Universitat
Marburg

Philipps

Explicit and Implicit
Parallel Functional Programming:
Concepts and Implementation

Dissertation
zur
Erlangung des Doktorgrades
der Naturwissenschaften
(Dr. rer.nat.)

dem

FACHBEREICH MATHEMATIK UND INFORMATIK
DER PHILIPPS-UNIVERSITAT MARBURG

vorgelegt von

Jost Berthold

aus Kassel

Marburg/Lahn, 2008



Vom Fachbereich Mathematik und Informatik
der Philipps-Universitat Marburg als Dissertation
am 6.6.2008 angenommen.

Erstgutachter: Prof. Dr. Rita Loogen
Zweitgutachter: Prof. Dr. Greg Michaelson
Tag der miindlichen Priifung am 16.6.2008



Zusammenfassung (deutsch)

Die vorliegende Arbeit beschreibt Konzepte zur parallelen Programmierung mit
funktionalen Sprachen und deren Implementierung, insbesondere parallele Haskell-
Dialekte und die Sprache Eden. Wir gehen der Frage nach, welche grundlegenden
Koordinationskonstrukte und welcher Grad an expliziter Ausfithrungskontrolle
notig und niitzlich fiir eine funktionale Implementierung paralleler Koordination
sind.

In der heutigen Zeit von globaler Vernetzung und Mehrkernprozessoren wird
die parallele Programmierung immer wichtiger. Dennoch sind nach wie vor
Programmiermodelle verbreitet, die kaum von den Hardwareeigenschaften ab-
strahieren und sich daher zwangslaufig in technischen Details verlieren. Funk-
tionale Sprachen erlauben aufgrund ihrer Abstraktion und mathematischen Natur,
die gegeniiber sequenziellen Programmen erheblich hohere Komplexitat paralleler
Programme zu erfassen, sie ermoglichen ein abstrakteres Nachdenken iiber paral-
lele Programme. Dabei taucht unvermeidlich die oben formulierte Leitfrage auf,
zu welchem Grad explizite Kontrolle der Ausfithrung nétig und niitzlich ist, um
effiziente parallele Programme zu schreiben, wenn diese wiederum abstraktere
Kontrollkonstrukte implementieren und insbesondere in der sog. skelettbasierten
Programmierung, welche gangige Muster der Parallelverarbeitung abstrakt als
Funktionen héherer Ordnung beschreibt.

Wir beschreiben unsere Implementierung fiir die Sprache Eden, welche hier-
archisch in Schichten organisiert ist. Die unterste, direkt implementierte Schicht
stellt nur sehr einfache Primitive fiir Parallelverarbeitung bereit, komplexere Kon-
trollkonstrukte werden in der funktionalen Sprache Haskell implementiert.

Neben der Implementierung von Eden stellen die implementierten Primi-
tive flir sich genommen bereits Kontrollkonstrukte zur Parallelverarbeitung dar.
Aus der Implementierung abgeleitet wird die funktionale Sprache EDI (‘ED’en-
T'mplementierungssprache) vorgeschlagen, die auf niedrigem Abstraktionsniveau
Haskell um orthogonale, grundlegend notwendige Konstrukte zur Koordination
paralleler Berechnungen erweitert: Auswertungskontrolle, Nebenlaufigkeit, Pro-
zesserzeugung, Kommunikation und Information iiber verfiighare Ressourcen.

Die grundlegende Systemunterstiitzung von EDI und das Implementierungs-
konzept lassen sich mit nur geringen Modifikationen auf andere Implementierun-
gen (und Berechnungssprachen) iibertragen. Aufgrund seiner Flexibilitat und
der funktionalen Basis bietet unser Ansatz grofles Potenzial fiir modellgestiitzte
Ansitze zur automatischen Verwaltung paralleler Berechnungen und fiir die Ve-
rifikation von Systemeigenschaften. Wir beschreiben das allgemeine Design eines
generischen Systems zur hierarchischen Implementierung paralleler Haskell-Er-
weiterungen, eine Prototyp-Implementierung fiir adaptive Scheduling-Konzepte
und eine Machbarkeitsstudie fiir virtuellen globalen Speicher.

Anwendungsgebiet fiir die Evaluation der Sprache EDI ist die Implemen-
tierung abstrakterer Konstrukte, insbesondere paralleler Skelette, auf die wir uns
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in einem weiteren Teil der Dissertation konzentrieren. Skelette beschreiben paral-
lelisierbare Algorithmen und parallele Verarbeitungsmuster abstrakt als Funktio-
nen hoherer Ordnung und verbergen ihre parallele Implementierung. Somit bieten
sie ein (gegeniiber der Programmierung mit Eden oder EDI) hoheres Abstrak-
tionsniveau, entziehen aber dem Programmierer die explizite Parallelitatskontrolle.
Fiir einen Vergleich der Ausdrucksstiarke und Pragmatik werden exemplarisch
Implementierungen fiir verschiedene parallele Skelette in der Sprache Eden und
ihrer Implementierungssprache EDI beschrieben. Wir untersuchen neben ein-
schldgigen Vertretern dieser “algorithmischen Skelette” eine andere Art Skelette,
welche anstelle der Algorithmik die Interaktion von Prozessen in regulérer Anord-
nung beschreiben und fiir die wir den Begrift Topologieskelette gepréigt haben.

Durch die zusétzlichen nicht-funktionalen Konstrukte in Eden haben Eden
und EDI im Ergebnis die gleiche Ausdrucksstiarke, wobei aber die abstrakteren
Eden-Konstrukte essenzielle Seiteneffekte und Nebenlaufigkeit verbergen. Durch
die in EDI (im Gegensatz zu Eden) explizite Kommunikation lassen sich Skelett-
Implementierungen besser lesen und an besondere Bediirfnisse anpassen. Die
explizitere Sprache EDI findet ihr originares Anwendungsgebiet in der Skelettim-
plementierung, -anpassung und -optimierung. Demgegeniiber ist ein klarer Plus-
punkt von Eden die automatische (durch eine Typklasse und geeignete Uberladung
definierte) Stream- und Tupelkommunikation. Letztere kann in EDI unverédndert
iitbernommen werden, sollte hier aber, gemafi der EDI-Philosophie, explizit und
gezielt vom Programmierer eingesetzt werden.

Ergebnisse im Uberblick:

e die Definition der Sprache EDI, Haskell mit expliziten Prozesskontroll-
und Kommunikationskonstrukten. EDI erweitert Haskell um orthogonale,
grundlegend notwendige Konstrukte zur Koordination paralleler Berech-
nungen: Auswertungskontrolle, Nebenlaufigkeit, Prozesserzeugung, Kom-
munikation und Information tiber verfiighbare Ressourcen. Einsatzgebiet der
Sprache ist die Implementierung komplexerer Koordinationskonstrukte.

e cine strukturierte Implementierung von Eden, deren Konzepte in einem
allgemeineren Kontext tragfahig sind.

e das Design und eine Prototypimplementierung fiir ein generisches System
zur Implementierung abstrakterer Kontrollkonstrukte, insbesondere fiir eine
automatisierte dynamische Steuerung paralleler Berechnungen.

e neu entwickelte bzw. alternative Skelett-Implementierungen fiir algorith-
mische und Topologie-Skelette, fiir einen Vergleich von EDI und Eden.

e der exemplarische Nachweis, dass funktionale Sprachen ein addquates Ab-
straktionsniveau bieten, um Strukturen der Parallelverarbeitung zu erfassen.

v



Abstract

This thesis investigates the relation between the two conflicting goals of explicit-
ness and abstraction, for the implementation of parallel functional languages and
skeletons. Necessary and useful coordination features for implementing parallel
coordination in a functional implementation language will be identified, leading
to the proposal of a Haskell extension for explicit low-level coordination, and to a
concept of structuring implementations for parallel functional languages in layers
of increasing abstraction.

The first main part concentrates on implementation techniques and require-
ments. We are describing the layered implementation of the parallel functional
language Eden, pointing out advantages of its layer structure and deriving the
coordination features of the proposed explicit low-level language, named EDI.
Subsequently, the presented implementation concept is generalised to the design
and a prototype implementation of a generic parallel runtime system for man-
agement of parallel functional computations, major parts of which are encoded
in Haskell.

In a second main part, we concentrate on implementations of parallel skele-
tons, thereby investigating expressiveness and pragmatics of the proposed low-
level language EDI in comparison to the language Eden. Exemplarily, a range
of implementations is presented for data parallel skeletons implementing map,
map-reduce, and the Google-MapReduce programming model. Furthermore, we
present and discuss a new skeleton category: topology skeletons, which describe
interaction and communication patterns in regularly structured process networks.

In a broader context, the implementation concepts and skeleton implemen-
tations which we present underline that functional languages provide a suitable
abstraction level to reason about parallel programming and to circumvent its
complexity:.



Thank You!

First of all, I would like to thank my supervisor, Prof. Dr. Rita Loogen for her
support and inspirations over the last years, which gave me the chance to develop
the ideas I am going to present.

I appreciate the opportunity to use the Beowulf clusters of the Heriot-Watt
University for my series of tests. Personal acknowledgements go to people who
I enjoyed working with and who provided important impulses for my research:
Hans-Wolfgang Loidl (formerly Heriot-Watt, now LMU Munich), Phil Trinder
and Greg Michaelson (Heriot-Watt), Kevin Hammond (St.Andrews), Abyd Al
Zain (Heriot-Watt), and my new colleague Mischa Dieterle. T also would like to
thank many nice people who are working in related areas and which I have met
at conferences and workshops. It has been a pleasure to meet you, and some
of you have become more than just professional colleagues. Furthermore, I may
thank other good friends and former friends for the personal support and new
perspectives they offered. You know who you are!

Last, but not least, hugs to my parents for their support, especially to my
mother, who repeatedly struggled with my computer science slang and my english
skills — and who would surely spot a number of flaws on this page.

Dedicated to p, D., and 3 — who should know. . .

vi



Contents

I Introduction and background
1 Introduction

2 (Why) parallel functional programming
2.1 On parallel programming . . . . . . . . . ... ... ... .....
2.1.1 Basics: Hardware and communication. . . . . . .. .. ..
2.1.2  On parallel programming models . . . . . . ... ... ..
2.2 Advantages of functional approaches . . . . ... ... ... ...
2.3 Parallel Haskells classified . . . . . ... ... ... ... .....
2.4 The language Eden . . . . . ...

II High-level implementation concepts

3 A layered Eden implementation
3.1 Implementation of Eden . . . . . . ... ... ... .. ......
3.1.1 Layer structure of the implementation . . . ... ... ..
3.1.2 Parallel runtime environment . . . . . ... ... ... ..
3.1.3 Primitive operations . . . . . .. .. ... ... ......
3.1.4 Eden module: Language features . . . . . . ... ... ..
3.1.5 Simulations for Eden and its implementation . . . . . . . .
3.2 Edi: The Eden implementation language . . . . . . . .. .. ...
3.2.1 Degree of control: A compromise . . ... ... ... ...
3.2.2 The EDnI language . . . . . .. ... ... ... .. ....
3.2.3 Relation to other Haskell extensions . . . . . . . . ... ..
3.3 Generalising the implementation concept . . . . . . . . ... ...

4 A generic runtime environment for parallel Haskells
4.1 Introduction . . . . . . . .. ..o
4.2 Design aims of the generic RTE ARTCoP . . .. ... ... ...
4.2.1 Simplest kernel . . . .. ..o 0 Lo
4.2.2 Genericity . . . . ..o
4.2.3  Multi-level system architecture . . . . ... ... .. ...

vil

19

21
22
22
23
26
27
31
34
34
36
38
38



CONTENTS

4.2.4 High-level scheduler control . . . . .. ... ... .....
4.3 Configurable Haskell scheduler framework . . . . .. .. .. ...
4.4  Explicit communication . . . . ... ..o
4.5 System monitoring . . . .. ... ..o
4.6 Example: Adaptive schedulingin GpH . . .. ... ... .. ...
4.6.1 Hierarchical task management . . . . . . . . . .. .. ...
4.6.2 Adaptive load distribution mechanisms . . . . . . . .. ..
4.7 Feasibility study: Virtual shared memory management in Haskell
4.7.1 Virtual shared memory in GpH . . . .. ... . ... ...
4.7.2 Global address management in Haskell . . . . . . ... ..
4.7.3 Haskell heap access from inside Haskell . . . . . ... ..
4.7.4  Summary . . . ...

Visualising Eden program runs: EdenTV

5.1 Motivation . . . . . . ..

5.2 How EdenTV works . . . . . .. .. ... ... ... .......

5.3 Related work . . . . ...

5.4 Simple examples . . . . ...
5.4.1 TIrregularity and cost of load balancing . . . .. ... ...
5.4.2 Lazy evaluation vs. parallelism . . . ... ... ... ...
5.4.3 Process placement (implementation) bug . . . . ... . ..

III Parallel programming with skeletons

6

7

viii

Skeleton programming and implementation

6.1 Context: High-level parallel programming . . . . .. . ... ...

6.2 Parallel programming with skeletons . . . . . . .. .. ... ...
6.2.1 The skeletonidea . . . . . . . .. ... ... ... .. ...
6.2.2 A skeleton typology . . . . . . .. ...

Problem-oriented skeletons: Map and reduce

7.1 Data parallel mapping . . . . . .. ... ..o

7.2 Parallel map-and-reduce . . . ... ... ... ... ... ... .

7.3 The “Google MapReduce” skeleton . . . . . . . ... ... ... ..
7.3.1 MapReduce functionality . . . . . . . . ... .. ... ...
7.3.2 Parallelisation potential . . . . .. ... ... ... ...
7.3.3 Example applications . . . . . .. .. ... ... ...

Structure-oriented skeletons

8.1 Process pipelines . . . . . .. ... L
8.1.1 Uniform type, implementation variants . . . . . . ... ..
8.1.2 Heterogeneous pipeline stages, and including [/O . . . . .

71
71
72
76
77
7
78
81

83

85
85
86
86
88

91
91
97
99
100
102
106



CONTENTS

8.2 Processring skeletons . . . . ... ..o 120
8.3 Nesting skeletons . . . . . . .. ... oo 128
8.3.1 A toroid topology created as a nested ring . . . . ... .. 128

8.3.2 Two versions of a parallel pipeline . . . . . ... ... ... 134

IV Conclusion 139
9 Conclusions and future work 141
9.1 Summary of contributions . . . . . ... ... 141
9.2 Discussion and future work . . . . . . ... 142
Appendix 147
A Bibliography and list of figures 147
Bibliography . . . . . . . .. 147
List of Figures . . . . . . . . . . . .. 159

B Code collection 161
B.1 Implementation . . . . . .. .. ... ... ... .. 161
B.1.1 Eden module: Eden.hs . . . . . ... .. ... ... .. .. 161

B.1.2 Primitives wrapper: ParPrim.hs . . . . . . . ... ... .. 168

B.1.3 Primitives simulation using Concurrent Haskell . . . . .. 170

B.2 Skeletons. . . . . . . ... 174
B.2.1 Google MapReduce Skeleton, optimised EDI version . . . . 174

B.2.2 PipelO.hs, implementation of multi-type 1O-pipelines . . . 177

B.2.3 EdiRing.hs: EDI ring skeletons . . . . . . .. .. .. ... 180

B.2.4 PipeRings.hs: definition of a ring using a pipeline skeleton 184

C Formalien (deutsch) 186
Erklarung des Verfassers (deutsch) . . . . ... ... .. ... .. ... 186

X



CONTENTS




Part 1

Introduction and background






Chapter 1

Introduction

The renaissance of parallel programming

In today’s computer and software development, parallel and concurrent program-
ming is becoming more and more relevant, essentially driven by two evolutions.
Local area and wide/global area networks have been developed and consolidated
in the 90s, and today are a standard infrastructure for science, industry, and even
private users. The recent “Grid” trend [FKTO1] has consolidated and standard-
ised these big and unreliable networks to make them usable, and has identified
possible applications and shortcomings. As a second evolution, roughly during
the last 3 years, single core CPU development is getting closer and closer to a hard
limit, for physical and thermal reasons. Only by more efficient chip design and
novel hardware techniques can CPU speed be raised further. On the other hand,
with advances in chip design and chip production, more and more functionality
can be concentrated on smaller and smaller chips. As a consequence, multi-core
processors are on the rise, having already become the standard even for consumer
computers. And while, today, 8-core CPUs commercially constitute the upper
end, efforts concentrate on considerably increasing the amount of processing ele-
ments integrated into a CPU, to hundreds and thousands [Chine, All07].

However, writing efficient and correct parallel programs is far more com-
plex than sequential programming. The mainstream in software engineering has
long ignored this, neglecting alternative paradigms and conceptual work. To our
knowledge, methods and tools for explicitly modeling parallel execution are far
from standard in the industry yet, and the emerging new multicores differ sub-
stantially from older parallel machines. There is a pressing need to investigate
and establish new programming paradigms in the mainstream, suitable for pro-
gramming parallel machines, well-scaling and efficiently using today’s hardware
and network technology. Parallel programming needs more conceptual under-
standing.



CHAPTER 1. INTRODUCTION

Declarative languages for parallelism

Declarative programming languages have long been a research topic, and have
fundamental advantages over imperative languages. Precious ideas emerging from
declarative language research have found their way into imperative languages, e.g.
type safety by a strong type system, easy code reuse by generic container types
(parametric polymorphism), and others.

Declarative programs are often better to maintain and accessible to formal
reasoning, and are thus a promising scientific setting to clarify the essence of
parallel coordination and to circumvent its complexity. Sound mathematical
foundations and their abstract, problem-oriented nature make them amenable
to formal reasoning, and to distilling out coordination structure, programming
model and algorithm structure of a parallel program. To prove this claim, and to
make a contribution to advancing high-level parallel programming, the research
presented in this thesis investigates skeletons [Col89,RG03], ready-made efficient
parallel implementations for common patterns of parallel algorithms. From the
functional programming perspective, skeletons are nothing but higher-order func-
tions with a hidden parallel implementation, and constitute a well-established
idea in declarative research communities.

Implementation of parallel coordination

While many approaches to skeleton programming are based on a fixed, estab-
lished set of efficient skeletons (see e.g. [PK05,Ben07]), some parallel functional
languages reveal to the programmer their potential to define new skeletons, or to
easily create them by composition [MSBKO01, RG03]. However, those languages
necessarily provide suitable lower-level coordination features and more explicit
control than the resulting skeleton will offer. The task of implementing a skele-
ton in a high-level language typically deals with a compromise between high
abstraction and specific operational control of execution. And in functional pro-
gramming, the border between library and language is fluid [BKPS03]: Skeleton
implementation work can be rightly considered as developing high-level languages
for parallel coordination (in fact, even independent of the underlying computation
language). Considering more generally the implementation aspects for parallel
functional languages, similar questions arise. Step by step, the implementation
needs to bridge the “large gap” to hardware or middleware of the parallel ma-
chine.

The work at hand investigates the relation between the two conflicting goals
of explicitness and abstraction, for the implementation of parallel functional lan-
guages and skeletons, under the following question:

What coordination features and what degree of explicitness is necessary and useful
for implementing parallel coordination in a functional implementation language?
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To answer this question, we propose a Haskell extension for low-level coordination,
suitable to implement different kinds of more abstract and complex coordination
features in Haskell modules. This low-level implementation language provides:
(a) evaluation control (b) concurrency and remote task creation, (c) support for
communication between tasks, (d) location- and resource-awareness. These four
points constitute orthogonal and general requirements of parallel coordination.

Using the proposed low-level language, implementations of more complex and
implicit languages for parallelism can be structured in strictly separated layers.
The low-level language serves as as a basic layer, and kernel parts underneath can
be kept small in favour of library implementations, thereby retaining the funda-
mental advantages of functional languages. The name of the proposed language is
EDI (EDen Implementation language), because our approach issued from imple-
mentation concepts for the explicit parallel functional language Eden [LOMPO5],
which provides explicit process control, implicit concurrency, automatic parent-
child communication with stream or single-data mode, and non-functional exten-
sions for explicit communication and reactive systems.

The approach is useful and of general interest: Using the primitives allows
one to rapidly prototype, and to reason about requirements for, implementations
of other more complex and implicit coordination languages and, in this sense of
languages, for parallel skeleton implementation.

Skeleton implementation constitutes another testbed to investigate expres-
siveness and pragmatics of our low-level implementation language. We will point
out its advantages and restrictions in comparison with the, equally very explicit,
language Eden, by discussing implementation variants of algorithmic skeletons
and topology skeletons, a term we have coined for skeletons which capture pro-
cess interaction in regular structures.

The major contributions of this research are:

o We identify the orthogonal and general requirements of parallel coordination
by defining a functional low-level language EDI.

e We point out the general applicability of the concepts identified, by ex-
plaining implementation concepts for Eden and for a more general system,

e and by comparing skeleton implementations in EDI and Eden.
e Additionally, we propose the notion of topology skeletons.

e In the broader context, our work underlines that functional languages pro-
vide a suitable abstraction level to reason about parallel programming.
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Plan of the thesis

The thesis is structured as follows: In the first part, we briefly explain the context
and background of our work, high-level parallel programming, and especially
parallel Haskell dialects and their implementation.

Part II treats implementation concepts for the parallel functional language
Eden and an approach to a more generalised implementation concept. The im-
plementation of Eden coordination constructs is explained in detail, and the lan-
guage EDI (EDen Implementation Language) is proposed, which provides more
explicit constructs for communication between parallel computations. Subse-
quently, we study the underlying implementation concept and its potential as a
more general platform for high-level parallel language implementation, presenting
design and partial implementation of a prospected generalised prototype system
for high-level parallelism. Furthermore, in Chapter 5, we explain concepts and
usage of FdenTV, a graphical tool to trace and visualise runtime behaviour of
Eden programs (which is closely related to the implementation work for Eden).

The other main part (III) focuses on skeleton programming and implementa-
tion, as a vehicle for comparison between Eden and its implementation language
EDI, considered as a language of its own. In Chapter 7, we discuss a range
of different implementations for parallel map computations (a common transfor-
mation applied to all data of a container type), possibly followed by a reduction
operation on the results (“map-and-reduce”, for which we also discuss the variant
known as Google-MapReduce [DG04]). Chapter 8 discusses a different concept of
skeletons: Topology Skeletons, which capture interaction and communication in a
regularly structured process network. We investigate implementation variants for
process pipelines, process rings, and process toroids. Recursive and non-recursive
implementations are compared, and we again compare the expressiveness of Eden
and EDI for skeleton implementation. Furthermore, we discuss questions related
to skeleton nesting for two examples.

Conclusions in the last part summarise our results and point out interesting
future work. The developed Haskell modules we discuss are reproduced in the
Appendix, unless the source code of the thesis is itself compilable.

References

Part of the material we are going to present in this thesis has been presented
and published at workshops and conferences during the last years. The results
related to Eden implementation work have been presented and published in sev-
eral workshops and conference proceedings: [BLPW02] and [BKL*03] explain a
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Eden for skeleton programming. Our publications related to the idea of gener-
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topology skeletons and their implementation: [BLO5a, BLO8] describe and quan-
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Chapter 2

(Why) parallel functional
programming

Or should we add “...matters” in analogy to Hughes [Hug89]|? Some computer
science publications have adopted the Why. .. matters pattern, and thereby un-
derlined the relevance of that famous seminal paper “Why functional program-
ming matters”. And so does the overview edited by Hammond and Michael-
son [HM99], discussing various theoretical and practical aspects of parallel func-
tional programming in general. Somewhat more specifically parallel Haskells are
presented in the overview by Trinder et al. [TLP02].

The main parts of this thesis treat parallel Haskell implementation issues
and skeleton programming techniques. In this chapter, we will briefly give some
background of parallel and parallel functional programming.

2.1 On parallel programming

Parallel programming is hard, much harder than writing correct sequential pro-
grams. But what makes parallel programming hard? To justify what otherwise
is nothing but an often-cited commonplace, we have to look at how parallel pro-
grams are written.

2.1.1 Basics: Hardware and communication.

To classify parallel machines and parallel processing, Michael Flynn was the first
to propose a classification [Fly66] in the late 60s, which is still widely cited. Flynn
adopts a stream-based data-processing view, and he divides parallel hardware
into the following instruction parallelism and data accesses. The categories are:
SISD (Single Instruction, Single Data) — the classical definition of a uniprocessor;
SIMD (Single Instruction, Multiple Data) — vector/array processor; MISD (Mul-
tiple Instruction, Single Data) — of no practical interest; and MIMD (Multiple

9
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Instructions, Multiple Data) — which covers the range of multiprocessor systems.
This very coarse system (which even contains the redundant MISD class) is the
first of only a few systems that have been widely accepted.

Today, we hardly find special-purpose vector processors any more; dominating
hardware architectures are parallel machines where the processing elements (PEs)
simply are the general-purpose processors found in single computers — and increas-
ingly several PEs on one chip. MIMD has become the only model of interest in
practical use (all 500 supercomputers of the world are MIMD architectures [Top]).
Subsequent taxonomies introduced the loosely coupled and tightly coupled cate-
gories for MIMD architectures, taking into account the interconnection network
and thereby capturing a highly relevant machine characteristic. Communication
between the PEs of a parallel computer can be realised by shared memory, or
by exchanging messages over an interconnection network. In addition, modern
(multicore) processors commonly organise the shared memory in a memory hi-
erarchy with several levels of cache memory, where the cores are equipped with
on-chip 1st-level cache, but subsets share a common lower-level cache. Memory
consistency is managed in hardware for these cache architectures, but lead to
non-uniform memory latencies in an extended memory hierarchy, which Flynn’s
simple model does not take into account (as well as its successors).

Consequently, basic issues of parallel programming are either synchronisa-
tion between concurrent memory accesses to shared data, avoiding inconsistent
read /write operations, or else, the fact that message passing is inherently nonde-
terministic and easily introduces errors due to race-conditions. Parallel program-
ming models build on the basic infrastructure to more or less hide synchronisation
and communication issues and to provide a more abstract programming model.

2.1.2 On parallel programming models

Useful classifications of parallel programming models refer to the degree of ez-
plicitness provided by the respective programming language, or paradigm, for
instance Skillicorn and Talia [ST98], who subdivide along several aspects: com-
munication, division, mapping, and synchronisation of parallel subcomputations,
and whether the parallelisation is statically determined (at compile time) or dy-
namic.

However, the predominating programming model in practice today is still
closely connected to the underlying hardware characteristics: message-passing
using MPI [MPI97], or shared-memory parallelism using OpenMP [DM98] or
threading libraries [IEE92, Int]. So, parallel programming is mostly done by
means of libraries which facilitate and standardise, but do not abstract from the
basic infrastructure explained.

And basically this is why “parallel programming is hard”. When every de-
tail of parallelism is left to the programmer, the program complexity becomes
excessive, and a large fraction of code deals with purely technical issues.

10
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During decades of research in high-level parallel programming, a range of
more abstract models have been developed, but did not find broad acceptance.
Although industry becomes more and more interested today, we hardly find ex-
amples where modern high-level techniques are in practical use. Far from it,
commercial efforts sometimes concentrate on porting the hardware-oriented low-
level view and model to different architectures. For instance, Intel’s Cluster-
OpenMP [Hoe06] enables to apply a shared memory model to distributed memory
architectures, and claims that unmodified OpenMP-programs can be used. The
different hardware architecture will, of course, lead to a dramatic performance
loss for programs not optimised for data locality, but optimisation is completely
left to the programmer.

Of particular interest for the remainder of the thesis are the following ap-
proaches, which are therefore mentioned and briefly described in their character-
istics here.

The Cluster-OpenMP mentioned is an example of virtual shared memory
(VSM). VSM can be implemented on top of message-passing, to abstract from the
real interconnection network. VSM reduces communication and synchronisation
issues to simpler synchronisation problems in a shared-memory environment, and
thereby facilitates parallel programming for different platforms. Based on well-
established techniques (global addresses and weighting), data sharing, consistency
of distributed data and memory management can be automatically managed by
a library implementation (we will explain technical details later on). However,
low-level programming in a VSM model may lead to poor program performance,
because the transparent access to remote memory cells hides data dependencies
and latencies.

A related approach is the tuple-space paradigm, most commonly known as
its realisation in the Linda coordination language [CG92, CG90]. This model
differs from plain shared-memory in that the PE’s local memory is cleanly sepa-
rated from the shared data in the tuple space, and the latter is only accessed via
special (library) operations. However, both approaches cannot be considered as a
substantially new paradigm; programming essentially follows the shared-memory
paradigm and either the programmer or a complex runtime system needs to ad-
equately synchronise concurrent memory accesses.

Data parallelism is a fundamentally different and more abstract model,
based on special container data types (lists, arrays etc.) and operations with a
(hidden) parallel implementation. Operations on these data containers provide
inherent parallelism which can be exploited by that transparent implementation.
Parallelism can even be introduced automatically (an approach which is, however,
said to be “comprehensively dead” [HM99]), or when the programmer explicitly
chooses to use a parallel operation for data in a container. Mapping parallel
operations onto PEs, data transfer, and synchronisation are completely hidden
in the implementation.

11
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Algorithmic skeletons [Col89] (already mentioned before) constitute an-
other high abstraction for parallel programming. An algorithmic skeleton cap-
tures a common algorithmic structure with inherent parallelism, or more gener-
ally, a common pattern of parallel programming, as a higher-order function. Real
parallel algorithms can be programmed merely by supplying parameter functions
which execute the concrete computation inside the fixed algorithmic pattern. The
skeleton approach and its functional nature are of primary interest for the work
we present, and we will discuss skeletons in detail in our main part III.

2.2 Advantages of functional approaches

As Hammond and Michaelson summarise [HM99], the advantages of functional
programming underlined by Hughes carry over to the parallel world. Programs
are easy to read and understand, program construction and code reuse are simpli-
fied, and thereby program transformations, optimisations and formal reasoning
about program behaviour is easier.

Some additional advantages specific to parallelism can be added: Specific ben-
efits of parallel functional programming, versus imperative parallelism, are that
the absense of side-effects makes data-dependencies and inherent parallelism ob-
vious: Programs can be easily parallelised and analysed. Furthermore, results of
(purely) functional parallel programs are determined, just as sequential functions
will always produce one and the same output for the same input. The particular
evaluation order does not matter (Church-Rosser theorem), and purely functional
computations can exploit parallelism inherent in the reduction semantics [HM99].
Moreover, a parallel program is usually closely connected to a sequential one,
which is useful for development and testing.

Last but not least, functional languages with support for higher-order func-
tions are the languages of choice to express algorithmic skeletons. Put another
way, functional languages enable to abstractly describe common parallelisation
patterns without getting lost in technical details or particularities of the con-
crete algorithm. In all, irrespective of the concrete programming model, the high
abstraction provided by functional languages makes them suitable languages to
conceptually describe parallelism, in an executable specification — which, however,
will not instantly deliver maximum performance.

2.3 Parallel Haskells classified

Similar to Skillicorn’s classification of programming models, parallel functional
languages are often classified along their explicitness, ranging from completely
implicit to completely explicit coordination. As one might expect, the predomi-
nant category is a mid-level of “controlled parallelism” [HM99], where program-

12



2.3. PARALLEL HASKELLS CLASSIFIED

mers specify parallelism, while details are left to the language implementation.
However, the understanding of explicitness varies, and especially the interesting
mid-level remains vague and open to interpretation. We will follow the categori-
sation suggested by Loogen in her relevant chapter [Loo99], and illustrate the
classification by referring to relevant Haskell dialects.

Implicit parallelism

In functional languages, it is possible, and has been carried out, to find and exploit
the parallelism which is inherent in the reduction semantics. The Haskell example
is parallel Haskell(pH) [NAHT95, AAAT95], in which Haskell’s lazy evaluation is
changed to eager evaluation for performance. However, completely implicit ap-
proaches turned out to be less useful than giving programmers (limited) execution
control.

Indicating parallelism

Using annotations or combinators, inherent parallelism in a functional program
may be indicated by the programmer, to inform the compiler or runtime sys-
tem about whether an independent computation should be done in parallel. The
programmer annotates a program with (semantically transparent) compiler di-
rectives and thereby decides, or suggests!, a parallelisation. Examples are data
parallel languages, which use special bulk types and operations with parallel im-
plementation (such as the data parallel Haskell NEPAL [CKLP01, CLJ*07]), as
well as the par,seq combinators of Glasgow-parallel Haskell (GpH) [THM'96].
GpH is described in more detail here, because we will refer to its implementation
later.

Glasgow parallel Haskell (GpH) [THM™96] is a well-known parallel di-
alect of Haskell investigated since the 90’s. The overall paradigm of GpH is
semi-implicit data and task parallelism, following annotations in the source pro-
gram. In every definition, subexpressions can be marked as “suitable for parallel
evaluation” by a par-expression in the overall result. The coordination construct
par takes 2 arguments and returns the second one after recording the first one as
a “spark”, to be evaluated in parallel. An idle processor can fetch a spark and
evaluate it. The built-in seq is the sequential analogon, which forces evaluation
of the first argument before returning the second one.
par,seq :: a => b -> b

These coordination atoms can be combined in higher-order functions to control
the evaluation degree and its parallelism without mixing coordination and compu-
tation in the code. This technique of evaluation strategies described in [THLP9S]

"Whether or not the execution is parallel can either be decided depending on the workload,
or be mandatory (as the annotation in Concurrent Clean [PvE93].).
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offers sufficient evaluation control to define constructs similar to skeleton-based
programming. However, as opposed to usual skeletons, parallelism always re-
mains semi-implicit in GpH, since the runtime environment (RTE) can either
ignore any spark or eventually activate it.

The implementation of GpH, GUM [THM™'96], essentially relies on the ad-
ministration of a distributed shared heap and on the described two-stage task
creation mechanism, where potential parallel subtasks first become local sparks
before they may get activated. The only access point to the system is the spark
creation primitive; parallel computations and their administrative requirements
are completely left to the RTE and mainly concern spark retrieval and synchro-
nisation of a distributed heap. Once a spark gets activated, the data which is
evaluated in parallel could subsequently reside on a different processor and there-
fore has to receive a global address, so it can be sent back on request.

The main advantage of the implicit GpH concept is that it dynamically adapts
the parallel computation to the state and load of nodes in the parallel system.
The GpH implementation would even allow to introduce certain heuristics to
reconfigure the parallel machine at runtime. However, parallel evaluation on
this dynamic basis is hardly predictable and is accessible only by simulation and
tracing tools like GranSim [Loi98].

Controlled parallelism

A higher degree of execution control is achieved when the programmer explic-
itly specifies parallel scheduling. Programs with controlled parallelism are real
parallel programs that expose their parallel behaviour. Examples in Haskell are
Hudak’s para-functional programming approach and successors [MHO04]), or the
evaluation strategies approach (as a high-level GpH [THLP98]), which enables to
force evaluation of subexpressions to a certain degree (in parallel or sequentially).

Skeleton-based parallelisation can be ranged in this category since, commonly,
the programmer has to explicitly choose the algorithmic pattern implemented by
a certain skeleton, and to follow it. However, Trinder et al. [TLP02] categorise the
HDC language [HLOO] (implementing a subset of Haskell) as “implicit”. In HDC,
common higher-order functions for lists have an implicit parallel implementation
which is completely transparent to the programmer.

Explicit parallelism

Other, even more explicit, languages give the programmer complete control over
parallel execution. These languages are not only able to speed up transforma-
tional systems (which map input to output), but can also be used to implement
concurrent, interactive and distributed systems, i.e. augment the language ex-
pressiveness. Explicit parallel languages often use a concept of processes and
channels between them to define process networks.
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In the language Caliban [Tay97], (static) process networks can be specified
declaratively. The compiler generates code for all processes and their intercon-
nection, which is thus statically determined. The language Eden (presented and
explained in detail in the next section) takes a similar approach: Processes are
specified by their input-output mapping and connected via channels, which may
transfer data as streams. In contrast to Caliban, Eden processes are instantiated
dynamically, and the process network can thus evolve during runtime.

Both Caliban and Eden are implicit about the communication details and
synchronisation. Going even further, we find functional languages with explicit
message-passing and concurrency. Examples (not based on Haskell) are Con-
current ML [Rep99], Facile [GMP89], and Concurrent Clean [SP99]. In the
Haskell world, we find Concurrent Haskell [JGF96] and Port-based distributed
Haskell [TLP02]. However, these languages are not primarily targeted towards
parallelism (speeding up a single computation), but intended for distributed and
interactive systems. Glasgow-distributed Haskell [PTLO01] is another example, an
unconventional one, since it uses the virtual shared memory model of GpH.

2.4 The language Eden

The parallel Haskell dialect Eden [LOMPO5] has been developed in the 90s by
research groups in Marburg and Madrid [BLO95, BLOP96, BLOMP97]. Sev-
eral implementations based on message passing have been constructed since
1998 [Bre98, Klu, BKL*03], and a broad range of publications investigate se-
mantics and implementation aspects, as well as its application to skeleton pro-
gramming (the overview [LOMPO05] summarises).

Basic coordination constructs

Eden extends Haskell [PH99] by syntactic constructs for explicitly defining pro-
cesses, providing direct control over process granularity, data distribution and
communication topology. Its two main coordination constructs are process ab-
straction and instantiation.

process :: (Trans a, Trans b)=> (a -> b) -> Process a b
C#) :: (Trans a,Trans b)=> Process a b -> (a -> b)

embeds functions of type a->b into process abstractions of type Process a b where
the context (Trans a, Trans b) ensures that both types a and b belong to the
type class Trans of transmissible values. A process abstraction process (\x -> e)
defines the behavior of a process with parameter x as input and expression e as
output.

The evaluation of an expression (process (\ x -> e1)) # e2 leads to dynamic
creation of a new (remote) child process which evaluates the expression et [x->e2].
The instantiating or parent process evaluates and sends e2 to the child process,
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while the latter sends the result back to the parent, both using implicitly created
communication channels. The (denotational) meaning of the above expression is
identical to that of the ordinary function application ((\ x -> e1) e2).

Communication semantics: Streams and tuples

In general, Eden processes do not share data among each other and are encap-
sulated units of computation. All data is communicated eagerly via (internal)
channels, avoiding global memory management and data request messages, but
possibly duplicating data.

Data which is communicated between Eden processes is generally evaluated
to normal form by the sender. In principle, arbitrary data could be sent, but this
property requires that its type belongs to type class NFData (providing a normal
form evaluation strategy [THLP98]). The mentioned Trans class is thus a subclass
of NFData, and additionally provides communication operations?: Depending on
the data type, Eden specifies special communication for data communicated as a
process input or output.

e [f a list is communicated, its elements will be successively evaluated to
normal form and immediately sent to its destination one by one. The list
is communicated element-wise, as a stream.

This property can be used to profit from lazy evaluation, namely by using

infinite structures and by reusing the output recursively as, e.g., in the
workpool skeleton [KLPROO].

e [f process input or output is a tuple, its components will be evaluated to
normal form and sent concurrently. Thus, several inputs and outputs of a
process do not interfere with each other, and do not block process creation.

Eager evaluation

Both input and output of a process can be a tuple, in which case one concurrent
thread for each output component will be created, so that different values can be
produced independently. Whenever one of their outputs is needed in the overall
evaluation, the whole process will be instantiated and will evaluate and send all
its outputs eagerly. This deviation from lazy evaluation aims at increasing the
degree of parallelism and at speeding up the distribution of the computation.
Local garbage collection detects unnecessary results and stops the evaluating
remote threads. Another obvious effect is increased responsiveness of remote
processes and the interleaving of parameter supply and parallel computation.

2In fact, the presence of an additional class has technical reasons. To require a normal-form
evaluation strategy would be sufficient for Eden processes, following the language definition.
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Additional non-deterministic features

The basic constructs of Eden internally install channels between parent and child
processes, and handle their communication automatically. To increase expressive-
ness and optimise communication in arbitrary process networks, two additional
Eden language constructs allow one to dynamically create and use dynamic reply
channels. Direct connections between arbitrary processes can be established. The
difference between static and dynamic channels is that the former are installed
during process creation while the latter are created by a running process.

A type constructor ChanName is used to represent a dynamic channel, which
can be created and passed to another process to receive data from it. Dynamic
channels are installed using the following two operators:

new :: Trans a => (ChanName a -> a -> b) -> b
parfill :: Trans a => ChanName a -> a ->b ->b

As can be seen from their type, operations on dynamic channels in Eden are
type-safe. Furthermore, which is not expressible in terms of types, channels are
restricted to 1:1 communication. If a channel is used by more than one sender
simultaneously, behaviour will be undefined, usually a runtime error.

Evaluating an expression new (\ ch_name ch_vals -> e) has the effect that a
new channel name chname is declared as a reference to the new input channel,
via which the values ch_vals will eventually be received in the future. The scope
of both is the body expression e, which is the result of the whole expression. The
channel name has to be sent to another process to establish direct communication.
A process can reply through a channel name ch_name by evaluating an expression
parfill ch_name el e2. Before e2 is evaluated, a new concurrent thread for evalu-
ation of et is generated, whose normal-form result is transmitted via the dynamic
channel. The result of the overall expression is e2; the new thread is generated
as a side effect. Its execution continues independently from the evaluation of e2.
This is essential, because et could yield a (possibly infinite) stream which would
be communicated element by element. Or, et could even (directly or indirectly)
depend on the evaluation of e2.

