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ABSTRACT 

Several technological innovations, such as increased hard disk capacities, improved network 

bandwidth and mobile multimedia devices, have fostered an enormous increase of multimedia data 

in recent years. The growing amount of multimedia data raises the question of how to efficiently 

index, summarize and retrieve multimedia content. Up to now, the necessary automatic 

understanding of multimedia content is an unsolved problem in practice. In addition, the variability 

of multimedia sources and content is enormous, and obviously this is also true for video databases.  

The research question addressed by this thesis is how to build robust video content analysis and 

indexing approaches that work reliably on arbitrary videos. Many video content analysis approaches 

are considered to be “robust” by their inventors. However, in most cases this means that an 

algorithm or system has proven to work well on one or more (hopefully large) test sets. 

Furthermore, often a single classification model or decision threshold is applied to all test videos in 

the same way, which might be a learned model using machine learning techniques or a set of pre-

defined parameters that have been estimated empirically. Obviously, this is a problem as long as we 

do not restrict video databases in some respect, since videos can vary in many ways: in terms of 

recording devices, the recording circumstances, the used compression technology, editing layout, 

genre and, of course, in terms of content. Hence, there is a need for the development of algorithms 

that work reliably and independently of the factors mentioned above – a robust video content 

analysis and indexing algorithm should automatically adapt to a particular video with respect to the 

video content, editing layout and so on, and its indexing quality should not depend on compression 

artefacts that are present in a given video.  

This thesis investigates how a high-quality analysis and indexing result can be obtained or improved 

for a particular given video by considering the context of content and compression appropriately. 

One of the major contributions of this thesis is to consider the analysis process for a particular 

video as a setting that is well suited for transductive learning. Transductive learning is not aimed at 

obtaining a general classification function for all possible test data points (as in inductive learning) 

but at obtaining a specific classification for the given test data only. The idea is that the desired 

classification function has to be optimal for the unlabeled test data only and not in general (as in the 

case of inductive learning). In this thesis, this idea is applied to achieve robust video content 

analysis: the unlabeled data of a particular, previously unseen video are incorporated into the 

learning and classification process. For this purpose, a self-/semi-supervised learning ensemble 

framework is presented that exploits an initial classification (or clustering) result to improve its 

quality for a particular video. The proposed framework is based on feature selection and ensemble 

classification; it is called self-supervised when the baseline approach relies on unsupervised learning, 
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and it is called semi-supervised when the baseline approach relies on supervised learning. Within the 

scope of this thesis, solutions for several video content analysis and video indexing problems are 

presented. Apart from the solutions that are based on the proposed learning framework, some 

proposals in this thesis employ unsupervised learning or deal with compression artefacts 

adequately. Overall, the following tasks are considered: shot boundary detection, estimation of 

camera motion, face recognition, semantic concept detection and semantic indexing of computer 

game sequences. Several strategies are investigated to utilize the transductive setting in order to 

obtain better results for different video content analysis tasks: 1.) dealing with compression 

artefacts (video cut detection, camera motion estimation); 2.) estimating parameters automatically 

(video cut detection); 3.) applying self-supervised learning (video cut detection, face 

recognition/clustering); 4.) applying semi-supervised learning (semantic video retrieval, semantic 

video indexing); 5.) applying transductive support vector machines (SVM) (semantic video 

retrieval). Experimental results on large test sets (which are publicly available in most cases) 

demonstrate the very good performance of the proposed approaches. In particular, the ensemble 

version of the proposed framework works reliably for all considered video content analysis tasks, in 

contrast to the realization of the framework using a single self-/semi-supervised classifier and in 

contrast to the transductive SVM. Finally, the thesis is concluded with a summary of the 

contributions and some areas of future work are outlined. 
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ZUSAMMENFASSUNG 

 
In den letzten Jahren ist die Menge der Multimediadaten im Bereich der Computeranwendungen 

und im Internet stark gewachsen. Dies ist eine Folge verschiedener technologischer Entwicklungen, 

die zu größeren Festplattenkapazitäten, besseren Netzwerkbandbreiten und effizienteren 

Kompressionsmethoden für Multimediadaten führten. Nicht zuletzt hat die Verbreitung von 

mobilen Geräten mit multimedialen Funktionen zugenommen (z. B. Mobiltelefone, digitale 

Kameras), diese Geräte können ihrerseits Multimediadaten generieren bzw. empfangen und 

versenden. Mit der stetig anwachsenden Menge multimedialer Daten wächst allerdings auch die 

Notwendigkeit, solche Daten anhand des Inhalts effizient zu indexieren, zusammenzufassen und 

durchsuchen zu können. Jedoch ist das hierzu notwendige rechnergestützte automatische 

Verstehen von beliebigen multimedialen Inhalten nach wie vor ein ungelöstes Problem, bedingt 

durch die große Variationsbreite von multimedialen Inhalten und Quellen. Die 

Variationsmöglichkeiten sind auch im Falle von Videoaufnahmen vielfältig; dies gilt sowohl für im 

Internet zum Download bereitgestellte Videos als auch für Aufnahmen in Film und Fernsehen. 

Videos können unterschiedlichen Genres angehören, die Aufnahme- und Kompressionsqualität 

kann sehr unterschiedlich sein, und nicht zuletzt können beliebige und sehr unterschiedliche Inhalte 

mittels eines Videos präsentiert werden. Dies führt unmittelbar zu der Fragestellung, ob und wie 

Algorithmen zur automatischen Videoanalyse und Videoindexierung entwickelt werden können, so 

dass ihre Annotationsqualität bezüglich eines einzelnen Videos mit beliebigem Inhalt bestmöglich 

ist. Viele in der Literatur vorgeschlagene Systeme werden von den jeweiligen Autoren als “robust” 

bezeichnet. Jedoch bedeutet dies in den meisten Fällen lediglich, dass ein solches System auf einer 

ausreichend großen Testmenge von Videos ein gutes Ergebnis erzielt hat. In der Regel wird ein 

mittels maschinellem Lernen erstelltes Klassifikationsmodell bzw. ein empirisch gefundener 

Schwellenwert für jedes Video einer solchen Testmenge in der gleichen Weise angewendet. 

Offensichtlich kann dies nicht immer zu bestmöglichen Ergebnissen führen, wenn etwa die 

analysierten Videos nicht die gleichen Eigenschaften teilen oder zum Beispiel nicht aus dem 

gleichen Genre stammen. Dies zeigt die Notwendigkeit für Algorithmen, die zuverlässig für jedes 

beliebige Video funktionieren, unabhängig davon, welchem Genre ein Video angehört oder wie es 

komprimiert wurde etc. – ein tatsächlich robuster Algorithmus zur Videoanalyse sollte sich 

automatisch an die jeweiligen Charakteristika eines Videos in Bezug auf Inhalt, Editing-Artefakte, 

Kompression usw. anpassen.  

In dieser Dissertation wird untersucht, wie ein hochwertiges initiales Analyse- bzw. 

Indexierungsergebnis für ein Video beliebigen Inhalts durch die Berücksichtigung des Kontexts 

von Inhalt und Kompression erreicht oder verbessert werden kann. Eine der maßgeblichen Ideen 
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dieser Arbeit ist, den Analyseprozess eines Videos als ein transduktives Lernszenario aufzufassen: 

Transduktives Lernen zielt auf die Erstellung eines Lern- und Klassifikationsmodell ab, das die 

gegebenen Testdaten – und nicht alle theoretisch möglichen Testdaten - bestmöglich klassifiziert. 

Im Gegensatz zum induktiven Lernen geht es also nicht darum, ein allgemein gültiges Lernmodell 

zu erstellen. In dieser Dissertation wird die Idee des transduktiven Lernens für die robuste 

inhaltliche Analyse von Videos verwendet: die Daten und Merkmale des zu analysierenden Videos 

werden in den Lern- und Klassifikationsprozess mit einbezogen. Zu diesem Zweck wird ein neues 

Framework mit transduktiven Klassifikatoren vorgestellt. Ein initiales Klassifikationsergebnis wird 

genutzt, um die Güte des Analyseergebnisses für ein Video zu verbessern. Das vorgeschlagene 

Framework basiert auf Methoden zur Merkmalsselektion und Ensembleklassifikation. Es wird 

selbst-überwacht genannt, wenn das initiale Analyseergebnis auf einem Ansatz des unüberwachten 

Lernens basiert; sofern das initiale Analyseergebnis auf einem Ansatz des überwachten Lernens 

basiert, wird das Framework semi-überwacht genannt. Im Rahmen dieser Arbeit werden für 

verschiedene Probleme der inhaltlichen Videoanalyse und der Videoindexierung Lösungen 

präsentiert, die nicht ausschließlich auf dem vorgeschlagenen Framework basieren, sondern in 

einzelnen Fällen auch Methoden des unüberwachten Lernens nutzen bzw. Kompressionsartefakte 

angemessen berücksichtigen. Die behandelten Problemfelder sind: Schnitterkennung, Bestimmung 

von Kamerabewegung, Gesichtserkennung, semantische Konzeptdetektion und semantische 

Indexierung von Computerspielsequenzen. Verschiedene Strategien werden verfolgt, um 

Analyseergebnisse eines jeweiligen Ansatzes in einem transduktiven Szenario zu verbessern: 1.) 

Berücksichtigung von Kompressionsartefakten (Schnitterkennung, Bestimmung von 

Kamerabewegung); 2.) automatische Parameterschätzung (Schnitterkennung); 3.) Anwendung des 

selbst-überwachten Lern-Frameworks (Schnitterkennung, Gesichtserkennung/-gruppierung); 4.) 

Anwendung des semi-überwachten Lern-Frameworks (semantisches Video Retrieval, semantische 

Videoindexierung); 5.) Anwendung von transduktiven Support Vector Machines (semantisches 

Video Retrieval). Die experimentellen Ergebnisse auf umfangreichen, öffentlich verfügbaren 

Testmengen von Videos demonstrieren, dass die vorgeschlagenen Ansätze für “robuste” inhaltliche 

Videoanalyse und –indexierung sehr gut funktionieren und die Annotationsqualität tatsächlich 

verbessern. Insbesondere wird gezeigt, dass die Ensemblevariante des Frameworks für alle 

betrachten Analyseaufgaben robust funktioniert, im Gegensatz zur Verwendung von einzelnen 

transduktiven Klassifikatoren. Im letzten Kapitel werden die Beiträge dieser Dissertation 

abschließend zusammengefasst und diskutiert, des Weiteren werden zukünftige Forschungsfelder 

skizziert. 
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C h a p t e r  O n e  

1  INTRODUCTION 

1.1 MOTIVATION 

In recent years, several technological innovations have fostered an enormous increase of 

multimedia data: increased hard disk capacities, processor power, network bandwidth, the 

improvement of audio, image and video compression technologies and digital photo and video 

cameras. The growing amount of multimedia data is not restricted to content providers, because 

consumer products generate a significant amount of multimedia content, too. Along with the 

increase of multimedia data, several possible applications have emerged. In the field of music 

entertainment, the popularity of MP3-encoded music files and the possibilities to download music 

files via the Internet generated new requests to automatically organize and search music collections 

and databases. In the field of image retrieval, people wish to organize their digital music or photo 

collection in an intelligent way; for example they want to find all the pictures showing a certain 

person or a certain place, without the need for manual annotations. Commercial use cases of large 

image and photo collections also increase the demands for search and browsing facilities in such 

systems. The same is true for video databases. Smith et al. [143] discuss the business potential for 

the creation, distribution and management of media content, for consumers and for media 

enterprises. Television (TV) broadcasters produce storage-intensive video content, which raises 

issues such as how to efficiently index, summarize and retrieve video content. Markkula and 

Sormunen [108] investigate the TV program making process and find that produced and 

unproduced video is needed at different stages of a journalist’s workflow. If video shots of interest 

could be easily found in a large database, the production of new material could be alleviated or even 

partially automated. In addition, the proliferation of video content and podcasts has emerged in the 

web (e.g., video.google.com; www.youtube.com), and the need for efficient video search and 

retrieval facilities is growing accordingly. In 2007, several Internet-TV applications have evolved, 

which are either provided by large existing communication service providers like Arcor 

(<http://www.arcor.de>) and Deutsche Telekom (<http://www.telekom.de>), or new start-up 

enterprises like Joost (<http://www.joost.com>) or the Global internetTV Portal (<http://global-

itv.com>). 

During the last years, the emergence of related media products and research events reflects the 

acknowledged importance of searching and retrieving multimedia content. One of the main 

research events that directly focuses on video retrieval is the TREC Video Retrieval Evaluation 

(TRECVID) workshop series. TRECVID emerged from the well-known TREC (Text Retrieval 



2 Chapter 1 - Introduction  

 

Conference) series that is aimed at encouraging research in information retrieval from large text 

collections. TRECVID started in 2001 as a task of TREC and became an independent workshop in 

2003. Recently, research efforts started in the context of the TRECVID conference series 

(<http://www-nlpir.nist.gov/projects/trecvid>) to investigate how to efficiently explore and 

exploit rushes material (raw video material, captured for production) for subsequent production 

purposes. Since 2002, the International Conference on Image and Video Retrieval focuses explicitly 

on the topic of image and video retrieval and has become an ACM conference in 2007.  

This thesis focuses on the processing of video material to support efficient search in video 

databases. Most of the research efforts in the field of content-based image and video retrieval 

started in the beginning of the nineties of the last century (for example, see surveys for image 

search engines [59], for image and video retrieval [7, 190], and for multi-modal video indexing 

[146]). Many different disciplines contribute to this research field. Closely related fields are, for 

example, those of image and video processing and compression, signal processing, computer 

vision, pattern recognition, cognitive sciences, artificial intelligence and machine learning, 

multimedia databases and information retrieval. In the field of content based video retrieval, the 

terms video content analysis, video indexing, and video retrieval are distinguished. The process of 

video content analysis aims at recognizing objects and events in a video while the closely related 

process of video indexing aims at supplementing video shots and scenes with automatically 

extracted meta-information which support a user’s search for specific content in a video database. 

Often, the terms video content analysis and video indexing are used interchangeably. The retrieval 

process answers a specific user query and returns documents that are considered as relevant. Since 

video content analysis is a time-consuming process, it is conducted prior to any user query, that is 

the retrieval process is based on the results of a preceding analysis and indexing stage. The 

algorithms proposed in this thesis fall into the category of video content analysis and indexing. The 

proposal for semi-supervised learning of high-level features (semantic concepts) in chapter 6 is also 

considered as an indexing approach though its quality is tested in an appropriate retrieval scenario. 

Many algorithms have been proposed to structure video documents or to recognize certain objects 

and events in videos. The temporal segmentation of a video into particular shots is considered as a 

fundamental step. Several proposals exist for shot boundary detection. The detection of faces is 

another fundamental task since the semantics of a video is normally related to the appearance of 

humans. Many specialized detectors were suggested for objects and events in video, for example 

text detection and recognition, people detection, face detection and recognition, camera and object 

motion detection, object detection (cars), setting detection (indoor/outdoor, urban, vegetation, 

mountain, forest, beach etc.), audio segmentation into segments of speech, music and silence, 
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speaker and speech recognition. Once such information has been extracted from video documents 

and metadata have been stored appropriately (e.g., using a metadata standard such as MPEG-7 

[114]), they may serve for subsequent queries. It should be clear now that the time-consuming 

process of content analysis should be accomplished before a user query is formulated. Then, the 

retrieval system will evaluate the video documents in the database by matching the query and the 

metadata and return those shots that are considered as most relevant to the user. The quality of the 

system answer clearly depends on the quality of the underlying content analysis process and on the 

ability to match the query with concepts available in the metadata. In addition, the quality of 

content detectors may vary depending on the variability of content, the related genres and 

compression. This issue of robustness is one of the the main motivations of this thesis.  

Apart from the generic application scenario mentioned above, automated video content analysis 

and indexing can also support scientific tasks. In media science, formal analysis of movies plays an 

important role in scientific movie analysis. Korte [88] describes systematic movie analysis (in 

German: “Systematische Filmanalyse”) as an approach to investigate the presentation of movies, 

the contextual conditions of their production in relation to the social and technological 

environment and the possibilities of movie perception. In some respects, this process aims at 

objecting the movie sensation which, however, is not possible in general. Syntactic movie analysis 

aims at collecting objective facts about a movie. Important aspects are the kind of shot 

composition, the types of transitions that were used to connect shots, cut (shot boundary) 

frequency, the use of camera movement, and the presentation of actors, i. e. which shot sizes were 

applied (close-up shot, wide shot, etc). These cinematic elements are important clues for the 

analysis process. Furthermore, scene and sequence boundaries are identified and protocols are 

created with semantic descriptions of shot and scene content.  

The work presented in this thesis is also motivated by the project “Methods and Tools for 

Computer-Assisted Scientific Media Research” (MT), located at the Universities of Marburg and 

Siegen. It is part of the research center “Media Upheavals” (SFB/FK615) which consists of thirteen 

research projects, funded by the German Research Foundation (Deutsche 

Forschungsgemeinschaft); some of them conduct scientific film analysis. The research center aims 

to investigate the foundations and the structural aspects of the comprehensive media upheavals and 

their impact to media culture and media aesthetics at the beginning of the twentieth century 

(introduction of films and cinema) and in the transition to the 21st century (Internet and WWW). 

The goal of the MT project is to provide a high-performance video content analysis system to 

support other subprojects applying film analysis. The software workbench Mediana is under 

development to provide such support [38, 104]. In addition to database tools, Mediana includes the 
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video content analysis tool Videana. Several content analysis algorithms are integrated into Videana, 

including cut and shot boundary detection [36, 37, 40, 43], text detection [60, 61, 62, 64, 66], text 

tracking [63], text segmentation (for “video OCR” [65, 67], camera motion estimation [39], face 

detection and face recognition [44, 47], and speaker recognition [152]. Although the processing 

power of today's computers is enormous, the processing time of such algorithms and the data-

intensive multimedia file organization are still challenging issues. Therefore, a first prototype for 

distributed execution using Grid Services has been developed for the task of video cut detection 

[41], distributed versions of other algorithms are currently under development.  

The digitized videos that are analyzed in the different projects span a very wide range from the 

beginning of film creation (in the period from 1895 until 1914) up to today’s hybrid forms of 

computer games and movies. Hence, it is obviously difficult and time-consuming to adapt content 

analysers to a particular genre. This issue also motivates the research question of this thesis: Is it 

possible to design video analysis approaches that adapt themselves automatically to a particular 

video. This problem statement is discussed in more detail in the section below. 

1.2 PROBLEM STATEMENT 

As explained above, there is a strong need for methods that automatically explore, organize and 

index multimedia content. Up to date, the automatic understanding of multimedia content remains 

an unsolved problem in practice. For large multimedia databases, the variability of multimedia 

sources and content is enormous, and obviously this is also true for video databases. On the other 

hand, in the fields of video content retrieval and scientific movie analysis, computer-assisted 

methods promise a dramatic reduction of human annotation efforts required for these tasks. 

Unfortunately, even the best video content analysis approaches are not perfect, and the higher the 

challenge of a human-like scene understanding is, the more imperfect the approaches are. For 

scientific movie analysis, the need for accurate content analysis algorithms is evident: As the 

number of false annotations increases (though generated automatically), the application of 

computer-assisted approaches for media research purposes becomes questionable: scientific 

hypotheses based on imprecise experimental data are useless. 

The question is how to build video content analysis and indexing approaches that work reliably on 

arbitrary videos. Many video content analysis approaches are considered “robust” by their 

inventors. However, in most cases this means that an algorithm or system has proven to work well 

on one or more (hopefully large) test sets. Furthermore, in most cases one classification model or 

decision threshold is applied by the system to all test videos in the same way: This might be a 

learned model using machine learning techniques or a set of pre-defined parameters that have been 
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estimated empirically. Obviously, this is a problem as long as we do not restrict our video database 

in some respects. But videos can vary in many ways: the kind of recording device, the recording 

circumstances, the used compression technology, editing, genre and, of course, in terms of content. 

In particular, this is true for the media research center “Media Upheavals” in which the creation 

date of video material ranges from the beginning of film in 1895 up to the newest developments 

like hybrid forms of movies and computer games. Hence, there is a need for the development of 

algorithms that work reliably independent of the factors mentioned above. There is a need for 

algorithms that automatically adapt to a particular video and with respect to the content that is 

present in a given video. 

The research question is how to build video analysis and indexing approaches that work robustly 

and reliably on any video, independent of compression and content. This thesis investigates 

solutions to obtain a high-quality analysis and indexing result for a particular video by considering 

the context of content and compression appropriately. Keeping these requirements in mind, the 

following specific problem statements can be formulated for different video analysis and indexing 

tasks.  

1.2.1 ROBUST VIDEO CONTENT ANALYSIS OF COMPRESSED VIDEO DATA 

Video compression is a basic technology that facilitates the construction of video databases by a 

large data reduction. To reduce the amount of data needed for video coding, spatial and temporal 

redundancy in a video is exploited as well as the characteristics of the human visual system which is 

less sensitive to visual information of higher frequencies. In order to speed-up the processing time 

of video analysis and indexing approaches, it is reasonable to exploit information embedded in 

compressed videos. On the other hand, compression and the related quality deterioration lead to 

artefacts that hamper the video analysis process. Thus, video analysis approaches need to exploit 

compressed video information but also have to cope adequately with compression artefacts. The 

research question is how to utilize compressed information to efficiently analyze video data and to 

adequately cope with compression artefacts at the same time. In particular, shot boundary detection 

and camera motion estimation are investigated with respect to this question.  

1.2.2 ROBUST AND ADAPTIVE SHOT BOUNDARY DETECTION 

Shot boundary detection is a very important basic task in order to structure a video document for 

subsequent indexing purposes. For scientific movie analysis, the identification of shot changes and 

their type yields information about the producer’s intention to express a certain meaning. For 

example, a high cut frequency might express a high tempo to supplement an action scene, a long 

dissolve might indicate a dream sequence, and fading effects are often used in movies to mark the 
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beginning and the end of a scene (e.g., refer to Arijon [6], Hickethier [73] or Korte [88]). In 

addition, quantitative measures like cut frequency allow an objective comparison of different films 

with respect to media research questions. For media research, a shot boundary detection approach 

must be very accurate since false detection results would hamper or inhibit scientific conclusions. If 

manual corrections are required, this is a time-consuming task which would reduce the amount of 

video material that can be investigated. These considerations motivate our next research question: 

How can we build a robust shot boundary detection approach that achieves best possible 

performance on a particular video: a.) independent of compression artefacts; b.) independent of 

genre and content, and c.) without any parameter adjustment that requires user interaction and 

knowledge? 

1.2.3 ROBUST ESTIMATION OF ARBITRARY CAMERA MOTION IN MPEG VIDEOS 

In movie production, camera distance and camera motion are very important elements to express a 

certain atmosphere or a meaning through the way a scene is captured and presented to the viewer. 

Since a moving camera is a powerful stylistic device (see Arijon [6]), there is a strong interest of 

media researchers to investigate how the camera device was used by the producer. Technically, it 

can be distinguished between a travelling camera (translation along the x-, y- or z-axis) and a 

rotating camera (camera is rotated around one of the three axes). Several algorithms have been 

proposed to solve the problem of camera motion estimation in digital videos, for both compressed 

and uncompressed domain. However, the distinction between translation along the x-axis (y-axis) 

and rotation around the y-axis (x-axis) has only rarely been considered, and no approach of this 

kind is known for the MPEG domain. Thus, the research question is how to estimate arbitrary 

camera motion in MPEG videos.  

1.2.4 ROBUST FACE RECOGNITION AND INDEXING IN VIDEO 

Retrieving information about the occurrence of persons in a video is important for many video 

indexing and retrieval applications. Also, the recognition of a person’s appearances in a video or in 

a movie is necessary in order to understand the video/movie content, since in most cases the plot is 

basically related to persons or actors. However, in general it is not known a priori who will appear 

in a video. Given an arbitrary video, pose and illumination of faces are uncontrollable, and it is not 

possible to make assumptions about the occurrences of faces. Keeping this in mind, the following 

questions should be answered: “In which shot Y and scene Z does person X appear, how often 

does person X appear in the entire video and, in which pose and size?”, provided that only the shot 

and eventually the scene boundaries are given in advance for a video/movie, but no face models 

are available. In particular, the research question whether a person’s face appearance in a particular 
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video can be learned by a system itself in order to improve the recognition rate for that video is 

investigated.  

1.2.5  ROBUST AND ADAPTIVE DETECTION OF SEMANTIC CONCEPTS IN VIDEOS 

The ultimate goal of research efforts in the domain of multimedia retrieval is the automatic 

understanding of audiovisual content. If it was feasible to automatically understand what is shown 

in a video shot or what is said in a news cast, then it would be much easier to answer user queries 

for multimedia databases. It is a very hard problem to automatically recognize objects and events in 

an image or in a video, although there has been some success for several object recognition tasks, 

for example regarding face detection and face recognition. The question is whether indexing or 

retrieval performance can be improved for some high-level concepts when their appearance is 

strongly related to a particular video source (e.g., the weather news in a news cast or a sequence 

category in a computer game session).  

1.3 CONTRIBUTIONS 

This thesis focuses on the need for robust and adaptive algorithms for video content analysis. One 

of the major contributions of this thesis is to consider the analysis process for a particular video as a 

setting that is well suited for transductive learning. Transductive learning is not aimed at obtaining a 

general classification function for all possible test data points (as in inductive learning) but at 

obtaining a specific classification for the given test data only. In this thesis, this idea is applied to 

achieve robust video content analysis: the unlabeled data of a particular, previously unseen video 

are incorporated into the learning and classification process. The resulting, final classification 

function is expected to work well in particular for the given data of a particular video, but it is not 

necessarily expected to work well in general.  

1.3.1 TRANSDUCTIVE LEARNING METHODS FOR ROBUST VIDEO CONTENT ANALYSIS 

Typically, a machine learning technique falls either into the class of supervised learning or unsupervised 

learning. In supervised learning, a set of labeled training data is used to find a mapping between 

example data x and a target function y. The goal of unsupervised learning is to find an interesting 

structure in the given data. In case of unsupervised learning, labels are not available or used for 

learning.  

Semi-supervised learning lies between the classes of supervised and unsupervised learning. Here, the 

training set consists of both labeled and unlabeled data: one part of the training data has labels, 

whereas no labels are available for the training samples of the other part. In most applications, the 
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goal is to find a mapping between the training samples and the labels by exploiting the additional 

information available through the unlabeled data.  

In this thesis, the following learning process is called self-supervised: First, an initial model is generated 

using unsupervised learning and this model is used to label the previously unseen, originally 

unlabeled (test) data. Then, only these labels are used to learn a new model in a supervised learning 

scheme which is finally utilized to re-classifiy the test data. 

Transductive learning was introduced by Vapnik [166] and is closely related to semi-supervised 

learning. Given a (labeled) training set and an unlabeled test set, the idea of transductive learning 

that the desired classification function has to be optimal for the test data only and not to infer a 

general decision rule (as in the case of inductive learning). 

As mentioned above, it is proposed in this thesis to consider the task of robust video content 

analysis as a setting which is well suited for transductive learning. For this purpose, a self-/semi-

supervised ensemble learning framework is presented that exploits an initial classification (or 

clustering) result and the unlabeled video test data to improve its quality for a particular video. The 

proposed framework is based on feature selection and ensemble classification; it is called self-

supervised when the baseline approach relies on unsupervised learning, and it is called semi-supervised 

when the baseline approach relies on supervised learning. Within the scope of this thesis, solutions 

for several video content analysis and video indexing problems are presented. Apart from the 

solutions that are based on the proposed learning framework, some proposals in this thesis employ 

unsupervised learning or deal with compression artefacts adequately. Overall, the following tasks 

are considered: shot boundary detection, estimation of camera motion, face recognition, semantic 

concept detection and semantic indexing of computer game sequences. Several strategies are 

investigated to utilize this transductive setting in order to obtain optimal results for different video 

content analysis tasks:  

• dealing with compression artefacts (video cut detection, camera motion estimation), 

• automatic parameter estimation (video cut detection),  

• applying self-supervised learning (video cut detection, face recognition/clustering), 

• applying semi-supervised learning (semantic video retrieval, semantic video indexing), 

• applying transductive support vector machines (semantic video retrieval); 
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These strategies are applied separately to each video in order to improve a detection, recognition or 

indexing result for a particular video. Self-supervised and semi-supervised learning schemes are 

developed which are based on an initial clustering (self-supervised scheme) or classification (semi-

supervised scheme) result. In these schemes, feature selection and ensembles classification are 

employed to improve an initial result. It is demonstrated for several video content analysis tasks 

that an initial result can be utilized as training data and further exploited to learn and to adapt a 

machine learning model to a particular video, despite the fact that these automatically generated 

training data contain errors. Apart from transductive, semi-supervised and self-supervised learning, 

some of the proposed approaches work in the compressed MPEG domain in order to save 

computation time. It is shown for the tasks of shot boundary detection and camera motion 

estimation how compression artefacts can be removed and compressed data can be exploited 

successfully.  

The following robust and adaptive approaches are proposed to analyze video content, in particular 

with respect to compression artefacts and the characteristics of a particular video. Except for the 

camera motion estimation approach, all proposals consider the task of video content analysis as a 

transductive setting. First, a novel unsupervised shot boundary detection approach is developed 

which is focused on the avoidance of any parameter settings. This approach is further extended to a 

self-supervised learning ensemble, which is the first application of the transductive learning 

framework proposed in this thesis. Second, an approach to estimate camera motion in MPEG 

videos is presented. Third, a system for face recognition in arbitrary videos is presented that 

automatically copes with in-plane rotation and learns the face appearances in a certain video by 

itself. Finally, it is demonstrated that semi-supervised and transductive learning are also applicable 

to the task of concept detection, although the baseline performance is noticeably below the baseline 

performances of the tasks of cut detection, camera motion estimation and face recognition. 

1.3.2 ROBUST AND ADAPTIVE SHOT BOUNDARY DETECTION IN VIDEOS 

The main ideas for robust and adaptive video content analysis are introduced by examples and step 

by step for a video cut detection algorithm in Chapter 4. The proposed techniques enable our 

approach to improve the detection quality for a particular video. The main ideas are as follows. 

First, it is demonstrated how cut detection algorithms can suffer from compression artefacts, and a 

solution is presented to automatically cope with such artefacts. Second, an unsupervised approach 

is developed with the advantage that the time-consuming task of manual creation of training data is 

not required. Third, the impact of any parameter settings is (nearly) completely removed by the 

automatic estimation of an important parameter. Furthermiore, the unsupervised approach is 

extended to a self-supervised learning ensemble to employ the transductive setting. To adapt to a 
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particular video to improve detection accuracy, the best features are selected for this video, split 

into different feature sets, and then several classifiers are trained directly on a video using these 

different feature sets. Finally, this ensemble of classifiers is used to re-classify the video under 

consideration. Since the algorithm labels the training data for a particular video by itself and then 

learns a model using these data, this process is called self-supervised learning. 

