Aus der Klinik für Innere Medizin
Schwerpunkt Gastroenterologie, Endokrinologie und Stoffwechsel
Direktor: Prof. Dr. Th. M. Gress

des Fachbereiches Medizin der Philipps-Universität Marburg

Untersuchung zur Funktion der regulatorischen Untereinheiten p50α, p55α und p85α
der Phosphoinositid-3-Kinase in der beta-Zell-Linie INS-1E

Inaugural-Dissertation zur Erlangung des Doktorgrades
der gesamten Humanmedizin
dem Fachbereich Medizin der Philipps-Universität Marburg vorgelegt

von
Philipp Niebel
aus Heidelberg

Marburg 2008
meiner Familie gewidmet
Inhaltsverzeichnis

1. Einleitung

1.1 Phosphoinositide, Substrate der PI3-Kinasen .. 1
1.2 Klassen der PI3-Kinasen .. 4
1.3 Eigenschaften der PI3-Kinasen der Klasse IA .. 7
 1.3.1 Aufbau... 7
 1.3.2 Aktivierung... 9
 1.3.3 Umsetzung von Phosphoinositiden... 12
1.4 Abhängige Signalwege der PI3-Kinase und zelluläre Funktionen........ 12
 1.4.1 Zelluläre Funktionen.. 12
 1.4.2 Proteinkinase B... 13
 1.4.3 Glukosestoffwechsel... 14
 1.4.4 Zellproliferation und Wachstum... 15
 1.4.5 Apoptose.. 16
1.5 Fragestellungen... 18

2. Materialien und Methoden

2.1 Materialien... 19
 2.1.1 Chemikalien und Verbrauchsmaterial... 19
 2.1.2 Zusammensetzung der Reagenzien... 20
2.2 Methoden... 21
 2.2.1 Zellkultur.. 21
 2.2.2 Stimulation ... 25
 2.2.3 Adenoviraler Gentransfer... 25
 2.2.4 RNA-Interferenz... 27
Inhaltsverzeichnis

2.2.5 FACS-Zellzyklusanalyse .. 28
2.2.6 Immunopräzipitation ... 30
2.2.7 Immundepletion .. 30
2.2.8 Gelelektrophorese und Western Blot .. 31
2.2.9 PI3-Kinase-Assay .. 33

3. Ergebnisse 34

3.1 Identifizierung der Untereinheiten .. 34
3.2 Verhältnis der Untereinheiten ... 35
3.3 Stimulierbarkeit der Zellen .. 37
3.4 Überexprimierung der regulatorischen Untereinheiten 37
3.5 Reduktion von p85α durch RNA-Interferenz ... 44
3.6 Zellzyklusanalyse ... 47
3.7 PI3-Kinase-Assay ... 53

4. Diskussion 54

4.1 Funktionen der regulatorischen Untereinheiten auf Ebene der PI3-Kinase .. 54
4.2 Funktionen auf untergeordneten Ebenen ... 58
4.3 Einflüsse auf parallele Wege der Signaltransduktion 60
4.4 Schlussfolgerungen und Aussichten ... 61

5. Zusammenfassung 63

6. Literaturverzeichnis 65

7. Anhang 76

7.1 Abbildungsverzeichnis .. 76
7.2 Abkürzungsverzeichnis .. 78
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3 Lebenslauf</td>
<td>80</td>
</tr>
<tr>
<td>7.4 Verzeichnis akademischer Lehrer</td>
<td>81</td>
</tr>
<tr>
<td>7.5 Danksagung</td>
<td>82</td>
</tr>
<tr>
<td>7.6 Ehrenwörtliche Erklärung</td>
<td>83</td>
</tr>
</tbody>
</table>
1. Einleitung

Die PI3-Kinasen sind funktionelle Heterodimere, die aus einer katalytischen und einer regulatorischen Untereinheit bestehen. In der vorliegenden Arbeit soll die Rolle der regulatorischen Untereinheiten p85α, p55α und p50α der PI3-Kinase der Klasse IA im Hinblick auf die Funktionen für untergeordnete Signalwege, der Aktivität der PI3-Kinase und der Bedeutung für Wachstum und Zellzyklusregulation in der beta-Zelle des Pankreas untersucht werden.

1.1 Phosphoinositide, Substrate der PI3-Kinasen

Die Substrate der Phosphoinositid-3-Kinasen sind Lipide, die über Phosphorsäure mit einem Inositol-Ring verbunden sind (Abb. 1). Wenn dieser Inositol-Ring keine weiteren Phosphatreste an den Positionen 3' bis 5' enthält, nennt man diese Lipidverbindung Phosphatidylinositol (PtdIns).

Phosphatidylinositol ist ein membranständiges Molekül; während die lipophilen Fettsäurereste in die zum Zytoplasma gerichtete Schicht der Lipid-Zellmembran integriert sind, ragt der polare Inositolrest in das Zytoplasma. Die Hydroxyl-Gruppen (-OH) des Inositolrings können in vivo an den Stellen 3' bis 5' in verschiedenen Kombinationen phosphoryliert werden, diese Derivate des

In vivo existieren alle möglichen Phosphorylierungs-Kombinationen: Die Monophosphoinositide PtdIns(3)P, PtdIns(4)P und PtdIns(5)P, die Bisphosphoinositide PtdIns(3,4)P₂, PtdIns(3,5)P₂ und PtdIns(4,5)P₂ sowie das Trisphosphoinositid PtdIns(3,4,5)P₃, das auch als PIP₃ bezeichnet wird. Durch die Konstellationen der Phosphatgruppen am Inositolring ergeben sich spezifische zelluläre Funktionen der Phosphoinositide. Die für die Signalübertragung wichtigste Rolle spielen PtdIns(3)P und PtdIns(3,4)P₂, wobei ersteres in der Säugetierzelle in größerer Menge vorkommt (Vanhaesebroeck et al. 2001).

Abbildung 1: Die Aufbau von Phosphatidylinositol und die Phosphorylierung durch die PI3-Kinasen an der 3'-Position des Inositol-Ringes (Vanhaesebroeck et al. 2001)

Die pleckstrin homology domain (PH) war die erste identifizierte Phosphoinositidbindende Struktur. Sie ist weit verbreitet und findet sich auf einer großen Zahl von Signaltransduktions-Proteinen wie Proteinkinasen (phosphoinositide-dependent kinase-1 (PDK), Proteinkinase B (PKB), β-ARK, brutons tyrosinkinase), Phospholipasen (PLCγ1, PLCδ1, PLD), Regulatoren von kleinen GTPasen und verschiedenen Adapter-Proteinen des Vesikel-Transportsystems.

Die 5'-Inositol-Phosphatase phosphatase and tensin homolog (PTEN) dephosphoryliert PtdIns(3,4,5)P₃ etwas verzögert zu PtdIns(3,4)P₂, das hauptsächlich über diesen Weg produziert wird. PTEN kann auch die anderen 5'-phosphorylierten PIs umsetzen und deren Wirkung beenden. In einer Reihe von menschlichen Tumoren ist das Tumor-Suppressor-Gen PTEN durch Mutationen deaktiviert, was zu einer erhöhten Konzentration von Phosphoinositiden und dauerhaft aktivierten PI3-Kinase-Signalwegen führt (Vazquez und Seller 2000, Downes et al. 2001). Die SH2 domain containing inositol 5-phosphatases (SHIP) haben ähnliche Eigenschaften, bewirken den Abbau der Phosphoinositole, bevorzugt von PtdIns(3,4,5)P₃, jedoch durch Hydrolysierung (Rohrschneider et al. 2000).

Neben der Phosphorylierung durch die PI-Kinasen sind die Phosphoinositide noch in an einem weiteren Signaltransduktionsweg beteiligt, der oft als „klassischer“ Phosphoinositid-Weg bezeichnet wird. Dabei wird PtdIns(4,5)P₂ von der Phospholipase C umgesetzt, die daraus die zwei second messenger Diacylglycerol (DAG) und Inositol(1,4,5)-Trisphosphat (IP₃) produziert. Während
Einleitung

1.2 Klassen der PI3-Kinasen

Acht verschiedene PI3-Kinasen wurden bis heute in Säugetieren identifiziert, die auf der Basis von Proteinstruktur, Substratspezifität und Regulation in die Klassen I-III eingeteilt werden (Übersicht in Tab. 1). Unter Klasse IV fasst man verschiedene PI3K-verwandte Kinasen zusammen (Vanhaesebroeck und Waterfield 1999, Foster et al. 2003). Die Klassifikation der PI3-Kinasen richtet sich dabei hauptsächlich nach der Struktur der katalytischen Untereinheiten;

Abbildung 2: Die definierenden Struktureigenschaften (homology regions, HR) der katalytischen Untereinheiten der verschiedenen PI3-Kinase-Klassen in Säugetieren. HR1, auch kinase core domain genannt, vermittelt die Lipokinaseaktivität und kommt in allen Klassen vor. HR2, auch als PIK domain bezeichnet, wirkt aktivierend auf die anderen Regionen. HR3 ist eine C2-ähnliche Domäne, die Kalziumabhängige und -unabhängige Interaktionen mit anderen Proteinen oder Lipiden vermittelt. HR4 ist eine ras-binding domain. Die regulatorischen Einheiten der Klasse IA binden an die N-terminale adaptor-binding domain der p110-Proteine, die aus ca. 100 Aminosäuren besteht (Domin und Waterfield 1997, Walker et al. 1999).
Einleitung

Die PI3-Kinasen der Klasse I werden unterteilt in die Klassen IA und IB, die sich in Aufbau und Aktivierung unterscheiden (Domin und Waterfield 1997). Im Mittelpunkt dieser Arbeit steht die Klasse IA; sie wird im Kapitel 1.3 genauer beschrieben.