As another non-functional feature, Eden defines a non-deterministic opera-
tion to merge a list of lists into a single output list, in the order in which elements
are available, similar to the Concurrent Haskell construct nmerge10. Many-to-one
communication, essential for expressing reactive systems, can be realised using
this operation. A controversial fact is that the Eden definition provides merge not
as a monadic operation, but as a purely functional one — thereby spoiling referen-
tial transparency. However, a good reason for this (also explained in [LOMPO05])
is that mutual recursive value-passing between processes, as in the master-worker
process topology, would otherwise need to use monadic fixpoint operators. To
guarantee determined behaviour of functions which use merge internally is a skele-
ton programming task; its intention is internal use.
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In summary, Eden is an explicit parallel Haskell which changes the evalua-
tion order for the parallelism constructs and adds useful non-functional features.
As a general-purpose language, it allows to express more implicit parallelism
constructs, like skeletons, internally. Eden programs are fully explicit regarding
parallelism, but the built-in communication modes provide additional implicit
concurrency, which adds programming comfort and is a reasonable compromise
between programmer control and automatic management. The next chapter will
describe the concepts for the Eden implementation and point out possible alter-
native coordination constructs for even more explicit control.
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Chapter 3

A layered Eden implementation

Any high-level approach to parallel programming contains an inherent trade-
off for its implementation: providing operational control of the execution while
abstracting over error-prone details. The explicit parallel runtime support needed
for an implementation must coordinate the parallel evaluation operationally, i.e.
express operational properties of the execution entities. It will thus — in the
end — rely on an imperative-style description. Parallelism support in its basic
form must be considered as imperative (and thus encapsulated in monads in
the purely functional language Haskell). Yet programmers wish for a higher
level of abstraction in their parallel programs; they do not want to deal with
side-effects or communication and prefer to use skeletons [RGO03] (higher-order
functions for common parallel patterns), because they are not interested in gory
details of implementation. Some parallel languages and libraries offer a fixed set
of predefined skeletons and special, highly optimised implementations. On the
other hand, with a more explicit general-purpose parallel language (like Eden),
a programmer can express new skeletons specific to the application.

It follows that whether to hide or show the imperative basics of a coordina-
tion language for parallel functional computation is purely a question of language
design. Eden tries to achieve a compromise between extremes in these matters:
it exposes the execution unit of parallel processes to the programmer, but sticks
to a functional model for their use. Eden processes differ from functions only by
additional strictness and remote evaluation. However, the advanced Eden lan-
guage features merge for nondeterministic stream merging, and new and parfill
for explicit channel communication, allow for reactive systems and an arbitrary
programmer-controlled communication structure, which is (necessarily) opposed
to referential transparency. Furthermore, we can say from our practical experi-
ence that a modified instantiation operation with explicit placement of the newly
created process is an indispensable feature, for both skeleton programming and
application programming in Eden.

In this chapter, we describe the Eden implementation, based on the Glasgow-
Haskell Compiler (GHC, currently at version 6.8.2), which we have developed,
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maintained and refined during several years. The implementation has been struc-
tured in essentially two layers: a kernel runtime system which provides directly
implemented primitive operations for basic parallelism support, and two Haskell
modules which wrap these primitives and combine them to the more complex op-
erations. The first section describes the essential functionality needed for Eden
specifically. But the Eden implementation primitives may as well be considered
as a language of their own, the EDen Implementation language, EDI for short,
presented in section 3.2. In contrast to Eden, EDI uses explicit communication
and the IO monad to encapsulate side-effects. Like Eden, EDI is implemented by
a small Haskell module which builds some safety around the primitive operations,
restricting their types and usage.

Our work in [BLO7a] describes the Eden implementation, but also compares
expressiveness and performance of Eden and EDI (for an earlier stage). While
the differences in performance can be neglected, the programming styles are sub-
stantially different. EDI allows more accurate control of parallelism, useful for
system programming, whereas the higher abstraction of Eden is favourable for
application programming, but often obscures what exactly is happening during
parallel execution.

As we outline in the last section of this chapter, the structured Eden imple-
mentation using a low-level implementation language can be a valuable approach
for other parallel Haskells as well. The next chapter goes into more detail about,
and presents selected aspects of, this generalising approach.

3.1 Implementation of Eden

3.1.1 Layer structure of the implementation

The implementation of Eden extends the runtime environment (RTE) of the
Glasgow-Haskell-Compiler (GHC) [GHC] by a small set of primitive operations
for process creation and communication between processes. These primitives
merely provide very simple basic actions for process creation, data transmission
between the machines’ heaps, and system information. More complex opera-
tions are encoded in functional modules: a Parallel Primitives (ParPrim) mod-
ule, which adds a thin wrapper around the primitives proper and some Haskell
types for runtime system access, and the Eden module, defining all the language
construct in terms of the wrapped primitives.

This module relies on the side-effecting primitive operations to encode Eden’s
process creation and communication semantics. The code on module level ab-
stracts from many administrative issues, profiting from Haskell’s support in gener-
icity and code reuse. Moreover, it will protect the basic primitives from being
misused. This leads to an organisation of the Eden system in layers (see Fig. 3.1):
program level — skeleton library — Eden module — primitive operations — parallel
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runtime environment. The strict structuring greatly improves the maintainability
of the highly complex system and also enables to think more generally about the
needed runtime system support for parallel coordination in general.

Eden Program

____________________________

1 Skeleton Libraries

Sequential Eden Module
Haskell ParPrim Module
Libraries Primitive Op.s

Sequential RTE Parallel RTE

Figure 3.1: Layered Eden implementation

3.1.2 Parallel runtime environment

The basic layer implementing the primitive operations is based on the GHC run-
time environment, and manages communication channels and thread termination.
The GHC runtime environment (RTE) has been extended such that it can exe-
cute in parallel on clusters. Furthermore, small changes have been made to the
compilation process, so that the compiled program is accompanied by a run script
to make it execute in parallel with suitable parameters. We briefly summarise
and systemise the extensions made to the RTE.

Communication infrastructure inside the runtime system is concentrated
inside one single “Message Passing System” interface (file MPSystem.h). The
module provides only very basic functionality assumed to be available in virtu-
ally any middleware solution, or easily self-implemented, which enables different
implementations on different hardware platforms. Fig. 3.2 shows the functions
to provide. Apparently, the parallel runtime system has to start up in several
instances on a whole group of connected machines (PEs). The primitive opera-
tions, and also the entire runtime system code, address the n participating PEs
simply by numbers from 1 to n. Mapping these logical addresses to the real,
middleware-dependent addressing scheme is one task to implement. Two imple-
mentations of the MPSystem interface have been carried out, for MPI [MPI97]
or PVM [PVM] as a middleware.

Startup and shutdown infrastructure manages that, upon program start,
the runtime system instances on all PEs get synchronised before the main evalu-
ation can start, and that the distributed system does a controlled shutdown both
upon success and failure.
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/KKK KA KA KKK KKK K KKK KKK KK o
* Startup and Shutdown routines (used inside ParInit.c only) */

/* - start up the PE, possibly also spawn remote PEs */
rtsBool MP_start(char** argv) ;

/* - synchronise participating PEs
* (called by every node, returns when all synchronised */
rtsBool MP_sync(void);

/* - disconnect current PE from MP-System */
rtsBool MP_quit(int isError);

/K% ok sk ok sk ok sk s ok ok 3k ok sk ok K ok ok 3 ok ok ok 3 K ok ok K
* Communication between PEs */

/* - a send operation for p2p communication */
void MP_send(int node, OpCode tag, long *data, int length);

/* - a blocking receive operation. Data stored in *destination */
int MP_recv(int maxlength, long *destination, // IN
OpCode *code, nat *sender); // 0OUT

/* - a non-blocking probe operation */
rtsBool MP_probe(void);

Figure 3.2: RTE message-passing module (interface MPSystem.h)

The protocol for the startup procedure is deliberately simple and depends on
the underlying middleware system. For middleware with the ability to spawn
programs on remote nodes (such as PVM [PVM]), a “main” PE starts up first,
and spawns RTE instances on all other participating PEs. PEs are synchronised
by the main PE broadcasting the array of all PE addresses, which the other
PEs acknowledge in a reply message (PP_READY). Only when the main PE has
received all acknowledgements, it starts the main computation.

When the middleware manages the startup of programs on multiple PEs by
itself (this is the case for MPI implementations, where the MPI report [MPI97]
imposes that MPI processes are synchronised by the mpirun utility upon startup),
no additional synchronisation for the runtime system needs to be implemented.

In order to implement the controlled system shutdown, basic message passing
methods had to be implemented, and the scheduling loop of GHC has to regularly
check for arriving messages before executing the next runnable thread.

Shutdown is realised by a system message PP _FINISH. Either this message
is broadcasted by the main PE (with address 1), or from a remote PE to the
main PE, when the remote PE fails. In the failure case, the parallel compu-
tation cannot be recovered, since needed data might have been lost. Remote
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PEs receiving PP_FINISH simply stop execution, while the main PE, in the fail-
ure case, broadcasts the message to all other remote PEs, thereby initialising a
global shutdown.

Basic (Runtime) Computation Units, managed by the runtime system, are
addressed by globally unique addresses as follows.

A running parallel Eden program splits up, in the first instance, into a set of
PEs 1 to n (also called machines in the following). Machine 0 is invalid. Fur-
thermore, already the sequential GHC runtime system internally supports thread
concurrency addressed using (locally) unique thread identifiers (IDs). Multiple
threads at a time can thus run inside one machine. Threads are uniquely identi-
fied by their machine number and ID.

A useful mid-level abstraction of a thread group in a machine is introduced
by the Eden language definition: a process. Each thread in Eden belongs to a
process, a conceptual unit of language and runtime system. A process consists of
an initial thread, and can add threads by forking a subcomputation (concurrent
haskell). All threads in one process share a common heap, whereas processes are
not assumed to share any data; they need to communicate explicitly. Grouping
threads inside one machine to processes like this is useful in general, and also
relates to the extensions made to garbage collection with respect to heap data
transfer.

Support for data transfer between PEs is a more than obvious requirement
of any parallel system implementation. In the context of extending GHC, specif-
ically, any data is represented as a graph in the heap. Data transfer between PEs
thus means to serialise the subgraph reachable from one designated start node (or:
heap closure), and to reconstruct it on the receiver side. In our implementation,
heap data structures are transferred as copies, which potentially duplicates work,
but avoids implementing a virtual global address space in the runtime system
(we will come back to this in Section 4.7). An important property of the data
serialisation routine is that on the one hand, it does not evaluate any data (but
sends it as-is, in its current evaluation state). On the other hand, serialisation is
instantly aborted when a placeholder for data under evaluation is found in the
subgraph. Thus, in terms of concurrent heap access, data serialisation behaves
like evaluation, even though it does not evaluate anything.

Data is always sent via channels previously created on the receiver side, where
the placeholder nodes which synchronise concurrent threads in the sequential
system may now stand for remote data as well. The RTE keeps a list of open
channels and manages the replacement of placeholder by data which has been
received through the channel.

Several data message types are implemented: the normal Data and the Stream
mode. Data sent in Data mode just completely replaces the placeholder when it is
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received. When data is sent in Stream mode, the receiver inserts it into the heap
as the first element of a list and leaves the channel open for further list elements
(until the closing ni1, [] is eventually sent in Data mode). Another communication
mode Connect serves to establish a producer-consumer link between two PEs early,
before results of a potentially expensive evaluation are transmitted. Finally,
because computations, as data, are first-class citizens in Haskell, and therefore
nothing but a heap graph structure, the creation of a remote computation could
be implemented as yet another data communication mode Instantiate, where the
transmitted data is actually the unevaluated computation to be executed.

Please note that our extensions for data transfer change the meaning of place-
holder nodes in the heap, which has consequences for the GHC garbage collection
mechanisms. In the sequential system, a thread may only find a placeholder in
the heap if there is another thread that evaluates the data behind it. Garbage
collection in the sequential system evacuates data needed by runnable threads
in the first instance. If none of the runnable threads will ever update a certain
placeholder any more, threads blocked on this placeholder are effectively garbage
and will be removed. This is not the case any more in our system, where place-
holders may also stand for remote data. But the implementation of the Eden
language constructs (described later) ensures that a remote data source sender
exists. Thus, the modified garbage collection keeps threads alive whenever they
are registered as members of a process (i.e. not created for internal reasons).

Changes to the compilation process have been made only for the linking
phase and for convenience reasons. The compilation of an Eden program in the
extended GHC remains largely the same as compiling a sequential program with
GHC. Differences are that libraries for the message passing system have to be
linked to the application, and that the compiled and linked program needs cus-
tom mechanisms to be started in parallel. The latter issue is solved by generating
a separate startup script, depending on the middleware in use. It must be men-
tioned that the start script is a minimalistic solution, and might cause problems
for unfamiliar users or in custom-configured clusters. However, the Eden System
in its current state was not developed as a commercial off-the-shelf solution but
is a research software system.

3.1.3 Primitive operations

The current implementation of Eden is based on six primitive operations. These
primitives, rather than the runtime system support described before, represent
the basic requirements for any Eden implementation: system information (amount
of participating PEs and local PE), explicit data transfer, remote process and lo-
cal thread creation, upon which Eden coordination constructs can be built.
Primitive operations are directly implemented in the runtime system, and
consequently do not use Haskell data types as parameters. The lowest Haskell
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data Mode = Stream | Data data modes: Stream or Single data
| Connect | Instantiate Int special modes: Connection, Instantiation
data ChanName’ = Chan Int# Int# Int# a single channel: IDs from RTE

createC :: I0 ( ChanName’ a, a ) channel name creation

connectToPort :: ChanName’ a -> I0 () channel installation

sendData :: Mode -> a -> I0 () send data on implicitly given channel
fork :: I0 O -> 10 O new thread in same process (Conc.Haskell)
noPe :: I0 Int number of processor elements

selfPe :: I0 Int ID of own processor element

Figure 3.3: Primitive operations to implement Eden (module ParPrim.hs)

module of the implementation merely consists of embedding the primitives in
the IO monad to encapsulate the side-effects, and adds Haskell data types for
communication mode and channels. Fig. 3.3 shows the interface, the full code is
reproduced in Appendix B.1.2.

The first two primitives provide system information: the total number of
processor elements (noPe) or the number of the processor element running a
thread (selfPe).

For communication between processes, createC creates a new channel on the
receiver side. It returns a channel name, containing three RTE-internal IDs:
(PE, processID, portID) and (a handle for) the channel contents. Primitives
connectToPort and sendData are executed on the sender side to connect a thread
to a channel and to asynchronously send data. The send modes specify how the
receiver sends data: either as an element of a stream (mode Stream), or in a
single message (mode Data), or (optionally) just opening the connection (mode
Connect). The purpose of the Connect mode is to provide information about future
communication between processes to the runtime system. If every communication
starts by a Connect message, the runtime system on the receiver side can terminate
threads on the sender side evaluating unnecessary data.

Please note that thread management reduces to only one primitive fork,
which creates a new thread in the same process (and which is simply a variant of
a Concurrent Haskell [JGF96] construct). We have explained that starting a new
remote thread (and process) can be implemented as sending data with the send
mode Instantiate. The Int argument allows to explicitly place the new process
on a certain machine. If it is zero, the RTE automatically places new processes
in round-robin manner.

3.1.4 Eden module: Language features
Overloaded communication

The primitives for communication are used inside the Eden Module to implement
Eden’s specific data transmission semantics. The module defines type class Trans
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newtype ChanName a = Comm (a -> I0())

class NFData a => Trans a where

-- overloading for channel creation:
createComm :: I0 (ChanName a, a)

createComm = do (c,v) <- createC

return (Comm (sendVia c), v)

-- overloading for streams:

write ::a > 100

write x = rnf x ‘seq‘ sendData Data x

sendVia ch d

do connectToPort ch
write d

Figure 3.4: Type class Trans of transmissible data

-- list instance (stream communication)
instance Trans a => Trans [a]

where write 1@[] = sendData Data 1
write (x:xs) = do (rnf x ‘seq‘ sendData Stream x)
write xs

-- tuple instances (concurrency by component)
instance (Trans a, Trans b) => Trans (a,b)
where createComm = do (c1,vl) <-createC
(c2,v2) <-createC
return (Comm (send2Via cl c2), (v1,v2))

send2Via :: ChanName’ a -> ChanName’ b -> (a,b) -> I0 ()
send2Via cl1 c¢2 (v1,v2) = do fork (sendVia c1l v1)
sendVia c2 v2

Figure 3.5: Eden module: Overloading for communication

of transmissible data, which contains overloaded functions, namely createComm to
create a high-level channel (type ChanName), and write to send data via channels.

As shown in Fig.3.4, the high-level channel ChanName is a data communicator, a
function which performs the required send operation. It is composed by supplying
the created primitive channel as a first argument to the auxiliary function sendvia.
The latter, evaluated on sender side, first connects to the channel and then calls
the write function to evaluate its second argument to normal form' and send it
to the receiver in Data mode.

The two functions in Trans are overloaded as follows: write is overloaded
for streams, which are communicated elementwise, and createComm is overloaded

!The NFData class provides an evaluation strategy [THLP98] rnf to force normal-form
evaluation of any member type.
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for tuples, which are evaluated concurrently by one thread for each component.
Fig. 3.5 shows the instance declarations for lists and pairs. write communicates
lists elementwise in Stream mode, and createComm for pairs creates two primitive
channels, using the auxiliary function sendvia for forking threads.

Process abstraction and instantiation

The Eden constructs process and ( # ) render installation of communication
channels between parent and child process, as well as communication, completely
implicit, whereas the module internally uses explicit communication channels pro-
vided by Trans and the primitive operations.

data Process a b = Proc (ChanName b -> ChanName’ (ChanName a) -> I0())

process :: (Trans a, Trans b) =>
(a -> b) -> Process a b
process f = Proc f_remote
where f_remote (Comm sendResult) inCC

= do (sendInput, input) <- createComm -- input communicator
connectToPort inCC -- sent back...
sendData Data sendInput - ...to parent
sendResult (f input) -- sending result
(# ) :: (Trans a, Trans b) =>

Process a b ->a ->b
p # x = unsafePerformI0 (instantiateAt O p x)

instantiateAt :: (Trans a, Trans b) =>
Int -> Process a b ->a ->1I0b
instantiateAt pe (Proc f_remote) procInput
= do (sendResult, r ) <- createComm -- result communicator
(inCC, Comm sendInput) <- createC -- input comm. (reply)
sendData (Instantiate pe) -- spawn process
(f_remote sendResult inCC)

fork (sendInput procInput) -- send input concurrently
return r -- return placeholder

-- variant of ( # ) which immediately delivers a whnf
data Lift a = Lift a
deLift (Lift x) = x

createProcess :: (Trans a, Trans b) =>
Process a b => a -> Lift b
createProcess p 1
= unsafePerformI0 (instantiateAt O p i >>= \x —>
return (Lift x))

Figure 3.6: Eden module: Process abstraction and instantiation
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Fig. 3.6 shows the definition of process abstractions and instantiations in the
Eden module. Process abstractions embed a function f_remote that is executed by
a newly created remote process. When the process is instantiated, this function
is applied to a communicator sendResult to return the results of the process to
the parent process, and to a primitive channel incC to send a communicator
function (of type ChanName a) for its input channels to the parent process. The
remote process first creates input channels, i.e. the corresponding communicator
functions and the handle to access the input received. It connects to the channel
incC and sends the input communicator with mode Data on it. Afterwards, the
process will evaluate the expression (£ input) and send the result to the parent
process, using the communicator function sendResult.

The instantiation operator ( # ) relies on the function instantiateAt, which
defines the parent side actions for the instantiation of a new child process. The
embedded function f_remote is applied to a previously created result communica-
tor and a primitive channel for receiving the input, and the resulting IO action
is sent to the designated machine unevaluated. A new thread is forked to send
the input to the new process. As its name suggests, instantiateAt may place the
new process on the PE specified by the parameter pe; or else uses the automatic
round-robin placement if the parameter is 0.

Additionally, the Eden module provides a variant createProcess of the instan-
tiation, which differs in the type of the result value, lifted to immediately deliver
a value in weak head normal form (whnf). In the past, this was necessary to
create a series of processes without waiting for process results.

The basic Eden coordination constructs implemented up to now have a purely
functional interface, as opposed to the [O-monadic primitive operations. The na-
ture of the primitive operations is either to trigger side-effects (sending messages,
spawning new processes, creating and connecting to channels), or to return values
which depend on the execution environment (number of machines and execut-
ing machine). To maintain Haskell’s functional nature, we consequently provide
the primitives as IO monadic actions, the common way to encapsulate effects of
this kind in Haskell. However, Eden’s process instantiation has purely functional
type, requiring that the implementation hides their inherent side-effecting na-
ture. Process instantiation is thus internally a sequence of 10 actions based on
the primitives but, finally, the functional type of the instantiation operator ( # )
will be obtained by unsafePerformI0, the back door out of the IO monad.

Advanced, non-functional Eden features

With the additional features of Eden, merge and dynamic reply channels , Eden
loses its purely functional face and exposes nondeterminism and side-effects to
programmers explicitly (without them having a monadic type, however). The
implementation of these advanced constructs is straightforward, using the 10-
monadic primitives and unsafePerformI0 again.

30



3.1. IMPLEMENTATION OF EDEN

merge :: [[al]l -> [a]
merge = unsafePerformI0 . nmergelO

new :: Trans a => (ChanName a -> a -> b) -> b
new chanValCont
= unsafePerformI0 (do (chan , val) <- createComm
return (chanValCont chan val))

parfill :: Trans a => ChanName a -> a -> b -> b
parfill (Comm sendVal) val cont
= unsafePerformI0 (do fork (sendVal val)
return cont)

Figure 3.7: Implementation of Eden’s advanced, non-functional features

The nondeterministic merge of a list of streams into a single stream is already
provided by Concurrent Haskell as an [O-action nmergel0 :: [[a]l]l ~ I0 [al.
Thus we can simply define Eden.merge = unsafePerformIO . nmergeI0. The imple-
mentation of nmergeI0 offers some potential for optimisations in cases where short
lists are merged [DBLOS|.

The functions for dynamic reply channels in Eden are channel creation with
new, and concurrent sending with parfill. They offer arbitrary explicit com-
munication to the programmer. Conforming to Eden’s implicit communication
semantics, data has to be evaluated to normal form before sending, and lists are
transmitted as streams. It follows that, aside from the particular continuation-
passing style shown in their types (explicit continuation in new and result “con-
tinuation” in parfill), the implementation of dynamic reply channels is simply
a variant of using the Trans member functions createComm and write (inside the
communicator sendval).

Haskell, and especially Concurrent Haskell which is heavily used in the Eden
module, encapsulate nondeterminism and side-effects in the IO monad, while the
two Eden constructs in question here use continuation-passing style — which leads
to a programming paradigm mixture. Given the roughly similar functionality of
new,parfill and its implementation using data communicators, these two con-
structs could, and should, be replaced by IO-monadic versions easily. Which
brings us to the point where we are ready to define a whole language as an alter-
native to Eden, which is closer to, and integrates much nicer with, the Concurrent
Haskell base.

3.1.5 Simulations for Eden and its implementation
Simulating Eden constructs?

For debugging and developing Eden programs, a sequential environment which
simulates the Eden coordination constructs is a useful feature. This is not a hard

31



CHAPTER 3. A LAYERED EDEN IMPLEMENTATION

problem for the purely functional parts, process and ( # ). What has to be sim-
ulated is the additional eager evaluation introduced by the implicit inter-process
communication, which enforces evaluation of process inputs and outputs. This
additional evaluation does not happen in a particular order, but concurrently in
separate threads. It is therefore too naive an attempt to simulate this normal-
form evaluation using only rnf and seq. Process input and output may depend
on each other, and include complex interdependencies between elements of com-
municated streams. Figure 3.8 sketches such a simulation, as well as examples
where it does not model the real Eden process behaviour.

Consequently, approximating the behaviour of Eden processes requires start-
ing concurrent threads that evaluate process instantiation input and output to
normal form independently, in order to trigger potential exceptions. Any simula-
tion has to use an analog overloading as in the Trans class, to model concurrent
tuple component evaluation and stream evaluation.

What still remains to be simulated is explicit communication, available through
new and parfill in Eden. At the bottom line, this amounts to simulating the
explicit communication features of the primitives. And once we reach this point,
it is apparently a lot easier to simulate the implementation primitives instead of
the Eden constructs.

data Process a b = Proc (a -> b)
process f = Proc f
(# ) :: (NFData a, NFData b) => Process a b ->a -> b
(Proc f) # x = let fx = f x
-- in rnf x ‘seq‘ rnf fx ‘seq‘ fx -- INCORRECT (1)
-- in rnf fx ‘seq‘ rnf x ‘seq‘ fx -- INCORRECT (2)
in fx -- INCORRECT (3)

Counter-examples for the sequential rnf-based simulations (1) and (2) are processes where
either a list output, or a tuple component, determines parts of the input. The parallel Eden-
based semantics of the following two functions is the identity, while the additional rnf evaluation
as sketched above will lead to deadlock.

seqDeadlock n = let loop = process (map (+1)) # (0:loop)
in loop!!(n-1)
let (a,b,c) = swapP # (n,a,b)
swapP = process (\(in1,in2,in3) -> (in2,in3,inl))
in ¢

seqDeadlock2 n

Vice-versa, variant (3) without the sequential rnf evaluation is incorrect for the following
function. It will return x when evaluated sequentially, while in the real parallel execution, it
yields a runtime error in the input-sending thread:

parError x = process (const x) # undefined

Figure 3.8: Inadequate simulation for Eden coordination constructs
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Simulating, or specifying, the primitives

A simulation ParPrimConcHs.hs for the primitives is included in Appendix B.1.3.
It simulates the behaviour of the implemented primitives by means of concurrent
Haskell, and thereby also constitutes a specification of the primitives semantics.

selfPe

noPe

In order to simulate selfPe, every new thread is registered in a global thread
table, indicating its PE and process. The first thread which registers is
placed on the main PE (number 1).

The number of PEs (noPe) is a simulation parameter which can be arbitrarily
set to a value (initially set to four).

Data communication is simulated by Mvars, which will hold the “transmitted”

data.

A global simulation table holds all these Mvars and also registers the sending

thread to check the 1: 1 channel restriction.

createC

connectToPort

sendData

fork

Channel creation with createC is thus simulated by creating a new Mvar
and registering it in the global table. As in the runtime system, channels
are addressed by globally unique addresses, built from the machine 1D, the
process ID, and a third ID. The return value is a channel name and an
action which reads the value from the Mvar (which will block the reading
thread until data has been written).

Threads need to connectToPort before sending data, and can as well use
sendData with mode Connect to be registered on the receiver side.

Sending data in Data or Stream mode is simulated by filling the respective
Mvar from the table with data. Either the channel is closed and deleted
from the table, or a new Mvar replaces the old one, for data sent in Stream
mode. The ID of the sender thread is registered, and it will be checked
for subsequent communications, triggering a runtime error if a previously
registered ID and the currently sending thread’s ID do not match.

Forking a local thread is a concurrent Haskell functionality. For the sim-
ulation, the forking thread additionally has to add the new thread to the
simulation thread table (in the same process), and the new thread will
delete itself from it upon termination.

Remote process creation using sendData with mode Instantiate is simulated
by forking a new initial thread and registering it in a new process. Auto-
matic local round-robin placement is simulated by registering an appropri-
ate PE number for the new process. A global Mvar holds a list of current
places for all PEs.
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3.2 Edi: The Eden implementation language

Eden provides a purely declarative interface, but aims to give the programmer
explicit control of parallelism in the program. Eden programs can be read in two
ways, from a computational and from a coordinational perspective:

e Instantiation of a previously defined process abstraction denotationally dif-
fers from function application by the additional strictness due to Eden’s
eager communication policy, but yields the same result as application of a
strict function.

e Process abstraction and instantiation will hide any process communication,
but expose the degree of parallelism of an algorithm directly by the number
of instantiations.

However, the additional strictness introduced by eager communication is a cru-
cial point for tuning parallel programs. On the one hand, it is required to start
subcomputations at an early stage and in parallel. On the other hand, adding
too much artificial strictness to a program can easily lead to deadlock situations.
A complex Eden program normally uses a suitable skeleton library, optimised
for the common case and circumventing common pitfalls of parallelism. Eden
can also describe new specialised skeletons, and programming these is a different
matter. Efficiently programming skeletons in Eden requires intimate knowledge
of Eden specifics and a clear concept of the evaluation order in a demand-driven
evaluation. Concentrating on the coordination view of Eden, programming skele-
tons can profit from a more explicit approach, which we name EDI, the EDen
Implementation language. Another part of this thesis will discuss skeleton pro-
gramming in more detail, but we can state here already that more explicit coor-
dination features can help optimise skeletons for particular cases and save time
in spotting errors due to Eden’s complex implicit communication semantics.

3.2.1 Degree of control: A compromise

In the first instance, the primitives used for the Eden implementation (see Fig. 3.3)
can be taken as a — very low-level, but fully-fledged — alternative Eden-type lan-
guage, which will render communication and side-effects explicit and will force
one to use the IO monad for parallel execution. However, directly using the
primitives for programming has the fundamental drawback that these had been
designed with the Eden implementation requirements in mind, and, more sub-
stantially, with a deliberately simple, non-restrictive interface, to obtain a lean
interface between Haskell and the RTE. Subsequently, we are pointing out reasons
for an additional layer above the primitives.
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Evaluation and communication decoupled

In contrast to Eden’s communication semantics, EDI communication is com-
pletely independent of the underlying computation. If a communicated value is
not needed by the sender for a local computation, it will be left unevaluated
by sending. This, of course, is not intended for parallel processes supposed to
compute subresults. Programs in EDI therefore have to use evaluation strate-
gies [THLP98] to explicitly initiate the computation of a value to be sent. Al-
though EDI does not encode coordination by strategies, using the class NFData and
its normal form evaluation strategy rnf is a necessary part of EDI programming.

The implemented sendData primitive does not imply any prior evaluation. As
EDI is purely monadic and deliberately simple, the programmer has to specify ev-
ery single action. This means that programming with the primitives considerably
inflates the code, and may introduce an excess of unwanted details.

Too liberal type of sendData

Another possible source of errors is the all-purpose character of sendbData, which
uses the same primitive for data transmission, communication management, and
process instantiation, distinguished only by the different send modes. Sending
data by the wrong mode may lead to, e.g., a bogus process without any effect, as
shown here:

badIdea_nol :: Int -> a -> I0
badIdea_nol pe data = sendData (Instantiate pe) data

If the data sent is, say, a number, its remote evaluation will have no effect at all,
although its type is perfectly correct, due to the liberal typing of the primitive.
In the example above, an auxiliary function for instantiation should enforce that
the data sent is an action of type 100).

spawnProcessAt :: Int -> I0 () -> I0 Q)
spawnProcessAt pe action = sendData (Instantiate pe) action

Two-step communication

For data communication, threads are supposed to connect to a channel prior to
sending values or stream elements. There is a good reason to support separate
Connect messages: Remote evaluation can be stopped earlier when the sender
thread is known before it evaluates and sends data. However, both steps need to
occur together, and might cause obscure runtime errors if the wrong connections
are created. Moreover, another source of errors is that the wrong communication
mode may be used, and unexpected data structures in the heap are created by
receiving messages, leading to severe runtime errors. The simple channels of EDI
are strongly typed, but even though, the two-step communication and the liberal
choice of send modes allow one to create erroneous communication sequences,
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which cannot be discovered at compile time. The following (perfectly well-typed)
function expects a wrong channel type and then does not connect prior to sending
in one case, or alternatively uses the wrong send mode.

badIdea_no2 :: ChanName’ Double -> [Double] -> IO () -- types do not match

badIdea_no2 ¢ (n:ns)= do sendData Stream n -- not yet connected
badIdea_no2 c¢ ns

badIdea_no2 c [l = do connectToPort c
sendData Stream [] -- wrong send mode

When evaluating this function, a run-time error will occur because the receiver’s
heap becomes corrupted.

As above, a type-enforcing auxiliary function can detect the error, in this
case combining connection and send operation. The only disadvantage here is
that a separate function for sending lists is needed, since the send mode becomes
hard-coded. To allow controlling the evaluation degree of transmitted data, it is
sensible to also include an evaluation strategy (applied prior to transmission) in
such a combined function.

sendWith :: (Strategy a) -> ChanName’ a -> a -> I0 ()
sendWith strat ¢ d = connectToPort ¢ >> (strat d ‘seq‘ sendData Data d)

sendStreamWith :: (Strategy a) -> ChanName’ [a] -> [a] -> I0 ()
sendStreamWith strat ¢ xs = connectToPort c >> send xs
where send 1@[] = sendData Data 1
send (x:xs) = (strat x ‘seq‘ sendData Stream x) >> send xs

In order to streamline the interface between Haskell and the runtime system,
the primitive sendData has been given the liberal type Mode -> a -> I0 (), which
is why erroneous usage of the primitive will not be detected at compile time.
Hence, the solution to these problems consists in typed auxiliary functions which
will restrict the argument types in such a way that the primitives will be used as
intended.

3.2.2 The EDI language

Obviously, it is necessary to superimpose a layer of type-checking auxiliary func-
tions over the primitive operations to improve error detection during type check-
ing in EDI. On the other hand, this superstructure is purely for safety reasons
(and perhaps also decorative). The auxiliary functions presented up to now
hardly go beyond the primitive operations in (reasonable) functionality, abstrac-
tion, or syntactic sugar. What may be added in this respect is a specialised send
operation that hard-wires the normal form evaluation by the rnf strategy — which
is the desired behaviour in most cases, and a convenience function that creates a
whole list of channels instead of just one.
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-- send operations with rnf evaluation (no connect message)
sendNF :: NFData a => ChanName’ a -> a -> I0 ()
sendNF = sendWith rnf

sendNFStream :: NFData a => ChanName’ [a] -> [a] -> I0 ()
sendNFStream = sendStreamWith rnf

-- creation of n channels in one call, "safe" evaluation
createCs :: NFData a => Int -> I0 ([ChanName’ a], [a])
createCs n | n >= 0 = do list <- sequence (replicate n createC)
let (cs, vs) = unzip list
rnf cs ‘seq‘ -- channels fully evaluated
return (cs,vs)
| otherwise = error "createCs: n < Q0"

The latter function also eliminates a potential error: programmers who write
this function on their own might be unaware that the sequence of 10 actions is
executed, but the channel list cs is produced by a lazy function application unzip.
Thus, without the evaluation rnf cs, other functions accessing the channel list cs
for export might access unevaluated placeholders upon packing data.

Put together in a module, we obtain the definition of new coordination features for
parallel Haskells, which use the IO monad: the EDI language shown in Fig. 3.9.

Edi.hs: EDen Implementation language

module Edi
-- interface:
(fork, --— :: I0 ) => 10 (), from conc.hs, without ThreadID
spawnProcessAt, -- :: Int -> I0 () -> I0 Q)
ChanName’, -- EdI channel type
createC, -- :: I0 (ChanName’ a,a) , prim.0Op.
createCs, -- :: Int -> I0 ([ChanName’ al, [a])
sendWith, -- :: (Strategy a) -> ChanName’ a -> a -> I0 ()
sendNF, -- :: NFData a => ChanName’ a -> a -> I0 ()
sendStreamWith, -- :: (Strategy a) -> ChanName’ [a] -> [a] -> I0 O
sendNFStream, -— :: NFData a => ChanName’ [a] -> [a] -> I0 ()
noPe, selfPe, -- :: I0 Int
module Strategies)
where

Figure 3.9: EDI, IO-monadic coordination features for parallel Haskell

We will assess this experimental language in a subsequent part of this thesis
for implementing parallel skeletons, higher-order functions with a parallel imple-
mentation. Especially implementing optimised skeletons requires a high degree
of explicitness, and is thus an interesting testbed, subject of the next thesis part.
Another interesting area related to EDI’s expressiveness is, what other high-level
language constructs (besides Eden) can be implemented? In this thesis part
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about language implementation, we will subsequently discuss how to apply and
extend the presented implementation concepts.

3.2.3 Relation to other Haskell extensions

EDI, considered as a language, provides extensions to existing concepts of Concur-
rent Haskell [JGF96], as implemented in GHC. Thread concurrency is extended by
process parallelism, communication in EDI is handled using channel communica-
tion instead of the shared synchronised heap cells (Mvars) of Concurrent Haskell.
Both approaches can be sensibly combined.

Latest efforts in Haskell implementations aim to extend Concurrent Haskell’s
thread concurrency to OS level for multiprocessor support in the threaded GHC
runtime system [HMJ05, LMJTO07]. Combining this multicore support with the
distributed-memory parallelism provided by EDI is one of our future goals.

In the field of parallel functional languages, many language concepts follow
more implicit approaches than Eden and, necessarily, its implementation lan-
guage. Although intended as a low-level implementation language, EDI can be
used as a language for distributed programming with explicit asynchronous com-
munication.

Glasgow Distributed Haskell (GdH) [PTLO1] is the closest relative to EDI
in this respect and provides comparable language features, especially location-
awareness and dynamically spawning remote 10 actions. However, GdH has
been designed with the explicit aim to extend the virtual shared memory model
of Glasgow Parallel Haskell (GpH) [THM'96] by features of explicit concurrency
(Concurrent Haskell [JGF96]). Our implementation primarily aimed at a simple
implementation concept for Eden and thus does not include the shared-memory-
related concepts of GdH.

Port-based distributed Haskell (PdH) [TLP02] is an extension of Haskell for
distributed programming. PdH offers a dynamic, server-oriented port-based com-
munication for first-order values between different Haskell programs. In contrast
to our implementation, its primary aim is to obtain open distributed systems,
interconnecting different applications — integrating a network library and a stock
Haskell compiler.

3.3 (Generalising the implementation concept

We have previously described in detail the implementation principle of Eden,
extending the RTE by only few primitive operations, and a Haskell module for
more complex features. This concept is not entirely new: Previous Eden imple-
mentations partially used the same ideas [BKL'03], without lifting them to a
concept or paradigm, nor developing the approach towards other languages. We
have developed it to maturity, even leading to a new language proposal. During
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GpH Program

Sequential Evaluation Strategies
Haskell
Libraries 5eq par
Sequential RTE Parallel RTE

Figure 3.10: Layer view applied to GpH implementation

the Eden implementation work, ideas for a more general approach became more
and more self-suggesting, given that the basic requirements for Eden are about
as simple as they possibly can be for any other coordination language concepts.

In particular, the previous Eden implementations shared some essential RTE
features with its more implicit relative GpH [THM*96]. The GpH implementa-
tion is essentially different in that the parallel RTE automatically manages load
balancing between PEs, thereby creating the need for a global virtual shared
memory; however, roughly the same RTE support for data transmission and
process creation is needed for GpH.

To systemise the common parts of parallel Haskell implementations, we follow
the approach of Eden’s layered implementation, i.e. thick layers of functionality
exploited strictly level-to-level to avoid dependencies across abstraction levels.
Apart from maintenance of only one system, the concept of layered implementa-
tion is promising for the implementation of other coordination languages based
on Haskell, since it facilitates maintenance and experimental development. With
one flexible basic layer, different language concepts can be easily implemented by
a top-layer module (making use of the underlying RTE support) where the ap-
propriate coordination constructs are defined. Its functionality must be exposed
in an API which offers general support for parallelism coordination without intro-
ducing characteristics of one particular language concept in the runtime system.

As shown in Fig. 3.10, the Evaluation Strategy module for GpH [THLP98]
is just an example of these high-level parallelism libraries. GpH, and similar
annotation-based coordination languages, are not as explicit as Eden, and are
not using distributed memory and communication channels between parallel pro-
cesses. The generalised runtime system assumed for GpH will thus have to sup-
port virtual shared memory and implicit, load-dependent task creation.

Like Eden, one could implement other parallel coordination extensions, e.g.
automatic parallel operations for some data-parallel language, by adding an ap-
propriate module for all parallel operations to their sequential implementation.
As Fig. 3.11 exemplifies, the approach is also interesting for automatic, compiler-
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Program using Data Parallelism

——————————————————

" Compiler-Gen. Code

Sequential Data-Par. Module
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Libraries Primitive Op.s

Sequential RTE Parallel RTE

Figure 3.11: Layered implementation of a data-parallel language

directed parallelisations: compiling certain data structure operations to use spe-
cific parallel implementations, which are essentially defined in Haskell itself. The
basic RTE support for this Haskell-implementation will be more or less similar
to the one needed for Eden: Primitives used by the top-layer modules, and which
can thereby be considered as a common Parallelism API, the essential, most gen-
eral and most practical features of which we were to discover in more systematic
case studies [Ber04].

Some apparently inherent restrictions of the approach come to mind. First of
all, the Haskell-based implementation is based on parallel graph reduction with
synchronisation nodes representing remote data. The question is, where actually
do the implemented primitives use this fact at all?  And, in order to support
implicit parallelism, a generalised RTE needs to support virtual shared memory
and implicit, load-dependent task creation. Another question is, to which extent
can these features be made accessible from the language (i.e. Haskell) level and,
thus, be part of the API?

The ideas outlined in this section are more systematically developed in the
next chapter, where we will present the design and prototype implementation
of a generic and modular RTE for parallel Haskell execution — if not high-level
parallel languages in general.
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Chapter 4

A generic runtime environment
for parallel Haskells

4.1 Introduction

A runtime environment to exploit the computational power of today’s parallel ar-
chitectures — ranging from multi-core machines to large-scale computational Grids
— must reflect the underlying target architecture and either take into account its
specific properties in automatic management functionality, or expose the architec-
ture to the programmer by specific coordination constructs. However, targeting
one specific architecture and proposing a (yet more specific) precisely-taylored
coordination language is of course anything but future-proof, and might be out-
dated in short time, given the rapid advances in today’s hardware development.

In this chapter, we present the design of a new parallel runtime environment
for executing parallel Haskell code on complex, hierarchical architectures. By
this design study, we aim to identify and implement the minimal and most gen-
eral runtime support required for parallel Haskells. As we have already pointed
out, the layer concept applied for the Eden implementation has proven useful
and inspiring, and can be useful for the maintenance of other language imple-
mentations. Even more interesting is that the modular concept of the Eden
implementation allows to use the implemented primitives for defining different
coordination constructs in Haskell, fitted to particular future architectures.

Aiming to support various architectures, our design must allow deep mem-
ory and process hierarchies. The system should be able to use different control
mechanisms at different levels in the hierarchy, either automated in the imple-
mentation, or exposed to language level. For memory management, this provides
a choice of using explicit data distribution or virtual shared memory. For process
management, this means that units of computation are very light-weight entities,
and we explicitly control the scheduling of these units.

