylogenetic analysis revealed that the Snf1 proteins from U. maydis and 

from other basidiomycete fungi form a distinct group separated from Snf1 proteins of 

ascomycete fungi (Figure 2.4-S2). Snf1 of the basidiomycete Cryptococcus 

neoformans was recently described to influence growth on simple carbon sources 

(Figure 2.4-S2; Hu et al., 2008).  

We deleted the snf1 gene in SG200 and the respective SG200∆hxt1 deletion strain. 

The resulting strains were grown on different carbon sources and compared to the 

respective control strains (SG200, SG200∆hxt1, SG200∆snf1, SG200∆hxt1∆snf1). 

No difference in growth was observed on complete media and on minimal media 

containing 1% arabinose or 1% sucrose for any of the strains (Figure 2.4-6B). Also 

growth on 1% xylose or 1% galactose containing minimal media was not altered in 

snf1 deletion strains (Figure 2.4-6B). On media supplemented with 1% glucose, 1% 

fructose or 1% mannose, growth of SG200∆snf1 was comparable to that of SG200; 

however, growth of SG200∆hxt1∆snf1 was slightly reduced when compared to 

SG200∆hxt1 (Figure 2.4-6B). Snf1 seems not to be involved in the release of Hxt1-

dependent monosaccharide repression in U. maydis on secondary carbon sources. 

However, as deletion of snf1 reduces growth of SG200∆hxt1, the U. maydis Snf1 

kinase has an effect on the response towards primary carbon sources when Hxt1 is 

inactive.    
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Glucose Repression is Released in hxt1 Deletion Strains 

To investigate the potential function of Hxt1 in carbohydrate sensing, we performed 

DNA array expression analyses. The comparison of the expression profiles of SG200 

and SG200∆hxt1 grown in liquid minimal medium with 1% glucose revealed a total of 

165 differentially expressed genes, of which 109 (66%) were induced in SG200∆hxt1, 

and 56 (34%) were repressed (Figure 2.4-7 and Table 2.4-S2A). 

 

Figure 2.4-7: Hxt1 influences gene expression in response to different carbon sources. 
Gene expression changes in SG200 and SG200∆hxt1 in response to glucose and xylose. The 
height of each column indicates the number of up- and down-regulated genes in each 
comparison. Most of the classified genes are involved in metabolism and/or transport (blue; 
detailed FunCats are given in Table 2.4-S3). Unclassified and classified genes that do not belong 
to this group are indicated in grey and orange, respectively.  

 

Of genes with a functional annotation, nearly all could be classified within the 

functional categories (FunCats) “Metabolism” and/or “Cellular Transport” (Figure 2.4-

7). Enrichment analyses revealed significant alterations in the categories “Amino 

Acid-“, “C-compound-“, “Lipid/Fatty Acid-” and “Secondary Metabolism” as well as 

“Transported Compounds” (Table 2.4-S3), caused by the genes derepressed in 

SG200∆hxt1 (data not shown). Enhanced expression of genes involved in 

gluconeogenesis is typically regulated via glucose repression (reviewed by Ronne, 

1995). We found 5 genes involved in gluconeogenesis to be induced in SG200∆hxt1 

grown on glucose-containing media, arguing for a release of glucose repression 

(Table 2.4-S2A; alkohol dehydrogenase (um01984; 6.9-fold), acetaldehyde 

dehydrogenase (um02508; 5.6-fold), acetoacetyl-CoA synthetase (um05131; 2.6-

fold), phosphoenol pyruvate carboxykinase (um05130; 2.2-fold) and fructose 1,6 

bisphosphatase (um02703; 1.9-fold, below cut-off).  
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Among the 14 down-regulated genes in SG200∆hxt1 with functional annotation 

(Figure 2.4-7), we identified only one sugar transporter gene. The basal level of the 

sucrose transporter gene srt1 was about 3-fold decreased (Tabble 2.4-S2A). Of the 

19 sugar transporters genes present in the U. maydis genome, only 16 are 

represented on the U. maydis DNA array. One of the genes not present on the array 

is um02037, which encodes the only Hxt-similar transporter next to Hxt1 in U. maydis 

(Figure 2.4-2A). Real-time analysis revealed no significant alterations of um02037 

gene expression in hxt1 deletion strains (data not shown). Thus, we can exclude that 

the reduced growth of SG200∆hxt1 on hexoses is due to an hxt1-mediated down-

regulation of other transporter genes, as it has been described for Rgt2 and Snf3 in 

S. cerevisiae (Ozcan et al., 1996).  

 

Transcription Profiles of hxt1 Deletion Mutants are Similar on Glucose and Xylose 

Containing Media 

As Hxt1 seems to modulate catabolite-repression not only in response to glucose, but 

also in response to secondary carbon sources like xylose, deletion of hxt1 should 

abolish dramatic changes in gene expression after a shift from glucose to xylose. To 

test this hypothesis, we performed DNA-array expression analysis of SG200 and 

SG200∆hxt1 strains grown on 1% xylose and compared the expression profiles to 

their respective glucose-dependent profiles.  

Whereas the expression profile of SG200 changed dramatically after shifting the 

carbon source from glucose to xylose (377 differentially expressed genes), only 47 

genes were differentially expressed in SG200∆hxt1 (Figure 2.4-7, Table 2.4-S2C and 

S2D). Enrichment analysis of differentially expressed genes in SG200 after shifting 

the carbon source revealed significant changes within various FunCats (“Amino Acid-

“, “Lipid/Fatty Acid-“, “Carbon-“, “Secondary Metabolism”, “Glycolysis”, 

“Fermentation”, “Cellular Transport” as well as “Cellular Sensing and Response to 

External Stimuli”), in SG200∆hxt1 only the FunCats “Carbon Metabolism”, 

“Fermentation” and “Cellular Transport” were significantly affected (Table 2.4-S3).  