1.3.3 ESTIMATION OF ARBITRARY CAMERA MOTION IN MPEG VIDEOS 

The computation of optical flow is necessary to estimate camera motion in a video sequence. For 

MPEG videos, computation time can be saved if the motion vector data present in MPEG videos 

can be utilized. However, MPEG motion vectors do not necessarily represent the “true” motion 

for a particular frame region since the computation of a motion vector is targeted at compression 

efficiency. As a consequence, there are outliers in a motion vector field that do not represent 

motion well. In Chapter 5, an approach to enhance a motion vector field in terms of motion 

representation is employed. Finally, it is demonstrated that an enhanced motion vector field is more 

suited to compute camera motion. To estimate camera motion, a three-dimensional camera model 

is assumed and the problem of camera motion estimation is considered as an optimization problem 

where a best parameter fit in the 3D camera motion model must be estimated. 

1.3.4 SELF-SUPERVISED LEARNING OF FACE APPEARANCES IN VIDEOS AND TV CASTS  

The appearance and behaviour of people is one of the most important aspects to gather the 

meaning of an image or a video sequence. Hence, one of the most important tasks in video 

indexing applications is to answer the question “In which shot or scene does person X appear?”. 

Assuming that there is no knowledge about the fact who will appear in a particular video, face 

examples cannot be used for a supervised machine learning approach. In Chapter 6, an automatic 

person indexing system for videos is presented that basically relies on state-of-the-art techniques for 

face detection, tracking and recognition and unsupervised learning. The given task is considered as 

a transductive setting and the baseline system is extended to a self-supervised learning ensemble. 

The main idea is to use an initial clustering result to gather information about the faces of the 

appearing persons and then to select those features that are best suited for this particular video to 

discriminate between the different persons and their faces, respectively. The initial clusters and 

related features are then exploited to train face models directly on the video and to re-classify the 

faces in a video using the classifiers. 

1.3.5 ADAPTING CONCEPT MODELS TO A VIDEO VIA SEMI-SUPERVISED LEARNING  

Apart from shot boundary detection, camera motion detection, and person recognition, there are 

research efforts to bridge the semantic gap between the audiovisual data and the meaning related 
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with a scene. These efforts are targeted at identifying so-called high-level features or semantic 

concepts in shots, for example concepts like: car, person, overlayed text, indoor, sports scene, 

beach, explosion, or popular persons like politicians or sportsmen. Machine learning is extensively 

used in this field to map low-level features to high-level concepts. The detection performance of 

state-of-the art approaches depends on the difficulty and frequency of a particular concept. In 

Chapter 7, it is demonstrated that semi-supervised learning can be also applied to high-level 

features (concepts) in a transductive setting, that is the appearance model of high-level features can 

be improved with respect to a particular video. Surprisingly, in some cases a baseline performance 

of about 40% average precision is sufficient as long as the appearance of a concept is related to a 

particular video recording. Usually, a model is applied to the shots of all videos in the same way. 

The novel idea is that a baseline model is adapted to each video individually. For a particular video, 

the top (bottom) ranked shots retrieved according to the baseline model are exploited to select 

relevant features specifically for a video and to train a new model (represented by an ensemble of 

classifiers) on this video. This classifier ensemble is then applied to obtain new probability scores 

for the shots of a video. It should be noted that the number of training samples is relatively small in 

this scenario: a news video from the TRECVID test set has about 250-400 shots which may serve 

as training data. 

1.3.6 SEMANTIC ANALYSIS OF COMPUTER GAMES FOR PSYCHOLOGICAL RESEARCH 

In addition, it will be demonstrated for an interdisciplinary semantic video indexing task of 

computer game sessions that it is beneficial to consider this task as a transductive setting and to 

apply semi-supervised learning. Computer games play a very important role in today’s 

entertainment media and belong to the most popular entertainment products. Unfortunately, the 

number of computer games containing serious violent content increases. Weber et al. [172] present 

an experimental setting that is based on the definition of certain game states and capture a player’s 

brain activity via fMRI (functional magnetic resonance imaging) while the player is playing a violent 

computer game. Several semantic game events are distinguished: 1.) inactive; 2.) preparation; 3.) 

search and explore; 4.) danger; 5.) under attack, and 6.) fighting and killing. Once the game 

recordings are annotated with these semantic categories, the interrelationship of violent game 

events and the underlying neurophysiologic basis (brain activity) of the player can be investigated. 

Normally, human annotators are required to index such game content according to the current 

game state, but this is a very time-consuming task. In this context, computer-based automatic video 

content analysis of computer game recordings promises several advantages: Human annotation 

efforts can be reduced noticeably, and the annotation process is speeded up and is based on 

reproducible and objective criteria only. At the same time, researchers are enabled to investigate a 
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larger number of computer game videos to gather more experimental data. An automatic semantic 

video analysis system that supports the experimental design described above by automatically 

identifying the game states (i.e., categories) is presented in Chapter 8. The system is aimed at 

minimizing the human annotation effort and thus requires manual annotations for a single video 

only to facilitate the semi-supervised learning process. In our approach, only a single video 

sequence with a duration of 12 minutes is required to provide training data and hence, the human 

annotation effort is kept at a minimum. To achieve a more robust result, an automatic semi-

supervised correction step is employed separately for each video: Based on the initial classification 

result, the system automatically labels the frames in a new video and adapts its concept models to 

this video by employing feature selection and adaptively building a specialized classifier for a 

particular game video.  

1.3.7 ROBUST VIDEO CONTENT ANALYSIS IN THE COMPRESSED DOMAIN 

Finally, it is demonstrated for the tasks of video cut detection and camera motion estimation how 

to cope efficiently with compression artifacts in MPEG videos. Compression artifacts might lead to 

noisy representations of visual information and might degrade indexing quality. In this respect, a 

systematic bias in frame dissimilarity measurements in MPEG videos can be identified which 

potentially hinders video cut detection performance. Solutions to deal with these artefacts are 

presented in Chapter 4.4. Regarding the estimation of arbitrary camera motion, a solution that 

employs MPEG motion vectors is presented in Chapter 5. To deal with noisy motion vectors that 

do not represent “true” motion, an effective outlier removal algorithm is applied.  
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1.5 ORGANIZATION OF THIS THESIS 

This first chapter gives an overview about the organization of this thesis: the broader scope and the 

main contributions are briefly introduced. The background of this thesis with respect to content-

based video indexing and retrieval, video compression, scientific film studies, and different machine 

learning approaches is presented in Chapter 2. In Chapter 3, the principles of the transductive 

learning ensemble framework and its main components are introduced. Chapter 4 starts with a 

comprehensive literature survey for the issue of shot boundary detection in videos, followed by an 

experimental comparison study. Then, several proposals are presented in Chapter 4 for shot 

boundary detection: an approach that deals with compression artefacts, an unsupervised approach, 

an ensemble approach, an approach based on the self-supervised learning framework, and finally, 

an approach for performance prediction is presented. In Chapter 5, an approach for camera motion 

estimation is presented that utilizes compressed domain motion information and deals with 

compression artefacts. The second application of the proposed self-supervised framework is 

presented in Chapter 6 for face recognition in videos. A variant of the semi-supervised learning 

approach is introduced in Chapter 7 for detecting semantic concepts whose appearance is related to 

a particular video. An interdisciplinary application of the semi-supervised learning approach is 

presented in Chapter 8 which supports psychological research on violence in computer games. 

Finally, Chapter 9 provides a summarization of this thesis and envisages areas for future work. 



 



 

C h a p t e r  T w o  

2 BACKGROUND 

2.1 INTRODUCTION 

In this chapter, the research fields of video retrieval and scientific movie analysis, and furthermore 

some technological fundamentals of video processing and machine learning are introduced since 

they are essential for the understanding of the subsequent chapters. A brief overview is given for 

content-based video retrieval, followed by some thesis-relevant video compression techniques. An 

introduction to the field of scientific film studies is presented in the subsequent subsection. Finally, 

some machine learning and optimization methods are briefly discussed in section 2.4 since they are 

applied in the subsequently proposed approaches: clustering, classification with Support Vector 

Machines (SVM), semi-supervised learning, meta-learning methods and ensemble learning, and a 

simplex-based optimization method. 

2.2 CONTENT-BASED VIDEO RETRIEVAL 

In this section, the domain of content-based video retrieval is viewed from a global perspective to 

introduce the broader scope of this thesis, whereas the related work for the particular proposed 

video analysis approaches is discussed in the corresponding chapters. There are research efforts in 

the field of content-based image and video retrieval for many years. For example, see surveys for 

image search engines [59], for image and video retrieval, and multimedia retrieval [7, 190], 

respectively, and for multi-modal video indexing [146].  

2.2.1 DIFFERENT LEVELS OF MULTIMEDIA UNDERSTANDING 

Bashir et al. [9] distinguish three levels of abstraction to model multimedia content and multimedia 

understanding, respectively:  

1. low-level physical modelling of raw image and video data (e.g., describing an image by color 

histograms and texture descriptors);  

2. representation of derived or logical features (e.g., object segmentation); and  

3. abstractions at the semantic level by intelligent modelling based on concepts.  

Bashir et al. [9] also review some techniques for low-level feature based image retrieval (color, shape 

and texture), discuss compressed domain processing and image segmentation techniques, high-

dimensionality reduction and relevance feedback techniques. For the field of video indexing, they 
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review approaches for temporal segmentation into shots, video summarization, motion analysis, 

and high-level semantic modeling.  

2.2.2 SENSORY GAP AND SEMANTIC GAP 

Automatic understanding of multimedia content is a very difficult and challenging task (at least for 

machines, of course not for the large majority of humans). Gevers [59] identifies two issues for 

machine-based multimedia understanding, the sensory gap and the semantic gap: According to 

Gevers [59], the sensory gap is defined as “... the gap between the object in the world and the 

information in a (computational) description derived from a recording of that scene”, whereas the 

semantic gap is defined as “... the lack of coincidence between the information that one can extract 

from the visual data and the interpretation that the same data have for a user in a given situation”. 

A user searches for objects and events on a conceptual level, whereas the image description is given 

by low-level data, extracted automatically from an image, and obviously the user’s search intention 

and the data description might be coupled only loosely, if at all. Gevers states [59] that the correct 

association of semantic descriptions to images requires automatic object recognition – which 

unfortunately is still unsolved in general, which is also true for object segmentation [157]. 

2.2.3 IMAGE AND VIDEO FRAME FEATURES  

Image retrieval techniques can be basically used for processing and retrieving video frames which, 

for example, has been demonstrated by Kreyß et al. [89]. Gevers gives an overview [59] of image 

search engines. Images are described commonly by a set of features with respect to color, shape 

and texture. These features should be invariant to illumination, object pose and camera viewpoint 

in order to achieve the goal that similar objects yield similar feature values. (Local) Shape is 

considered by Gevers as “all properties that capture conspicuous geometric details in the image”, 

whereas texture “... is considered as all what is left after color and shape have been considered ...”. A 

detailed description of such features is beyond the scope of this thesis but is given, for example, by 

Gevers and Smeulders [59], color and texture features as used in the MPEG-7 standard are 

described by Manjunath et al. [106], and MPEG-7 shape feature descriptors are proposed by Bober 

[14]. An example for an image retrieval system is the ‘PictureFinder’ which is presented by Schober 

et al. [136]. This system employs description logics for the purpose of semantic image retrieval. 

2.2.4 STRUCTURE OF VIDEOS AND MOVIES 

Content-based video retrieval aims to support an efficient user search for certain objects, events, 

shots or video documents in a possibly large video database. A video is built up in a hierarchical 

manner. It consists of a number of single frames (images) which are displayed at a certain frame 

rate to convey the impression of moving pictures. The fundamental unit for video retrieval is that 
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of a shot. Korte [88] defines a shot as the smallest continuously exposed cinematic unit that, in 

general, consists of several frames. Arijon [6] defines a shot as an amount of film that is exposed in 

the camera without reloading. A scene is a sequence of shots which are related in space and/or time 

and belong together semantically [163], whereas a sequence consists of several scenes and conveys 

an essential part of the plot.  

2.2.5 THE PROCESS OF CONTENT-BASED VIDEO RETRIEVAL 

A database query itself can be textual or visual. To answer a query, it must be comparable to the 

database content and thus its modality should be compliant to the representation of the videos in 

the database. In case of a visual query by an example shot, an example frame or a frame region, the 

query modality is compliant with the representation of the videos in the database. However, it 

became evident (Naphade and Smith [117]) during the first TREC video retrieval task in 2001 that 

query by content using low-level features is inadequate to address the challenge of high-level 

queries for video databases. Also, the use of automatic speech recognition (ASR) was not sufficient 

to answer those high-level queries. As stated by Naphade and Smith [117], these facts led indirectly 

to the formation of the high-level concept detection task at TRECVID in order to support high-

level queries: the high-level feature task is to detect high-level features (concepts) like car, building, 

indoor/outdoor, waterfront, sports with the aim of annotating video shots automatically.  

In case of a textual query, a modality conversion is required: either the textual query has to be 

converted to a visual representation or the video database content has to be supplemented with 

textual annotations. Usually, the latter is realized in practice since it is done by a concept detection 

system, according to the high-level features mentioned above. Therefore, it is common to define a 

lexicon with a number of concepts. For example, in the TRECVID high-level feature task the 

following concepts are defined: sports, weather, court, office, meeting, studio, outdoor, building, 

desert, vegetation, mountain, road, sky, snow, urban, waterscape, crowd, person, face, police, 

military, prisoner, animal, screen, US flag, airplane, bus, car, truck, boat, walking/running, people 

marching, explosion, natural disaster, maps, charts. In the pre-processing step of video content 

analysis, the video shots in the database are analyzed with respect to these concepts (often also 

called high-level features, semantic concepts, or semantic features). In this context, the meaning and 

interaction of the processes of video content analysis, video indexing, and video retrieval become 

clearer. The process of video content analysis aims at recognizing objects and events in a video 

document. These objects and events might be high-level features as well as low or mid-level 

features such as shot boundaries or camera motion. The process of video indexing supplies video 

frames, shots and scenes with automatically extracted meta-information (labels) that support a 

subsequent user search for a specific content in a video database. Related to the process of video 
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indexing is the use of appropriate data structures and index structures for the usually high-

dimensional feature vectors in order to achieve short query response times. The automatic 

classification of video content and subsequent assignment of content-based labels to video 

documents is refered to as video indexing [146]. Here, the process of content analysis is considered to 

be part of the indexing process. From our point of view, the automatic classification, which is 

considered as video content analysis in this thesis, should be distinguished from the video indexing 

process for the purpose of clarification. Of course, both processes are strongly related in most 

practical solutions. Finally, the process of video retrieval answers a specific user query and returns 

documents that are considered as relevant. Normally, the processes of video content analysis and 

indexing precede the query and retrieval process in order to guarantee a reasonable processing time. 

Captured
test

pattern
Preprocessing Feature 

measurement Classification

Captured
training
pattern

Preprocessing Feature extraction/
selection Learning

Class 
labels

 

Figure 1: Typical model for statistical pattern recognition, (according to [79], slightly modified). 

2.2.5.1 VIDEO CONTENT ANALYSIS  

The process of video content analysis can be considered as a pattern recognition process since it 

deals with the recognition of events (shot boundaries, motion, dialogs etc.) and objects 

(superimposed text, faces etc). Watanabe [171] defines a pattern “as opposite of a chaos; it is an 

entity, vaguely defined, that could be given a name”. According to Niemann [119], the set of 

patterns is defined as the set of objects (functions) that can be captured with an appropriate sensor 

device. A pattern can be a fingerprint image, characters and words in a document, a face, or a 

speech signal. Typically, a content analysis or pattern recognition system consists of two parts [79], 

a learning component and a classification component (see Figure 1). Training patterns are used to 
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learn an appropriate model for the corresponding classes. Usually, such a training pattern has to be 

preprocessed, for example the pattern of interest must be segmented from the background, noise 

must be removed, it must be normalized, or any other operation may be applied that contributes to 

a compact and informative pattern representation. In the subsequent process, features are selected 

and extracted for the representation of this pattern. Then, a classifier is trained to separate the 

feature space according to the boundaries of different classes. A feedback path allows the system 

designer to modify the preprocessing as well as the feature extraction process based on the training 

results achieved so far. Finally, the trained classifier is enabled to automatically assign a class label to 

a newly presented input pattern based on the feature measurements.  

2.2.5.2 VIDEO INDEXING 

Snoek and Worring [146] comprehensively survey the field of multi-modal video indexing. They 

distinguish the indexing issues of granularity (what to index), the methods used (how to index), and 

the types that should be used to index (which indexes). Their framework is restricted to produced 

video, and it is suggested to view a video document from the author’s perspective. According to 

Snoek and Worring [146], multimodality is defined as “The capacity of an author of the video 

document to express a predefined semantic idea, by combining a layout with a specific content, 

using at least two information channels.”. Three information modalities are considered, visual 

modality, auditory modality and textual modality and thus a video can be viewed from at least three 

different perspectives. The intended semantic meaning can be expressed at several granularities, for 

the video as a whole, for so called logical units that consist of a set of named events or other logical 

units (e.g., a shot or a dialog scene in a movie), and finally for named events (e.g., a goal in a soccer 

match, weather news in a news broadcast). Content and layout are utilized by the author to express 

this meaning, and the following content elements are distinguished: setting, objects and people. 

Layout considers the syntactic structure, for which the fundamental units are frames (visual 

modality), audio samples (auditory modality) and characters (textual modality). Sensors (camera, 

microphone, and in a certain sense a title or caption editor) capture a continuous sequence of those 

fundamental units, resulting in camera shots, microphone shots and text shots which are not 

necessarily aligned temporally. The interrelationship of all these elements and the related 

multimodal video indexing framework is displayed in Figure 2. Several techniques are summarized 

in Snoek’s and Worring’s review, in particular for: 

1. layout reconstruction (e.g., shot segmentation; music, silence and audio break detection), 

2. content segmentation (e.g., uni-modal and multimodal approaches for people, object and 

setting detection),  
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3. modality conversion (e.g., from overlayed text to ASCII characters),  

4. modality integration,  

5. semantic indexing at the level of: 

o genre and sub-genre recognition,  

o logical units (dialog detection, violence detection, anchor shots in news casts, etc.), 

o named events (violent events in movies, score changes in sport videos, etc.). 

During the analysis process, objects and events are recognized in a video and related metadata are 

generated automatically. These metadata are then associated with video segments at different levels 

of granularity. For example, the OCR result for a superimposed text might be stored for the related 

shot. An appropriate representation of media content descriptions and metadata is needed to store 

the extracted metadata in a reasonable fashion. A standardized description enables the exchange 

between different video database systems.  

For example, MPEG-7 is such a standard [114] and provides a set of standardized descriptions for 

multimedia metadata. It was developed to support and facilitate a wide range of multimedia 

applications, for example media portals, media content retrieval, media broadcasting, ubiquitous 

multimedia etc. MPEG-7 media descriptions are XML documents conforming to schema 

definitions expressed with the XML schema variant MPEG-7 DDL, the Description Definition 

Language. The standard incorporates a set of normative elements, consisting of multimedia content 

and management descriptors (D), Description Schemes (DS), a Description Definition Language 

(DDL), and coding schemes. Descriptors describe features, attributes, or groups of attributes of 

multimedia content. They define the syntax and the semantics of a feature representation. Different 

levels of abstraction are addressed, at the lower level descriptors are defined for color, shape, 

texture, object motion and camera motion in videos, and harmonicity, timbre and energy in audio, 

whereas at the higher level descriptors might include events, abstract concepts, content, genres etc. 

[24]. Description schemes (DS) describe entities or relationships between multimedia objects or 

events and specify the structure and semantics of their components, which might be description 

schemes, descriptors or data types. In MPEG-7, data types are basic reusable data types that may be 

employed by descriptors and description schemes. The description definition language defines data 

types, descriptors, description schemes by specifying their syntax and allows their extension. 
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Overviews of the MPEG-7 standard are provided by Martinez [109] and by Chang et al. [24], 

respectively. 

 

 

Figure 2: Framework for multimodal video indexing (according to Snoek 
and Worring [146]). 

The MPEG-7 standard provides a tool set that supports the interchangeability of media description 

among different users. Apart from that, efficient index structures are needed for the high-

dimensional feature data to support similarity search and nearest neighbour search. Westermann 

and Klas [173] analyze XML database solutions for their applicability of managing MPEG-7 media 
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description and identify a number of shortcomings, for example with respect to the indexing of 

multi-dimensional numerical data. A survey of index structures for search in multimedia databases 

is presented by Böhm et al. [16]. 

2.2.5.3 VIDEO RETRIEVAL 

Retrieval aims at representing relevant documents to a user according to a textual query at a 

conceptual level which represents his/her need. In case of video retrieval, such a document is 

normally a video shot in most systems. To offer a reasonable processing time, the processes of 

video content analysis and video indexing should have been conducted before a user submits a 

query to the system. Aslandogan and Yu [7] present an overview of techniques and systems for 

image and video retrieval. A very brief description of techniques is given for shot boundary 

detection, object detection and tracking, and text detection in video. Yoshitaka and Ichikawa’s 

survey [190] is focused on retrieval methods for multimedia content. For video retrieval, some 

query-by-example approaches are presented which are based on object motion and spatio-temporal 

relations. However, these surveys do not address semantic video retrieval approaches of the current 

generation but rather discuss approaches which extract some low-level (color and texture) or mid-

level features (text detection, object motion) for the purpose of retrieval. The principles of recent 

approaches to semantic video retrieval are briefly summarized below.  

As explained in a previous section, current research efforts address the detection of high-level 

features (semantic features, concepts) which is also expressed by the high-level feature detection 

task at TRECVID. These high-level features are expected to serve as a basis to answer textual user 

queries at a conceptual level. For example, Snoek et al. [149] present an interactive lexicon-based 

video retrieval system which is based on learned concepts. It should become obvious at this point 

how closely the processes of analysis, indexing and retrieval are connected. It is expected that a 

certain number of high-level features is needed to achieve good retrieval results. To investigate this 

question, Hauptmann et al. [71] conducted a number of simulation experiments with respect to the 

number of annoted visual concepts assuming a detection accuracy of today’s systems. They 

conclude that a number of 1000-3000 concepts is required to achieve retrieval results comparable 

to web search engines. Most recent research efforts address the development of generic video 

concept detection systems [5, 147, 148] since it might be very hard and in most cases impossible to 

build a number of 100 or 1000 different and specific concept detectors. A generic concept detector 

uses a carefully defined set of audio-visual and textual features and maps these low-level features to 

high-level features via supervised learning. Furthermore, such a generic concept detector should 

have a component to decide automatically on its own which features or classification models are 
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best suited for a given concept. The concept detection system of IBM [5] and the MediaMill system 

[147, 148] are examples of such generic systems. 

A query itself can be formulated as a text (concept or topic search) or the user submits a visual 

example to the retrieval system (query by example, query by sketch, etc.). Three examples for 

textual queries, part of the TRECVID search task 2006, are as follows: 

1. “Find shots with one or more people leaving or entering a vehicle”; 

2. “Find shots of one or more people seated at a computer with display visible”; 

3. “Find shots of a natural scene with, for example, fields, trees, sky, lake, mountain, rocks, 

rivers, beach, ocean, grass, sunset, waterfall, animals, or people; but no buildings, no roads, 

no vehicles”. 

Once such a query is submitted to the system, the textual query can be matched with the textual 

annotations available in the video database. These annotations can be the result of automatic 

speech recognition, video OCR, automatic high-level feature (concept) detection, and manual 

annotations. These annotations are generated in the described video content analysis step.  

In case of a visual query, the query example must be preprocessed and transformed to a feature 

vector representation which is comparable to the instances in the video database. Then, a similarity 

search can be conducted and the most similar video shots can be retrieved and presented to the 

user. In case of a textual query, the query terms must be analyzed and transformed to a form that 

can be processed by the system. Normally, the video database is not annotated with respect to any 

possible term or concept (high-level features). There are several possibilites to address this issue. 

One possibility is to employ an ontology or a lexicon like Wordnet 

(<http://wordnet.princeton.edu>) in order to find interrelationships between the query concepts 

and the concept annotations available for the video content. Another possibility is to provide an 

interactive system allowing the user to mark those shots which are relevant to him/her (relevance 

feedback). Then, the system might refine its internal model of the user query and return an 

improved result set of shots. Of course, this interactive process can be repeated until the user’s 

need is satisfied (or the user gives up in case the results are not satisfactory). Finally, there are 

systems which allow the user to browse the video database via different browser interfaces. For 

example, several visualization techniques and browsing approaches (cross browser, grid browser) 

are employed in the MediaMill search engine [147] to enhance the user’s search. Interactive retrieval 

is based on a set of pre-defined concepts as well.  



26 Chapter 2 - Background 

 

Video 
documents

Workstation

Meta-
database 
server

Server

Database, 
e.g. MPEG-7 XML 

database, with 
appropriate 

index structures

Query processing

Video 
content 
analysis

E. g. Shot segmentation, 
low-level feature 

extraction, text and face 
detection etc.

Eventually: distributed 
computation

Content analysis 
server(s)

User with 
information needContent provider

submits videos to 
the database

Video
indexing

Process metadata, 
e.g. create MPEG-
7 representation 
and appropriate 
index structures

Server

Metadata

User 
formulates 
query that 
represents 
information need

Database
 compliant 
metadata

Video

Query

Video 
database

Media data
server

Videos

Relevant 
documents

(links/descriptions)

Stream video
clip/shot

(according to retrieved links)

 

Figure 3: Schema for content-based video retrieval. 

In Figure 3, the whole process of content-based video retrieval is displayed, including the processes 

of video content analysis and video indexing. 
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2.2.6 PERFORMANCE MEASURES FOR VIDEO INDEXING AND RETRIEVAL 

Performance measures indicate how well a video indexing or retrieval system works. In this thesis, 

the measures of recall, precision, f-measure and average precision will be used. For a detection task 

like video indexing, recall, precision, and f-measure are defined as follows. 

Let A be the set of all observable events and let X be the set of events of a particular class of 

interest, X ⊆ A. Let D be set of events for which a detection system decided that they belong to 

class X, and let C ⊆ D be the set of events for which this decision is correct, and let F ⊆ D be the 

set of events for which this decision is false. Then, recall, precision and f1 are computed as follows: 

X
C

recall =  (1) 

D
C

precision =  (2) 

precisionrecall
precisionrecallf

+
⋅⋅

=
21  (3) 

In case of a retrieval task, a system usually returns a ranked list of documents (for example, a 

document might be a text file or a video shot), and the ranking reflects the system’s confidence that 

the document is relevant for the user. Let then be A be the set of all documents in the database let 

R be the set of relevant documents, R ⊆ A. Then, for the whole ranking, average precision is defined 

as: 

∑
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∩
=

A

k
k

k

l
k

LR
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precisionavg

1
)(1_ ψ ,  (4) 

where Lk ={l1, ..., lk}is the subset of the k responses which are the most similar responses in A with 

respect to a confidence score, and ψ(lk) is a function which evaluates to 1, if lk ⊆ R, and otherwise 

to 0. Often, the average precision is not computed for the whole set but for the top-100 or top-

2000 retrieved documents. In this case, |A| must be replaced in formula (4) by the considered 

retrieval depth n. 

The range of these measures is [0, 1]. Please note that, for reader’s convenience, recall, precision 

and average precision are presented as percentage throughout this thesis, and f1 numbers are 

presented accordingly (i.e., always multiplied with 100, e.g., 72.9 instead of 0.729). 



28 Chapter 2 - Background 

 

2.2.7 COMPRESSED VIDEO DOMAIN 

The data volume of uncompressed video is enormous. Assuming a rate of 25 frames per second, a 

resolution of 720*576 pixels, and an usual sampling such as 4:2:2 in YCbCr color space, 20 MB per 

second are required to capture a video and 1.2 GB for a minute, respectively. Obviously, it is 

reasonable to compress video data for storage and network transmission purposes. While it is 

necessary to decode the compressed bit stream to display the single frames, some video content 

analysis approaches work directly on the compressed data to save computation time. In this thesis, 

some proposed approaches work directly on compressed data as well. Hence, some basic concepts 

related to video compression are introduced now. These concepts are explained for the MPEG-1 

standard since most of the basic compression ideas are incorporated here and most video analysis 

approaches use videos encoded with MPEG-1.  

2.2.7.1 MPEG COMPRESSION AND METADATA STANDARDS 

MPEG-1 is an ISO (International Organization for Standardization) standard (ISO standard 11172 

[111]) for video compression and was finished in 1993. It consists of five parts, 11172-1 to 11172-5: 

System, Video, Audio, Compliance Test, and a technical report about software implementations. 

The development of the MPEG-1 standard is aimed at realizing playback of video from a CD-

ROM.  

The subsequent standard MPEG-2 (ISO standard 13818) [112] was finalized at the end of 1994 and 

consists of ten parts, 13818-1 to 13818-10: System, Video, Audio, Conformance, Software, Digital 

Storage Media - Command and Control, Non Backward Compatible Audio, 10-Bit Video, Real 

Time Interface und Digital Storage Media - Command and Control Conformance. Several profiles 

are defined in this standard that support applications like High-Definition Television (TV), satellite 

TV, non linear editing, and video on demand applications.  

MPEG-4 (ISO standard 14996) [113] was originally targeted at low bit rate video coding, but during 

the development of this standard other application scenarios were targeted, for example for user 

interaction and mobile computing. In contrast to its predecessors, MPEG-4 follows an object-

oriented approach and supports not only the encoding of video and audio but also allows the 

encoding of an arbitrary number of audiovisual objects. A scene description format supports the 

spatial and temporal composition of several audiovisual objects. 

Finally, MPEG-7 [114] (finalized in 2001, ISO standard 15983) is not a standard for video 

compression but formalizes a set of metadata that are suited to describe multimedia content. 
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Figure 4: Scheme of the encoding process for I-frames according to the 
MPEG-1 standard. This coding scheme is similar for JPEG image 
encoding. 

2.2.7.2 MPEG ENCODING 

Since the compression principles of MPEG-1 are utilized in MPEG-2 and MPEG-4 as well and 

most of video content analysis test sets consist of MPEG-1 videos, the following description is 

based on the MPEG-1 standard. Several concepts are important in MPEG encoding terminology 

and are explained below. 

Block: A block holds the data of one color channel and is of size 8*8 pixel.  

Macroblock: A macroblock has a size of 16*16 pixels and consists of four blocks.  

Slice: A slice holds a set of macroblocks.  

Frame: A frame consists of slices.  

Group of Pictures (GoP): A group of pictures consists of several consecutive frames. 

Sequence: A number of GoPs forms an MPEG-1 video sequence. 