Our modular design defines a minimal micro-kernel, which is a slightly ex-
tended version of the Eden RTE described before. As in the Eden implementa-
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tion, more complex operations are implemented in a high-level system language
(Concurrent Haskell) outside this kernel. We arrive at a system with a clear mod-
ular design, separating basic components by their functionality and employing a
hierarchy with increasing levels of abstraction. The micro-kernel is accessed via
a narrow interface, and most of the coordination of the system is realised in a
functional language. Immediate benefits of this design are the ease of prototyping
and of replacing key components of the RTE — issues of particular importance
in the rapidly evolving development of parallel systems.

Our design describes a generic and adaptive system for parallel computation,
combining features of existing parallel RTEs for GpH [THM96] and Eden [Ber04,
BLO07a]. We present a prototype implementation of key concepts in such a system
in the form of an executable specification, amenable to formal reasoning.

As an example, we demonstrate the flexibility of the system by refining the
GpH scheduling mechanisms towards a Grid environment, adding sophisticated
work distribution policies — which previously had to be implemented in C inside
the GpH RTE [ATLMO06]. Supporting such computational Grids [FKT01], which
incorporate thousands of machines on a global scale, requires taking into account
the different memory access times and process hierarchies when distributing the
parallel work. Additionally, the system needs to be adaptive in the sense that it
dynamically adapts its behaviour to a dynamically changing environment.

The system presented in this chapter is partially implemented, but does not
consider the memory management component, for which we will discuss the de-
sign space in Section 4.7. We plan to continue working on the prospected system
in the near future, to further explore its potential and to implement more fea-
tures, under the acronym ARTCOP (Architecture-Transparent Control of Paral-
lelism). Subsequently, as well as in our related workshop publication [BLAZ08|,
we mainly concentrate on scheduling policies. The scheduling mechanisms we
present are both executable and simple enough to serve as a specification, with
the potential to easily provide formal proofs of runtime system properties. The
code presented in this chapter is executable Haskell, and has been tested on GHC
Version 6.6, extended with the Eden implementation primitives and only minor
other extensions.

Related work

Historically, using high-level languages for system programming has long been
a research area, and the functional paradigm was even believed to lead to rad-
ically different future computer architectures in the late 70s [HHJWO07] (while
architectural work quickly came to the conclusion that sophisticated implemen-
tations on stock (von-Neumann) hardware are the better path). Work in the 80s
on high-level languages for system-level programming mainly focused on how to
implement O/S concepts in a functional [Hen82, Sto84, Per88] or logic [Sha84]
style. Most of these systems introduce specific primitives to deal with non-
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determinism, whereas later approaches either insisted on maintaining determin-
istic behaviour [HDD95] or used special data structures to control interactions
between concurrent threads (such as MVars in Concurrent Haskell [JGF96]).
Early implementations of functional operating systems are NEBULA [Kar81] and
KAOS [Tur87]. More recent functional systems are Famke [vP03] and Hello [BF].

An early system that uses a micro-kernel (or substrate) approach in the RTE is
the Scheme-based Sting [JP92| system. Sting defines a coordination layer on top
of Scheme, which is used as a computation language. Genericity is demonstrated
by directly controlling concurrency and processor abstractions, via Scheme-level
policy managers, responsible for scheduling, migration etc. This general frame-
work supports a wide range of features, such as (first-order) light-weight threads,
thread pre-emption, and asynchronous garbage collection. Common paradigms
for synchronisation (e.g. master-slave parallelism, barrier communication etc.)
are implemented at system level and demonstrate the possibility to easily de-
fine application-optimised synchronisation patterns. However, since Sting uses
Scheme as a system level language, it lacks the clear separation of pure and im-
pure constructs at system level as offered by Haskell. We also consider Haskell’s
static type safety for system level code as an advantage.

Most closely related to our high-level implementation approach is [HJLT05].
It defines a Haskell interface to low-level operations and uses a hardware monad
to express stateful computations. It focuses on safety of system routines, using
its own assertion language and Haskell’s strong type system. This interface has
been used to code entire O/S kernels (House, Osker) directly in Haskell, report-
ing satisfactory performance. In contrast to this proof-of-concept approach, we
want to improve maintainability by realising the more complex RTE routines in
Haskell, but still keeping a micro-kernel implemented in a low-level language.

The Manticore [FFRT07] system, a recent project of the University of Chicago,
targets parallelism at multiple levels and enables the programmer to combine
task and data parallelism. Manticore’s computation language is a subset of ML,
a strict functional language. Compiler and runtime system provide support for
parallel arrays and tuples and a number of scheduling primitives. Similar in
spirit to our approach, only a small kernel is implemented in low-level C; other
features are implemented in external modules, in an intermediate ML-like lan-
guage of the compiler. A prototype implementation is announced, and aims to be
a testbed for future Manticore implementations and language design. As opposed
to ARTCOP’s genericity in coordination support, Manticore explicitly restricts
itself to shared-memory multi-core architectures and does not support networked
computing, nor location-awareness and monitoring features.

The Famke system [vP03] is implemented in Clean and explores the suitabil-
ity of Clean language features such as dynamic types and uniqueness typing for
O/S implementation. Using these features, type-safe mobile processes and con-
currency are implemented. The latter uses a first class continuation approach
and implements scheduling at system level.
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Most recently, Peng Li et al [LMJTO07] have presented a micro-kernel (sub-
strate) based design for the concurrent RTE of GHC, including support for soft-
ware transactional memory (STM). This complements our work, which focuses
on control of parallelism, and we intend to combine the design of our interface
with that currently produced for GHC.

4.2 Design aims of the generic RTE ARTCoP

4.2.1 Simplest kernel

We aim to provide support for parallel programming from the conceptual, lan-
guage designer perspective. A major goal in designing a generic runtime environ-
ment is to explore how many of the coordination constructs can be specified at
higher levels of abstraction, and to identify the minimal and most general runtime
support for parallel coordination. As in the Eden implementation, major parts
are implemented in a high-level language, which keeps the kernel runtime small.
Following a functional paradigm has the advantage that specifications can, more
or less, be executed directly and that it facilitates theoretical reasoning such as
correctness proofs.

4.2.2 Genericity

Our study concentrates on identifying and structuring the general requirements
of parallel coordination, with the only assumption that concurrent threads are ex-
ecuting a functionally specified computation, explicitly or implicitly coordinated
by functional-style coordination abstractions.

The genericity we aim at is two-fold: By providing only very simple actions as
primitive operations, our system, by design, is not tied to particular languages.
We avoid language-specific functionality whenever possible, thus ARTCOP sup-
ports a whole spectrum of coordination languages. Secondly, the coordination
system can be used in combination with different computation engines and is not
restricted to a particular virtual machine. Furthermore, this coordination makes
minimal assumptions on the communication between processing elements (PEs).
We thus concentrate key aspects of parallelism in one place, without introducing
specific coordination constructs or being tied to a certain parallelism model.

4.2.3 Multi-level system architecture

High-level parallel programming manifests a critical trade-off: providing opera-
tional control of the execution while abstracting over error-prone details. In our
system, we separate these different concerns into different levels of a multi-level

44



4.2. DESIGN AIMS OF THE GENERIC RTE ARTCOP

system architecture. As shown in Figure 4.1, ARTCOP follows the concept of a
maucro-kernel, proven useful in the domain of operating system design.

Figure 4.1: Layer view of ARTCOP Figure 4.2: Component view of ARTCoP

At Kernel level, the most generic support for parallelism is implemented. The
system offers explicit asynchronous data transfer between nodes, means to start
and stop computations, as well as ways to retrieve machine information at run-
time. Operations at this level are very simple and general. System Modules build
on the kernel to restrict and combine the basic actions to higher-level constructs,
i.e. the constructs of a proper parallel functional language. The runtime support
is necessarily narrowed to a special model at this level. The implemented parallel
coordination language is nothing else but the interface of the system level mod-
ules. At Library level and Application level, concrete algorithms, or higher-order
functions for common parallel algorithmic patterns (called skeletons [RG03]) can
be encoded using the implemented language.

Focusing more on functionality and modularity, the kernel can be divided ver-
tically into four interacting components, as shown in Figure 4.2: Parallel subtasks
are created and sent to other processing elements (PEs) for parallel execution by
the scheduling component, which controls the local executing units. Explicit
communication between several scheduler instances on different PEs is needed to
coordinate and monitor the parallel execution. The memory management compo-
nent is responsible for (de-)allocating dynamic data and distributing it over the
available machines, interacting in this task with the communication component.
Explicit message passing is possible, but not mandatory for data communication,
and it is possible to implement a shared address space instead. In order to de-
cide which PE is idle and suitable for a parallel job, static and dynamic system
information is provided by a monitoring component.
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4.2.4 High-level scheduler control

The key issue in efficiently using a wide-area network infrastructure for parallel
computations is to control the parallel subtasks that contribute to the overall
program, and to schedule the most suitable task for execution, depending on the
current machine load and connectivity (whereas efficiently combining them is an
algorithmic issue). Likewise, modern multicore CPUs will often expose uneven
memory access times and synchronisation overhead. Parallel processes have to
be placed with minimal data dependencies, optimised for least synchronisation,
and dynamically consider system load and connectivity. ARTCOP aims to be
a common framework for different coordination concepts. Adaptive scheduling
support will thus be specified in the high-level language and not in the runtime
system.

4.3 Configurable Haskell scheduler framework

We propose a parallel RTE which allows system programmers and language de-
signers to define appropriate scheduling control at the system level in Haskell. In
our parallel system, the scheduler is a monadic Haskell function using an internal
scheduler state, and monitors all computations on one machine. Subtasks are ac-
tivated and controlled by a separate manager thread, which can take into account
properties of the subtask as well as static and dynamic machine properties. The
scheduler thread runs concurrently to the controlled computations and relies on
a low-level round-robin scheduler inside the RTE. To specify it, we use the state
monad and features of Concurrent Haskell, combining stateful and I/O-actions
by a monad transformer [KW93].

The internal scheduler state type depends on the concrete job type and leads
to another type class, which provides a start state and a termination check. A
third type class ScheduleMsg relates jobs and state to messages between the active
units and provides a message processing function. Table 4.1 summarises the
overloaded functions in the scheduler classes. The scheduler schedule which is
provided as a default (shown in Fig. 4.3) only starts the main computation (i.e.
the jobs), then repeatedly passes control to one of the job threads (calling xyield,
a redefinition of yield from Concurrent Haskell), and checks for termination, and
returns the final scheduler state upon termination (using function get from the
state monad).

Parallel tasks in a coordination language implemented by ARTCoOP will ap-
pear as a new type of job. The scheduling behaviour is consequently defined at
system level in Haskell. Haskell’s type system allows one to specify the respective
scheduler for a certain kind of parallelism by overloading instances of type class
ScheduleJob. Thus, language designers will not deal with runtime system code,
but simply define the scheduling for such jobs at system level, extending this
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Table 4.1: Overview of class funtions (implemented at system level)

type StateI0 s a = StateT s I0 a type alias combining State and IO monad

class ScheduleState st where

startSt 1: st the initial state of the scheduler
killA11Threads :: StatelIO st () shutdown function

checkTermination :: StateI0 st Bool check state, return whether to stop
checkHaveWork :: StateIO st Bool check state, return whether any local

work available

class ScheduleJob job st | job -> st where

runJobs :: [job]l -> IO st run jobs with default start state
schedule :: [job] -> StateIO st st schedule jobs, return final state
forkJob :: job -> StatelIO st () fork one job, modify state accordingly

class ScheduleMsg st msg | st -> msg where

processMsgs:: [msg] -> StateI0 st Bool | process a set of message for the scheduler,
modify state accordingly. Return True
immediately if a global stop is requested.

runJobs jobs = evalStateT (schedule jobs) startSt
schedule (job:jobs) = do forkJob job
schedule jobs

schedule [] = do 1iftIO0 kYield -- pass control
term <- checkTermination -- check state
if term then get -- return final state

else schedule ([]::[job]l) -- repeat

Figure 4.3: Default scheduler

Haskell scheduling loop.

As a simple extension for parallel execution, every machine could control a
pre-determined subset of the jobs, running one instance of the scheduler. With
the appropriate RTE support (described next), this behaviour can be expressed
easily, even without the need to modify the default instances, by the function
shown in Fig. 4.4. The code shown here uses two hard-wired kernel operations,
indicated by a leading k: kRFork sends an IO action to a given processor, where
it is executed asynchronously, providing basic remote execution control. The
other operation — kNoPe, a system observer primitive — returns the number of
processors in the system. In the example, the runparallel action retrieves the
number of available PEs (kNoPe), portions the available jobs accordingly, and
(asynchronously) spawns a scheduler instance which runs the respective subset
of the jobs on each other PE (kRFork).

Further primitive operations are needed to get more dynamic system informa-
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Table 4.2: Overview of primitive operations (provided by the kernel)

Functionality at Kernel Level (primitive operations)
Execution Control:

kRFork :: PE -> I00) -> I0Q) start a remote computation
kFork :: 1I0() -> IO ThreadId start a local thread (Conc. Haskell)
kYield :: I0Q0 pass control to other threads (Conc. Haskell)

Explicit Communication:

kOpenPort:: I0( ChanName’ [al,[al) | open a stream inport at receiver side, return
port handle and placeholder

kSend:: ChanName’ [a] -> a -> I0O() | basic communication primitive, send an ele-
ment of type a to a receiver (a port handle)
System Monitoring:

kThisPe,kNoPe :: IO Int get own node’s ID / no. of nodes
kThreadInfo :: ThreadId -> get current thread state

I0 ThreadState (Runnable, Blocked, Terminated)
kPEInfo :: 1Int -> I0 InfoVector info about a node in the system (cpu speed,

latency, load, location etc)

runParallel jobs = do pes <- kNoPe
let (mainjobs:others) = splitJobs pes jobs
doJobs pe = do runJobs (others!!(pe-2))
return ()
mapM_ (\pe -> kRFork pe (doJobs pe)) [2..pes]
runJobs mainjobs

Figure 4.4: A simple parallel scheduler

tion and to allow communication between different Haskell execution units. The
basic kernel support we assume, which is only a minor extension to the primitives
for the Eden implementation, can be grouped into scheduler control, communi-
cation, and system information. All primitive operations provided by the kernel
(indicated by the leading x), and their types, are shown in Table 4.2.

As in the Eden implementation, the operations shown here are not directly
implemented, but provided by a minor wrapper module to use Haskell data struc-
tures and monads. Internally, the operations will call real primitives directly im-
plemented in the kernel. Figure 4.5 shows that most of the functionality is already
provided by the Eden implementation primitives, only the monitoring function-
ality kThreadInfo and kPEInfo rely on newly implemented primitives. Whereas
kThreadInfo simply observes an available runtime system thread state, kxPEInfo
requires a more elaborate implementation by a monitoring component (outlined
below in 4.5).
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kRFork :: Int -> I0 () -> I0 ()

kRFork = spawnProcessAt -- == sendData (Instantiate pe) action
kFork = Control.Concurrent.forkIO -- from concurrent Haskell
kYield = Control.Concurrent.yield -- from concurrent Haskell

-- channel creation, restricted to streams by the given type
kOpenPort :: IO (ChanName’ [a], [al)
kOpenPort = createC
kSend :: ChanName’ [a] -> a -> I0 (O
kSend ¢ d = do connectToPort c
sendData Stream d -- stream communication only

kThisPe, kNoPe :: I0 Int
kThisPe thisPe
kNoPe noPe

Figure 4.5: Kernel operations, as far as implemented by EDI primitives

4.4 Explicit communication

If additional jobs are created dynamically, they may be transmitted to a suitable
PE, and received and activated by its scheduling loop. The scheduler instances
may also exchange requests for additional work and receive jobs as their answers.
This model requires communication between the scheduler instances. The kernel
provides the infrastructure for explicit message passing between any two running
threads, which we have already presented in the context of the Eden implementa-
tion. The ports are created from Haskell by k0OpenPort and managed by the kernel
internally. A kOpenPort returns a placeholder for the stream, and a Haskell port
representation to be used by senders for kSend. The difference to EDI’s createC is
that communication support in the Generic RTE is intended mainly for scheduler
instance communication, and thus restricted to open streams. Figure 4.5 shows
that the type of created channels is restricted to lists.

As in EDI, sending data by kSend does not imply any evaluation; data has to
be explicitly evaluated to the desired degree prior to sending.

Startup synchronisation and stream communication between all scheduler in-
stances are easy to build on this infrastructure, using a simple startup protocol
for exchanging the scheduler instance’s channels. The scheduler also needs to
communicate with locally running threads (e.g. to generate new jobs), which can
be handled by enabling all threads to write to the scheduler stream. It is up
to language designers to define suitable message types for parallel coordination
between the schedulers, accompanied by an instance declaration which provides
the message processing function in the class ScheduleMsg.

Figure 4.6 sketches a scheduler for such a language, assuming the existence of a
globally managed job pool. If an instance runs out of work, it will send a request.
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instance ScheduleJob MyJob MySchedulerState where
schedule (j:js) = do forkJob j
mapM_ addToPool js
schedule ([]::[MyJobl)
schedule empty = do stop <- do { ms <- receiveMsgs ; processMsgs ms }
term <- checkTermination
if (term || stop)
then do { killAllThreads; get }
else do work <- checkHaveWork
if (not work)
then sendRequest
else 1iftIO kYield
schedule empty

Figure 4.6: Scheduler for a parallel job-pool

It will eventually receive an answer, and the next call to processMsgs will activate
the contained job. This example enables reasoning about appropriate workload
distribution and the consequences and side conditions, while the scheduling loop
itself remains small and concise. All essential functionality is moved from the
scheduling loop into separate functions, e.g. we leave completely unspecified how
a scheduler instance decides that it needs work (in checkHaveWork), and how jobs
are generated and managed in the job pool, and the message type. All these
aspects are defined in the helper functions, allowing a clear, structured view on
the scheduling implemented. Modifying the job scheduling policy concentrates
on these (checkHavelWork, addToPool, and sendRequest) instead of a big monolithic
loop.

4.5 System monitoring

Programmable scheduling support at system level requires knowledge about static
and dynamic system properties at runtime. Our system is geared towards adap-
tive techniques developed for GridGUM, GpH on computational Grids [ATLMO06],
and the kernel will be extended to provide the necessary information. For loca-
tion awareness, we have kNoPe for the total number of PEs in the parallel system,
and kThisPe for the own PE. Another primitive, peInfo :: PE -> I0 InfoVector
is supposed to return a vector of data about the current system state of one PE.
This information will be continuously collected by the kernel and held in local
tables PEStatic and PEDynamic.

Load information at system level: A list of load information represented in
a Haskell data structure PEInfo is a self-suggesting component of the scheduler
state in many cases. The concrete selection, postprocessing and representation of
the information provided by the kernel depends on how the scheduler at system
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level wants to use the information. An example of a Haskell type PEInfo is shown
in Fig. 4.7. It includes selected components of the scheduler state: the number
of threads controlled by the local scheduler, and how many sparks (potential
parallel computations in GUM) it holds. Other information comes directly from
the kernel, as it cannot be obtained at system level alone: communication latency
(continuously measured when exchanging messages), overall CPU load, and static
machine characteristics.

data PEInfo = PE { runQ_length :: Int, -- system level information
noOfSparks :: Int,
clusterId :: Int,
clusterPower:: Double,
cpuSpeed :: Int, -- kernel level information
cpuload :: Double,
latency :: Double,
pe_ip :: Int32,

timestamp:: ClockTime }

startup :: StateIO0 s ()
startup = do infos <- buildInfos -- startup, returns initial [PEInfo]
let ratios = zipWith (\lat str -> fromIntegral str / lat)
(map latency infos) (map cpuSpeed infos)
myVote = fromJust (findIndex (== maximum ratios) ratios)
votes <- allGather myVote
setMainPE (1 + hasMostVotes votes)

Figure 4.7: System level code related to load information

As exemplified in the figure, the scheduler can do arbitrary computations on
PEInfo structures. For instance, to start the computation on a “strong” machine
with good connectivity, all PEs might elect the main PE by a strength/latency
ratio. Each PE votes for a relatively strong neighbour, where neighbourhood is a
function of latency, varying for different electing PEs. A collective (synchronising)
message-passing operation allGather is easily expressed using explicit communi-
cation. Referential transparency guarantees that all PEs will then compute the
same value without further synchronisation.

4.6 Example: Adaptive scheduling in GpH

4.6.1 Hierarchical task management

We now express the scheduler of the GUM RTE [THM*96], which implements the
GpH parallel extension of Haskell, in terms of the generic framework presented
in the previous section. Instead of the single global job pool we sketched in
the previous example, GpH maintains local job pools in each PE, which contain
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“sparks”. We want to model not only GUM, but the GridGUM extension to
GpH, which, in short, has the following characteristics [ATLMO6]:

e As in plain GpH, hierarchical task management distinguishes between po-
tential parallelism (sparks) and realised parallelism (threads); the former
can be handled cheaply and is the main representation for distributing load;
the latter, representing computation, is more heavy-weight and fixed to a
processor;

o Its adaptive load distribution uses information on latency and load of remote
machines when deciding how to distribute work.

We will see that, in this high-level formulation of the scheduler, the code modi-
fications necessary to realise these two features are fairly simple. Hereafter, we
first describe how to model the hierarchical task management in GUM. These
changes only affect the scheduling component. In tuning load distribution, we
then interact with the monitoring and communication components.

GUM scheduler state

First we specify the machine state in the GUM RTE (shown in Fig. 4.8). As
discussed earlier, it is a triple consisting of:

e a thread pool of all threads; these are active threads controlled by the sched-
uler, each with its own stack, registers etc;

e a spark pool of all potential parallel tasks; these are modelled as pointers
into the heap;

e monitoring information about load on other PEs; this information is kept,
as a partial picture, in tables on each processor;

We model the two pools and load infos as simple lists (more efficient container
types could be used instead). The GumJob type is left unspecified for now.

The messages between running PEs must be specified as well: Messages for
the work-stealing functionality of GUM are FisH (by which an idle PE fishes for
work at other PEs), and the respective reply SCHEDULE, which contains a job to
execute. Besides, we will find the global stop request and other internal messages,
left out for now.

Now making GumState an instance of ScheduleState, we specify how to handle
and run jobs, and especially how the scheduler should FisH for work when idle.
Equally, we will define the message processing for GUM messages as an instance
of ScheduleMsg.
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type Threadpool = [ThreadId]
type Sparkpool = [GumJob]

data PEInfo = PE ... -- see before

data GumState = GSt { gThreads :: [ThreadId]
, gSparks :: Sparkpool
, gloads :: [PEInfo] }

deriving Show
= FISH [PEInfo] Int -- steal work, share PEInfo on the way
| SCHEDULE [PEInfo] GumJob -- give away work (+ share PEInfo)
| GSTOP | ... -- and other (system) messages

data GumMsg

Figure 4.8: Types for modelling the GUM system

instance ScheduleJob GumJob GumState where
runJobs jobs = evalStateT (initLoad >> (schedule jobs)) startSt
forkJob (GJ job) = error "left out for now"

schedule (j:js) = do forkJob j
schedule js
schedule empty = do

(runThrs, blThrs) <- updateThreadPool -- update and
term <- checkTermination -- (1) check local state
if term then do bcast GSTOP —- finished: return state
get
else do localWork <- if runThrs > O -- (2) local work available?
then return True -- yes: runnable thread
else activateSpark -- no: look for spark

stop <- if localWork
then do reqs <- readMs
processMsgs regs

else do sendFish -- (3) get remote work
waitWorkAsync
if stop then do killAllThreads -- finished: return state
get
else do 1iftIO kYield -- (4) run some threads

schedule empty
-- essential helper functions:

activateSpark :: StateI0 GumState Bool -- tries to find local work
sendFish :: StateIO0 GumState () -- sends request for remote work
waitWorkAsync :: StateI0 GumState Bool -- blocks on receiving messages

updateThreadPool :: StateIO GumState (Int,Int)
updateThreadPool = do
gst <- get
tStates <- 1iftI0 (mapM kThreadInfo (gThreads gst)
let 1list = filter (not . isFinished . snd) (zip threads tStates )
blocked = length (filter (isBlocked . snd) list)
runnable = length (filter (isRunnable . snd) list)
put (gst {gThreads = map fst list })
return (runnable, blocked)

Figure 4.9: GUM scheduler
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Plain GUM scheduler

The code for the GUM scheduler is summarised in Figure 4.9. The arguments to
schedule are jobs to be executed. These jobs are forked using a kernel routine, and
added to the thread pool (forkJob). The case of an empty argument list describes
how the scheduler controls the machine’s workload. First the scheduler checks for
termination (1). Then the scheduler checks the thread pool for runnable tasks,
otherwise it will try to activate a local spark (2). If local work has been found, it
will only read and process messages. The handlers for these messages are called
from processMsgs, which belongs to the communication module. If no local work
has been found, a special FI1SH message will be sent to search for remote work
(3). Finally, it yields execution to the micro-kernel, which will execute the next
thread (4) unless a stop message has been received, in which case the system will
be shut down. The thread pool is modeled as a list of jobs, and updateThreadPool
retrieves the numbers of runnable and blocked jobs.

4.6.2 Adaptive load distribution mechanisms

The above mechanism will work well on closely connected systems but, as mea-
surements show, it does not scale well on Grid architectures. To address short-
comings of the above mechanism on wide-area networks, we modify the thread
management component for better load balancing, following concepts of the adap-
tive scheduling mechanism for computational Grids [ATLMO06]. The key concept
in these changes is adaptive load distribution: the behaviour of the system should
adjust to both the static configuration of the system (taking into account CPU
speed etc.) and to dynamic aspects of the execution, such as the load of the
individual processors. One of the main advantages of our high-level language ap-
proach to system-level programming is the ease with which such changes can be
made. Looking for remote work (sendFish and its counterpart in processMsgs) and
picking the next spark (activateSpark) are the main functions we want to manip-
ulate in tuning scheduling and load balancing for wide-area networks. Note that
by using index-free iterators (such as filter), we avoid risks of buffer-overflow.
Furthermore, the clear separation of stateful and purely functional code makes it
easier to apply equational reasoning.

Adaptive load distribution deals with: startup, work locating, and work request
handling, and the key new policies for adaptive load distribution are that work is
only sought from relatively heavily loaded PEs, and preferably from local cluster
resources. Additionally, when a request for work is received from another cluster,
the receiver may add more than one job if the sending PE is in a “stronger”
cluster. The necessary static and dynamic information is either provided by the
kernel or added and computed at system level, and propagated by attaching load
information to every message between PEs (as explained in Section 4.5).
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Placement of the main computation. During startup synchronisation, a
suitable PE for the main computation is selected, as already exemplified in Sec-
tion 4.5. GRIDGUM 2 starts the computation in the 'biggest’ cluster, i.e. the
cluster with the largest sum of CPU speeds over all PEs in the cluster, a policy
which is equally easy to implement.

Work location mechanism. The Haskell code in Figure 4.10 shows how the
target PE for a FISH message is chosen adaptively by choosePE. A ratio between
CPU speed and load (defined as mkR) is computed for all PEs in the system.
Ratios are checked against the local ratio myRatio, preferring nearby PEs (with
low latency, sorted first), to finally target a nearby PE which recently exposed
higher load than the sender. This policy avoids single hot spots in the system,
and decreases the amount of communication through high-latency connections,
which improves overall performance.

Work request handling mechanism. To minimise high-latency communi-
cation between different clusters, the work request handling mechanism tries to
send multiple sparks in a SCHEDULE message if the work request has originated
from a cluster with higher relative power (see Figure 4.11). The relative power of
a cluster is the sum of the speed-load ratios over all cluster elements. If the orig-
inating cluster is weaker or equally strong, the FISH message is served as usual.

sendFish:: StateI0 GumState ()

sendFish = do infos <- currentPEs -- refresh PE information
me <- 1iftI0 kThisPe
pe <- choosePe me
1iftI0 (kSend pe ( FISH infos me ))

-- good neighbours for work stealing: low latency, highly loaded
choosePe :: Int -> StateI0 GumState (ChanName’ [GumMsg])
choosePe me = do

lds <- gets glLoads

let mkR pe = (fromIntegral (cpuSpeed pe)) / (cpuLoad pe)

rList = [ ((i,mkR pe), latency pe) -- compute ’ratio’
| (i,pe) <= zip [1..] 1ds ] -- keep latency and PE
cands = filter ((< myRatio) . snd) -- check for high load
(map fst -- low latencies first
(sortBy (\a b -> compare (snd a) (snd b)) rList))
myRatio = (snd . fst) (rList!!(me-1))
if null cands then return (port 1) -- default: main PE

else return (port ((fst . head) cands))

Figure 4.10: GRIDGUM 2 work location algorithm
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instance ScheduleMsg GumState GumMsg where
processMsgs ((FISH infos origin):rest) = do processFish infos origin
processMsgs rest
processMsgs ((SCHEDULE ...) irest) = ...

processFish :: [PEInfo] -> Int -> StateI0 GumState ()
processFish infos orig = do

updatePEInfo infos -- update local dynamic information (1)
me <- 1iftI0 kThisPe
if (orig == me) then return () -- my own fish: scheduler will retry
else do
new_infos <- currentPEs -- compare own and sender cluster (2)
let info = new_infos!!(orig-1)

myInfo = new_infos!! (me-1)
amount = if (clusterPower info > clusterPower myInfo)

then noOfSparks myInfo ‘div‘ 2 -- stronger: many
else 1 -- weak or the same: one
sparks <- getSparks amount True -- get a set of sparks (3)
case sparks of
(] -> do target <- choosePe me -- no sparks: forward FISH
1iftI0 (kSend target (FISH new_infos orig))
some -> 1iftI0 (sequence_ -- send sequence of SCHEDULE messages

(map ((kSend (port orig)).(SCHEDULE new_infos)) some))

Figure 4.11: GRIDGUM 2 work request handling algorithm

In Figure 4.11, after updating the dynamic information (1), the sender cluster is
compared to the receiver cluster (2), and a bigger amount of sparks is retrieved
and sent if appropriate (3). In this case, the RTE will temporarily switch from
passive to active load distribution.

4.7 Feasibility study: Virtual shared memory
management in Haskell

4.7.1 Virtual shared memory in GpH

In the GpH scheduler shown previously, we have seen how work is distributed
adaptively, as sparks which are sent to remote machines across the network. The
GpH programming model and its GUM implementation assumes that exported
and activated sparks are evaluated remotely. Later, in the main computation,
the result of such a spark evaluation will be needed on the exporting machine.
The underlying implementation is then responsible for synchronisation of the two
accesses to the same data, and therefore has to emulate a global shared address
space on a distributed architecture, Virtual Shared Memory (VSM).

Up to now, we have left out the memory management component from our
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description. We want to model this part rather generally, but make the basic
assumption that the implemented computing engine uses garbage collection and
a graph heap for evaluation. First of all, it is clear that the elementary graph
heap management — garbage collection — cannot possibly be handled from the
Haskell level, since the execution of Haskell memory management code needs
an underlying heap and management. Thus garbage collection itself should re-
main completely transparent to the Haskell system code. But aside from this
elementary local heap management, the question arises whether it is possible —
and favourable — to lift some parallelism-specific parts, especially global address
space simulation, to Haskell level.

Global addresses and weighted reference counting

The basic technique used for the distributed shared memory implementation in
GUM is weighted reference counting [J192, Bev89]: globally unique addresses
accompanied by a weight, indicating whether remote references to the data in
question exist on other machines in the system. In a local heap, the data is
either available, or represented by a placeholder. The semantics of such place-
holders is that represented data is fetched from the possessing remote machine
automatically as soon as a thread tries to evaluate the placeholder. When data is
exported to another machine for the first time, it receives a fresh global address,
for which half of the initial weight remains on the exporting machine. When-
ever further copies of globalised data are made, the weight is split in half. Local
garbage collection will either evacuate placeholders, or else detect that the repre-
sented data is not needed any more for local evaluation, in which case the weight
is returned to the possessing machine. Furthermore, garbage collection must keep
alive any data which is registered with a global address: Remote references to
local data might exist, even if local evaluation does not refer to it any more. By
checking the local weight against its total sum, garbage collection at the possess-
ing machine detects whether all remote references have returned their weight. In
this case, the data can be garbage-collected.

The described mechanism can be, and has been in the past, entirely imple-
mented in the runtime system kernel; and the decision where to implement global
addressing will turn out to be an all-or-nothing question, since it involves complex
interactions between evaluation (blocking on placeholders), global address imple-
mentation, communication semantics (to model spark export at system level)
and, last but not least, garbage collection (of placeholders and globalised data)
— elementary kernel parts. However, there is some potential to profit from lifting
certain parallelism-related parts of memory management to Haskell level.

Potential benefit of high-level VSM

To begin with, all management functions for global addresses are straightforward
and easily expressed in a high-level language. Coding them in C is a lot more
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error-prone and cumbersome. Additionally, the management code in Haskell
would be much easier to read.

Secondly, since garbage collection remains transparent, it is completely de-
coupled from global address management. From the fact that weighted reference
counting is a garbage collection algorithm, one might think in the first instance
that both have to be implemented together, and are inherently kernel tasks, but
the opposite is the case: In our architecture, a Haskell implementation of the
global address mechanism will use a mapping of addresses to data as part of the
scheduler state. As long as the scheduler is running, there will automatically
be a reference to any data to which a global address has been assigned, thus
automatically keeping alive all remote data. Whenever a remote reference to
globalised data is garbage-collected, the other PE returns the respective weight,
realisable by finalizers in Haskell [JME99]. Finalizers are specified as Haskell
code attached to data of a special type, which is executed as soon as the data
is garbage-collected. The handler for such a weight-returning message will up-
date the table of global addresses accordingly, and eventually remove data from
the table when all weight has been returned. The garbage-collection parts of a
system-level implementation of VSM management will thus come more or less
for free; only the weight-returning functionality has to be realised (by attaching
finalizers to the placeholders).

The GHC implementation of Haskell provides some means to influence mem-
ory management: The module System.Mem.Weak allows one to create weak pointers
(not taken into account during garbage collection), and to give explicit finalisers
for Haskell data structures. Using Foreign.StablePtr in the foreign function in-
terface (FFI), one can create fixed addresses for heap objects, and cast them to a
simple pointer type. Usage of both features is documented in [JME99]; the code
we will present is inspired by that practical paper.

4.7.2 Global address management in Haskell
Global address data structures

Weighted reference counting requires mappings from global addresses to the heap
and vice-versa on each participating PE. These tables could become part of a
scheduler state, or else be maintained as global mutable data, a constant ap-
plicative form (CAF) defined at the top-level of the program (as sketched by
Peyton-Jones in [Pey00]). The latter “CAF trick” alternative is more conve-
nient, since every running thread can access the table independently (otherwise,
a thread-scheduler communication would be required for each data request).

We first give types for global addresses and provide a supply for (locally) unique
IDs, from which a global address is constructed. This idSupply is implemented by
a CAF at the top level of the program. The stateful ID counter is wrapped in a
mutable variable (MVar). Each local thread can now equally call functions using
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the idSsupply as an implicit parameter (as shown in mkFreshId), and the counter is
automatically protected against concurrent accesses by the surrounding MVar.

type Weight = Int
data GA = GA PE Int Weight
deriving Show

{-# NOINLINE idSupply #-} -- CAF trick:
idSupply :: MVar Int —-- accessible to all local threads
idSupply = unsafePerformI0 (newMVar 1)

mkFreshId :: I0 Int

mkFreshId = do next <- takeMVar idSupply
putMVar idSupply (next+1)
return next

newGA :: StateIO GumState’ GA
newGA = do id <- 1iftIO mkFreshId
pe <- 1iftIO0 kThisPe
return (GA pe id initWeight)
initWeight :: Weight
initWeight = ... -- system constant, power of 2

Typing the address table is the first obstacle on the way. What type of
data do we get when looking up the global address of something? What needs to
be stored in the table that maps global addresses (GAs) to data and vice-versa?
Any data item can be assigned a global address. To store all these GAs in one
and the same Haskell structure, we have to cast the original types to something
homogeneous. We could use dynamic types, a Haskell 98 extension available
in GHC and Hugs. However, since we will need to perform reverse lookups in
the address tables, it is desirable that addresses of globalised data should be
ordered, and remain stable over garbage collections. We use stablePtrs (which
provide exactly this in GHC) in the first instance, and additionally cast to Ptr()
to obtain a list of homogeneous items.!

{-# NOINLINE galaVar #-}

galaVar :: MVar [(GA,Ptr())]

galaVar = unsafePerformI0 (newMVar [])

instance Eq GA where -- do not look at weight when comparing GAs
(==) (GA pel idl _) (GA pe2 id2 _) = pel==pe2 && idl == id2

insertGA :: GA -> a —> I0 O

insertGA ga x = do takeMVar galaVar
p <- 1iftI0 (newStablePtr x) -- p :: StablePtr a
p’ <- 1iftI0 (castStablePtrToPtr p) -- p’ :: Ptr ()
putMVar galaVar ((ga,p’):gala)

'We are interested in general feasibility and do not consider any performance issues here,
therefore the simple list implementation. Mapping between global addresses and data can be
realised by any other container structure, optimised for the most common lookup.
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lookupGA :: GA -> I0 (Maybe a)
lookupGA ga = do gala <- readMVar galaVar
case lookup ga gala of
Nothing -> return Nothing
Just p’ -> do p <- castPtrToStablePtr p’
x <- deRefStablePtr p
return (Just x)
lookupData :: a -> I0 (Maybe GA)
lookupData x = do p <- (newStablePtr x >>= castStablePtrToPtr)
t <- readMVar galaVar -- obtain and invert table
let t’ = map (\(x,y) -> (y,x)) t
return (lookup p t’)

We have a similar problem when we model the spark pool: Subexpressions
of any type may be sparked during execution, and we need to store sparks in
one common Haskell data structure. Additionally, sparks are either evaluated
locally or sent away to another PE that assigns a global address and thereby
acknowledges the data. We could, of course, simply identify 10() and GumJob.
Evaluation of the contained data could be enforced as a side effect:
(sparkclosure ‘seq‘ return ())::I00

The problem with this representation is that we will not get at the evaluated
data any more in order to send it back when needed (however, working for a
simulation, since it does the same work). It is more practical to use the pointer
cast for sparks as well, and to identify the yet unspecified GumJob type with Ptr().
Locally activating a spark will thus involve a cast back to the original type.

type GumJob = Ptr()

putInSparkPool :: Typeable a => a -> StateI0 GumState ()
putInSparkPool x = do p <- 1iftI0 (newStablePtr x >>= castStablePtrToPtr)
modify (\ st@(GSt {gSparks = pooll} ) ->
st {gSparks = (p:pool)})

activateSpark :: StateI0 GumState Bool
activateSpark = do st <- get -- get state

let sparks = gSparks st

case sparks of

1 -> return False
(s:rest) -> do put (st {gSparks = rest} )
forkJob s

return True
forkJob :: GumJob -> StateI0 GumState ()
forkJob ptr = do stPtr <- castPtrToStablePtr ptr
dat <- deRefStablePtr stPtr
tid <- 1iftI0 (kFork (dat ‘seq‘ return ()))

modify (\ st@(GSt {gThreads = ts}) -> st {gThreads = tid:ts})

Weight-related functionality for GAs can be realised using finalisers and
weak pointers. Whenever a GA for remote data is inserted into the table, a
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weight-returning finaliser is attached to the placeholder pointed at by the GA.
When the placeholder (for data on another PE) is garbage-collected, its current
local weight is retrieved from the table and returned to the possessing PE. As
mentioned, the GAs assigned to local data will remain alive as long as they are
in the table. The table needs to be cleaned up regularly when weight is returned
by other PEs.

Another essential functionality is to half the stored weight in the table, and
to return a copy of the GA for export to another PE. We will not go into further
details on this, since more serious problems need to be solved.

4.7.3 Haskell heap access from inside Haskell

Having reached this point, we have to state how structures in the Haskell heap
will receive a global address with weight, and move from one PE to another.
We have prototyped code and will now sketch a Haskell-based solution and the
required kernel functionality for moving heap elements from one heap to another.

First of all, the explicit communication primitive sendData normally copies the
data to be sent, but it can as well move the data instead, and we could just use a
kernel implementation of VSM, as we have said. But our intention is to investigate
feasibility, advantages and drawbacks of a Haskell (system) implementation.

After spark creation, the data (unevaluated) is still available, since it might
be that the spark never gets fetched. Only when a spark is ezported, unevaluated
parts inside its computation subgraph should be replaced by placeholders with
blocking semantics, and global addresses assigned. When a thread evaluates
a closure, it may block, observable only by the RTE. When data arrives, the
thread must be unblocked, and the blocking node updated. It should be noted
that manipulating evaluation and blocking normally is kernel business and needs
to be disclosed to system level now.

Moving globalised data to a remote PE is not too hard to encode in
Haskell. A primitive operation which (unsafely!) replaces one heap object by
another can be easily added to GHC.

replaceBy# :: a -> a —> I0 ()
replaceBy# cl c2
= ...-- replaces cl by indirection to c2, activates threads blocked on cl

We need to model how data is exported and replaced by blocking placeholders,
and how data is retrieved when the placeholder is evaluated. Placeholders can
be created from Haskell by createc, which simultaneously creates a channel to
receive data. Now, when moving away heap structures, they must be replaced not
only by normal placeholders, but evaluation must trigger an action to actively
fetch back the data for the blocked local evaluation (using the channel created).
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moveData :: a -> ChanName’ a -> StateI0 GumState ()

moveData x receiver@(Chan pe _ _) = do
maybeGaChan <- if (isUnevaluated x) -- include GA request if not NF data
then do
(chan,blocker) <- createC -- data placeholder
(gaChan, newGa) <- createC -- GA placeholder

-- evaluation of x should trigger the following code:
let fetch_x = unsafePerformIO0 (
kSend pe (FETCH chan newGa) -- remote scheduler to reply
y <- (castPtrToStablePtr blocker >>= deRefStablePtr )
return y
1iftI0 (replaceBy# x fetch_x)
insertGA newGa fetch_x
return (Just gaChan)
else return Nothing
toSend <- serialise x -- pack subgraph into some byte store...
send pe (RESUME toSend maybeGaChan) -- send away

Figure 4.12: Sketch: Replacing heap data by a fetching node

The data to be moved is a subgraph in the heap, serialised into a suitable data
structure and sent to the receiver. If the data is already evaluated (we will revert
to this later), it is not moved but only copied, without any problems. Otherwise,
data in the local heap will be replaced by an 1/O action which triggers to fetch
the real data back when needed, using a fresh channel to receive it.