32 of 42 genes that are up-regulated in SG200∆hxt1 on xylose containing media 

were also induced by xylose in the SG200 (Figure 2.4-8, Table 2.4-S4). Three of 

these xylose-induced genes were coding for putative enzymes needed to convert 

xylose for catabolism via the pentose phosphate pathway (um11944, encoding a 

putative xylose reductase; um02150, encoding a putative xylitol dehydrogenase; 
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um12177, encoding a putative xylulokinase). Since all 3 genes are induced in both 

SG200 as well as SG200∆hxt1 during growth on xylose, their induction does not 

explain the enhanced growth rate of SG200∆hxt1 on xylose containing medium 

(Figure 2.4-8, Table 2.4-S4). This phenotype might be explained by the remaining 10 

xylose-induced genes, which are in addition Hxt1-repressed (Figure 2.4-8, Table 2.4-

S4). Interestingly, one of these genes encodes a probable monosaccharide 

transporter (um10072). Expression of um10072 is slightly increased (3-fold) in 

SG200, but strongly induced (14-fold) in SG200∆hxt1 on xylose. However, as 

Um10072 is not biochemical characterized yet, its function in xylose transporter 

remains speculative. 

 

Figure 2.4-8: Xylose-dependent genes that are 
repressed by Hxt1. Hierarchical clustering of 42 
induced genes (>2-fold) in SG200∆hxt1 grown on 
xylose compared to growth on glucose (column 4 in 
Figure 2.4-7). Colours represent expression levels 
for each gene, which are either above (red) or 
below (green) the mean expression level (black) in 
the indicated experiment, according to the dChip 
1.3 manual (http://biosun1.harvard.edu/complab/ 
dchip/manual.htm).   

 

 

 

 

 

 

 

 

 

 

Deletion of hxt1 Mimics Carbohydrate Starvation   

To identify genes, which are preferentially expressed in response to Hxt1, we were 

searching for genes differentially expressed in SG200∆hxt1 compared to SG200 on 

both glucose and xylose containing media (Table 2.4-S2A, S2B and S5). In total 36 

genes were found to be differentially expressed in a similar manner under both 

conditions (Figure 2.4-9, Table 2.4-S5). Interestingly, two of the 29 genes repressed 

by Hxt1 were coding for Prf1 (um02713; 2.7-fold on glucose and 8 fold on xylose) 

and the Magnaporthe grisea Con7-homolog (um02717; 5.2-fold on glucose and 8-

fold on xylose), two transcription factors important for the initiation of pathogenic 
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development (Figure 2.4-9, Table 2.4-S5; Hartmann et al., 1996; Odenbach et al., 

2007).  

As the observed de-repression of prf1 and con7 in SG200∆hxt1 indicates that Hxt1 

contributes in the initiation process of pathogenicity, a release of Hxt1 repression 

should be favoured by the starvation conditions on the plant surface. Therefore we 

examined the expression levels of the 36 strictly Hxt1-dependent genes on the plant 

surface and during infection (5; 9 and 13 dpi). About 80 % of the 36 genes, which 

were up-regulated (down-regulated) upon hxt1 deletion were also found to be up-

regulated (down-regulated) on the plant surface whereas expression was decreased 

(increased) after plant infection (Figure 2.4-9, Table 2.4-S5). These findings indicate 

that Hxt1-mediated sensing of the starvation conditions on the plant surface may 

influence mating and pathogenic development.    

   

Figure 2.4-9: Strictly Hxt1-repressed genes are expressed on the plant surface. Hierarchical 
clustering of gene expression in axenic culture (left) and during plant infection (right) displaying 
genes that are Hxt1-dependently expressed in both glucose and xylose containing media. Gene 
expression on the plant surface was investigated for strains FB1 (non-infectious; Banuett and 
Herskowitz, 1989) and SG200 (infectious; Kämper et al., 2006), respectively. Expression 
changes in SG200∆hxt1 compared to SG200 grown on glucose and xylose containing media, 
respectively, are at least 2-fold at both conditions. Colours represent expression levels for each 
gene, which are either above (red) or below (green) the mean expression level (black) in the 
indicated experiment, according to the dChip 1.3 manual (http://biosun1.harvard.edu/ 
complab/dchip/manual.htm). 
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2.4.3 Discussion  

Hxt1 Has a Dual Function as Monosaccharide Transporter and Sensor    

Glucose and fructose are the most important energy sources for most organisms as 

they are easy to metabolize via glycolysis. Uptake of these “primary” carbon sources 

is often preferred over the uptake of “secondary” carbon sources, which are more 

difficult to metabolize. Therefore, carbohydrate metabolism is tightly regulated. In U. 

maydis Hxt1 plays a central role within this regulatory circuit, not only by the transport 

of “primary” carbon sources, but also due to the transduction of carbohydrate signals.  

It is likely that Hxt1 transduces carbohydrate signals directly during interaction with its 

substrates, rather then indirectly after transport. The very high affinity of Hxt1 for 

glucose, fructose and mannose results in increased growth of SG200 on these 

sugars compared to SG200∆hxt1; the very low affinity for xylose and galactose, in 

contrast, triggers reduced growth of SG200. Especially the enhanced growth of hxt1 

deletion strains on xylose and galactose cannot be explained as a result of a 

cytoplasmatic sensing event subsequent to utilization. Because of its affinity for 

galactose and xylose, deletion of Hxt1 would reduce cytoplasmatic carbohydrat 

signals and therefore decrease growth on xylose and galactose, rather then 

increasing it, as observed in SG200∆hxt1. Thus, we have to assume that Hxt1 not 

only utilizes glucose, fructose, mannose and to a lesser extend galactose and xylose, 

but also triggers a response towards these sugars.  

In S. cerevisiae, Rgt2 and Snf3, two proteins with high similarities to Hxt1, trigger a 

signal cascade to adjust expression of the Hxt transporter genes pending on glucose 

availability via the transcriptional activator Rgt1. Both transporters have lost the ability 

to transport glucose; they harbor an elongated C-terminal tail involved in signal 

transduction (Ozcan et al., 1996; Vagnoli et al., 1998; Ozcan and Johnston, 1999). A 

similar function has also been shown for Hgt4 of C. albicans, which in addition binds 

galactose and triggers a subsequent transcriptional response (Brown et al., 2009). 

However, in U. maydis, both the glucose receptors haboring an elongated C-terminal 

tail as well as the homologs of the yeast co-repressors Mth1 and Std1 (Schmidt et al., 

1999) that interact with these C-termini, are absent. 