Einleitung

(Katso et al. 2001). In vitro können Klasse II-Kinasen PtdIns und PtdIns(4)P phosphorylieren (Foster et al. 2003).

<table>
<thead>
<tr>
<th>Klasse</th>
<th>Katalytische Untereinheiten</th>
<th>Regulatorische Untereinheiten</th>
<th>Aktivierung</th>
<th>In-vivo-Lipid-Substrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>p110α (PIK3CA auf 3q26.3)</td>
<td>p85α, p55α, p50α (PIK3R1 auf 5q12-q13)</td>
<td>- Tyrosinkinasen - Ras</td>
<td>PtdIns(4,5)P₂</td>
</tr>
<tr>
<td></td>
<td>p110β (PIK3CB auf 3q23)</td>
<td>p85β (PIK3R2 auf 19q13.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p110δ (PIK3CD auf 1p36.2)</td>
<td>p55γ (PIK3R3 auf 1p34.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB</td>
<td>p110γ (PIK3CG auf 7q21.11)</td>
<td>p101 (PI3-kinase regulatory subunit gene, 17p13.1)</td>
<td>- G-Proteine - Ras</td>
<td>PtdIns(4,5)P₂</td>
</tr>
<tr>
<td>II</td>
<td>PI3K-C2α (PIK3C2A auf 11p15.5-p14)</td>
<td>unklar</td>
<td>- Tyrosinkinasen - Chemokine?</td>
<td>PtdIns(4)P</td>
</tr>
<tr>
<td></td>
<td>PI3K-C2β (PIK3C2B auf 1q32)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PI3K-C2γ (PIK3C2G auf 12p12)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Vps34 (PIK3C3 auf 18q12.3)</td>
<td>p150 (PIK3R4 auf 3q22.1)</td>
<td>- konstitutiv</td>
<td>PtdIns</td>
</tr>
</tbody>
</table>

Tabelle 1: Übersicht über die verschiedenen Klassen der PI3-Kinase (humane Genlokalisationen; Fruman et al. 1998, Anderson und Jackson 2003).
Einleitung

1.3 Eigenschaften der PI3-Kinasen der Klasse IA

1.3.1 Aufbau

Die katalytischen Untereinheiten interagieren mit verschiedenen regulatorischen Untereinheiten und bilden mit diesen das heterodimere PI3K-Holoenzym. Bisher sind fünf regulatorische Untereinheiten bei PI3-Kinasen der Klasse IA bekannt. Die mit 85 kDa beiden größeren Untereinheiten p85α und p85β leiten sich von zwei verschiedenen Genen ab, dem Pik3r1-Gen und dem Pik3r2-Gen (Tab. 1). Sie besitzen eine Bindungsstelle für eine katalytische p110-Untereinheit, die von zwei Src-homology 2 domains (SH2) flankiert ist (Abb. 3). Diese SH2-Domänen dienen der Aktivierung der PI3-Kinase durch Bindung von Tyrosin-phosphorylierten Proteinen. p85α und p85β enthalten an ihrem NH2-terminalen Ende eine Src-homology 3 domain (SH3), an die zwei prolinreiche Region grenzen, sowie eine break point cluster homology domain (BRC), ver-

Abbildung 3: Struktur der regulatorischen Untereinheiten der PI3-Kinase Klasse IA (Inukai et al. 1997)
1.3.2 Aktivierung

Der Aktivierungsvorgang der PI3-Kinasen ist komplex. Die regulatorische Untereinheit p110α ist in Säugetieren bei 37° C instabil und erlangt erst in Verbindung mit p85α thermale Stabilität. Die PI3-Kinase ist in dieser heterodimeren Konfiguration jedoch inaktiv, da p85α durch seine Bindung an die katalytische Untereinheit gleichzeitig deren Aktivität mindert. Die Aktivierung erfolgt erst durch die Bindung der phosphorylierten Tyrosinresiduen (Yu et al. 1998). Durch die Assoziation mit phosphorylierten Tyrosinkinasen an den N-terminalen *SH2 domains* verliert p85α die inhibitorische Wirkung, die Lipid-
kinaseaktivität des Holoenzymes nimmt zu (Cuevas et al. 2001, Chan et al. 2002).

Im Rahmen der Aktivierung wird die katalytische Untereinheit durch die Bindung der SH2-Regionen der regulatorischen Untereinheit an die membranständigen IRS von der zytosolischen Position des inaktiven Zustandes an die Plasma-membran gebunden. Erst dort kann die ATP-abhängige Phosphorylierung von Phosphoinositiden der Zellmembran stattfinden.

Die PI3-Kinase besitzt auch Proteinkinase-Aktivität, so kann die katalytische Untereinheit die regulatorischen Untereinheiten an Serinresten phosphorylieren.
Die Phosphorylierung von p85α an Ser\(^{608}\) bewirkt eine starke Lipidkinase-Aktivitätsabnahme der PI3-Kinase, wozu sowohl p110α als auch p110β in der Lage sind (Dhand et al. 1994). Darüberhinaus können die PI3-Kinasen eine Phosphorylierung von IRS-Proteinen mit konsekutiver Lipidkinase-Aktivitätsminderung bewirken (Lam et al. 1994).

Die Aktivierung der Phosphoinositid-3-Kinase geschieht über die Bindung der GTP-assoziierten, aktivierten Form von Ras an die ras binding domain (RBD) der p110-Untereinheiten. Diese Aktivierung wird im inaktiven Zustand der PI3-Kinase von p85α gehemmt, was erst durch die Stimulation der Zelle und Tyrosinkinaseaktivität aufgehoben wird (Jiménez et al. 2002). Die Divergenz in der Primärstruktur von p100α, p110β und p110δ ist in der Ras-bindenden-Domäne am größten, was Unterschiede in der Aktivierung durch Ras vermuten lässt (Deora et al. 1998). Die Aktivierung von Ras selbst geschieht in mehreren Schritten. Über phosphorylierte Tyrosinkinase-Rezeptoren, die an das Adapter-Protein GRB2 binden, wird der Ras-Aktivator Sos zur Zellmembran transportiert. Dieser erhöht dort den Anteil von GTP und damit die Aktivität von Ras (Macaluso et al. 2002).
1.3.3 Umsetzung von Phosphoinositiden

Die PI3-Kinasen der Klasse I können in Säugetierzellen alle Phosphoinositide mit freier 3'-Position am Inositol-Ring phosphorylieren, man findet die Produkte PtdIns(3)P, PtdIns(3,4)P₂, PtdIns(3,5)P₂ (PIP₂) und PtdIns(3,4,5)P₃ (PIP₃).

Die basalen Level von PtdIns(3,4)P₂ und PtdIns(3,4,5)P₃ sind im Gegensatz zu PtdIns(3)P sehr niedrig und steigen bei Stimulation der Zellen stark an. In vivo ist das bevorzugte Substrat PtdIns(4,5)P₂, das zu PtdIns(3,4,5)P₃ umgesetzt wird (Vanhaesebroeck und Waterfield 1999, Vanhaesebroeck et al. 2001).

Die Phosphatasen PTEN und SHIP beenden durch den Abbau von PtdIns(3,4,5)P₃ deren Aktivität und sind somit funktionelle Gegenspieler der PI3K (siehe 1.1).

1.4 Abhängige Signalwege der PI3-Kinase und zelluläre Funktionen

1.4.1 Zelluläre Funktionen

1.4.2 Proteinkinase B

Die 57 kDa große Serin/Threonin-Proteinkinase B (PKB, auch Akt oder c-Akt) ist der wichtigste Effektor der PI3-Kinase. In Säugetieren existieren die Isoformen PKBα (Akt-1), PKBβ (Akt-2) und PKBγ (Akt-3), wobei die α- und β-Isoformen in menschlichen Geweben weit verbreitet sind, während die PKBγ hauptsächlich in Gehirn und Hoden vorkommt (Coffer et al. 1998). Die PKB bestehen aus einer N-terminalen *PH domain*, einer *kinase domain* und einem C-terminalen regulatorischen Bereich. In ruhenden Zellen befindet sich die PKB im Zytosol, bei einer Stimulierung der Zelle wird sie aktiviert und dabei zur Zellmembran verlagert (Vanhaesebroeck und Alessi 2000).