An MPEG-1 sequence is encoded in a hierarchical manner, each of the bitstream elements (except 

for a block) explained above starts with a header that holds some information about the element. In 

MPEG-1, different frame types are defined that serve for several purposes: I-frames, P-frames and 

B-frames. Since current video standards use frame rates of about 25 up to 30 frames per second, it 

is reasonable to exploit the redundancy of temporally neighbored frames which are very similar in 

many cases. Motion estimation (encoding process) and compensation (decoding) try to exploit the 

camera or object movements in order to encode only the displacement of pixel blocks from frame 

to frame (and not the pixel block themselves). Several frame types are distinguished in MPEG 

video sequences: 
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I-frames (Intra Coding): These frames do not use any reference frames, they are encoded 

independently of other frames. The coding principle is similar to JPEG (Joint Picture Expert 

Group) encoding. To encode an I-frame, a video frame is divided into smaller pixel blocks of size 8 

by 8 which are transformed using the Discrete Cosine Transform (DCT). The DCT coefficients are 

then quantized, and finally encoded using a variable run length coding. The basic process is 

displayed in Figure 4. 

P-frames (Predictive Coding): The macroblocks of these frame type can be encoded using a previous I-

frame or P-frame as a reference frame for motion estimation. The prediction of frame data in the 

reference frame is forwards and thus called also forward prediction. But macroblocks can also be 

intra-coded without motion estimation. 

B-frames (Bidirectional Coding): The macroblocks of these frame type can use a previous and a 

subsequent I-frame or P-frame as reference frames for motion estimation. The prediction of frame 

data can be thus backwards as well. B-frames do not serve as reference frames. But macroblocks 

can also be intra-coded without motion estimation. 

The motion estimation process itself is now described in more detail.  

2.2.7.3 MOTION ESTIMATION 

There is a lot of redundancy in a video sequence consisting of up to 30 frames per second. This 

redundancy is exploited in the compression task by motion estimation and compensation. 

Consecutive frames are normally very similar but, of course, content might change from frame to 

frame due to object and camera motion or editing effects. To exploit the similarity of consecutive 

frames, motion estimation is performed: for each macroblock of a frame to be encoded, the most 

similar macroblock is searched in one or two temporally neighbored reference frames. If such a 

best block match is identified, only the displacement vector and the difference between macroblock 

and best macroblock must be encoded. Coding frames with respect to reference frames is called 

inter-coding (P- and B-frames), if a frame is encoded independently of any other frames it is called 

intra-coding (I-frames). 

2.2.7.4 GROUP OF PICTURES 

An MPEG-1 video sequence consists of several GoPs. A group of pictures holds a number of I-

frames, P-frames and B-frames which are ordered in a predefined manner. The first encoded frame 

in a GoP is an I-frame. If there are B-frames in a GoP, then the display order differs from the 

encoding order (see Figure 5) since for both encoding and decoding of a B-frame the subsequent 

reference frame (either I-frame or P-frame) must be encoded or decoded.  
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2.2.7.5 DC –FRAMES  

For several processing or analysis purposes, a low-resolution version of a video is sufficient. Shen 

and Delp [139] as well as Yeo and Liu [188, 189] suggest approximated DC-frames for the analysis 

task of shot boundary detection in the compressed domain. The main idea is that the DC-

coefficient of a DCT-transformed pixel block is equivalent to the average of this block, and a DC 

coefficient can be extracted easily from the compressed bitstream. A DC-frame is a subsampled 

frame that consists only of the DC-coefficients of its blocks. Obtaining a DC-frame from an I-

frame is easy since the DC-coefficient is directly coded for each block. The DC term c(0,0) of a 8*8 

pixel block is related to the pixel values f(x, y) at position (x, y) by: 
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which is eight times the average intensity of the 8*8 block. A DC-frame is thus a kind of blockwise 

averaging of the original image. However, in predictive coded macroblocks in P-frames or B-

frames, the DC-coefficients only represent the difference to the reference block in a reference 

frame which, however, is not aligned to a macroblock boundary in general (and hence it is not 

aligned to a block boundary, too). Figure 6 shows an example for a macroblock (grey) whose best 

block match in a reference frame is not aligned at a macroblock boundary. For such cases, motion 

information must be considered to obtain a DC-frame for a P-frame or a B-frame. Therefore, two 

versions of approximated DC are suggested by Yeo and Liu [188, 189]. The so-called zero-order 

approximation uses the DC coefficient of the block which has the most overlap with the current 

block. In the so-called first-order approximation, the contribution of the neighboring DC-values is 

weighted according to the overlapping of the corresponding blocks. Some properties for the first-

order approximation are derived by Yeo and Liu [188, 189], e. g. that the maximum error can be ¾ 

of the maximum intensity value. 

Figure 5: A typical frame ordering for a group of pictures in an MPEG-1 video. Below 
the encoding and the display order are displayed. 
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Prediction 
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encoding and 
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Figure 6: Example for a movement of a macroblock. Right: The 
macroblock that must be encoded. Left: Its best block match in a previous 
reference frame. 

2.3 SCIENTIFIC MOVIE ANALYSIS 

As mentioned in Chapter 1, the work presented in this thesis is also motivated by the research 

center “Media Upheavals” (SFB/FK615) which consists of thirteen media research projects. Some 

of them conduct scientific film analysis. Korte [88] describes systematic film analysis (in German: 

“Systematische Filmanalyse”) as an approach to investigate the presentation of movies, the 

contextual conditions of their production in relation to the social and technological environment 

and the possibilities of movie perception. This process aims at objecting the movie sensation 

which, however, is not possible in general. In the following, some basic definitions for movie 

analysis are introduced. A movie is built in a hierarchical manner: a number of single frames 

(images) forms a shot, a scene consists of several shots that are related in space and time, and a 

sequence may consist of several scenes [73].  

2.3.1 SHOTS 

Korte [88] defines a shot as the smallest continuously exposed cinematic unit that, in general, 

consists of several frames. Arijon [6] defines a shot as an amount of film that is exposed in the 

camera without reloading. According to Korte [88], the following film elements (as described in the 

next subsections) are of special interest since they transport or express a certain meaning. 

2.3.2 CUTS 

A cut occurs when there is an abrupt change (abrupt) “transition” between two different 

subsequently shown shots. In contrast to gradual transitions, no transitional frames are involved 

[96].  

2.3.3 GRADUAL SHOT TRANSITIONS 

The most popular transition types to connect shots are fade-in, fade-out, dissolve and wipe. A fade-

in (fade-out) starts (ends) with a monochrome frame and the scene is gradually faded in (out), an 

example for a fade-in is given in Figure 7. A dissolve (see Figure 8) can be viewed as a combination 

of fade-in and fade-out without any monochrome starting (or ending) frames. The preceding shot 
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gradually disappears while the subsequent shot gradually appears at the same time such that both 

shots are superimposed for several frames. If one shot enters from one side and pushes (wipes) the 

preceding shot out of the screen, or a thin line erases the preceding shot and reveals the new one, it 

is called a wipe. 

 

Figure 7: Example for a fade-in from a black monochrome frame. Three 
representative frames, taken from the MPEG-7 video riscos-sl.mpg. 

 

Figure 8: Example for a dissolve. Three representative frames, taken from 
the MPEG-7 video jornaldanoite.mpg. 

2.3.4 SHOT SIZES AND CAMERA DISTANCE 

Though it is not relevant for this thesis, the concepts of shot sizes and camera distance are 

introduced for the sake of completeness. The camera distance supplies the viewer with an 

impression of being far away or close to an object or a person of interest. It can be used to impose 

a certain atmosphere or a certain emotional reaction, for example a close-up might increase the 

viewer’s identification with an actor and his/her emotions. The camera distance can be controlled 

by the choice of the lens as well. Arijon [6] distinguishes between five, Korte [88] differentiates 

between seven levels of camera distance: In practice, the distinction of different camera distances is 

not always very easy. The main camera distance types are: 

1. Close-up or big close-up shot (“Groß”): Person’s head or hand, facial expression or another 

detail is emphasized; 

2. Close shot (“Nah”): Person’s head and upper part of the body, facial expression is visible; 
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3. Medium shot (“Halbtotale”): Person’s body down to the thigh; 

4. Full shot (“Totale”): Person’s body is completey visible; 

5. Long shot (“Weit”, “Super-Totale”, or “Panorama): Person is in a landscape or in a big 

room. The background dominates the scene and details are rarely visible. 

      

    

Figure 9: Examples for different shot sizes: from left to right and top to 
bottom: close-up shot, close shot, medium shot, full shot and long shot. 

Examples for these shot sizes are displayed in Figure 9. Korte mentions two other camera 

distances: 

1. American shot (“Amerikanische” or knee-shot): Person’s body is framed from the knees 

up; 

2. Extreme close-up (“Detail”): An extreme close-up figure singles out a detail, e.g. eyes, lips 

or a finger.  

An approach to automatically recognize the camera distance is presented by Snoek [145]. 

2.3.5 CAMERA MOVEMENT 

Two types of camera movement can be distinguished [73, 88]: Camera motion can be caused either 

by rotating the camera around one of the three axes or by a travelling camera which is realized via 

the translation along of one or more than one of the axes. Rotation around the y-axis (pan) results 

in a horizontal movement, rotation around the x-axis (tilt) results in vertical motion. Rotation shifts 
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the cutting of the scene and extends the image space. A rotating camera may follow actors and their 

movement. A travelling camera is attached to a moving vehicle which allows the producer to 

control the speed of movement. The camera can move towards an object or move away from an 

object, this can be achieved also by zooming lens. The travelling camera is often used to keep 

moving characters in the frame [73]. A moving camera can be used to view the scene with the “eyes 

of an actor” as well. Furthermore, Hickethier [73] explains that the direction of movement is 

another important aspect. Recipients experience movements that are parallel to the image plane in a 

reserved manner, whereas movements along the viewing angle towards the viewer are experienced 

more aggressively and can be potentially interpreted as a threat. Apart from these possibilities to 

employ a moving camera many others exist (see [6, 73, 88] for further reading) but are not 

considered further here. Overall, it is obvious that camera movement is an important cinematic 

element which is utilized to express a certain meaning or to create a certain atmosphere.  

2.3.6 SHOT PROTOCOLS AND SEQUENCE PROTOCOLS 

Two types of transcriptions have become popular for scientific film studies [88]: shot protocols and 

sequence protocols. Both transcriptions transform the movie in a linear form according to its 

content and time structure. A shot protocol is a more detailed and comprehensive transcription 

since it is based on the smallest movie units, the shots. The elements of a shot protocol are as 

follows:  

1. numbering of the shots; 

2. duration of each shot; 

3. camera activity: shot size, camera movement and perspective etc.; 

4. description of visual shot content and plot; 

5. description of audio track: dialogs, comments, sound, music, background noise etc. 

A less detailed annotation form is that of a sequence protocol. Therefore, shots must be 

summarized to broader film units: sequences (or scenes). Then, for each sequence of interest, 

several content descriptions might be provided along with their time of appearance in the movie.  

2.3.7 VISUALIZATIONS FOR MOVIE ANALYSIS 

Korte [88] describes several visualization techniques for movie analysis: sequence diagrams, shot 

diagrams and cut frequency diagrams. A sequence diagram is a visualization of the sequence 

protocol where subsequent sequences are displayed horizontally or vertically. Sequences are 
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visualized by boxes and their size is related to the sequence duration. Furthermore, sequences can 

be divided in sub-sequences and both sequences and sub-sequences are annotated with a title. 

Accordingly, the shot duration serves as the key element for a shot diagram where subsequent shots 

are displayed horizontally. Each cut is represented by a vertical line, and thus the structure of shot 

composition, the rhythm of shot composition and cut frequency are clearly recognizable. Often, 

tempo and suspense are correlated in a movie with cut frequency. Thus, the cut frequency diagram 

is a very popular instrument of analysis where the number of cuts per time unit is displayed for the 

whole movie. An example of a cut frequency diagram is displayed in Figure 10. 

2.3.8 VIDEANA: A SOFTWARE TOOL FOR SCIENTIFIC FILM STUDIES 

In the context of the research project “Methods and tools for media scientific analysis”, the 

software Videana [45] has been developed. This software is aimed at relieving media scientists from 

the very time-consuming task of manually annotating videos and films. For this purpose, several 

automatic video content analysis algorithms are integrated in Videana: shot boundary detection, 

camera motion estimation, text detection and face detection. The integrated algorithms for shot 

boundary detection and camera motion are presented in this thesis. In addition, the graphical user 

interface of Videana allows a user to play videos, access particular frames, and the user is allowed to 

refine and correct automatic analysis results. Finally, it is possible to insert keywords for certain 

objects and events. For a more detailed description of Videana and its functionality, the reader is 

refered to [45].  

 

Figure 10: Example for a cut frequency diagram for a short music video 
clip, generated with Videana. 
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2.4 USED MACHINE LEARNING AND OPTIMIZATION METHODS 

In the subsequent sections, some machine learning and optimization techniques are briefly 

introduced. These techniques are either used in approaches proposed in this thesis later on or they 

are closely related to them.  

Machine learning techniques have been successfully applied to pattern recognition tasks for many 

years [79]. This is also true for the field of multimedia analysis, computer vision and multimedia 

indexing and retrieval. Possible concepts or definitions of the term “learning” in the context of 

machine learning are not discussed here (for example, a starting point of such a discussion is given 

by Witten et al. [175]). Typically, machine learning techniques fall either into the classes of 

supervised learning or unsupervised learning. In supervised learning, a set of labeled training data is 

used to find a mapping between example data x and a target y. Let X = {x1, ..., xn}be a set of n 

examples, where xi ∈ Rd, 1 ≤ i ≤ n. Furthermore, let Y={y1, ..., yn} be the labels of the examples, 

where either yi ∈ Rd (regression) or yi ∈ L (classification), where L is a finite set of (discrete) labels. 

Then, the goal of supervised learning is to find a mapping from x to y, given the training set of pairs 

(xi, yi). In case of unsupervised learning there are no labels yi. One possible goal of unsupervised 

learning is to find an interesting structure in the data X.  

Often, labeling of training data is a very time-consuming and expensive task. On the other hand, a 

lot of unlabeled data is often available which is not used for supervised learning due to an 

unfeasible labeling effort. In many cases, semi-supervised learning is aimed at these scenarios. This 

kind of machine learning approach lies between the classes of supervised and unsupervised 

learning. In a semi-supervised setting, the training set consists of both labeled and unlabeled data: 

one part of the training data XL={x1, ..., xl}has related labels Y={y1, ..., yl}, whereas no labels are 

available for the training examples XU ={xl+1, ..., xn}of the other part. This can be considered as the 

standard setting of semi-supervised learning. In most applications, the goal is to find a mapping 

between the training examples and the labels by exploiting the additional information available 

through the unlabeled data. 

Transductive learning was introduced in the mid-1970s (according to Vapnik, [166]) and it is closely 

related to semi-supervised learning. Given a (labeled) training set and an unlabeled test set, the idea 

of transductive learning is to find predictions only for the test instances - and not to infer a general 

decision rule which might be optimal for the population of all possible instances – in particular, the 

predictions for the given test instances based on transduction are expected to be more precise than 

predictions based on a general rule. It follows Vapnik’s principle [166]: “When trying to solve some 

problem, one should not solve a more difficult problem as an intermediate step”. 
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Another approach to employ unlabeled data into the learning process is self-learning, also called 

self-training or self-labeling [136]. It starts with an initial classifier which is trained on the labeled 

data only. Then, this classifier is used to label a part of the unlabeled examples. In the next step, the 

additional labeled data points are also used to re-train the classifier. This process of labeling and re-

training can be repeated for several learning rounds. For example, Nigam et al. [120] present an 

approach for text classification using a self-training approach based on a Naïve Bayes classifier and 

EM-clustering to employ unlabeled data. 

These methods which are used in this thesis are described below.  

2.4.1 UNSUPERVISED LEARNING 

Unsupervised learning or clustering methods are aimed at partitioning data objects into groups or 

clusters in a way that the members of one cluster are very similar to one another and objects of 

different clusters are dissimilar.  

The class of clustering algorithms is divided into partitioning and hierarchical clustering methods. 

Partitioning methods divide a dataset into k clusters, where each cluster contains at least one object 

and each object belongs to exactly one cluster. To cluster data objects, a reasonable measure for the 

similarity of data objects is required: the distance function. The interpretation of distance values is 

usually that a low distance value indicates that two objects are similar, whereas a high distance value 

indicates that two objects are dissimilar. A reasonable distance function d(o, p) must fulfil at least 

three properties for all objects o and p of a set of objects O: 

1. 0),( ≥pod  (6) 

2. popod =⇔= 0),(  (7) 

3. ),(),( opdpod =  (8) 

A distance function is a metric, if, in addition, the triangle inequality holds, that is for all objects o, p, 

q ∈ O: 

),(),(),( qpdpodqod +≤  (9) 

For data objects with numerical attribute values, the Euclidean distance and the Manhattan distance 

are well-known distance functions and used frequently. Let x=(x1, ..., xd) and y=(y1, ..., yd) ∈ Rd be 

numerical data objects, then the Euclidean distance is defined as 
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and the Manhattan distance is defined as: 

nn yxyxyxd −++−= K11),(  (11) 

2.4.1.1 K-MEANS ALGORITHM 

Let objects be points in a d-dimensional Euclidean vector space and let the Euclidean distance be 

the similarity measure. A centroid of a cluster C is the mean point of all data points in the cluster C: 
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is the mean value of the jth dimension of all points in C, nC is the number of elements of C. 

K-means is a very popular clustering method suggested by MacQueen [105] for the first time. The 

clustering is aimed at minimizing the variance for all clusters, i. e. minimizing the term: 
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Given a set of feature vectors and a similarity metric, the k-means algorithm assigns a feature vector 

to the cluster whose mean vector has the minimum distance to the feature vector. The pseudo code 

for k-means clustering is presented in Figure 11. The update of the cluster centroids due to re-

assignment of a data object p
jx  from cluster C1 to another cluster C2 can be computed incrementally 

by: 
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where C1’ is the updated set C1’ =C1\{xp} and C2’ =C2∪{xp}. 



40 Chapter 2 - Background 

 

 

 

 

Figure 11: Pseudo code for k-means clustering. 

According to [35], k-means has the following properties:  

• it converges towards a (local) minimum; 

• it has the complexity of O(n) for one iteration; 

• result and runtime behavior depend strongly on the initial partitioning; 

• minimization of the variance is sensitive to outliers. 

2.4.1.2 CLUSTERING BY EXPECTATION MAXIMIZATION (EM) 

Dempster et al. [32] suggest the EM clustering method in which a cluster is not described by 

representative points but with a probability distribution. Typically, a Gaussian distribution is used to 

describe a cluster in EM clustering. A set of k clusters is approximated by a mixture of k Gaussian 

distributions. A d-dimensional Gaussian distribution of a cluster C is given by: 

• mean value of all cluster points: µ(C); 

Input:  Set of feature vectors F; 
        Number of clusters k; 
Output: Set C consisting of k clusters; 
 
Algorithm 
 
K-means-Clustering(Feature Vector Set F, Integer k) 
  Choose randomly k feature vectors fi from F as the centroid µi of  
  cluster i from the set C={C1, C2,...,Ck};  
  Remove these fi from F; 
 
  while F is not empty 
    Assign a feature vector f from F to the cluster Ci with the  
    nearest centroid; 
    Remove f from F; 
    Update the centroid for each cluster Ci; 
 
  newAssignments = true; 
  while (newAssignments==true) 
    newAssignments = false; 
    for each cluster Ci 
      for each f ∈ Ci 
        if there is another cluster m with a nearer centroid than i then 
          Assign f to the cluster m with the nearest centroid; 
          Update incrementally centroids of cluster i and m; 
          newAssignments = true; 
   
  return C; 
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• d*d covariance matrix for the cluster points: Σ (C). 

The probability that a data point x is part of the data set C is given by: 
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The combined effect of k Gaussians can be computed by: 
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The weight Wi is the ratio of the data set that belongs to cluster Ci, each Gaussian cluster Ci is 

described by the parameters µ(Ci) and Σ(Ci). In contrast to k-means clustering, data objects can 

belong to several clusters at the same time with different probabilities. The probability for a data 

object to belong to the cluster Ci is: 
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The goodness of the clustering is measured by: 

Figure 12: Pseudo code for EM clustering. 

Input:  Set of feature vectors F; 
        Number of clusters k; 
Output: Set M, consisting of k Gaussian distributions for F; 
 
Algorithm 
 
EM-Clustering(Feature Vector Set F, Integer k) 
  Create initial model M={C1, C2,...,Ck} of Gaussian distributions for F; 
 
  do  
    M’:=M; 
 
    // step 1 Expectation  
    Compute the probabilities P(x|Ci), P(x), and P(Ci|x) for each feature   
    vector from F and each cluster; 
 
    // step 2 Maximization 
    Compute a new model M = {C1, C2,...,Ck} of Gaussians by estimating  
    the parameters µ(Ci)), Σ(Ci), and Wi for each i=1,...,k. 
  while |E(M)-E(M’)| > ε 
 
  return M; 
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where M is the set of k Gaussian distributions. The higher E(M) is, the more probable is that the 

data have been generated under the assumption of the k Gaussian distributions. During the 

iterations of expectation and maximization the term E(M) is maximized by estimating the 

parameters of the k Gaussian distributions (please see also the pseudo code in Figure 11). The 

parameters µ(Ci)), Σ(Ci), and Wi are re-estimated by: 
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According to [35], EM clustering has the following properties: 

• it converges against a (local) minimum; 

• in general, the number of iterations is rather high; 

• complexity of one iteration is O(n*|M|); 

• result and runtime behavior depend strongly on the initial assignment. 

2.4.1.3 HIERARCHICAL CLUSTERING 

There are two kinds of hierarchical clustering approaches: agglomerative clustering and divisive 

clustering. Divisive clustering methods are top-down approaches which consider the whole set of 

data in the beginning as one cluster. Then, this cluster is divided into a number of clusters. 

Agglomerative approaches follow a bottom-up princicple. At first, each object is considered as one 

cluster. Then, the two most similar (object) clusters are merged iteratively and become a new 

cluster. This process can be repeated until there is only one cluster left. In contrast to partitioning 

clustering approaches, hierarchical approaches generate a dendrogram which represents the cluster 

structure of the data. A dendrogram is a tree and an inner node represents the cluster containing 



 Chapter 2 - Background 43 

 

the objects of all its child nodes. A distance measure is needed to calculate the (dis-)similarity of two 

sets (X and Y) of objects. Common measures therefore are single-linkage, complete linkage, and 

average linkage [35]. Let X and Y be sets of objects, x ∈ X and y ∈ Y, and let dist(x, y) be a distance 

measure for two objects x and y. Then, the following distance measures dist_sl, dist_cl, and dist_al 

can be defined for the three different linkage measures with respect to two sets of objects X and Y: 
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Based on one of these distance measures, the agglomerative algorithm can be formulated as 

depicted in Figure 13. 

Figure 13: Pseudo code for agglomerative clustering. 

Input:  Set F of n feature vectors representing n the data objects; 
Output: A dendrogram D, represented by its graph G = (V, E); 
 
Algorithm 
 
Agglomerative-Clustering(Feature Vector Set F) 
  Compute distances between all pairs of feature vectors; 
  Consider each feature vector fi as one cluster and assign it to Ci; 
  V = {C1, ..., Cn}; 
  E = ∅; 
  k = n+1; 
  while number of clusters > 1 do 
    Build a new cluster (node) Ck by merging the 2 most similar  
    clusters nodes Ci and Cj; 
    V = V ∪ {Ck}; 
    E = E ∪ {(Ci,Ck),(Cj,Ck)}; 
    Compute the distances of the new cluster Ck to all the other clusters; 
    k = k + 1; 
  return G; 
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This algorithm for hierarchical clustering has the following properties: 

• complexity is O(n2) 

• in case of single-linkage, the following effect might occur: it cannot be distinguished between 

two clusters if these clusters are connected via a “line” of objects whose distances are 

similar to distances within a cluster. 

2.4.1.4 CLUSTERING VALIDITY 

Measuring the clustering quality is important in order to obtain information about the success in 

clustering the data. Measures for cluster quality or cluster validity can be utilized to find the best k 

for k-means clustering which is often unknown in advance: K-means clustering is therefore run 

separately for several k in a reasonable range, and the clustering that yields the highest validity 

measure is considered as the final clustering result. To be applicable, such a measure must be 

independent of the number of clusters. Kaufmann and Rousseeuw [84] suggested the silhouette 

coefficient to measure the clustering validity. Let CM={C1, C2, ..., Ck} be the set of clusters for a set 

of objects o ∈ O, C ∈ CM, o ∈ C, then the average distance of an object o to an arbitrary cluster Ci is 

defined as:  
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Let a(o) = dist(o, C) be the average distance of object o to its cluster and let b(o) the average distance 

of object o to its neighbor cluster: 
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The silhouette s(o) for an object o ∈ C is then defined as: 
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The silhouette coefficient SC(C) of cluster C is the average of the silhouette coefficients s(o) of all 

objects o in C. 
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2.4.2 SUPERVISED LEARNING 

In contrast to unsupervised learning or clustering, the object classes of the training data must be 

known in advance for supervised learning or classification. The classification task is to assign a data 

object to a certain class based on its attribute (feature) values. The prerequisite is the existence of a 

training set for each class that allows us to learn an appropriate classification function. It is 

distinguished between generative algorithms and discriminative algorithms for supervised learning. 

Generative algorithms try to model the class-conditional density p(x|y) and to infer from that the 

predictive density p(y|x) by applying Bayes theorem. Discriminative algorithms do not estimate the 

class-conditional density but instead concentrate on estimating p(y|x). Many classification methods 

have been suggested in the literature, for example Naïve Bayes-classification, k-nearest neighbour 

classification, decision trees, Support Vector Machine (SVM), Hidden Markov Models, and neural 

networks belong to the most popular supervised learning methods for pattern recognition tasks 

[79]. A brief introduction is given below for SVM since it is used later on in this thesis. 

2.4.2.1 SUPPORT VECTOR MACHINE (SVM) 

Given a set of m training data examples xi, i ∈ {1, ..., m}, each of dimension n, that is xi = (xi1, ..., 

xin), as well as a set of discrete labels y, for example where yi ∈ {-1, 1} , then a SVM aims to find a 

maximum margin hyperplane that separates both classes, that is the hyperplane that maximizes the 

margin between the two classes of training examples. A hyperplane separating two classes in an n-

dimensional space can be written as: 
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where aj are the attributes and b and wj are the weights to be learned. The maximum margin 

hyperplane gives the maximum separation between the classes and it does not come closer to either 

than it has to (see Figure 14 for an example). The hyperplane depends only on the support vectors 

which are the data examples of each class with the minimum distance to the hyperplane. The other 

data objects are irrelevant for the construction of the hyperplane – it is uniquely defined by the set 

of support vectors. The maximum margin hyperplane can be written in another form based on the 

support vectors. Let yi be the class value for a training instance xi, then the maximum margin 

hyperplane x’ is: 

*' xxywbx i
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where b and wi are numeric values which are determined by the learning algorithm, yi is the class 

value for a training instance xi, x* is a test instance, x* and xi are vectors, and xi⋅x* represents the 

dot product. The determination of the hyperplane parameters b and wi belongs to the class of 

constrained quadratic optimization techniques. 

 

Figure 14: An example for a well class-separating hyperplane (left) and a 
non-optimal separating hyperplane (right). 

The maximum margin hyperplane for the linearly separable case is computed by solving a quadratic 

optimization problem. The following term must be minimized over (w, b) [82]: 
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where w is a vector. However, in case when the classes are not linearly separable, a solution cannot 

be found for this optimization problem. To address this issue, Cortes and Vapnik [28] suggested 

the introduction of slack variables ξi for the non-separable linear case. Hence, the following term 

must be minimized over (w, b, ξ1, ..., ξn) [21]: 
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where C in (34) introduces a cost factor for errors. The larger C is, the higher is the penalty for 

errors. The variables ξi relax the constraint of formula (33) and allow errors in the classification of 

the training data.  

Although SVMs belong to the class of linear separation techniques, they are also well suited to deal 

appropriately with non-linear class boundaries. A kernel trick is normally applied to deal with 

classes for which the decision function is non-linear. For example, the non-linear mapping can be 

accomplished in the formula for the maximum margin hyperplane by substituting the term w⋅xi by 

(w⋅xi)n. This way, the dot product can be computed in the lower dimensional space before the non-

linear mapping to the high-dimensional space is performed and hence, the computational burden is 

limited accordingly. The function (x⋅y)n is called a polynomial kernel. Another kernel function that 

is often used with SVM is the radial basis function (RBF). 

2.4.3 SEMI-SUPERVISED LEARNING  

As mentioned above, semi-supervised learning approaches lie between the classes of supervised 

and unsupervised learning. In a semi-supervised setting, the training set consists of both labeled and 

unlabeled data. This can be considered as the standard setting of semi-supervised learning but other 

types of partial supervision are possible, for example, it might be known that some data points have 

the same class membership. In most applications, the goal is to find a mapping between the training 

examples and the labels by exploiting the additional information available through the unlabeled 

data. Of course, certain assumptions have to hold if the unlabeled data shall improve the 

classification process. One of these assumptions is the smoothness assumption: If two points x1 

and x2 in a high-density region are close, then so should be the corresponding outputs y1 and y2 [25]. 

The cluster assumption claims that if points are in the same cluster, they are likely to be of the same 

class. This assumption can be reformulated: The decision boundary should lie in a low-density 

region. Some semi-supervised learning approaches are presented briefly below. 

A pioneering work in the field is the co-training approach of Blum and Mitchell [13]. They suggest 

co-training to augment a small set of labeled data with unlabeled data. A prerequisite of co-training 

is the existence of two different views (i.e., two disjoint and independent feature sets) on the data. It 

is assumed that each of those views is sufficient to train a classifier in case that enough labeled data 
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are available. First, each classifier is trained for its view on the labeled data. Then, class labels of a 

portion of unlabeled data are predicted by each classifier and the positive and negative predicted 

samples with the highest confidence are passed to the other learner to augment its set of training 

data. Blum and Mitchell report experimental results for the task of web site classification. Two 

independent types of features are considered here: page-based features and hyperlink-based 

features. The proposed co-training approach yields an error rate of 5%, whereas a combination of 

supervised classfiers achieves only an error rate to 11%. The pseudo code for co-training is 

presented in Figure 15. 

Nigam et al. [120] present an approach for text classification that exploits unlabeled data using a 

Naïve Bayes classifier and EM clustering. An initial Naïve Bayes classifier is trained using only the 

labeled data. Then, using this classifier the unlabeled data are labeled probabilistically and finally 

EM is iterated until convergence on all document samples. Their experimental results demonstrate 

that this technique can significantly increase text classification accuracy when given limited amounts 

of labeled data and large mounts of unlabeled data. Nigam and Ghani show [121] that co-training 

can improve classification accuracy even when the assumption of two conditionally independent 

views on the data is relaxed: Co-training in conjunction with a randomly split feature set improved 

the baseline EM approach as well, but a self-trained approach and a co-EM algorithm 

outperformed baseline EM, too, and achieved similar results. 