In addition to the glucose receptors, S. cerevisiae harbors a cytoplasmatic glucose 

repression pathway that operates through the kinase complex Hxk2/Snf1 and the 

repressor Mig1 (for review see Santangelo, 2006; Zaman et al., 2008; Gancedo, 

2008). Snf1 binds to and phosphorylates Mig1 under glucose-limiting conditions, 
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which in turn releases glucose repression (Ostling and Ronne, 1998; Treitel et al., 

1998; Smith et al., 1999; Papamichos-Chronakis et al., 2004; Ahuatzi et al., 2007). A 

similar glucose repression pathway is described for various Aspergilli, where the 

transcription factor CreA (homolog of Mig) represses genes in the presence of 

glucose that are necessary for growth on minor important carbon sources as xylose 

and galactose (Prathumpai et al., 2004; David et al., 2005). In the pathogenic fungi 

Cochliobulus carbonum, Fusarium oxysporum, Magnaporthe oryzae, Cryptococcus 

neoformans and Gibberella zea, deletion of snf1 leads to reduced growth on various 

sugars, suggesting that Snf1 is involved in the release of carbon repression (Tonukari 

et al., 2000; Ospina-Giraldo et al., 2003; Yi et al., 2008; Hu et al., 2008; Lee et al., 

2009).  

The U. maydis Snf1 was found to enhance growth on hexoses, but only when Hxt1 is 

inactive, suggesting an involvement in the release of glucose-repressed genes. Yet, 

the release of catabolite repression in response to secondary carbon sources is 

independent of Snf1. Thus, carbohydrate signaling in U. maydis is clearly different 

compared to S. cerevisiae. Snf1 does not play a central role in carbohydrate 

signaling, and neither yeast-like glucose receptors nor the interacting co-repressors 

Mth1 and Std1 exist in U. maydis.  

Interestingly, it was shown that the elongated C-terminus of the glucose sensor Rgt2 

is not required for glucose signaling in S. cerevisiae (Moriya and Johnston, 2004). 

The C-terminal tail only enhances signaling through interaction with Mth1 and Std1, 

which leads to subsequent degradation of both co-repressors (Moriya and Johnston, 

2004). Thus, the presences of a sugar transporter-like protein haboring an elongated 

C-terminal tail is not obligatory for membrane coupled glucose perception. The Hxt1-

homolog, Rco3 of N. crassa, was found to influence gene expression and growth in 

response to glucose without possessing a C-terminal extension (Madi et al., 1997). 

Since sugar uptake by Rco3 has not been demonstrated yet (Madi et al., 1997), no 

fungal member of the sugar transporter family has been described to expose two 

functions as transporter and sensor. However, a putative dual function cannot be 

excluded for the proteins most similar to Hxt1, Hxt1p of U. fabae and Mst1 of A. 

muscaria. Both transporters have only been characterized with respect to their 

uptake abilities in S. cerevisiae, but not to their deletion phenotypes in the 

homologous systems (Nehls et al., 1998; Voegele et al., 2001; Leandro et al., 2006).  

A dual function as transporter and sensor has been demonstrated for the human 

Na+/glucose symporter GLUT2 (Leturque et al., 2009). The glucose sensing ability of 
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GLUT2 was found to be dependent on the large, cytoplasmatically localized loop 

between helix 6 and 7, which was further shown to interact with the nuclear importin 

karyopherin alpha2 (Guillemain et al., 2000; Guillemain et al., 2002). Similar to 

GLUT2 of humans, Hxt1 of U. maydis functions as monosaccharide facilitator and at 

the same time influences carbohydrate dependent gene expression. It is likely that 

also in Hxt1 the cytoplasmatic loop between helix 6 and 7 is involved in transducing a 

carbohydrate signal. In conclusion, Hxt1 of U. maydis is the first fungal member of 

the sugar transporter family with a dual function in carbohydrate transport and 

signaling.   

  

Hxt1 Senses Starvation Conditions, Inducing Genes Involved in Mating and 

Pathogenic Development  

Hxt1 responds to various monosaccharides available during fungal develoment within 

a maize plant (sucrose-derived: glucose and fructose; cell wall-derived: glucose, 

xylose, galactose and mannose). Hxt1 activity promotes growth on “primary” carbon 

sources; however, it negatively influences growth on the “secondary” carbon sources 

xylose and galactose. Thus, the question arises why Hxt1-mediated repression is 

maintained even at conditions where it impairs fungal growth? Firstly, the different 

affinities of Hxt1 towards various monosaccharides enable a fine-tuning of gene 

expression depending on the environmental carbohydrate conditions. Secondly, 

Hxt1-mediated sensing of several plant-derived carbon sources ensures that strictly 

Hxt1-repressed genes are only expressed when no sugar is available, like for 

example on the plant surface.   

Interestingly, we identified two transcription factors, Prf1, and a protein with 

similarities to the M. grisea Con7, as repressed by Hxt1 independent from the 

provided carbon source. The zinc-finger transcription factor Con7 was shown to be 

essential for the induction of appressoria formation in M. grisea (Shi et al., 1998; 

Odenbach et al., 2007). Expression analysis of germinating spores on the plant 

surface has revealed that Con7 is required for induction of genes involved in the 

rearrangement of fungal cell walls (Odenbach et al., 2007). In U. maydis hxt1 deletion 

mutants, the U. maydis con7 homolog is induced together with genes involved in 

remodeling of fungal chitin and glucan cell walls (Table 2.4-S6). Furthermore, 3 of 15 

by Müller et al. (2008) identified genes that are coding for secreted repetitive proteins 

were highly induced in hxt1 deletion strains (Table 2.4-S6). These proteins are 

thought to localize at the surface of fungal cell walls to mediate cell adhesion for 
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example to the plant surface (Müller et al., 2008). Thus, the starvation conditions 

mimicked in hxt1 deletion strains seem to promote U. maydis infection, by preparing 

the fungal cell surface for the penetration process and subsequent in planta 

development.   