Diese Aktivierung läuft in zwei Schritten ab. Die Proteinkinase B bindet mit ihrer N-terminalen *PH domain* an membranständige phosphorylierte Phosphoinositide, die durch die aktivierte PI3-Kinase produziert werden (Franke et al. 1997, Stokoe et al. 1997). PtdIns(3,4,5)P₃ oder PtdIns(3,4)P₂ aktivieren die PH-Domäne dabei mit der größten Affinität. Dadurch erfolgt die Verlagerung zur Zellmembran, es findet jedoch noch keine Aktivierung der Proteinkinase-aktivität statt. Durch die Bindung der PH-Domäne geht die PKB eine Konformationsänderung ein, wodurch die Phosphorylierung an Thr³⁰⁸ und Ser⁴⁷³ ermöglicht wird. Für die volle Activierung müssen beide dieser Aminosäuren der PKB phosphoryliert werden, Thr³⁰⁸ in der Kinase-Domäne und Ser⁴⁷³ in der C-terminalen Region. Geschieht dies nur an Thr³⁰⁸, findet nur eine partielle Aktivierung statt, während eine alleinige Phosphorylierung an Ser⁴⁷³ keine Steigerung der Aktivität nach sich zieht (Song et al. 2005). Die Phosphorylierung an Thr³⁰⁸ geschieht durch die *Phosphoinositide dependent kinase 1* (PDK-1). Dabei handelt es sich um eine 63 kDa große Ser/Thr-Kinase mit einer C-terminalen PH-Domäne und einer N-terminalen Kinase-Domäne, die ubiquitär in menschlichen Geweben vorkommt (Vanhaesebroeck und Alessi 2000). Durch die spezifische Bindung von Produkten der PI3-Kinase an der PH-Domäne aktiviert, phosphoryliert PDK-1 die Proteinkinase B an Thr³⁰⁸. Daneben phosphoryliert PDK-1 eine Reihe weiterer Proteine wie Proteinkinasen der Klasse A, PKCα, βI, βII, γ und ζ sowie die p70-S6-Kinase (Belham et al. 1999).
Einleitung

Auch die PH-Domäne der PDK-1 bindet PtdIns(3,4,5)P$_3$ oder PtdIns(3,4)P$_2$ mit größerer Affinität als andere Phosphoinositide (Vanhaesebroeck und Alessi 2000).

Die Phosphorylierung der Proteinkinase B an Ser473 hingegen ist nicht vollständig geklärt und wird kontrovers diskutiert. Mögliche Aktivatoren sind die PDK-1, eine andere Isoform (PDK-2) oder eine Autophosphorylierung durch die PKB (Song et al. 2005). Möglicherweise ist auch eine weitere Proteinkinase, die integrin-linked kinase (ILK), daran beteiligt (Lynch et al. 1999, Persad et al. 2001).

Neben der PI3K der Klasse I kann die PKB auch auf anderen Wegen aktiviert werden, hauptsächlich durch cAMP-erhöhende Stoffe wie Forskolin, chlorophenylthio-cAMP, Prostaglandin-E1, und 8-bromo-cAMP. Dabei wird die PH-Domäne nicht mit einbezogen, sondern die PKB an Thr308 phosphoryliert, was durch die Proteinkinase A induziert wird (Filippa et al. 1999).

1.4.3 Glukosestoffwechsel

Der GLUT4-Transfer ist weiterhin durch die ebenfalls PI3K/PDK-aktivierten Proteinkinase-C-Isoformen γ und ζ sowie über das PI3K-unabhängig aktivierte Cbl-assoziierte Protein und die kleine Rho-Kinase TC10 möglich (Khan und

1.4.4 Zellproliferation und Wachstum

Glykogen-Synthase-Kinase 3 spielt neben seiner metabolischen Aktivität (siehe S. 14) auch eine Rolle in der Zellzyklusregulation. Durch die Phosphorylierung von Cyklin D wird dieses degradiert, wodurch eine Zellzyklusprogression ver-

1.4.5 Apoptose

Caspase 9 ist eine Protease, die für die Initiierung und für spätere Stadien der Apoptose unerlässlich ist. Menschliche Caspase 9 wird durch PKB phosphoryliert und damit inhibiert (Cardone et al. 1998).

Die Proteinkinase B aktiviert weiterhin indirekt die Stress-aktivierten Protein-kinase (SAPK), die aus den beiden Gruppen der JNK und p38 MAPK besteht. Dies geschieht über Interaktionen mit den SAPK-Aktivatoren ASK1, MLK3 sowie SEK1 und bewirkt eine Inhibition der Apoptose (Song et al. 2005).

PKB aktiviert daneben IκB-Kinasen (IKKs), was den Effekt hat, dass der Transkriptionsfaktor NfκB im Nukleus die Produktion von anti-apoptotischen Proteinen wie die inhibitor of apoptosis-(IOA)-Proteine cIAP1 und c-IAP2 bewirkt. Der genaue Mechanismus der IKK-Aktivierung durch die PKB ist unklar (Kane et al. 1999).

Weitere Mechanismen, durch die die PKB antiapoptotisch wirksam ist, sind die Aktivierung von Mdm2, welches wiederum p53 hemmt sowie die Inhibierung von YAP (Yes associated protein), das über das Protein Bax proapoptotische Wirkung hat (Song et al. 2005).
Einleitung

1.5 Fragestellungen

Folgende Aspekte sollen untersucht werden:

- Wie ist die Verteilung der Untereinheiten der PI3-Kinase in β-Zellen?
- Welche Funktionen haben die regulatorischen Untereinheiten bei Proliferation und Zellzyklusregulation? Dazu sollen die Auswirkungen der im vorherigen Schritt beobachteten Veränderungen von Über und Unterexpressierung der regulatorischen Untereinheiten auf den Zellzyklus untersucht werden.
Materialien und Methoden

2. Materialien und Methoden

2.1 Materialien

2.1.1 Chemikalien und Verbrauchsmaterial

Zellkultur-Pipetten, Zellkulturflaschen, Zellschaber stammten von Greiner bio-one (Frickenheim, Deutschland). Merck (Darmstadt, Deutschland) lieferte Silica-Gel-Dünnschichtchromatographie-Platten, Methanol, 1N-Salzsäure sowie Chloroform. Zellkultur-Pipetten, Falcon-Tubes, 6/12/24/96-wells, 10/20cm Petrischalen wurden von NUNC Brand (Roskilde, Dänemark) bezogen. Natriumpyruvat und HEPES-Puffer von PAA Laboratories (Linz, Österreich). RMPI-1640-Medium ohne Glukose war von PAN Biotech (Aidenbach, Deutschland). Pierce (Rockford, USA) lieferte ECL (super signal west dura extended duration substrate). Die siRNA gegen p85α stammte von Upstate Biotechnology (Lake Placid, USA). Roth (Karlsruhe, Deutschland) lieferte Milchpulver, Ethanol, Retiphorese-Acrylamidlösung, Tris-Base, Tris-HCl.

Eppendorf-Cups kamen weiterhin von Sarstedt (Nürbrecht, Deutschland). Schleicher und Schuell (Dassel, Deutschland) lieferten Nitrocellulose Membranen (Optitran BA-S85). Von SERVA (Heidelberg, Deutschland) kamen Towbin-buffer und SDS. Sigma Chemical Co (St. Louis, USA) lieferte Dimethylsulfoxid (DMSO), Tween 20, Triton x-100, Glycerol, Orthovanadat, Bromphenol-
Materialien und Methoden

blau, Aprotinin und Leupeptin.

Cell signaling (Beverly, USA) lieferte Antikörper gegen Akt, phospho-Akt, GSK3, phospho-GSK3, p70s6-Kinase, phospho-p70s6-Kinase, S6-ribosomales Protein, phospho-s6-RP sowie anti-Mouse und anti-Rabbit-Zweitantikörper. Von Upstate Biotechnology (Lake Placid, USA) waren unspezifische Kontroll-siRNA sowie Antikörper gegen p85α.

Von Santa Cruz Biotechnology (Santa Cruz, USA) wurden Antikörper gegen Hämagglutinin (HA), β-Aktin, Akt, phospho-Akt, β-catenin, phospho-β-catenin sowie anti-Goat-Zweitantikörper bezogen.

Der Antikörper (Clone B6) zur Detektion der Adenoviren ist gegen das DNA-binding protein gerichtet (Reich et al. 1983). Er wurde freundlicherweise von German Horn, Institut für Virologie, zur Verfügung gestellt.

2.1.2 Zusammensetzung der Reagenzien

2.2 Methoden

2.2.1 Zellkultur

Als Modell für eine β-Zell-Linie dienten die Insulinomzellen INS-1E aus dem Pankreas der Ratte. Die INS-1E-Zellen stammten von Prof. Dr. Claes Wollheim, Départment de Medicine, Division de Biochimie clinique, Université de Genève (Schweiz). In den Experimenten wurden, soweit nicht anders angegeben, die Passagen 87-100 genutzt. Die Viruspräparation der Adenoviren wurde mit der Zelllinie HEK-293 durchgeführt.

Charakteristika der INS-1 Zelllinie

Da die INS-1 Zellen eine nicht-klonale Zelllinie sind, zeigte sich eine begrenzte Stabilität der beschriebenen Eigenschaften und Diskrepanzen in den Ergebnissen verschiedener Arbeitsgruppen. Die Wollheim-Gruppe isolierte deshalb
anhand von Insulin-Gehalt und sekretorischer Antwort auf Glukose aus der INS-1-Linie die klonale Zelllinie INS-1E. Diese unterscheidet sich in ihren Eigenschaft wenig von der INS-1 Linie, ist aber auch nach 116 Passagen in ihren Eigenschaften stabil (Merglen et al. 2003).