Figure 4.12 sketches how data x, which is already globalised and requested by
another PE, can be moved and replaced by a fetch node. What makes this very
complicated is the fact that the global address has to be updated to point to the
new location of x. The new global address has to be assigned by the receiving
PE and cannot be propagated to other PEs, thus the sending PE has to store a
mapping between GAs. We need to modify the mapping table so that it will also
be able to hold other global addresses, and the reply message to the request has
to contain a channel to send the new global address.

We would have to specify as well how data is globalised, i.e. when exporting
a spark. The essentials are similar to the data export shown, except that a new
global address has to be assigned by the receiver (we have given all needed helper
functions in code fragments earlier).

The essential obstacle in this approach is yet another problem: The subgraph
needed to compute the data x may contain unevaluated inner parts and references
to other globalised data. Any unevaluated parts could simply be copied, leading
to potential duplicate evaluation. Yet, duplicating the global references requires
to adjust the weights of their global addresses. However, the “subgraph reachable
from a node” is traversed, up to now, inside the kernel only, transparent to Haskell
level. To be able to access the inner nodes directly from Haskell level, we still
need to proceed further, to define the heap graph traversal in Haskell as well.
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Heap graph traversal routines

Communication of Haskell data structures is a salient part of any parallel Haskell
on distributed memory, especially in implementations which emulate shared mem-
ory by global addresses and an internal fetch protocol. We concretely aim at the
GUM implementation of Glasgow parallel Haskell. Long-standing experience
with implementations of GpH and Eden has shown that Haskell data commu-
nication routines are by far the most problematic code in a parallel Haskell im-
plementation. Maintaining a working system essentially means to keep routines
for packing and unpacking heap structures alive, bug-free, and consistent with
internals of the sequential base implementation.

To serialise the subgraph reachable from the node to be transferred, a breadth-
first traversal of the subgraph is performed and the data is sent to the receiver
for reconstruction. Thus, packing and unpacking is an instance of a more general
graph traversal routine. Classical graph traversal (breadth-first and depth-first) is
easily programmed in Haskell, presuming that we can retrieve all nodes referenced
from one node. We have developed a Haskell prototype for graph traversal, and
identified the obstacles and issues of a high-level, language-internal approach to
heap access. The main problems here are: sufficient knowledge of GHC internals
to specially encode handling for closures with non-standard layout (and basically
presuming a standard layout at all), as well as typing.

Typing is an issue again: When traversing a graph structure, we are not in-
terested in the Haskell type it might represent. However, our code needs to
typecheck somehow. We simply cast all references to a (wrong) unit type, and
cast them back when needed.

type Untyped = (O

untype :: a —> Untyped
untype x = unsafeCoerce# x

retype :: Untyped -> a
retype x = unsafeCoerce# x

Knowledge of GHC internals is required to retrieve all child nodes ref-
erenced from a node to be analysed. The recent ghci debugger [IM07, Ibo06,
MIPGO7] uses two primitive operations? to access the heap representation of

2Since May 2007, these primitives have been replaced by a single one with a different name
unpackClosure. The name is no problem, but looking at the code, the primitive apparently
omits pointers for thunks and other interesting node types, which is exactly the information
we need. It is essential for us that this information should be accurate for all closure types,
especially that it reflects the most subtle implementation details.
The code presented here uses the primitives as of January 2007, changed by ourselves to return
correct reference pointers for thunks.
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data, on which we could build our heap graph traversal code.

infoPtr# 1 a —> Addr# -- address of info table
closurePayload# :: a -> (# Array# , ByteArray# #) -- (pointers,nonpointers)

The code of the ghci debugger (inside ghc itself) uses these primitives in Haskell.
However, it is an integrated part of GHC and accesses many other internal GHC
structures, which we want to avoid. In order to abstract from the particular GHC
representation, we used a small wrapper module which provides an IO-monadic
interface and returns an opaque Haskell representation (inspired by the ghci-
debugger work) of closures. Implementation of the module is, of course, heavily
GHC-dependent, but the closure representation GHCClosure can remain opaque if
the right helper functions are provided: access to referenced heap cells and data
inside a heap node, and information about the evaluation state of a heap cell.

data GHCClosureType = Constr | Fun | Thunk Int | ThunkSelector
| Blackhole | AP | PAP | Indirection Int | Other Int
deriving (Show, Eq)

data GHCClosure = Closure { tipe :: GHCClosureType
, infoTable . Ptr O
, ptrs :: Array Int Untyped
, nonPtrs :: ByteArray#
}
getClosureData :: a -> GHCClosure -- opaque

withChildren :: GHCClosure -> (Untyped -> I0 r) -> I0 [r]
withData :: GHCClosure -> (Byte -> I0 r) -> [r]

isUnevaluated :: GHCClosureType -> Bool
isIndirection :: GHCClosure -> Bool -- detect indirections
unwind :: Untyped -> IO Untyped -- skip possible indirections

Any implementation detail should better remain hidden inside a single module
which reflects the GHC implementation and requires maintenance by a GHC-
expert.

Graph traversal functions. Provided the implementation-dependent parts
mentioned above work properly, we can traverse a reachable subgraph in depth-
first manner using recursion and the implicit call stack, or in breadth-first manner,
which additionally needs a queue. Code is shown in Fig. 4.13. The monadic
traversal is specified as a higher-order function applying one of two parameter
functions to each visited node: Function firstMet is applied to nodes not visited
before, metAgain is applied upon further visits. To keep track of visited nodes,
both traversal functions use a hash table which holds the previously obtained
result of applying firstMet to the node. The code uses a hash table specialised
to closures, which are represented as Untyped values comparable by raw memory
address. In addition, a queue for nodes to be visited is required for breadth-first
traversal.
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type HTClosures c¢ = HashTable Untyped c

newHTC :: IO (HTClosures c)

htLookup :: HTClosures c -> Untyped -> I0 (Maybe c)
htInsert :: HTClosures ¢ -> Untyped -> ¢ -> I0 ()

traverseB :: (Untyped -> I0 (c,d) ) -> -- for first time closure is met
(d -> Untyped -> I0 c) -> -- for closure seen before (result d)
a -> I0 [c]

traverseB firstMet metAgain rootnode = do ht <- newHTC
q <- newQueue
do x <- unwind (untype rootnode)
enqueue q X
traverseRecB ht q
where traverseRecB ht q -- :: HIClosures d -> Queue Untyped -> I0 [c]
= do e <- empty q
if e then return []
else do
cl <- dequeue q
haveIt <- htLookup ht cl
r <- case havelt of
Just stored -> metAgain stored cl
Nothing -> do clD <- getClosureData cl
(res,storeHt) <- firstMet cl
htInsert ht cl storeHt
withChildren c1D
(\cl -> unwind cl >>= enqueue q)
return res
rs <- traverseRecB ht q
return (r:rs)

traverseD :: (Untyped -> I0 (c,d) ) -> -- action for first time closure is met
(d -> Untyped -> I0 c) -> -- action for closure seen before (result d)
a -> I0 [c]

traverseD firstMet metAgain rootnode = do ht <- newHTC
traverseRecD ht (untype rootnode)
where traverseRecD hasht closure -- :: HTClosures d -> Untyped -> I0 [c]
= do x <- unwind closure
maybeRes <- htLookup hasht x
case maybeRes of
Just stored -> do r <- metAgain stored x
return [r]
Nothing -> do clD <- getClosureData x
(ret,store) <- firstMet x
htInsert hasht x store
rss <- withChildren c1D
(traverseRecD hasht)
return (ret:concat rss)

Figure 4.13: Heap graph traversal (breadth-first/depth-first)
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printGraph :: a -> I0 O
printGraph rootnode = do indentVar <- newMVar ["-->"]
traverseD (printIndent indentVar)
(printRepeatIndent indentVar)
rootnode
return ()

printIndent :: MVar [String] -> Untyped -> I0 ((),Int)
printIndent indentVar closure
= do (myIndent:rest) <- takeMVar indentVar
id <- mkFreshId
clD <- getClosureData closure
-- push indent strings for children on the stack

-— output the current node
return ((), id)

printRepeatIndent :: MVar [String] -> 1Int -> Untyped -> I0 O
printRepeatIndent indentVar id closure
= do (myIndent:rest) <- takeMVar indentVar
putMVar indentVar rest
putStrLn (myIndent ++ show id ++ " (met again)")

Figure 4.14: Worker functions to pretty-print a heap graph structure

Usage. Suitable worker functions for the traversal have to be supplied by the
caller. For instance, IDs could be assigned to every closure met, and counted how
often the same closure has been found.

data ClosureMet = New Int Untyped | Again Int
instance Show ClosureMet where

show (New id cl) = show id ++ showAddr cl

show (Again id) = show id ++ "(again)"
firstMet :: Untyped -> IO (ClosureMet,Int)
firstMet cl = do iD <- mkFreshId

return (New iD cl, iD)

metAgain :: Int -> Untyped -> I0 ClosureMet
metAgain iD cl = return (Again iD)

Stateful Graph Traversal. To use the graph traversal for packing heap struc-
tures, the worker functions have to support an internal state. For packing, this
storage will be continuously filled during packing and sent away afterwards. A
more simple, but analogous problem is to pretty-print the subgraph below a
rootnode with an appropriate indentation. This can be encoded easily using
depth-first traversal and suitable worker functions, as shown in Fig. 4.14. We
should underline that all code fragments shown for heap graph traversal are com-
pilable and have been tested; here is the code and output of a small test program
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which prints a heap graph before and after evaluation:

Before *, at (1): After * at (2):

-->1: Thunk 17
+-2: Constr

Haskell Program:

-->1: Thunk 17

import HeapAccess
+-2: Constr

|-3: Constr

|-3:

Constr

d2 = [1 52, 3] | |-4: Constr | |-4: Constr
d3 = 0:42 | +-5: Constr | +-5: Constr

. |-6: Constr |-6: Constr
d4 = tail d3 +-7: Constr +-7: Constr

|
|
| |-8: Constr
| +-9: Constr
+-10: Constr
|-11: Constr
| 1-12: Constr
| +-3 (met again)
+-13: Constr
|-14: Thunk 22
+-9 (met again)

|-8: Constr
+-9: Constr
10: Constr
|-11: Constr
| |-12: Constr
| +-3 (met again)
+-13: Constr
|-3 (met again)
+-9 (met again)

|
|
|
main = do hSetBuffering stdout NoBuffering L

let testlist = [d2,d3,d4]

printGraph testlist -- (1)
print testlist -= (%)
printGraph testlist -- (2)

printGraph :: a -> I0 ()

printGraph rootnode = ... -- see above

Packing and unpacking. The standard layout of heap closures in GHC starts
with a header section, followed by all pointers to other graph nodes, and then by
all non-pointers. Assuming this, we have prototyped a packing implementation
which is largely equivalent to the packing routine in the Eden RTE.

Newly met closures are packed as their info pointer address (the same on all
machines when using a homogeneous network), zeros for the pointer fields, and
data directly copied into some storage. The size of the closure in the packet is
returned. Internally, the start index of the packed data is stored in the hash table
we use in the traversal function. When a closure is met again, the second worker
function applies, which will not pack it again, but only pack a back reference
(stored earlier when meeting the closure for the first time). The resulting packet
layout is as follows (example):

0,0 |di,d2
1:graphroot

0,0,0

info dl, d2, dg
14:cl. 4

REF | 6

info dl, d2, dg 14
ref. to 2|20:closure 5[ref. to 4

REF

info

info | )

d17d2

info

6:closure 2 |10:closure 3

The example packet contains a complete subgraph
of 5 nodes, the graph structure depicted on the right.
All packed zeros (pointer fields) will be filled with ref-
erences to subsequent closures upon unpacking. Back
references to closures already packed are stored in the
packet with a special info pointer REF, followed by the
index of the closure in the packet. The code for packing
(not shown) is mostly straightforward; it has to copy
all relevant data into the storage (a contiguous memory
region), which is done by the worker function, and to
follow the references, done by the traversal HOF. We
have used a mutable array of unboxed values, manipu-
lated in the IO monad, as storage.
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Unpacking a subgraph which has been packed in this format merely consists
of doing a pass over the contiguous memory region and filling in all the miss-
ing pointers. The graph structure is reconstructed in-situ, no data needs to be
copied. This is the main difference against the packing algorithm implemented
in the RTE of Eden (and GpH), which does not leave space for pointers, but
reconstructs the graph structure in newly allocated heap space. The code for
unpacking (not shown) does one pass over the whole packet, identifies (closures
with) pointer fields, and enqueues their indices in a queue for filling in missing
pointers. Recursive functions iterate over the queue and over pointer fields in a
dequeued closure. While the packet is analysed, the closures and back references
inside are written into the currently filled closure (which has been dequeued, and
will be filled to completion before dequeueing the next one).

Problems

Even though the heap access functionality seems to be realisable, apparent prob-
lems arise when applying our concepts in a broader context than tiny test pro-
grams. Because of the unsafe type casts involved, developing the methods is
cumbersome, and especially packing fails in many test programs (due to wrong
assumptions about GHC internals). And it has to be admitted that our func-
tions, despite all efforts, contain various implementation dependencies. While
the graph traversal might work correctly, given a correct implementation of the
GHC-dependent parts, our packing/unpacking algorithm essentially relies on the
GHC standard closure representation.

The truly severe problem we see in this approach is the interaction of heap
graph traversal and garbage collection. Graph traversal has to be non-preemptive
(no other thread should run in-between) and atomic (no garbage collection should
happen during execution). The entire traversal has to happen atomically. The
reason is that the traversal accesses the heap by raw pointers, and even stores
results with memory addresses as an index in a hash table. So we are accessing
the raw heap (GC not transparent), but simultaneously creating new heap cells
by our Haskell computation (GC transparent). If garbage collection occurs in
the middle of such a heap operation, it will invalidate all “raw data” we obtained
from the RTE.

On the other hand, garbage collection cannot be inhibited during traversal.
An example can be constructed where the intermediate structures created during
traversal require more heap space than available, requiring garbage collection to
run. If packing is restarted from the beginning in such a case, packing will end
up in the same state again. The only relief would be to treat the pointers in the
current closure queue as additional garbage collection roots; but then, these raw
memory addresses would have to be replaced by new ones.
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getSparks :: Int -> Bool -> StateI0O GumState [GumJob]
getSparks amount forExport = do (GSt ts sparks pes) <- get
let (sparks,rest) = splitAt amount sparks
put (GSt ts rest pes)
if forExport then mapM prepareExport sparks
else return sparks
prepareExport :: GumJob -> GumJob
prepareExport ptr = do stPtr <- castPtrToStablePtr ptr
spark <- deRefStablePtr stPtr
(chan,result) <- createC
let sendBack = mkGumJob
(do connectToPort chan
rnf spark ‘seq‘ -- nf evaluation
sendData Data spark) -- send back NFData
replaceBy# spark result
return sendBack

Figure 4.15: Spark export preparation for distributed memory

4.7.4 Summary

To conclude, we can state that our Haskell platform GHC provides the tools
needed for global address management, and the prototype code for a VSM im-
plementation in Haskell looked promising. However, heap graph traversal from
inside Haskell turned out to introduce considerable implementation dependen-
cies and a conceptual obstacle (garbage collection). We have demonstrated that
heap graph traversal is a requirement for implementing virtual shared memory
in Haskell. Altogether, our current opinion is that the virtual shared memory
support for GpH cannot be encoded in Haskell, at least not with the current
assumptions we have made about kernel support. More sophisticated kernel sup-
port is needed, decoupling the kernel implementation details from the system
level where we wanted to manage global addresses. Our impression is that this
issue amounts to implementing global address support in the kernel.

As an alternative, we might consider applying the two-stage task creation of
GpH to a distributed memory setting. Sparks can easily be managed inside the
Haskell scheduling loop, as we have shown previously. In our scheduling and
communication framework, it is easy to define a mechanism where idle PEs fetch
one or more sparks and return the evaluated data eagerly. The code in Fig 4.15,
straightforward and without any technical issues, sketches a variant of the helper
function getsparks for work request handling in processFish (see Fig. 4.11).
When a spark is exported using this function, its evaluation automatically in-
cludes communication of the result back to the source (whereas, in GpH, data
resides at the evaluation site until fetched back). It might look potentially dan-
gerous that the spark data is made unaccessible and replaced by a placeholder.
Function prepareExport may only be called when that export does happen. How-
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ever, exactly the same happens in a kernel implementation. A real drawback
and potential source of bad performance is that data needed for evaluation of the
spark will always be copied, potentially duplicating its evaluation. In contrast to
the virtual shared memory of GpH, sharing data between two exported sparks is
impossible with our version.

We have described how parallel coordination constructs can be realised outside
a monolithic kernel implementation, thereby providing much easier access for
language designers. While modeling VSM from inside Haskell is attractive, it
cannot be safely realised with the kernel support assumed. In contrast, schedul-
ing concepts (crucial in today’s heterogeneous architectures) have proven easy
to express in our proof-of-concept implementation. Summarising, we can state
that the ARTCOP idea is promising and that especially its flexibility makes it
attractive for new parallel architectures and adaptive programming models.
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Chapter 5

Visualising Eden program runs:
EdenTV

5.1 Motivation

Due to the high complexity and nondeterministic interaction in parallel systems,
developing, debugging and optimising parallel programs is a very complex pro-
cess. The parallel functional languages we investigate in our work “eliminate
many of the most unpleasant burdens of parallel programming|...]” [HM99], as
they offer a conceptual algorithmic view of parallelism and remain abstract about
operational properties. This abstraction makes parallel programming much less
error-prone. On the other hand, this often hampers program optimisations. The
programmer has few possibilities to analyse and optimise the behaviour of a pro-
gram by only knowing the runtime or speedup achieved. In order to improve
the performance of parallel functional programs productively, more information
about the execution is needed. For programmers who are not familiar with the
language implementation, it is very difficult to know or guess what really happens
inside the parallel machine during program execution.

Many profiling toolkits for monitoring parallel program executions exist [Fos95,
KG96, NAW™96], but most of them are less appropriate for high-level languages,
as these are generally implemented with the help of a complex parallel runtime
system implementing a parallel virtual machine, as we have described earlier for
Eden specifically.

Standard profiling tools

like xpvm [KGO6] can only parallel funct. program EdenTV
monitor the execution of this l, 4
runtime system, the activity parallel runtime system standard

: ’ . filing tool
of the virtual processing ele- parallellmachine < profiling tools
ments (PEs or machines, usu-

ally mapped one-to-one to the
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physical ones), the message traffic between these PEs, and the low-level behaviour
of the underlying middleware like PVM [PVM] MPI [MPI97]. But the large gap
between abstract language concepts and concrete runtime behaviour needs cus-
tomised high-level tools for runtime analysis. The basic runtime and computation
units of the language, under programmer control and on top of the RTE, are hard
to identify from this low-level view.

The Eden trace viewer tool (EdenTV) presented in this chapter visualises the
execution of parallel functional Eden programs at a higher level of abstraction.
EdenTV shows the activity of the Fden threads and processes, their mapping to
the machines, stream communication between Eden processes, garbage collection
phases, and the process generation tree, i.e. information specific to the Eden pro-
gramming model. This supports the programmer’s understanding of the parallel
behaviour of an Eden program.

EdenTV enables a post-mortem analysis of program executions at the level of
the Eden RTE. The steps of profiling are trace generation and trace representa-
tion, separated as much as possible in EdenTV, so that single parts can easily be
maintained and modified for other purposes.

EdenTV has been developed as a supplement in the context of our work
on the Eden implementation. Two versions of the trace representation tool are
currently available. A Java implementation has been developed by Pablo Roldan
Gomez [RGO04]. Bjorn Struckmeier [Str06] did a re-implementation in Haskell
which provides additional features. Both tools had to undergo major revisions
after the new implementation of Eden in GHC 6.

In this chapter, we will describe implementation concepts of EdenTV, and
present examples of how the high-level EdenTV profiling tool can be profitably
used to optimise and spot errors in high-level parallel programs (our related pub-
lication [BLO7b] contains similar case studies). Typical reasons for bad perfor-
mance in our lazy functional setting are delayed evaluation or poor load balanc-
ing between processes, easily identified by the trace visualisations. In addition,
EdenTV works for EDI programs (it is based on the basic runtime computation
units) and can thereby help detect bugs and weaknesses of the language imple-
mentation itself. EdenTV timeline diagrams will be used throughout the rest of
this thesis to support analysis and discussion of our skeleton implementations.

5.2 How EdenTV works

To enable the trace generation for EdenTV, the Eden RTE is instrumented
with special trace generation commands, activated by a runtime system option.
Parts of the well-established Pablo Toolkit [Dan91] and its Self-Defining Data
Format (SDDF) are used for trace generation. After program termination, the
trace files (one per machine) are merged and can be loaded into EdenTV to
produce timeline diagrams for threads, processes, and machines.
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Trace generation. To profile the execution of an Eden program, the RTS con-
tinuously writes events into a trace file. These trace events, shown in Figure 5.2,
indicate the creation or a state transition of a computational unit. Trace events
are emitted from the RTE, using the Pablo Trace Capture Library [Dan91] and
its portable and machine-readable “Self-Defining Data Format”. Eden programs
need not be changed to obtain the traces.

deblock thread

Blocked

new thread Runnable

(s

kill thread

kill thread

Finished

kill thread

Figure 5.1: Thread state transitions

Start Machine End Machine
New Process Kill Process
New Thread Kill Thread
Run Thread Suspend Thread
Block Thread Deblock Thread
Send Message Receive Message

Start Communication| End Communication

Label Process GC done

Figure 5.2: EdenTV trace events

The events which are traced during a program run collect information about
the behaviour of machines, processes, threads and messages. Concurrent threads
are the basic unit for the implementation, so the central task for profiling is to
keep track of their execution. Threads are scheduled round-robin and run through
the straightforward state transitions shown in Figure 5.1. An Eden process, as a
purely conceptual unit, consists of a number of concurrent threads which share a
common graph heap (as opposed to processes, which communicate via channels).
The Eden RTE does not support the migration of threads or processes to other
machines during execution, so every thread is located on exactly one machine
during its lifetime. The machines form a third category, and a self-suggesting
one, since one file per machine is generated by the trace library.

Additional events (written in italics in Fig. 5.2) record underlying RTE ac-
tions, garbage collection and communication phases, and allow to label new pro-
cesses with a name (corresponding trace viewer features are only partially imple-
mented).
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(d) Explanation of colour codes

Figure 5.3: Examples of EdenTV diagrams and colour codes table

Trace representation. In the timeline diagrams generated by EdenTV, ma-
chines, processes, and threads are represented by horizontal bars, with time on
the x axis. EdenTV offers separate diagrams for machines, processes, and threads.
The machines diagrams correspond to the view of profiling tools observing the
parallel machine execution. Figure 5.3 shows examples of the machines and pro-
cesses diagrams for a parallel divide-and-conquer program with limited recursion-
depth. The trace has been generated on 8 Linux workstations connected via fast
Ethernet. The diagram lines have segments in different colours, which indicate
the activities of the respective logical unit in a period during the execution.
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Thread states can be directly concluded from the emitted events. Machine
and process states are assigned following a fundamental equation for the thread
count inside one process or machine:

0 < Runnable Threads + Blocked Threads < Total Threads

Colour codes for processes and machines are assigned as a result of comparing
these numbers. In general, the first condition checked by EdenTV is complete
equality, i.e. whether the machine or process is in idle state (Total Processes resp.
Total Threads= 0). Otherwise, a difference between the thread counts (inequality
on the right) implies that a thread is running. If the thread counts on both sides
are equal, the state is either runnable or blocked, depending on the number of
runnable threads (the state is runnable if Runnable Threads > 0). This context
information for all units is the basis of the graphical representations.

The example diagrams in Figure 5.3 show that the program has been executed
on 8 machines (virtual PEs). While there is some continuous activity on machine
1 (the bottom line), where the main program is started, machines 6 to 8 (the
upper three lines) are idle most of the time. The corresponding processes graphic
(see Figure 5.3(a)) reveals that several Eden processes have been allocated on
each machine. The diagrams show that the workload on the parallel machines
was low — there were only small periods when threads were running. Messages
between processes or machines can optionally be shown by arrows which start
from the sending unit line and point at the receiving unit line (see Figure 5.3(c)).
The diagrams can be zoomed in order to get a closer view on the activities at
critical points during execution.

Additional features. Several ex-

tensions to EdenT'V have been made to [Machine][Runtime Processes  Messages
provide additional information about (sec) sent received

the program run, beyond the basic ma- 1 0.287197 4 6132 6166
. . 2 0.361365 18 1224 1206

chine, process, thread and communica-

tion information. All EdenTV versions

provide a summary of the messages 8 0.362850 6 408 402

Total |/0.371875 66 14784 14784

sent and received by processes and ma-

chines (on the right for the trace in

Figure 5.3). In the Haskell version, stream communication is indicated by shad-
ing the area between the first and the last message of a stream (see Figure 5.3(c)),
garbage collection phases and memory consumption can be shown in the activ-
ity diagrams, and the process generation tree can be drawn and labelled with
process names. In turn, the Java version offers to indicate the communication
phases (when the RTE is receiving messages) by an additional color in the bar.
EdenTV is still under active development to add useful information, improve the
efficiency of trace analysis, and continuously adapt to new RTE versions (main-
taining backward compatibility whenever possible).
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5.3 Related work

A rather simple (but insufficient) way to obtain information about a program’s
parallelism would be to trace the behaviour of the communication subsystem.
Tracing PVM-specific and user-defined actions is possible and visualisation can
be carried out by xpvm [KG96]. Yet, PVM-tracing yields only information about
virtual PEs and concrete messages between them. Internal buffering, processes,
and threads in the RTE remain invisible, unless user-defined events are used.

Space-Time: Tasks vs. Time
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(a) xpvm space-time graphic (b) EdenTV machines graphic
Figure 5.4: xpvm vs EdenTV

As a comparison, we show xpvm execution traces of our first trace examples. The
space-time graphic of xpvm shown in Figure 5.4(a) corresponds to the EdenTV
machine view of the same run in Figure 5.4(b), if the machines are ordered
according to the xpvm order. The monitoring by xpvm significantly slows down
the whole execution (runtime increases from 0.37 seconds to 10.11 seconds). A
reason for this unacceptable tracing overhead might be that PVM uses its own
communication system for gathering trace information.

Comparable to the tracing included in xpvm, many efforts have been made
in the past to create standard tools for trace analysis and representation (e.g.
Pablo Analysis GUI [Dan91], the ParaGraph Suite [HE91], or the Vampir sys-
tem [NAWTO6], to mention only a few essential projects). These tools have
interesting features EdenTV does not yet include, like stream-based online trace
analysis, execution replay, and a wide range of standard diagrams. The aim of
EdenTV, however, is a specific visualisation of logical Eden units, which needed
a more customised solution. The EdenTV diagrams have been inspired by the
per-processor view of the Granularity Simulator GranSim [Loi96|, a profiler for
Glasgow parallel Haskell (GpH) [THLP98|, which, however, does not trace any
kind of communication due to the different language concept. The Eden deriva-
tive of GranSim, Paradise [HPRO00], equally was a pure simulator, but offered the
interesting feature to label instantiated processes in the visualisation, thereby
linking trace information to the program source code. Last but not least, the
direct predecessor of EdenTV was the work by Ralf Freitag [Fre99], which was
entirely based on the Pablo Analysis GUI (not available any more).
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5.4 Simple examples

5.4.1 Irregularity and cost of load balancing

The well-known higher-order function map, which applies a function to all ele-
ments of a list, can be easily parallelised in different ways. Every list element
represents an independent task (applying the function), and these may be arbi-
trarily distributed to a number of sub-processes, given that the initial order is
kept or re-established in the result list.

We consider two different versions which can be distinguished by the method
of distributing the list elements to different worker processes. Both methods dis-
tribute the tasks in a statically determined fashion: For n processes, we can either
cut the input list into n pieces of regular length, or distribute the single elements
round-robin until all tasks are distributed. Problems may arise when tasks have
irregular complexity, the subprocesses may expose uneven load distribution, and
the machine with the most complex tasks in its (statically determined) task set
will dominate the runtime of the parallel computation.

Ezample: (Mandelbrot visualisation) We compare different work distribu-
tion schemes using a program which generates Mandelbrot Set visualisations by
applying a uniform, but potentially irregular computation to a set of coordinates.

We tested different parallelisations of the underlying computation scheme,
map, as described above. Parallelisation consists of the parallel computation of
pixel rows, and the two versions differ by their task distribution: either round-
robin for single elements, or blockwise for the whole list. The Mandelbrot pro-
grams ran on 25 machines of a Beowulf-cluster, with a problem size of 2000 x 2000
pixels.

As we can see in the diagrams shown in Fig. 5.5, the round-robin distribution
of rows (Fig. 5.5(a)) leads to a well-balanced load in the worker processes, while
the blockwise distribution (Fig. 5.5(b)) produces an uneven complexity of tasks,
and thus uneven workload of the worker processes, even showing the silhouette
of the Mandelbrot graphic (please note that the creation order of the processes
is bottom-to-top). Despite the static task distribution, the root process (bottom
bar) presents a serious brake, as it merges all results at the end of the computa-
tion, leading to a long sequential end phase. Both traces show that the workers
can work without being blocked, but they are far below the theoretical optimum
of using all processors in parallel all of the time. While from the total runtimes,
the difference between the two runs is hardly distinguishable, an analysis using
the EdenTV has revealed the load imbalance of the worker processes, and has
shown that the bottleneck of result collection in the calling main process domi-
nates runtime and needs optimisation. N
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(b) Farm skeleton, static blockwise distribution (runtime: 8.74 sec.)

Figure 5.5: All Machines diagrams for different parallel Mandelbrot programs

Eden-5 Beowulf Cluster Heriot-Watt University, Edinburgh, 25 machines
(Intel P4-SMP@3GHz, 512MB RAM, Fast Ethernet)

5.4.2 Lazy evaluation vs. parallelism

When using a lazy computation language, a crucial issue — for Eden as well as
other Haskell-based parallelism — is to start the evaluation of needed subexpres-
sions early enough and to fully evaluate them for later use. The basic choice to
evaluate a final result either to weak head normal form (wHNF) or to normal form
(NF) sometimes does not offer enough control to optimise an algorithm. Strate-
gies [THLP98] forcing additional evaluations must then be applied to certain
subresults. On the sparse basis of runtime measurements, such an optimisation
would be rather cumbersome. EdenTV, accompanied by code inspection, makes
such shortcomings obvious, as in the following example.

Ezample: (Warshall’s algorithm) We compute shortest paths between all
nodes of a graph from its adjacency matrix. The program measured here is a
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parallel implementation of Warshall’s algorithm with a ring of processes (adapted
from [PvE93]). Initialised with a row of the adjacency matrix, each process com-
putes the minimum distances from the corresponding node to every other node by
updating its row continuously using the other rows received from, and forwarded
to, the ring. With the Eden ring skeleton (discussed in detail later in 8.2, also
see [LOMPO05]), the task of implementing this algorithm reduces to defining the
function ring_iterate that each ring process should apply, shown in Fig. 5.6 for
the Warshall program.

Each ring process performs size (= number of graph nodes) iterations where
k is the number of its own node, i is the iteration counter and rowk is the own
row. It maps the input from the ring predecessor (rowi:xs) to a pair (final
result, output to ring successor). The result is the final value of its own row.
The output to the successor in the ring consists of the incoming rows to which
its own row rowk is added in the kth iteration. In all but the kth iteration, each
ring process updates its own row by updaterow using the incoming row rowi.

The trace visualisations in Fig. 5.7 show the Processes/Machine view of EdenTV
for two versions of the program on a Beowulf cluster, the input graph consisting
of 500 nodes (aggregated on 25 processors). The programs differ by the line in
bold face in the function ring_iterate, which introduces additional demand for
continuously updating the own row in the second version.

ring_iterate :: Int -> Int -> Int -> [Int] -> [[Int]] -> ([Int], [[Int]])
ring_iterate size k i rowk (rowi:xs)

| i > size = (rowk, []) -- iterations_finished
| 1 == = (solution, rowk:restoutput) -- send own updated row
| otherwise = (solution, rowi:restoutput) -- compute update only

where (solution, restoutput) =
rnf nextrowk ‘seq‘ -- additional demand control
ring_iterate size k (i+1) nextrowk xs
nextrowk | i == = rowk -- no update, if own row
| otherwise = updaterow rowk rowi (rowk!!(i-1))

Figure 5.6: Ring process functionality for parallel Warshall program

The first program version (without demand control) shows poor performance,
due to an inherent data dependence in the algorithm. The trace visualisation
clearly shows that the first phase of the algorithm is virtually sequential. A small
period of increasing activity (growing segments) between long blocked periods
traverses the ring. Note that the first machine executes two processes: the main
program and the last ring process. Only the second phase of the algorithm runs
in parallel on all machines. The length of this second phase depends on the
position in the ring: The first ring process (which started working first) has to do
the most work in the end, thereby dominating runtime. The reason for this poor
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Figure 5.7: Warshall’s algorithm (500-node graph)

Eden-5 Beowulf Cluster Heriot-Watt University, Edinburgh, 25 machines
(Intel P4-SMP@3GHz, 512MB RAM, Fast Ethernet)

performance is demand-driven evaluation: Data received from a ring neighbour
is passed to the next node unchanged, until the node sends its own rows updated
with all ring data received before. Only when the nodes’ updated own rows are
passed to the ring, their evaluation begins. Before this inherent demand takes
place, the processes only accumulate data from the ring communication, but
do not proceed to updating their rows with the distances received from the ring
neighbour. Inserting a normal form evaluation strategy (rnf) for the updated row
nextrowk into the ring iterate function dramatically improves runtime. We still
see the impact of data dependence, leading to a short wait phase passing through
the ring, but the optimised version shows good speedup and load balance. A
crucial issue for such optimisations is to identify the demand problem from the
trace visualisation (without a link to the program’s source code). <
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5.4.3 Process placement (implementation) bug

As we have described earlier (see 3.1.3), process instantiation in Eden is imple-
mented as a message between PEs with special semantics, in mode Instantiate.
The primitive operation, as well as the EDI wrapper spawnProcessAt, thus allows
explicit process placement on particular PEs. The Eden language, by original
definition, does not expose placement, but processes are placed either following a
local round-robin scheme, or randomly on all available machines. While the sup-
port for explicit process placement is crucial for programming efficient skeleton
implementations, small prototype programs for EDI and Eden skeletons often
rely on the round-robin scheme.

Ezample: (Pipeline process placement) For instance, a pipeline of n processes
can be set up in EDI as n remote computations spawned by a single caller, and
connected via channels.! In a small test program, which uses less pipeline stages
than available PEs, we can expect the pipeline to use one PE more than the
number of stages (say k), precisely PEs 1 to k£ + 1, since the caller on PE 1 is
supposed to place pipeline stages round-robin: on PEs 2,3...(k + 1). However,
processes got unexpectedly placed on every second PE, as shown by the EdenTV
machine view in Fig. 5.8.

Ilo

I

003 006 008 012 015 013 021 024 027 03 033 036 039 042 045 048

Figure 5.8: Pipeline test program revealing RTE bug (no round-robin placement)

The reason is a subtle bug in the round-robin distribution implementation in
the RTE, relevant in a special scenario. A channel for input of a pipeline stage was
sent back by each pipeline process right after instantiation, and supplied to the
predecessor stage as an embedded part of the remote action to be executed. This
means, when instantiating (i.e. packing and sending away) the pipeline processes,
input channels of the respective successor stages were not available in the heap,
and process instantiation (done in one thread for all stages) was blocked on the
respective placeholders every time. When the channel then became available, the

"'We will discuss variants of pipeline skeletons in more detail later in 8.1.2. The bug explained
here was indeed discovered when experimenting with pipeline skeletons.
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RTE (erroneously) selected the next PE in round-robin manner, not the same
as before when the instantiation got blocked. Without EdenTV, errors of this
kind, and their cause, are hard to find, the only reliable information being debug
messages for developers. <

As we have shown, the Eden Trace Viewer provides information at the same
level of abstraction as the Eden (and EDI) programming language. It is there-
fore directly related to the Eden implementation, and provides a useful tool for
detecting typical traps of parallelism at the high level: load balancing issues,
missing demand in computation or communication, analysis and control of the
communication structures, and implementation bugs. In our short and simple
examples, EdenTV analysis of program executions led to substantial runtime im-
provements by additional demand, and to the detection of a bottleneck, which is
hard, if not impossible to detect without high-level profiling tools like EdenTV.
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Chapter 6

Skeleton programming and
implementation

6.1 Context: High-level parallel programming

We have already argued in our introduction why writing efficient and correct par-
allel programmes is far more complex than sequential programming: Even though
research has proposed and developed a range of paradigms which abstract over
simple message-passing between processes and memory locks, the latter tech-
niques certainly constitute the predominant and most widely applied model, due
to its simplicity and intuitiveness. Methods and tools for explicitly specifying
parallel execution at a higher level of abstraction cannot be considered as an es-
tablished standard in the industry yet. And together with today’s quick advances
in parallel hardware architecture, multicore CPUs and Grid technology, there is
an immediate need for concepts and sound development paradigms for parallel
applications.

As Sergej Gorlatch points out in allusion to a famous Dijkstra paper [Dij68], us-
ing bare send and receive operations is “too much an invitation to make a mess
of one’s [parallel] program” [Gor04, p.55, quoting Dijkstral, just like the goto
statement in the 60s. However, message passing obviously is a necessary imple-
mentation tool for any interaction between machines with distributed memory. A
position paper by Phil Trinder [Tri04] points out that, correspondingly, classical
process calculi (like CCS, CSP and 7-calculus [Mil99]) do not go beyond mod-
eling simple send/receive operations, and therefore are not appropriate tools for
modeling complex parallel computation. Simple intuitive theoretical models are
needed, going alongside with abstractions geared towards parallel algorithms in-
stead of a low-level machine-oriented view. The desired programming techniques
for parallelism should capture algorithms rather than necessary machine interac-
tion, and circumvent the complexity of parallel coordination as far as possible.
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6.2 Parallel programming with skeletons

6.2.1 The skeleton idea

To supply conceptual understanding and abstractions of parallel programming,
the notion of algorithmic skeletons has been coined by Murray Cole in 1989 [Col89].
An algorithmic skeleton abstractly describes the (parallelisable) structure of an
algorithm, but separates specification of the concrete work to do as a parame-
ter function. Skeletons are meant to offer ready-made efficient implementations
for common algorithmic patterns, the specification of which remains sequential.
Thus, an algorithmic skeleton contains inherent parallelisation potential in the
algorithm, but this remains hidden in its implementation.

Standard patterns of parallel execution can be expressed easily by instanti-
ating a suitable skeleton with the right parameter function. A broader research
community has quickly adopted and developed the idea further [RG03]. Today,
we find a range of languages intended for skeleton programming, with different
computation languages and implementation flavours (e.g. [Kuc02,Ben07,Dan07])
and compilation-based approaches [BDOT95, MSBKO1]. However, algorithmic
skeletons still are, more or less, a research subject with little impact on main-
stream software engineering. Possible reasons identified by Cole [Col04] are that
skeleton approaches did not advertise their pay-back sufficiently, and that it is dif-
ficult to integrate existing practices and ad-hoc parallelism — in other words, the
ability to customise predefined skeletons. Other models have found far broader
acceptance in software engineering, namely MPI and design patterns, which we
are briefly putting in context to the skeleton approach hereafter.

Skeletons vs. elementary collective operations. The low-level message
passing standard MPI [MPI97] specifies standard patterns for common tasks of
data distribution, exchange and reductions (the latter parameterised with prede-
fined binary operations like sum, max, ..., or user-defined functions), as “collec-
tive operations” (MPI_Gather, MPI Scatter, MPI Allreduce and similar).

In the cited position paper [Gor04], Sergej Gorlatch points out the drawbacks
of send/receive operations in comparison to these collective operations. In an
almost polemic style, Gorlatch argues against so-called “myths” attached to ele-
mentary message passing as a programming paradigm, and in favour of collective
operations. He appeals for a more systematic development of parallel applica-
tions, for which he had provided foundations in earlier, more formal work [Gor00]:
a sound theory and cost model for composed collective operations, allowing one
to (reliably) optimise parallel programs by rule-based, cost-directed transforma-
tions. To a certain extent, collective operations and algorithmic skeletons follow
the same philosophy: to specify common patterns found in many applications,
and provide optimised implementations that remain hidden in libraries. However,
the two models differ substantially in expressive power. While skeletons describe

86



6.2. PARALLEL PROGRAMMING WITH SKELETONS

a whole, potentially complex, algorithm, collective operations only predefine and
optimise common standard tasks which are often needed in implementing more
complex algorithms. Moreover, collective operations, by their very nature, are
explicit about parallelism already in their specification.

Skeletons vs. parallel “design patterns”. In the late 90s, the notion of de-
sign patterns [GHJV00, GHIJV93] (common organisational structures for object-
oriented applications) set a new trend in software engineering, and a useful new
programming methodology. Consequently, the design pattern paradigm has been
applied to parallel programming, and has considerable potential in identifying in-
herent parallelism in common applications. Yet literature about design patterns
often targets merely concepts and leaves the implementation to the established
low-level libraries (see e.g. textbook [MSMO05] for a typical example). Again, de-
sign patterns and algorithmic skeletons seem somehow comparable, as they both
abstract from the task and identify a common pattern, with a standard imple-
mentation. Design patterns for parallel applications capture complex algorithmic
structure, provide conceptual insight in parallelisation techniques and problem
decomposition, and thereby give guidelines for the design of parallel algorithms.
However, they cannot provide the programming comfort and abstraction level of
algorithmic skeletons, ready-made higher-order functions, which completely hide
parallelism issues.

Functional languages and the skeleton approach.