The U. maydis pheromon response factor Prf1 not only orchestrates pheromone-

induced mating and the formation of the b-dependent infectious filament in U. 

maydis, but also integrates environmental signals into these developmental 

processes (Hartmann et al., 1996; Hartmann et al., 1999). In accordance with the 

findings by Hartmann et al. (1999) we could show that prf1 expression in U. maydis 

wild type cells is slightly increased on glucose compared to xylose containing media. 

prf1 induction is accompanied with the induction of the pheromone and pheromone 

receptor genes mfa1 and pra1, which were shown to be prf1-dependently induced 

(Table 2.4-S7A and S7B; Hartmann et al., 1996). However, the expression levels of 

prf1, mfa1, pra1, and of genes involved in pheromone signaling like gpa3, bpp1 and 

kpp6, as well as of several pheromone-dependent genes, increased significantly 

when hxt1 is deleted (Table 2.4-S7A and S7B; Regenfelder et al., 1997; Müller et al., 

2004; Brachmann et al., 2003). In addition, we observed an induction of the two 

pheromone-dependent transcription factor genes, ncp1 and rbf1 (Table 2.4-S7A and 

S7B; Hartmann et al., 1999; Zarnack et al., 2008). Ncp1 was shown to modulate 

Prf1-mediated gene expression in response to environmental carbon sources 

(Hartmann et al., 1999), and Rbf1 was described as a central regulator of pathogenic 

development (Scherer et al., 2006). 

Our findings indicate that Hxt1 of U. maydis negatively influences the initiation of 

pathogenic development as a monosaccharide sensor. It is well possible that this 

negative response is released during the starvation conditions on the plant surface, 

where no substrate of Hxt1 is available to trigger a signaling event. Thus starvation 

conditions support the initiation of mating and plant infection by rendering Hxt1 

inactive. Deletion of hxt1 may mimic starvation conditions triggering, prf1 expression 

to induce mating and pathogenicity, and con7 expression to induce appressoria 

formation and prepare the fungal cell surface for in planta development.  
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Hxt1 Supports Biotrophic Growth most likely by Utilizing Hexoses Derived from Plant 

Sucrose   

On the one hand, deletion of hxt1 leads to an induction of genes that positively 

influence fungal pathogenicity, on the other hand it reduces fungal virulence. This 

contradiction is explained by the dual function of Hxt1. As discussed, Hxt1-mediated 

sensing is expected to be most important on the plant surface, where it is not 

activated. Under such carbohydrate-limiting conditions, also the transport function of 

Hxt1 is inactive. Since deletion of hxt1 mimics these conditions, the deletion does not 

influence the infection process dramatically.  

The situation during biotrophic growth within carbohydrate-rich plant tissues is 

different. Abolished carbohydrate sensing by Hxt1 does not seem to be responsible 

for reduced fungal virulence of hxt1 deletion mutants, indicated by the induced 

expression of several pathogenicity factors in axenic culture. Moreover, none of the 

genes down-regulated in SG200∆hxt1 could be related to the growth reduction on 

glucose containing media, which was observed for the mutant strains. Thus, it 

appears likely that reduced growth of U. maydis on glucose observed in hxt1 deletion 

strains is caused by the lacking glucose transport activity of Hxt1. Since sucrose and, 

therefore, also its cleavage product glucose is a prominent carbon source in planta, 

reduced glucose uptake should result in reduced fungal virulence. However, an 

additional impact of Hxt1-mediated signaling on virulence of U. maydis cannot be 

excluded.  

Nevertheless, the extremely high glucose affinity of Hxt1 (KM of 6.6 µM) enables U. 

maydis to compete with the most affine plant transporters for glucose utilization. All 

plant hexose transporters characterized so far (STPs) with sink tissue-specific 

expression have KM values ranging between 10 and 100 µM (Büttner, 2007). 

Moreover, the glucose affinity of Hxt1 was found to be 50- to 70-fold higher then 

those of the homologous transporters of U. fabae and A. muscaria, both of which also 

compete with the plant transporters for carbohydrates within their host plants (Nehls 

et al., 1998; Voegele et al., 2001).  

The reduction in virulence of hxt1 deletion mutants was less severe than the 

reduction observed for the previously described deletion mutants of the sucrose 

transporter gene srt1. Thus, sucrose uptake by Srt1 seems more important during 

pathogenic development than hexose uptake by Hxt1. Moreover, the virulence of 

double deletion mutants of both Hxt1 and Srt1 was further reduced compared to 
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single deletion mutants. These findings place Hxt1 and Srt1 in two partially redundant 

carbon uptake systems promoting biotrophic development.  

Sucrose was discussed several times to be the main carbon source for plant 

pathogens. Yet, the uptake of sucrose-derived hexoses, which are produced by 

fungus or plant invertases, was thought to be most important for pathogenicity 

(Fotopoulos et al., 2003; Voegele et al., 2006; Jobic et al., 2007; Schaarschmidt et 

al., 2007; Horst et al., 2008; Kocal et al., 2008). For Ustilago maydis, the direct 

uptake of sucrose was demonstrated to be essential for biotrophic development (see 

2.3). Here we report that also the uptake of sucrose-derived hexoses mediated by 

Hxt1 is important for successful biotrophic development of U. maydis. In contrast to 

Srt1, Hxt1 is dependent on prior invertase-driven sucrose hydrolysis to make use of 

the plants sucrose pool. Horst et al. (2008) have shown that both expression of the U. 

maydis invertase gene suc2 as well as the maize cell wall invertase incw2 is induced 

during the infection process. Furthermore, they demonstrated that soluble as well as 

cell wall bound invertase activity is increased during U. maydis infection (Horst et al., 

2008). Thus, the question arises if Suc2, the only potential secreted fungal invertase 

present in U. maydis, acts in concert with Hxt1 or if increased plant cell wall invertase 

activity is sufficient to supply Hxt1 with substrate. Since maize plants infected with 

suc2 deletion mutants develop similar disease symptoms as plants infected with U. 

maydis wild type strains (R. Wahl and J. Kämper, unpublished data), it appears likely 

that plant cell wall invertases as Incw2 function to supply Hxt1 with hexoses during 

pathogenic development of U. maydis.  