Der durchschnittliche Insulingehalt der INS-1E-Zellen beträgt $2.3 \pm 0.11 \mu g/10^6$ Zellen, was etwa 10 % des Gehalts von natürlichen β-Zellen entspricht. Durch Glukosekonzentrationen von 2.5 bis 15 mM lässt sich die Insulinsekretion zunehmend bis auf das maximal 6.2fache (bei 15 mM) steigern. Die INS-1E Zellen weisen bezüglich der Sekretion β-Zell-typische Eigenschaften auf. Sie reagieren auf Sulfonylharnstoffe weniger als auf hohe Glukose-Konzentrationen, was sich durch den „amplifying pathway“ (nicht-K$_{ATP}$ -abhängige Aktivierung) erklärt. In der Gegenwart von Forskolin und PDE-Hemmstoffen zeigt sich eine erhöhte Glukosesensitivität (Asfari et al. 1992). Die stimulatorisch wirkenden Substanzen Leucin, Arginin, Kaliumchlorid und die Hemmstoffe Somatostatin, Adrenalin und Diazoxid zeigen ebenfalls einen Effekt auf die Insulin-Sekretion.

Kulturbedingungen

Die Zellen wurden in wasserdampfgesättigter Atmosphäre und einem CO$_2$-Gehalt von 5 % bei 37°C im Brutschrank gehalten. Als Nährmedium diente das Medium RMPI-1640 mit L-Glutamin. Es enthielt zusätzlich 10 % fötales Kälberserum (FCS), 10 mM HEPES, 1 mM Natriumpyruvat, 50 µM β-Mercaptoethanol, 1 % Ciprofloxacín (Ciprobay 200, Bayer) sowie 2 mg/ml Glukose.
Die Zellen wurden etwa einmal pro Woche passagiert. Dabei wurde als erster Schritt das Medium entfernt. Mittlere Kulturflaschen wurden mit 2 ml, große Flaschen mit 3 ml Trypsin für mehrere Minuten im Brutschrank zwischen-inkubiert. Wenn die Zellen sich dann vom Untergrund der Flasche gelöst hatten, wurden sie mit frischem, warmen Medium resuspendiert und in der gewünschten Menge in eine oder mehrere Flaschen überführt. Falls die Zellen für Experimente auf Platten ausgesät werden sollten, wurde vorher mit Hilfe einer Neubauer-Zählkammer die Zellmenge ausgezählt. Dazu wurden die abgelösten Zellen in Medium bei 1200 U/min fünf Minuten abzentrifugiert, das Medium entfernt und das verbleibende Zellpellet in 10 ml frischem Medium resuspendiert. Von dieser Lösung wurden eine 1:10 Verdünnung mit PBS \textit{(phosphate buffered saline)} hergestellt. Unter dem Mikroskop wurden die Zellzahl dieser Verdünnung im Raster der Zählplatte vierfach ausgezählt und die Konzentration der Zellsuspension ermittelt, indem mit dem Verdünnungsfaktor (10) und dem Zähkammerfaktor (10.000) multipliziert wurde.

Für die Durchführung der Experimente wurden die INS-1E Zellen in 6-well-Platten mit einer Konzentration von 1 Mio. Zellen pro well ausgesät. Nach 2–3 Tagen Kultivierung in 2 ml Medium pro well war dann eine Konfluenz von 60–70 % erreicht, bei der die Experimente durchgeführt wurden.

\textbf{Lysieren der Zellen}

Zum Lysieren wurde das Medium abgesaugt, pro Schale 100–500 µl Lysis-Puffer auf die Zellen gegeben, nach kurzem Einwirken mit einem Schaber von der Platte gelöst und in einen Eppendorf-Cup überführt. Das Lysat wurde für 15 Sekunden sonifiziert und anschließend die Zelltrümmer bei 12.000 U/min für fünf Minuten abzentrifugiert.

Um die Vergleichbarkeit der späteren Ergebnisse zu gewährleisten, wurden die Proben auf die gleiche Proteinkonzentration eingestellt, standardmäßig auf 2 µg Protein/µl. Dazu wurde eine Proteinbestimmung nach Brattford durchgeführt. In einer 96-well-Platte wurden pro well 250 µl Brattford-Lösung vorgelegt und in Doppelbestimmung eine Standardreihe mit BSA (bovines Serum-Albumin, 1 µg/µl) mit 0, 1 µg, 2 µg, 4 µg, 6 µg und 8 µg pipettiert. Von den
Materialien und Methoden

Mit Aqua dest. konnten die Proben dann auf die gleiche Konzentration eingestellt werden. Anschließend wurden sie mit Lämmli-Reagenz in einer Gelenelektrophorese (SDS-PAGE) weiterverarbeitet oder bei -20 °C eingefroren.

Einfrieren und Lagerung der Zellen

2.2.2 Stimulation

2.2.3 Adenoviraler Gentransfer

Adenoviren

Infektion der INS-1E-Zellen

Die Zellen wurden bei einer Konfluenz von 60 %–80 % in serumfreiem Medium infiziert. Die *multiplicity of infection* (MOI) betrug dabei je nach Versuch ca. 20-100. Nach zwei Stunden wurde ein Mediumwechsel auf Normalmedium durchgeführt. Eine erfolgreiche Infektion der Zellen äußerte sich in einer Veränderung der Morphologie, wobei die Zellen ihre unregelmäßige Form verloren und annähernd rund wurden (Abb. 5). Nach 48–72h wurden die Zellen entweder direkt lysiert oder zuerst mit serumfreiem Medium bei definierten Glukosekonzentrationen für weitere acht Stunden „gehungert“ und dann
Materialien und Methoden

Virusvermehrung

Zur Vermehrung der Viren wurden HEK-293-Zellen benutzt, die aus menschlichem Pankreastumorgewebe stammen.

2.2.4 RNA-Interferenz

Wir setzten eine Kombination von drei siRNAs ein, die von der Firma Qiagen produziert worden waren, mit folgenden Primärsequenzen (*sense strand*):

- siRNA-p85α-1: r(GCU CAU UAG GUC GCC UAA U)dTdT
- siRNA-p85α-2: r(GAG CCC UCU CUG AAA UUU U)dTdT
- siRNA-p85α-3: r(GCG GUA GAG CUU UUA AUC U)dTdT

Zur Durchführung wurde eine Stunde vor der Transfektion das Medium der Zellen gewechselt. Transfiziert wurden typischerweise 6-well-Platten bei einer
Materialien und Methoden

Konfluenz von 60–70 %. Pro well wurden je 10 µl der siRNA-Lösung (20 µM) in 300 µl serumfreiem Medium und 6 ml SiLentFect™-Transfektionsreagenz in weiteren 300 µl serumfreiem Medium angesetzt. Anschließend inkubierten die Proben 20 min bei Raumtemperatur, wobei sich die Transfektionskomplexe bildeten.

Dieser Ansatz wurde zu den Zellen gegeben und ergab eine Konzentration der siRNA von 100 nM. Für eine Konzentration von 200 nM (50 nM) wurde die doppelte (halbe) Menge an siRNA und SiLentFect eingesetzt. Als Kontrolle wurden 6-well-Platten mit unspezifischer siRNA (Upstate Biotechnology) und solche ohne siRNA parallel inkubiert. Nach 48 h wurden die Zellen für 8 h auf Hungermedium umgesetzt, je nach Versuch gegebenenfalls stimuliert und dann lysierte.

2.2.5 FACS-Zellzyklusanalyse

In der Durchflusszytometrie (fluorescence activated cell sorting, FACS) werden in einer Lösung befindliche Zellen durch eine Kapillare gesaugt und passieren im Sensormodul einzeln einen Laserstrahl. Dabei emittiert die vorher entsprechend gefärbte Zelle Streulicht und Fluoreszenzimpulse, woraus Aussagen zum DNA-Gehalt der Zelle ableiten werden können.

Wir untersuchten anhand der Parameter Vorwärtsstreulicht (FSC, forward scatter) und Seitwärtsstreulicht (SSC, side scatter) die DNA-Menge im Zellkern. Da die Zellen in der Ruhe-Phase (G1) einen einfachen DNA-Menge, in der Synthese-Phase (S) zunehmend mehr und kurz vor der Zellteilung (G2) einen doppelten DNA-Gehalt aufweisen, lässt sich die Menge der Zellen in den jeweiligen Phasen quantitativ bestimmen.

Zur Durchführung wurde das Nährmedium wurde von den Zellen abgesaugt und diese mit 2 ml PBS einmal gespült, danach mit 0.5 ml Trypsin über mehrere Minuten inkubiert und einem Zellschaber vorsichtig vom Boden des 6-well’s gelöst und mit 1 ml frischem Medium in ein 15 ml-Falcon-Tube überführt, die Platte nochmal mit 2 ml PBS gespült, das ebenfalls in das Falcon-Tube
Materialien und Methoden

verwendet wurde. Die Zellen wurden dann bei 1200 U/min über fünf Minuten abzentrifugiert, das Medium entfernt und die Zellen in 250 µl PBS resuspendiert. Zur Fixierung wurden die suspendierten Zellen unter Schütteln in 2 ml eiskaltes Ethanol (70 %) eingeträufelt. Über einen Filter wurden sie in ein FACS-Röhrchen pipettiert, 10 Minuten bei 3000 U/min zentrifugiert, der Ethanol-Überstand abgenommen und die Zellen in 2 ml Färbe- Lösung (1 mg/ml), 32 µl DNAse-freie RNAse, eine Spatelspitze Glukose, 8 ml Aqua dest.) resuspendiert. In diesem inkubierten die Zellen dann zwei Stunden bei Raumtemperatur in Dunkelheit, bevor die FACS-Analyse durchgeführt wurde.