 Wu [177] suggests the B-EM algorithm to incorporate a large set of unlabeled data in classifier 

training. Bootstrapping (forming a training set from a given data set by sampling with replacement) 

is used in order to obtain several training sets from unlabeled data. Experimental results are 

presented for synthetic test data and demonstrate that B-EM (employing unlabeled data to refine 

classification models) outperforms standard EM when both approaches were provided with the 

same number of labeled samples in the beginning (B-EM increases the number of examples by 

itself). In addition, experimental results are presented for a real-world image classification task 

based on the Corel database. Here, B-EM outperforms the baseline system as long as the number 

of initially labeled training samples is below 120, thus, it is reasonable to use B-EM when only a 

small number of training examples is available. 

Rosenberg et al. [132] explore possibilities to reduce the amount of training data to train a 

supervised object detection system while achieving the same accuracy as a system trained with a 

large training set. Therefore, weakly labeled data are used: positive image examples were only 

labeled with the information that the object of interest is visible in the image but neither position 

nor size were annotated. In contrast to the approaches mentioned so far, EM is not considered to 
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incorporate weakly labeled or unlabeled data but rather a self-training approach (comparable to 

Nigam and Ghani [121]). Rosenberg et al. modify the training for the object detection approach of 

Schneiderman and Kanade [135] which achieved top performance on standard face detection test 

sets [181, 187]. Weakly labeled training data for positive examples are included in their framework, 

that is images are labeled as positive examples when there is at least one frontal face observable but 

no details are given about position and size. Training data are divided into two groups: a set of fully 

labeled data and a larger set of weakly labeled data. First, an initial Bayesian classifier is built which 

is then used to assign scores to the weakly labeled samples. Two selection metrics to compute 

scores are investigated, the confidence selection metric and the MSE (mean squared error) selection 

metric. Weakly labeled data with highest scores are then added to the training set and a new face 

model is computed. The training set consists of 480 positive examples and 15.000 negative 

examples. In the experiments, they investigated how many fully positive examples are needed to 

achieve the same detection performance as in the case when the whole set of 480 fully labeled 

positive examples is used (baseline, full training). They found that performance was “saturated”: 

self-training achieved a similar performance as in the full training setting, when the number of 

positive fully labeled examples was at least 120. If less than 35 positive examples were fully labeled, 

the performance was between 60% and 80% of the baseline setting. If more than 35 and less than 

120 examples were fully labeled, the relative performance was between 80% and 95%. Finally, the 

MSE selection metric outperformed the confidence score metric. 

 

Figure 15: Pseudo code for co-training according to [13].

Input:  Set L of labeled training examples; 
        Set U of unlabeled examples; 
Output: Two classifiers using two different views on the data; 
 
Algorithm 
 
Co-Training(Set L, Set U) 
  Create a pool U’ by choosing u examples at random from U 
  for k iterations: 
    Use L to train a classifier h1 that considers only x1 portion from x; 
    Use L to train a classifier h2 that considers only x2 portion from x; 
    Allow h1 to label p positive and n negative examples from U’; 
    Allow h2 to label p positive and n negative examples from U’; 
    Add these self-labeled examples to L; 
    Randomly choose 2p+2n examples from U to replenish U’; 
 
  return h1 and h2; 
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2.4.4 TRANSDUCTIVE LEARNING 

In a transductive setting, there is a set of labeled training examples and a set of unlabeled test 

instances. So far, this is the standard supervised learning setting. But in contrast to the supervised 

learning setting, the unlabeled test instances are also employed in the transductive learning process 

and thus it belongs to the semi-supervied learning approaches as well. Transductive learning is 

aimed at obtaining an optimal classification for the given test instances only, whereas semi-

supervised learning can be basically used for inductive classification model. Otherwise, any semi-

supervised approach can be employed as a transductive learner, for example, in case when all used 

training instances are labeled and the employed unlabeled data are the test instances. In this section, 

the transductive SVM is presented which explicitly addresses a transductive setting. 

A transductive SVM uses the unlabeled test samples and tries to achieve a model which is optimal 

for the particular test set. Therefore, the test samples are incorporated into the learning process (the 

process of estimating the maximum margin hyperplane). The test samples are represented by a set 

of k feature vectors uj, where j ∈ {1, ..., k}, and the corresponding labels yj
*∈ {-1,+1} are unknown. 

Although the labels of the test samples are not known, they are incorporated into the learning 

process in order to adjust the maximum hyperplane with respect to the test samples. An example 

for a maximum margin hyperplane that is derived by employing the unlabeled test samples and 

transductive learning is presented in Figure 16. For the linearly separable case, the following term 

must be minimized over (w, b, *
1y , ..., *

ky ): 

2

2
1 w  (37) 

Figure 16: Example how a transductive SVM might refine and improve a 
maximum margin hyperplane achieved by an inductive SVM. Class 1 is 
represented by black rectangles, class 2 is represented by white triangles. 
Unlabeled data are displayed as grey circles. The SVM hyperplane is shown 
as a dashed line, whereas the TSVM hyperplane is displayed by a solid line. 
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whereas for the non-separable linear case slack variables are introduced, as for the inductive SVM. 

Hence, the following term must be minimized over (w, b, *
1y , ..., *

ky , *
1ξ , ..., *

kξ ) [82]: 
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Training of a transductive support vector machine is achieved by solving the optimization problem 

of (37) or (40). Simply trying all possible assignments of *
1y , ..., *

ky  to the two classes is only feasible 

for very small test sets. Joachims [82] suggests an algorithm to solve the optimization problem (40-

44). It performs a local search starting from an initial labeling of the test samples computed by an 

inductive SVM. For this purpose, labels of test samples are swapped iteratively such that the 

objective function decreases. The ratio of positively and negatively labeled samples is maintained 

during the optimization process in order to prevent degenerated solutions in which all test samples 

are assigned to one class. For details regarding this algorithm, the reader is referred to [82]. 

2.4.5 META-LEARNING METHODS AND ENSEMBLE LEARNING 

The purpose of meta-classifiers is to build a classification model based on an ensemble of single 

classifiers and to combine their outputs in an optimal way. In this context, a classifier is often called 

an expert and its output is called a vote. The application of an ensemble scheme will only improve 
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classification accuracy if the models are sufficiently different and each classifier achieves a 

minimum accuracy. An intuitive way to combine the experts is to apply a majority voting scheme 

[79, 89, 175]: The class label is assigned to a data object which has got the majority of all expert 

votes. 

Adaboost (Adaptive Boosting, Freund and Schapire [55]) belongs to the class of meta-classifiers 

and is very popular. Other meta-classification methods besides boosting are bagging and stacking 

which are related to the majority voting scheme in some respect. The idea of bagging is to 

randomly generate a number of training sets from the original training set by sampling the training 

set with replacement. Then, a classification model is learned separately for each training set and 

finally these models are combined using majority voting (see Figure 18 and Figure 17).  

Stacking or stacked generalization as suggested by Wolpert [176] is another way to combine 

different classification models. First, n different models are learned on different partitions of the 

training set, the individual classifiers. Then, on an unused part of the training set, the outputs of the 

n different model are utilized to learn a new (meta-)model, the stacked classifier which consists of a 

combination of the individual classifiers. The final decision is based on both the stacked classifier 

and the individual classifiers. The meta-learner can be any learning algorithm, usually a simple 

learning scheme like simple linear models or trees with linear models at the leaves work well [175]. 

The idea of boosting is based on a kind of resampling of the training set during a number of 

learning rounds. The resampling is controlled by assigning weights to the training samples. A higher 

weight is assigned to those training samples that were misclassified in a preceding training round. 

For the decision process, different weights are assigned to the individual classifiers dependent on 

their individual error in a training round. Freund and Schapire [55] showed that it is possible for a 

combination of weak classifiers, which are only slightly better than random guessing, to achieve an 

arbitrarily small error rate on the training set. In this thesis, the pseudo code presented in Figure 20 

and Figure 19 is used in the implementation. Meanwhile, many variations of Adaboost have been 

suggested, such as Vector Adaboost [76] for the task of face detection, or Adaboost with totally 

corrective updates [150]. 
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Figure 17: Pseudo code for bagging model generation. 

Figure 18: Pseudo code for classification using bagging.

Input:  Test instance instX; 
        Set F consisting of t classification models ft;  
Output: Predicted class for instX; 
 
Algorithm 
 
Bagging-Classification() 
  for each model ft 
    predictedClass = ft(instX);     
   
  return class that has been predicted most often; 

Input:  Number of m training instances; 
        t: number of learning iterations; 
        n: number of instances for sampling;  
Output: Set F consisting of t classification models ft; 
 
Algorithm 
 
Bagging-ModelGeneration() 
  F=∅; 
  for t iterations 
    Sample n instances with replacement from the training data; 
    Learn a classification model ft; 
    F=F∪ft; 
    Store the model; 
 
  return F;  
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Figure 19: Pseudo code for Adaboost model generation. 

Figure 20: Pseudo code for Adaboost classification. 

Input:  Set of labeled training feature vectors X; 
Output: Set of classifier models F and set of related training errors E; 
 
Algorithm 
 
Adaboost-Model-Generation() 
  F = ∅; E = ∅; 
  for each instance instX ∈ X 
    weight[instanceX] =  1/|X|; 
 
  for each (iteration t)  
    Apply learning algorithm to weighted training samples and save model   
    ft; 
    Compute training error et on weighted training set; 
    if (et == 0 || et >= 0.5) terminate; 
    F = F ∪ ft; E = E ∪ et;  
    for each (instance instX) 
      if (instanceX classified correctly) 
        weight[instX] *= et / (1-et) 
    Normalize all weights[i]; // i.e. sum is 1 
 
return set; 

Input:  Set of classification models F; 
        Set of training errors E; 
        Instance instX; 
Output: Classification label for instance; 
 
Algorithm 
 
Adaboost-Classification() 
  for each class classX 
    weight[classX] = 0; 
  for each model ft 
    predictedClass = ft(instX); 
    weight[predictedClass] += -log(et/(1-et)); 
 
return index of max(weight[classes]); 
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2.4.5.1 CREATION OF CLASSIFIER ENSEMBLES 

In the previous section, three methods are presented to assemble a number of different classifiers 

to form an ensemble: Adaboost, bagging, and stacking. Another simple strategy is to combine a 

number of experts (classifiers) and to use a majority voting scheme [89] for decision making. While 

it is known that ensembles can outperform single classifiers on many tasks it is not known 

theoretically what is the best way to build an ensemble [20]. Two factors determine the accuracy of 

an ensemble: the accuracies of the single classifiers and the diversity of their outputs. While it has 

been shown for ensemble regression techniques how diversity can be quantified, there is no 

generally accepted measure for the diversity of classifier ensembles [20]. Kuncheva et al. [89] 

suggest the Q-statistics to measure the pairwise dependency of classifiers. Let fi and fj be two 

classifiers, let a be the the number of predictions where both classifiers predicted correctly, let b and 

c the number of cases in which exactly one of the classifiers misclassified the object, and let d be the 

cases when both classifiers misclassified an object. Then, Qi,,j is defined as:  
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The Q-statistics for an ensemble is computed as the average of all possible pairings of the ensemble 

classifiers. It is shown empirically [89] that negative pairwise dependence is beneficial but not 

straightforwardly related to ensemble accuracy. Margineantu and Dietterich [107] investigated 

another measure for diversity: the kappa-statistics. Keeping the meaning of a, b, c, d from above, 

kappa-statistics is defined as: 
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The authors investigate several strategies to prune an Adaboost ensemble and showed that in some 

domains an ensemble can be pruned by about 60-80%. Applying the kappa-statistic resulted in one 

of the best pruning strategies. Furthermore, they produced kappa-error diagrams for Adaboost and 

bagging where each possible pair of classifiers is plotted in a 2D space (kappa and error rate). The 

diagrams showed that Adaboost produces a more diverse ensemble of classifiers than bagging. 

Another approach is presented by Ho [74]: the training set is sampled in the feature space and 

models are trained on randomly chosen subspaces of the original input space. The outputs of the 

models can be combined by majority voting. 

Brown et al. [20] survey the field of diversity creation methods for classifier combination. They 

categorize the approaches for ensemble diversity creation in three classes:  
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1. Starting point in hypothesis space: The aim is to reach different points in the solution space, 

including hopefully a point which is optimal in a global sense. However, Brown et al. [20] 

state that it is generally accepted that this type of diversity creation is the least effective 

method. 

2. Manipulating the set of acceptable hypotheses: There are two ways of manipulating the set of 

hypotheses accessible to a learner. The first subclass of methods manipulates the training data 

and produces differing subsets of the training data which are passed to different learners so 

that they hopefully learn different things about the classes to separate. Training data can be 

resampled by either using a subset of features or a subset of training samples. The second 

subclass of methods aims for diversity creation by using different learning strategy in the 

ensemble.  

3. Hypothesis space traversal: This type of methods alters the way the hypothesis space is 

traversed, leading different classifiers (function approximators) to different hypotheses. 

2.4.6 OPTIMIZATION: DOWNHILL-SIMPLEX ALGORITHM  

The simplex algorithm of Nelder and Mead [118] belongs to the most popular methods to solve 

nonlinear minimization problems due to its simplicity [80]. It is easily applicable since first-order 

and second-order derivatives are not needed. Furthermore, it is also applicable when discontinuous 

functions appear in the problem statement. However, such a simple method comes along with 

some drawbacks. Normally, the method converges slowly, and it does not always converge towards 

a stationary point, even for strict convex problems with two variables. The method utilizes a 

simplex, which is a polyhedron of n+1 vertices in n dimensions. For example, in the two-

dimensional case, this is a triangle on a plane. Given the unrestricted problem  

nRx
xf

∈
)(inf ,  (47) 

then, the Nelder-Mead method considers n+1 points x1, x2, ..., xn+1 which form a simplex in Rn and 

can be ordered as follows according to their function values:  

)()()( 121 +≤≤≤ nxfxfxf K  (48) 

The points xi
 with low values f(xi) should be considered as “good” points and those xi

 with high 

values f(xi) as “bad” points. The main idea of the method is to move the simplex towards a good 
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solution, that is the function value is minimized. Therefore, it is tried to iteratively find a better 

point for the worst point xn+1. The pseudo code is depicted in Figure 21. 

The algorithm consists of three main steps: reflection, expansion, and contraction. The better 

points x1 to xn define a hyperplane that splits Rn into two parts. A new point x can be found by 

reflecting xn+1 through the centroid of that hyperplane (reflection step). If this point is not again the 

worst point, then the process is repeated. In case that the reflected point is the worst point, then 

the simplex is shrunk (contraction step). If the reflected point is the best point, then the simplex is 

expanded: Since the new point is better than all the other points, this direction is searched to obtain 

a better solution. 

2.5 SUMMARY 

In this chapter, the related research fields and technological fundamentals of this thesis were 

introduced. Mainly, this thesis contributes to the field of video content analysis, indexing and 

retrieval, and in this field machine learning techniques are extensively used. The research field of 

video content analysis, indexing and retrieval were briefly introduced in Chapter 2.2. The reader will 

find more detailed discussions for specific approaches in subsequent chapters where several 

approaches are proposed for this domain. Since the processing of compressed videos is relevant for 

video content analysis, the foundations of MPEG compression were presented in Chapter 2.2, too. 

Some principles of machine learning were described in Chapter 2.4. as well as those machine 

learning and optimization techniques which are used in the proposed approaches later on. 

Furthermore, since this thesis is also motivated by scientific film studies in the research center 

“Media Upheavals”, some basic concepts of scientific film studies were introduced in section 2.3. 
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Figure 21: Pseudo code for the simplex algorithm of Nelder and Mead. 

 

Input:  Function f; 
Output: Point x that minimizes f; 
 
Algorithm 
 
Nelder-Mead-Simplex-Method() 
  Choose n+1 affine independent points x1,…,xn+1 ∈ Rn; 
  Estimate function values f(x1), ..., f(xn+1) and sort xi such that  
  f(x1) ≤ f(x2) ≤ ... ≤ f(xn+1); 
  Choose a > 0, and b > max{1,a}, and d ∈ (0,1); 
 
  for k = 1 to z 
    Compute the centroid c of {x1,...,xn}; 
    xr= c + a (c-xn+1); // reflected point 
 
    // Distinguish the three cases of reflection, expansion, and  
    // contraction 
 
    if f(x1) ≤ f(xr) ≤ ... ≤ f(xn) // reflection step 
      Replace xn+1 with xr and sort n+1 xi points according to f(xi); 
 
    else if f(xr) < f(x1) // expansion step 
      xe = c + b(xr-c); 
      if f(xe)< f(xr) 
        Replace xr with xe; 
      Replace xn+1 with xr and sort n+1 xi points according to f(xi); 
 
    else if f(xr) > f(xn) // contraction step 
      if f(xr) < f(xn+1) 
        xc = c + d(xr-c); 
      else 
        xc = c + d(xn+1-c); 
       
      if f(xc) < min{f(xr), f(xn+1)} 
        Replace xn+1 with xc; 
      else // shrink polyhedron towards best point 
        for i=2 to n+1 
          xi=0.5(x1+xi);  
 
      Sort n+1 xi points according to f(xi); 
    end if; 
  end for; 
 
 return x1; 
 



 

C h a p t e r  T h r e e  

3 TRANSDUCTIVE LEARNING ENSEMBLES FOR ROBUST VIDEO CONTENT 

ANALYSIS 

3.1 INTRODUCTION 

As explained in the previous chapters, transductive learning is not aimed at obtaining a general 

classification function for all possible test data points (as in inductive learning) but at obtaining a 

specific classification for the given test data only. The idea is that the desired classification function 

has to be optimal for the unlabeled test data only and not in general (as in the case of inductive 

learning). One of the contributions of this thesis is to consider the analysis process for a particular 

video as a transductive learning setting: the unlabeled data of a particular, previously unseen video 

are incorporated into the learning and classification process. In this chapter, a framework of 

transductive learning ensembles is presented that exploits an initial classification (or clustering) 

result to improve its quality for a particular video. The proposed framework is based on feature 

selection and ensemble classification; it is called self-supervised when the baseline approach relies on 

unsupervised learning, and it is called semi-supervised when the baseline approach relies on supervised 

learning. In the following, the framework which is used in the proposed approaches for cut 

detection, face recognition, semantic video shot retrieval, and semantic video indexing (please refer 

to chapter 4, 6, 7, and 8 for details) is briefly introduced. The framework is presented in a general 

form and its adaptation to a video content analysis task is described as part of the corresponding 

approach in the related chapters. The foundations of the framework are based on some principles 

of feature selection, ensemble classification and on the idea of semi-supervised learning, in 

particular, semi-supervised learning in a transductive setting. The principles of these technologies 

are discussed in Chapter 2. 

3.2 MOTIVATION 

The idea behind our framework is that the appearance of certain objects, events or concepts varies 

noticeably from video to video. For example, for a particular video, the author’s intention, its 

production, compression and of course its content typically differs significantly. An editor might 

use very short gradual transitions involving one or two frames instead of abrupt cuts. Such an effect 

might also be caused by a frame rate conversion. The appearance of an actor might significantly 

depend on the movie and the character he/she is playing in it. If we want to obtain an indexing 

result that yields information about the occurrences of actors in a movie, it might be beneficial to 

learn the characteristic features for only the people present in this video. In addition, if the system 

has to recognize a person in a video shot, it is not necessary to learn a classification model that 
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discriminates the person’s face from all possible faces in the world. It is absolutely sufficient if 

classification models exist that allow us to distinguish between the persons who appear in this 

video. Furthermore, the appearance of semantic concepts is often related to a particular video or 

TV cast. For example, weather news are typically related to the following concepts: A map usually 

shows the area of interest, some symbols indicate rain, clouds, wind and sun. Furthermore, 

displayed text gives information about locations, temperatures, all together explained and 

moderated by a human expert. For a particular instance of weather news, those general elements 

take a concrete shape, for example the map color, the font type and size of text and the style of the 

symbols are identical for a certain TV program. In addition, the spatial composition of the shot will 

be specific for this TV cast, for example the moderator’s position and the camera distance will be 

specific as well. The same is true for the presentation of maps or charts in a particular news cast.  

The goal of the proposed framework is to learn and exploit the specific appearance of an object, 

event or concept with respect to a particular video in order to finally improve the indexing or 

retrieval result. The basic components are described below in more detail.  

3.3 FRAMEWORK 

The goal of the proposed framework is to achieve a robust indexing or retrieval result for a given 

video based on an initial result. This initial result might have been obtained via unsupervised 

learning or supervised learning. These results can be obtained at different granularities: frames, 

sequences of frames, shots, scenes etc. Subsequently, these units are considered as samples and 

each sample is represented by a set of features. For example, in case of cut detection, the (dis-) 

similarity of consecutive frames is commonly used as a feature. The feature vectors of all samples 

are used to obtain an initial clustering or classification result for the given problem. 

To adapt a model to its appearance in a particular test video v, the baseline model is used either to 

classifiy the frames or shots or to obtain probability scores for them. This initial result is used to 

generate a training set which consists only of samples of the test video v under consideration. In 

case that the initial result is a binary classification result, all samples are used for the subsequent 

training process. Otherwise, if probability or confidence scores are available, they can be used to 

select only the top (bottom) p percent of best (worst) samples as positive and negative training data. 

The automatically generated training data are used to select the best features via Adaboost for the 

classification task of this video. Then, the set of selected features is split into k disjoint sets in order 

to enable the training of different classifier views for the video v. The feature sets are used to train 

new classifiers directly on the video. Finally, the newly trained classifiers and the initial classifier 

form an ensemble and the the video samples are re-classified using this ensemble and majority 
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voting. The initial classifier is incorporated in order to prevent performance degradation. The main 

components of the framework are displayed in Figure 22. 

  

Figure 22: Framework for transductive learning ensembles for video 
content analysis. The process is applied to each video separately. Dashed 
lines indicate optional processing steps. 
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3.3.1 FEATURE SELECTION 

This step is aimed at finding the features which charcaterize an object, event or concept in a 

particular video. Once the positive and negative training samples have been obtained automatically 

for a test video v, feature selection is conducted using a slightly modified version of the Adaboost 

procedure. As described in the previous chapter, it was shown by Freund and Schapire [55] that 

Adaboost minimizes the error on the training data as the number of training rounds (and hence the 

number of classification models) increases, as long as each selected classification model achieves an 

error rate below 0.5 (“weak classifiers”). In our framework, a weak classifier is built for each feature 

and a feature is evaluated based on the classification error in each training round. A classification 

error is estimated for each (weak) classifier by estimating the best threshold that separates positive 

and negative samples using the one-dimensional data of a single feature. This classification error 

depends on the current sample weights of the samples which might change from round to round. 

The training samples are weighted equally in the beginning. Training samples which are 

Figure 23: Pseudo code for feaure selection based on Adaboost. 

Input:  Set S of training samples for test video v consisting of positive  
        sample set P and negative sample set N; 
        // each sample shot s ∈ S is described via a set of features F 
Output: List of ranked features; 
 
Algorithm: 
 
AdaboostFeatureSelection(P, N) 
  for each training instance instX ∈ S: 
    weight[instX] =  1/|S|; 
  F’= ∅; 
  for i=1 to N boosting rounds 
    for each feature f  
      // the next if-condition is normally not part  
      // of  an Adaboost procedure but inserted    
      // in order to avoid selecting a feature twice 
      // (with possibly different thresholds) 

if f ∈ F’ then   
        continue loop with next feature; 
      Find the threshold t that separates the classes A and B using    
      feature f with the lowest error e, this error e is the sum of  
      weights of the misclassified samples; 

Choose f  with minimum error emin as current feature f’; 
if (emin == 0 || emin >= 0.5) then terminate; 
for each instance instX 
  if  instX is classified correctly then 

          weight[instX] *= emin / (1- emin); 
Normalize all weights[i] (sum is 1); 
F’ = F’ ∪ {f’}; 
Feature f’ has rank i in the feature selection ranking; 

 
  return list of ranked features; 
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misclassified by the actually chosen weak classifier are re-weighted such that they have more impact 

in the next training round for the next “weak classifier”. Thus, a newly selected feature has a higher 

probability to correctly classify those training samples that have been misclassified in preceding 

rounds. The modified version of Adaboost as shown in Figure 23 is employed to perform feature 

selection: In round k, the feature whose related weak classifier yields the lowest error on the current 

weighting of the training data is selected as the k-th feature. 

3.3.2 ENSEMBLE CLASSIFICATION 

After the best features have been selected, they are used to train other classifiers on the 

automatically labeled training samples of the test video v under consideration. In our system, SVM is 

used since it has proven to work well for several video indexing tasks. However, training a new 

classifier only on the automatically labeled samples might is possibly to the initial result. In 

particular, it is not guaranteed that the samples are labeled correctly, and the quality of the new 

classifier depends in general on the accuracy of the initial result. Furthermore, the initial result 

might be a good one and should not be discarded totally. To address these issues, an ensemble 

approach is utilized in our framework.  

Besides Adaboost, another possibility is to build an ensemble of classifiers using majority voting. In 

this case, the classifiers which form an ensemble should have a certain level of independence. As 

discussed in the previous chapter, there is some evidence [89] that a reasonable degree of 

independence of ensemble classifiers improves accuracy and guarantees at least the accuracy of the 

weakest classifier in the ensemble if the classifiers’ accuracies exceed a certain value. In our 

framework, the boosting procedure of Adaboost is exploited to generate two disjoint feature sets 

which have a certain degree of independence. Features are assigned alternatingly to two different 

feature sets according to their odd and even rank, respectively, in the feature selection process. 

Subsequently, two new classifiers are trained using one of the feature sets. This approach is 

motivated by the fact that during the Adaboost process the weights of those samples which have 

been misclassified by the preceding weak classifier are increased. Thus, the next selected classifier 

should be partially independent of its direct predecessor. In case of n classifiers, the feature with 

rank k is assigned to classifier k modulo n. In subsequent SVM training, models are learned based 

only on the automatically labeled training examples taken from the current test video v, yielding two 

(or n) new SVM models. Finally, at least three SVM models are available for each video, the initial 

(global) model and two (or n) local models. These models were learned with the training data that 

have been labeled automatically for this particular test video v using the initial model. 
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3.4 SPECIFIC INSTANCES OF THIS FRAMEWORK 

The concrete realization of this framework depends on the task at hand. Several modifications are 

possible and some of them will become apparent in the subsequent chapters of this thesis. First, the 

initial result can be generated using either an unsupervised or a supervised approach. In case the 

initial result is based on unsupervised learning, the process of the whole framework is called self-

supervised. Otherwise, it is called semi-supervised. The used features differ with respect to the 

given problem. While the feature selection process reduces the number of features, it is also 

possible to generate good initial results for certain tasks with a very small feature set, but to employ 

feature selection on an enlarged set of features. For example, this is the case for video cut detection, 

where two features are sufficient to obtain a rather good initial result. The fraction of selected 

training samples varies from task to task. Also, there are cases where the ensemble approach is not 

required to improve the final result. As described for the face recognition/clustering approach 

presented in Chapter 6, the feature selection process has much more impact on the quality of the 

final result than the number of classifiers in the final classification stage. Finally, it should be noted 

that in general, any classifier could be used in our framework in the initial stage as well as in the 

final stage. 

3.5 SUMMARY 

In this chapter, a framework for transductive learning ensembles was introduced for the task of 

video indexing and retrieval. In particular, its basic components consisting of feature selection and 

ensemble classification were presented. Finally, the possibilities of a concrete realization of the 

framework were discussed. 

 



 

C h a p t e r  F o u r  

4 ROBUST AND ADAPTIVE SHOT BOUNDARY DETECTION 

4.1 INTRODUCTION 

A video sequence typically consists of a large number of shots which have been put together during 

a production process either to tell a story or to communicate any kind of information (e.g., news or 

documentary). Video arts might have another intention but are not considered here. A shot is the 

fundamental processing unit in video retrieval applications and most indexing and retrieval 

algorithms rely on a correct temporal segmentation of a video into particular shots. The task of 

shot boundary detection (SBD) is to perform such a temporal segmentation of a given video into 

single shots and to recognize abrupt and gradual transitions. Synonymous terms in the literature for 

shot boundary detection are: shot detection, temporal video segmentation, video segmentation, 

shot segmentation, and video cut detection (excluding transition detection). Some authors also use 

the term scene in conjunction with temporal shot segmentation, but according to our definitions 

for shot and scene in Chapter 2, they actually mean shot segmentation. 

If a shot abruptly follows a preceding shot, such an abrupt transition is called a “cut”. Alternatively, 

one can insert transitional frames between two consecutive shots which results in a smoother 

perception of a shot change (“gradual transition”). Lienhart [96] states that a cut is defined as the 

direct concatenation of two shots with no transitional frames involved: cuts lead to a perceptible 

temporal visual discontinuity. The most common gradual transitions are fades (in and out), 

dissolves, and wipes. Although most shot changes in videos are abrupt, the percentage of gradual 

transitions might be also large for some video collections and genres. The frequency of gradual 

transitions varies strongly from video to video. For example, in the test sets for the shot boundary 

detection task of the TRECVID evaluations from 2003 to 2007, the percentage of gradual 

transitions varies noticeably and lies between 10% and 51% (see Table 1). Hence, it is obvious that 

TRECVID 
Test Set 

#Frames #Trans. #Transitions 
per 100 
frames 

Cuts [%] Gradual 
Trans. 

[%] 

Dissolves 
[%] 

Fades [%] Others 
[%] 

2003 596054 3734 0.63 70.7 29.3 20.2 3.1 5.9

2004 618409 4806 0.77 57.7 42.3 31.7 4.8 5.7

2005 744604 4535 0.61 60.8 39.2 30.5 1.8 6.9

2006 597043 3785 0.63 48.7 51.3 39.9 1.3 10.1

2007 637805 2317 0.36  90.8 9.2 5.4 0.1 3.7

Table 1: Composition of the test sets for the shot boundary detection 
task at TRECVID in the years from 2003-2007. 
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the correct detection of gradual shot boundaries is as important as cut detetction for some 

applications.  

In this chapter, several improvements for shot boundary detection are proposed. Initially, the 

related work for shot boundary detection is comprehensively reviewed in Chapter 4.2. The first 

contribution is related to cut detection and compression artefacts. A problem associated with frame 

dissimilarity measurements in compressed video sequences is identified and two solutions are 

presented for this problem (Chapter 4.3). Then, an unsupervised shot boundary detection approach 

which reduces the need for parameter adjustments is presented (Chapter 4.4). Another advantage 

of the unsupervised approach is that there is no need for the time-comsuming task of creating a 

sufficiently large amount of training data (i.e., labeling the shot boundaries manually). Experimental 

results demonstrate that the detection quality depends on the sliding window size. It will be shown 

that this parameter can be estimated by evaluating the quality of our clustering result. This way, the 

need for manual parameter adjustment is removed for cut detection. The unsupervised approach to 

gradual transition detection is supplemented by a sophisticated false alarm removal. For this 

purpose, a high-quality motion estimation algorithm is employed (Chapter 4.4.2). Furthermore, it 

will be shown that cut detection can be improved further when an ensemble of classifiers is applied 

(Chapter 4.5). This is a reasonable approach to improve performance in case when training data are 

already available. A self-supervised approach for cut detection is presented in Chapter 4.6 which is 

the first application of our transductive learning ensemble framework as suggested in Chapter 3. In 

this approach, the initial clustering result is employed to learn the best features and to adaptively 

learn a classification model for a particular video. Finally, it will be demonstrated in Chapter 4.7 that 

the quality of a clustering result can be utilized for automatic performance prediction of video cut 

detection results. The work presented in this chapter has been partially published in [36, 37, 40, 42, 

43, 45, 115]. 