U. maydis seems to be perfectly suited to compete for plant-derived carbon sources, 

not only with the high affinity sucrose transporter Srt1, but in addition by use of the 

high affinity hexose tranporter Hxt1. This parallel, functionally redundant carbon 

uptake system of U. maydis ensures the most effective carbon uptake for the fungus 

during biotrophic development. 
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2.4.4 Experimental Procedures 

Strains and Growth Conditions  

Escherichia coli strain TOP10 (Invitrogen) was used for cloning purposes. For plant 

infections, Ustilago maydis cells were grown at 28°C in YEPSL (Brachmann et al., 

2001). Plant infections with U. maydis were performed as described (Gillissen et al., 

1992). The U. maydis strain used in this study is SG200, a haploid, solopathogenic 

strain that can infect maize plants without a mating partner (Kämper et al., 2006). For 

RNA extraction, U. maydis was grown in glutamine minimal medium, which is based 

on the minimal medium described by Holliday (Holliday, 1974) with 30 mM L-

glutamine as nitrogen source. Phenotypic analyses of U. maydis deletion mutants 

were performed on glutamine or nitrate minimal medium containing agar plates 

supplemented with the respective carbon source (see 2.4.2 Results). The S. 

cerevisiae strain used for analyses of Hxt1 was EBY.VW4000 (Wieczorke et al., 

1999). EBY.VW4000 was grown in minimal medium (0.67 % yeast nitrogen base w/o 

amino acids plus required amino acids depending on the strain) containing 2% 

maltose at 29 °C. Complementation studies in EBY.VW4000 were carried out on 

minimal medium containing the respective hexose concentrations (see 2.4.2 

Results). 

 

DNA and RNA Procedures  

Molecular methods followed described protocols (Sambrook et al., 1989). DNA 

isolation from U. maydis and transformation procedures were performed as described 

(Schulz et al., 1990). Homologous integration of constructs was verified by gel blot 

analyses. Transformation of S. cerevisiae followed the protocol given in Gietz et al. 

(1992). Total RNA from U. maydis cells grown in axenic culture was extracted using 

Trizol reagent (Invitrogen) according to the manufacturer’s instructions. RNA samples 

to be used for real-time RT-PCR and DNA array expression analyses were further 

column purified (RNeasy; Qiagen) and the quality checked using a Bioanalyzer with 

an RNA 6000 Nano LabChip kit (Agilent).  

 

Deletion of hxt1 and snf1 

The deletions of hxt1 and snf1 were performed by a PCR-based approach (Kämper, 

2004). For single deletion of hxt1 and snf1 in SG200 the respective open reading 
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frame (ORF) was replaced by the hygromycin resistance cassette. Double deletion 

mutants of hxt1 and snf1 were generated in SG200∆hxt1, replacing the snf1 ORF 

with the CloneNat resitance cassette. Double deletion mutants of hxt1 and srt1 were 

generated in SG200∆srt1 (see 2.3), replacing the hxt1 ORF with the CloneNat 

resitance cassette. Primer sequences were 5023_LB1 (5'-GTG AAC AAC CGT GGT 

CTG CTC ACC-3'), 5023_LB2 (5'-GTT GGC CAT CTA GGC CGC CAT CTT GAA 

AGA GAG AGA GAG C-3'), 5023_RB1 (5'-CAC GGC CTG AGT GGC CTG CCG 

TAT GGC AAT GCT TTC TAC C-3') and 5023_RB2 (5'-TTT GCT CAG CGT CGA 

TTA TTC ACG-3') for the 5'- and 3'-boarders of hxt1 and 11293_LB1 (5'-TTT TGA 

GTT GGG TGG GAG CTC ACG-3'), um11293_LB2 (5'-GTT GGC CAT CTA GGC 

CGG CAG GCA CAG AAA ATC GCT ATG G-3'), um11293_RB1 (5'-GTT GGC CTG 

AGT GGC CTC GGT CTC GTA CCA AGG AGC TTC G-3') and um11293_RB2 (5'-

TAG AGC GAG CTG ACG ATG TTG GGC-3') for the 5'- and 3'-boarders of snf1. In 

the U. maydis strain carrying the triple gfp gene fused to the hxt1 promotor, the hxt1 

ORF was replaced with a triple GFP cassette containing the hygromycin resistance 

gene using the same strategy as for the generation of simple deletion strains 

(Kämper, 2004; Brachmann et al., 2004). Primer sequences were like indicated 

above with the exception of 5023_LB2.gfp (5'-GAT GGC CGC GTT GGC CGC CAT 

CTT GAA AGA GAG AGA GAG C-3') carrying a SfiI site compatible to the fusion 

cassette.   

  

Cloning of hxt1 and Expression in Yeast   

The hxt1 open reading frame (ORF) was amplified from U. maydis genomic DNA 

using the primers 5023_EcoRI_for (5'-CAG AAT TCA AAA ATG GCT GGA GGT 

GCT GTT GCC GAT-3') and 5023_EcoRI_rev (5'-CAG AAT TCG CAG AGC TGC 

TTA GTA CTT TTT CT-3').  DNA was sequenced and cloned into the yeast/E. coli 

shuttle vector NEV-E (Sauer and Stolz, 1994) and the resulting plasmid was used for 

yeast transformation into EBY.VW4000.  

 

Transport Studies with Radiolabeled Substrates  

Yeast cells were grown to an A600 nm of 1.0, harvested, washed twice with water and 

re-suspended in buffer to an A600 nm of 10.0. If not otherwise indicated, uptake 

experiments were performed in 50-mM Na-phosphate buffer pH 5.0 with an initial 

substrate concentration of 1-mM 14C-labeled glucose. Cells were shaken in a rotary 
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shaker at 29°C and transport tests were started by adding labeled substrate. 

Samples were withdrawn at given intervals, filtered on nitrocellulose filters (0.8 µm 

pore size) and washed with an excess of distilled H2O. Incorporation of radioactivity 

was determined by scintillation counting. Competition analyses were performed with 

0.1-mM 14C-glucose in the presence of 10-mM competitor (100-fold excess). For 

inhibitor analyses CCCP (carbonylcyanide m-chlorophenylhydrazone), DNP (2,4-

dinitrophenol) or PCMBS (p-chloromercuribencene sulfonate) were used at final 

concentrations of 50 µM. 

 

Light Microscopy  

Light microscopic analyses were performed using a Zeiss Axioplan 2 microscope. 

Photomicrographs were obtained with an Axiocam HrM camera, and the images 

were processed with Axiovision (Zeiss) and Photoshop (Adobe). Chlorazole Black E 

staining of fungal cells in planta was performed as described (Brachmann et al., 

2003).   

 

Quantitative Real Time PCR Analysis 

To analyze hxt1 expression on different carbon sources, SG200 was grown in 

glutamine minimal media supplemented with the indicated amount of the respective 

carbon source to an OD600 of 1.0 for 6 h. Pre-cultures were grown overnight in 

glutamine minimal medium containing 1% of glucose. RNA samples were frozen in 

liquid nitrogen for two independently conducted replicates. RNA of maize plants 

infected with SG200 was prepared as described (Doehlemann et al., 2008a). 