Parameter des FACS-Gerätes (Firma Becton-Dickinson):

n = 20.000 Zellen wurden analysiert.

FSC: 4,92 E-1 -FL2: 1,00 347
SSC: 1,00 288 FLZ-W: 4,75

Abbildung 6: grafische Darstellung einer FACS-Zellzyklusanalyse von INS1E-Zellen, inkubiert in Normalserum
2.2.6 Immunopräzipitation

Pro Immunopräzipitation wurden nach Bratford-Proteinbestimmung Zelllysat mit 500-1500 µg Protein, 40 µl Protein G-Agarose und 5 µg Antikörper (bzw. abweichend bei anderer Herstellerangabe) angesetzt. Mit Lysisbuffer wurde auf 500 µl Volumen aufgefüllt und bei 4 °C für mindestens 12 h inkubiert. Dies geschah im Rotator bei ständiger Umwälzung. Der Niederschlag nach Zentrifugation wurde zwei mal mit eiskaltem Lysispuffer gewaschen.

Mit diesem Niederschlag konnte dann ein Kinase-Assay durchgeführt werden. Für einen Western Blot wurde zu dem gewaschenen Präzipitat ohne Überstand 40 µl 2x-Lämmli zugegeben, also im Verhältnis 1:1. Dann wurden die Proben 5 min bei 100 °C denaturiert.

2.2.7 Immundepletion

Im Vorfeld einer Immundepletion (serielle Immunpräzipitation) wurde eine Immunpräzipitation mit dem gewünschten Antikörper wie oben beschrieben durchgeführt. Nach fünf Minuten Zentrifugieren wurde der Überstand über dem Präzipitat in einen neuen Eppendorf-Cup überführt.

Mit 5 µg Antikörper und 40 µl Protein G-Agarose wurde damit eine zweite IP durchgeführt, mit dem daraus resultierenden Überstand der Vorgang wiederum ein drittes Mal wiederholt.

Die Niederschläge dieser drei Durchgänge wurde dann zwei mal mit eiskaltem Lysispuffer + 0,1 % SDS gewaschen, mit 2x-Lämmli im Verhältnis 1:1 versetzt.
und konnte nach 5 min. Erhitzen auf 100 °C in einem Western Blot verarbeitet werden. Dabei wurde ein Teil des Überstandes und Zelllysat parallel mitgeführt.

2.2.8 Gelelektrophorese und Western Blot

Der anschließende *Western Blot* der Proteine auf Nitrozellulose-Membranen geschah mittels dem BIO-RAD Minitransblot-System unter Kühlung bei 20 V über zwölf Stunden oder bei 300 A über eine Stunde. Danach wurden die Membranen getrocknet und in 5%iger Trockenmilchlösung in TBS-T eine Stunde bei Raumtemperatur geblockt.

In 5%iger Trockenmilchlösung in TBS-T mit dem 1:500 bis 1:5000 verdünnten Erst-Antikörper wurden die geblockten Nitrozellulose-Membranen unter ständigem Schütteln für vier Stunden bei Raumtemperatur oder über Nacht bei 4 °C inkubiert.

Nach 3 x 5 min. Waschen in TBS-T-Lösung wurden sie in 5%iger Trockennmilchlösung in TBS-T mit dem 1:5000 (bei monoklonalen Erst-Antikörpern) oder 1:10.000 (bei polyklonalen Erst-Antikörpern) verdünnten Zweit-Antikörper geschwenkt. Die Membranen wurden im Anschluss erneut 3 x 5 min. mit TBS-T gewaschen.

Zur Visualisierung des gesuchten Proteins wurden zwei ECL-Systeme genutzt. Mit den *ECL Western Blotting Detection Reagents* der Firma Amersham Biosciences wurden die Membranen eine Minute behandelt. Für Membranen mit schwächeren Signalen wurde alternativ *super signal west dura extended duration substrate* der Firma Pierce für fünf Minuten genutzt.

Auf derselben Membran wurde teilweise mit verschiedenen Antikörpern verschiedene Proteine dargestellt. Dazwischen mussten die anhaftenden Antikörper entfernt werden („stripping“), was durch Waschen mit einer SDS/Mercaptoethanol-Lösung bei 60 °C über 20 min geschah. Danach wurde die Membran gründlich mit TBS-T gewaschen und mit 5%iger Milchlösung neu
Materialien und Methoden

gelockt, anschließend konnte wie oben beschrieben die erneute Inkubation mit Erst- und Zweit-Antikörper durchgeführt werden.

2.2.9 PI3-Kinase-Assay

Für einen Kinase-Assay wurde eine Immunpräzipitation mit 300–500 µg Proteinlysat und 5 µg Antikörper (gegen IRS-2, p85α oder p-Tyrosin) durchgeführt und anschließend zwei mal mit Lysis-Buffer gewaschen.

Mit PI3K-Reaktions-Puffer (20 mM Tris-HCl, 100 mM NaCl, 0.5 mM EGTA, pH = 7.4) wurde weitere zwei Mal gewaschen und dann 30 µl PI3-K-Lösung (PI3-K-Puffer + 0.1 mg/ml PI) zu jeder Probe zugegeben.

Durch die Zugabe von 20 µl MgCl₂-ATP-Gemisch (200 mM MgCl₂, 200 µM ATP), das 5 µCi [γ-32P]-ATP enthält, wurde die Reaktion gestartet und nach 20 Minuten durch die Zugabe von 150 µl Chloroform + Methanol-11 + 6N-HCl-Lösung (50:100:1) wieder gestoppt.

Nach der Zugabe von 120 µl Chloroform zu jeder Probe wurde durch Zentrifugation (eine Minute bei 12.000 U/min) die anorganische Phase von der organischen Phase getrennt; Letztere wurde in ein neuen Cup übernommen, mit 120 µl Methanol / 1N-HCl-Gemisch (1:1) versetzt und die Phasen erneut durch Zentrifugation getrennt.

Die Lipide in der wiederum abgenommenen organischen Phase wurden dann für 20 Minuten in einem "Speed Vacuum" konzentriert, in 20 µl Chloroform resuspendiert und auf einer Dünnschicht-Chromatografie-(DC)-Platte aufgetragen. Mit dieser wurde über mehrere Stunden die Chromatografie in DC-Lösung durchgeführt. Nachdem die Platten getrocknet waren, wurde damit ein Film 48 h belichtet.
3. Ergebnisse

3.1 Identifizierung der Untereinheiten

Im Western Blot lassen sich die Untereinheiten der PI3-Kinase der Klassen Ia und Ib nachweisen (Abb. 7). Die regulatorische Untereinheit p85α wird in den INS-1E Zellen deutlich stärker exprimiert als die Varianten p50α und p55α. Auch p85β lässt sich nachweisen, ebenso wie die katalytischen Untereinheiten p110α, p11β und p110γ. Über das Verhältnis der Untereinheiten zueinander lässt sich mit einem qualitativen Western Blot aufgrund der unterschiedlichen Antikörper keine Aussage treffen.

Ergebnisse

3.2 Verhältnis der Untereinheiten

Um das Verhältnis der regulatorischen Untereinheit p85α, die unter den Pik3r1-Produkten den größten Anteil ausmacht (Abb. 7), zur den katalytischen Untereinheiten p110α und p110β zu bestimmen, wurde mittels einer Serie von drei Immunpräzipitationen eine Immunodepletion durchgeführt. Beide sind offensichtlich in großer Menge vorhanden, da komplette Depletions nicht gelangen. Eine deutliche stärkere Depletion von p110 durch p85α als von p85α durch p110 ist jedoch erkennbar, was für einen Überschuss am p85α spricht (Abb. 8).

Abbildung 8: Verhältnis p85α – p110α in INS-1E-Zellen. Darstellung von Immunodepletionsserien (IP) und Western Blots (IB) mit verschiedenen Antikörpern.
Ergebnisse

Abbildung 9: Stimulierung der INS-1E-Zellen mit 10 nM und 30 nM IGF-1 bei 10 mM Glukose. Immunoblot gegen aktivierte PKB (p-Akt, thr-308; p-Akt, ser-473) und nicht aktivierte PKB (anti-Akt).

Abbildung 10: Stimulierung der Zellen mit 50 µM und 100µM Forskolin bei 10 mM Glukose. Immunoblot gegen aktivierte PKB (p-Akt, thr-308; p-Akt, ser-473) und nicht aktivierte PKB (anti-Akt).
3.3 Stimulierbarkeit der Zellen

Die verschiedenen Signaltransduktionswege der INS-1E Zellen können durch die Zugabe von bestimmten Agenzien stimuliert werden.