From the perspective of functional languages, skeletons are specialised higher-
order functions with a parallel implementation. Essentially, the skeleton idea
applies a functional paradigm (higher-order functions with a parallel implemen-
tation) for coordination (in fact independent of the underlying computation lan-
guage). While skeleton libraries for imperative language, e.g. [PK05, Ben07],
typically offer a fixed, established set of skeletons (like the more basic collective
MPI operations [MPI97]), parallel functional languages are able to express new
skeletons, or to easily create them by composition [MSBK01, RG03].

Functional languages where the parallelism is introduced by pre-defined data
parallel operations or skeletons, like NESL [Ble96], OCamlP3l [DDLP9§|, or
PMLS [MSBKO1], have the advantage of providing optimal parallel implementa-
tions of their parallel skeletons, and allow skeleton composition. However, the
programmer cannot invent entirely new problem-specific skeletons or operations.
More explicit functional coordination languages are appropriate tools not only to
apply skeletons, but also for their implementation, allowing formal analysis and
conceptual modeling. Coordination structure, programming model and algorithm
structure can be cleanly separated by functional languages, profiting from their
abstract, mathematically oriented nature.
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We will now concentrate on this implementation work especially for Eden and
its implementation language EDI. The skeleton programming paradigm is fully
coherent with the implementation structure in layers we have presented earlier for
Eden’s high-level coordination features. In particular, skeleton implementation
represents an interesting testbed for EDI’s parallel coordination features, since
the task of implementing skeletons in a high-level language typically deals with
a compromise between high abstraction and specific operational control of the
execution, and thereby raises fundamental questions of coordination language
design. As we will show subsequently, implementing coordination concepts in
a (still declarative) low-level language like EDI is often quite verbose, but the
library parts of the implementation retain the aforementioned fundamental ad-
vantages, and the explicitness offered by EDI helps produce both efficient and
understandable implementations.

In Eden, the programmer can both apply skeletons and express, i.e. implement
skeleton, in an arbitrary mixture. Skeletons can themselves be implemented in
terms of others (we will see examples later), described as “parallel programming
at two levels of abstraction” [KLPROO0]: programming at a high level — with skele-
tons, and programming directly — with process abstractions and instantiations.
The lower level, skeleton implementation, is the proper domain of EDI, mainly
because its explicit communication allows to specify skeleton-specific communi-
cation structures beyond the caller-callee process connections created by Eden’s
process instantiation.

6.2.2 A skeleton typology

In the original work [Col89], an algorithmic skeleton is specified purely sequen-
tially, the inherent potential parallelism being exploited inside the implementa-
tion only. However, more recent literature uses the term “skeleton” in a more
general manner, also including a second kind of higher-order functions. These
abstractly describe how the subcomputations of a parallel computation interact,
while parameterising the sequential computation. The following parts are dealing
with and delimiting two different kinds of skeletons with different intentions.

Problem-oriented, or Algorithmic skeletons

Algorithmic skeletons are problem-oriented and capture a common algorithm
structure, leaving out parallelism from the specification (verbally following Cole’s
original definition). We can distinguish several kinds of algorithmic skeletons.

Data and task parallelism. A big class of skeletons exploits the inherent
parallelism that is present whenever a uniform transformation operates on a huge
data set, often without any dependency between the different items. Pushed to
the extreme, this yields the data parallel paradigm, where special container data
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structures are defined, and operations on them have a completely hidden parallel
implementation.

A different kind of inherent parallelism is present when different tasks have to
be executed. A typical instance of this class, task parallel skeletons, is the divide&
conquer algorithm scheme, where a problem is either trivial, or decomposed into
independent subproblems to be solved and combined. A second example could be
pipeline processing, where the data items flow through a chain of transformation
stages to finally produce the desired output.

Algorithm vs. implementation. Furthermore, since different parallel imple-
mentations for the same algorithmic task are possible, we can differentiate be-
tween implementations, optimised for different architectures and problem char-
acteristics ( [KLPROO] proposes a mid-level of “implementation skeletons” to
remain architecture-independent, but adequately describe the underlying process
structure).

An important aspect is that optimised implementations may require the pa-
rameter functions to have certain additional non-obvious properties. For instance,
in a parallel reduction skeleton, commutativity of the binary operation leaves a
lot more room for optimisations, since elements of the input can be combined
freely out-of-order.

Structure-oriented, or topology skeletons

A different class of skeletons we treat is purely structure-oriented, and explicit
about the parallel execution. Structure-oriented skeletons describe the interaction
between the processes of a parallel process network. More specifically, the focus
of our research in this area has been to model interconnection networks between
nodes of classical parallel machines, for instance process rings, process grids,
hypercubes, and also pipelines, when considering their topological character. We
use the term topology skeletons [BLO8,BLO5b] to describe this skeleton class. Well
understood, these network topologies hardly exist in hardware any more, and are
clearly way below the Eden programming level. However, a range of algorithmic
work for classical parallel machines exists (see e.g. the algorithm examples in
standard text books [Fos95,Qui94|); and algorithm design for a specific network
topology, easily realised using topology skeletons, structures the communication
pattern.

Usually, classical topologies follow a very regular scheme and can be neatly
expressed in a declarative manner [BLOS|, often being a simple recursion [BL0O5b].
The implicit parent-child connections of Eden are insufficient. Specific topologies
can be constructed using Eden’s dynamic reply channels between arbitrary nodes,
in addition to the parent-child connections, or else programmed explicitly right
from the beginning in EDI.
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Chapter 7

Problem-oriented skeletons: Map
and reduce

In this chapter, we want to discuss implementation aspects for problem-oriented
skeletons, i.e. the classical algorithmic skeletons. These can be distinguished as
data parallel or task parallel. In the former case, a starting point is provided by
classical higher-order functions: map, fold and scan (in both directions), as well as
variants and combinations thereof. More oriented towards algorithmic structure
and technique are the task-parallel skeletons, such as divide&conquer, which we
leave out of discussion.

Eden skeletons have been proposed in a variety of older publications ( [LOP*03]
summarises), presenting a range of different implementations and related cost-
models, and we do not want to repeat this discussion. The intention of this
chapter is not to present new skeletons, but to compare their different imple-
mentations in Eden and EDI. We will focus on and restrict the discussion to
data parallel implementations (skeletons) of map and reduce and combinations.
Eden versions for these higher-order functions are provided to make the chapter
self-contained, sometimes modified to point out crucial properties. We compare
them to EDI versions developed by ourselves. A related discussion of skeleton
implementation in Eden and EDI can be found in our own work [BLO7a].

7.1 Data parallel mapping

The higher-order function map applies a given function to all elements of a list.
Function applications to the list elements are all independent of each other
(therefore, parallel map problems are sometimes labelled “bag-of-tasks” prob-
lems, or “embarassingly parallel”). Different parallelisations of map are discussed
in [LOP*03], and we discuss implementation aspects for comparable EDI ver-
sions.
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-- Eden’s parallel map
parMapEden,parMapEden2 :: (Trans a, Trans b) => (a -> b) -> [a] -> [b]
parMapEden f xs = map delLift ([ createProcess (process f) x
| x <- xs ] ‘using‘ whnfspine)
-- demand control helper
whnfspine :: Strategy [al
whnfspine [] = O
whnfspine (x:xs) = x ‘seq‘ whnfspine xs

-- other version, internally monadic instead of Lift/deLift
parMapEden2 f xs = unsafePerformIO ( mapM (instantiateAt O (process f)) xs )

Figure 7.1: Straightforward implementations for map in Eden

In a straightforward parallelisation, one process is created for each ele-
ment of the resulting list. This can be expressed easily in Eden using process
abstraction and instantiation, as shown in Fig. 7.1, or programmed explicitly in
EpI (Fig. 7.2).

The first Eden version uses strategy whnfspine to create additional demand
to force the immediate creation of all processes, thereby requiring createProcess
instead of ( # ) (strategy whnfspine would otherwise wait for the whnf of each
process’ result prior to creating the next process). As parMapEden2 shows, our new
EbDI-based implementation can use the IO monad alternatively, and escapes from
the IO monad by unsafePerformI0 at top level, as the EDI version in Fig. 7.2 does.
In the latter version, prior to spawning the child processes, the caller creates a
set of channels (by the EDI abstraction createCs over the single channel creation
createC). Each remote computation will receive one of these channels for sending
back the result of applying f to input x. Embedded in this application £ x is the
input, potentially unevaluated! Whilst the Eden process instantiation spawns its
own concurrent thread in the calling machine to send this input in normal form,

-- monadic Edi parmap using primitive operations only
parMapEdi :: NFData b => (a -> b) -> [a] -> [b]
parMapEdi f xs = unsafePerformIO0 (
do (cs,rs) <- createCs (length xs)
sequence_ [ spawnProcessAt 0 (sendNF ch (f x))
| (x,ch) <- zip xs cs ]
return rs)

-— Eden version which embeds unevaluated input into the proc. abs.

parMapDM:: (Trans a, Tramns b) => (a -> b) -> [a] -> [b]

parMapDM f xs = map deLift ([ createProcess (process (\Q) -> f x)) O
| x <~ xs ] ‘using‘ whnfspine)

Figure 7.2: EDI and Eden implementations for map with embedded input
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the EDI version acts as a demand-driven parallel map, useful to avoid bottlenecks
in the caller. This can be modelled in Eden as well, by adding a dummy argument
to the function applied to the list elements (shown as parMapbu in Fig. 7.2), and
has sometimes been called direct-mapping (hence dm). The other way round, an
EDI version could be defined which communicates input elements, but would look
more complex. Essentially, we would need to inline the Eden process instantiation
code, which creates input channels and forks input sender threads.

An advantage of EDI and the new implementation is that the Lift - deLift
trick as well as the explicit demand control using the strategy whnfspine is no
longer necessary to create a series of processes. However, this is purely an imple-
mentation aspect that remains hidden. A far more important difference between
the Eden and EDI versions is rather subtle, hidden inside the Eden communica-
tion semantics. The presented EDI version parMapEdi will always send the output
as a single data item. In contrast, if the result of applying function f is a list (i.e.
if b is a list type), the Eden versions produce the output, a list of lists, as a list of
streams. Whether this is desired and advantageous depends on the application.
It is possible to construct an example (rather contrived: a backward dependency
linking the outputs and the input list) where the EDI version deadlocks, while
the Eden version, producing a stream, does not. Of course, an EDI version pro-
ducing streams is merely a question of replacing sendNF by sendNFStream, but this
will fix the skeleton type to lists. In Eden, the skeleton is polymorphic and uses
overloading hidden from the programmer.

Increasing the granularity of the parallel processes is crucial and a standard
issue. In the typical case, the input list is very long, whereas only few processors
are available. Instead of one process per list element, each process (a previously
fixed amount) can handle a whole sublist of elements. This is easily implemented
in terms of the former parMap* versions: The input list is split up into sublists,
map f is used as the applied function, and the original order is reconstructed by
the inverse to the split function.

For this skeleton, the differences between Eden and EDI versions remain as
explained before: The input list is either communicated, or unevaluated part of
the remote computation — now applying to an input list of each worker. Process
output is always a list, which will be communicated as a stream in Eden versions.

parmapfarm np f xs = unSplit ( parMap* (map f) (split np xs))
-- assuming unSplit . (split n) == id :: [a] -> [a] for every n >= 0

This process structure, coined as a farm, requires suitable split and unSplit func-
tions, and takes a parameter determining how many processes should be used.
The implicit helper functions, as well as hiding and automatically choosing the np
parameter (we left it explicit here; it could be np = noPe), perhaps do not lead to
optimal performance, but this is exactly the original philosophy of skeletons: A
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parMapMW :: (Tramns a, Trans b) => Int -> (a -> b) -> [a] -> [b]
parMapMW np = edenMW np 10 -- arbitrary prefetch 10

edenMW :: (Trans t, Trans r) =>
Int -> Int -> (t -> r) -> [t] -> [r]
edenMW np prefetch f tasks = results
where fromWorkers = map delLift
(zipWith createProcess workerProcs toWorkers)
‘using‘ whnfspine

workerProcs = [process (zip [n,n..] . map f) | n<-[1..np]]
toWorkers = distribute np tasks requests
(newReqgs, results) = (unzip . merge) fromWorkers
requests initialReqgs ++ newRegs
initialRegs concat (replicate prefetch [1..np])

distribute :: Int -> [t] -> [Int] -> [[t]]
distribute np tasks reqs = [taskList reqs tasks n | n<-[1..np]]
where taskList (r:rs) (t:ts) pe
| pe ==r = t:(taskList rs ts pe)
| otherwise = taskList rs ts pe
taskList _ = [

Figure 7.3: Eden master-worker skeleton and parMap implementation

purely sequential specification is denotationally fulfilled by a parallel implemen-
tation. We have a typical example of skeleton implementation aspects hidden
from the user.

For subtasks of irregular complexity, or when the number of subtasks may
vary depending on the input, dynamic load balancing is one of the most desired
properties of a parallel map skeleton. Up to now, the input list has been distributed
statically in advance, and the purely functional coordination constructs of Eden
are not sufficient to describe dynamic task distribution. In order to specify a
parallel map where the input list is distributed on demand, we need to use the
nondeterministic Eden construct merge. The merge “function” adds data to the
output stream as soon as it is available in any of the input streams, in nondeter-
ministic order. As shown in Fig. 7.3, this can be used for a master-worker scheme
implementing map, where a worker process gets a new task every time it returns
a result. A prefetch parameter determines the number of initial tasks assigned
to a worker, a buffer size which prevents workers from running out of work.

In order to indicate which worker has completed a task, every worker tags its
results with a fixed number between 1 and np. The master process merges result
streams fromWorkers nondeterministically, and then separates the proper results
from these worker numbers, which serve as requests for new work. Results are
returned unsorted, in the order in which they have been sent back by the workers.
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ediMW :: (NFData t, NFData r) =>
Int -> Int -> (t -> r) -> [t] -> I0 [r]
ediMW np prefetch f tasks = do
(wInCCs, wInCs) <- createCs np
(wOutCs, wOuts) <- createCs np

sequence_ [ spawnProcessAt 0 (worker f wOutC wInCC) {- workers -}
| (wOutC,wInCC) <- zip wOutCs wInCCs ]
taskChan <- newChan {- task channel -}

fork (writeList2Chan taskChan
((map Just tasks) ++ (replicate np Nothing)))
sequence_ [ fork (inputSender prefetch inC taskChan answers)
| (inC,answers) <- zip wInCs wOuts ] {- input senders -}
return (concat wOuts)

Figure 7.4: EDI workpool skeleton, using concurrent inputSender threads

Task distribution is specified by the the auxiliary function distribute, which
takes the list of requests and the available tasks as arguments. The function
distributes the tasks to np sublists as indicated by the requests list. The number
of initial requests is determined by the skeleton parameter prefetch. A crucial
property of the function distribute is that it has to be “incremental”, i.e. be
able to deliver partial task lists without the need to evaluate requests not yet
available.

In its entirety, we prefer to consider master-worker skeletons as topology skele-
tons, discussed in the next chapter, while [LOP*03] applies a different classifica-
tion and ranges them as “systolic”. More sophisticated versions of the master-
worker skeletons can be used for other, more complex algorithm classes, and also
allow a whole hierarchy of masters (to avoid bottlenecks) [BDLP08]. What we
want to show here, in the context of map skeletons, is that a similar workpool
skeleton can also be implemented without the need for Eden’s merge construct,
nor the sophisticated distribute. Instead of the single merged request list and
distribute, we use a Concurrent Haskell channel®, which is read by concurrent
sender threads inside the master (in fact, similar to the constructs used to imple-
ment nmergeI0 [GHC, library code]). Figure 7.4 shows the resulting EnI workpool
skeleton, which returns its result in the IO monad.

The master needs channels not only to receive the results, but also to initiate
input communication with the workers, thus two sets of np channels are created.
A set of worker processes is instantiated with these channels as parameters. As
shown in Fig. 7.5, each worker creates a channel to receive input, sends it to the
parent, and then connects to the given output channel to send a stream of results.
We use a Maybe type in order to indicate termination. The taskChan is created

LA Concurrent Haskell channel (data type Chan) models a potentially infinite stream of data
which may be written and read concurrently by different threads. Due to nondeterministic
scheduling, channel operations are in the IO monad, like the EDI coordination constructs.
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worker :: (NFData t, NFData r) =>
(t => r) -> ChanName’ [r] -> ChanName’ (ChanName’[t]) -> I0 ()
worker f outC inCC

= do (inC, inTasks) <- createC -- create channel for input
sendNF inCC inC -- send channel to parent
sendNFStream outC -- send result stream

((map f) inTasks)

inputSender :: (NFData t) =>
Int -> ChanName’ [t] -> Chan (Maybe t) -> [r] -> I0 O
inputSender prefetch inC concHsC answers
= do connectToPort inC
react ( replicate prefetch undefined ++ answers)
where react :: [r] -> I0 O
react [] = return O
react (_:as) = do
task <- readChan concHsC -- get a task
case task of
(Just t) -> do (rnf t ‘seq‘ sendData Stream t )
react as
Nothing -> sendData Data [] -- and done.

Figure 7.5: Worker process and inputSender thread for EDI workpool

and (concurrently) filled with the tagged task list (map Just tasks), followed by
np termination signals (Nothing). This task channel will be concurrently read by
several input senders, one for every worker process, which will be forked next.
Every input sender consumes the answers of one worker and emits one new task
per answer, after an initial prefetch phase (see Fig. 7.5)2. The value returned
by the master process remains unevaluated. Therefore, results can be combined
in various manners. The version presented here collects the results by a simple
concat, the Haskell prelude function to concatenate a list of lists. Another variant
would be the nondeterministic nmerge10 from Concurrent Haskell, or we could
merge the answers list back into the original task order, using further additional
tags added to the tasks and the fact that the order of results is ascending in each
worker’s output (we will not elaborate this further).

The EDI version of the workpool looks more specialised and seems to use
more concurrent threads than the Eden version, which is considerably shorter.
Since EDI uses explicit communication, the separate threads to supply the in-
put become obvious. The Eden version works in quite the same way, but the
concurrent threads are created implicitly by the process instantiation operation
createProcess. Apart from one extra thread filling the channel with available
tasks, both versions have exactly the same degree of concurrency; it is not sur-
prising that both workpool implementations are similar in runtime and speedup.

2Note that inside react, we resort to the primitives connectToPort and sendData, to make
input senders wait for results without accessing them, and send new tasks as requested.
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Once the master process uses concurrent threads and the IO monad, it may
easily be extended in different ways. One very useful extension would be to
include a state in the master process, e.g. a “current optimal” solution for a
branch-and-bound algorithm, or a dynamically increasing task pool, or using a
stack instead of a FIFO queue for task management. A recent diploma thesis by
Mischa Dieterle [Die07] has shown the feasibility of such skeletons with mostly
functional, and purely Eden-based implementations, but implementations become
quite cumbersome (see [MPO03] for another case study). The explicitness of paral-
lelism, communication and concurrency inflates the EDI code, but makes it more
readable and is thus advantageous for later modifications and specialisations.

7.2 Parallel map-and-reduce

Another classical example discussed in [LOP*03] is a parallel reduction over a
list of elements, known as a higher-order function fold, and often in combination
with a preceding transformation of the list elements (in other words, a map again).
We will first concentrate on the reduction alone.

Sequentially, the list can be folded in either direction, from the left or from
the right, which leads to different types. However, any possible parallelisation has
to make use of associativity, since the order in which the elements are combined
has to be broken up. For parallel versions, a restricted type is common practice,
and we can define a parallel reduction using parMapEden:

parReduce :: (Trans a) => Int -> (a -> a ->a) -> a -> [a] -> a
parReduce np f neutral list = foldr f neutral subRs -- requires associativity
where sublists = splitIntoN np list
subFold = foldl’ f neutral
-- requires "neutral" to be in fact neutral for f: f x neutral = x
subRs = parMapEden subFold sublists

The parallel reduction pre-reduces the sublists in several processes (parameter np
determines how many of them), and the caller only combines the (usually few)
sub-results.

Note that we sensibly use a fold-left, and a folding variant fo1d1> which strictly
evaluates the intermediate results. The input sublists will be sent as streams, and
a non-strict fo1dl would accumulate all data in the process’ heap before combining
it in the last step, whereas the strict variant successively combines to subresults in
advance. This is also the essential reason why we see no advantage in using EDI
instead of Eden for this skeleton: the strength of EDI is explicit communication.
But communication is optimal here, due to the Eden communication semantics:
Each of the created lists of lists (by splitIntoN) is one task for the parMap, and is
sent as a stream. This can well be specified in EDI, but we did not present such
an EDI-parMap; the Eden version will do just well.
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splitIntoN :: Int -> [a] -> [[al]
splitIntoN n xs = takelter parts xs
where 1 = length xs
parts = zipWith (+) ((replicate (1 ‘mod‘ n) 1) ++ repeat 0)
(replicate n (1 ‘div‘ n))

takeIter :: [Int] -> [a] -> [[al]
takeIter [1 [1 = []
takeIter [] _ = error "elements left over"
takeIter (t:ts) xs = hs : takelter ts rest

where (hs,rest) = splitAt t xs

unshuffle :: Int -> [a] -> [[a]]
unshuffle n xs = [takeEach n (drop i xs) | i <- [0..n-1]]
where takeEach n [] = []

takeEach n (x:xs) = x : takeEach n (drop (n-1) xs)
-- inverse to unshuffle
shuffle :: [[a]] -> [a]
shuffle = concat . transpose

Figure 7.6: Helper functions for splitting lists

Sidestep: A safer interface?

In contrast to the sequential fold operations, this parallel implementation requires
the neutral element to be indeed neutral for f, f(z,n) = xVz, because it will be
used many times (on every parallel sub-fold) instead of just once. Therefore,
implementations sometimes offer an interface where the neutral element is baked
into the folding function, instead of passing it as a separate argument, leading to
less explicit requirements for the skeleton parameters.

parReducel :: (Trans b) => Int -> ([b] -> b) -> [b] -> b
parReducel np f list = f subRs
where sublists = splitIntoN np list
subRs parMapEden f sublists

In this case, the requirements for correctness are concentrated only in f.
“Associativity” with lists is required: f(f(l1) : lz) = f(I1 ++[f(l2)]), and implied
by the definition, since £ operates on a whole input list and does not specify an
order of application. Another assumption is the existence of a neutral element n
for f: f([]) = n and f([z,n,n...]) = f([z]). More generally, f(l; ++(n : l3)) =
f(lh ++o).

Optimisation for commutative operations

Additionally, it could be useful to modify the order of the list elements. Up to
now, we have used an unspecified splitIntoN in the code. If the binary operation
f is not commutative, this helper function must split the input list in np parts, but
maintain its order, which absolutely requires length information. The respective
code is shown in Fig. 7.6.
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If £ is commutative, arbitrary reordering of the input list is possible, with
vast consequences to the performance of the skeleton. In particular, splitIntoN is
prohibitive in a context where the input is itself a stream: Since the stream length
cannot be known in advance, no sublist can be produced until all elements have
arrived. With a commutative £, sublists can instead be streamed to the parMap
processes in round-robin manner, as the function unshuffle from Fig. 7.6 does.
Assuming commutativity, we use this helper function to define the classical
map-and-reduce:

parmapReduceStream :: (Trans a, Trans b) =>
Int —> -- no. of processes
(a => b) -> -- mapped on input
(b => b -> b) -> -- reduction (assumed commutative)
b -> -- neutral element for reduction
[al] -> b

parmapReduceStream np mapF redF neutral list
= let sublists = unshuffle np list
subFold = foldl’ redF neutral . (map mapF)
subRs parMapEden subFold sublists
in foldl redF neutral subRs

This final version includes a transformation of the list elements prior to re-
duction, which is rather simple. We have used parMapEden in all previous versions,
after breaking up the input in pieces in the style of the parmapfarm implementa-
tion. All we need to add is an additional map £, and the resulting sublists are
reduced instead of shuffling.

Performance

Measurements with the parMap variants, including a reduction step, can be found
in our publication [BLO7a] (not reproduced here). The measured program was
computing the sum of Euler Totients, Y | ¢(k) for n = 25000, using a set of
worker processes (map as a farm), with numbers distributed evenly among the
processes. Since the values are summed up afterwards (fo1d1l (+) 0) following the
map), each map process computed the partial sum in parallel as well. The sum is
commutative, 0 neutral, and sum [] is 0; suitable for any of the presented map-
and-reduce skeletons. Differences between Eden and EDI versions were almost
negligible in these measurements, EDI version showing slightly better speedup.
The overhead for the Eden module code is minor, and only the way input data
is transmitted is relevant, depending on the concrete application.

7.3 The “Google MapReduce” skeleton

Another, more general variant of map-and-reduce has been proposed, as a pro-
gramming model for processing large datasets, by Google personnel Jeff Dean
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and Sanjay Ghemawat. In January 2008, an update of the original publication
(OSDI 2004 [DGO04]) appeared in the ACM communications [DGOS].

The intention to provide a framework which allows one “to express the simple
computations [...] but hides the messy details of parallelization, fault-tolerance,
data distribution, and load balancing, in a library” [DGO04] is precisely the skele-
ton idea. However, the word “skeleton” does not figure in any of the two publica-
tions! But never mind its origin (neither publication claims for the model to be
entirely new), its essential merit is that it brought the skeleton approach to indus-
try. The model has found great acceptance as a programming model for parallel
data processing (e.g. [CKL1T07,RRPT07]), and recently became very fashionable
in higher education, as well as in broader commercial developer communities.?

7.3.1 MapReduce functionality

The Google-mapReduce* skeleton is a generalisation of the classical mapReduce we
have presented previously. To describe its functionality, we follow a paper by
Ralf Lammel from Microsoft [LamO06], written in 2006 and published in SCP
recently [LA&mO08] (but not acknowledged by the Google authors in their ACM
version). Lammel aims to deliver an executable (functional) specification of
Google-mapReduce, and to “identify and resolve some obscurities in the infor-
mal presentation”. His very comprehensive work uses Haskell, and he explains
syntax, all required language features and data types he uses from libraries on
the way.

The computation scheme of Google-mapReduce is depicted in Fig. 7.7. In a
nutshell, a Google-mapReduce instance first transforms key/value pairs to (inter-
mediate) other key/value pairs, using a mapF function. After this, each collection
of intermediate data with the same key is reduced to one resulting key/value pair,
using a reduceF function. In-between the transformation and the reduction, the
intermediate data thus has to be grouped by keys, and the whole computation
has two logical phases.

To obtain a more thorough and unambiguous specification, Lammel checks
the informal specification of the Google paper and analyses the given examples.
Lammel’s main criticism is that the original paper, at times, confuses lists and
sets, and its irritating use of “map” and “reduce”. Both functions are arguments
to the Google-mapReduce-skeleton written by the user, and not to be confounded
with the higher order functions their names might indicate. Additionally, as
Lammel points out, what is called “reduce” in the Google publications is not
properly a function which could be the argument to a fold (i.e. reduce) operation,
nor is it always a reduction in the narrow sense.

3This can been confirmed by a web and blog search, which yields a considerable number of
posts about the skeleton in developer forums, and a range of educational material online.

4To avoid confusion with the skeleton presented previously, we denote the special map-and-
reduce in question as Google-mapReduce hereafter.
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intermediate
data groups output data

reduceF k(1)—>©
reduceF k(z)_,©

input data

mapF

reduceF k(j )—©
reduceF k(n)—’©

Figure 7.7: Computation scheme of Google-mapReduce

Step by step, Lammel develops the following general Haskell type for the
Google-mapReduce skeleton:®

gO00GLE_MapReduce :: forall k1 k2 vl v2 v3.

Ord k2 => -- Needed for grouping

(k1 -> v1 > [(k2,v2)]) -- The ’map’ function

-> (k2 -> [v2] -> Maybe v3) -- The ’reduce’ function

-> Map k1 vi -- A key to input-value mapping
-> Map k2 v3 -- A key to output-value mapping

As we shall see, the input to a skeleton instance is neither a set, nor a list, but
a finite mapping from keys to values, where duplicate values are not allowed for
the same key. And likewise, the output of the skeleton conceptually does not
allow the same key to appear twice. The ‘reduce’ function is allowed to produce
no output for a given input, thereby its type uses Maybe. Likewise, its output is
not necessarily of the same type as the intermediate value (but it “typically” is,
v2 == V3).

The ‘map’ function is (uncurried and) applied to all pairs (x1,v1). It may
produce a whole list of intermediate pairs from just one application. An implicit
grouping step for intermediate pairs follows, which groups intermediate pairs by
their key, thereby the ordering constraint on the intermediate keys. In princi-
ple, an equality constraint Eq k2 would suffice, but ordering allows to use more
efficient data structures. For each intermediate key, the list of intermediate val-
ues is reduced using the supplied ‘reduce’ function, and regrouped with its key,
discarding from the output all items which did not reduce to a value.

An example often given in publications on Google-mapReduce is to compute
how many times certain words appear in a collection of web pages.

wordOccurrence = gOOGLE_MapReduce toMap forReduction
where toMap :: URL -> String -> [(String,Int)]
toMap url content = zip (words content) (repeat 1)
forReduction :: String -> [Int] -> Maybe Int
forReduction word counts = Just (sum counts)

®The code is provided online by Limmel, so we do not reproduce it here, see
http://www.cs.vu.nl/ “ralf/MapReduce/
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The input is a set of pairs: web page URLs and web page content (and the URL
is completely ignored). The ‘map’ part retrieves all words from the content and
uses them as intermediate keys, assigning constant 1 as intermediate value to all
words. Reduction sums up all these ones to determine how many times a word
has been found in the input.

A range of other, more complex applications is possible, for instance, itera-
tively clustering large data sets by the k-means method (used as a benchmark
in two recent publications [CKLT07,RRP707]): The input is a collection of data
vectors (and arbitrary irrelevant keys). In each iteration, a set of k cluster cen-
troids are chosen (randomly in the first iteration, from previous results later).
Parameterising the function to map with these centroids, the map part computes
distances from the input vector to all centroids and yields the ID of the near-
est centroid as the key, leaving the data as the value. The reduction, for each
centroid, computes the mean vector of all data vectors assigned to the respective
cluster to yield a set of k new cluster centroids, which is used in the next iteration.
Figure 7.8 shows the code.

Last but not least, the classical mapReduce skeleton we have presented previously
can be implemented as a special case. The map function here produces singleton
lists and assigns a constant intermediate key 0 to every one. The reduction
function ignores these keys, and left-folds the intermediate values as usual.

mapReduce :: (a =>b) > (b => b ->b) -> b -> [a] -> b
mapReduce mapF redF neutral input = head (map snd (toList gResult))
where mapF’ _ x [(0,mapF x)]
redF’ _ list = Just (foldl’ redF neutral list)
gResult g00GLE_MapReduce mapF’ redF’
(fromList (zip (repeat 0) input))

7.3.2 Parallelisation potential

Both the original description by the Google authors, Dean and Ghemawat, and
Ralf Lammel discuss inherent parallelism of the Google-mapReduce skeleton.
While Lammel presents substantial work for a sound understanding and spec-
ification of the skeleton, his parallelisation ideas remain at a high level, at times
over-simplified, and he does not discuss any concrete implementation. The origi-
nal paper by the Google authors describes and quantifies parallelisation and also
gives details about the physical setup, the middleware in use, and error recovery
strategies.

The skeleton offers different opportunities for parallel execution. First, it is
clear that the map function can be applied to all input data independently. Fur-
thermore, since reduction is done for every possible intermediate key, several PEs
can be used in parallel to reduce the values for different keys. Additionally, the
mapper processes in the implementation perform pre-grouping of intermediate
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type Vector = [Double]

k_means :: Int -> Int -> Int -> [Vector] -> IO [Vector]
k_means iterations inputLength k vs
= do rndGen <- getStdGen
let startMap = fromList (zip [1..] start):: Map Int Vector
start = map (vs!!) startIndices :: [Vector]
startIndices = chooseNDistinct k
(randomRs (0,inputLength - 1) rndGen)
results = iterate (clustering vs) startMap
return (map snd (toList (results!!iterations)))

clustering :: [Vector] -- input vectors
-> Map Int Vector -- k distinct cluster centroids
-> Map Int Vector -- new centroids
clustering vs csMap = gOOGLE_MapReduce toMap forReduction inputvs
where inputvs = fromList (zip [1..] vs):: Map Int Vector
cs = map snd (toList csMap)
toMap :: Int -> Vector -> [(Int,Vector)]
toMap _ vec = [(1 + minIndex (map (distance vec) cs),vec)]
forReduction :: Int -> [Vector] -> Maybe Vector

forReduction id vs = Just (center vs)

distance :: Vector -> Vector -> Double -- a metrics on vectors
distance vl v2 = sum (map abs (zipWith (-) vl v2)) -- Here: manh. distance
center :: [Vector] -> Vector -— computes the mean vector
minIndex :: Ord a => [a] -> Int -- as name suggests
chooseNDistinct :: Eq a => Int -> [a] -> [a] -- as name suggests

Figure 7.8: k-means clustering implemented by Google-mapReduce

pairs by (a hash function of) intermediate keys. This grouping is done for all
data at once, splitting the whole algorithm in two phases. The productive im-
plementation described in [DGOS§] is based on intermediate files in Google’s own
shared file system GFS. Pre-grouped data is periodically written to disk, and
later fetched and merged by the reducer tasks before they start reduction of val-
ues with the same key. This makes it possible to reassign jobs in case of machine
failures, making the system more robust. Furthermore, at the end of the map
phase, remaining map tasks are assigned to several machines simultaneously to
compensate load imbalances.

Following the specification by Lammel

To enable parallel execution, Lammel proposes the version shown in Fig. 7.10.
Interface and functionality of the Google-mapReduce skeleton are extended in two
places:

First, input to the map function is grouped in bigger “map jobs”, which allows
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to adapt task size to the resources available. For instance, the job size can be
chosen appropriately to fit the block size of the file system. For this purpose, the
proposed outer interface includes a size parameter and an estimation function
estSize. The skeleton input is sequentially traversed and partitioned in tasks
with estimated size close (but less than) the desired task size.

Second, two additional pre-groupings of equal keys are introduced. The map
operation can produce any number of intermediate output for one input. Assum-
ing commutativity of the reduction in use, the map processes hold on to all data
they produce, and pre-group output with the same intermediate key, using the
cOMBINER parameter function. In many cases, this combiner will be the same func-
tion as the one used for reduction, but in the general case, its type differs from
the rEDUCE function type. Furthermore, both the outer and the inner interface
include two parameters for partitioning (possibly many) different intermediate
keys into a (smaller) number of key groups. The parameter parts indicates how
many partitions (and parallel reducer processes) to use, and the function keycode
maps (or: is expected to map; the code in [LA&mO06] does not check this property)
each possible intermediate key to a value between 1 and parts. This mimics the
behaviour of the productive Google implementation, which saves partitioned data
into n intermediate files per mapper.

Our parallel straightforward implementation of the skeleton consists of re-
placing the map calls in the code (see Fig. 7.10) by appropriate map skeletons.
An implementation which verbally follows the description should create m map-
per processes, which is best done using the farm skeleton presented previously.
However, the interface proposed by Lammel lacks the m parameter, thus our par-

input partitioned distributed
data input m Mapper intermediate
data Processes data (groups)

distributed
output data

Figure 7.9: Parallel Google-mapReduce, parallelisation as described in papers
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-- outer interface

parMapReduce’ (Ord k1, Ord k2) =>
(vl -> Int) -> Int -
-> Int -> (k2 -> Int) --
-> (k1 -> vl > [(&2,v2)]) --
-> (k2 -> [v2] -> Maybe v3) --
-> (k2 -> [v3] -> Maybe v4) --
-> Map k1 v1 -> Map k2 v4 -—-
parMapReduce estSize size parts keyco
=  concatOutput

. parMapReduce parts keycode mAP c
. splitInput estSize size

-- inner interface
parMapReduce Ord k2 =>
Int -> (k2 -> Int)

-> (k1 > vl -> [(k2,v2)]) --
-> (k2 -> [v2] -> Maybe v3) --
-> (k2 -> [v3] -> Maybe v4) --
-> [Map k1 vi] -=
-> [Map k2 v4] -

Size estimation on input, desired task size
Number of partitions, key partitioning
’map’ function

’combiner’ function

’reduce’ function

Input and output

de mAP cOMBINER rEDUCE

OMBINER rEDUCE

Number of partitions, key partitioning
’map’ function

’combiner’ function

’reduce’ function
Distributed input data

Distributed output data

parMapReduce parts keycode mAP cOMBINER rEDUCE

-- parallelise! n reducers
reducePerKey rEDUCE
. mergeByKey )
. transpose
map ( -- parallelise! m mappers
map (
reducePerKey cOMBINER
. groupByKey )
. partition parts keycode
. mapPerKey mAP )

map (

7. Apply ’reduce’ to each partition
6. Merge scattered intermediate data
5. Transpose scattered partitions

4. Apply ’combiner’ locally

3. Group local intermediate data

2. Partition local intermediate data
1. Apply ’map’ locally to each piece

Figure 7.10: Parallel Google-mapReduce skeleton, following Lammel [LAmO6]

(we have added the parallelisation annotations in bold face)

allelisation might simply use as many mappers as reducer processes, n = m (using
the parmapfarm skeleton). The number of reducers, n, is given as a parameter: the
number of parts in which the hash function keycode partitions the intermediate
keys. Since the intermediate outputs of the m mapper processes are partitioned
by keycode, any of the parMap skeletons we have presented earlier can be used to

create these n reducer processes.

EDI implementation

A major drawback of this straightforward

version, directly derived from Lammel’s

code [LamO06], is its strict partitioning into the map phase and the reduce phase,
and the call to transpose in between. In our implementation, all intermediate
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data produced by the mapper processes is sent back to the caller, to be reordered
(by transpose) and sent further on to the reducer processes. We have therefore
developed a more realistic version with direct stream communication between
mappers and reducers.

In the optimised EDI version, we keep creating as many mappers as reducers,
n (a larger number of mapper processes could easily be created). Furthermore,
instances of mapper and reducer are gathered in one process, which saves some
communication. In order to directly send the respective parts of each mapper’s
output to the responsible reducer process via channels, a unidirectional n : n
communication must be set up. Each process creates a list of n channels and
passes them on to the caller. The latter thus receives a whole matrix of channels
(one line received from each worker process) and passes them on to the workers
column-wise. Intermediate data can now be partitioned as before, and intermedi-
ate grouped pairs directly sent to the worker responsible for the respective part.
Due to the complex communication structure, we have prefered to use EDI for
the implementation (using dynamic channels, an Eden implementation is possible
as well). The full code of this EDI implementation is included in the appendix
(part B.2.1), and uses some more internal channels, similar to the process creation
function in the Eden implementation.

From the algorithmic perspective, the implementation we propose deviates
from the originally presented skeleton in a subtle way, profiting from the stream-
ing features in EDI: The productive implementation uses an overall pre-grouping
of intermediate data by keys (using a hash function which assigns each possible
key to one of a given number of buckets). The whole data subset processed by
one mapper is pre-grouped into buckets, each for one reducer process. In Google’s
productive implementation, the buckets are written to a distributed mass stor-
age system (GFS) and later fetched by reducer processes. While this is clearly
essential for fault tolerance (in order to restart computations without data being
lost in failing machines), we consider accumulating all intermediate data on mass
storage a certain disadvantage in performance and infrastructure requirements.
Using stream processing for the intermediate data could be an advantage, since
it avoids the file system overhead for long-running data-intensive jobs: Data is
processed in a pipeline and held in memory, no intermediate files exist. However,
this might require restructuring parts of the algorithm, due to the intermediate
grouping being slightly different.

7.3.3 Example applications

Our first example illustrates that, in both skeleton versions, the additional re-
duction using the coMBINER function (as opposed to simply applying rEDUCE twice)
is necessary, but might render algorithms more complicated.

Ezample: (Parallel k-means) In a parallel k-means implementation, computing
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Figure 7.11: Combining pre-grouped sub-centroids for k-means

—-- precombine a collection of vectors, include their number
cOMBINER :: Int -> [Vector] -> Maybe (Int,Vector)

cOMBINER _ [] = Nothing -- should not happen

cOMBINER _ vs Just (length vs, center vs)

rEDUCE :: Int -> [(Int,Vector)] -> Maybe (Int,Vector)
rEDUCE _ [] = Nothing -- should not happen
rEDUCE _ vs = Just (round w,v)
where vs’ = map (\(k,v) -> (fromIntegral k,v)) vs ::[(Double,Vector)]
(w,v) = foldll’ combineWeighted vs’

combineWeighted :: (Double,Vector) -> (Double,Vector) -> (Double,Vector)
combineWeighted (k1,v1) (k2,v2) = (k1+k2,zipWith (+) v1’ v2’)
where f = 1/(1+(k2/k1))
vl’ = map (xf) vl
v2’ = map (x(1-f)) v2

Figure 7.12: Parameter functions to be used for parallel k-means algorithm

new centroids by simply summing up all vectors clearly bears the risk of numeric
overflows (unless arbitrary-precision libraries are used). It is a good idea to
precombine subsets of vectors to a sub-centroid but it must be taken into account
that this precombination might be based on an arbitrary number of vectors, and
thus pre-computed sub-centroids should not be combined by a simple sum.

Once the problem is spotted, combining the obtained sub-centroids is easy
if the number of pre-grouped vectors is known. Fig. 7.11 shows how values can
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be accurately combined without risk of overflow. Thus, the pre-grouping, or
cOMBINER, function yields not only the centroid S; of a subset of vectors, but also
k;, the number of vectors used to obtain it. The final reduction rEDUCE can then
compute the overall centroid as shown, and avoids summing and multiplying
numbers to astronomic height. In the version which we derived from Lammel’s
code (Fig. 7.10), the rEpuck function should also be used to pre-group vectors,
and consequently needs a slightly modified maAP function.