Samples were taken 0.5, 1, 2, 4 and 8 dpi. For cDNA synthesis, the SuperScript III 

first-strand synthesis SuperMix assay (Invitrogen) was used on 1 µg of total RNA. 

qRT-PCR was performed on a Bio-Rad iCycler using the Platinum SYBR Green 

qPCR SuperMix-UDG (Invitrogen). The U. maydis actin (um11232) and eIF2B 

(um04869) genes were used as references. Primer sequences for eIF2B, actin and 

srt1 were described by Wahl et al. 2009. Primer sequences were 5023_rt_for (5'- 

CTC ATT GTT GCC GTT GTC GGT ACC -3') and 5023_rt_rev (5'-AAA CCG GCA 

ATG TAG ATG CAG ACG-3') for hxt1. 
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DNA Microarray Expression Analyses   

To analyze expression changes of SG200 and SG200∆hxt1 both strains were grown 

in glutamine minimal array media supplemented with 1% glucose or 1 %xylose to an 

OD600 of 1.0 for 6 h, respectively (Scherer et al., 2006). Pre-cultures were grown 

overnight in glutamine minimal medium containing 1% of glucose. RNA samples 

were frozen in liquid nitrogen for two independently conducted replicates. Isolation 

and processing of RNA from fungal cells grown in axenic culture, on the plant surface 

and in tumor material was described previously (Eichhorn et al., 2006; Doehlemann 

et al., 2008b; Kämper et al., 2006). Affymetrix Gene chipR Ustilago genome arrays 

were conducted using the following standard Affymetrix protocols (staining: 

EukGe2V4 protocol on GeneChip Fluidics Station 400; scanning on Affymetrix 

GSC3000). Expression data were submitted to GeneExpressionOmnibus 

(http://www.ncbi.nlm.nih.gov/geo/), Accession GSE16634. Raw expression data were 

normalized using Affymetrix Micro Array Suite 5.1. Data analysis was performed 

using the R bioconductor package (http://www.bioconductor.org/) and dChip1.3 

(http://biosun1.harvard.edu/complab/dchip/), as described in Eichhorn et al. (2006). 

We considered changes >2-fold with a difference between expression values >50 

and a corrected p-value <0.01 as significant. For genes displayed by more then one 

probe set, the probe set giving the strongest signal intensity was chosen. Functional 

enrichment analyses were performed with the functional distribution tool integrated in 

the Ustilago maydis genome database (http://mips.gsf.de/cgi-bin/proj/funcatDB/). 

Enrichment was considered to be significant with a p-Value below 0.01.  

  

Phylogenetic Analysis  

For comparative phylogenetic analyses of Hxt1, the amino acid sequence was 

aligned with 18 U. maydis sugar transporter sequences (see 2.3), 17 S. cerevisiae 

sugar transporter sequences and 6 closely related sugar transporter genes from 

other fungal species obtained by BLASTP analysis (Figure 2.4-2A). U. maydis and S. 

cerevisiae ammonium transporter sequences served as out-group (Figure 2.4-2A). 

For comparative phylogenetic analyses of Snf1, the amino acid sequence was 

aligned with Sequences were aligned with 24 fungal, 5 plant and 4 animal derived 

Snf1 sequences obtained by BLASTP. An U. maydis Snf1-like kinase sequence 

served as outgroup. Alignments were performed using the global alignment G-INS-I 

of MAFFT version 6 (http://align.bmr.kyushu-u.ac.jp/mafft/online/server/). The 

phylogenetic trees were calculated using the minimum linkage clustering method for 



Dissertation   2. Results  

109 

Hxt1 and the Neighbour Joining method for Snf1 (for the latter 1000 bootstraps were 

performed). TreeIllustrator 1.0.1 was used to visualize the Nexus formats of the 

MAFFT results.  
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2.4.5 Supplementary Information  

A file containing the Supplementary Material of section 2.4 is available on data-CD 

deposited in section 5 of this thesis. The file includes Figures 2.4-S1 to S2 and 

Tables 2.4-S1 and S7.  

  

Figure 2.4-S1: Comparative alignment of Snf1 proteins from various fungi. 

Figure 2.4-S2: Comparative phylogenetic analysis of U. maydis Snf1.  

Table 2.4-S1: Accession numbers, gene- and species names of the sugar transport 

proteins used to calculate the phylogenetic tree shown in Figure 2.4-2A.  

Table 2.4-S2A: U. maydis genes that are Hxt1-dependently expressed on glucose.  

Table 2.4-S2B: U. maydis genes that are Hxt1-dependently expressed on xylose.   

Table 2.4-S2C: U. maydis genes that are carbon source-dependently expressed in 

SG200.  

Table 2.4-S2D: U. maydis genes that are carbon source-dependently expressed in 

SG200∆hxt1. 

Table 2.4-S3: Enrichment analysis of fuctional categories. 

Table 2.4-S4: Xylose-induced genes and xylose-induced genes repressed by Hxt1. 

Table 2.4-S5: Most genes (de)-repressed in SG200∆hxt1 are also (de)-repressed on 

the plant surface. 

Table 2.4-S6: con7 and genes involved in remodeling the fungal cell wall are induced 

in SG200∆hxt1. 

Table 2.4-S7A: Pheromone-induced genes differentially expressed in hxt1 deletion 

mutants.      

Table 2.4-S7B: prf1 and genes that are connected to the pheromone pathway are 

induced in SG200∆hxt1.    
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3. Research Perspectives 
This discussion will focus on the contribution of the results given in sections 2.1 - 2.4 

to the broader context of “mechanisms of compatibility”, and will provide a general 

outlook for the respective research projects.  

3.1 b-mediated Transcriptome Adaptation during Biotrophic 

Development 
The importance of the b heterodimer to initiate pathogenicity of U. maydis has been 

studied intensively (Kämper et al., 1995; Romeis et al., 2000; Brachmann et al., 

2003). Time course expression analysis after b induction in axenic culture revealed 

about 350 directly or indirectly b-regulated genes and led to the identification of 

several pathogenicity factors, including Clp1 and the transcription factors Rbf1 and 

Biz1 (Scherer et al., 2006; Flor-Parra et al., 2006; M. Scherer and J. Kämper, 

unpublished data). However, all of these factors were shown to be required before, 

during and/or immediately after plant penetration. Only a minor overlap between b-

dependently regulated genes in axenic culture and in planta-expressed genes was 

observed (M. Vranes and J. Kämper, personal communication), arguing that b-

mediated transcriptional regulation is altered within the plant. I was able to show that 

b-mediated transcription in U. maydis is not only essential for the initiation, but also 

for the maintenance of pathogenic development (section 2.1). Therefore, I believe 

that the b-mediated transcription profile is adapted to the different stages of 

pathogenic development.  