Die Proteinkinase B wird bei Aktivierung durch die PI3-Kinase über Zwischenschritte (PDK-1, PDK-2) an den Aminosäuren Threonin-308 und Serin-473 phosphoryliert. Mit dem Antikörper gegen die phosphorylierten Formen der PKB konnte so die Aktivierung im Western Blot dargestellt werden (Abb. 9, 10). Als Kontrolle diente ein Antikörper, der an alle Formen der PKB bindet.

Zur Stimulation wurden insulin-like growth factor 1 (IGF-1) und Forskolin verwendet. Während IGF-1 an den Insulin/IGF-1-Tyrosinkinase-Rezeptor mit der beschriebenen nachfolgenden Aktivierungskaskade bindet, erhöht Forskolin die Konzentration von cAMP im Zytoplasma.

Beide Stimulanzien aktivierten in unseren Versuchen die PKB konzentrations- und zeitabhängig. Während IGF-1 eine schnelle Aktivierung an Threonin-308 und Serin-473 bewirkt, aktiviert Forskolin Serin-473 in stärkerem Ausmaß, was zudem deutlich langsamer geschieht. An Threonin-308 scheint Forskolin nur eine schwache Aktivierung zu bewirken (Abb. 9, 10).

3.4 Überexprimierung der regulatorischen Untereinheiten

Die regulatorischen Untereinheiten p50α, p55α und p85α wurden durch adenoviralen Gentransfer stufenweise überexprimiert. Neben den üblichen unbehandelten Kontrollen wurde eine vierte Zellkulturlinie mit einem unspezifisch für β-Galaktosidase (LacZ) codierenden Virus infiziert, um durch das Adenovirus verursachte Effekte auszuschließen. Die Exprimierung der Untereinheiten wurde neben der Kontrolle in fünf Stufen (ansteigende MOI) durchgeführt, wobei eine deutliche Überexprimierung gelang (Abb. 11). Die so zusätzlich exprimierten Untereinheiten sind mit Influenza-Hämagglutinin (HA) markiert, mit einem entsprechenden Antikörper wurde im Western Blot die erfolgreiche Transfektion überprüft. Bei der Zellreihe, die mit dem LacZ-exprimierenden Virus infiziert wurden, ließ sich kein HA nachweisen, da in
Ergebnisse

dieser Viruspräparation kein entsprechender Marker integriert worden war. Mit einem Antikörper gegen das **DNA-binding protein** des Adenovirus konnte dieses selbst in allen vier Versuchsreihen nachgewiesen werden. Ein Antikörper gegen β-Aktin diente jeweils als Kontrolle für die Proteinkonzentration und Lademenge der Blots (Abb. 11).

Wir untersuchten verschiedene abwärts liegende Ziele der PI3-Kinase in INS1E-Zellen, die mit Glukose (11 mM) stimuliert wurden. Im Western Blot mit einem gegen die phosphorylierte Form der Proteinkinase B gerichteten Antikörper (p-Akt) zeigte sich bei allen drei Infektionslinien eine Reduktion der Aktivität. Während jedoch bei den p55α-überexprimierten Zellen die Aktivität

Ergebnisse

Eine Veränderung dieser Aktivitätsabnahme der Proteinkinase B war auch nach Stimulationen der Kulturen mit IGF-1 oder Forskolin unverändert. Im Vergleich zu mitgeführten Kontrollen zeigte sich jeweils eine relative Abnahme des phosphorylierten Anteils der Proteinkinase B, die wiederum bei der Kontrolle mit LacZ nicht gegeben war (Abb. 12).

Die Darstellung der phosphorylierten Form der p70s6-Kinase gestaltete sich schwierig. Es deutete sich eine Abnahme bei höherer Infektionsstärke an, eine Aussage über Unterschiede zwischen den verschiedenen überexprimierten Proteinen lässt sich anhand der Ergebnisse nur schwer treffen (Abb. 13).

Bei der Darstellung der phosphorylierten Form des nachgeschalteten Retinoblastom-Proteins (Rb) zeigte bei der Infektion mit p55α keine wesentliche Änderung im Vergleich zur Kontrolle. Im Gegensatz dazu nahm der Phosphorylierungsgrad bei p50α und p85α deutlich zu, wobei sich im Western Blot Shift-
Abbildung 13: Auswirkung der Überexprimierung der regulatorischen Untereinheiten auf Akt, GSK-3 und p70-s6-Kinase. Western Blots mit den angegebenen Antikörpern.
Ergebnisse

Ergebnisse

Abbildung 15: Auswirkung des Überexprimierungs der regulatorischen Untereinheiten auf ERK und p38 MAPKinase. Western Blots mit den angegebenen Antikörpern.
3.5 Reduktion von p85α durch RNA-Interferenz

Mittels RNA-Interferenz durch siRNA-Transfektion mit einer Kombination aus drei spezifisch gegen die mRNA von p85α gerichteten siRNAs in einer Konzentration von je 50nM gelang die Reduktion der regulatorischen Untereinheit p85α um den Faktor zwei (Abb. 16A). Als Kontrolle dienten dabei zum einen Lysate von unbehandelten Zellen und zum anderen eine Transfektion mit unspezifischer siRNA, die keinen Einfluss auf Proteine der Signaltransduktion hat. Diese unspezifische siRNA zeigt in verschiedenen Western Blots die selben Ergebnisse wie die nativen Lysate, so das ein allgemeiner Reduktionseffekt von p85α durch den Transfektionsprozess selbst ausgeschlossen werden kann.

Die Transfektionen mitsamt der Kontrollen wurden mit 10 nM IGF-1, 50 µM Forskolin und in einer Kontrollserie nicht stimuliert. Diese Stimulationen hatten auf die Reduktion der Untereinheit p85α keinen Einfluss. Der Versuch wurde bei Glukosekonzentrationen von 2.5 mM und von 15 mM durchgeführt, was ebenfalls ohne Effekt auf das Transfektionsergebnis selbst blieb. Um Ungleichheiten bei der Konzentrationseinstellung der Proben für den Western Blot auszuschließen, diente ein Western Blot mit einem β-Aktin-Antikörper als Ladekontrolle. Dieser zeigte bei der Transfektion und beiden Kontrollen dieselbe Proteinmenge, was auch einen artifiziellen Reduktionseffekt durch ungleiche Proteinkonzentrationen ausschließt. Stimulationen und Glukosekonzentration zeigten ebenfalls gleiche Mengen an β-Aktin (Abb. 16B).

Mit den transfizierten Zelllysaten wurden analog zu der Überexprimierung der regulatorischen Untereinheiten die Aktivierung untergeordneter Signaltransduktionsziele der PI3-Kinase untersucht. Durch die Reduktion von p85α zeigte sich im Western Blot mit einem gegen p-Akt gerichteten Antikörper eine verstärkte Aktivierung der Proteinkinase B. Während die Stimulation mit IGF-1 und Forskolin einen Aktivierungsanstieg der Proteinkinase B gegenüber nicht-stimulierten Zellen zeigte, war jeweils eine relative Aktivitätssteigerung durch die Transfektion zu sehen. Die verschiedenen Glukosekonzentrationen hatten dabei keinen wesentlichen Einfluss auf die PKB-Aktivierung (Abb. 17A).
Ergebnisse

Abbildung 17: Reduktion von p85α durch siRNA-Transfektion. Western Blots mit Antikörpern gegen p-Akt (A), p-GSK-3 (B) und p-p70s6K (C). Wieder jeweils parallel stimulierte Versuchsreihen mit 10 nM IGF-1 und 50 µM Forskolin.
Ergebnisse

Ein anderes Bild bot sich hingegen bei der Untersuchung der Aktivität der p70-S6-Kinase. Weder die Reduktion der regulatorischen Untereinheit p85α noch die Stimulation mit IGF-1 oder Forskolin zeigten eine Aktivitätsänderung. Interessanterweise war bei allen Stimulations-Modi ein Aktivitäts-Unterschied zwischen den verschiedenen Glukosekonzentration zu erkennen. Bei der Konzentration von 15 mM war die Aktivität stärker als bei 2.5 mM, was sich in Wiederholungen bestätigte (Abb. 17C).

3.6 Zellzyklusanalyse

Die nativen INS-1E Zellen zeigten in der Untersuchung mittels durchflusszytometrischer Zellzyklusanalyse (FACS, fluorescence activated cell sorting) eine Verteilung der Zellzyklusphasen, die für differenzierte Zellen typisch ist. Sie weisen einen G1-Phase-Anteil von etwa 85 % auf, einen relativ geringen S-Phase-Anteil von etwa 11–12 % und einen G2-Phase-Anteil von 3–4 % auf (Tab. 2). Ein apoptotischer sub-G1-Anteil war quasi nicht vorhanden.