4.2 RELATED WORK 

4.2.1 SURVEYS ON SHOT BOUNDARY DETECTION 

First, several related surveys and comparison studies are discussed. Koprinska and Carrato [87] 

present an overview of temporal video segmentation research and the related problem of camera 

motion estimation. The authors provide a taxonomy and discuss approaches for both the 

uncompressed and the compressed video domain. Several metrics for frame dissimilarity 

measurement are discussed, including pixel-wise, block-based, histogram-based, local histogram-

based and block-based motion-compensated dissimilarity measurements, as well as feature-based 

approaches considering the number of edge pixels. Various methods are presented to classify frame 

dissimilarities, such as simple thresholding, local thresholding, χ2-test, likelihood ratio test, and 
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clustering approaches. In addition to these algorithms, which tackle the cut detection problem using 

a bottom-up and data driven view, there are top-down, model-driven approaches which model 

certain video transitions or use for example Hidden Markov Models for shot boundary detection 

and camera motion estimation. Such approaches are particularly suitable to detect more 

sophisticated video events, such as gradual shot transitions and camera motion. Finally, the authors 

present algorithms for compressed videos which directly use DCT coefficients, in particular DC 

frames, macroblock information and coded motion vectors. 

Lefèvre et al. [92] provide an analysis of the computational complexity of several temporal video 

segmentation algorithms with respect to real-time requirements. 

Bescos et al. [10] present a comparison of different frame disparity functions, these are functions 

which measure frame dissimilarities. They distinguish between deterministic (e.g., summation of 

absolute differences), statistic parametric (e.g., likelihood ratio test) and statistic non-parametric 

disparity functions.  

A study comparing the cut detection performance has been conducted by Boreczky and Rowe [18] 

in 1996. Five algorithms are investigated, making use of: 1. frame histogram differences for a 64-bin 

gray-scale histogram and a global threshold; 2. histogram differences in regions, where the number 

of region differences exceeding a threshold must exceed another threshold; 3. the twin-comparison 

method; 4. motion-compensated differences and a global threshold; 5. DCT coefficient differences 

and a global threshold. The algorithms are tested on five videos having 419745 frames and 2507 

cuts in total. The histogram-based and the region histogram method outperform the others in most 

test cases.  

Lienhart [96] has conducted a comparison study in 1999, investigating four algorithms, of which 

two are able to detect cuts. The other two approaches are specialized for detecting fades and 

dissolves, respectively. The first cut detection algorithm is based on histogram differences, and a 

global threshold is used within a sliding window. This simple approach outperforms the other 

approach which is based on the change edge ratio in subsequent frames. The test set consists of 

four videos. 

Two comparison studies have been reported by Gargi et al. in 1998 and 2000 [57, 58]. In the 

second study, the same algorithms are investigated as in the first one, but a larger test set has been 

used and thus, this study is considered here. They also have conducted an interesting study on 

human ground-truth performance on live videos and found that best results have been obtained 

when the volunteers previewed the video once at full speed and then detected shot boundaries 
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when viewing the video at half speed. The detection delay of the nine volunteers due to “live” 

detection was between 7 and 20 frames. The video test set used in that study consists of four video 

sequences with a total duration of approximately 76 minutes including 959 cuts and 262 gradual 

transitions (MPEG-1 encoded, 30 frames per minute, 320*240 pixels resolution). Six algorithms for 

the MPEG domain are investigated, which make use of DCT coefficients, macro block 

information, motion prediction statistics and DC-frames. Various color spaces and frame 

difference metrics are evaluated for the histogram-based algorithms. It is shown that histogram 

intersection works best while the choice of color space and histogram dimensionality has less 

impact, as long as not only luminance information but also color information is considered. The 

approach of Yeo and Liu [189], using approximated DC-frames and a local thresholding technique 

within a sliding window, outperforms the other five approaches, achieving a recall of 79% and a 

precision of 88%. Furthermore, Gargi et al. have investigated the impact of source effects to shot 

detection algorithms, such as choice of encoder and bit rate. Although the algorithm of Yeo and 

Liu still performs best, this approach is more sensitive to source changes than the second best 

algorithm proposed by Shen and Delp [139].  

4.2.2 APPROACHES FOR SHOT BOUNDARY DETECTION 

Apart from the surveys presented above, a number of approaches for shot boundary detection are 

presented in the following. From the large set of proposals, the most popular approaches and the 

most recent advances in the field have been chosen.  

To detect cuts, a straightforward approach is to measure the differences between the pixels of 

consecutive frames, but this approach is very sensitive to object motion, camera motion, brightness 

changes and noise [87]. Many approaches (e.g., [139] and [188]) propose the use of histograms since 

they are less sensitive to motion and the other events mentioned above. The estimated dissimilarity 

between consecutive frames is commonly used to decide whether there is a cut at frame k. 

Therefore, a rule is required to make a decision about the presence of a cut based on these 

measurements. An early popular method is the twin comparison method suggested by Zhang et al. 

[195]: Frame dissimilarity is measured by counting the pixels that changed by more than a threshold 

n. If the percentage of changed pixels exceeds another relatively high threshold t, a cut is declared. 

In addition, if a dissimilarity value exceeds a low threshold tl, then a start of a gradual transition is 

assumed. Furthermore, dissimilarity values of the consecutive frames are added up as long as they 

exceed the lower threshold tl. If this sum exceeds the high threshold th, a gradual transition is 

declared. In case when a dissimilarity measure falls below the low threshold, the start of the gradual 

transition is dropped and the search continues at the next frame. The advantage of this method is 

that it is able to detect cuts as well as gradual transitions. However, the application of global 
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thresholds to an entire sequence results in many false alarms and missed cuts. Furthermore, the 

problem of determining an appropriate value t must be solved.  

To address this issue, Yeo and Liu [188, 189] suggest a sliding window technique and use a local 

parameter to compute a threshold separately for each window position. This window consists of 

2*m+1 frame dissimilarity measures, for a small m>0. To decide whether there is a cut at position k, 

the frame dissimilarities of the neighboring frames are taken into account. A peak at frame position 

k is considered as a cut only if it is the maximum value and if it is n times larger than the second 

largest peak in the window. This principle has been used in many variations (e. g. [11], [69], [139], 

[164]) and typically results in a robust detection performance. Furthermore, the authors show [188, 

189] for the MPEG domain (which is also proposed by Shen and Delp [139]) that it is sufficient to 

use sub-images, so called DC-frames, to achieve a good cut detection performance. The main 

advantage of using DC-frames is that the processing time is reduced. Since DC values represent the 

average value for a DCT (discrete cosine transform) transformed pixel block of size 8*8, the use of 

these values represents a kind of inherent smoothing. In total, two parameters must be set in this 

approach. Yeo and Liu report the best results for the combination of a histogram and a pixel-based 

metric, with a recall and a precision of 99% (5 videos, 386 cuts, 70768 frames). Yeo and Liu suggest 

an approach to detect gradual transitions as well. Frame dissimilarities are measured with a 

temporal distance of k, where k must exceed the duration of the longest transition. Then, the idea 

is to detect plateaus with sloping sides in such a time series, which is achieved similar to cut 

detection using a local threshold. They report a recall of about 90% and and a precision of about 

75% for 19 gradual transitions in five test videos. 

Jacobs et al. [78] present an approach for shot boundary detection which is based on RGB color 

histograms and edge change ratio. They measure frame dissimilarities for a frame distance of 5 

within a sliding window. To detect cuts, thresold parameters are used, whereas a finite state 

machine is used to detect gradual transitions. At TRECVID 2004 evaluation, their best submission 

achieved the following results: a recall of 89% and a precision of 65% for cuts, and a recall of 39% 

and a precision of 62% for gradual transitions. 

Taskiran et al. [155, 156] use multiple features including the intersection of DC-frame histograms, 

the standard deviation of color components, the number of intra-coded, forward and backward 

predicted macroblocks, and the prediction type of macroblocks in MPEG videos. The authors 

consider only cut detection but claim that their approach can be easily extended to gradual 

transition detection. The features, which are called a generalized trace by the authors, are used to 

learn a binary regression tree for decision making. To make classification more robust, features are 
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agglomerated in a sliding window of size 2m+1 around the center frame which is to be classified. 

The training consists of two steps. First, using one part of the training set, a large tree is built that 

overfits this training data. Then, in the second step, the tree is pruned back to maximize a desirable 

criteria on the remaining training data. Taskiran et al. determine the probability for a cut by applying 

the binary regression tree to a multi-dimensional feature vector for each frame [155, 156]. If two 

cuts occur within ten frames, the candidate with the lower probability is discarded. A fixed 

threshold is then used for decision making. The authors report a recall of 92% and a precision of 

94%. 

Truong et al. [164] have proposed a local mean ratio filter (recall: 97.9%; precision: 97.5%) as an 

enhancement to cut detection algorithms in order to reduce noise in frame difference sequences. 

The sum of absolute bin-wise color histogram differences is used to measure frame dissimilarity. 

Furthermore, enhancements are suggested for existing fade and dissolve detectors: Thresholds are 

selected according to mathematical models of the transition types. Finally, transitions that have 

relatively similar start and end frames are considered as false alarms and are deleted. 

Kuo and Chen [91] suggest an interesting approach to cut detection which is only based on the 

macroblock information encoded in MPEG videos. An analysis is provided on the ratio of forward 

and backward predicted macroblocks in inter-frames in the temporal neighbourhood of a cut. So 

called masks are defined to detect a cut in a particular frame type (namely I-, P-, and B-frame). It is 

argued that the number of macroblocks coded with a backward predicted motion vector is low in 

the B-frames preceding a cut, while the number of forward predicted macroblocks is low in the 

frame that represents a cut itself and the subsequent frames. Based on this observation, the 

corresponding ratios are considered to calculate the probability for a certain frame of being a cut. A 

threshold parameter is used for decision making. The approach is extended according to the twin-

comparison method [195] to detect dissolves as well. The authors report a recall of 96% and a 

precision of 98% for a test set of five videos with 61 shot boundaries. 

Tahaghoghi et al. [153] divide frames into 4*4 regions and disregard the frame center. Using a 

temporal sliding window, the similarity is computed pair-wise between all frames in this window 

using histograms of the HSV (Hue, Saturation, Value) color space. The sliding window is divided 

into pre-frames, the current frame and post-fames. The similarities are ranked with descending 

similarity, and the number of pre-frames in the top half represents the final similarity value. The 

sliding window size is a pre-defined parameter. To detect gradual transitions, similarity scores are 

computed in a slightly different way. The similarity to the current frame is computed for each frame 

in the sliding window. Then, the ratio of the average similarity of the subsequent frames (post-
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frames) and of the preceding frames (pre-frames) is calculated. Peaks in the ratio curve indicate a 

gradual transition, but the authors point out that there are still many false alarms left. These false 

alarms are removed by comparing the similarity of the transition start and end frame: A candidate is 

considered as a false alarm if these frames have a dissimilarity which is below 25% of the theoretical 

maximum dissimilarity. In the TRECVID evaluation in 2005, their best submission [170] achieved a 

recall of 92% and a precision of 93% for cuts and a recall of 73% and precision of 65% for gradual 

transitions. 

In TRECVID’s shot boundary detection evaluation task, IBM’s submissions (Smith et al. [144], 

Adams et al. [2], Amir et al. [3,4,5]) belonged to the top submissions for several years. A detailed 

description is not publicly known, however, some general ideas are reported in their papers: Their 

baseline system uses three-dimensional histograms in RGB color space, frame dissimilarities are 

computed for frames with a temporal distance of 1, 3, 5, 7, and 13. A finite state machine (FSM) 

consisting of up several states (pre-cut, cut, after cut, fade-in start and end, in shot, etc.) employs 

the dissimilarity data to decide about state transitions. A sliding window of size 61 is moved along 

the frames where the center frame is subject to analysis. For each position, adaptive thresholds 

based on the data extracted in this window are computed which are then used to decide whether a 

state is kept or another state is reached. This baseline system was extended at TRECVID 2003 [3] 

with a flash detector, a better handling of fades, an improved estimation of gradual transition 

boundaries and detection of MPEG encoding errors. At TRECVID 2005, the system achieved the 

following results: a recall of 93% and precision of 89% for cut detection, and 84% of recall and 

72% precision for gradual transition detection. 

Liu et al. [101] present an approach for shot boundary detection which is based on different 

detectors for cuts, fades, dissolves, short dissolves and wipes. Each detector is realized via a finite 

state machine with either four or five different states. Overall, sixteen different functions are used 

to decide whether a state is kept or left, these functions are evaluated based on threshold 

parameters, except for some verification steps which are based on SVM. The video is analyzed 

frame by frame using the FSMs, and state changes are based on comparing one or more features 

with pre-defined or adaptive thresholds. For cut and dissolve detection, a SVM is applied to verify 

transition candidates. Eighty-eight intra- and inter-frame features are extracted, the inter-frame 

features are extracted for a frame distance of 1 and 6. The intra-frame features measure the 

histogram mean, variance, skewness, flateness, dynamic range and edge ratio in horizontal and 

vertical direction. The inter-frame features measure the difference for these features for two 

different frames, histogram distance in HSV space, but also include motion features and measures 

for matching error and matching ratio of two frames. For dissolve verification, another set of 
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specialized features is used including predominantly variance (of brightness) and edge features. The 

features are extracted from a region of interest (i.e., the frame border is ignored). The authors 

report the following results for the TRECVID 2006 test data: a recall of 89.4% and precision of 

90.4% for cut detection, and a recall of 77.5% and precision of 85.8% for gradual transition 

detection. 

Each of the approaches mentioned so far depends on an adequate threshold parameter setting. The 

class of statistical approaches tries to avoid threshold setting in order to deal with this problem. For 

example, Hanjalic [69] estimates the distribution of frame dissimilarities for both cuts and non-cuts 

in a training stage and uses a likelihood ratio test for decision making to minimize the average 

detection error. The dissimilarity metric is based on motion-compensated pixel differences of 

subsequent DC frames. Due to the small size of DC-frames, the motion compensation is estimated 

for pixel blocks of size 4*4 in order to remove artefacts based on motion. Three features are 

considered: First, the likelihood for a frame dissimilarity value (not) being a cut depending on its 

height is considered. Second, the conditional probability for a boundary presence is introduced 

which considers the fact that a cut is represented by a sharp isolated peak in a sliding window of 

frame dissimilarity series of size 2m+1. Third, a priori knowledge is included, namely that the 

probability for a shot boundary increases with the number of frames elapsed since the last shot 

boundary. Although there are not any thresholds in the decision stage, several parameters have to 

be estimated in the training stage, in particular for the distributions of intra-shot and inter-shot 

dissimilarity values. A Gaussian distribution is assumed for the inter-shot values. In total, eight 

parameters must be trained in advance: three parameters describe the distribution of intra-shot 

dissimilarities, two parameters describe the distribution of inter-shot dissimilarities, and one 

parameter is needed for both the conditional probability function and the Poisson distribution 

which is used to model the distribution of shot lengths. Finally, a parameter is needed to describe 

the sliding window size. Furthermore, a statistical dissolve detector is suggested by Hanjalic. 

Dissimilarities between frames are measured at a larger temporal distance (e.g., frame distance of 

22). At those positions, where dissimilarity is the maximum in a sliding window, the variance 

characteristic is analyzed. The conditional probability for a dissolve is defined by the relative change 

of variance in the sliding window. A perfect detection performance of 100% recall and precision is 

reported for a small test set of five videos having 104 cuts, 79% recall and 83% precision are 

reported for dissolve detection (23 dissolves in the test set). 

Bescós [10] analyzes several frame disparity functions, these are functions which measure frame 

dissimilarities. Deterministic (e.g., summation of absolute differences), statistic parametric (e.g., 

likelihood ratio test) as well as statistic non-parametric disparity functions are considered. The 
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metrics are evaluated based on the measure of divergence, an index that describes the separability 

of two classes. To detect cuts in MPEG-2 videos, Bescós chooses two metrics which accomplish 

the best divergence between the classes “cuts” and ”non-cuts” [11]: Addition of squared pixel 

differences (Y channel) from DC-frames and a likelihood ratio test for the mean and variance of 

color information (Cb and Cr channel). A third feature is computed which uses a small sliding 

window of size 1. Furthermore, a simple supervised parallelepipedic classifier is applied to learn a 

classification function. Regarding gradual transitions, Bescos shows that divergence between 

transition and non-transition class increases when the frame distance is increased from 1 up to at 

least the transition length, whereas the metric choice is not crucial for divergence. Several 

characteristics must be met by a gradual transition: First, in the time series with frame distance n 

(n≥L, where L is transition length) the frame center of the sliding window should have a maximum 

value. Second, the peak should be reached gradually. For such frame positions, a three-dimensional 

feature vector is created that captures the properties of a typical triangular pattern caused by a 

gradual transition in a time series with frame distance n>1. Results are reported for a subset of the 

MPEG-7 test set (2074 cuts, 460 gradual transitions): 99% recall and 95% precision for cuts, and 

87% recall and 66% precision for gradual transitions. 

Chua et al. [26] propose a unified approach to detect cuts and gradual transitions by using a 

temporal multi-resolution approach. It is realized by applying a wavelet transform to frame 

histograms and other measures. The authors use histogram differences as well as a coarse 

representation of MPEG motion vectors. First, they detect candidates from the set of local maxima 

and then they apply an adaptive thresholding technique. Finally, they use support vector machines 

to find an optimal hyperplane to separate cuts and non-cuts. Their baseline approach [26] using 

histogram metrics achieved a recall of 98% and precision of 78% while the extended version [27] 

includes motion information as well as a refinement approach with support vector machines that 

achieved a recall of 93% and a precision of 96 % for cut detection, and a recall of 89% and a 

precision of 88% for gradual transitions (MPEG-7 video test set). However, results at the 

TRECVID 2002 evaluation are significantly worse: recall and precision of about 70-75% for cuts 

and 38% recall and 47% precision for gradual transitions [22]. 

Zheng et al. [197] propose a shot boundary detection framework which is based on a cut detector, a 

fade detector and a gradual transition detector. Several features are extracted from both the 

compressed and the uncompressed domain: mean and standard deviation of pixel intensities for 

fade detection, color histogram, pixel-wise difference measures for cut and gradual transition 

detection, and motion vector information which is used for gradual transition detection only. The 

fade detector is based on monochrome frame detection and tracking using several pre-defined 
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thresholds. To detect cut candidates, a second-order difference measure is compared against a 

threshold. The second-order difference is computed by subtracting neighbored difference 

measures. Cut candidates are post-processed by a flashlight detector and a gradual transition filter. 

To detect gradual transitions, the authors distinguish between short and long transitions where the 

twin comparison method [195] is used to detect the short ones. To detect long gradual transitions, a 

finite state automata model is employed. Gradual transition candidates must first pass an adaptive 

threshold tl that is based on motion measured by motion vector analysis. If three subsequent 

dissimilarity measures fall below this threshold, then the end of the transition is assumed. A gradual 

transition is declared if the sum of all dissimilarity measure is above a second threshold th.. Yuan et 

al. [191, 193] extend this method via a graph partition model for temporal video shot segmentation 

in which a graph is built based on multi-pair frame similarity measures. Within a sliding window, 

frame similarity is measured for all frame pairs. While each frame is considered as a node in a graph, 

these similarity values are considered as the related edge weights. The graph partition model tries to 

divide this graph in two subgraphs A and B by optimizing an objective function: the association 

between the two subgraphs has to be minimized whereas the association in a subgraph has to be 

maximized. Yuan et al. incorporate the graph partition model into the original framework and 

substitute some components of [192] by using support vector machine for cut detection and 

gradual transition detection. One SVM is trained for cut detection, three SVMs are trained for 

gradual transition detection for different temporal resolutions using the TRECVID test sets of 

2003 and 2004. At TRECVID 2005, this approach achieved the top f1-measure for video cut 

detection and belonged to the best two approaches for gradual transition detection. 

Lelescu and Schonfeld [93] suggest statistical sequential analysis for shot boundary detection. They 

extract DC-frames from I- and P-frames and reduce dimensionality of DC-frames to a small M by 

using principal component analysis. This way, a sequence of feature vectors is generated 

representing the P- and I-frames. The problem of shot change detection is viewed as a sequential 

change detection problem in the parameters of the probability density function associated with the 

feature vector random process. Two models are introduced for shot changes, the additive change 

and non-additive change in the parameter space. Experimental results show that the additive model 

outperforms the non-additive model in both recall and precision (for a test set having 206 shot 

changes, containing 93 special effects, i.e., gradual transitions): recall is increased from 81% up to 

92% and precision is increased from 65% up to 72%. Both statistical sequential analysis methods 

outperform a standard histogram comparison approach.  

Boccignone et al. [15] present an approach to shot boundary detection which is motivated by the 

human perception of visual scenes. Humans view a scene by moving their eyes across several 
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fixation points (up to four times a second) and integrating the gathered information. The visual 

attention process naturally filters out unwanted information and brings relevant information to the 

observer’s consciousness. The eye movements result in a visumotor trace of a world view, and the 

authors intend to model the visumotor process [15]. First, in a pre-attentive stage, salient points 

(focus of attention: FoA) are extracted from an image at different scales, and these features form a 

saliency map. Then, these locations of interest are traversed in the order of decreasing saliency 

which results in a scanpath (according to the visumotor trace). Finally, the higher perceptual level is 

modelled in which the observer infers about a shot change by analyzing his own visumotor trace. 

Therefore, a function M(t) is defined that represents the consistency between two scanpaths based 

on a pairwise comparison of FoA according to their corresponding scan path order. The function 

M(t) is based on three consistency types: local spatial consistency (position of FoA), local temporal 

(difference of viewing time) consistency and local visual consistency (based on histogram and 

texture). Histograms are created with respect to M(t) for shot boundaries and intra shot changes on 

training sequences and their ideal distributions are derived from the histograms. Then, the time 

series is analyzed using a likelihood ratio test based on M(t) to decide whether there is a cut or a 

dissolve at a certain frame position. The authors achieved an average recall of 97% (dissolves: 92%) 

for cuts and an average precision of 95% (dissolves: 89%) for a test set of 130 minutes, including 

1304 cuts and 336 dissolves. Part of their own test set was a subset of the TRECVID 2001 shot 

boundary test set (about 20% of the whole test set), for which an overall performance of 92.5% is 

reported. This small video test set consists of 10 short sequences including 422 cuts and 185 

dissolves. Unfortunately, due to partial selection of video sequences it is hard to compare to other 

approaches at TRECVID 2001. 

The use of clustering algorithms is a possibility to overcome the need for a training stage that 

usually requires a lot of manually labeled data.  

Günsel and Tekalp [68] use two dissimilarity features (absolute histogram difference and Chi2-

statistics) and propose the k-means algorithm for clustering. The dissimilarity values of subsequent 

frames are passed to the clustering process, the cluster with the larger mean vector is considered as 

the shot change cluster. If subsequent frames are in this cluster, these frames are considered as a 

gradual transition. The authors report a recall of 79% and a precision of 90% for a news video test 

set containing 167 shot boundaries (both cuts and gradual transitions).  

Gao and Tang argue [56] that a clear distinction between the two classes cuts and non-cuts cannot 

be made and suggest a fuzzy k-means algorithm. Two features are used in their approach: frame 

dissimilarities based on a pixel-wise metric as well as on a histogram-based metric. The frame 
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dissimilarities are processed in two stages at different temporal resolutions. In the first stage, the 

number of cut candidates is minimized by considering only the differences between each n-th 

frame. In this way, the authors intend to prevent a performance degradation of the k-means 

algorithm, since it usually works best when the (two) classes are of comparable size. The frame 

dissimilarities of the coarse temporal resolution are then used to obtain fuzzy membership values 

for each of both classes. Finally, the representatives of the "fuzzy" set must be assigned to one of 

the classes in case of cut detection. The candidates with a fuzzy membership of [0.4, 0.6] are 

defuzzified by introducing a new metric. This metric is the result of multiplying the values obtained 

from the histogram and the pixel-based metric. The local maximums using the new metric are 

considered as cuts. Now, the classification algorithm is repeated for the shot transitions found at 

the temporal resolution n, but the original temporal resolution (frame distance of 1) is considered 

now in order to find the exact cut positions. If subsequent frames are in this cluster, these frames 

are considered as a gradual transition. In total, five parameters must be set in this approach. Two 

parameters are used to define the range of the "weak" membership values which are used as input 

to the defuzzifying process. Furthermore, the estimation of local maximums must use at least one 

parameter and the fuzziness must be set. Finally, the sub-sampling of the coarse temporal 

resolution is defined by the parameter n. The detection performance reported for this approach is a 

precision of 96.5% and a recall of 98.1%, including gradual transitions, for a quite large test set of 

14 news video sequences with 3893 shot boundaries in total (12 news videos, 3468 cuts, including 

detection performance of gradual transitions). 

4.2.3  PERFORMANCE ANALYSIS 

Despite the TRECVID evaluation efforts since 2001, it is quite difficult to answer the interesting 

question which shot boundary detection approaches work best, in particular for those proposals 

which have not been evaluated at TRECVID. Several authors have presented very good results for 

the shot boundary detection task in recent years but unfortunately some of these approaches have 

not been evaluated on a publicly available test set (e.g., TRECVID or MPEG-7). Nevertheless, we 

try to compare some of the top approaches discussed in the previous section and to make 

conclusions about their relative performance. Table 2 and Table 3 summarize the performance of 

approaches which were evaluated on (at least on a part of) one of the TRECVID test data sets or 

the MPEG video test set, respectively. 

Some TRECVID results in terms of the f1-measure are presented in Table 2 for the following 

approaches: Amir et al. [3, 4, 5], Boccignone et al. [15]¸ Chua et al. [26, 27], Volkmar and 

Tahaghoghi [170], and Zheng et al. [197]. Since the results are obtained on TRECVID test sets 

from different years, it is difficult to compare them directly. However, the fact is employed that 
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IBM (Amir et al. [3, 4, 5]) participated in the shot boundary detection task annually since 2001 and 

according to their TRECVID reports, the used system did not change significantly over the years. 

In this way, it is possible to roughly compare also the TRECVID 2005 results with those of 

Boccignone et al. [15] and Chua et al. [26, 27] which were obtained on earlier TRECVID test sets.  

For cut detection, Table 2 depicts that the graph partition approach of Zheng et al. [197] achieves 

the best result (f1: 93.5 on the TRECVID 2005 test set), followed by the approach of Volkmar and 

Tahaghoghi [170] (f1: 92.3 on the TRECVID 2005 test set) which uses a threshold-based approach 

based on pairwise frame similarities for different frame distances. Furthermore, it is observable in 

Table 2 that IBM’s approach (Amir et al. [3, 4, 5]) outperforms the approaches of Boccignone et al. 

[15] and Chua et al. [26, 27] on the corresponding TRECVID test data sets of 2001 and 2002, 

respectively. Two research groups presented results on the MPEG-7 video test set: Bescos [11] and 

Chua et al. [26]. Although Chua et al. report also results for TRECVID 2002 test set, it is hard to 

conclude how the performance of Bescos’ approach is related to the approaches summarized in 

Table 2. 

Table 2: Performance results in terms of F1-measure for selected 
approaches which have been evaluated on a TRECVID benchmark test 
set. Chua et al. report an increasement with respect to their baseline system 
of 10.0 in terms of f1-measure [27]. 

With respect to the detection of gradual transitions, Zheng et al. [197] and IBM’s approach [5] 

achieved best performance on the TRECVID 2005 test set in terms of the f1-measure (78.9 and 

77.6). Regarding the other approaches, it can be stated that they achieved worse results compared 

to both top approaches (except for Boccignone et al.’s approach [15] for which conclusions are not 

Approach Type TRECVID 

Test Set 

Cuts [F1] Gradual 
Transitions 

[F1] 

Amir et al. [3] Threshold-based, Finite 
State Machine 

2001 97.0 66.8

Amir et al. [4] Threshold-based, Finite 
State Machine 

2002 92.5 77.0

Amir et al. [5] Threshold-based, Finite 
State Machine 

2005 91.2 77.6

Boccignone et al. [15] Statistical hypothesis test  2001 
(Subset)

(92.5)

Chandrashekhara/Feng/Chua [22] 
(Chua et al. [27]) 

Thresholding (+Supervised 
Learning/SVM) 

2002 71.6 
(+~10.0) 

41.9 
(+~10.0)

Volkmer and Tahaghoghi [170] Thresholding 

 

2005 92.3 68.3

Zheng et al. [197] Graph partition 
model/SVM 

2005 93.5 78.9
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possible since the results are not separated for cuts and gradual transitions) but it is hard to make 

conclusions about the relative performance of the other approaches.  

Approach Type MPEG-7 Test Set Cuts [F1] Gradual 
Transitions 

[F1] 

Bescos [11] Supervised Learning Subset of MPEG-7 97.0 75.0 

Chua et al. [27] Supervised Learning/SVM Subset of MPEG-7 94.0 88.0 

Table 3: Performance results in terms of F1-measure for selected 
approaches which have been evaluated on parts of MPEG-7 video test set. 

It should be noted that there are some methodological issues with respect to the experimental 

results of Boccignone et al. [15], Chua et al. [27], and Bescos [11] though they use parts of 

commonly available video test sets. Boccignone et al. [15] use only a small subset of the TRECVID 

2001 SB test set and do not explain whether evaluation has been conducted according to the 

TRECVID standard evaluation procedure. Furthermore, the authors present a performance of 92.5 

for this part of their test set, but their results are not reported separately for cuts and dissolves. 

Hence, it is not clear whether their approach is competitive to the top TRECVID 2005 approaches. 

Bescos [11] gives detailed information about which videos of the MPEG-7 test set have been used. 

However, for the targeted application, the videos have been transcoded to MPEG-2 which 

removes the useful original property of the videos that they had been encoded with different 

encoders. As it will become clear in the next chapter, different encoder strategies might lead to 

artefacts in frame dissimilarity measurements. Furthermore, Bescos trained a simple classifier on 

one half of the test set which is a critical issue since this classifier possibly overfits to this half of the 

test set. While the approaches of Chua et al. and Bescos achieve similar results for cut detection, 

Chua et al.’s approach probably outperforms Bescos’ approach for gradual transition detection. 

However, this cannot be concluded based on the information given by the authors due to missing 

information about the experimental setting. 

Chua et al. report [27] very good results for a part of the MPEG-7 test set and mention that their 

extension (ATMRA) with SVM improved the baseline system (TMRA), which has been evaluated 

at TRECVID 2002 [22], by about 10.0 in terms of the F1-measure for all transitions. Considering 

the results achieved at TRECVID 2002, it is concluded that ATMRA’s performance is below those 

of the top 2005 TRECVID approaches.  