However, parallel k-means is not suitable to show the effects of the suggested
pre-grouping modification. The problem is, the algorithm works iteratively in
fixed steps, and amounts to setting up a new Google-mapReduce instance for
each iteration. These globally synchronised iteration steps and the skeleton setup
overhead dominate the runtime behaviour. <

Example: (A micro-benchmark) In order to spot differences between the two
Google-mapReduce implementations, an artificial micro-benchmark is more prac-
tical than a real program. For such an overhead test, we have instantiated the
skeleton with the following worker functions:

mapStage :: Int -> Int -> Int -> String -> [(Int,Char)]
mapStage buckets delay n "" = mapStage buckets delay n (show n)
mapStage buckets delay _ input = let key = (read input ‘mod‘ buckets)

in spendTime delay [(key,c) | ¢ <- input]

reduceStage :: Int -> Int -> [Char] -> Maybe Char
reduceStage delay c [] = spendTime delay Nothing
reduceStage delay c str = spendTime delay (Just ([’a’..’z’]!!c))

The input for the mapStage of the skeleton are strings which represent natural
numbers. The function simply reads the number and assigns a key in the expected
range. The reduce stage completely ignores the data and only yields a letter which
indicates the bucket. Both functions have a delay parameter which may add some
artificial workload to the computation.

Fig. 7.13 shows EdenTV process views of program runs for this program
with the two Google-mapReduce implementations, with and without additional
workload. An input of 100000 strings, representing numbers from 1 to 100000,
was grouped into 26 buckets (by their modulus). Data was processed in chunks
of 500 strings for each task, by 31 workers (main PE reserved for the master).

As explained, the version derived from R.Lammel’s code uses separate pro-
cesses for the map phase and the reduce phases, and collects intermediate results
in the master process, which leads to poor performance in the run without work-
load. The optimised EDI version is much faster and seems to have considerably
lower overhead altogether. On the other hand, please note that the EDI version
uses considerably more threads, and sends almost as many messages. The dif-
ference is that data is directly sent to the respective reducer process, whereas in
the other version, the single master process quickly becomes a bottleneck.
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(a) Without workload:
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Figure 7.13: Google-mapReduce micro-benchmark, with and without workload
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As the traces with increased workload show, performance is much better as
soon as the workers really do something. The EDI version, which we optimised for
streaming the data through the process network, does not have a real advantage
for the trivial reduction step we have used here, and takes the same time when
creating enough additional workload. <

In summary, a broad variety of functional code in this chapter shows, more

or less, that Eden and EDI provide comparable mechanisms for implementing
problem-oriented skeletons. EDI code is more directly accessible to reading since
no special communication semantics and implicit mechanisms come into play. On
the other hand, the EDI code is longer and often specifies standard tasks, such
as channel creation between a caller and a new process.
Both Eden and EDI are languages which offer explicit communication channels
to the programmer: as a side-effecting non-functional extension in Eden, encap-
sulated in the IO monad and essential for programming in EDI. When complex
process topologies like Google-mapReduce need to be set up, the implementation
can profit from EDI’s more explit constructs for direct communication. In the
next chapter, we will concentrate on these process topologies and present skeletons
in a different sense, where explicit communication is even more important.
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Chapter 8

Structure-oriented skeletons

While in the previous chapter, we have described examples of (problem-oriented)
data processing skeletons, we are now concentrating on skeletons in a different
sense. The problem-oriented, “algorithmic” skeleton is completely implicit about
its parallel implementation, while the structure-oriented skeletons to be discussed
now describe nothing but the “topology”: process interaction and communication
patterns. And, well understood, the latter can be used to implement the former.

To functionally describe patterns of interaction between parallel processes,
we have introduced the term structure-oriented skeletons and want to specify
them more precisely now. We will concentrate on functional specification and
implementation of topology skeletons and show how they substantially use explicit
communication, provided either by the dynamic reply channels in Eden, or by
EDI’s explicit communication.

Topology skeletons define parallel schemes in which a number of
parallel processes interact with each other using a fixed communica-
tion scheme, to produce an output to a calling parent process. The
underlying communication scheme of a topology skeleton is a regular,
and often recursively described, interconnection pattern, for instance,
a pipeline, a torus, or a hypercube.

Processes in the network may either be all identical (or provide highly
similar functionality), or we may find different functionalities, in which
case several interconnected instances of each are used in one topology
skeleton. Process functionality is specified as a function which maps
all available inputs (from the caller and topological neighbours) to
respective outputs (to parent and neighbours).

(Classical parallel hardware often used topologies like n-dimensional grids or
hypercubes as an internal interconnection between their compute nodes, and these
process interconnection schemes are thus a well-studied area. A range of parallel
algorithms [Fos95, Qui94] rely on such process topologies, and their regularity
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structures the process interaction beyond completely free message-passing, which
is generally a win for systematic algorithm design, implementation and debugging.

Topology skeletons for regular topologies can easily be expressed in a lazy
functional language. Similar to the algorithmic skeletons, they are essentially
higher-order functions which take a functional specification for the node be-
haviour as an argument and correctly interconnect the local computation input
and output in the intended way. For example, a simple unidirectional ring can
be defined in Haskell as follows:

ring :: ((i,[r]) -> (o,[r])) -- ring process mapping
-> [i] -> [o] -- input-output mapping
ring f inputs = outputs
where (outputs, ringOuts) = foldl f1d ([],ringOuts) inputs
fld :: ([o],[r]) -> i -> ([o], [r])
fld (outs,ringIn) inp = let (out,ringOut) = f (inp,ringIn)
in (out:outs, ringQOut)

A set of identical ring processes is described functionally as (i, [r])~ (o, [r]):
Each process receives input from the caller (type i) and a stream from the ring
predecessor (type [r1), and produces respective output (o to the caller, stream
type [r] to the successor in the ring). Fach ring processes is one operation inside
a list fold over the list of initial inputs. The ring is closed by using the output
part ringOuts as an initial input to the fo1ldl, and ring size is determined by the
length of the input.

The master-worker scheme, which we have already used in Sec. 7.1 to create a
parallel map implementation with dynamic load balancing (see Fig. 7.3 and 7.4),
is another example of a structure-oriented, or topology, skeleton (with a simple
star topology). It specifies an abstract interaction between a master process and
a set of workers, where non-deterministic behaviour and n : 1 communication
realise dynamic load balancing. Our publication [BDLPOS8], as well as [Die07],
are presenting more advanced variants, in which worker processes may add new
tasks during runtime and use a global state in all workers. These versions rely
on the same basic interaction pattern (a simple star), and they can implement
more complex algorithmic schemes beyond the simple map implementation.

Topology skeletons provide means to structure and systemise communication
of parallel processes, and are therefore a useful tool for parallel algorithm imple-
mentation. Realistic and efficient implementations of topology skeletons will use
the explicit communication mechanisms provided by both Eden and EDI, for in-
stance, to make the ring processes communicate directly (our publication [BLO5a]
quantifies the message reduction for rings and toroids). Additionally, recursion
can be used to specify the regular topology more elegantly and speed up the
process creation. We will present selected topology skeletons (process pipeline,
process ring, process toroid, and hypercube), and investigate different implemen-
tations for them using Eden and EDI, again comparing the expressiveness of
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the two languages. Furthermore, we will compare recursive and non-recursive
skeleton implementations and discuss the aspect of nesting topology skeleton.

The strength of EDI is its explicit communication control, bought at the price
of excess explicit evaluation control, reduced safety, and lengthy code. Explicit
communication is essential for tasks like implementing topology skeletons. This
is why the explicit communication features of Eden (new and parfill) have been
added to the (otherwise functional) language, to allow performance optimisation.
Eden’s dynamic channels are a debatable concept because, when used inappro-
priately, they run the risk of losing referential transparency in programs. On
the other hand, they are apparently an enormous benefit, if not a requirement,
in reasonably implementing topology skeletons. Unless the tasks of a parallel
algorithm interact in a tree shape (the natural process topology created by the
call hierarchy), programmers will surely wish for more control over inter-process
communication. On the other hand, by allowing completely free communica-
tion structures between parallel processes, e.g. in the style of MPI [MPI97],
programming comfort and security are abandoned. The liberty offered by free
communication can lead to hard-to detect race-conditions when new programs are
developed, and is opposed to the general aim of parallel functional programming;:
reliability, readability, and provable soundness. This is why only few parallel
functional languages support arbitrary connections between their units of com-
putation at all. Examples are the channel concept of Clean [SP99], as well as
communication features of Facile [GMP89] and Concurrent ML [Rep99]. Even
more general and powerful than the dynamic channels in Eden and EDI, they
relax the type safety restrictions and one-to-one restrictions.

8.1 Process pipelines

8.1.1 Uniform type, implementation variants

A simple parallelising strategy is to distribute steps of a multi-step algorithm in
a pipeline of processes. A pipeline is composed of stages which provide similar
functionality and, in the simple case, uniform type. As a higher-order function,
the pipeline skeleton takes a list of functions with type [a]l -> [a] and generates a
communication-optimal pipeline by interconnecting the pipeline stage processes.

type Pipe a = [ [a] -> [a] ] -> [a] —> [al

Creating pipelines with heterogeneous stage types needs greater effort in the
strongly typed Haskell language, and we will come back to this shortly.

Please note that the given type is slightly more general than one might expect:
The type we give allows a pipeline stage to produce no output or more than one
output for one input. There are a number of cases where this is useful, or even
required, and this would not be possible with pipeline stage specifications of type
a -> a (which is the straightforward conception of a pipeline).
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History. In the early days of the Eden language, Galan et al., in [GPP96],
defined pipelines by folding a homogeneous process abstraction list with a suit-
able process composition operator. The respective code is shown in Fig. 8.1 (we
changed the (>>) operator from the original paper to (>->), since its form con-
flicts with a standard monad operation). This definition takes a list of process
abstractions of uniform type and creates a process abstraction which will un-
fold a pipeline with the intended semantics — however this is inefficient, since all
pipeline processes are connected through their respective parent! And another,
less obvious, drawback is causing a lot more parallelisation overhead. Please note
that the composition of two processes by (>->) yields a (composite) process, not
a function. Consequently, the created pipeline has a spine of unnecessary inter-
mediate “detour” processes (see depicted communication structure on the right
of Fig. 8.1). This drawback is, however, relative when classified in the broader
development context of Eden: Extended static analysis (and a suitable runtime
support) was supposed to ‘shortcut’ connections over intermediate processes, to
send data directly to the consuming process [KPS99, PPRS00].

( >>) :: (Trans a, Trans b, Trans c) =>
Process a b -> Process b ¢ -> Process a ¢
p >> q = process (\xs -> q # (p # xs))

| parent process |
pipePF :: Trans a => Pipe a input

pipePF []1 xs = xs
pipePF fs xs =
foldrl (>->) (map process fs) # xs

Figure 8.1: Anno 1997: Pipeline by a fold

output

pipenaive :: Trans a => Pipe a

pipenaive [1 XS = xS | parent process

pipenaive (f:fs) xs = inpu foutput
pipenaive fs ( process f # xs) (P [P] [P] [P]

Figure 8.2: Naive tail-recursive pipeline

Recursive creation, variants. A slightly better, and more intuitive, way to
create a pipeline is to use recursion in the skeleton. However, a naive tail-recursive
scheme for the pipeline stages creates a purely hierarchical communication struc-
ture as well, as shown in Fig. 8.2: All pipeline stages created by pipenaive send
back their results to the caller, which forwards them to the next stage. Figure 8.3
(pipeR) shows how inner recursion in the process abstraction leads to a direct con-
nection. Each process creates its pipeline successor and forwards data directly to
it as an input. But still, the final result will low back through all pipeline stages
before reaching the caller. In order to establish direct communication between
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pipeR :: Trans a => Pipe a

pipeR [] vals = vals

pipeR ps vals = (process (generatePipe ps)) # vals
generatePipe [p] vals = p vals | parent process

generatePipe (p:ps) vals = nput 'Kt put
(process (generatePipe ps)) # (p vals) -—-

Figure 8.3: Pipeline by inner recursion

pipeC :: Trans a => Pipe a
pipeC [] vals = vals
pipeC ps vals = new (\chan res ->
(process (generatePipeC ps chan)) # vals ‘seq‘ res)
generatePipeC [f] ¢ vals =

parfill ¢ (f vals) Q) ‘ | parent process
generatePipeC (f:fs) c vals = nput output
(process (generatePipeC fs c)) # (f vals) | P k_ﬁ P k_ﬁ P k_ﬂ P

Figure 8.4: Pipeline with dynamic reply channel

the last pipeline stage and the caller, Eden’s dynamic channels must be used, as
shown in pipec (Fig. 8.4, also presented in [PRS01]). In this version, each process
creates its successor in the pipeline recursively, but the results are sent back to
the first process as a side effect, via the dynamic channel ¢ which is embedded in
the process abstraction.

Single-source versions. The pipeline can also be created directly from the
parent, which then collects and distributes dynamic channels appropriately to
connect the stages. This version requires additional demand control, and more
communication, since channel names are communicated twice instead of being
embedded in the process abstraction.

pipeParent :: Trans a => [[al->[al] -> [a] -> [a]
pipeParent [] xs = xs
pipeParent fs xs = new (\c_res res ->
let clistl = [ createProcess (chproc f) # c
| (c,f) <= zip (c_res: (map deLift clistL) (reverse fs)]
‘using‘ seqlist rwhnf
in clistl ‘seq‘ parfill (deLift (last clistL)) xs res)
-- helper function: "channel process"
chproc :: (Trans a, Trans b) => (a -> b) -> Process (ChanName b) (ChanName a)
chproc f = process ch_f
where ch_f c_out = new (\c_inp inp -> parfill c_out (f inp) c_inp)

Figure 8.5: Eden pipeline skeleton where caller creates all processes
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ediPipeFold :: (NFData a) =>
[([a] -> [a]l)] -> -- all stages as a list (same type)

[a] -> I0 [a]
ediPipeFold stages input
= do (outC, out) <- createC —-- create last out-channel

inC <- foldM spawnWithChans outC (reverse stages)

-—- create stages right-to-left
fork (sendNFStream inC input) -- send input to first stage
return out -- return result (to be received)

spawnWithChans :: (NFData a, NFData b) =>

ChanName’ [b] -> -- strict in result channel
([al -> [b]) —> -- the stage
I0 (ChanName’ [al) -- input channel returned

-- (goes to previous stage)
spawnWithChans outC stage

= do (inCC,inC) <- createC -- create back-channel for input
spawnProcessAt 0 (pipestage inCC outC stage)
return inC -- return in-channel (sent back by pl stage)

pipestage :: (NFData a, NFData b) =>

ChanName’ (ChanName’ [a]) -> -- input back channel
ChanName’ [b] -> -- output channel
([a] => [©]) > 10 O -- functionality
pipestage inCC outC f
= do (inC,input) <- createC -- create in-channel
sendWith rwhnf inCC inC -- and send it back
sendNFStream outC (f input) -- send results

Figure 8.6: Pipeline skeleton in EDI, single-source variant

ediRecPipe :: NFData a => [[a] -> [al] -> [a] -> I0 [a]
ediRecPipe [] input= return input
ediRecPipe fs input = do (inCC,inC) <- createC
(resC,res) <- createC
spawnProcessAt 0 (doPipe inCC resC (reverse fs))
fork (sendNFStream inC input)
return res
doPipe :: NFData a =>
ChanName’ (ChanName’ [a]) -> ChanName’ [a] -> [[a] -> [a]] -> I0 O
doPipe incc resC [f] = do (inC,input) <- createC
sendNF incc inC
sendNFStream resC (f input)
doPipe incc resC (f:fs) = do (myInC,myIn) <- createC
spawnProcessAt 0 (doPipe incc myInC fs)
sendNFStream resC (f myIn)

Figure 8.7: Pipeline skeleton in EDI, recursive variant
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An EDI version of the pipeline, shown in Fig. 8.6, can proceed exactly in
the same way and saves some of the Eden process creation overhead: As shown
previously, the first action of a newly instantiated process is to send an input
channel to its parent. In the fold operation which unfolds the pipeline, this
channel is directly forwarded to the preceding pipeline stage instead of being
used to send yet another channel as the parent input.

EDI can also use recursion to unfold the process pipeline. The code for the
recursive version (shown in Fig. 8.7) looks very similar to the recursive Eden
version with a channel at first sight. However, the pipeline is unfolded the other
way round: The first process spawned by doPipe applies the last function.

8.1.2 Heterogeneous pipeline stages, and including I/0

An interesting extension — easily implemented in EDI — is to allow side-effecting
pipeline stages. The processes can, for instance, be explicitly placed on particular
PEs, and perform some 1/O action that depends on local resources at this PE.

This behaviour can be integrated in the EDI versions without problems, by
small modifications in the helper functions. Most importantly, the pipeline stage
is naturally a stream-processing unit and must be enabled to perform repeated
I/0O actions each time a stream element is processed. To achieve this, we need to
drop the generalisation we have made before, and to suppose a 1 : 1 correspon-
dence between input and output stream elements. Triggering the 1/O actions is
then possible by a mapM on the input stream inside the pipeline stage.

pipestageIO :: (NFData a, NFData b) =>

ChanName’ (ChanName’ [a]) -> -- input channel, first stage
ChanName’ [b] -> -— output channel
(a => I0 b) -> I0 O -- functionality

pipestagel0 inCC outC £
= do (inC,input) <- createC

sendWith rwhnf inCC inC -- send input reply channel
connectToPort outC -- process I/0 stream, using ParPrim directly,
mapM_ sendIONF input -- triggering one action per input element
sendData Data [] -- close stream when finished

where sendIONF x = do b <- f x -- I/0 action

rnf b ‘seq‘ sendData Stream b

Figure 8.8: Helper functions for pipeline including I/0O

Another issue which can be expected in most cases where such an 1/O-
performing skeleton is useful, is that the pipeline stages will not be of uniform
type. In this case, the pipeline cannot be constructed recursively from a function
list, because the list cannot contain functions of different types. It is possible to
define skeletons for pipelines with a fixed number of stages:
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pipe2I0 :: (NFData a, NFData b, NFData c) =>

(a => I0

b) -> (b > I0 ¢) -> [a]l -> I0 [c]

pipe2I0 stl st2 input

= do (outC,out)

<- createC

fork ( -- separate thread to spawn the pipeline stages:

do

(in2CC,in2C) <- createC

spawnProcessAt 0 (pipestageIO0 in2CC outC st2)

(inCC,inC) <- createC

-- will block until in2C available from stage 2
spawnProcessAt O (pipestageI0 inCC in2C st1)
sendNFStream inC input)

return out

pipe3I0 :: (NFData a, NFData b, NFData c, NFData d) =>

(a -> 10

b) > (b -> I0 c) -> (¢ -> I0 d) —>

[al -> I0 [d]

pipe3I0 stl st2 st3
= do (outC,out)
fork ( do

)
return out
-- ...etc

input
<- createC
(in3CC,in3C) <- createC
spawnProcessAt 0 (pipestageI0 in3CC outC st3) -- (1)
(in2CC,in2C) <- createC
—-- and block in in3C, then
spawnProcessAt 0 (pipestageIO0 in2CC in3C st2) -- (2)
(inCC,inC) <- createC
-- and block on in2C, then

spawnProcessAt 0 (pipestageI0 inCC in2C stl1) -- (3)
-- and block on inC, then
sendNFStream inC input -- (4)

Figure 8.9: EDI pipeline skeletons, fixed no. of stages

These versions follow one and the same pattern of execution: After creating a
channel for the final output, a separate thread is forked to create and interconnect
all pipeline stages (in reverse order) and then send input, and the caller returns
Apart from the separate thread which spawns the stages,
this is the same monadic foldM we have seen before, with channel creation and
process instantiation (spawnProcess) inside the fold function.

the result placeholder.

the version for three stages, the forked thread will successively:

1. spawn stage 3,

2. block on in3c, until it is received from stage 3, then spawn stage 2,

3. block on in2¢, until it is received from stage 2, then spawn stage 1,

4. send input to stage 1 (after receiving inc).
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The types for different stages do not match, and we cannot pass a list of stages.
Skeleton code for a known number of stages can, however, be generated automat-
ically, using Template Haskell [SJ02]. The full code is shown in Appendix B.2.2;
Fig. 8.10 illustrates the concepts of systematically generating a lambda-abstraction
for the entire skeleton, essentially the forked thread which spawns and links all
stages.

Code generation for n pipeline stages:

1. Generate new names: outCN name of result channel
outN name of result placeholder
(for k € {1..n}) st pipeline stage function names
N name of input
2. Generate code:
a) creating result channel chanCreate  (outCN,outN) <- createC
b) Helper function spawnCode for  spawn(k)  (xC,r) <- createC
each pipeline stage k (parame- spawnProcessAt 0
ters chan,sty, returns code and (pipestagel0 rC chan stj)

placeholder name r)
Sequence of these alternating createC, spawnProcessAt calls created by a list fold over the
(reversed) list of stage names. Empty code and outCN as initial values.

¢) sending input sendIn sendNFStream inCN inN
d) returning result ret return outN
3. Build Lambda-Abstr.: Asty...st, inN ——

do chanCreate
fork (do spawn(n)
spawn (1)
sendIn )
ret

Figure 8.10: Template Haskell scheme to create pipeline skeleton

At first, names for all pipeline stages and the input data are generated, and
will become bound variables in a generated lambda expression.
The first generated statement (createC) on the right-hand side creates a new
channel to receive the final result from the last pipeline stage (return value is the
created placeholder). The helper function spawnCode takes a channel name c and a
function name £ (both just names created in Template Haskell). Code is generated
which creates a new channel (to receive input) and spawns a pipestageI0 (see
Fig. 8.8). The helper function then returns the newly created placeholder name
and the code. Starting with an empty statement list and the result channel, a list
fold over the (reversed) list of stage names creates a sequence of these alternating
createC,spawnProcessAt statements, where all statements are concatenated and
each newly created channel is used in the next call.
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After spawning all pipeline stages, a statement to send the input to the first
stage (the last channel returned by the fold operation) is added. The resulting
statement list is executed in a forked thread, as in the two fixed-stage versions
shown in Fig. 8.9. Using this Template Haskell function, code for pipelines of
any length can be created on demand upon compilation!, e.g.

$(mkPipe 6) f_1 £ 2 £_3 £_ 4 £_5 £_6 input

8.2 Process ring skeletons

A range of parallel algorithms are structured in such a way that all processes
communicate in a logical ring, for instance to circulate global data piecewise.
As an introductory example, we have already shown a sequential ring skeleton
on page 112, and mentioned that explicit channel communication is needed to
interconnect the ring processes directly. Indeed, a straightforward parallelisation
(using process instantiation instead of application for the node function) creates
an unwanted communication structure, as depicted here.

badRing f inputs = outputs
where (outputs, ringQOuts) = foldl’ f1d ([],ringOuts) inputs
- fld :: (Trams i, Trams o) => ([o],[r]) -> i -> ([o],[r])
fld (outs,rIn) inp = let (out,rOut) = (process f) # (inp,rIn)
in (out:outs, rOut)

(a) Intended Topology (b) Created Topology

Figure 8.11: Eden ring skeleton without dynamic channels

Implementation with channel communication Figure 8.12 shows the def-
inition of a ring skeleton in Eden which uses dynamic channels. All processes
are created by the process evaluating the function ring and communicate in a
unidirectional way. Additionally, we propose a more convenient interface for the
ring skeleton: The number of ring processes is given by the first parameter. Pa-
rameter functions split and combine specify how to distribute the input to the
ring processes and how to combine their subresults to yield an overall result.

'The $ sign in Template Haskell stands for a function call at compile time, which produces
code to splice into the program. In the example, mkPipe is called with argument 6.
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C . rlngDCI+ J
..... oy
“.4. ............................................................... -
ring :: (Trans ri,Trans ro,Trans r) =>
Int -- ring size
=> (Int -> i -> [ril]) —-- input split function
=> ([ro]l -> o) -- output combine function
-> ((ri, [r]) -> (ro,[r]))-- ring process mapping
->1->o0 -- input-output mapping
ring n split combine f input = combine toParent
where
(toParent,ringQuts) = unzip [plink f # inp | inp <- nodeInputs]
inputs = split n input
nodelnputs = mzip inputs ringlns
ringIns = leftRotate ringQuts
leftRotate xs = tail xs ++ [head xs]
plink :: (Trans ri,Trans ro,Trans r) =>

((ri, [r]) -> (ro,[r])) -> Process (ri,ChanName [r]) (ro,ChanName [r])

plink f = process fun_link
where fun_link (fromParent,nextChan) = new (\ prevChan prev ->
let (toParent,next) = f (fromParent,prev)
in parfill nextChan next (toParent,prevChan))

Figure 8.12: Eden Ring Skeleton

Node function £ determines the behaviour of each ring process. It is applied
to the corresponding part of the input and the stream received from its ring
predecessor, yielding an element of the list toParent which is part of the overall
result, and a stream sent to its ring successor. Note that the ring is closed by
using the list of ring outputs ringOuts rotated by one position (by leftRotate) as
inputs ringIns in the node function applications.

The function plink establishes direct channel connections between the ring
processes. It embeds the node function f into a process which creates a new in-
put channel prevChan that is passed to the neighbour ring process via the parent.
The ring output next is sent via the received channel nextChan, while the ring
input prev is received via its newly created input channel prevChan. The ring in-
put/output from/to the parent is received and sent on static channel connections
while communication between ring processes occurs on dynamic reply channels.
As all processes are created by a single parent process, the default round-robin
placement policy of Eden is sufficient to guarantee an even distribution of pro-
Cesses on Processors.
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Laziness is essential in this example - a corresponding definition is not possible
in an eager language. The second component of the ring node input is recursively
defined from the list of output, and therefore not present when the processes are
created. We have to use mzip, a variant of Haskell’s zip function (converting a
list of pairs into a pair of lists) which uses a lazy pattern to match the second
argument.

Analysis. We can exactly quantify the amount of messages saved by using the
skeleton version with dynamic channels (also see [BL05a]). In general, a process
instantiation needs one system message from the parent for process creation. Tu-
ple inputs and outputs of a process are evaluated componentwise by independent
concurrent threads. Communicating input channels (destination of input data ri
from the parent) requires tsize(ri) + 1 administrative messages from the child,
where tsize(a) is the number of top level tuple components for a tuple type a, and
1 otherwise, and ”+1” accounts for the closing message.

Let n denote the ring size, i, and o, be the number of input and output items for
process k, and 7, the amount of data items which process k passes to its neighbour
in the ring. Input data for the ring process is a pair, thus 3 = tsize ((r4, [r])) + 1
administrative messages from each ring process install the static channels. In
case of the ring without dynamic channels, the total number of messages is:

sent by parent

-~ ~ ,, sent by child k

——~

Totalnopc = Y (L+ix +1i)+ Y (340 +1%)
k=1 k=1

As seen in Fig. 8.11, ring data is communicated twice, via the parent. Thus the
parent either sends or receives every message counted here!

Using dynamic channels, each ring process communicates one channel name
via the parent (2 messages) and communicates directly afterwards:

sent by parent

— ~  sent by child k
Totalpe =Y (1 +ix+2)+» (3+op+2+71%)
k=1 k=1

It follows that using dynamic channels saves (> ;_, ;) — 4n messages, and we
avoid the communication bottleneck in the parent process.

Traces: Impact of dynamic channels. As an example for a ring-structured
algorithm, we again use the parallel Warshall’s algorithm which we have described
in Section 5.4. The trace visualisations of Fig. 8.13 and 8.14 show the Processes
per Machine view of EdenTV for an execution of the Warshall program on 16
processors of a Beowulf cluster, with an input graph of 500 nodes. The dynamic
channel version uses about 50% of the messages of the static version (8676 instead
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Figure 8.13: Warshall’s algorithm (500 nodes) using static connections in ring
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of 16629) — network traffic is considerably reduced. The figures also show zooms of
the initial second of both traces, with messages between processes drawn as lines
between the horizontal bars. The static version shows the massive bottleneck on
the main machine (bottom bar): Worker processes often block waiting for data.
The trace of the dynamic version nicely shows the intended ring structure and
far less blocked phases.

The number of messages drops to about 50% and the runtime even drops to
approximately 37%. The substantial runtime improvement is due to the algo-
rithm’s inherent data dependency: Each process must wait for updated results of
its predecessor. This dependency leads to a gap between the two phases passing
through the ring. In the static version, the time each ring process waits for data
from the heavily-loaded parent is accumulated through the whole ring, leading to
a successively increasing wait phase while data flows through the ring. Although
a small gap is also observable in the dynamic version, the directly connected
ring processes overlap computation and communication and thus show a better
workload distribution with only short blocked or idle phases.

Recursively unfolding rings

Figure 8.15 shows an alternative definition of the ring skeleton, which uses
recursion to unfold the ring. The explicit demand on the unit value plist by plist
‘seq‘ leads to immediate creation of the ring processes when the ring skeleton is
called. The first process evaluates the startRing function. It creates a dynamic
reply channel which is passed through the sequence of ring processes and will
be used by the last process to close the ring connection. It is assumed that
the number of ring processes is at least two. Thus, the functions startRing and
unfoldRing are never called with an empty input list. The initial input to the
ring processes is now passed as a parameter and thus will be communicated
together with the process instantiation. As it is passed through the sequence of
ring processes, each ring process takes (and evaluates) its part of the input and
passes the remaining list to its successor process. The static output of the ring
processes is merely the unit value (), and their real output is returned to the
originator process via initially created dynamic reply channels pChans, which are
communicated to the ring processes.

As we see, the roles of static and dynamic channel connections are inter-
changed in the two ring skeleton versions. The previously static output con-
nections to the parent are now modelled by dynamic reply channels, while the
previously dynamic ring connections can now be realised as static connections,
except that the connection from the last to the first ring process is still imple-
mented by a dynamic reply channel.
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activa-
tion

e
..
...

ringRec n split combine f input = plist ‘seq‘ combine toParent
where (pChans, toParent) = createChans n -- result channels
plist = (process (startRing f (split n input))) # pChans

startRing :: (Trans ri, Tramns ro, Trans r) =>
((ri, [r]) -> (xro,I[r])) -> [ri] -> [ChanName ro] -> ()
startRing f (i:is) (c:cs)
= new (\ firstChan firstIns -> -- channel to close the ring
let (result,ringOut) = £ (i,firstIns)
recCall = unfoldRing firstChan f is
next = (process recCall) # (cs,ringOut)
in parfill c result next )

unfoldRing :: (Trans ri, Trans ro, Trans r) =>
ChanName [r] -> ((ri,[r]) -> (ro,[r])) —> [ri] ->
([ChanName ro],[r]) —> O
unfoldRing  firstChan f (i:is) ((c:cs),ringIn) = parfill c result next
where (result, ringOut) = f (i,ringIn)

recCall = unfoldRing firstChan f is
next | null is = parfill firstChan ringOut ()
| otherwise = (process recCall) # (cs,ringOut)
createChans :: Trans a => Int -> ([ChanName a], [a])

ca,
new (\chX valX -> let (cs,xs) = createChans (n-1)
in (chX:cs,valX:xs))

createChans 0
createChans n

Figure 8.15: Recursively unfolding ring skeleton

Other variants

EDI versions. Analogous ring skeletons may also be specified at a lower level
in EDI. Appendix B.2.3 contains the respective code, which is straightforward.

The ring example shows once more how Eden and EDI are interchangeable and
comparable in performance. There are, however, situations where Eden’s implicit
concurrency and eagerness lead to unwanted behaviour, and the source code
usually does not clearly indicate the errors — which we will exemplarily illustrate
for the ring skeletons. While the skeleton description is coherent at first sight,
some questions may arise when using it in different settings. The given type
restricts the ring communication to a stream. This is a sensible restriction since,
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with a non-stream type, the ring necessarily degenerates to a pipeline, or simply
deadlocks. Likewise, the recursive Eden version shows the case where the initial
input (of type a) with the ring processes is static and thus embeddable into the
process abstraction.

A more subtle detail can lead to problems when the general ring skeleton is used in
a special context: If the initial ring process input (or output) happens to be a tu-
ple, the programmer might expect that each component will be evaluated and sent
concurrently, as usual in Eden. However, all our ring implementations add addi-
tional parameters to the input, in order to exchange channels to the ring neigh-
bours prior to computation. The ring process abstraction in the single-source
version internally is of type Process (a,ChanName [r]) (b,ChanName [r]) and, thus,
does not use concurrency for components of their external input and output — the
ring will immediately deadlock if the components of type a expose non-local data
dependencies.? Different implementations, specialised to avoid this problem, are
possible, but the difficulty is to find out the reason for the deadlock. Neither the
calling program, nor the skeleton source code will clearly indicate the problem:;
it will remain hidden in the overloaded communication inside the Eden module.
And the other way round, any EDI version of the skeleton will have the drawback
that the output to the caller is never sent as a stream, unless a special “stream”
version is used (already mentioned and discussed for the map skeletons).

Ring definition by pipeline skeletons. A simple idea for a ring skeleton
is to use a pipeline skeleton and a back-reference from output to input as a

2The constraint is even stronger for the recursive versions: Parent input is embedded into
the process abstraction and has to be available upon process creation.

closePipe :: (Trans i,Trans a,Trans o) =>
([ [al->[a] 1 -> [a] -> [a]) -> -- a pipeline skeleton
((i,[al) -> (o,[al)) -> [i] -> [o]
-- resulting ring skeleton (inner interface)
closePipe pipeSkel ringF ringlns
= let rComm = pipeSkel ringNodes rComm -- pipeline
ringNodes = zipWith (pipeRingNode ringF) ringIns rOutCs
(rOutCs,r0Outs) = createChans (length ringlIns) -- result channels
in rnf rOutCs ‘seq‘ rComm ‘seq‘ rOuts -- force channels,activate system

pipeRingNode :: (Trans i,Trans a,Trans o) =>
((i,[a]l) -> (o,[al)) -> i -> ChanName o -> [a] -> [a]
pipeRingNode ringF rIn rOutC rCommIn
= let (rOut,rCommOut) = ringF (rIn,rCommIn) -- apply ring function
in parfill rOutC rOut rCommQOut -- concurrently send parent output

Figure 8.16: Function to derive a ring skeleton from a pipeline skeleton
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ring skeleton. Yet, as we have discussed earlier (in conjunction with mzip), this
back-reference might as well lead to deadlock and render ring creation impossible,
depending on the pipeline implementation. For instance, the single-source variant
in Fig. 8.5 cannot be used, while the recursive pipeline skeletons work allright.

Figure 8.16 shows the code to (generally) derive a ring skeleton from a pipeline
skeleton. Please note that the applied technique is very similar to the one in
the recursive version before: The pipeline is closed to a ring and used for ring
communication, and output to the parent is sent as a side effect, via previously
created channels. In addition to this output channel, the whole node input from
the parent is embedded in the process abstraction. With the code shown here,
ring communication takes a detour via the caller (which feeds pipeline output
back into the pipeline). Another variant is possible, where the caller itself is one
stage of the created pipeline. We do not digress further; Appendix B.2.4 contains
the full code.

Speedup experiments

Experiments with application programs using Eden and EDI ring skeletons show
that the recursive ring creation is slightly advantageous as the number of ring
processes increases. Fig. 8.17 shows speedups for the Warshall example program
using the two Eden and EDI ring skeletons. We also tested two versions derived
from pipeline skeletons (pipeC and the recursive EDI version). For a small number
of processes, using recursion has almost no impact on performance. The number
of messages sent and received by the parent process is slightly reduced while the
overall amount of messages remains almost the same.

Speedup for Warshall algorithm (750 node graph)

18
16
14 + ',;r-"'j\i:tfi"
U
12 .
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) g _
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» Ediring -
6 Eden recursive ring =
4t Edi recursive ring ---=---
Ring from pipeC pipeling -
2r Ring from recursive Edi pipe ---o--
0 ‘ ‘ Linear Speedup ‘
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Machines

Figure 8.17: Speedup of Warshall program (750 nodes) using different ring skel.s

(Speedups based on runtime 76.75sec for the sequential ring from the introduction)
Altogether, speedup differences between the different version versions are mi-
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Recursive Toroid Creation

Solid lines show the underlying ring
skeletons (thick lines indicate the first
column ring). Dotted lines indicate the
vertical connections created using dy-
namic channels.

Dashed lines show how the dynamic
reply channels from row 2 are passed
through the ring connection to row 1,

which sends on these channels.

Figure 8.18: Creation scheme of a torus topology using ring skeletons

nor. Interestingly, the version derived from pipeC shows much worse performance
than the one using the recursive EDI pipeline. This difference in speedup can be
attributed to the fact that the EDI version saves process creation overhead (as
no output communication is necessary).

8.3 Nesting skeletons

8.3.1 A toroid topology created as a nested ring

As we have seen previously, process topologies can often be unfolded recursively,
whereby the process creation overhead is distributed over several nodes. While
it is less relevant for one-dimensional topologies, pipelines and rings discussed
before, the distributed startup is a performance factor for higher dimensions. For
instance, the Eden toroid skeleton defined in [LOPT03] creates all processes by a
single process and establishes dynamic interconnection channels between them.
This single-source creation of process systems may lead to a serious bottleneck
in the creator process when the number of processes increases.

We have presented and discussed recursive process creation for rings and
toroids in our work [BLO5b], from which we will now present and discuss toroid
skeleton definitions which unfold by means of recursive ring skeletons, since a
toroid is nothing but a two-dimensional grid with ring connections in each di-
mension. Figure 8.18 depicts the generation scheme for the torus topology used
in our definitions. The first column and all rows are created as unidirectional
rings. The other column rings must be installed using dynamic channels.

Figure 8.19 shows the core of the recursively unfolding torus skeleton, fol-
lowing [BLO5b]. The toroideRec function describes the toroid by its dimensions
(number of rows and columns) and the functionality of each node. In order to

128



8.3. NESTING SKELETONS

toroideRec :: (Trans input, Trans output, Trans horiz, Trans vert) =>
Int -> Int —> -— dimensions
((input, [horiz], [vert]) -> (output, [horiz], [vert])) -> -- node function
[[input]] -> [[output]] -- resulting mapping
toroideRec diml dim2 f rows
= rnf outChans ‘seq‘ start_it ‘seq‘ -- force channel & ring creation
list2matrix dim2 outs -- re-structure output

where (outChans,outs) = createChans (diml*dim2)
ringInput = (list2matrix dim2 outChans, rows)
-- creating first column ring
start_it = ringP diml dim2 (\_ -> uncurry zip ) spine
(gridRow diml dim2 f) ringInput

-- ring function for 1st column ring

gridRow :: (Trans i, Trans o, Trans h, Trans v) =>
Int -> Int -> —-— dimensions
(i, M1, v]) -> (o, [n],[v])) —> -- node function

(([ChanName o], [i]), [[ChanName [v]]]) -> (O, ([[ChanName [v]]]))
gridRow diml dim2 f ((ocs, row), allnextRowChans) =

let (cChanNamevs, rowChans) = createChans dim2
-- creating row ring
start = startRingDI staticIn (gridNode f) dummyCs mynextRowChans
staticIn = mzip3 row ocs cChanNamevs
mynextRowChans = allnextRowChans!!(dim1-2)
(dummyCs, _ ) = createChans dim2

in rnf cChanNamevs ‘seq‘ rnf dummyCs ‘seq‘ start
(), rowChans:take (diml1-2) allnextRowChans)

3 3

seq

-- ring function for row rings
gridNode :: (Trans i, Trans o, Trans h, Trans v) =>

((i,[h], [v]) -> (o, [h],[v])) —>

((i,ChanName o, ChanName (ChanName [v])),ChanName [v],[h]) -> (), [h])
gridNode f ((a,cResult,cv),cToBottom,fromLeft) =

new ( \ cFromAbove fromAbove ->
let (out,toRight,toBottom) = f (a,fromLeft,fromAbove)
in parfill cv cFromAbove -- send vertical input channel
(parfill cResult out -- send result for parent
(parfill cToBottom toBottom -- send data on column ring
(O, toRight)) )) -- result and data on row ring

Figure 8.19: Core of recursively unfolding toroid skeleton

place all processes on different processor elements, the first column of the torus
structure is created with a variant ringP of the recursively unfolding ring skeleton,
which allows for placing ring processes with a constant stride. To place processes
row by row, the first column is placed with stride dim2, i.e. the length of the rows.

The ring function gridRow for the first column ring creates a ring for each row.
Instead of using the normal interface of the ring skeleton, we use the internal
startRing function because we want to embed the column processes into the row
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Eden-5, Beowulf Cluster Heriot-Watt University, Edinburgh, 26 machines
(Intel P4-SMP@3GHz, 512MB RAM, Fast Ethernet)

Figure 8.20: Start phase of matrix multiplication traces using toroid skeletons

rings. A subtlety of the inner rings is the circular dependency of their dynamic
input, i.e. the dynamic channels to establish the additional column rings. It
is necessary to use a variant startRingDI which decouples static input (which is
available at instantiation time) from dynamic input (not produced until after
process instantiation). Otherwise, the inner rings would immediately deadlock
on process instantiation. Each row ring process returns a channel name for its
vertical input, which must be collected and passed to the previous row through
the first column ring (as indicated in Figure 8.18 for the second row).

Measurements with a toroid-based matrix multiplication algorithm (Cannon’s
algorithm, see [Qui94]) show that runtimes are slightly better for the recursive
version, due to a distributed startup sequence. Figure 8.20 shows EdenTV All
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machines diagrams® of the start phase, executed on 26 nodes of a Beowulf cluster
using either a single-source or a recursive toroid skeleton.

While runtime is only slightly improved, the traces show the expected im-
provement in startup: Process creation is carried out by different processors in
a hierarchical fashion in the recursive skeleton implementation. One can observe
how the first column unfolds, starting at processor 2 with stride 5, and how each
of these processes unrolls one row. Process creation takes about 0.15 sec. in this
version, whereas the single-source version below needs 0.4 sec. until all processes
start to work (explaining the difference in runtime).

The improvement in startup pays especially for skeletons with a big number of
processes. In any case, it substantially reduces the network traffic. The program
investigated here already includes the input matrices in the process abstraction
instead of communicating these big data structures via channels (which would
be more time-consuming). However, the parent process in the single-source ver-
sion has to send the channel names to each toroid process, which requires 125
messages. The parent process in the recursive version only sends 2 messages —
creation and input to the startring process of the first column ring.

An EDI version

The toroid skeleton presented makes massive use of explicit communication and,
especially here, the question arises whether a more explicit approach could be
profitable. We have implemented an alternative EDI version, shown in Fig. 8.21,
which equally uses nested skeletons to create the toroid structure.