Bei den adenoviral transfizierten Zellen zeigte sich bei Überexprimierung der regulatorischen Untereinheiten ein differenziertes Bild (Tab. 2, Abb. 18–22). Die LacZ-überexprimierten Kontrollen unterschieden sich in keiner Zyklosphase signifikant von den nativen INS-1E-Kontrollen. Bei Zellen mit p85α-überexprimierter Untereinheit zeigte sich ein deutlicher Proliferationsreiz, der sich als deutliche Zunahme der S-Phase darstellte, deren Anteil in Abhängigkeit von der Infektionsintensität auf bis zu 46 % (±15 %) anstieg. Auch der Anteil der Zellen in der G2-Phase war deutlich erhöht, während konsekutiv jener in der G1-Phase stark erniedrigt war. Die Unterschiede zwischen den beiden

47
Ergebnisse

Abbildung 18: Vergleichende Darstellung der Zellzyklusphasen anhand der Ergebnisse der FACS-Versuche. Veränderungen der G1-Phase (mittelgrau), der S-Phase (hellgrau) und der G2-Phase (dunkelgrau). Differenzen zu 100 Prozent ergeben sich aus der Verwendung der Mittelwerte von \(n=3 \) Versuchen. Zur Benennung der Proben siehe Tabelle 2.

Ergebnisse

Ergebnisse

Abbildung 22: Kontrolle zu den FACS-Versuchen, Western Blot mit Antikörper gegen die regulatorischen Untereinheiten.
Infektionskonzentrationen (MOI von 20 und 100) waren dabei deutlich erkennbar, jedoch nicht signifikant. Die p50α-überexprimierten Zellen zeigten ein Bild, das sich nicht signifikant von diesen Ergebnissen unterschied und mit den gleichsinnigen Western-Blot-Resultaten der p50α und p85α-Exprimierung kongruent ist (s. o.). Bei den Zellen mit überexprimiertem p55α hingegen war Verteilung der G1-, G2- und S-Phase bei den zwei verschiedenen MOI nicht signifikant von den unspezifischen LacZ-Kontrollen sowie den nativen INS1E-Zellen verschieden.

Bei der Transfektion mit siRNA gegen p85α zeigte sich eine leichte, grenzwertig signifikante Reduktion der S-Phase. Die Veränderungen bei G1- und G2-Phase waren nicht signifikant im Vergleich zu den Kontrollen. Ein Unterschied zwischen Transfektionen mit unterschiedlichen siRNA-Konzentrationen (50 nM vs. 100 nM) war dabei ebenfalls nicht zu sehen (Tab. 2, Abb. 18-22).
3.7 PI3-Kinase-Assay

Abbildung 23: PI3-Kinase-Assay (Beispiel), vorhergehend Immunpräzipitation mit Phosphotyrosin-Antikörper, pro Probe 1µCi p-ATP.
4. Diskussion

4.1 Funktionen der regulatorischen Untereinheiten auf Ebene der PI3-Kinase

und p85α zeigen, während bei p55α die Aktivität weitgehend unverändert war. Diese Ergebnisse legen unterschiedliche Funktionen der regulatorischen Untereinheiten der PI3-Kinase in β-Zellen nahe.

Eine verminderte Aktivität, die isoliert mit der Überexpression von p55α assoziiert ist, könnte auf einer differenzierte Funktion in β-Zellen beruhen. Ein

Nicht kongruent mit diesen Beobachtungen jedoch ist das Verhalten der Proteinkinase B und anderer Downstream-Kinasen, insbesondere die verstärkte Aktivierung der Proteinkinase B. Eine Verminderung der p85α-Expression sollte, dem dargestellten Regulationsmodell entsprechend, einen weiteren Abfall der PKB-Phosphorylierung zur Folge haben, was jedoch nicht der Fall ist. Ebenfalls unstimmig ist die verstärkte Phosphorylierung der GSK-3. Diese Beobachtung gehen einher mit der im Kinase-Assay erhöhten Aktivität bei reduzierter Untereinheit p85α.

Eine mögliche Erklärung dieser Phänomene auf der Ebene der PI3-Kinase liegt in einer kompensatorischen Überexpression anderer regulatorischer Unter-
einheiten. Eine solche war bei p50α und p55α jedoch nicht zu beobachten. Für p85β, das von Pik3R2 codiert wird, ist sie in undifferenzierten Stammzellen beschrieben, geht jedoch nach Differenzierung verloren (Hallmann et al. 2003). Bei braunen Adipozyten lies sich hingegen auch in differenzierten Zellen ein kompensatorischer Anstieg von p85β bei p85α-Deletion, nicht jedoch umgekehrt, nachweisen (Ueki et al. 2003). Dieser war jedoch nur schwach ausgeprägt, was für eine wichtigere physiologische Rolle von p85α spricht und für die hier beobachteten Ergebnisse möglicherweise keine ausreichende Erklärung bieten kann. Weitere Erklärungen für die Beobachtungen könnten auf untergeordneten Ebenen der Signaltransduktion liegen.

4.2 Funktionen auf untergeordneten Ebenen

zu dem initialen Anstieg der aktivierten PKB, es war hingegen schon bei geringer Überexprimierung eine Abnahme festzustellen.

Folge haben, was jedoch nicht der Fall ist. Ebenfalls unstimmig ist die verstärkte Phosphorylierung der GSK-3. Verstärkte Phosphorylierung von PKB und GSK-3 passen nicht zu den Zellzyklusveränderungen, bei denen sich eine Verminderung des Zellwachstums und eine G1-Blockade zeigte.

Eine Erklärung für die Ergebnisse könnte auf Ebene der PKB in differenzierten Funktionen von Isoformen liegen. Es ist bekannt, dass PKBα (Akt-1) und PKBβ (Akt-2) in vivo leicht differierende Funktionen aufweisen (Hirsch et al. 2007). Da in unseren Experimenten ein Antikörper verwendet wurde, der PKBα, β und γ unspezifisch nachwies, könnte den Ergebnissen ein differenziert regulatorischer Mechanismus der PKB zugrunde liegen.

Die Untersuchung der p70-S6-Kinase zeigte aus methodischen Gründen nur schwer zu beurteilende Veränderungen des Aktivierungsgrades. Während sich nach Überexpression der Untereinheiten ein zu den Veränderungen bei PKB und GSK-3 paralleles Bild andeutete, waren nach Reduktion von p85α keine Änderungen des Phosphorylierungsgrades sichtbar, was dieselbe Inkongruenz wie bei den beiden anderen untersuchten Effektoren darstellt. Dagegen war die Aktivität bei höherem Glukosespiegel gesteigert. In der Literatur ist für die p70s6-Kinase eine positive Rolle im β-Zellwachstum beschrieben (Dickson et al. 2001).

4.3 Einflüsse auf parallele Wege der Signaltransduktion

Ein paralleler Signalweg, den wir untersuchten, sind die Stress-aktivierten Proteinkinasen (SAPK), die aus den beiden Gruppen der p38-MAPKinase und c-Jun N-terminalen Kinasen (JNK) bestehen. Die PKB interagiert über die drei Aktivatoren der Stress-aktivierten-Proteinkinase-Gruppe (SAPK), ASK1, MLK3 sowie SEK1, mit der p38-MAPKinase und bewirkt eine Inhibition der Apoptose (Song et al. 2005). Daneben wird ein direkter Regulationsweg für die 85 kDa großen regulatorischen Untereinheiten der PI3-Kinase auf JNK und p38 vermutet (Ueki et al. 2003). Die p38-MAPKinase scheint eine komplexe Rolle bei der Pathogenese der Insulinresistenz zu spielen. Bei Diabetikern ist in Muskelzellen, in denen regulatorische Untereinheiten erhöht exprimiert und die
Aktivität der PI3-Kinase vermindert sind, die Rate an phosphoryliertem p38 erhöht. Die Gabe von Insulin bewirkt wiederum eine Abnahme des phosphorylierten Anteils (Bandyopadhyay et al. 2005).

4.4 Schlussfolgerungen und Aussichten

Diskussion

5. Zusammenfassung

Die von der Phosphoinositid-3-Kinase (PI3-Kinase) beeinflussten intrazellulären Signalwege sind für vielfältige Funktionen verantwortlich, darunter die Regulation der Glukoseaufnahme, die Synthese von Glykogen, die Förderung von Proteinsynthese und Zellproliferation, die Verhinderung der Apoptose sowie Regulation von Exozytosevorgängen.

In INS1E-Zellen konnten wir sowohl die regulatorischen Untereinheiten p50α, p55α und p85α als auch die katalytischen Untereinheiten nachweisen. Die zweifache Überexpression der regulatorischen Untereinheiten durch adenoviralen Gentransfer hemmte die Aktivierung der Proteinkinase B, während eine siRNA-induzierte Unterexpression von p85α die Aktivierung der PI3-Kinase und Proteinkinase B steigerte. Überexpression von p55α reduzierte die Menge an phosphorylierter und nicht-phosphorylierter Glykogen-Synthase-Kinase 3, förderte hingegen nicht die Phosphorylierung von p38 MAPK, p44/42 ERK oder Retinoblastom-Protein, im Gegensatz zu den beiden überexprimierten Untereinheiten p50α und p85α. Veränderungen des Verhältnisses von regulatorischen und katalytischen Untereinheiten hatten einen deutlichen Einfluss auf die Zellzyklusregulation. Überexpression von p50α und p85α führten zu einem starken Anstieg der S-Phase, im Gegensatz zu p55α, was auf eine ab-
weichende Rolle von p55α in der Signaltransduktion der β-Zelle, im Gegensatz zu den anderen Pik3r1-Genprodukten, hindeutet.