The b-dependent adaption of the transcriptome is most likely triggered by sensing 

plant-derived environmental cues. Hydrophobic surfaces and cutin-monomers for 

example were reported to trigger the formation of appressoria on the plant surface 

(Mendoza-Mendoza et al., 2009). Moreover, under starvation conditions the 

monosaccharide transporter and receptor Hxt1 positively influences pheromone 

signaling and the expression of transcription factors like prf1 and rbf1, which are 

necessary for pathogenic development (section 2.4). However, plant-derived signals 

that modify the b-dependent transcription cascade during in planta proliferation of U. 

maydis have not been discovered yet. As expression of many secreted effectors is 

regulated by b only during biotrophic development, their expression is most likely 

dependent on environmental cues. Suggesting an environment-dependent fine-tuning 

of the abilities to manipulate the host plant. Several of these secreted proteins were 

found to influence pathogenic development of U. maydis (Kämper et al., 2006; 

Doehlemann et al., 2009); however, a specific function could not be addressed so far. 
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In section 2.2 it is reported that upon sensing of U. maydis on the plant surface, basic 

defense responses are induced by the host, which are suppressed after penetration 

by U. maydis (Doehlemann et al., 2008a). Similar to their function in other plant 

pathogens, it is likely that the observed suppression of basal plant defense 

responses is actively mediated by small secreted effector proteins of U. maydis.    

The importance of the b-heterodimer during fungal proliferation and for the 

expression of secreted proteins in planta reveals new perspectives to analyze the 

regulation of pathogenic development. We identified three genes coding for putative 

transcription factors as b dependently expressed during biotrophic growth (Section 

2.1). Since these transcription factors are exclusively expressed within the plant, they 

most likely integrate additional environmental cues into the b-dependent regulatory 

cascade. The characterization of such b-dependent transcription factors enables not 

only to discover the environmental cues that modify the b-dependent transcriptome, 

but also to investigate the regulation of secreted effectors. By examining the b-

dependent transcription cascade in planta, it should be possible to identify secreted 

proteins that are regulated in a similar manner, which might therefore share similar 

functions. To functionally classify these small secreted effector proteins is the major 

future challange (see section 1.3.2). The possibility to analyze the expression profiles 

of the U. maydis effectors by dissecting the b-mediated transcription cascade is a 

valuable starting point to identify common motives.  

Besides the regulatory characterization of secreted proteins, the b-heterodimer also 

paves the way for the investigation of non-secreted, strictly in planta expressed U. 

maydis genes, like srt1 and suc2. Both genes are expressed only after plant 

penetration, and their expression pattern was found to be similar (section  2.3; Horst 

et al., 2008) Since sucrose is the substrate of both gene products, one can assume a 

common regulatory circuit. Interestingly, both genes are down-regulated when the b 

heterodimer is inactive in planta (see section 2.1; below cut-off, suc2 -1.9-fold and 

srt1 -1.6-fold). It is well feasible that one of the transcription factors down-regulated 

after b inactivation accounts for the down-regulation of srt1 and suc2 in planta. In 

conclusion, the investigation of b-dependent regulation allows to dissect the specific 

molecular pathways and processes, which are restricted to in planta development 

and were previously difficult to access.   
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3.2 Fungal Sugar Transporters and Their Contribution to Feed U. 
maydis and to Reprogram the Host Metabolism  
In general, one could imagine two main strategies a pathogen might use to access 

plant-derived carbon sources during phytopathogenic development. One possibility is 

the degradation of carbon backbones of plant cell walls and subsequent uptake of 

hexoses and/or pentoses by the pathogen. The other strategy would be to nourish on 

the plants primary metabolism by either metabolizing the plants photosynthesis 

products or the plants transport and storage carbohydrates.   

The first strategy is unlikely to play a major role within the Ustilago maydis/maize 

pathosystem. Maize cell walls consist mainly of cellulose and arabinoxylan, which are 

composed of glucose and xylose backbones respectively (Carpita, 1996; Carpita et 

al., 2001; Abedon et al., 2006). Thus, degradation of both cell wall structures to the 

respective monomers would be a prerequisite for U. maydis to feed on cell wall 

derived carbon sources. However, Doehlemann et al. (2008) reported that U. maydis 

is poorly equipped with plant cell wall degrading enzymes. In addition, U. maydis 

lacks the enzymes cellobiohydrolase and β-xylosidase, which are both required for 

the complete degradation of maize cell wall structures into the monomers glucose 

and xylose (Doehlemann et al., 2008b). Therefore, it appears unlikely that U. maydis 

feeds on plant cell wall products, a strategy often used by necrotrophic fungi, which 

possess numerous cell wall degrading enzymes to dissolve the plant cells.  

For biotrophic fungi like U. maydis it is more effective to nourish on the hosts primary 

metabolism to access its carbon sources; most likely by interfering with the carbon 

transport system of the plant. This hypothesis is supported by several findings of this 

work and of others. Firstly, U. maydis prefers to infect young meristematic sink tissue 

that is not yet photosynthetically active (Wenzler and Meins, 1987). Secondly, U. 

maydis infected tissues retain sink characteristics and do not differentiate into 

photosynthetic active source tissue (2.2;  (Horst et al., 2008; Doehlemann et al., 

2008a). Thirdly, carbon export from healthy leaves is increased after infection, while it 

was found to be reduced in U. maydis infected tissues (Billett and Burnett, 1978). 