4.2.4 SUMMARY  

Several approaches have been suggested for the task of shot boundary detection in recent years. 

These approaches are divided into three classes: rule-based and parameter-dependent approaches, 
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approaches using supervised learning, and approaches using unsupervised learning. There are still 

many threshold-based approaches which work surprisingly well. However, empirically finding a 

reasonable threshold setting that works well on arbitrary videos remains an unsolved issue. 

Certainly, this is one of the reasons for the fact that statistical approaches and supervised learning 

dominate the field of shot boundary detection. Using supervised learning, the issue of parameter 

estimation is shifted to the applied machine learning method or to a statistical test that minimizes 

the probability of a detection error, respectively. There are relatively few approaches which use 

unsupervised learning to solve the problem although they can avoid the need for labeled training 

data which is time-consuming to create. Nevertheless, the successful cut detection approaches have 

at least one of the following properties: 

• A sliding window technique is used; 

• Frame dissimilarities are extracted for several frame distances; 

• An ensemble of classifiers is applied. 

Among the participants of the TRECVID shot boundary tasks in 2005 and 2006, the approaches 

of Amir et al. [3, 4, 5], Liu et al. [101], and Yuan et al. [192, 193, 194] belonged to the most 

successful sytems with respect to gradual transition detection. These approaches have the following 

properties in common. All of them use finite state automata, however, Yang et al. exchange it in 

their subsequent approach with a SVM [193, 194]. Also, several frame distances are used in the 

successful approaches. Interestingly, Liu et al. [101] use only one frame distance (length: 6) which is 

greater than 1. Amir et al. [3, 4, 5] and Liu et al. [101] used multiple pair-wise frame dissimilarities in 

the temporal neighborhood of the frame of interest. Only Yang et al. [193, 194] employ a temporal 

multiresolution approach. Liu et al. [101] use specialized transition detectors with respect to 

transition types, whereas Yang et al. [193, 194] apply several SVMs for different temporal 

resolutions.  

4.3 PERFORMANCE COMPARISON STUDY 

4.3.1 INTRODUCTION 

On the one hand, the TRECVID conference series provides valuable insights into the performance 

of shot boundary detection algorithms. On the other hand, this comparison is restricted to those 

approaches which are submitted by their inventors to TRECVID for evaluation. However, in 

recent years many algorithms for shot boundary detection have been proposed in the literature, but 

to the best of our best knowledge, the last performance comparison study (apart from the 
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TRECVID conference series) was published in 2000, based on approaches which were published 

between 1993 and 1995. Hence, this chapter basically tries to answer the question: “Which shot 

boundary detection approach currently performs best?” In addition, a second research question is 

addressed which has not been investigated extensively yet: “how robust are different detection 

principles”, that is how does the quality of shot boundary detection approaches depend on: 

• different test sets, 

• different training sets, 

• parameter tuning, and  

• particular videos. 

4.3.2 THE EVALUATED ALGORITHMS 

To answer the questions stated above, five representative high-quality approaches with different 

functional principles have been selected: the “winner” of the last comparison study [57], namely the 

popular and well known local thresholding approach proposed by Yeo and Liu [189], an approach 

relying on advanced statistical methods [69], a proposal using fuzzy unsupervised learning [56], an 

approach that is based on selecting metrics which achieved the best separability of classes 

“transition” and “non-transitions” on a training set (extended by us with a supervised learning 

scheme), and an approach based on motion information in compressed MPEG videos [91]. The 

five algorithms used in our performance comparison study were described in more detail in the 

previous chapter of this thesis. Three of these five approaches also include a method to detect 

gradual transitions.  

All mentioned approaches were (re)implemented by us to run under the same conditions, according 

to the descriptions provided by the authors in their publications. Four different TRECVID test sets 

(from 2004 to 2007) and the comprehensive MPEG-7 video test set, all including more than eighty 

videos (>35 hours), are employed to draw a fair comparison of the detection performance.  

It should be mentioned explicitly that the subsequently reported results are obtained with our 

implementation of the algorithms under investigation. There are many possibilities to introduce an 

implementation bias such that we might not have achieved the possibly best results for a particular 

algorithm. Of course, we have tried our best to achieve the optimal performance for each of the 

algorithms, but we certainly cannot guarantee the same implementation. However, the use of the 
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TRECVID and MPEG-7 test sets and the available ground truth data allow other researchers to 

test their algorithms on the same test set. 

4.3.2.1 THE VIDEO TEST SET 

Publicly available test sets have been used in our experiments to allow other researchers further 

comparisons: four different TRECVID SBD test sets (from the years 2004 to 2007) and the 

MPEG-7 test set. Our experimental MPEG-7 test set consists of 33 MPEG-1 videos, excluding the 

video hallo.mpg and the surveillance videos "speedwa*.mpg" and "etri*.mpg" because they contain 

no perceptible shot changes. Furthermore, the uncompressed videos in the MPEG-7 test set have 

been excluded. The ground truth data of the MPEG-7 test set are available from the authors of 

[26]. Some errors in the ground truth data were corrected. Finally, our test set consists of ca. 30 

hours of video containing 13667 cuts.  

4.3.2.2 EXPERIMENTAL SETUP 

The MDC decoder (Li and Sethi [94]) has been selected for MPEG video decoding. In our 

experiments, approximated DC-frames have been used for feature extraction in any test case. The 

estimation of recall and precision is according to TRECVID’s evaluation for the shot boundary 

detection task. Gradual transitions shorter than five frames are considered as cuts, detected cuts are 

only matched against ground truth cuts and detected gradual transitions are only matched against 

ground truth gradual transitions. 

4.3.2.3 TRAINING STAGE 

As already mentioned, the approaches of Hanjalic and the SVM approach need a training stage. In 

the following, it is described how the parameters of these approaches are estimated during training. 

4.3.2.3.1 Parameter Estimation for Hanjalic’s Approach 

The parameters for the distribution of inter-shot dissimilarities are estimated using the TRECVID 

2004 SBD test set. The parameters are estimated by analyzing the training videos and calculating 

the corresponding histograms for frame dissimilarities. The parameters for the distributions of 

intra-shot and inter-shot dissimilarities are estimated based on these histograms. The conditional 

probability function is simply approximated by a straight line, and the parameter for the shot 

length, which is modeled via a Poisson distribution, is taken from Hanjalic’s paper.  

4.3.2.3.2 Parameter Estimation for the SVM Approach 

The videos of a particular test set are used to train the SVM. For the RDF kernel, the parameters 

gamma and the regulatory factor c are automatically estimated. A range of [-16, 3] is investigated for 

gamma, while for c the range [-4, 8] is checked with a step width of 1 for each. The best 
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combination of both values is estimated in order to achieve the possibly best accuracy for the 

training videos using three-fold cross validation.  

4.3.3 CUT DETECTION EXPERIMENTS 
4.3.3.1 FIRST EXPERIMENT: PERFORMANCE COMPARISON 

Our first experiment has been conducted to investigate the performance of the algorithms, using 

the same parameters and frame dissimilarity metrics as described in the corresponding papers (as 

far as possible). The most important parameters are listed below for each approach separately. 

Algorithm A (Yeo/Liu [189]): The sliding window parameter (window size is 2m+1) has been set to 

m=10 since the video material used in their paper had a frame rate of 15 frames per second, in 

contrast to the majority of TRECVID videos which have a frame rate 29.97. The thresholding 

parameter is set to n=2; three-dimensional RGB histograms are used. 

Algorithm B (Hanjalic [69]): All parameters are set according to [69]. The distribution of intra-shot 

dissimilarity values is approximated by the parameter set (1.33, 4, 2), and the distribution of inter-

shot dissimilarity values by the expected mean of 42 and a variance of 10 (multiplied with 16 in our 

implementation to be compliant). The shot length parameter µ is set to 100. Our implementation 

uses a simplified linear conditional probability function. The sliding window parameter is set to 

m=10. The frame dissimilarities are computed using motion-compensated pixel differences. 

Algorithm C (Gao/Tang [56]): The range of values for defuzzification is set to [0.4, 0.6], the 

estimation of the local maximum in the defuzzifying stage is done within a window of size 2m+1, 

with m=5. The parameter n for the sub-sampling to achieve the coarse temporal resolution is set to 

10. Better results were achieved with the fuzziness set to 1.5 (instead of a fuzziness of 2 as used by 

Gao and Tang [56]). 

Algorithm D (Kuo/Chen, [91]): The threshold parameter for decision making (minimum 

probability to represent a cut) is set to 0.4.  

Algorithm E ([11]): The three-dimensional feature vector as proposed in the paper is used. A 

sliding window size of 2*10+1 is used for selecting negative training samples and for cut candidate 

selection during the tests.  

The results for the different approaches on the TRECVID 2005 test set are presented in Table 4: 

F1, recall and precision are reported with respect to the total number of cuts as well as the mean 

and standard deviation of these measures with respect to the results for the particular videos. The 
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shot boundary detections of the tested approaches are evaluated according to the TRECVID 

evaluation procedure [162]. Table 4 shows that the SVM approach with pre-selected metrics (E) 

achieves the best detection performance in terms of the f1-measure (90.4) in case that the 

parameters of the approaches are set as described in the related papers. The fuzzy clustering 

approach C and the statistical approach B work sufficiently well. The local thresholding approach A 

achieves a less satisfactory result. The approach E which is based on MPEG motion information 

lacks on precision. Obviously, for all approaches the results are worse than reported by the authors 

in their papers. As a consequence, additional experiments have been conducted in order to improve 

the results of all approaches by either training new models or adjusting parameter settings. 

Results TRECVID 2005 [%] F1 Recall Prec. Mean F1 
(±Std. Dev.)

Mean Recall 
(±Std. Dev.) 

Mean Prec. 
(±Std. Dev.) 

A: Local thresholding [189] 64.4 57.0 74.0 64.9 (±19.7) 63.5 (±22.1) 78.9 (±23.6)

B: Likelihood ratio test [69] 82.2 87.1 77.8 82.1 (±11.9) 88.5 (±8.2) 79.1 (±17.7)

C: Fuzzy Clustering [56] 85.0 90.8 79.9 84.2 (±07.3) 89.9 (±05.3) 80.0 (±11.3)

D: MPEG data [91] 19.1 56.0 11.5 40.5 (±26.5) 57.2 (±12.1) 47.8 (±35.4)

E: Optimal disparities (SVM) [11] 90.4 87.4 93.7  90.8 (±04.0) 88.0 (±06.0) 94.0 (±03.0)

Table 4: Experimental results for cut detection on the TRECVID 2005 
test data for the different approaches using the parameter settings as 
described in the related papers. 

4.3.3.2 SECOND EXPERIMENT: PARAMETER OPTIMIZATION 

In addition to the baseline “paper” experiment, experiments have been conducted with respect to 

different test sets and different trainings sets (for the approaches of supervised learning). The 

parameters and classification models have been adjusted or trained using the TRECVID 2004 test 

set. The parameters of the different approaches are adjusted as follows.  

Algorithm A (Yeo/Liu [189]): The sliding window parameter is set to m=16, the thresholding 

parameter n is set to 1.23. This parameter combination yields a well balanced detection 

performance on the TRECVID 2004 data in terms of recall and precision (f1 is approximately 

84.0). Three dimensional RGB histograms of DC frames and histogram intersection are used to 

compare subsequent frames. 

Algorithm B (Hanjalic [69]): The distribution of intra-shot dissimilarity values inter-shot 

dissimilarity values is estimated using the TRECVID 2004 test set. Except for this parameter, the 

same parameters are used as in the baseline approach. The estimated parameters are as follows: the 

parameters for intra-shot distribution are (0.02, 1.36, 0.06), while the estimated parameters for the 

inter-shot distribution are (374.5, 160). The sliding window size parameter m is set to 10. 
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Algorithm C (Gao/Tang [56]): Since changing parameters did not improve the performance on the 

training data, the baseline system is used for further experiments.  

Algorithm D (Kuo/Chen, [91]): The threshold parameter for decision making (minimum 

probability to represent a cut) is set to 0.5, a sliding window size of 3 is used.  

Algorithm E (Bescos, SVM extension of [11]): The parameters of the baseline model are not 

changed. The learned model is the same as in the baseline system. However, a sliding window size 

of size 2m+1 (m=10) is used. 

The results for the TRECVID SBD test set 2005 using the optimized or learned parameters are 

presented in Table 5. The mean values for recall, precision, and f1 are displayed as well as their 

mean and standard deviation (with respect to the results for the particular videos) on this test set of 

videos. Also, for each approach the worst performance for a video in the test set is listed in terms 

of f1-value (“Min. F1”). The SVM-based approach E outperforms the other approaches clearly on 

the TRECVID 2005 SBD test set, its f1-measure of 90.4 is noticeably better than the second best 

f1-measure of 84.0 (C). The second best approaches A (Yeo and Liu [189]), B (Hanjalic [69]) and C 

(Gao and Tang [56]) achieve similar performance in terms of the f1-measure (Table 5). Again, 

approach D achieves an unsatisfactory result. 

In addition, experimental results for the TRECVID test sets of 2006 and 2007 are presented in 

Table 6 and Table 7, and for the MPEG-7 test in Table 8. For the TRECVID 2006 test set, the 

SVM-based approach E again outperforms all other approaches in terms of the f1-measure, 

whereas approach B and C achieve a comparable performance on TRECVID 2007 test data. It is 

obvious that the performance of approach D strongly depends on the video test set: its f1-measure 

changes from 3.2 up to 50.2 depending on the 2006 and 2007 test set. A first analysis showed that 

the encoder of the NASA videos seemed to prefer a temporal direction for bi-directional coded 

inter-frames (B-frames). Such encoding effects are not considered by approach D which makes its 

detection performance rather unstable. Interestingly, the best approach fails completely for one 

video of the TRECVID 2007 test set. This video consists only of black-and-white shots but one of 

the features used by algorithm E [11] is based only on the chrominance color channels. 
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Results TRECVID 2005 [%] F1 Recall Prec. Mean F1 
(±Std. Dev.) 

Mean Recall 
(±Std. Dev.)  

Mean Prec. 
(±Std. Dev.) 

Min. 
F1 

A: Local thresholding [189] 82.8 84.8 81.0 82.4 (±07.4) 86.4 (±08.9) 79.4 (±08.7) 69.7

B: Likelihood ratio test [69] 82.3 72.8 94.8 84.0 (±07.7) 75.8 (±10.9) 94.9 (±03.0) 66.7

C: Fuzzy Clustering [56] 84.0 90.5 78.3 83.5 (±08.0) 89.8 (±05.1) 78.9 (±12.3) 69.5

D: MPEG data [91] 19.7 67.4 11.6  32.6 (±18.3) 68.3 (±16.7) 25.8 (±16.3) 3.7

E: Best disparities (SVM) [11] 90.4 87.4 93.7  90.8 (±04.0) 88.0 (±06.0) 94.0 (±03.0) 82.6

Table 5: Experimental results for cut detection on the TRECVID 2005 
test data for the different approaches using optimized parameter settings. 

Results TRECVID 2006 [%] F1 Recall Prec. Mean F1 
(±Std. Dev.) 

Mean Recall 
(±Std. Dev.)  

Mean Prec. 
(±Std. Dev.) 

Min. 
F1 

A: Local thresholding [189] 76.4 75.8 77.1 75.3 (±10.7) 74.1 (±13.7) 78.2 (±12.1) 57.1

B: Likelihood ratio test [69] 70.4 56.9 92.3 68.9 (±10.6) 56.0 (±12.4) 91.8 (±06.2) 52.5

C: Fuzzy Clustering [56] 76.2 83.2 70.9 75.8 (±07.5) 82.6 (±08.5) 70.3 (±08.1) 60.2

D: MPEG data [91] 50.2 66.8 40.2 49.8 (±06.1) 67.8 (±13.2) 40.4 (±06.4) 42.1

E: Best disparities (SVM) [11] 80.0 71.9 90.1 77.5 (±11.9) 70.0 (±16.1) 89.1 (±04.8) 50.3

Table 6: Experimental results for cut detection on the TRECVID 2006 
test data for the different approaches using optimized parameter settings. 

Results TRECVID 2007 [%] F1 Recall Prec. Mean F1 
(±Std. Dev.)

Mean Recall 
(±Std. Dev.)  

Mean Prec. 
(±Std. Dev.) 

Min
. F1

A: Local thresholding [189] 87.6 93.9 82.0 86.0 (±09.9) 93.5 (±11.6) 80.6 (±11.5) 55.3

B: Likelihood ratio test [69] 92.2 87.2 97.8 92.1 (±07.0) 87.6 (±09.9) 97.4 (±03.7) 70.9

C: Fuzzy Clustering [56] 92.0 91.1 92.9 91.4 (±06.4) 90.4 (±07.5) 92.6 (±06.1) 71.1

D: MPEG data [91] 3.2 86.5 1.6 3.7 (±01.5) 85.9 (±06.6) 1.9 (±00.8) 1.3

E: Best disparities (SVM) [11] 92.9 89.9 96.7 89.1 (±23.2) 88.3 (±23.4) 90.1 (±23.2) -

Table 7: Experimental results for cut detection on the TRECVID 2007 
test data for the different approaches using optimized parameter settings. 

Results MPEG-7 [%] F1 Recall Prec. Mean F1 
(±Std. Dev.)

Mean Recall 
(±Std. Dev.)  

Mean Prec. 
(±Std. Dev.) 

Min. 
F1 

A: Local thresholding [189] 89.0 90.1 87.8  86.7 (±09.7) 90.3 (±11.2) 83.9 (±13.0) 55.6

B: Likelihood ratio test [69] 89.1 81.5 98.2 89.0 (±09.6) 83.7 (±14.0) 83.7 (±14.0) 60.0

C: Fuzzy Clustering [56] 76.1 90.7 65.6 78.8 (±21.2) 89.4 (±08.7) 76.3 (±27.0) 19.8

D: MPEG data [91] 7.5 79.5 3.9 25.6 (±31.2) 83.0 (±17.7) 24.2 (±33.8) 1.3

E: Best disparities (SVM) [11] 90.1 86.4 94.1 91.2 (±10.4) 87.9 (±14.2) 94.8 (±07.2) 58.6

Table 8: Experimental results for cut detection on the MPEG-7 video test 
set for the different approaches using optimized parameter settings. 
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ALL Test Sets [%] F1 Recall Prec. Mean F1 
(±Std. Dev.)

Mean Recall 
(±Std. Dev.)  

Mean Prec. 
(±Std. Dev.) 

Min. 
F1 

A: Local thresholding [189] 84.7 86.5 83.0 83.9 (±10.3) 87.3 (±13.0) 81.4 (±11.7) 55.3

B: Likelihood ratio test [69] 84.6 75.3 96.4 85.4 (±11.9) 78.5 (±16.5) 95.7 (±04.9) 52.5

C: Fuzzy Clustering [56] 80.4 89.2 73.3 81.9 (±15.8) 89.5 (±08.3) 79.4 (±20.3) 19.8

D: MPEG data [91] 7.8 75.1 4.1 26.0 (±26.3) 78.6 (±16.5) 22.2 (±26.3) 1.3

E: Best disparities (SVM) [11] 88.7 84.3 93.6 87.9 (±14.6) 84.9 (±17.4) 92.6 (±12.5) -

Table 9: Experimental results for cut detection on the MPEG-7 video test 
set for the different approaches using optimized parameter settings. 

On the MPEG-7 test set, the statistical approach B outperforms the other approaches with an f1-

value of 89.1. This is the only test set for which the fuzzy clustering approach is significantly worse 

than other approaches (f1: 76.1). Its decreased performance is caused by six videos for which only a 

precision of less than 50% could be achieved. 

Results TRECVID 2005 
“NEWS” [%] 

F1 Recall Prec. Mean F1 
(±Std. Dev.) 

Mean Recall 
(±Std. Dev.)  

Mean Prec. 
(±Std. Dev.) 

A: Local thresholding [189] 80.9 79.4 82.6 83.3 (±7.3) 83.9 (±11.7) 83.7 (±07.0)

B: Likelihood ratio test [69] 78.1 67.0 93.5 78.1 (±6.8) 67.0 (±08.8) 93.5 (±02.6)

C: Fuzzy Clustering [56] 81.6 88.9 75.4 82.9 (±7.0) 88.8 (±05.3) 78.3 (±10.4)

D: MPEG data [91] 45.0 57.8 36.8 44.5 (±5.7) 58.2 (±08.7) 36.3 (±05.8)

E: Best disparities (SVM) [11] 88.6 85.1 92.3 90.0 (±4.3) 87.3 (±06.6) 93.0 (±02.9)

Table 10: Experimental results for cut detection on the news video part of 
the TRECVID 2005 test data for the different approaches using optimized 
parameter settings. 

Results TRECVID 2005 
“NASA” [%] 

F1 Recall Prec. Mean F1 
(±Std. Dev.) 

Mean Recall 
(±Std. Dev.)  

Mean Prec. 
(±Std. Dev.) 

A: Local thresholding [189] 89.3 95.2 84.1 81.8 (±5.6) 92.7 (±19.6) 78.8 (±13.8)

B: Likelihood ratio test [69] 91.8 86.9 97.4 91.8 (±4.2) 86.7 (±03.5) 96.6 (±01.6)

C: Fuzzy Clustering [56] 90.1 94.5 86.1 84.6 (±4.9) 91.8 (±17.2) 80.0 (±10.8)

D: MPEG data [91] 10.5 91.1 5.6 9.0 (±5.3) 88.5 (±02.8) 4.8 (±05.0)

E: Best disparities (SVM) [11] 95.0 93.1 96.9 92.6 (±3.2) 89.5 (±05.1) 95.9 (±02.4)

Table 11: Experimental results for cut detection on the NASA video part 
of the TRECVID 2005 test data for the different approaches using 
optimized parameter settings. 

The TRECVID 2005 test set is of special interest for another reason. It consists of two different 

video sources, namely news videos and NASA documentary videos. Due to this, the results for 

these two subsets are reported in Table 10 and Table 11. It is observable that the approaches 

perform differently on these two parts of the test set. The local thresholding appracoh A and the 
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fuzzy clustering approach perform best on the NEWS data set, whereas the statistical approach B is 

better on the NASA data set. 

To summarize, the statistical approach and the local thresholding approach outperform the other 

approaches. Although the statistical approach B has some deficiencies in terms of recall, its 

precision is outstanding: clearly above 90% for each test set. If one considers only the results for 

the TRECVID test (2005, 2006, and 2007), the fuzzy clustering approach C is slightly better than 

the approaches B and C. However, on the MPEG-7 test set, the performance is rather bad caused 

by six videos for which the approach produced a large number of false alarms. Except for the 

TRECVID 2006 test set, this approach achieves a recall of above 90% for all other test sets. Using 

the parameter adjustments of the TRECVID 2004 test set, the local thresholding approach works 

surprisingly well on the different test sets. It belongs to the top approaches on the test sets of 

TRECVID 2005, 2006 and MPEG-7 video test set. Another interesting question is how much the 

quality of an approach degrades on a particular video. Regarding the top approaches, it is 

observable that their worst result on a particular video is above 50.0 on the TRECVID test sets, for 

the fuzzy clustering approach it is even above 60.0 for all TRECVID videos. However, the worst 

performance for this approach is an f1-value of 19.8 on the MPEG-7 test set. In this respect, 

approach A and B are more robust: their worst f1- value on a particular video of all test sets is 52.5 

and 55.3, respectively. 

Finally, the impact of selecting a particular training set is investigated for the three best approaches 

which need training or parameter adjustment. Therefore, the performance on the TRECVID 2007 

data was measured depending on three different training sets. The results for the approaches A, B 

and E are presented in Table 12, Table 13 and Table 14. The statistical approach is more robust 

with respect to the selection of training data, its f1-measure varies between 92.2 and 93.8, whereas 

the f1-measure for approach E lies between 90.0 and 92.9. Approach B is very stable with respect 

to precision but recall varies between 92.2% to 93.8%. Interestingly, also the approach of Yeo and 

Liu which has to rely on adequate parameter setting achieves very constant results. The estimated 

parameters seem to work well for all TRECVID sets from 2004 to 2007. 

Alg. A: Local Thresholding [189] 
Results TRECVID 2007 [%]  

F1 Recall Prec. 

Training Set 2004 87.6 93.9 82.0

Training Set 2005 88.6 93.8 84.0

Training Set 2006 87.2 94.1 81.3

Table 12: Experimental results on the TRECVID 2007 test data for the 
local thresholding approach depending on the used training set for 
learning. 
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Alg. B: Likelihood ratio test [69] 
Results TRECVID 2007 [%]  

F1 Recall Prec. 

Training Set 2004 92.2 87.2 97.8

Training Set 2005 93.8 90.5 97.4

Training Set 2006 92.4 87.6 97.8

Table 13: Experimental results on the TRECVID 2007 test data for the 
statistical approach depending on the used training set for learning.  

Alg. E: Optimal disparities [11] 
Results TRECVID 2007 [%]  

F1 Recall Prec. 

Training Set 2004 92.9 89.9 96.1

Training Set 2005 91.7 87.4 96.5

Training Set 2006 90.0 84.7 95.9

Table 14: Experimental results on the TRECVID 2007 test data for the 
approach of Bescos [11] depending on the used training set for learning.  

4.3.4 GRADUAL TRANSITION DETECTION EXPERIMENTS 

Three of the investigated five approaches include a generic gradual transition detection algorithm, 

except Hanjalic’s and Kuo and Chen’s approach, which include only a dissolve detector. In addition 

to the cut detection experiments, the gradual transition detectors of the remaining three approaches 

have been tested on the TRECVID 2005 (1155 gradual transitions) and TRECVID 2007 (206 

gradual transitions) test set. The parameters of Gao and Tang’s approach are the same as for cut 

detection, the SVM models for Bescos’ approach are learned for the following frame distances: 5, 

10, 15, 20, 25, 30, 40, and 50. The parameters for the approach of Yeo and Liu are: frame distance 

is 20, the plateau width is 3, and the local thresholding parameter is set to 2.8. The results are 

presented in Table 15 and Table 16. 

Results TRECVID 2005 [%] F1 Recall Prec.

A: Local thresholding [189] 40.4 34.9 47.9

C: Fuzzy Clustering [56] 2.0 1.0 66.7

E: Best disparities (SVM) [11] 22.5 36.7 16.2

Table 15: Experimental results for gradual transition detection on the 
TRECVID 2005 data, according to TRECVID evaluation. 

Results TRECVID 2007 [%] F1 Recall Prec.

A: Local thresholding [189] 40.0 41.3 38.8

C: Fuzzy Clustering [56] - 0.0 -

E: Best disparities (SVM) [11] 9.3 34.0 5.4

Table 16: Experimental results for gradual transition detection on the 
TRECVID 2007 data, according to TRECVID evaluation. 
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It is obvious that the results for gradual transition detection are much worse than for cut detection. 

The parameter approach of Yeo and Liu [189] achieves the best results for both test sets. It is 

aimed at detecting plateaus in a time series with a higher temporal distance. The fuzzy clustering 

approach C is practically unable to detect gradual transitions: its recall is 0% or 1%, respectively. 

Bescos’ approach achieves the best result on the TRECVID 2005 data in terms of recall but is less 

precise than approach A on both test sets. However, it has been observed that the results change 

significantly in case when also short transitions are considered as gradual transition. This is in 

contrast to the TRECVID evaluation but nevertheless these results are reported in Table 17 and 

Table 18 since they give additional insights into the capabilities of the approaches. It becomes clear 

that all approaches A and C obtain better results for detecting short gradual transitions, except for 

Bescos’ approach E. The fuzzy clustering approach seems to detect only short gradual transitions as 

reflected by the 1% recall in the TRECVID compliant experiment. Furthermore, Yeo and Liu’s 

approach (A) detects short gradual transition more often and more precisely than long transitions. 

Interestingly, our implementation of A achieves a much better result for gradual transition than 

reported in the last comparison study of Gargi et al. [58]. Gargi et al. report a recall of 31% and 

precision of 8% for their implementation of A and their test set (265 gradual transitions).  

Results TRECVID 2005 [%] F1 Recall Prec.

A: Local thresholding [189] 51.9 42.5 66.7

C: Fuzzy Clustering [56] 37.0 25.5 67.3

E: Best disparities (SVM) [11] 16.6 34.5 10.9

Table 17: Experimental results for gradual transition detection on the 
TRECVID 2005 data. In addition, short gradual transitions (with at least 
one transitional frame involved) are considered, in contrast to the results in 
Table 15 and Table 16. 

Results TRECVID 2007 [%] F1 Recall Prec.

A: Local thresholding [189] 47.5 52.0 43.7

C: Fuzzy Clustering [56] 5.5 4.0 8.9

E: Best disparities (SVM) [11] 4.9 43.6 2.6

Table 18: Experimental results for gradual transition detection on the 
TRECVID 2005 data. Also short gradual transitions (with at least one 
transitional frame involved) are considered, in contrast to the results in 
Table 15 and Table 16. 

4.3.5 SUMMARY 

In this section, several shot boundary detection algorithms with different functional principles have 

been comprehensively compared on four different test sets. Overall, for cut detection, our SVM 

realization of Bescos’ approach achieves the best cut detection performance (f1: 88.7), whereas the 
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statistical approach of Hanjalic [69] and the local thresholding approach of Yeo and Liu [189] show 

the second best performance (f1: 84.7 and 84.6). The fuzzy clustering approach has the advantage 

that no training data are needed. However, its performance for gradual transition detection is rather 

weak, the best approach is the one of Yeo and Liu which obtains a best f1-value of 51.1 on the 

TRECVID 2007 data. 

The experiments demonstrate that all approaches lack robustness and their performance depends 

more or less on the test data or training data. This is also true for the best approach. Interestingly, 

the best approach E does not detect any cuts in an old grayscale video of the TRECVID 2007 test 

set. Furthermore, the impact of training set selection has been shown empirically for the best 

supervised approaches. While the choice of the training set had only little impact for Hanjalic’s 

approach, the f1-measure varied for the SVM approach between 90.0 and 92.9 on the same test set.  
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4.4 VIDEO CUT DETECTION AND COMPRESSION ARTIFACTS  

4.4.1 INTRODUCTION 

Several research efforts have been made in recent years to address the problem of detecting shot 

boundaries in digital videos, also in the compressed video domain. This chapter focuses on the 

analysis of frame dissimilarity measurements for MPEG encoded videos. Two techniques called 

“Frame Difference Normalization” (FDN) and “GOP-oriented frame difference normalization” 

(GOP: group of pictures), respectively, to enhance the performance of cut detection algorithms are 

presented. Furthermore, the proposed methods are not limited to a particular algorithm but are 

applicable to an entire class of cut detection algorithms.  