6. Literaturverzeichnis

White MF: **The insulin signalling system and the IRS proteins.** Diabetologia. 40: S2-S17. (1997)

7. Anhang

7.1 Abbildungsverzeichnis

Abbildung 1: Die Aufbau von Phosphatidylinositol und die Phosphorylierung durch die PI3-Kinasen an der 3'-Position des Inositol-Ringes............................... 2

Abbildung 2: Die definierenden Struktureigenschaften der katalytischen Untereinheiten der verschiedenen PI3-Kinase-Klassen in Säugetieren.............. 4

Abbildung 3: Struktur der regulatorischen Untereinheiten der PI3-Kinase IA 8

Abbildung 4: Schematische Darstellung der Aktivierung der PI3-Kinase........ 10

Abbildung 5: Lichtmikroskopische Darstellungen der INS1E-Zellkultur in Normalmedium und nach Virustransfektion (Fotografien von Antti Rossi)........... 26

Abbildung 6: Grafische Darstellung einer FACS-Zellzyklusanalyse von INS1E-Zellen, inkubiert in Normalserum... 29

Abbildung 7: Qualitativer Western Blot der Untereinheiten der PI3-Kinase in nicht stimulierten INS-1E-Zellen... 34

Abbildung 8: Verhältnis p85a – p110a in INS-1E-Zellen. Darstellung von Immunodepletionssserien (IP) und Western Blots (IB)................................. 35

Abbildung 9: Stimulierung der INS-1E-Zellen mit IGF-1. Western Blots mit den angegebenen Antikörpern gegen phosphorylierte sowie gegen alle Formen der Proteinkinase B... 36

Abbildung 10: Stimulierung der Zellen mit Forskolin. Western Blots mit den angegebenen Antikörpern gegen phosphorylierte sowie gegen alle Formen der Proteinkinase B... 36

Abbildung 11: Überexprimierung der regulatorischen Untereinheiten durch adenooviralen Gentransfer. Western Blots mit p85α-, HA-, Adenovirus- und β-Aktin-Antikörpern.. 38

76
Abbildung 12: Veränderung der Aktivität der Proteinkinase B nach Überexpression der regulatorischen Untereinheiten bei Stimulation mit IGF-1 und Forskolin... 39

Abbildung 13: Auswirkung der Überexprimierung der regulatorischen Untereinheiten auf Akt, GSK-3 und p70-s6-Kinase (Western Blots). .. 41

Abbildung 14: Auswirkung des Überexprimierung der regulatorischen Untereinheiten auf Rb (Western Blots). .. 42

Abbildung 15: Auswirkung des Überexprimierung der regulatorischen Untereinheiten auf ERK und p38 MAPKinase (Western Blots). 43

Abbildung 16: Reduktion der regulatorischen Untereinheit p85α durch siRNA-Transfektion (Western Blots). Stimulationen mit IGF-1 und Forskolin. 45

Abbildung 17: Reduktion von p85α durch siRNA-Transfektion. Western Blots mit Antikörpern gegen p-Akt, p-GSK-3 und p-p70s6K. 46

Abbildung 18: Vergleichende Darstellung der Zellzyklusphasen anhand der Ergebnisse der FACS-Versuche .. 48

Abbildung 19: Detaillierte Darstellungen der jeweiligen Veränderungen der G1-, G2-, und S-Phase. Ergebnisse der FACS-Versuche. 49

Abbildung 20: Grafische Darstellung der FACS-Zellzyklusanalysen, Ergebnisse der Überexprimierung der regulatorischen Untereinheiten 50

Abbildung 21: Grafische Darstellung der FACS-Zellzyklusanalysen, Ergebnisse der Reduktion von p85α ... 51

Abbildung 22: Expressionskontrolle zu den FACS-Versuchen, Western Blot mit Antikörper gegen die regulatorischen Untereinheiten 51

Abbildung 23: Ergebnisse des PI3-Kinase-Assays .. 53
7.2 Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>Grad Celsius</td>
</tr>
<tr>
<td>A</td>
<td>Ampère</td>
</tr>
<tr>
<td>A. dest.</td>
<td>destilliertes Wasser</td>
</tr>
<tr>
<td>Adv</td>
<td>Adenovirus</td>
</tr>
<tr>
<td>Ak</td>
<td>Antikörper</td>
</tr>
<tr>
<td>Akt</td>
<td>Synonym für Proteinkinase B (PKB)</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosin-Triphosphat</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovines Serumalbumin</td>
</tr>
<tr>
<td>Ci</td>
<td>Curie</td>
</tr>
<tr>
<td>CREB</td>
<td>C-responsive element binding</td>
</tr>
<tr>
<td>DC</td>
<td>Dünnschicht-Chromatografie</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl-Sulfoxid</td>
</tr>
<tr>
<td>ECL</td>
<td>enhanced chemiluminescence</td>
</tr>
<tr>
<td>ERK</td>
<td>extracellular-related kinase-1</td>
</tr>
<tr>
<td>FACS</td>
<td>flourescence-activated cell sorting</td>
</tr>
<tr>
<td>FCS, FBS</td>
<td>fetal calf/bovine serum (fetales Kälberserum)</td>
</tr>
<tr>
<td>GSK-3</td>
<td>Glykogen-Synthase-Kinase 3</td>
</tr>
<tr>
<td>g</td>
<td>Gramm</td>
</tr>
<tr>
<td>H₂O</td>
<td>Wasser</td>
</tr>
<tr>
<td>HA</td>
<td>Hämagglutinin</td>
</tr>
<tr>
<td>HRP</td>
<td>horse-reddish peroxidase</td>
</tr>
<tr>
<td>IB</td>
<td>Immunoblot = Western Blot</td>
</tr>
<tr>
<td>ID</td>
<td>Immundepletion = serielle Immunopräzipitation</td>
</tr>
<tr>
<td>IGF-1</td>
<td>Insulin-like growth-factor-1</td>
</tr>
<tr>
<td>IP</td>
<td>Immunopräzipitation</td>
</tr>
<tr>
<td>IRS</td>
<td>Insulin-Rezeptor-Substrat</td>
</tr>
<tr>
<td>K</td>
<td>Kontrolle</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilo-Dalton</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>M</td>
<td>Mol</td>
</tr>
</tbody>
</table>
Anhang

ml Milliliter
NaCl Natriumchlorid
MOI multiplicity of infection
mRNA messenger-Ribonucleinsäure
P70S6K P70-S6-Kinase
PBS phospho-buffered saline
PDK phosphoinositide dependent kinase
PI Phosphatidylinositol
PH Pleckstrin homology
PI3K, PI3-Kinase Phosphoinositid-3-Kinase oder
Phosphatidylinositol-3-Kinase
Pty, PY Phospho-Tyrosin
PKB Proteinkinase B
PKC Proteinkinase C
Rb Retinoblastoma-Protein
RNA ribonuclein acid (Ribonukleinsäure)
RNA-I RNA interference
rpm, U/min rotations per minute, Umdrehungen pro Minute
SDS Sodiumdodecylsulfat
SDS-PAGE Sodiumdodecylsulfat-Polyacrylamid-Gelelektrophorese
siRNA small interfering ribonuclein acid
TBS-T tris-buffered saline with Tween
V Volt
7.4 Verzeichnis akademischer Lehrer

Meine akademischen Lehrer waren die Damen und Herren

In Marburg

In Kassel
Wolf, Steinhauer, Ritter, Pausch, Dorphans, Schorr, Neuzner, Feige, Möller

In Durban
Moodley, de Kock, Naidoo, Ramkelawon

In Schwalmstadt
Schäfer, Weiher, Niggemeier, Stopinski, Rudde-Teufel, Kley, Lange, Formoli
7.5 Danksagung

Zum Gelingen dieser Arbeit haben viele Menschen beigetragen; ihnen allen gebührt mein Dank.

Ich möchte Herrn Prof. Dr. Arnold und Herrn Prof. Dr. Gress für die Möglichkeit danken, diese Arbeit in der Klinik für Innere Medizin, Schwerpunkt Gastroenterologie, Endokrinologie und Stoffwechsel durchführen zu können. Herrn PD Dr. Dieter Hörsch danke ich für die Überlassung der Arbeit und für das von Anfang an in mich gesetzte Vertrauen, für das Beibringen der genutzten Techniken, die kontinuierliche Rückprache und Diskussion in Bezug auf Versuchsergebnisse, sowie für die Möglichkeit, die Arbeit auf verschiedenen Veranstaltungen zu präsentieren.

Den wissenschaftlichen Mitarbeitern der Arbeitsgruppe, Dr. Jörg Schrader und Eleni Aprin-Archontidou, sowie auch den anderen Mitarbeitern des Forschungsbereiches 3 danke ich für die intensive Einarbeitung und Unterstützung bei den Arbeiten im Labor sowie Diskussion und Lösung von Problemen. Der Arbeitsgruppe von Prof. Dr. Maisch sei für die Möglichkeit gedankt, die FACS-Analysen durchzuführen zu können.

Nicht zuletzt dank meiner Mitdoktorandinnen Antti, Donata, Dorothe, Jigar, Julia, Sandra und Susanne war das Arbeitsklima in der Gruppe stets angenehm; durch die Doktorandentreffen war auch für eine persönliche Note gesorgt.