Fourthly, carbon supply of U. maydis infected sink tissue is mediated via sucrose 

import, indicated by an increased expression of transcripts related to sucrose 

degradation, and by increased levels of free hexoses derived from sucrose cleavage 

(2.2; Horst et al., 2008; Doehlemann et al., 2008a). In conlusion, the uptake of 

sucrose and its cleavage products appears to be essential for pathogenic 

development of U. maydis (2.3 and 2.4).   
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The sink characteristics of the infected plant tissue apparently support the biotrophic 

lifestyle of U. maydis. Pathogen induced sink tissues are typically induced by 

increased plant and/or pathogen derived invertase activities, leading to higher hexose 

to sucrose ratios, a subsequent repression of photosynthesis and the induction of 

defense related genes (Kocal et al., 2008; Roitsch et al., 2003; Rolland et al., 2006; 

Voegele et al., 2006; Horst et al., 2008). The preference of U. maydis to infect young 

meristematic tissues, which are still in a sink state (Wenzler and Meins, 1987) would 

suggest that no secreted fungal invertases are required to promote the induction of a 

sink. This hypothesis is supported by the finding that deletion of suc2, the only gene 

encoding a secreted invertase, has no impact on pathogenic development of U. 

maydis (data not shown).  

U. maydis rather relies on sugar transporters like Srt1 and Hxt1 to maintain sink 

character of the infected tissue. By their high substrate affinities these two 

transporters have the potential to transform the growing hyphae into a strong fungal 

sink in planta, maintaining sucrose import into infected areas. This constant sucrose 

import should lead to plant cell wall invertase activity, and high levels of free hexoses, 

which trigger suppression of photosynthesis, as described previously (Kocal et al., 

2008; Roitsch et al., 2003; Rolland et al., 2006; Voegele et al., 2006; Horst et al., 

2008). Therefore, these two transporters seem to promote fungal growth by providing 

enough energy for pathogenic development, and by redirecting the host metabolism 

to favor U. maydis infection. Yet, we cannot exclude that in addition to transport of 

carbohydrates other functions of Srt1 and Hxt1, like for example carbohydrate 

perception influence pathogenic development of U. maydis.  

The following outlook will provide ideas, how to investigate the contribution of Srt1 

and Hxt1 towards successful biotrophic development of U. maydis in more detail. To 

analyze substrate specificity and function of Srt1 and Hxt1 during biotrophic growth, 

their respective genes should be replaced with genes of well-characterized 

transporters. The complementation of Srt1 by different plant transporters, exhibiting 

different affinities towards sucrose, might verify if its extreme high substrate affinity 

renders Srt1 a virulence factor.  

By complementing Hxt1 with different yeast transporters it is possible to separate its 

transport and its sensing function. Its transport function can be investigated by 

complementation with Hxt1 of S. cerevisiae, a strict glucose transporter; whereas its 

sensor function can be investigated by complementation with Rgt2 of S. cerevisiae 

(or its derivate with truncated C-terminal tail; Moriya and Johnston, 2004), a strict 
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glucose sensor. In addition it might be possible to separate sensing and transport 

function of Hxt1 by directed mutation of the arginine at amino acid position 164 to 

lysine. Similar mutations at orthologous positions in Rgt2 and Snf3 transform the 

proteins to permanent sensors (Ozcan et al., 1996). As the corresponding arginine is 

conserved in all known sugar transporters its mutation is likely to also interfere with 

sugar transport (Ozcan et al., 1996). In accordance the mutation of arginine 164 to 

lysine in Hxt1 might render it a permanent glucose sensor without transport ability. 

Determining which features of Srt1 and Hxt1 play a major role during biotrophic 

development will clarify the importance of their substrates for fungal growth in planta.   

To understand the contribution of fungal enzymes in intra- and/or extracellular 

sucrose cleavage during pathogenic development, alternative sucrose-degrading 

enzymes have to be investigated in more detail. In addition to Suc2, U. maydis 

harbors a potential alpha glucosidase (Um02740), which is predicted as secreted. 

However, unlike suc2, um02740 expression in planta is below the detection limit of 

the microarrays, arguing for a minor role in extra cellular sucrose degradation (DNA 

array data not shown). Thus, if extracellular sucrose cleavage is important for 

biotrophic development of U. maydis, it is most probably performed by plant-derived 

invertases, such as incw2 of maize (Horst et al., 2008). Furthermore, U. maydis 

harbors two cytoplasmatically localized alpha-glucosidases (Um01943, Um03692) 

and a sucrose-6-phosphate hydrolase (Um03605), likely to be involved in sucrose 

degradation after uptake by Srt1. At least multiple deletion mutants of combinations 

of invertases and alpha-glucosidases should disrupt intracellular sucrose cleavage 

resulting in similar effects on pathogenicity as deletion of srt1.  

Furthermore, the temporal and spatial expression of Hxt1 and Srt1 has to be 

analyzed. Localization of the respective proteins by fusion to GFP, should determine 

if the proteins are expressed at a specific time, in specific cells, and in specific plant 

tissues. Of particular interest is to analyze the local response of plant cells to an U. 

maydis infection. A central question is how different plant tissues respond towards 

strains altered in their ability to take up sucrose and glucose. Previously, such an 

approach has been performed via expression analysis of infected laser-

microdissected plant tissues (Tang et al., 2006). Another focus will be the 

identification of pathogen induced plant sugar transporters that are either involved in 

local nutrient supply of the fungus or in local depletion of carbon sources to restrict 

fungal growth. Two potential candidate genes of maize coding for putative homologs 

of the Arabidopsis thaliana monosaccharide transporter STP4 have already been 

identified to be up-regulated upon U. maydis infection (see section 2.2; Table 2.2-S2; 
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ZmAffx.7.1.S1_at; Zm.18239.1.S1_at). STP4 is induced in response to elicitor-

treatment and infection with Erisyphe cichoracearum (Fotopoulos et al., 2003). The 

pathogen-dependent expression of these STP4-like plant transporters points towards 

their possible function, either in starving the pathogen or supplying it with 

carbohydrates.  

Plant transporters that are induced to deplete carbon availability during pathogenic 

interactions are interesting targets to develop plants that are more resistant towards 

pathogen attacks. Even better suited for the production of resistant plants is the U. 

maydis transporter Srt1. Its very high sucrose affinity is discussed to outcompete the 

plant sucrose transporters during U. maydis infection. Plants over-expressing the 

fungal srt1 gene in turn should be capable to reduce the carbohydrate availability in 

the plant/fungus interface to a higher extent. Thus, Srt1 might be an interesting target 

to enhance plant resistance towards pathogens without introducing harmful and toxic 

compounds that usually kill the pathogen and might have unpredictable side effects.  
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