One could argue that the problem of detecting cuts has been solved satisfactorily since many 

researchers reported very good recall and precision rates ranging up to 100% and up to 97% on 

common standard test sets (refer to performance analysis in the previous section). However, for 

example in the MPEG-7 test set which is used in our experiments there are many MPEG videos 

for which a well known high-quality cut detection algorithm [189] produces a systematic detection 

error. This kind of error has not been investigated previously, though related effects are mentioned 

in a few papers. For example, Smith et al. mention [144] that shot detection errors of their system 

were partially caused by a periodic noise pattern in dissimilarity time series at a period of 15 frames 

(one GoP), but no further analysis of this problem is provided. Gargi et al. [58] investigate the 

impact of source effects, the use of different encoders and bit rates. They show that the 

performance of all investigated shot detection algorithms varies depending on these factors, in 

particular for those approaches which use MPEG macroblock information. 

In this chapter, it will be shown that there is often a bias in frame differences depending on MPEG 

specific frame types and propose the “frame difference normalization” (FDN) technique to reduce 

such “noise” patterns. Furthermore, it will be shown that frame difference measurements can vary 

systematically even for identical frame type transitions depending on their relative position within a 

GOP. Another method called “GOP-oriented frame difference normalization” (GFDN) to handle 

such errors is proposed. The basic idea of our approach is to adequately normalize frame 

dissimilarities with respect to certain compression artefacts in order to increase the detection 

quality. The performance of our proposal will be demonstrated by presenting experimental results 

for the MPEG-7 test set which is well suited for evaluation of this kind since it includes videos 

from several encoding sources. It is worth mentioning that the approach is general in the sense that 

it can be used in conjunction with an entire class of cut detection algorithms, namely those based 

on pixel-wise or histogram-based frame difference metrics and operating on MPEG videos. The 

work presented in this chapter has been partially published in [36, 37]. 
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4.4.2 PROBLEM ANALYSIS 

MPEG encoders try to achieve a certain bit rate so there is not an arbitrary number of bits an 

encoder could use to encode a frame. Since an I-frame is encoded without any reference frame, the 

number of required bits is proportionally high compared to P- or B-frames (inter-coded frames). 

Otherwise, the degree of accuracy can vary depending on the frame type due to effects of motion 

compensation (e.g., inaccuracy or quantization of macroblock differences). For example, 

information loss might be large in I-frames since no reference frame can be used to encode this 

current frame. On the other hand, the number of available bits to encode this frame is restricted. 

Thus, the only way to control this restriction is the quantization process because variable run length 

encoding can not arbitrarily reduce the number of coding bits. Due to quantization, pixel 

information is lost and image quality usually decreases. But the image quality of the next inter-

coded frame usually benefits from motion compensation and usually approximates the original 

frame content better than intra-coded frames. Furthermore, the number of bits usable for P-frame 

and B-frame encoding are restricted, too, such that an error propagation is possible for these frame 

types as well.  

Thus, often a bias can be found in the estimated frame differences in MPEG videos. This bias 

depends on the properties of the frames that were involved in the calculation. The difference values 

can be estimated e.g. either with histogram or pixel based metrics. For a commonly used IPB-

pattern like “IBBPBBPBBPBBIB...” there are at least five different frame type transitions: I to B, B 

to B, B to P, P to B and B to I. For example, for the video sequence “riscos-sl.mpg” from the 

mentioned MPEG-7 test set the average difference values for specific frame transitions were 

calculated. These average values varied from 140 (B to B) up to 240 (B to I). The difference values 

result from comparing histograms with 512 bins (YUV-combined) for approximated DC-frames. 

However, deeper analysis reveals that not only the involved frame types play an important role but 

also the relative frame positions within a GOP (group of pictures). For example, in Figure 24 the 

Figure 24, left: Average difference values for different GOP positions 
normalized in relation to the minimum difference for “riscos-sl.mpg”, using 
decoded full frames. Right: Average difference values for the same video, 
normalized in relation to the minimum difference as well, but approximated 
DC-frames were used. 
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average frame differences can be seen for each relative GOP position calculated for the video 

“riscos-sl.mpg”. These values are normalized in the way that each value is divided by the minimum 

average. The following properties can be observed in Figure 24: 

1. Two of the three largest peaks can be found for the transitions involving an I-frame.  

2. The difference between two consecutive B-frames is consistently small.  

3. The differences for the more frequent transition types vary depending on their GOP position. 

The first property is not surprising since an I-frame is encoded without any reference frame. Thus, 

it is obvious that there are noticeable differences to the neighboring B-frames which were rebuilt 

based on prediction and motion compensation. Also, for the second property it is understandable 

that there are no noticeable differences between frames having the same frame type.  

The third property is mainly observable for the transition type P-B in this example. The last P-B 

transition has the largest difference value for this kind of transition type. This can be explained by 

the subsequent I-frame because the B-frame can refer to this I-frame for motion compensation 

purposes as well as to the previous P-frame.  

The effects described so far are potentially present in any MPEG video but their strength may vary 

strongly depending on the encoder used, bit rate and so on. Another reason for this is that an 

encoder’s motion estimation method is not defined but only the bitstream syntax is defined. 

Obviously, for a given bitrate, the encoding quality depends on the quality of the motion estimation 

process. Also, there is an error propagation within a GOP from P to P frame, and of course, also 

from P to B frame when a B-frame refers to a P-frame. Furthermore, although prediction error 

data will be encoded too, these data can not balance the errors because they are usually quantized.  

Figure 25, left: Difference for approximated DC-frame and DC-frames 
that are reconstructed based on the fully decoded frame. Right: 
Example for a possible false alarm detection at frame 2882: there are 
nearly no changes between frame 2881 and 2882 but frame 2882 is an I-
frame. 
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The effects described above are enforced or overlaid when approximated DC-frames are used (see 

Figure 24 and Figure 25). It can be easily understood by considering the way approximated DC-

frames are reconstructed. In general, motion vectors do not point exactly to DCT block boundaries 

where each block has size 8*8 pixels in MPEG format and is represented by DC coefficients in DC 

frames. If a DC value has to be reconstructed using a motion vector, in general this vector points to 

a block position including parts of the four neighboring DCT blocks. The first-order 

approximation suggested by Shen and Delp [139] and Yeo and Liu [188], respectively, uses a 

weighted sum of the DC values of the four neighboring blocks, and thus produces an (tolerable) 

error. In Figure 25 this effect is demonstrated by comparing the pixel differences between 

approximated DC-frames and the corresponding exactly reconstructed DC-frames belonging to the 

same video. It is obvious that there are no differences between two I-frames but an increasing error 

from P to P frame within a GOP (the GOP size is 15 here) until the next I-frame is involved. 

The consequences for histogram and pixel based cut detection algorithms can be pointed out more 

clearly now. Let us assume that the cut detection algorithm, which has been proposed by Yeo and 

Liu [189], is used with parameter m=5 and the threshold value n=2 that in general gives very good 

detection results. The frame difference position with the maximum value within a sliding window is 

accepted as a cut if it is n times larger than the second largest value inside this window. In Figure 4, 

the histogram differences are shown for a nearly completely uneventful scene without any cut. 

Since the maximum difference between frame 2881 and 2882 (B->I transition) is more than n times 

larger than the second largest peak, our detector concludes that there is a cut and thus produces a 

false alarm. Many false alarms of this kind have been found in different videos. Instead of just 

increasing the parameter n which would result in a lower recall rate, a method is needed to handle 

such false alarms without reducing the recall rate significantly. 

The issue is that frame similarity sometimes does not only measure the similarity of frame content 

but also frame changes due to compression artefacts described above. Thus, it can be assumed that 

the performance of most of the cut detection algorithms mentioned in the previous section is likely 

to decrease if they are applied to the kind of MPEG videos exhibiting the noise pattern as 

described above. They are potentially affected because these algorithms use either histogram or 

pixel based metrics for frame differences.  

In the following two sections, two methods are presented to eliminate the kind of errors described 

above: “Frame Difference Normalization” (FDN) and GoP-Oriented Frame Difference 

Normalization (GFDN). 
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4.4.3 FDN: FRAME DIFFERENCE NORMALIZATION 

For FDN, a set S of tuples of possible frame transition types is defined where I, P and B match the 

MPEG frame types: 

B)} (B, P), (B, I), (B, B), (P, P), (P, I), (P, B), (I, P), (I, I),{(I,  S=  (49) 

Let s be in S, and di,s the frame difference between frame i and i+1 with the frame type transition s 

at this position. Now, the average difference value for each specific frame type transition s is 

calculated. Let f be the number of frames in a given video, and let fs be the number of frame 

transitions of type s, then the average value for a frame transition type s is estimated as shown in 

the following formula, where p is a number between 0 and 1.  
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The purpose of p is as follows: Sometimes, untypical transitions occur for a specific IPB-pattern 

because an MPEG-1 encoder can insert an I-frame at an arbitrary position which would potentially 

cause new transitions like P to I. If the encoder inserts an I-frame and potentially produces an 

untypical frame type transition with a high difference value, this could cause a very high average 

value for this transition type. Thus, it is suggested to treat only those transitions that occur with a 

minimum frequency, such as 5% of all frame transitions (p=0.05). When the set of averages Savg has 

been estimated in this way, the maximum value in Savg is chosen as the baseline value max. Now, in 

order to obtain the normalizing factor for each transition type s, max is divided by avgs: 
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where s is a certain transition type and Savg is the set of average differences for the different 

transition types. Then, each difference value is normalized by multiplying it by the appropriate 

normalization factor for its transition type (FDN). Finally, each di,s at absolute frame position i of 

the difference sequence has to be multiplied with the appropriate normfactors to obtain the 

normalized sequence d*: 
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ssisi normfactordd ∗= ,
*
,  (52) 

The sequence d* is then used in a histogram or pixel based cut detection algorithm to decide 

whether there is a cut or not. 

4.4.4 GFDN: GOP-ORIENTED FRAME DIFFERENCE NORMALIZATION 

The analysis of frame difference characteristic in MPEG videos in the previous section shows that 

there are significant differences for the same transition type within a GOP depending on its relative 

GOP position. Thus, it is adequate to consider the relative position of a frame type transition 

within a GOP. A new method to handle the MPEG-specific bias called “GOP-oriented frame 

difference normalization“ (GFDN) is proposed in this section. GFDN works as follows. First, the 

average difference value is estimated for each difference position within a GOP. Therefore, the first 

I-frame in the video sequence is located to have a good starting point and a variable index is set to 

0. This variable represents the relative GOP position of the first frame involved in frame difference 

measurement. The frame differences for each relative GOP position (index) are added up to 

calculate the average difference for each relative position. The average differences are then used to 

estimate the normalization factors for each relative GOP position but only if the frequency of a 

frame transition type exceeds a threshold p (e.g., let f be 3-4 % of the total number of frames). The 

normalization factor for each relative position s is the maximum average divided by the average 

value of s, according to (52) but s now refers to the position within the GoP and does not refer to a 

certain frame transition type, as in the FDN method. The procedure is presented in Figure 26 in 

pseudo code. FDN and GFDN can be applied to both MPEG-1 and MPEG-2 videos. 
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Figure 26: Pseudo code for GoP-oriented frame difference normalization. 

 

4.4.5 EXPERIMENTAL RESULTS 

The MPEG-7 test set is well suited to test the proposed methods since the videos are from 

different providers and encoded with different encoders. Our experimental test set consists of 33 

MPEG-1 videos, excluding the surveillance videos "speedwa*.mpg" and "etri*.mpg" because they 

do not contain perceptible shot changes. Also, the uncompressed videos have been excluded 

because the proposed technique is only relevant for the compressed video domain. Finally, our test 

set consists of about 12 hours of video containing over 5100 cuts. 

Input:  Array of frame dissimilarity values 
Output: Array of normalized frame dissimilarity values 
 
Algorithm 
 
doGOP-OrientedNormalization (double [] diff) 
{ 
  // create arrays sum, avg and count of size GOPsize 
  // find first I-x transition in video, save              
  // difference position in iStartDiff  
  // set sum[j] == 0 and for all j 
  
  iIndex = 0; 
  for each diff[i] with i >= iStartDiff 
    String diffType = difftype(i); 
    // to handle arbitrarily occurring I-frames  
 
    if (secondChar(diffType) == "I" && iIndex != GOPsize-1) then    
      iIndex = 0; 
    else 
      sum [index] += diff[i]; 
      count[index]+= 1; 
      if (secondChar(diffType) == "I") then 

  iIndex = 0; 
      else 
        iIndex++;       
  
    i++;  
   
  // calculate avg value for aech GOP position 
  for each GOP-position index 
     avg[index]= sum[index] / count[index]; 
 
  // use avg[] to calculate normalizing         
  // factors array normfactors [] 
  // that will be used to normalize diff values 
 
  float [] normfactors = getNrmFactors(avg[]); 
  
  return normalize(diff[], normfactors []); 
} 
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Unfortunately, some errors in the ground truth data (kindly provided by Chua et al. [26]) had to be 

corrected for abrupt changes due to the following reason. The three decoders (MDC decoder, Java 

Media Framework decoder and the freeware VirtualDub) that have been used showed time codes 

for cuts that differed for more than tens of frames from the ground truth data. Furthermore, our 

estimation of recall and precision accepts a cut as detected correctly only for a deviation of one 

frame.  

In our experiments, the MDC decoder [94] has been used for MPEG decoding. While this is trivial 

for I-frames, an approximation for P- and B-frames as described by Yeo and Liu [188] has been 

used. Furthermore, the cut detection algorithm of Yeo and Liu [189] has been implemented. The 

implementation works as follows: For two consecutive DC frames, the frame differences are 

estimated using a histogram metrics. Best results were obtained with a color histogram with 512 

bins (9 bits) where the Y, U and V components of each pixel have been quantized from eight to 

three bits. Each bin represents a combination of three bits for Y, U and V. A frame transition is 

accepted as a cut if the transition considered has the maximum difference value within the sliding 

window of size 2*m and is n times larger than the second largest value within the window. From 

now on, this implementation is called “Yeo/Liu implementation” (Y/L). This algorithm has been 

chosen due to its popularity and its superior performance in a comparison study [58].  

The Yeo/Liu implementation has been extended both with the proposed FDN and the GFDN 

techniques. All implementations were tested with different threshold values, since in general there is 

no possibility to estimate an optimum threshold. 

The results for the different tests are displayed in Table 19, where the number of really existing 

cuts, the number of detected cuts, the number of false alarms, the total number of errors (missed 

cuts plus false alarms), and recall and precision in % are listed. 

GFDN leads to a significant error reduction and is superior to the FDN noise reduction technique 

and the baseline implementation. Table 19 demonstrates that there is a large reduction of false 

alarms in case of n=2 while keeping a high number of correctly detected cuts is kept. This is an 

important aspect for those cases where a high rate of correct detections is desired. For example, if a 

supplementary manual correction is possible with an appropriate software tool, it is easier to delete 

false alarms than detecting missed cuts. As shown in Table 19, the precision is improved by over 

6% while recall only decreases by 0.3%. In the case of n=2.5, the total number of errors is reduced 

noticeably, too, where for n=2 the reduction of errors is significant. The GFDN method leads to 
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lower error rates than the baseline implementation. Thus, for MPEG videos GFDN is the most 

effective way to systematically reduce noise in order to enhance precision. 

Implementation 
Threshold 

Y/L 
n=2  

FDN
n=2 

GFDN
n=2 

Y/L 
n=2.5 

FDN 
n=2.5 

GFDN
n=2.5 

No. of cuts 5164 5164 5164 5164 5164 5164 

Detected  4866 4854 4811 4735 4719 4724 

False pos. 1312 1179 890 431 476 360 

Errors 1610 1489 1163 860 921 800 

Recall % 94.2 94.0 93.9 91.7 91.4 91.5 

Precision % 78.8 80.5 85.1 91.7 90.8 92.9 

Table 19: Results are presented for the MPEG-7 test set for both methods: 
FDN and GFDN. GFDN outperforms the baseline implementation and 
the FDN method. 

4.4.6 SUMMARY 

In this section, it was shown that pixel or histogram based frame difference measurements in 

MPEG videos can vary systematically for identical frame transition types and even for identical 

frame transition types depending on their relative position within a group of pictures. The 

consequences for cut detection were explained, and two new methods called “Frame Difference 

Normalization” (FDN) and “GOP-oriented frame difference normalization (GFDN)” to handle 

such errors were proposed. GFDN is a refinement of the FDN technique and both have been 

tested on the large MPEG-7 video test set based on 33 videos. In the experiments, the new GFDN 

technique led to significant improvements in precision of a “classical” cut detection algorithm. 

Overall, the systematic noise reduction in MPEG videos with GFDN was superior to FDN due to 

a more adequate denoising method. The advantage of GFDN for MPEG videos is that it reduces a 

specific noise pattern systematically whereas a general noise filter would smooth all difference 

values in the same way. Furthermore, GFDN can be added to a number of different cut detection 

algorithms, such as [11] , [27] , [69], [139], [155], and [189].  
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4.5 UNSUPERVISED SHOT BOUNDARY DETECTION 

4.5.1 INTRODUCTION 

At least one of the following drawbacks can be found in many cut detection approaches proposed 

in the literature. First, many of them have to be tuned for a given test set: either by estimating the 

best set of parameters and thresholds, or an approach has to undergo a supervised training process 

to achieve the optimal detection performance. Second, in case when supervised learning is applied, 

labeled training data must be created, and this is a time consuming task. Third, if a clustering 

algorithm is used, either the feature vectors are too simple or additional thresholds are involved. 

Additionally, often only small or unavailable video test sets have been used which makes 

comparisons difficult.  

Detecting gradual transitions is a surprisingly difficult problem in practice. For example, recall and 

precision of the best approaches evaluated at TRECVID 2006 [141] are about 10-20% lower than 

for cut detection. There are three main reasons for that. First, many different types of gradual 

transitions exist: dissolve, fade-in and fade-out, wipe, and many other effects which eventually use 

motion or 3D-effects. Second, the length of a gradual transition can be arbitrary, it ranges from one 

frame up to dozens of frames. Third, often the shot content changes slightly due to camera or 

object motion which causes many false alarms for state-of-the-art gradual transition detectors. In 

recent years, two kinds of approaches have emerged. The first type of approaches designs different 

detectors for different transition types. There are proposals for specialized dissolve detectors (e.g., 

[69, 97, 98]), fade detecors (e.g., [164]), and wipe detectors (e.g., [126]). The other class of 

approaches relies on the application of a general gradual transition detector (e.g., [11, 22, 27, 197]). 

While the use of specialized detectors promises to find corresponding effects with a higher 

accuracy, the development, adaptation and training efforts increase for this kind of approach. In 

addition, it is not clear how to deal with transition types which do not fall in one class of the 

available detector types. As shown in Table 1, other transition types might be up to 10% of all 

transitions in some applications. Thus, it is difficult to design a generic approach that works for any 

transition type.  

Furthermore, it is known that camera motion causes a lot of detection failures for gradual transition 

detectors [93]. Despite this, many approaches do not incorporate motion information or an 

appropriate false alarm removal [11, 69, 189, 195]. Other approaches use motion vector 

information present in compressed videos. Zheng et al. [197] check a gradual transition candidate 

with respect to camera motion based on motion vector analysis. Chua et al. [27] consider motion 

information in their feature vector based on compressed motion vector information, too.  
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In this section, a novel unsupervised shot boundary detection approach is presented. It is a unified 

approach that applies similar principles to detect cuts and gradual transitions. The proposed cut 

detection approach avoids any parameter or threshold setting. To achieve this aim, the cut 

detection approach consists of the following processing steps: First, a sliding window technique is 

applied to dissimilarity values of subsequent frames. Then, each sliding window is represented by 

an adequate feature vector which is normalized individually for each video. A sliding window is 

only a cut candidate if it has the maximum difference in the middle, and is thus used in the next 

step as input to a k-means clustering algorithm. In case of cut detection, the number of classes is 

known: cuts and non-cuts. Then, the corresponding classes are initialized with the candidates which 

are most similar to an ideal cut or to an ideal non-cut representative, respectively. The clusters are 

filled and optimized using the classical k-means algorithm. These steps are repeated for a 

reasonable range of sliding window sizes m. Finally, the quality of each clustering is evaluated using 

the silhouette coefficient, and the best “cuts” cluster is chosen as the detection result. In this way, 

the only remaining parameter m is estimated automatically. The main novelty is that the proposed 

algorithm works without any parameters and thresholds by measuring the clustering quality. The 

very good performance of the proposal will be demonstrated by comparing the experimental results 

on a number of test sets with re-implementations of alternative high-quality approaches. 

The proposed approach for gradual transition detection consists of three main components: a fade 

detector, an unsupervised gradual transition detector, and false alarm removal based on camera 

motion estimation. The general gradual transition detection process is preceded by fade detection 

[164] since fades can be detected more reliably than arbitrary gradual transitions. Afterwards, frame 

dissimilarities are measured at several frame distances. The main idea of the gradual transition 

detection approach is to view a gradual shot change as an abrupt shot change at a lower temporal 

resolution. Therefore, in contrast to other approaches [11, 69, 189, 195], subsampled time series of 

frame dissimilarities are considered for frame distances greater than 1. Although those previous 

approaches for gradual transition detection have considered frame dissimilarity measures at 

different frame distances, they retained the original temporal resolution for these measurements. 

Chua et al. [26] obtain a moderate subsampling of factor 4 using the wavelet transform which is 

applied to the original time series of dissimilarity values. It is typical for gradual transitions that they 

cause a plateau pattern in such measurements, which was first observed by Yeo and Liu [189]. 

However, such plateau patterns can be caused by motion as well and in practice they seldomly take 

the ideal shape which is assumed in theory. Thus, these plateau patterns are much harder to detect 

than isolated peaks. This is the main motivation for the subsampling applied in our approach. 
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Given a time series with a frame distance m which is subsampled accordingly by factor m, a gradual 

transition of length n≤m/2 should be represented by an isolated peak in the time series - as it is the 

case for a cut at the highest temporal resolution (the original resolution of the video). The creation 

of feature vectors, the use of a sliding window and the clustering process take basically place in the 

same manner as in the cut detection approach. Finally, the frame positions of the beginning and the 

end of a transition are refined optionally. Since fades are recognizable well due the apprearance of 

monochrome frames, the proposed approach to gradual transition detection is supplemented by a 

fade detector according to the approach presented by Truong et al. [164]. 

To the best of our knowledge, sophisticated algorithms for detecting sequences of camera motion 

reliably have not been applied with the aim of removing the false alarms of a gradual transition 

detector. In this chapter, a novel false alarm removal scheme based on our high-quality camera 

motion estimation approach (which is described in detail in Chapter 5) is proposed.  

The details of the cut detection and the gradual transition approach are presented in the next two 

sections. The work presented in this chapter has been partially published in [40, 42, 45, 46, 115]. 

4.5.2 VIDEO CUT DETECTION WITHOUT THRESHOLDS 

As discussed in the related work section, avoiding thresholds and other parameters in cut detection 

algorithms is a difficult problem. In this section, an algorithm is presented that does not 

incorporate thresholds and that is nearly parameter-free. In contrast to other cut detection 

approaches using clustering [56, 59], not only absolute frame dissimilarity measurements are 

considered but also a sliding window technique to enrich feature vector representation is adopted. 

No fuzzy variation for clustering is used, because this just shifts the problem of decision making 

into the defuzzifying stage in our opinion. First, the basic algorithmic steps are described before it is 

shown how the sliding window size can be estimated automatically, thus eliminating the only 

needed parameter. The algorithm works as follows: 

1.) Measure Frame Dissimilarities. The frame dissimilarity is measured for subsequent frames 

with number i and i+1 are computed, resulting in a time series for the whole video. Motion 

compensated DC frames [69] are used, the motion estimation is conducted via a full search in a 4*4 

search area. Let d be the sequence of frame differences where di is the frame difference between 

frame number i and i+1, then a sliding window ti of size 2m+1 consists of the following 

dissimilarity values:  

ti = (di-m, di-m+1, ..., di -1, di, di +1, ... di +m)  (53) 
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2.) Find Cut Candidates. To reduce the number of cut candidates, a feature vector can only be a 

cut candidate between frame position i and i+1, if di is the maximum within the sliding window, 

called max from now on.  

3.) Normalize Feature Vectors of Candidates. Several feature vector representations have been 

investigated and the max value and the second largest value within the sliding window, sec, are 

propsosed for feature vector representation. A feature vector is normalized adaptively depending 

on the given input video in the following way: The largest value dmax is estimated from the time 

series for the whole video. The normalization for the time series ti representing a cut candidate 

between frame position i and i+1 is then performed as follows: 

featureVec (ti) = (max/dmax, 1-sec/max) = (max', sec'), (54) 

where max>0 and dmax>0. Theoretically, if max=0, then sec’ is set to 0 as well. Thus, the range for 

both max' and sec' is [0, 1]. The Euclidean distance is used as a distance metric, and the set of 

candidates is then partitioned by the k-means algorithm in the subsequent steps.  

4.) Initialize the Cluster Classes “Cuts” and “Non-Cuts”. The cluster class “cuts” is initialized 

with the candidate that has the minimum distance to an ideal cut which is represented by the 

feature vector (1, 1), while the “non-cuts” class is initialized with the candidate with the minimum 

distance to an ideal non-cut which would be represented by the feature vector (0,0).  

5.) Assign Candidates to Classes. Now, the classical k-means algorithm is applied. First, the 

remaining cut candidates are assigned to the cluster class whose mean feature vector has the smaller 

Euclidean distance to the feature vector of the candidates.  

6.) Optimize Class Memberships. Finally, as long as there are members in one class with a 

smaller distance to the mean feature vector of the other class, they are assigned to the other class. 

Then, the cluster with a mean feature vector nearer to the “ideal cut” feature vector is considered as 

the “cuts”-cluster. 

However, experimental results presented in the next section show that the sliding window size 

affects detection performance significantly. Consequently, it is shown how the algorithm can be 

extended to estimate a suitable sliding window size. The silhouette coefficient (SC) for a clustering 

is usually computed in order to find a good estimate of k, if the number of clusters (k) is not 

known in advance (see also Chapter 2.4.1.4). The SC is utilized to evaluate the quality of the “cuts 
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cluster” C which was obtained for a certain sliding window size. The SC for a feature vector v in C 

can be computed by formula (53) [35]: 

 { })(),(max
)()()(
vavb

vavbvSC −
=  (55) 

where a(v) is the average distance of v to the members in the same cluster C, whereas b(v) is the 

average distance of v to the members of nearest other cluster, in our case it is the “non-cuts” 

cluster. The SC(C) of the cuts cluster C is the average of the silhouette coefficients for all feature 

vectors in C. The value SC(C) is now exploited to measure the clustering quality of the cuts cluster 

for a reasonable range of sliding window sizes, and the proposed algorithm is modified as shown in 

Figure 27.  

Let us explain why it is justified to call this approach parameter-free. The sliding window size m is 

equivalent to the number of frames which can be between two cuts so that it is desirable to have 

the value m as low as possible. On the other hand, a very low m results in many candidates and 

many false alarms. Setting maxSize to an unreasonably high value, the range of investigated values 

for m includes at least the reasonable values and even some more inadequately high values (e.g., 

m>12 or m>15, depending on common frame rates of 25 or 30). For example, let be m=12, then 

only cuts with a distance of at least 0.52 seconds could be detected, assuming a frame rate of 25 

frames per second.  

4.5.3 UNSUPERVISED GRADUAL TRANSITION DETECTION 

The proposed approach for gradual transition detection consists of three main components: a fade 

detector, an unsupervised gradual transition detector, and false alarm removal based on camera 

Figure 27: Pseudo code for the algorithm to estimate the sliding 
window size. 

Input:  Minimum and maximum sliding window size minSize and maxSize; 
Output: Estimated best sliding window size; 
 
Algorithm 
 
Find_Best_SlidingWindowSize() 
  SCmax = 0; maxIndex = 1; 
  for each window size m = minSize To maxSize 
    Compute the cuts and the non-cuts cluster for sliding window size m; 
    Compute the quality SC(C) of the cuts cluster C; 
    if SC(C) > SCmax then 
      SCmax = SC(C);  
      maxIndex=m; 
     
  return window size maxIndex; 
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motion estimation. The general gradual transistion detection process is preceded by fade detection 

[164]. The main idea of the proposed approach for gradual transition detection is to view a gradual 

shot change as an abrupt shot change at a lower temporal resolution. For this purpose, subsampled 

frame dissimilarity time series are used, in contrast to related approaches [11, 69, 189, 195]. Given a 

time series with a frame distance m which is subsampled by factor m, a gradual transition of length 

n≤m/2 should be represented by an isolated peak in the time series - as it is the case for a cut at the 

highest temporal resolution. Feature vector creation and the clustering process take place in a 

similar way as in the cut detection approach. Finally, false alarms are removed based on the results 

of a high-quality motion estimation algorithm. The main components are now described in more 

detail.  

1.) Fade Detection. The fade detector is realized according to the proposal of Truong et al. [164]. 

First-order and second-order differences are computed for mean and variance of frame luminance. 

A smooting filter is applied to reduce the impact of noise. First, monochrome frames are detected 

by checking whether the variance of a frame is below a threshold. If so, then the subsequent 

(preceding) frames are analyzed in order to find a fade-in (fade-out). The first assumption is that the 

sign of the smoothed first-order luminance mean does not change during the fading process. As 

long as this is the case, the second-order differences of the variance curve are analyzed: It has been 

observed that there is a large negative spike near the start of a fade-out or the end of a fade-in in 

the second-order difference luminance variances. To detect such spikes, the subsequent (preceding) 

values of the smoothed second-order variance differences are checked for such spikes (indicating 

the start or end frame of the fade transition) until the sign of the smoothed first-order luminance 

mean changes.  

2.) Gradual Transition Detection. After fade detection, the detection of gradual transition of any 

type takes place. First, frame dissimilarities are extracted for several frame distances. Feature vectors 

are created which describe the change in the frames via two features, as for cut detection. These 

feature vectors are then passed to the clustering process which produces two clusters: a “transition” 

cluster and a “non-transition” cluster.  

2.1) Measure Frame Dissimilarities. First, frame dissimilarities are computed based on 

histograms of approximated DC-frames. Those dissimilarities are computed for certain temporal 

frame distances ∆t. To detect gradual transitions, frames are compared at a higher temporal 

distance, for example up to 50 frames. Due to this, a histogram based metric is more suited to 

compute frame dissimilarities than a motion compensated pixel-based comparison, which is more 
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sensitive to object and camera motion. A subsampled set of frame dissimilarity values is obtained 

for each of some temporal resolutions ∆t:  

D(∆t , offset)={d0, ∆t, d1, ∆t, ..., di, ∆t, ..., dn/∆t, ∆t }, (56) 

where ∆t ∈ Ν\{0}, and di, ∆t is the dissimilarity value for the frames i*∆t+offset and (i+1)*∆t+offset, 

for all frames with (i+1)*∆t≤maxFrameNumber. As mentioned above, the idea is to view a gradual 

shot change as a cut at a lower temporal resolution. Therefore, each time series of dissimilarity 

values with frame distance ∆t is subsampled by the factor ∆t. If a gradual transition of length k (this 

might be a cut of “length” 0 as well) starts at position n, this transition should be represented in all 

time series with k<∆t/2 by a peak in the dissimilarity measurements. The variable offset allows one 

to shift a subsampled time series. This can be useful to capture also transitions with a length of 

nearly ∆t which start in the middle of two measurement timepoints: Such transitions will not yield 

an isolated peak in the time series but will produce two similar neighbored peaks of lower height. 