This version unfolds the toroid in the same way as the one described before:
The first column is created as a process ring, in which each node creates one
row of processes connected in a horizontal ring. The vertical ring (first column)
is created by ediRecRingI0, an EDI ring skeleton which returns its result in the
IO monad. The horizontal rings are created using embeddedRing, a ring skeleton
derived from a pipeline skeleton, which embeds the caller as one of the ring
nodes. As mentioned, this is easily done and actually an optimisation when a
ring skeleton is derived from a pipeline skeleton.

Horizontal rings are used directly for toroid communication. Vertical commu-
nication is done as a side-effect in each node, using stream channels which are
created on process startup. The output of each horizontal ring node is a pair of
two channels: one to receive a channel for vertical toroid communication (used
by one node of the outer ring), the other to receive vertical input data for the
computation (passed one step through the outer ring, then sent to the next row
by its respective parent). Vertical output will then be sent from the node by a
forked thread; another forked thread will send back the final results to the caller
via channels explicitly created in advance. Thus, all nodes perform quite a few

3Every processor executes exactly one process, so we identify nodes and processes.
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embeddedRing = embedEdiPipe (\fs xs -> unsafePerformIO (ediRecPipe fs xs))

toroideRecI0 :: (NFData i, NFData o, NFData horiz, NFData vert) =>

Int -> Int -> —-- dimensions
((i, [horiz], [vert]) —-> (o, [horiz], [vert])) -> —-- node function
[[i]] -> 10 [[o]] -- resulting mapping
toroideRecIO diml dim2 f inRows
= do (outCs,outs) <- createCs (diml * dim2) -- result channels (all nodes)

let inputss = reverse (zipWith zip inRows (list2matrix dim2 outCs))
ediRingRecIO diml dim2 (\_ -> id) spine (gridRowE f ) inputss
return (list2matrix dim2 outs) -- unevaluated!

-- node function for vertical ring (1st column).
gridRowE :: (NFData i, NFData o, NFData horiz, NFData vert) =>
((i, [horiz], [vert]) —-> (o, [horiz], [vert])) -> —-- node function
-- inputs,back channels for output
([(i,ChanName’ o0)], [ChanName’ [vert] ]) ->
(O, [ ChanName’ [vert] 1)
-- no output, channels take one step in column ring
gridRowE gridF (nodeInputs,fromBelow) = unsafePerformIO $
do let (vCCs,vDataCs) = unzip (embeddedRing (gridNodeE gridF) nodeInputs)
fork ( sequence_ [sendNF cc c
| (cc,c) <- mzip vCCs fromBelow ] )
return ((),vDataCs)

-- node function for horizontal ring
gridNodeE :: (NFData i, NFData o, NFData horiz, NFData vert) =>
((i, [horiz], [vert]) —-> (o, [horiz], [vert])) -> —-- node function
((i,ChanName’ o), [horiz]) -> -- input,back channel for output
((ChanName’ (ChanName’ [vert]),ChanName’ [vert]), [horiz])
-- parent output: channels to send/receive vData
-- ring node function: (i, [h]) -> ((ch(ch [v]),ch[v]), [h])
gridNodeE gridF ((input,outC),hData) = unsafePerformIO $

do (vDataC,vData) <- createC -- to receive vertical input data
(vCC, vChan) <- createC -- where to send vertical output data
let (out,hOut,vOut) = gridF (input,hData,vData)
fork (sendNF outC out) -- output not a stream...

fork (sendNFStream vChan vOut)
return ((vCC,vDataC) ,hOut)

Figure 8.21: EDI toroid skeleton, using ring and pipeline

side-effects which should, in principle, be encapsulated in the IO monad. The
ring skeletons, and the proposed interface, use pure node functions, which do not
allow side-effects. One could equally use Eden’s side-effecting constructs parfill
and new (resp. createChans), but this would only hide the side-effects “cosmeti-
cally”. While we abstain from presenting yet more ring skeletons for this special
purpose (with monadic node function type, which is a very easy modification in
any EDI version), the node functions for outer and inner ring explicitly show all
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side-effects, wrapped into a single unsafePerformI0 call. The better and cleaner
solution would, of course, be a ring skeleton with monadic node function type.
Most notably, the communication inside the ring skeletons is reduced to data
which is guaranteed to be available: parent input to each node, and the result
channels created by the caller. These inputs are paired by the caller already,
thus the input split function becomes trivial (\_ -> id). The dynamic input that
had to be separated in the previous version is now explicitly communicated in a

forked thread by the caller.

Comparing startup and performance (toy program)

We have tested the two toroid skeletons with a “toy program”, which merely
checks the correctness of the toroid communication structure. The toroid nodes
send a node identification to the neighbours over the toroid connections and
return the received data as a result, which the caller checks and outputs for all
nodes. The traces in Fig. 8.22 show the machine view for program runs which
unfold a toroid of 8 x 8 nodes, including message traffic.
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(a) Eden toroid skeleton: 0.065sec. (b) EDI toroid skeleton: 0.05sec.

Figure 8.22: Toroid skeleton comparison, using a toy program
(using 65 virtual PEs, executed on 32 physical PEs — Heriot-Watt Beowulf Cluster)
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Both program runs are very short for this small toy program, only showing
the differences and overhead of the skeleton versions and their communication,
because no computation is done in the toroid nodes. As the traces show, both
toroid skeletons unfold the toroid recursively as two nested rings.

Eden process instantiation implies channel exchange between parent and child,
which is partially unnecessary here and left out from the EDI version. This
process instantiation protocol overhead has several effects: It leads to a slightly
increased total amount of messages (5,089 messages as against 4,168 for the
EDI version). Additionally, as every such communication is done in a separate
thread, the Eden version uses many more threads (458, as against 273 for EDI).
These additional threads are also the reason why the toroid processes in the Eden
version need more time to run to completion.

Well-understood, the mere startup time and the redundant messages in the
Eden version will not have much impact on runtime in a real application: The
“real” computation data will usually be much bigger than just a number, and the
computation time of the toroid nodes will compensate for the startup overhead
and post-processing phase. Performance differences between the two versions are
minor and only show up in this minimal micro-benchmark.

8.3.2 Two versions of a parallel pipeline

Another parallel computation scheme can give rise to nesting skeletons we have
presented: a pipelined computation ((f, o f,_10...0 f1)(x)) applied to a large
set of data (x €)X. The pipeline computation (as the inner skeleton) can easily
be parallelised by using several pipeline instances in parallel, a parallel map of
a pipeline, as depicted in Fig. 8.23. For applications where the tasks for the
pipeline (as a whole) have irregular complexity, a workpool implementation can
be used as the parallel map, which allows for dynamic load balancing in the large.
A new task is fed into the pipeline every time a result appears at the other end
and, ideally, the prefetch may be adjusted in such a way that all pipeline stages

— distri-

butor

Figure 8.23: parpipeWhole, parallel pipeline, created as parMap(pipe ...)
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work continuously (at least one task should be held in every stage).

On the other hand, these pipeline stages may have considerably varying com-
plexity, leading to task congestion at the most complex stage. For applications of
this kind, a different implementation scheme is favourable: A pipeline of paral-
lelised map stages may be used?®, as depicted in Fig. 8.24. Both implementation
schemes may be combined with, and connected directly to, a (separate) reduction
network (see Figures), which we leave out of discussion.

— distri-

butor

Figure 8.24: parpipeStages, Parallel pipeline, created as pipe(parmap ... )

The decision which skeleton to use strongly depends on the concrete com-
putation and its characteristics. A parallel map of pipelines appears sensible for
large data sets and pipeline stages of regular and comparable complexity, whereas
heterogenous pipeline stage complexity requires load balancing at the inner level.

Well-understood, both computation schemes are equivalent if we use a parallel
map skeleton with static task distribution. Only if we allow dynamic task dis-
tribution (and reordering the tasks and results), the second variant makes more
sense. Using dynamic load balancing implies that tasks are processed out-of-
order, either passing through the entire pipeline or reordered at every stage. The
second variant also allows to instantiate a different number of processes for more
complex pipeline stages, which is not possible in the first variant. An essential
drawback of the second variant is its increased parallelism overhead. The picture
is misleading: Not the workers are pipelined, but only the master nodes of a
succession of workpool skeletons. Redistributing the tasks at every stage implies
two additional communications per task and pipeline stage, which will be saved
when tasks pass the entire (communication-optimised) pipeline at once. The sec-
ond variant absolutely has to use additional master nodes for the master-worker
skeletons at each pipeline stage (depicted as “distributors”).

However, to implement either variant requires more than the simple composi-
tion of two skeletons discussed previously. Both the map and the pipe skeletons we
have presented expect worker functions which operate on a single task, to yield

4We have motivated the multi-type I/O-pipeline in 8.1.2 by possible side-effects at different
stages, so a map skeleton which embeds I/O actions into its computation is required.
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parpipeWhole3, parpipeStages3 :: (NFData a, NFData b, NFData c, NFData d) =>
Int -> -- parallelism degree
-- exemplarily: 3 stages
([al -> I0 [b]) -> ([b] -> I0 [c]) -> ([c] -> IO [d]) —>

[a] -> I0 [d]
parpipeWhole3 n f1 f2 f3 xs = mw n (n * prefetch) -- try to fill all stages
3 —— leave room for 2 pipeline sub-processes
pipe xs
where pipe xs = pipe2 f1 f2 xs >>= f3 -- last stage remains local!

-- last stage local, 2 more pipeline stages
prefetch = arbitrary

parpipeStages3 n f1 f2 £f3 = piped f1’ £2’ £3’
where f1’ = parallelStage fl
£2 parallelStage £2
£3° parallelStage £3
pf = arbitrary
parallelStage f = mw n pf 3 £ -- n workers, placed on each 3rd PE
-- assuming:
-- workpool-using parmap skeleton with placement stride and list interface
mw :: (NFData a, NFData b) =>
Int -> Int -> Int —> -- no. of proc.s, prefetch, stride
([al -> I0 [b]) -> [a] -> I0 [b] -- list worker fct., input, output

-- (template-haskell generated) multitype pipelines with list interface
pipe2 :: (NFData a, NFData b, NFData c) =>
([a] -> I0 [b]) -> ([b] —> 10 [c]) -- 2 stages incl. I/0
-> [a] —> 10 [c]
pipe3 :: (NFData a, NFData b, NFData c, NFData d) =>
(fal -> 10 [p]) -> ([bl -> I0 [c]) -> ([c] -> I0 [d]) -- 3 stages incl. I/O
-> [a] -> I0 [d]

Figure 8.25: Two parallel pipeline skeleton versions (sketch)

a resulting skeleton which processes a whole task list (and returns results in the
IO monad). As we want to include one skeleton call as the worker function of the
second, our desired skeleton composition requires list interfaces (but IO actions
should, even so, be triggered upon the single inputs and not on the whole list).

Code for both variants is sketched in Fig. 8.25 (exemplarily for a 3-stage
pipeline), assuming the respective changes in the skeletons to be composed. The
proposed interface allows to specify a parallelism degree, the number of parallel
pipelines or, in the second variant, the multiplicity of every stage. Processes are
placed explicitly following this information, in order to effectively use all available
machines and to not place several processes on the same machine unnecessarily.

For placement, we assume a master-worker map implementation which instan-
tiates worker processes round-robin with a constant stride (starting with the next
PE), thereby leaving PEs free for additional sub-processes. In the first variant,
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if n parallel pipelines of length k are requested, each pipeline will require k£ PEs,
thus the stride k. One of the pipeline stages has to be computed locally (we opted
for the last stage); otherwise, the caller of the pipeline skeleton (each worker in
the master-worker skeleton) will unnecessarily create sub-processes for all stages
(and would need a stride of k 4 1), acting as a mere interstation for the tasks.

In the second variant, with parallelism degree n in every (master-worker par-
allelised) stage, the stride should equally be k. This placement logically splits
up the PEs in groups (assuming a sufficient number of PEs) by the remainder
of their ID divided by k, and each group interacts in master-worker fashion to
compute one pipeline stage, using one master and a set of n workers.

The interface we propose assumes [O-monadic worker functions, which oper-
ate on whole lists. Nevertheless, we have to suppose that these skeletons deliver
results as a stream of single elements, and not as one single result in the IO monad
(which requires an unsafeInterleaveI0). Rather complicated additional require-
ments have to be met by the worker functions when their type is (necessarily)
liberalised for this special purpose:

e The master-worker implementation mw must be able to handle its input of
tasks as a stream, which may not be taken for granted (some of the nested
implementations we have developed and discussed in our work [BDLPOS§]
require the task list length to be known in advance).

e The workers of the master-worker map implementation mw are required to de-
liver exactly one result for each task. This is trivially fulfilled with a worker
function of type a -> b, but becomes an additional non-trivial requirement
with the list type we need.

e From the first version, a similar requirement holds for the pipeline skeleton:
The stages of the (multi-type, I/O-including) pipeline need to yield ezactly
one result for each task. In Section 8.1.1, we started by pipeline skeletons
with the more liberal list type; then, in Section 8.1.2, we discussed and
introduced an implied 1:1 correspondence between input and output (en-
forced by the single-item type). For the present purpose, the more liberal
list type is needed, while the implied 1:1 correspondence has to be kept,
since feeding new tasks into the pipeline is triggered by result arrival (in
the outer master-worker skeleton). Type checking will not discover such
errors (which lead to deadlocks) any more.

e Moreover, as the pipeline stages of the presented skeleton include 10 actions,
these actions are supposed to happen on every single input, and not on a
whole list. Result elements have to be sent as a stream, which keeps parallel
data processing continuously at work. However, such worker action and
communication cannot be set up by EDI communication constructs alone —
the worker functions have to guarantee that they are incremental, i.e. may
produce result prefixes from input prefixes.
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These various non-trivial constraints apply when using either of the parallel
pipelines obtained by skeleton nesting. A similar diagnosis holds for our first
example, the toroid skeleton, where ring input had to be splitted into a static
and a dynamic part to avoid a deadlock. Nesting skeletons introduces additional
complexity, as it implies complex combinations of implicit skeleton properties
which, while harmless in the basic versions, might render the nesting solution
unusable. For the parallel pipeline, the overall judgement is that a direct, spe-
cialised implementation (using EDI or relying on dynamic channels) is favourable
— however elegant and esthetic the nested variants may be. With the explicitness
of EDI, no implicit side-conditions and effects complicate the implementation.

In summary, Eden and EDI are both suitable to implement efficient topology
skeletons. While Eden implementations are generally shorter and more elegant,
they introduce the (necessary) concurrency by implicit side-effects, and are oth-
erwise comparable to more explicit implementations expressible in EDI. EDI is
favourable for quick development of specialised versions, and easier to debug. The
example of parallel pipelines shows that skeleton nesting has its limits; it either
introduces various side-conditions on skeleton usage, or amounts to using special
skeleton versions to work around the technical issues related to the nesting.
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Chapter 9

Conclusions and future work

Parallel programming is hard — because of the nondeterministic nature and com-
plexity of interaction between parallel (or concurrent) processes, but also because
parallel programming models often do not provide sufficient abstraction from the
low-level, machine-oriented view. With this thesis, we hope we have been able to
demonstrate that parallel functional languages offer a suitable abstraction level
and useful tools to capture parallelism concepts, without getting lost in technical
details. On the other hand, as the presented work explicitly tackles implementa-
tion issues, we have pointed out that the desired abstraction level varies depend-
ing on the task at hand, and that parallel implementations always deal with a
compromise between explicit control and abstraction.

9.1 Summary of contributions

e We have defined the low-level parallel functional language EDI, identify-
ing the most basic and orthogonal control constructs needed to implement
parallel coordination.

EDI provides basic data communication as well as system information about
location and resources, and it enables programmers to explicitly control the
evaluation degree and to create new local (concurrent) and remote (parallel)
tasks. Concurrency is already included in our base platform GHC [GHC],
and evaluation control is provided by evaluation strategies [THLP98]. Data
communication, remote task creation, and system information, not to men-
tion the basic parallel setup and infrastructure, have been implemented as
our own work.

e In Chapter 3, we have presented in detail an implementation for the lan-
guage Eden, which is structured in layers and based on the concepts iden-
tified and addressed by EDI. We pointed out the advantages of such a
structured implementation.
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Furthermore, general applicability and advantages of the layer concept and
EDI have been shown by the design and prototype implementation of the
more general ARTCOP system (using a slightly modified and extended
kernel support) in Chapter 4. Our feasibility study of VSM shows that
the limits of system programming using our functional approach cannot be
pushed further easily.

e As a second evaluation for the EDI concepts, the entire Part III was de-
voted to skeleton implementations in EDI, in comparison to Eden imple-
mentations. In contrast to the implementation concepts, this investigation
addresses advantages and drawbacks of EDI as a language.

We have discussed a range of known Eden skeleton implementations, and
provided EDI versions for a comparison when applicable. Throughout the
discussion of our skeleton implementations, we pointed out that EDI ver-
sions provide easier access than Eden implementations, which, at times,
obfuscate runtime behaviour and potential problems. On the other hand, a
number of Eden provides more programming comfort, and implementations
can profit from the implicit communication modes and process interconnec-
tions. A new skeleton, Google-mapReduce, has been investigated for the
first time in a really parallel functional context.

e Our comparison and analysis shows that especially topology skeletons (a
notion which we have coined in previous publications), are the core domain
of EDI and its support for explicit communication.

e The layered implementation concept and the comparative discussion of
skeleton implementations substantiate our general claim that functional
languages provide a suitable abstraction level for reasoning about paral-
lel programming in an abstract manner. Crucial system properties, e.g.
adaptive scheduling policies and task creation, as well as skeleton imple-
mentation details, are exposed in easily readable concise code.

9.2 Discussion and future work

Our implementation of the parallel functional language Eden, which constitutes
the starting point, has been organised in several logical layers, and the upper parts
are encoded in (concurrent) Haskell with only few and simple extensions. Starting
from a low-level implementation perspective, levels of increasing abstraction and
decreasing explicitness have been constructed. Aiming at a strict separation
between these levels, we have obtained an implementation of Eden which is easy
to maintain and accessible to rapidly prototyping modifications and extensions
of its coordination constructs.
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Aside from their original purpose of implementing a more abstract language,
the implementation primitives help clarify the general requirements of parallel
coordination, and can even directly serve as an explicit parallel functional lan-
guage. However, without a protecting additional layer, the primitives (due to
their pragmatic design) offer too much liberty to specify erroneous operations.
The language EDI, presented in Section 3.2, constitutes a reasonable compro-
mise, while maintaining the principle of completely explicit execution control and
orthogonality (in contrast to the Eden language). As we have also illustrated
by a simulation based on Concurrent Haskell, EDI may also be considered as
extending the Concurrent Haskell programming model to distributed machines.
Communication via shared (mutable) variables is replaced by transmission of
(immutable) data, and thread concurrency is extended by process concurrency
in a distributed machine setup. Consequently, EDI can be used as a functional
language for distributed programming.

In the near future, we plan to extend and consolidate our Eden implementa-
tion in cooperation with GHC experts. The sequential base system of Eden, GHC,
supports multicore CPUs and shared memory, but the support is specialised to-
wards a semi-implicit programming model (similar to GpH) [HMJ05,HS07], while
the current Eden implementation uses concurrent Haskell, but is limited to single
OS threads. Therefore, combining the two approaches in the implementation is
self-suggesting future work and has a high potential for performance gain. This
will constitute the first Haskell implementation which combines cluster and mul-
ticore support.

In Chapter 4, we have described our results regarding an even more radical
approach towards implementation techniques. We have investigated to which
extent we can generalise the Eden implementation concept and express general
concepts of parallel coordination in a functional language. In a working proto-
type implementation, we have managed to implement complex adaptive schedul-
ing techniques, load-balancing, and thread management in Haskell (at system
level), with the minimal kernel support assumed for EDI. Potential benefits and
obstacles related to implementing another kind of parallel programming support,
virtual shared memory (VSM), at system level have been investigated to sound
the limits of our approach. Though we have been able to program a prototype
in Haskell, the results obtained indicate that such an implementation would re-
quire substantially extended kernel support, not mentioning any consequences for
performance. However, suitable abstract memory models for modern multicore
architectures are a crucial component of a generalised runtime environment like
the projected ARTCOP. Aiming to exploit its potential for modeling and formal
reasoning about implementation properties, we plan to continue our collaborative
ARTCOP research [HLOS8], which targets abstract process and memory models
as well as a flexible implementation for managing parallel computations, based
on an architectural machine model and implemented largely at a functional level,
as presented in Chapter 4. A first stepping stone, and a separable task, is to
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investigate, develop, and test the idea of applying the two-stage task creation of
GpH to a distributed memory setup, outlined in Sec. 4.7.4.

Aside from the realisation of parallel Haskell dialects in a GHC setting, the
work presented also provides an even more general insight: the implementation
concept can be generalised to arbitrary languages and systems. e.g. by replacing
Haskell libraries with something else. The general requirements addressed by EDI
(local and remote task creation, data transfer, evaluation control, and system
information) do not depend on the computation language in use, nor do they fix
the programming model of implemented languages.

Part IIT of the thesis has investigated parallel skeletons as a testbed for as-
sessing usage, advantages and drawbacks of EDI and Eden in comparison. Non-
apparent effects of the implementation language and implementation variants
have been illustrated by a range of different implementations for data parallel
transformations. Well-known implementation concepts in Eden have been con-
trasted to EDI versions, pointing out subtle differences. We can state that the
explicitness of EDI renders apparent what the more complex Eden communica-
tion semantics might hide. Especially for the question of stream communication,
we can state from our results that Eden obviously provides more programming
comfort: Stream communication is automatically selected by overloading, and
many applications exist where an Eden version works allright, while an other-
wise equivalent EDI version would deadlock. Therefore, a type class providing
overloaded communication similar to Trans is a sensible extension to EDI as a
language (and may be added instantly without problems). In EDI, however, it
should be the programmer’s choice whether to use these class functions. On the
other hand, the workpool implementation presented in Sec. 7.2 is a case where
even the thin safety wrapper of EDI communication functions turned out to be
too restrictive.

Our thesis constitutes the first investigation of the Google-mapReduce skeleton
in a really parallel functional context, for which we have proposed two implemen-
tations, one especially geared towards stream processing. We plan to further
develop and test our implementations in order to obtain a more precise state-
ment about optimisation potential, performance differences and drawbacks of
the proposed versions.

In close connection with the strengths of EDI, we have introduced the concept
of topology skeletons, which describe regular process structures and their interac-
tion. Discussing pipelines, rings and toroids, we have illustrated that EDI allows
one to define arbitrary communication structures and provides directly accessible
implementations. The non-functional extensions of Eden provide similar expres-
siveness, but hide the (necessary) side-effects behind its purely functional face,
which can lead to problems. To make this evident, issues related to skeleton nest-
ing have been briefly discussed for a toroid skeleton and for parallel pipelines. We
have pointed out that skeleton nesting is a nontrivial issue. Implicit properties
of a skeleton implementation, harmless for direct applications, might combine
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to severe usage restrictions when nesting skeletons. The bottom line is that a
specialised implementation for the concrete nested skeleton should be considered
in competition, and both Eden and EDI provide the necessary tools to define
that custom skeleton. As we have announced in the introduction, skeleton imple-
mentation necessitates more explicit control, at a lower level of abstraction than
skeleton-based programming.

Finally, aside from the language comparison we have aimed at, all our stud-
ies substantiate the claim that the skeleton approach and, more generally, the
functional paradigm provides an abstract perspective on parallelism concepts
and clearly indicates fundamental properties of different implementations, which
would otherwise be obfuscated by algorithmic particularities and implementation
details. This brings us back to our introductory statement on page 3:

There is a pressing need to investigate and establish new parallel program-
ming paradigms in the mainstream. Parallel programming needs more conceptual
understanding — which functional coordination concepts make accessible.
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Appendix B

Code collection

B.1 Implementation

B.1.1 Eden module: Eden.hs

{-# OPTIONS -cpp -fglasgow-exts #-}
-- Eden Project, JB
—-— Dissertation Jost Berthold

-- Eden module, defining high-level coordination concepts via
-- Prim.0Op.s (which are wrapped inside ParPrim.hs).

-- This version: working version 03/2008 from Eden group.
-- Includes a primitives simulation using concurrent Haskell.
-- (compile with -DSIMUL)

module Eden(
-- reexported from Strategies ---
NFData(..), using, rO
—————————— basic Eden -——---——---
, noPe, selfPe
, Process, process, ( # )

, instantiate
, instantiateAt -- explicit placement
, Trans(..)
——————— dynamic channels --------
, ChanName -- Communicator a -> I0(), abstract outside
, new, parfill -- using unsafePerformIO
, merge, mergeProc -- merge, as specified in Eden language, but function!
, Lift(..), delLift, createProcess, cpAt -- deprecated legacy code for Eden 5
)
where

#ifdef SIMUL
#define __PARALLEL_HASKELL__
#endif

#ifndef __PARALLEL_HASKELL__
#warning Compiling a sequential version of Eden.hs

#endif
import Control.Concurrent -- Instances only
import System.IO.Unsafe(unsafePerformI0) -- for functional face

import qualified ParPrim
import ParPrim hiding(noPe,selfPe)

import Control.Parallel.Strategies -- reexported!
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APPENDIX B. CODE COLLECTION

(NFData(..) ,using, r0)

-- legacy code for Eden 5:

{-# DEPRECATED deLift, Lift "Lift data type not needed in Eden 6 implementation" #-}
data Lift a = Lift a

deLift :: Lift a -> a

deLift (Lift x) = x

{-# DEPRECATED createProcess "better use instantiate :: Process a b -> a -> I0 b instead" #-}
createProcess :: (Trans a, Trans b)

=> Process a b -> a -> Lift b
createProcess p i = unsafePerformIO (instantiate p i >>= \x -> return (Lift x))

cpAt :: (Trans a, Trans b)
=> Int -> Process a b -> a -> Lift b
cpAt pe p i = unsafePerformI0 (instantiateAt pe p i >>= \x -> return (Lift x))

—————————————— Eden constructs, also available in seq. version ----------

-- system information

noPe, selfPe :: Int

#if defined(__PARALLEL_HASKELL__)

noPe = unsafePerformI0 ParPrim.noPe
selfPe = unsafePerformI0 ParPrim.selfPe
#else
noPe =
selfPe
#endif

=
-

—-- processes and instantiation

process :: (Trans a, Trans b) => (a -> b) -> Process a b
instantiate :: (Trans a, Trans b) => Process a b ->a ->1I0b
instantiateAt :: (Trans a, Trans b) => Int -> Process a b -> a -> I0 b
(#) :: (Trans a, Trans b) => Process a b ->a -> b

#if defined(__PARALLEL_HASKELL__)
data Process a b

= Proc (ChanName b -> —-- send back result, overloaded
ChanName’ (ChanName a) -> -- send input Comm., not overloaded
0 O
)

process f = Proc f_remote
where f_remote (Comm sendResult) inCC
= do (sendInput, input) <- createComm
connectToPort inCC
sendData Data sendInput
sendResult (f input)

instantiate = instantiateAt O

instantiateAt p (Proc f_remote) procInput
= do (sendResult, r ) <- createComm -- result communicator
(inCC, Comm sendInput) <- createC -- reply: input communicator
sendData (Instantiate p)
(f_remote sendResult inCC)
fork (sendInput procInput)
return r

{-# NOINLINE ( # ) #-}
p # x = unsafePerformI0 (instantiateAt O p x)

#else
-- sequential simulation:
data Process a b = Proc (a -> b)

process f = Proc f
instantiate (Proc f) x
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B.1. IMPLEMENTATION
= —— rnf fx ‘seq‘ -- WRONG: can be tuple with infinite parts. NO EASY WAY TO DO IT!
return fx
where fx = f x
instantiateAt _ = instantiate
(Proc f) # x = f x
#endif

————————————————— merge function, borrowed from Concurrent Haskell -------
merge :: [[al]l -> [a]
merge xss = unsafePerformI0 (nmergeI0 xss)

mergeProc = merge

-- overloading trick: a "communicator" provides a suitable
-- communication function for the overloaded type

-- type Comm a = (a -> I0Q))
-- JB20061017: leads to obscure runtime errors
-- Must use an own data type like this:

newtype Comm a = Comm (a -> IO0())
-- assumed: contained function sends a over a (previously wired-in) channel
instance NFData (Comm a)

type ChanName a = Comm a -- provide old Eden interface to the outside world

-- Eden-specific operations new/parfill for dynamic channels:

{-# NOINLINE new #-}

new :: Trans a => (ChanName a -> a -> b) -> b
{-# NOINLINE parfill #-}
parfill :: Trans a => ChanName a -> a -> b -> b

#if defined(__PARALLEL_HASKELL__)
parfill (Comm sendVal) val cont
= unsafePerformI0 (fork (sendVal val) >> return cont)
new chanValCont = unsafePerformI0 $ do
(chan , val) <- createComm
return (chanValCont chan val)

#else

-- no channel support in seq. version

new _ = error "new: channels not supported"

parfill _ _ v = error "parfill: channels not supported"
#endif

-- Trans class: overloading communication for streams and tuples

#if defined(__PARALLEL_HASKELL__)
class NFData a => Trans a where
-- lists/streams written element by element, other types as single
-- values. All data is evaluated to NF prior to communication
write :: a -> I0 ()
write x = rnf x ‘seq‘ sendData Data x
—-- produce suitable communicator for tuple types:
createComm :: I0 (ChanName a, a)
createComm = do (cx,x) <- createC
return (Comm (sendVia cx) , x)

-— Trans Instances:

-- "standard types" from Prelude are Transmissible with default
-- communication

instance Trans Int

instance Trans Float

instance Trans Double

instance Trans Char
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instance Trans Integer
instance Trans Bool

-- maybe instance, no NFData in GHC < 6.8
# if __GLASGOW_HASKELL__ < 608
instance NFData a => NFData (Maybe a)
where rnf Nothing = ()
rnf (Just x) = rnf x
#endif
instance Trans a => Trans (Maybe a)

instance Trans ()

-- unit: no communication desired? BREAKS OLD PROGRAMS
-— where

- write () = error "Eden.lhs: writing unit value"
- createComm = return (Comm (\_ -> return ), )

-— stream communication:
instance (Trans a) => Trans [a] where

write 1@[] = sendData Data 1
write (x:xs) = (rnf x ‘seq‘ sendData Stream x) >>
write xs

-- "higher-order channels"
instance (NFData a, Trans a) => Trans (ChanName’ a)
instance (NFData a, Trans a) => Trans (Comm a)

-- tuple instances:
instance (Trans a, Trans b) => Trans (a,b)
where createComm = do (cx,x) <- createC
(cy,y) <- createC
return (Comm (write2 (cx,cy)),(x,y))
instance (Trans a, Trans b, Trans c) => Trans (a,b,c)
where createComm = do (cx,x) <- createC
(cy,y) <- createC
(cz,z) <- createC
return (Comm (write3 (cx,cy,cz)),(x,y,2))
instance (Trans a, Trans b, Trans c, Trans d) => Trans (a,b,c,d)
where createComm = do (ca,a) <- createC
(cb,b) <- createC
(cc,c) <- createC
(cd,d) <- createC
return (Comm (write4 (ca,cb,cc,cd)),
(a,b,c,d))
instance (Trans a, Trans b, Trans c, Trans d, Trans e)
=> Trans (a,b,c,d,e)
where createComm = do (ca,a) <- createC
(cb,b) <- createC
(cc,c) <- createC
(cd,d) <- createC
(ce,e) <- createC
return (Comm (write5 (ca,cb,cc,cd,ce)),
(a,b,c,d,e))
instance (Trans a, Trans b, Trans c, Trans d, Trans e, Trans f)
=> Trans (a,b,c,d,e,f)
where createComm = do (ca,a) <- createC
(cb,b) <- createC
(cc,c) <- createC
(cd,d) <- createC
(ce,e) <- createC
(cf,f) <- createC
return (Comm (write6 (ca,cb,cc,cd,ce,cf)),
(a,b,c,d,e,f))
instance (Trans a, Trans b, Trans c, Trans d, Trans e, Trans f, Trans g)
=> Trans (a,b,c,d,e,f,g)
where createComm = do (ca,a) <- createC
(cb,b) <- createC
(cc,c) <- createC
(cd,d) <- createC
(ce,e) <- createC
(cf,f) <- createC
(cg,g) <- createC
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return (Comm (write7 (ca,cb,cc,cd,ce,cf,cg)),
(a,b,c,d,e,f,g))

instance (Trans a, Trans b, Trans c, Trans d, Trans e, Trans f, Trans g, Trans h)
=> Trans (a,b,c,d,e,f,g,h)
where createComm = do (ca,a) <- createC
(cb,b) <- createC
(cc,c) <- createC
(cd,d) <- createC
(ce,e) <- createC
(cf,f) <- createC
(cg,g) <- createC
(ch,h) <- createC
return (Comm (write8 (ca,cb,cc,cd,ce,cf,cg,ch)),
(a,b,c,d,e,f,g,h))

instance (Trans a, Trans b, Trans c, Trans d, Trans e, Trans f, Trans g, Trans h, Trans i)
=> Trans (a,b,c,d,e,f,g,h,i)
where createComm = do (ca,a) <- createC
(cb,b) <- createC
(cc,c) <- createC
(cd,d) <- createC
(ce,e) <- createC
(cf,f) <- createC
(cg,g) <- createC
(ch,h) <- createC
(ci,i) <- createC
return (Comm (write9 (ca,cb,cc,cd,ce,cf,cg,ch,ci)),
(a,b,c,d,e,f,g,h,i))
-- bigger tuples use standard communication

-- helper functions for Trans class:

-- send function for a single data type (no tuple, non-concurrent)
sendVia :: (NFData a,
Trans a)
=> (ChanName’ a) -> a -> I0Q)
sendVia ¢ d = connectToPort c >>
(sendData Connect d) >> -- optional: connect before evaluation
write d

-- send functions for tuples...
write2 :: (Trans a, Trans b) => (ChanName’ a, ChanName’ b) -> (a,b) -> I0 ()
write2 (c1,c2) (x1,x2) = do
fork (sendVia cl x1)
sendVia c2 x2
write3 :: (Trans a, Trans b, Trans c)
=> (ChanName’ a, ChanName’ b, ChanName’ c) -> (a,b,c) -> I0 O
write3 (c1,c2,c3) (x1,x2,x3) = do
fork (sendVia cl x1)
fork (sendVia c2 x2)
sendVia c3 x3
write4 :: (Trans a, Trans b, Trans c, Trans d)
=> (ChanName’ a, ChanName’ b, ChanName’ c, ChanName’ d
) -> (a,b,c,d) -> I0 O
write4 (c1,c2,c3,cd) (x1,x2,x3,x4) = do
fork (sendVia cl x1)
fork (sendVia c2 x2)
fork (sendVia c3 x3)
sendVia c4 x4
write5 :: (Trans a, Trans b, Trans c, Trans d, Trans e)
=> (ChanName’ a, ChanName’ b, ChanName’ c, ChanName’ d, ChanName’ e
) -> (a,b,c,d,e) > I0 O
write5 (c1,c2,c3,c4,c5) (x1,x2,x3,x4,x5) = do
fork (sendVia cl x1)
fork (sendVia c2 x2)
fork (sendVia c3 x3)
fork (sendVia c4 x4)
sendVia cb x5
write6 :: (Trans a, Trans b, Trans c, Trans d, Trans e, Trans f)
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=> (ChanName’ a, ChanName’ b, ChanName’ c, ChanName’ d,
ChanName’ e, ChanName’ f
) -> (a,b,c,d,e,f) > I0 O
write6 (c1,c2,c3,c4,c5,c6) (x1,x2,x3,x4,x5,x6) = do
fork (sendVia cl x1)
fork (sendVia c2 x2)
fork (sendVia c3 x3)
fork (sendVia c4 x4)
fork (sendVia c5 x5)
sendVia c6 x6
write7 :: (Trans a, Trans b, Trans c, Trans d, Trans e, Trans f, Trans g)
=> (ChanName’ a, ChanName’ b, ChanName’ c, ChanName’ d,
ChanName’ e, ChanName’ f, ChanName’ g
) > (a,b,c,d,e,f,g) -> I0 O
write7 (c1,c2,c3,c4,c5,c6,c7) (x1,x2,x3,x4,%x5,x6,x7) = do
fork (sendVia cl x1)
fork (sendVia c2 x2)
fork (sendVia c3 x3)
fork (sendVia c4 x4)
fork (sendVia c5 x5)
fork (sendVia c6 x6)
sendVia c7 x7
write8 :: (Trans a, Trans b, Trans c, Trans d, Trans e, Trans f, Trans g, Trans h)
=> (ChanName’ a, ChanName’ b, ChanName’ c, ChanName’ d,
ChanName’ e, ChanName’ f, ChanName’ g, ChanName’ h
) -> (a,b,c,d,e,f,g,h) -> 10 O
write8 (c1,c2,c3,c4,c5,c6,c7,c8) (x1,x2,x3,x4,x5,%x6,x7,x8) = do
fork (sendVia cl x1)
fork (sendVia c2 x2)
fork (sendVia c3 x3)
fork (sendVia c4 x4)
fork (sendVia c5 x5)
fork (sendVia c6 x6)
fork (sendVia c7 x7)
sendVia c8 x8
write9 :: (Trams a,Trans b,Trans c,Trans d,Trans e,Trans f,Trans g,Trans h,Trans i)
=> (ChanName’ a, ChanName’ b, ChanName’ c, ChanName’ d,
ChanName’ e, ChanName’ f, ChanName’ g, ChanName’ h, ChanName’ i
) -> (a,b,c,d,e,f,g,h,i) -> I0 O
write9 (c1,c2,c3,c4,c5,c6,c7,c8,c9) (x1,x2,x3,x4,x5,x6,x7,x8,x9) = do
fork (sendVia cl x1)
fork (sendVia c2 x2)
fork (sendVia c3 x3)
fork (sendVia c4 x4)
fork (sendVia c5 x5)
fork (sendVia c6 x6)
fork (sendVia c7 x7)
fork (sendVia c8 x8)
sendVia c9 x9

#else
class NFData a => Trans a -- where nothing happens
where dummyMethod :: a -> a -- dummy method avoids GHC warning

dummyMethod _ = error "dummyMethod"
instance (Trans a) => Trans [a]

instance Trans ()

instance Trans Int

instance Trans Float

instance Trans Double

instance Trans Char

instance Trans Integer

instance Trans Bool

-- maybe instance using default
instance Trans a => Trans (Maybe a)

-- Trans instances for tuples
instance (Trans x, Trans y)
=> Trans (x,y)
instance (Trans a, Trans b, Trans c)
=> Trans (a,b,c)
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instance (Trans a, Trans
=> Trans (a,b,c,d)

instance (Trans
Trans
instance (Trans
Trans
instance (Trans

a,
d,
a,
d,
a,

Trans
Trans
Trans
Trans
Trans

b, Trans c, Trans d)

b, Tramns c,

e) => Trans (a,b,c,d,e)

b, Tramns c,

e,Trans f) => Trans (a,b,c,d,e,f)
b, Trans ¢, Trans d,

Trans e,Trans f,Trans g) => Trans (a,b,c,d,e,f,g)
instance (Trans a, Trans b, Trans c, Trans d,
Trans e,Trans f,Trans g,Trans h)
=> Trans (a,b,c,d,e,f,g,h)
instance (Trans a, Trans b, Trans c, Trans d,
Trans e,Trans f,Trans g,Trans h, Trans i)
=> Trans (a,b,c,d,e,f,g,h,i)

#endif
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B.1.2 Primitives wrapper: ParPrim.hs

{-# OPTIONS -fglasgow-exts -cpp #-1}
-- Eden Project, JB

-- Base module, importing PrimOps => exporting IO actions

module ParPrim(

noPe, selfPe -- system information :: Int

, ChanName’ -- primitive channels (abstract in Eden module and outside)
, fork -- forking conc. threads :: I0 (O -> I0 O

, createC -- creating placeholders :: I0 (ChanName’ a, a)

, connectToPort -- set thread’s receiver :: ChanName’ a -> I0 ()

, sendData -- sending data to recv. :: Mode -> a -> I0 ()

, Mode(..) -- send modes: implemented:

- 1 - connect (no graph needed)

-- 2 - stream (list element)

- 3 - single (single value)

- 4 - rFork (receiver creates a thread, different ports)
-- additional payload (currently only for rFork) in high bits

where

#ifdef SIMUL
-- simulation: all functionality is imported
import ParPrimConcHs

#else
-- whole rest of file

import GHC.IOBase(IO(..))

import GHC.Base(error, Int#, Int(..), (+#),
fork#, expectData#, noPe#, selfPe#,
connectToPort#, sendData#
)

import Control.Parallel.Strategies(NFData(..))

-- I0 wrappers for primitive operatioms:
-- all primitives are implemented out-of-line,
-- wrappers should all be of type * -> I0 (...)

-- (eden implementation can work with unsafePerformI0)

-- system information
{-# NOINLINE noPe #-}
noPe :: I0 Int
noPe = I0 ( \s -> case (noPe# s) of
# s’,r #) > (# s’,I# v #)
)
{-# NOINLINE selfPe #-}
selfPe :: I0 Int
selfPe = I0 ( \s -> case (selfPe# s) of
(# s’,r #) —> (# s’ ,I# r #)
)

-- not for export, only abstract type visible outside
data ChanName’ a = Chan Int# Int# Int#
deriving Show

instance NFData a => NFData (ChanName’ a)
where rnf (Chan pe proc i) = rnf (I# (pe +# proc +# 1))

-- tweaking fork primop from concurrent haskell... (not returning threadID)
{-# NOINLINE fork #-}
fork :: I0 O -> I0 O
fork action = I0 (\s -> case (fork# action s) of
(#s>, _#) > @#s , O#H
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)
-- creation of one placeholder and one new inport
{-# NOINLINE createC #-}
-- returns consistent channel type (channel of same type as data)
createC :: I0 ( ChanName’ a, a )
createC = I0 (\s -> case (expectData# s) of
(# s’,i,p, bh #) -> case selfPe# s’ of
(# s’?, pe #) —>
(# s’’,(Chan pe p i, bh) #)
)
-- TODO: wrap creation of several channels in RTS? (see edenb::createDC# )
- (would save foreign call overhead, but hard-wire more into RTS)
{-# NOINLINE connectToPort #-}
connectToPort_ :: Int# -> Int# -> Int# -> I0 ()
connectToPort_ pe proc i
= I0 (\s -> case (connectToPort# pe proc i s) of
s’ > (# s, O#
)

connectToPort :: ChanName’ a -> I0 ()
connectToPort (Chan p proc i) = connectToPort_ p proc i
-- send modes for sendData
data Mode = Connect -- announce sender at receiver side (no graph needed)

| Data -- data to send is single value

| Stream -- data to send is element of a list/stream

| Instantiate Int -- data is I0(), receiver to create a thread for it

decodeMode :: Mode -> Int
decodeMode Connect =1
decodeMode Stream 2
decodeMode Data 3
decodeMode (Instantiate n) = let k = 4 + n*8
in -- k ‘seq‘ -- needed to pass NF to PrimOp?
k
-- decodeMode other = error "sendData: no such mode"

{-# NOINLINE sendData #-}
sendData :: Mode -> a -> I0 ()
sendData mode d
= 10 (\s -> case (sendData# m d s) of
s’ > (#s’, O#
)
where (I# m) = decodeMode mode
#endif
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B.1.3 Primitives simulation using Concurrent Haskell

{-# OPTIONS -fglasgow-exts -cpp -fscoped-type-variables #-}
-- Eden Project, JB

-- Base module, importing PrimOps => exporting IO actions
-- This version: simulates primitives by Concurrent Haskell
-- (can serve as specification of primitives semantics)

module ParPrimConcHs

(noPe, selfPe -- system information :: Int

, ChanName’ -- primitive channels (abstract in Eden module and outside)
, fork -- forking conc. threads :: I0 () -> I0 O

, createC -- creating placeholders :: I0 (ChanName’ a, a)

, connectToPort -- set thread’s receiver :: ChanName’ a -> I0 ()

, sendData -- sending data to recv. :: Mode -> a -> I0 ()

, Mode(..) -- send modes: implemented:

- 1 - connect (no graph needed)
-- 2 - stream (list element)
- 3 - single (single value)
- 4 - rFork (receiver creates a thread, different ports)
-- additional payload (currently only for rFork) in high bits
, simInitPes
)

where

#warning Concurrent Haskell Simulation of Primitives
#ifndef __GLASGOW_HASKELL__

#error Need GHC to compile this simulation.

#endif

import GHC.Base(unsafeCoerce# )

import qualified Data.Map as Map -- collides with prelude functions
import Data.Map(Map)

import System.IO.Unsafe
import Control.Concurrent
import Control.Parallel.Strategies

-- Concurrent-Haskell simulation of Eden PrimOps

-- tracing
trace :: String -> I0 O
#ifdef TRACE
trace msg = do me <- myThreadId
(pe,p,_) <- mylnfo
putStrLn (show (pe,p,me) ++ msg)
#else
trace _ = return ()

#endif

-- (%) unsafe type casts. cannot use dynamics, missing type context.
—-— THIS IS A HAAAAAAAAAAAAACK!!!ttritt ()

toI0 :: a —> I0 O

toI0 x = case cast x of
Nothing -> error "IO? wrong cast"
Just io -> io

cast :: a -> Maybe b

cast x = Just (unsafeCoerce# x)
toDyn :: a -> Untyped

toDyn x = unsafeCoerce# x

fromDyn :: a -> Untyped -> a
fromDyn _ unit = unsafeCoerce# unit
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---- Simulation specials ----

-- global ID supply for process IDs and Channel IDs:

- (CAF trick, evaluated, i.e. created, by first usage)
{-# NOINLINE idSupply #-}

idSupply :: MVar Int

idSupply = unsafePerformI0 (newMVar 1)

-- pulling a fresh channel/process ID:

freshId :: I0 Int

freshId = do i <- takeMVar idSupply
putMVar idSupply (i+1)
return i

-- process and thread book-keeping:

-- (PE, processID, Maybe connected channel)
type ThreadInfo = (Int,Int,Maybe Int)

-- global thread table: ID -> ThreadInfo
- (first time called: created with first thread as an entry)
{-# NOINLINE thrs #-}
thrs :: MVar (Map ThreadId (Int,Int,Maybe Int))
thrs = unsafePerformI0 (myThreadId >>= \id ->
newMVar (Map.insert id (1,1,Nothing) Map.empty ))

-- retrieving own thread information
myInfo :: I0 ThreadInfo
myInfo = do tid <- myThreadId
thrMap <- readMVar thrs
case Map.lookup tid thrMap of
Nothing -> error (show tid ++ " not found!")
Just x -> return x

-- retrieving the channel a thread has connected to
myChan :: IO Int
myChan = do (_,_,c) <- myInfo
case c of
Nothing -> do tid <- myThreadId
error (show tid ++ " not connected!")
Just x -> return x

-- when thread finished:
removeThread :: ThreadId -> I0 ()
removeThread id = do trace ("Kill " ++ show id)
thrMap <- takeMVar thrs
putMVar thrs (Map.delete id thrMap)

-- table of open channels, and channel lookup

-- (channels are MVars, but for values of various types, we use unsafeCoerce)
-- ( to test the 1:1 restriction, we save past senders for stream comm.)

type Untyped = ()

{-# NOINLINE chs #-}
chs :: MVar (Map Int (Maybe ThreadId, MVar Untyped))
chs = unsafePerformI0 (newMVar Map.empty)

-- for Connect messages: only register the calling thread as the sender
registerSender :: Int -> I0 ()
registerSender id
= do cMap <- takeMVar chs
tid <- myThreadId
case Map.lookup id cMap of
Nothing -> error $ "missing MVar for Id " ++ show id
Just (t,var) -> if (t == Nothing || t == Just tid)
then do putMVar chs
(Map.insert id (Just tid,var) cMap)
else error ("duplicate connect message: "
++ show tid ++ "->"
++ show id)
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-- for receiving messages, removes the channel (Data message)
getRemoveCVar :: Int -> I0 (MVar Untyped)
getRemoveCVar id = do cMap <- takeMVar chs
case Map.lookup id cMap of
Nothing -> error ("missing MVar for Id "
++ show id)
Just (_,var) =-> do putMVar chs (Map.delete id cMap)
return var

-- for receiving stream messages, updates the channel, checks the sender
updateGetCVar :: MVar Untyped -> Int -> I0 (MVar Untyped )
updateGetCVar newVar id
= do cMap <- takeMVar chs
tid <- myThreadId
case Map.lookup id cMap of
Nothing -> error $ "missing MVar for Id " ++ show id
Just (t,var) -> if (t == Nothing || t == Just tid)
then do putMVar chs
(Map.insert id (Just tid,newVar) cMap)
return var
else error "1:1 restriction violated"

-- holds number of PEs simulated (can be changed using simInitPes function
{-# NOINLINE pesVar #-}

pesVar :: MVar ([Int],())

pesVar = unsafePerformI0 (newMVar ([2,3,4,1],())) -- arbitrary default: 4 PEs

simInitPes :: Int -> I0 ()
simInitPes pes | pes < 1 = error "invalid number of PEs requested"
| otherwise = do (_,test) <- takeMVar pesVar
trace ("Init. with " ++ show pes ++ " PEs.")
test ‘seq‘ -- protect against double init.
putMVar pesVar
([2..pes+1] ,error "double simInitPes")

-- round-robin placement:
choosePe :: IO Int
choosePe = do pe <- selfPe
trace "choosing PE"
(list,test) <- takeMVar pesVar
let place = list!!(pe-1)
pes = length list
new = if place == pes then 1 else place+l
newList = take (pe-1) list ++ new:drop pe list
putMVar pesVar (newList,test)
trace "chosen"
return place

-- the following is exported:

-- system information

{-# NOINLINE noPe #-}

noPe :: I0 Int

noPe = do (p,_) <- readMVar pesVar
return (length p)

-- place processes in round-robin manner
{-# NOINLINE selfPe #-}
selfPe :: I0 Int
selfPe = do (pe,_,_) <- mylInfo
return pe

-- abstract outside!
data ChanName’ a = Chan Int Int Int
deriving (Show)

instance NFData a => NFData (ChanName’ a)
where rnf (Chan pe proc i) = rnf (pe + proc + i)
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-- tweaking fork primop from concurrent haskell... (not returning threadID)
{-# NOINLINE fork #-}
fork :: I0 ) -> I0 ()
fork action = do (pe,p,_) <- myInfo
trace ("new thread")
tMap <- takeMVar thrs
tid <- forkIO action’
putMVar thrs (Map.insert tid (pe,p,Nothing) tMap)
trace ("forked! ID=" ++ show tid)
where action’ = do id <- myThreadId
trace ("run thread " ++ show id)
action
removeThread id

-- creation of one placeholder and one new inport
-- returns consistent channel type (channel of same type as data)
createC :: I0 ( ChanName’ a, a )
createC = do (pe,p,_) <- myInfo
id <- freshld
var <- newEmptyMVar
trace ("new channel in " ++ show (pe,p) ++ ", ID=" ++ show id)
cList <- takeMVar chs
let ¢ = Chan pe p id
x = unsafePerformI0 $ readMVar var
x’ = fromDyn (error "createC cast") x
putMVar chs (Map.insert id (Nothing,var) cList)
trace "channel created!"
return (c, x’ )

-- connect a thread to a channel
connectToPort :: ChanName’ a -> I0 ()
connectToPort (Chan pe p cid)
= do id <- myThreadId
tlist <- takeMVar thrs
putMVar thrs (Map.updateWithKey newChan id tlist)
where newChan _ (pe,proc,_) = Just (pe,proc, Just cid)

-- send modes for sendData

data Mode = Connect -- announce sender at receiver side (no graph needed)

| Data -- data to send is single value

| Stream -- data to send is element of a list/stream

| Instantiate Int -- data is I0(), receiver to create a thread for it
sendData :: Mode -> a -> I0 (O

sendData Connect _ = do ch <- myChan
registerSender ch

sendData Data d = do cd <- myChan
var <- getRemoveCVar cd
putMVar var $ toDyn d

sendData Stream d = do cd <- myChan
v2 <- newEmptyMVar
var <- updateGetCVar v2 cd
let x = unsafePerformI0 $ readMVar v2
newList = d: fromDyn undefined x
putMVar var $ toDyn newList

sendData (Instantiate maybePe) d
= do newPid <- freshIld
pes <- noPe
pe <- if maybePe == 0 then choosePe
else return (1+((maybePe-1) ‘mod‘ pes))
trace ("new process on PE " ++ show pe)
tlist <- takeMVar thrs
id <- forkIO action
putMVar thrs (Map.insert id (pe,newPid,Nothing) tlist)
trace ("process,thread: " ++ show (newPid,id))
where action = do id <- myThreadId
trace ("process starting")
toI0 d
removeThread id
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B.2 Skeletons

B.2.1 Google MapReduce Skeleton, optimised EDI ver-
sion
{- Google’s MapReduce programming model revisited
(C) Ralf Laemmel, 2006--2007
(C) Parallelisation by JB (20080220ff), as marked:

We depart from the MapReduce skeleton described in the Google paper.
Directly taking parallelism into account, we mimic the communication
via intermediate files by channel communication: the mappers deliver
(pre-grouped) intermediate data directly to responsible reducers via
channels.

As in the first implementation, we use an equal number of map and
reduce processes. In this implementation, mapper and reducer are
gathered in one process, avoiding unnecessary communication.

Additionally, pre-grouping is not done for all intermediate data at
once, but separately for the intermediate results of each task (input
is bundled into bigger tasks by the outer interface).

This module: using lists and stream communication between processes.

-}

module MapReduce.OptEdiLists
( mapReduceList, mapReduce’
) where

import Data.Map (Map,empty,insertWith,mapWithKey,filterWithKey,
toList,fromList,unionsWith,unions, fromListWith)

-- parallelisation

import ParMap(unshuffle)

import Edi

import Control.Concurrent

import System.IO.Unsafe

import Data.List hiding (partition)

mapReduce’ :: (Ord k1, Ord k2,
NFData k1, NFData k2,
NFData v1, NFData v2, NFData v3, NFData v4)

=> (vl -> Int) -- Size of input values

-> Int -- Split size for map tasks

-> Int -- Number of partitions

-> (k2 -> Int) -- Partitioning for keys

-> (k1 > vl -> [(k2,v2)]) -- The *’\map’* function

-> (k2 -> [v2] -> Maybe v3) —-- The *’\combiner’* function
-> (k2 -> [v3] -> Maybe v4) -- The *’\reduce’* function
-> Map ki1 vi1 -- Input data

-> Map k2 v4 —-- Output data

mapReduce’ size split parts keycode mAP cOMBINER rEDUCE input
= unsafePerformI0 $ do output <- mapReducelist parts keycode mAP cOMBINER rEDUCE
(splitInputList size split input)
return (concatOutputList output)

-- internally using no maps, but only lists... different input/output conversion
splitInputlList :: Ord k1 => (vl -> Int) -> Int -> Map ki1 vi -> [[(k1,v1)]]
splitInputList getSize desiredSize

= fst -- 3. Project away size of last piece
. foldl splitHelper ([[]],0) -- 2. Splitting as a list fold
. tolList -- 1. Access dictionary as list of pairs

where splitHelper (ps,s) x@(kl,v1)
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= if getSize vl + s < desiredSize || null (head ps)
then (((x:head ps):tail ps), getSize vl + s)

else ([x]:ps,getSize v1)

concatOutputList Ord k2 => [[(k2,v4)]]

-> Map k2 v4

concatOutputList rss = unionsWith undefined (map fromList rss)

mapReducelList (NFData k1, NFData k2,
NFData v1, NFData v2, NFData v3, NFData v4,
Ord k2) =>
Int —- Number of partitiomns

-> (k2 -> Int)
-> (k1 -> vi > [(k2,v2)])
-> (k2 -> [v2] -> Maybe v3)
-> (k2 -> [v3] -> Maybe v4)
= [[(k1,vD)]]

-> 10 [[(k2,v4)]]

-- Partitioning for keys

-- The *’\map’* function

-- The *’\combiner’* function
-- The *’\reduce’* function

-- Distributed input data (list)
-- Distributed output data

mapReducelist parts keycode mAP cOMBINER rEDUCE input
= do (partCCs,partCss) <- createCs parts -- ChanName’
(toXCCs,toXCs) <- createCs parts -- ChanName’
(inCCs,inCs) <- createCs parts
(resCs,ress) <- createCs parts
-- instantiate workers:
sequence_ [ spawnProcessAt O (workerProc part inCC toXCC partCC resC) |
(part,inCC, toXCC,partCC,resC) <-
zip5 [1..parts] inCCs toXCCs partCCs resCs ]
sequence_ [ fork (inputSender ch cList inC wIn ) |
( ch,cList, inC, wIn ) <-
zip4 toXCs (transpose partCss) inCs wlns ]

[ChanName’ Interim]]
(ChanName’ [ChanName’
-- in-channels for map workers
-- results

Interim])

return ress
where
wIns = unshuffle parts input --static input distribution!
workerProc myPart -- parameter defines own partition to reduce
inChanC -- :: ChanName’ (ChanName’ [(k1,v1)])
-- to receive from P where to send data to peers (parts-1 elements)
peerCCC  -- :: ChanName’ (ChanName’ [ChanName’ Interim])
-- where to send created peerCs
peerCC  -- :: ChanName’ [ChanName’
-- where to send results
resChan -- :: ChanName’

Interim]

[(k2,v4)]
= do
-- create and communicate peer channels (one too many)
(fromPeerCs,fromPeers_) <- createCs parts -- (parts - 1) peers
let (_,fromPeers) = takeOutN myPart fromPeers_
sendNF peerCC fromPeerCs
-- create back channel to receive other peerCs (ignore own)
(toPeerCC,toPeerCs_) <- createC
let (_,toPeerCs) = takeOutN myPart toPeerCs_
sendNF peerCCC toPeerCC
-- create and communicate input channel
(inC,input) <- createC
sendNF inChanC inC
-- do the work.
-- map mAP on input
let mapped = mapCombine input -- [[(k2,v3)]]
mapCombine = map (reducePerKeyList cOMBINER)
. map groupByKeyList
. map (concatMap (uncurry mAP))
-- partition by keycode
let rData = map (partition parts keycode) mapped -- :: [[[(k2,v3)]]]
selectFor n = concatMap (!!(n-1)) rData -- Int -> [(k2,v3)]
rData’ = map selectFor [1..parts] -- 777
(ownRData,toPeers) = takeOutN myPart rData’

-= send other parts to others, split off comm. jobs
sequence_ [ fork (sendNFStream ch dat) |
(ch,dat) <- zip toPeerCs toPeers ]
- merge own and remote data, reduce
redData <- nmergeI0 (ownRData:fromPeers) -- [(k2,v3)]

let res = reducePerKeyList rEDUCE (mergeByKeyList redData)
sendNFStream resChan res
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inputSender :: (NFData interim, NFData k1, NFData v1) =>
ChanName’ [ ChanName’ interim] ->
[ChanName’ interim] ->
ChanName’ [[(k1,v1)]] ->
[[(x1,v1)]] —>
0 O
inputSender peerCC peerCList inC workerIn
= do
sendNF peerCC peerCList
sendNFStream inC workerIn

-- takeQutN takes n and a list, returns list!!(n-1) and the list without it
takeOutN :: Int -> [a] -> (a,[al)
takeOutN n [] = (undefined,[])
takeOutN 1 (x:xs) = (x,xs)
takeOutN n (x:xs) = (y,x:ys)
where (y,ys) = takeOutN (n-1) xs

mapPerKey :: (k1 -> v1 -> [(k2,v2)]) -> Map k1 v1 -> [(k2,v2)]
mapPerKey mAP =

concat -- 3. Concatenate per-key lists
. map (uncurry mAP) -- 2. Map *’\map’* over list of pairs
. tolList -- 1. Turn dictionary into list

-- Partition intermediate data
partition :: Int -> (k2 -> Int) -> [(k2,v2)] -> [[(k2,v2)]]
partition parts keycode pairs = map select keys

where

keys = [1..parts] -- the list 1, .., parts
select part = filter pred pairs -- filter pairs by key
where

pred (k,_) = keycode k == part

mergeByKeyList :: Ord k2 => [ (k2,v3) 1 —> [ (k2, [v3])]

not distinct distinct
mergeByKeyList =
toList -- 3. Convert back to list
. fromListWith (++) -- 2. construct a Map
- rely on efficient Map implementation
. map singleton -- 1. convert entries to singleton list
where

singleton (k,x) = (k,[x])

groupByKey :: Ord k2 => [(k2,v2)] -> Map k2 [v2]
groupByKey = foldl insert empty
where

insert dict (k2,v2) = insertWith (++) k2 [v2] dict

groupByKeyList :: Ord k2 => [(k2,v2)] -> [(k2,[v2])]
groupByKeyList = tolList . groupByKey -- rely on efficient Map implementation

reducePerKeyList :: Ord k2 =>
(k2 -> [v23] -> Maybe v34) -> [(k2,[v23])] -> [(k2,v34)]
reducePerKeyList f =

mapWithKey_ unJust -- 3. Eliminate Justs
. filter (isJust . snd) -- 2. Filter non-Nothings
. mapWithKey_ f -- 1. Apply reduce/combiner per key
where
isJust (Just _) = True -- Keep entries of this form
isJust Nothing = False -- Remove entries of this form

unJust _ (Just x) = x -- Transforms type Maybe a into a
mapWithKey_ f = map (\(k,v) -> (k,f k v))

176



B.2. SKELETONS

B.2.2 PipelO.hs, implementation of multi-type 10-pipelines

-- Ph.D work Jost Berthold, 12/2007

-- pipe using IO actions as its stages, EdI version:

-- question is, how to specify type changes in the stages, while
-- maintaining the stages as a list...

-- Could use TH to build the pipeline, try it NOW!
{-# OPTIONS_GHC -fth #-}

-- for template haskell code in mkPipe

module PipeIO where

import Edi
import Control.Monad

import ParPrim -- see (%)
import Language.Haskell.TH -- for generating multi-type pipelines

import Language.Haskell.TH.Syntax

pipestageIO :: (NFData a, NFData b) =>

ChanName’ (ChanName’ [a]) -> -- input channel, first stage
ChanName’ [b] -> -- output channel
(a->I0Db) > 1I0 O -- functionality

pipestageI0 inCC outC f
= do (inC,input) <- createC

sendWith rwhnf inCC inC -- send input reply channel
connectToPort outC  -- process I/0 stream, using ParPrim directly,
mapM_ sendIONF input -- triggering one action per input element
sendData Data [] -- close stream when finished

where sendIONF x = do b <- f x -- I/0 action

rnf b ‘seq‘ sendData Stream b

-- 2-stage:
pipe2I0_ :: (NFData a, NFData b, NFData c) =>
(a =>I0b) -> (b -> I0 c) -> [a] -> I0 [c]
pipe2I0_ stl st2 input
= do (inCC,inC) <- createC
(in2CC,in2C) <- createC
(outC,out) <- createC
spawnProcessAt O (pipestageI0 in2CC outC st2)
rnf in2C ‘seq‘ -- wait for channel from 2nd stage
spawnProcessAt 0 (pipestageI0 inCC in2C sti1)
fork (sendNFStream inC input)
return out

-- using a separate thread to spawn the processes
pipe2I0 :: (NFData a, NFData b, NFData c) =>
(a =>I0Db) -> (b ->1I0 c) -> [a]l -> I0 [c]
pipe2I0 stl st2 input
= do (outC,out) <- createC
fork ( -- separate thread to spawn the pipeline stages:
do (in2CC,in2C) <- createC
spawnProcessAt O (pipestageI0 in2CC outC st2)
(inCC,inC) <- createC
-- will block until in2C available from stage 2
spawnProcessAt O (pipestageI0 inCC in2C st1)
sendNFStream inC input)
return out

-- 3-stage:

pipe3I0_ :: (NFData a, NFData b, NFData c, NFData d) =>
(a->1I0b) > (b ->I0c) > (c ->I0d —>
[a]l -> 10 [d]
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pipe3I0_ stl st2 st3 input -- new: st3
= do (inCC,inC) <- createC
(in2CC,in2C) <- createC
(in3CC,in3C) <- createC -- new cc/c pair
(outC,out) <- createC
- rnf outC ‘seq‘

spawnProcessAt O (pipestageI0 in3CC outC st3) -- new

rnf in3C ‘seq‘ -- wait for channel from 3rd stage -- new
spawnProcessAt O (pipestageI0 in2CC in3C st2) -- changed

rnf in2C ‘seq‘ -- wait for channel from 2nd stage

spawnProcessAt O (pipestageI0 inCC in2C sti1)
fork (sendNFStream inC input)
return out

-- 3-stage, alternative scheme using sep. threads to spawn:
pipe3I0 :: (NFData a, NFData b, NFData c, NFData d) =>
(a=>I0b) -> (b ->1I0c) -> (c ->1I0d) ->
[a] -> I0 [d]
pipe3I0 stl st2 st3 input
= do (outC,out) <- createC
fork ( do (in3CC,in3C) <- createC
spawnProcessAt O (pipestageI0 in3CC outC st3)
(in2CC,in2C) <- createC
-— and block in in3C, then
spawnProcessAt O (pipestageI0 in2CC in3C st2)
(inCC,inC) <- createC
-- and block on in2C, then
spawnProcessAt O (pipestageI0 inCC in2C st1)
-- and block on inC, then
sendNFStream inC input
)

return out

{- forked thread will:
spawn->block on in3C,
spawn->block on in2C,
spawn->block on inC,
send input

this is a foldM, and can include channel creation if we use the right
fold function. unfortunately, the types for different stages do not
match.

-}

pipelOFold :: (NFData a) =>
[(a => I0 a)] -> -- all stages as a list (same type)
[a]l -> 10 [a]
pipelOFold stages input
= do (outC, out) <- createC
inC <- foldM spawnWithChans outC (reverse stages)
fork (sendNFStream inC input)
return out

spawnWithChans :: (NFData a, NFData b) =>

ChanName’ [b] -> -- strict in result channel
(a -> I0 b) —> -- the stage
I0 (ChanName’ [a]) -- input channel returned

—-- goes into previous stage
spawnWithChans outC stage
= do (inCC,inC) <- createC
spawnProcessAt O (pipestageI0 inCC outC stage)
return inC

-- some Template Haskell to generate specialised code for n-staged
-- pipeline with different types inside the PL steps.

mkPipe :: Int -> ExpQ

mkPipe n = do outCN <- newName "outC"
outN  <- newName "out"
inN <- newName "input"
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stages <- mapM newName (map (("st"++) . show) [1..n])
-- generate code:
(spawnStmts,inCN) <- foldM foldCode ([],outCN) (reverse stages)

let chanPat = TupP [VarP outCN,VarP outN]
chanCreate = BindS chanPat (VarE (mkName "createC"))
inSend = apply "sendNFStream" (map VarE [inCN,inN])
thread = apply "fork" [DoE (spawnStmts ++ [inSend])]
retCode = apply "return" [VarE outN]

return $

LamE (map VarP (stages ++ [inN])) -- bindings

(DoE [chanCreate,thread,retCode]) -- code

-- helper:
apply :: String -> [Exp] -> Stmt
apply fString args = NoBindS (foldl AppE (VarE (mkName fString)) args)

foldCode :: ([Stmt],Name) -> Name -> Q ([Stmt],Name)
foldCode (codeBefore,inChanE) stageFct
= do (DoE stmts, newCN) <- spawnCode (varE inChanE) (varE stageFct)
return ((codeBefore ++ stmts), newCN)

spawnCode :: ExpQ -> ExpQ -> Q (Exp, Name)
spawnCode chanE procE
= do rChan <- newName "rChan"
rN <- newName "r"
let pair = TupP [VarP rChan, VarP rN]
spawn <- [| spawnProcessAt 0
(pipestageI0 $(varE rChan) $chanE $procE) |]
let code = DoE [BindS pair (VarE (mkName "createC")),
NoBindS spawn ]

return (code,rN)

-- Helper functions, suitable interface (choosing no of PEs and
-- agglomerating stages)

optPipe :: NFData x => Int -> [x -> I0 x] -> [x] -> I0 [x]
optPipe pes stages input
= let peStages = agglomerateInN pes stages
in pipeIOFold peStages input

agglomerateInN :: Int -> [x -> I0 x] -> [x -> I0 x]
agglomerateInN pes fs = map seqPipeIO (splitIntoN pes fs)

seqPipeI0 :: [x -> I0 x] -> (x -> I0 x)
seqPipelI0 [] = return
seqPipeI0 (f:fs) = \x -> f x >>= \y -> seqPipel0 fs y

splitIntoN :: Int -> [a] -> [[a]]
splitIntoN n xs = takelter parts xs
where 1 = length xs
parts = zipWith (+)

((replicate (1 ‘mod‘ mn) 1) ++ repeat 0)
(replicate n (1 ‘div‘ n))

takeIter :: [Int] -> [a]l -> [[all

takeIter [1 [1 = [I

takeIter [] _ = error "elements left over"

takeIter (t:ts) xs = hs : takelter ts rest

where (hs,rest) = splitAt t xs
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B.2.3 EdiRing.hs: EDI ring skeletons

module EdiRing where
-- Ring skeletons only using EdI (=> no overloading for result!)

import System.IO.Unsafe
import Control.Monad
import Control.Concurrent(yield)

import Edi

ediringnames=["Edi ring (static in)",
"Edi ring2 (dyn.in)",
"Edi ringRec (static in)",
"Edi ringRec2 (caller embedded, static in)"]
edirings :: (NFData a, NFData b, NFData c) =>
[Int -> (Int -> i -> [a]) -> ([b] -> o) —>
((a,[c]) => (b,[c])) -> i -> o]

edirings = [ring, ring2, ringRec, ringRec2]

ringP :: (NFData b, NFData c) =>
Int -> Int -> (Int -> i -> [a]) -> ([b] -> o) —>
((a,[c]) -> (b,[c])) ->i >0
ringP n _ = ring n
-- Ring: Interface analog to Eden-Version, but static parent input!
-- Directly programmed (createCs/fork/send* in place of new/parfill)
ring :: (NFData b, NFData c) =>
Int -> (Int -> i -> [al) -> ([b] -> 0) —>
((a,[c]) -> (b,[c])) > i > o
ring np split combine ringF input
= unsafePerformI0 $ ediRingIO np split combine ringF input

ediRingI0 :: (NFData ro, NFData rr) =>
-- size, Input/Output processing
Int -> (Int -> i -> [ri]) -> ([ro]l -> o) ->

((ri, [rr]) -> (ro,[rr])) -> -- => ring comm forced stream!
i->1I0o0
ediRingI0 n dist comb f input
= do (outCs,outs) <- createCs n -- result channels
(rChanCs,rChans) <- createCs n -- ch.exchange channels

-- prepare ring processes (I0 actions, parameters supplied)
let ringIns = dist n input

ringActions = [ringNodel rIn f outC rChanC

| (rIn, outC, rChanC) <- zip3 ringIns outCs rChanCs ]

-- spawn children (no explicit placement, rely on automatic RR)
mapM_ (spawnProcessAt 0) ringActions
-- send ch.s for ring comm. to all children
let (ringInCs,succCCs) = unzip rChans
zipWithM_ (\cc ¢ -> sendNF cc c) (leftrotate succCCs) ringInCs
-- (lazily!) return combined results
return (comb outs)

-- ringNode: behaviour of a node, as IO action
ringNodel :: (NFData b, NFData r) =>

a -> -- input (static!)
((a, [r1) -> (b, [x1)) > --f
ChanName’ b -> -- result channel (no overloading!)
(ChanName’ (ChanName’ [r], ChanName’(ChanName’ [r]))) -> -- Back channel
0 O
ringNodel input ringF outC parentCC
= do

(ringInC, ringIn) <- createC -- stream channel for Ring

(succCC, succC) <- createC -- back channel for succ. channel

sendNF parentCC (ringInC,succCC) -- send channels to caller

—-- computation

let (out,ringOut) = ringF (input, ringIn)

-- ring comm (extra thread)

fork (sendNFStream succC ringOut) -- for successor
—— output:

sendNF outC out

-- which is, explicitly coded:
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-- connectToPort outC
-- (rnf out ‘seq‘ sendData Data out)
-- NEVER SENDS RESULTS AS A STREAM!

-— list rotation

leftrotate, rightrotate :: [a] -> [a]
leftrotate xs = last xs : init xs
rightrotate xs = tail xs ++ [head xs]

-- monadic evaluation control
rnfM :: NFData a => a -> I0 ()
--rnfM = return . rnf -- 777 doznwork
rnfM x = case rnf x of { () -> yield }

-- Version which sends input explicitly instead of embedding it:
-- completely analog to Eden version, unless a/b are lists
-- additionally: placement stride in ediRingEIO, set to 1 in outer interface
ring2 :: (NFData a, NFData b, NFData c) =>
Int -> (Int -> i -> [a]) -> ([b] -> o) —>
((a,[c]) -> (b,[c])) > i >0
ring2 np split combine ringF input
= unsafePerformI0 $ ediRingEIO np 1 split combine ringF input

ediRingEIO :: (NFData ri, NFData rr, NFData ro) =>
-- size, stride, Input/Output Generation
Int -> Int -> (Int -> i -> [ri]) -> ([ro] -> o) —>

((ri, [rr]) -> (ro,[rr])) -> -- => ring comm forced stream!
i->1I0o0
ediRingEIO0 n stride dist comb f input
= do (outCs, outs) <- createCs n

(rChanCs, rChans) <- createCs n
me <- selfPe
np <- noPe
let ringActions = [ringNodeE f outC rChanC
| (outC, rChanC) <- zip outCs rChanCs ]
places = map ((+1) . (‘mod‘ np) . (+me) . (xstride) ) [0,1..]
zipWithM_ spawnProcessAt places ringActions

-- difference to skeleton above HERE: receive extra input channels
let (prevCs,succCCs,inputCs) = unzip3 rChans

ringIns = dist n input
zipWithM_ (\cc ¢ -> sendNF cc c) (leftrotate succCCs) prevCs
sequence_ [fork (sendNF iC i) | (iC,i) <- zip inputCs ringIns]
return (comb outs)

-- ringNode:
ringNodeE :: (NFData a, NFData b, NFData r) =>
((a,[r]) -> (b,[r])) > --f£
ChanName’ b -> -- res.channel (no overloading!)
-- back channel for (predecessor, successor, input)
(ChanName’ (ChanName’ [r], ChanName’(ChanName’ [r]), ChanName’ a)) ->

0 O
ringNodeE ringF outC parentCC
= do
(ringInC, ringIn) <- createC -- stream channel for Ring
(succCC, succC) <- createC -- back channel for succ. channel
(inputC, input) <- createC -- Input
sendNF parentCC (ringInC,succCC,inputC) -- send channels to caller
let (out,ringOut) = ringF (input, ringIn)
fork (sendNFStream succC ringOut) -- to successor (Stream)
sendNF outC out -- result to caller (NF, no stream)

-- recursive version with static parent Input

- Interface analog to Eden Version

type RingSkel i o a br =
Int -> (Int -> i -> [a]) -> ([b] -> o) —>
((a,[r]) -> (b,[x1)) -> i ->o

181



APPENDIX B. CODE COLLECTION

ringRec,ringRec2 :: (NFData b, NFData r) => RingSkel i o a b r
ringRec np split combine ringF input
| length (split np input) /= np
= error "wrong ring size for distribution function."
| np == 1 = let (o,r) = ringF (head $ split 1 input, r)
in combine [o]
| otherwise
= unsafePerformI0 $ ediRingRecIO np 1 split combine ringF input

ringRec2 np split combine ringF input
| length (split np input) /= np
= error "wrong ring size for distribution function."
| np == 1 = let (o,r) = ringF (head $ split 1 input, r)
in combine [o]
| otherwise
= unsafePerformI0 $ ediRingRecI02 np split combine ringF input

ringRecP :: (NFData b, NFData r) => Int -> RingSkel i o a b r
ringRecP np stride split combine ringF input = ring np split combine ringF input

-- recursively created ring, caller collects results
ediRingRecIO :: (NFData ro, NFData rr) =>
-- size, stride, input/output processing
Int -> Int -> (Int -> i -> [ri]) -> ([ro] -> o) ->
((ri, [rr]) -> (ro,[rr])) -> -- => ring comm has to be a stream
i->10o0
ediRingRecIO n stride dist comb f input
= do (outCs,outs) <- createCs n
me <- selfPe
-- start on successor PE
spawnProcessAt (me+1) (ringStart (dist n input) outCs)
return (comb outs)
where ringStart (i:is) (oC:oCs)
= do (ringInC,ringIn) <- createC
(succCC, succC) <- createC
me <- selfPe
np <- noPe
let place = (me+stride) ‘mod‘ np -- use stride for placing
spawnProcessAt place
(ringNodeRec stride is ringInC f oCs succCC)
let (out,ringOut) = f (i, ringIn)
fork (sendNFStream succC ringOut) -- send to successor
sendNF oC out —-- result, never sent as stream

-- ringNodeRec: behaviour of a node in the ring (IO action)
ringNodeRec :: (NFData b, NFData r) =>

Int -> -- placement stride
[a]l] —> -- input (static!)
ChanName’ [r] -> -- closing the ring
((a,[r]) -> (b,[r])) > -~ f
[ChanName’ b] -> -- result channels (no overloading!)
(ChanName’ (ChanName’ [r])) -> -- back channel
0 O
ringNodeRec _ [l _ _ _ _ = error "ringNodeRec: missing input!"
ringNodeRec _ _ _ _ [l _ = error "ringNodeRec: missing outC!"
ringNodeRec stride (i:inputs) closingC ringF (outC:outCs) predCC
= do
(ringInC, ringIn) <- createC -- stream channel for Ring
sendWith r0 predCC ringInC -- send channel to predecessor

let (out,ringOut) = ringF (i, ringIn)
if (null inputs)
then do
fork (sendNFStream closingC ringOut)
sendNF outC out
else do
(succCC, succC) <- createC -- create back channel for successor
me <- selfPe
np <- noPe
let place = (metstride) ‘mod‘ np -- use stride for placing
-- create successor process
spawnProcessAt place
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(ringNodeRec stride inputs closingC ringF outCs succCC)
fork (sendNFStream succC ringOut) -- send to successor
sendNF outC out

-- recursively created, and caller participates in ring
ediRingRecI02 :: (NFData ro, NFData rr) =>

-- size, input/output processing

Int -> (Int -> i -> [ri]) -> ([ro]l -> o) ->

((ri, [rr]) -> (ro,[rr])) -> -- => ring comm has to be a stream!

i->1I0 o
ediRingRecI02 n dist comb f input
= do (closingC,ringIn) <- createC -- Input channel to close ring

(succCC,succC) <- createC -- back channel to successor
(outCs,outs) <- createCs (n-1)

let (myIn:inputs) = dist n input

spawnProcessAt O (ringNodeRec 1 inputs closingC f outCs succCC)
let (myOut,ringOut) = f (myIn,ringIn)

fork (sendNFStream succC ringQOut)

return (comb (myOut:outs))
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B.2.4 PipeRings.hs: definition of a ring using a pipeline
skeleton

{-# OPTIONS -cpp #-}
-- creating rings by pipeline skeletons (expect deadlocks)
# warning Experimental file, expect deadlocks!

module PipeRings where

import Eden
import Edi

-- pipeline skeletons
import EdenPipes
import EdiPipes

import System.IO0.Unsafe -- for EdI parts...

piperings :: (Trans a, Trans b, Trans c) =>
[ Int -> (Int > i -> [a]) -> ([b] -> o) —>
((a,le]) > (b,[c])) > i >0
]
piperings = map (interface . closePipe) (edenPipelines ++ ediPipelines)
++
map (interface . embedPipe) (edenPipelines ++ ediPipelines)

piperingNames = map ("ring constructed using " ++)
(edenPipenames ++ ediPipenames)
++
map ("embedded ring constructed using " ++)
(edenPipenames ++ ediPipenames)

closePipe, embedPipe :: (Trans i,Trans a,Trans o) =>
([ [al->[a]l 1 -> [a] -> [al) -> -- pipeline skeleton
-- resulting ring skeleton

((i,[a]l) > (o,[al)) —> -- ringWorker function
(il -> [o] -- ring skeleton in/out
closePipe pipeSkel ringF ringlns
= let rComm = pipeSkel ringNodes rComm -- pipe skeleton
ringNodes = zipWith (pipeRingNode ringF) ringIns rOutCs
(rOutCs,rOuts) = createChans (length ringIns) -- channels for results,
in rnf rOutCs ‘seq‘ -- force all channels
rComm ‘seq‘ -- activate system
rOuts
pipeRingNode :: (Trans i,Trans a,Trans o) =>

((1,[a]) -> (o,[a])) —>
i -> ChanName o -> [a] -> [a]
pipeRingNode ringF rIn rOutC rCommIn
= let (rOut,rCommOut) = ringF (rIn,rCommIn) -- apply ring function
in parfill rOutC rOut rCommOut -- concurrently send parent output

embedPipe pipeSkel ringF (firstIn:ringIns)
= let rCommOut = pipeSkel ringNodes rCommIn -- pipe skeleton, (n-1) instances
—-- local computation = node 1 in ring:
(myOut ,rCommIn) = ringF (firstIn,rCommOut)
ringNodes= zipWith (pipeRingNode ringF) ringIns rOutCs

(rOutCs,rOuts) = createChans (length ringIns) -- result channels
in rnf rOutCs ‘seq‘ -- force all channels
- rCommOut ‘seq‘ -- activate system

(myOut :rOuts)

embedEdiPipe :: (NFData i,NFData a,NFData o) =>
([ [al->[a]l 1 -> [a] -> [al) -> -- pipeline skeleton
-- resulting ring skeleton
((i,[a]l) > (o,[al)) —> -- ringWorker function

(il -> [o] -- ring skeleton in/out
embedEdiPipe pipeSkel ringF (firstIn:ringIns)
= let rCommOut = pipeSkel ringNodes rCommIn -- pipe skeleton, (n-1) instances

-- local computation = node 1 in ring:
(myOut ,rCommIn) = ringF (firstIn,rCommOut)
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ringNodes= zipWith (ediPipeRingNode ringF) ringIns rQOutCs
(rOutCs,rOuts) = unsafePerformI0 (createCs (length ringlns))
-- result channels
in rnf rOutCs ‘seq‘ -- force all channels
- rCommOut ‘seq‘ -- activate system
(myOut :rOuts)
ediPipeRingNode :: (NFData i,NFData a,NFData o) =>
((i,[a]) -> (o,[a])) —>
i -> ChanName’ o -> [a] -> [a]
ediPipeRingNode ringF rIn rOutC rCommIn

= let (rOut,rCommOut) = ringF (rIn,rCommIn) -- apply ring function
in unsafePerformIO $
do fork (sendNF rOutC rQOut) -- concurrently send parent output

return rCommQOut

createChans :: Trans x => Int -> ([ChanName x], [x])
createChans 0 = ([1,[1)
createChans n = new (\chX valX ->
let (cs,xs) = createChans (n-1)
in (chX:cs,valX:xs))

interface :: (Trans a, Trans b, Trans c) =>
(((a, [c]) -> (b,[c])) -> [a] -> [b] ) -> -- raw ring skel
-- resulting ring skeleton
Int -=> (Int -> i -> [al]) -> ([b] -> o) ->
((a,[c]) -> (b,[c])) > i > o
interface rawSkel np splitIn combOut ringF input
= combOut outs
where ringIns = splitIn np input
outs = rawSkel ringF ringlns
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als der von mir ausdriicklich bezeichneten Quellen und Hilfen bedient habe.

Die Dissertation wurde in der jetzigen oder einer ahnlichen Form noch bei keiner
anderen Hochschule eingereicht und hat noch keinen sonstigen Priifungszwecken
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Marburg, 18.4.2008 — Jost Berthold —
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