2.2.) Create Feature Vectors. The feature vectors are now created similarly to the task of cut 

detection and consist of the same two components: max’ and sec’. Different time series are obtained 

for the combinations of ∆t and offset. The value max’ is normalized for each time series using the 

corresponding maximum of the series. For each temporal resolution ∆t, the basic sliding window 

size of 2*m+1 is set separately based on the parameter x: m=max(x/∆t, c), where c is a constant and 

controls the minimum size for m (e.g. c=2). The parameter x represents the length of the sliding 

window at the finest temporal frame resolution, that is x represents the sliding window duration 

which is (nearly, except for rounding errors and the minimum window size c) equal for all temporal 

resolutions. By computing m separately for each ∆t, fewer dissimilarity values are taken into account 

at lower temporal resolutions due to the preceding subsampling. The sliding window is not 

extended since at lower temporal resolutions the probability increases that neighbored cuts and 

transitions could be within the sliding window and affect the usefulness of the parameter sec’. 

2.3.) Cluster Gradual Transition Candidates. The feature vectors are clustered using k-means 

(again with 2 clusters). At least three strategies are possible to cluster the time series. First, 

clustering can be conducted separately for each time series ∆t including potentially time series for 

different offsets. Alternatively, clustering can be conducted for each time series separately for each 

combination of the parameters ∆t and offset. A third possibility is to process the feature vectors of 

all time series in one clustering process. The latter requires a reasonable normalization across the 

several temporal resolutions. In our approach, the feature vectors are normalized according to the 
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maximum value of the corresponding time series. In the first two cases, the clustering result must 

be merged afterwards.  

2.4) Postprocessing of Gradual Transition Candidates. After k-means clustering, the members 

of the gradual transition cluster(s) (there are several clusters in case of clustering has been applied at 

least for each ∆t separately) must be processed further. First, all transitions are removed whose 

frame interval includes a cut according to the cut detection results. Second, there might be feature 

vectors in one “transition” cluster or in the “transition” clusters of different clusterings which have 

a frame overlap. Two possibilities are considered to merge the frame interval of the transitions: 

union and intersection.  

False alarms are removed if the start frame and the end frame are too similar, ehich is the case 

when dissimilarity value between start and end frame is below a threshold. Therefore, the average 

and standard deviation are computed for the cuts cluster with respect to histogram dissimilarity. 

Then, the threshold for false alarm removal is defined as:  

)()( cutsdissimcutsdissimthresh stddevavg −=   (57) 

A transition of length l is considered as a false alarm if the dissimilarity value at the start position in 

the time series D(∆t, 0) with ∆t=l is below thresh.  

Furthermore, a transition interval can be refined optionally. Therefore, the beginning of the 

transition is shifted forward frame by frame: If the dissimilarity of the new (start) frame and the end 

frame is equal or above to the dissimilarity value of the original start frame and end frame, the 

current frame is considered as the new transition start and the resizing process stops.  

3.) False Alarm Removal via Camera Motion Analysis. 

To enhance the gradual transition detection, camera motion estimation is applied to a video, too. 

For this purpose, the camera motion estimation approach is employed as proposed in this thesis 

and described in more detail in Chapter 5. The camera motion estimation algorithm returns a 

number of frame intervals where camera motion has been detected, separated for the following 

motion types: pan (horizontal camera movement), tilt (horizontal camera movement), and zoom 

in/out. Again, several strategies are possible to employ these results for false alarm removal. First, 

each combination of these motion types or a single motion type can be considered for false alarm 

removal. Furthermore, several cases are possible when a gradual transition has to be considered as a 

false alarm: 
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1. The frame interval of the gradual transition is completely covered by a motion interval.  

2. The frame interval of the gradual transition and the motion interval intersect.  

3. False alarm removal is applied on a frame basis: The frames that also exhibited motion are 

removed from the gradual transition. 

Empirical results have shown that the first strategy works best in practice.  

4.5.4 EXPERIMENTAL RESULTS: CUT DETECTION 

The proposed cut detection approach has been tested on four different test sets to obtain 

comparable results: the MPEG-7 video test (as suggested by Chua et al. [27]), and the TRECVID 

shot boundary test sets of the years 2005, 2006 and 2007. Our MPEG-7 test set consists of 32 

MPEG-1 videos (about 12 hours, 5164 cuts), excluding the surveillance videos "speedwa*" and 

"etri* because they contain no perceptible shot changes. The MDC library [94] is used for MPEG 

decoding. Approximated DC-frames are created as described by Yeo and Liu [188]. The DC-frame 

dissimilarities are estimated using motion compensated pixel differences as suggested by Hanjalic 

[69]. A frame transition is accepted as a cut if its feature vector is in the cluster class “cuts” and the 

evaluation procedure is according to TRECVID evaluation. 

The proposed approach is compared with two recently published state-of-the-art cut detection 

approaches (Hanjalic [69] and Bescos [11]) which reported very good detection results. Since these 

approaches require a training stage for parameter estimation and for classifier training, respectively, 

the TRECVID 2004 SBD test set has been used for training and parameter estimation. To obtain 

the best possible results, the implementation of Bescos’ approach [11] (called Alg. A from now on) 

has been changed as follows: The simple parallelepipedic classifier was substituted by a support 

vector machine (SVM) based on a radial basis function kernel. SVMs have proven to be a valuable 

tool in pattern recognition and computer vision. Furthermore, the d3 metric, as described by 

Bescos [11], is normalized to have the same range of [0, 1] for all features which is reasonable for 

the SVM. Our implementation of Hanjalic’s approach [69], called Alg. B, differs slightly from the 

original proposal, since a linear probability function has been used.  

First, the impact of the sliding window size m is investigated for each algorithm using the 

TRECVID 2005 and 2006 SBD test sets. Therefore, the different approaches are tested with 

different sliding window sizes and the automatic estimation of parameter m has been removed from 

our approach in this setting. The results of the first experiment are displayed in Table 21 - Table 23. 

It is obvious that the cut detection results depend significantly on the sliding window size, for all 
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approaches. For Hanjalic’s approach [69], best results were achieved if the sliding window size of 

m=15 was used. The unsupervised approach is tested on two different test sets. Here, it becomes 

clear that best results are obtained for different sliding window sizes on the SBD test set 2005 and 

2006. Hence, it is not optimal to use the same sliding window size for any video. In a second 

experiment, the automatic sliding window size estimation has been tested for the SBD test sets 

TRECVID 2005 and TRECVID 2006. The results are shown in Table 24 and Table 25. In one 

case when the range m=1..10 is investigated, precision decreases for the TRECVID 2005 test set. 

However, the automatic window size estimation works well for the other nine test cases. It is either 

superior (in five cases) to the best fixed sliding window size from the first experiment or it is only 

slightly worse (in four cases). This reinforces the statement that our approach is parameter-free 

since a very good estimator for m has been developed. 

Sliding Window Size Parameter F1 Recall Prec. 

M=1 89.9 90.5 89.4

M=10 90.4 87.4 93.7

Table 20: Cut detection results for the SVM extension of Bescos’ 
approach [11] for different sliding window sizes on the TRECVID 
SBD test set 2005. 

Sliding Window Size Parameter F1 Recall Prec. 

M=5 80.6 88.9 73.8

M=10 82.2 87.1 77.8

M=15 88.1 85.1 91.3

Table 21: Cut detection results for Hanjalic’s approach [69] for 
different sliding window sizes on the TRECVID SBD test set 
2005. 

Sliding Window Size Parameter F1 Recall Prec. 

M=5 83.1 88.7 78.1

M=10 86.4 86.8 86.1

M=15 87.5 84.9 90.2

Table 22: Cut detection results for the proposed approach for different 
sliding window sizes on the TRECVID SBD test set 2005. 

Sliding Window Size Parameter F1 Recall Prec. 

M=5 82.9 81.7 84.1

M=10 83.1 78.5 88.2

M=15 81.9 75.8 89.1

Table 23: Cut detection results for the proposed approach for different 
sliding window sizes on the TRECVID SBD test set 2006.  
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Range (maxSize) F1 [%] Recall [%] Precision [%] 

m=1..10 80.6 87.7 74.6 

m=1..15 88.0 86.6 89.5 

m=5..15 87.2 86.7 87.7 

m=5..20 87.3 84.5 90.2 

m=1..20 87.1 84.3 90.0 

Table 24: Results for different ranges for automatic sliding window size 
estimation on TRECVID 2005 test set.  

Range (maxSize) F1 [%] Recall [%] Precision [%] 

m=1..10 83.5 80.0 87.3 

m=1..15 83.5 79.3 88.1 

m=5..15 83.4 79.1 88.3 

m=5..20 82.6 77.1 88.9 

m=1..20 83.3 78.8 88.3 

Table 25: Results for different ranges for automatic sliding window size 
estimation on TRECVID 2006 test set. 

In a further experiment, the unsupervised approach is compared with the approach of Bescos 

which we extended with a SVM classifier. The results for the different TRECVID test sets 2005, 

2006 and 2007 and the MPEG-7 test set are displayed in Table 26 - Table 29. The results show that 

the proposed unsupervised approach outperforms the SVM approach on three of four test sets. 

Table 30 summarizes the results for all test sets. The overall performance on all test sets is slightly 

better, too. In addition, the performance of the unsupervised approach is more stable than the 

SVM approach, in particular with respect to precision but also in terms of recall and f1-measure. As 

a final surplus, the approach obtains satisfactory results even in the worst case, whereas the SVM 

approach fails completely for one video of the TRECVID 2007 test set. 

TRECVID Test Set 2005 [%] F1 Recall Prec. Mean F1 
(±Std. Dev.)

Mean Recall 
(±Std. Dev.)  

Mean Prec. 
(±Std. Dev.) 

Min. 
F1 

Prop. Unsupervised Approach 87.4 84.4 90.5 88.4 (±6.7) 86.0 (±9.4) 91.4 (±4.8) 73.1

Best disparities (SVM) [11] 90.4 87.4 93.7  90.8 (±4.3) 88.0 (±6.0) 94.0 (±3.0) 82.6

Table 26: Cut detection results on TRECVID data 2005. Comparison of 
the proposed unsupervised approach with the approach of [11] extended 
with SVM. 
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TRECVID Test Set 2006 [%] F1 Recall Prec. Mean F1 

(±Std. Dev.)
Mean Recall 
(±Std. Dev.)  

Mean Prec. 
(±Std. Dev.) 

Min. 
F1 

Prop. Unsupervised Approach 82.6 77.1 88.9 81.6 (±06.2) 77.4 (±13.7) 88.8 (±6.1) 58.5

Best disparities (SVM) [11] 80.0 71.9 90.1 77.5 (±11.9) 70.0 (±16.1) 89.1 (±4.8) 50.3

Table 27: Cut detection results on TRECVID data 2006. Comparison of 
the proposed unsupervised approach with the approach of [11] extended 
with SVM. 

TRECVID Test Set 2007 [%] F1 Recall Prec. Mean F1 
(±Std. Dev.)

Mean Recall 
(±Std. Dev.)  

Mean Prec. 
(±Std. Dev.) 

Min. 
F1 

Prop. Unsupervised Approach 94.5 94.7 94.2  94.2 (±05.8)  94.3 (±06.5) 94.2 (±06.4) 79.8

Best disparities (SVM) [11] 92.9 89.9 96.7 89.1 (±23.2) 88.3 (±23.4) 90.1 (±23.2) -

Table 28: Cut detection results on TRECVID data 2007. Comparison of 
the proposed unsupervised approach with the approach of [11] extended 
with SVM. 

MPEG-7 Test Set [%] F1 Recall Prec. Mean F1 
(±Std. Dev.)

Mean Recall 
(±Std. Dev.)  

Mean Prec. 
(±Std. Dev.) 

Min. 
F1 

Prop. Unsupervised Approach 92.0 88.4 96.0 91.3 (±08.8) 90.0 (±13.5) 94.3 (±5.7) 60.8

Best disparities (SVM) [11] 90.1 86.4 94.1 91.2 (±10.4) 87.9 (±14.2) 94.8 (±7.2) 58.6

Table 29: Cut detection results on MPEG-7 video data set. Comparison of 
the proposed unsupervised approach with the approach of [11] extended 
with SVM. 

ALL Test Sets [%] F1 Recall Prec. Mean F1 
(±Std. Dev.)

Mean Recall 
(±Std. Dev.)  

Mean Prec. 
(±Std. Dev.) 

Min. 
F1 

Prop. Unsupervised Approach 89.4 86.2 92.9 89.8 (±08.7) 88.1 (±12.8) 92.8 (±06.1) 58.5

Best disparities (SVM) [11] 88.7 84.3 93.6 87.9 (±14.6) 84.9 (±17.4) 92.6 (±12.5)  - 

Table 30: Cut detection results with respect to all data sets. Comparison of 
the proposed unsupervised approach with the approach of [11] extended 
with SVM. 

4.5.5 EXPERIMENTAL RESULTS: GRADUAL TRANSITION DETECTION 

Finally, results for the unsupervised gradual transition detection approach are reported on the test 

sets of TRECVID 2005 and 2007 and compare it to the best approach of our comparison study 

[189]. Several experimemts are conducted on TRECVID 2005 SBD test set to investigate the 

impact of different parameters: frame distances, feature vector representation, sliding window size, 

clustering type, and false alarm removal. Table 31 - Table 37 show results for different frame 

distances. In each table, results are presented for several sliding window sizes using the feature 

vector representation (max’, sec’). In addition, for the frame distances 6, 25, and 50, results are listed 

in the corresponding tables using only max’ as a feature for two sliding window sizes. Several 

observations can be made. First, when using only a single frame distance, the frame distances 
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between 10 and 50 are able to achieve an f1-value of more than 0.6, best results are obtained using 

the frame distance of 25 and 30. Increasing the sliding window increases precision and decreases 

recall, as expected. Sliding window sizes greater than 2 reduce f1 measure in most cases noticeably. 

Using only the max feature (and not also the feature sec) yields a higher recall at the cost of precision 

(please see Table 31, Table 34, and Table 37). Hence, the sliding window size and the feature sec are 

useful parameters to increase precision.  

Frame distance 6: window size parameter M F1 Recall Precision 

M=6 54.5 43.2 73.9 

M=3 55.2 46.2 68.7 

M=2 (only max feature) 55.3 60.8 50.7 

M=2 55.5 47.6 66.6 

M=1 (only max feature) 47.9 70.7 36.2 

M=1 53.6 47.5 61.5 

Table 31: Results for a frame distance of 6 for different sliding window 
sizes. 

Frame distance 10: window size parameter M F1 Recall Precision 

M=6 58.2 47.0 76.5 

M=3 62.6 55.0 72.7 

M=2 62.2 56.0 70.0 

M=1 60.9 58.0 64.2 

Table 32: Results for a frame distance of 10 for different sliding window 
sizes. 

Frame distance 20: window size parameter M F1 Recall Precision 

M=6 49.8 36.4 78.7 

M=3 61.7 51.5 76.8 

M=2 64.7 56.9 75.0 

M=1 66.1 61.6 71.3 

Table 33: Results for a frame distance of 20 for different sliding window 
sizes. 

First, different sets of frame distances are tested. Second, it is investigated which clustering strategy 

works best: clustering the feature vectors of all frame distances together or separately. Third, 

different sliding windows sizes are subject to analysis. Finally, the impact of false alarm removal 

based on camera motion estimation is anaylzed. The results in Table 46 show that the proposed 

approach outperforms the method of Yeo and Liu clearly. 
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Frame distance 25: window size parameter M F1 Recall Precision 

M=6 44.0 30.3 80.6 

M=3 59.0 46.8 79.8 

M=2 64.1 54.0 78.7 

M=2, only max feature 66.1 61.0 72.2 

M=1 67.3 61.0 75.1 

M=1, only max feature 64.8 69.1 61.0 

Table 34: Results for a frame distance of 25 for different sliding window 
sizes. 

Frame distance 30: window size parameter M F1 Recall Precision 

M=6 39.1 25.9 79.5 

M=3 55.9 43.3 79.0 

M=2 61.6 50.6 78.7 

M=1 65.7 58.1 75.6 

Table 35: Results for a frame distance of 30 for different sliding window 
sizes. 

Frame distance 40: window size parameter M F1 Recall Precision 

M=6 29.7 18.2 80.0 

M=3 49.0 35.2 80.8 

M=2 57.4 44.8 79.8 

M=1 64.0 55.0 76.6 

Table 36: Results for a frame distance of 40 for different sliding window 
sizes. 

Frame distance 50, window size parameter M F1 Recall Precision 

M=6 26.5 15.9 79.0 

M=3 42.0 28.4 80.6 

M=2, max only 54.2 42.3 75.3 

M=2 51.1 37.8 78.9 

M=1, max only 62.1 55.6 70.2 

M=1 61.3 50.6 77.6 

Table 37: Results for a frame distance of 50 for different sliding window 
sizes. 

In Table 38, results are presented for some combinations of different frame distances. Two 

clustering types are distinguished: using the feature vectors for different frame distances in one 

clustering process (“all”), or in separate clustering processes (“separate”). The feature vector 
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consists of the features max and sec and the sliding window size parameter was set to 1. In all cases, 

the results are better than using only one frame distance. The clustering strategy does not seem to 

have much impact on the final result.  

Frame distances (clustering type) F1 Recall Precision 

6, 25 (all) 66.3 66.8 65.8 

6, 25 (separate) 66.5 66.3 66.7 

20, 40 (all) 67.7 64.7 71.1 

20, 40 (separate) 68.0 65.1 71.1 

25, 30 (all) 69.6 66.0 73.7 

25, 30 (separate) 69.5 65.8 73.6 

6, 50 (all) 63.8 61.5 66.3 

6, 50 (separate) 63.8 61.4 66.5 

25, 50 (all) 67.2 62.0 73.7 

25, 50 (separate) 67.8 62.5 74.1 

6, 25, 50 (all) 66.6 66.1 67.1 

6, 25, 50 (separate) 65.0 64.7 65.4 

Table 38: Results for thr combinations of different frame distances. Two 
clustering types are distinguished: using the feature vectors for different 
frame distances in one clustering process (“all), or in separate clustering 
processes (“separate”). 

In Table 39, results are presented for different strategies to remove false alarms. The first strategy 

relies on the histogram-based comparison of the first and the last transition frame. The second 

strategy employs camera motion estimation. The best result in terms of f1-measure (69.8) is 

achieved when only pan is considered for false alarm removal, whereas uing all camera motion 

types is less effective and yields the worst result.  

 
Frame distances (strategy of false alarm removal) F1 Recall Precision 

25, 30 (no false alarm removal) 67.6 77.8 59.7 

25, 30 (histogram-based false alarm removal: avg-1.0*stdev) 69.6 66.0 73.7 

25, 30 (histogram-based false alarm removal: avg-1.5*stdev) 69.5 68.0 71.0 

25, 30 (histogram-based false alarm removal: avg-2.0*stdev) 67.6 68.7 66.5 

25, 30 (false alarm removal based on all camera motion types) 59.6 58.7 60.5 

25, 30 (false alarm removal based on pan) 69.8 76.7 64.1 

Table 39: Results for different strategies of false alarm removal.  

Table 40 and Table 41 show results for gradual transition detection in case when either the feature 

max or the the feature sec is used. Interestingly, the results are rather good for the feature max, in 
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best case an f1-measure of 69.4 is obtained in conjunction with a false alarm removal strategy. As in 

the preceding experiment, the incorporation of a second frame distance yields only a slight 

improvement in terms of f1-measure. 

Frame distances (clustering type, features, false alarm removal) F1 Recall Precision 

25 (max, no false alarm removal) 61.1 78.7 49.9 

25 (max, histogram-based false alarm removal: avg-1*stdev) 69.4 66.7 72.4 

25 (max, histogram-based false alarm removal: avg-1.5*stdev) 68.6 68.5 68.7 

25 (max, histogram-based false alarm removal: avg-2*stdev) 65.0 69.6 61.0 

25 (sec, no false alarm removal) 50.0 54.1 46.5 

25 (sec, histogram-based false alarm removal: avg-1*stdev) 57.0 45.5 76.2 

25 (sec, histogram-based false alarm removal: avg-1.5*stdev) 56.3 47.1 70.1 

Table 40: Performance for gradual transition detection when only one 
feature is used. Tested in conjunction with different false alarm removal 
strategies. 

Frame distances (features, false alarm removal strategy) F1 Recall Precision 

25, 30 (max, no false alarm removal) 59.9 83.4 46.7 

25, 30 (max & sec, no false alarm removal) 67.5 77.8 59.6 

25, 30 (max, false alarm removal: pan) 62.6 82.2 50.5 

25, 30 (max, histogram-based false alarm removal: avg-1*stdev) 70.0 69.0 71.0 

25, 30 (max, histogram-based false alarm removal: avg-1.5*stdev) 69.0 71.6 66.5 

25, 30 (max, histogram-based false alarm removal: avg-2*stdev) 64.1 72.8 57.2 

25, 30 (max, histogram-based false alarm removal: avg-2*stdev, pan) 66.5 71.9 61.9 

Table 41: Performance for gradual transition detection when only one 
feature is used but two frame distances. Tested in conjunction with 
different false alarm removal strategies. 

Frame distances (clustering type, false alarm removal) F1 Recall Precision

20, 25, 30 (all, no false alarm removal) 66.3 82.9 55.2

20, 25, 30 (all, histogram-based false alarm removal) 69.6 68.8 70.4

20, 25, 30 (all, histogram-based false alarm removal, pan) 72.5 67.9 77.8

20, 25, 30 (all, histogram-based false alarm removal, avg-2*stdev) 66.4 72.5 61.2

20, 25, 30 (all, false alarm removal:pan) 69.7 81.6 60.8

20, 25, 30 (all, histogram-based false alarm removal: avg-2*stdev, pan) 69.3 71.5 67.3

20, 25, 30 (all, histogram-based false alarm removal: avg-2.5*stdev, pan) 69.2 71.8 66.8

20, 25, 30 (all, max, no false alarm removal) 54.8 87.0 40.0

20, 25, 30 (all, max, histogram-based false alarm removal) 69.2 70.4 68.1

20, 25, 30 (all, max, histogram-based false alarm removal, pan) 72.3 69.6 75.3

Table 42: Performance for gradual transition detection when thrre frame 
distances are used. Tested in conjunction with different false alarm 
removal strategies and features. 
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Table 42 shows results in case three frame distances are used. Those frame distances are selected 

which achieved the best results when used as the only frame distance. The best result is achieved in 

case when both false alarm removal strategies are applied.  

Frame distances, (clustering type, false alarm removal) F1 Recall Precision

6, 10, 20, 30, 40, 50 (all, no false alarm removal) 26.1 85.0 15.4

6, 10, 20, 30, 40, 50 (all, histogram-based false alarm removal, avg-0.5*stdev) 64.3 59.6 69.8

6, 10, 20, 30, 40, 50 (all, histogram-based false alarm removal) 66.2 68.0 64.4

6, 10, 20, 30, 40, 50 (all, histogram-based false alarm removal, avg-2*stdev) 54.4 72.1 43.7

6, 10, 20, 30, 40, 50 (all, histogram-based false alarm removal, pan, avg-0.5*stdev) 67.1 59.0 77.7

6, 10, 20, 30, 40, 50 (all, histogram-based false alarm removal, pan) 70.3 67.4 73.5

6, 10, 20, 30, 40, 50 (all, histogram-based false alarm removal, avg-2*stdev) 58.7 71.5 49.8

Table 43: Results for six or seven different frame distances, combined with 
different parameter settings.  

Frame distances, (clustering type, false alarm removal) F1 Recall Precision

6, 10, 20, 30, 40, 50 (all, max, no false alarm removal) 12.5 89.2 6.7

6, 10, 20, 30, 40, 50 (all, max, histogram-based false alarm removal) 63.8 67.8 60.2

6, 10, 20, 30, 40, 50 (all, max, histogram-based false alarm removal, pan) 68.0 67.1 69.0

6, 10, 20, 30, 40, 50 (all, max, pan) 13.3 88.4 7.2

Table 44: Results for six or seven different frame distances used in 
conjunction with the feature max only, combined with different false alarm 
removal strategies. 

 
Frame distances, (clustering type, false alarm removal) F1 Recall Precision

6, 10, 20, 30, 40, 50 (all, win=24, no false alarm removal) 66.8 81.2 56.8

6, 10, 20, 30, 40, 50 (all, win=24, histogram-based false alarm removal) 68.2 67.7 68.8

6, 10, 20, 30, 40, 50 (all, win=24, false alarm removal: pan) 70.6 80.2 63.1

6, 10, 20, 30, 40, 50 (all, win=24, histogram-based false alarm removal, pan) 71.0 66.8 75.8

Table 45: Results for six or seven different frame distances used in 
conjunction with sliding window size parameter 24, combined with 
different false alarm removal strategies 

Finally, the combination of more than three frame distances has been tested, using six or seven 

different frame distances: 6, 10, 20, 30, 40, and 50. The results are displayed in Table 43, Table 44, 

and Table 45. It is obvious that the use of more than one frame distance does not improve 

detection quality, the combination of three frame distances yields best results.  
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Results for gradual transition detection 
on TRECVID 2005 [%] 

F1 Recall Prec. 

Unsupervised Approach 70.3 67.4 73.5 

Local Thresholding (Yeo and Liu [189]) 40.4 34.9 47.9 

Table 46: Results for gradual transition detection on the TRECVID 2005 
test set for the proposed approach and the local thresholding approach of 
Yeo and Liu [189]. 

Overall, some conclusions can be drawn from these experiments. The use of three frame distances 

seems to be sufficient for gradual transition detection. The clustering strategy does not have much 

impact on the final result. The tradeoff between recall and precision can be controlled by the sliding 

window size applied in the feature selection process, the use of the sec feature acts in a similar way. 

Careful use of the false alarm removal strategy allows one to increase precision while recall remains 

quite stable. In particular, considering pan seems to be most reliable for false alarm removal based 

on camera motion. Regarding the false alarm removal based on histogram comparison, the 

threshold (t=avg-c*stddev) achieves best results for c=1 or c=1.5. 

4.5.6 SUMMARY 

A novel unsupervised approach approach for shot boundary detection in videos has been 

presented. The basic idea of the approach is to classify time series of frame dissimilarity 

measurements into cuts and non-cuts by using the well known k-means clustering algorithm. For 

cut detection, the impact of parameter and threshold settings is completely removed. The critical 

estimation of the sliding window size is achieved by measuring the clustering quality using the 

silhouette coefficient. Our proposal for cut detection was evaluated using several video test sets and 

outperformed our re-implementation of two other high-quality approaches. The unsupervised 

gradual transition approach works similar to the cut detection approach but is supplemented with 

fade detector and a false alarm removal process. The latter is based on high-quality camera motion 

estimation approach. The unsupervised shot boundary detection approach was evaluated at 

TRECVID 2005 and achieved very good results. For cut detection, an f1-measure 90.0 was 

achieved (recall: 93.6%, precision: 86.4%), for gradual transition detection an f1-measure of 70.0 

was obtained (recall: 71.5%, precision: 68.4%) which is competitive to the best approaches. In 

contrast to the best systems at TRECVID, our approach requires neither labeled training data [197] 

nor a particular parameter tuning [5]. 



 Chapter 4 - Robust and Adaptive Shot Boundary Detection 119 
  

 

4.6 VIDEO CUT DETECTION USING AN ENSEMBLE OF CLASSIFIERS 

4.6.1 INTRODUCTION 

The proposed unsupervised approach to shot boundary detection has the advantage that labeled 

training data are not required. Also, the unsupervised approach works for arbitrary video data, 

independent of recording circumstances, compression artefacts and genre. However, in cases when 

some of those properties of the video data are known in advance and labeled data are available, 

supervised machine learning approaches are possibly a good choice to improve detection 

performance. In particular, the use of an ensemble of classifiers promises a benefit since it has been 

shown that an ensemble of classifiers can improve accuracy in recognition tasks [89]. In this 

section, the question is investigated whether the cut detection performance can be improved by 

combining multiple “experts”. Since most transitions in a video are abrupt (without any transitional 

frames between the different shots), the ensemble supplements the unsupervised approach for cut 

detection. Experimental results demonstrate that an ensemble consisting of the unsupervised 

approach, an Adaboost classifier and a SVM can outperform a single classifier for the task of cut 

detection. The work presented in this chapter has been partially published in [42]. 

4.6.2 PROPOSED ENSEMBLE OF CLASSIFIERS FOR VIDEO CUT DETECTION 

Two factors determine the accuracy of an ensemble: the accuracies of the single classifiers and the 

diversity of their outputs [20]. To achieve diversity, several strategies have been discussed in 

Chapter 2.4.5. In this chapter, the combination of different classifier types is tested. Many 

supervised machine learning techniques are applicable for the given task, for example naive Bayes 

classifier, k-nearest-neighbor, neural networks, Hidden Markov Models, Support Vector Machine. 

On the other hand, there are meta-learning methods like bagging, boosting and stacking. Among 

the boosting methods, Adaboost is a very popular method. Since SVM has proven to yield very 

good results in many pattern recognition tasks, SVM is chosen as the first classifier for the 

ensemble. As a second classifier Adaboost based on weak classifiers has been chosen since a feature 

selection process can be incorporated (in the case when each weak classifier is based on one 

feature). A feature selection process is useful in order to reduce the SVM training effort.  

The ensemble is built in the following way. First, a set of features is defined which represents the 

dissimilarity of two frames with respect to brightness, color, edges and motion, and with respect to 

different frame distances. Then, an Adaboost classifier is trained on a training set. Thereby, some 

features are selected in the Adaboost training process. Only these features are used to train a SVM 

on the training set. Finally, the original unsupervised approach and the two additional classifiers 

form an ensemble. A frame position is considered as a cut if at least two of the three classifiers vote 

for “cut”. The features are described in more detail in the next subsection.  
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4.6.2.1 FEATURE EXTRACTION 

For the task of cut detection, 42 features for a certain frame distance were defined which describe 

the dissimilarity of DC-frames with respect to global histograms, pixel blocks, edges, and local 

histograms. Haar-Wavelet like features have been used to capture frame changes over time, as they 

are used in the face detection approach of Viola and Jones [167] to describe spatial changes in 

image regions. Let A and B be intervals, each of the size of a pre-defined frame distance t>0, d a 

time series of values (e.g., histogram-based frame dissimilarity values or luminance mean for each 

frame), then the feature types fAB(d, i) and fA1A(d, i) for frame position i are defined as: 
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Overall, the following set of features is computed for the ensemble cut detection approach. 

• Motion compensated pixel-based dissimilarities (3 features): Motion compensation is 

conducted by estimating the best block matches for 4*4 sized pixel blocks in the DC frame. 

Pixel differences are then measured based on the best block matches. Also, the feature 

representations fAB and fA1A are calculated for these frame dissimilarity measures. 

• Sliding window size features (15 features): ratio of the second largest dissimilarity value divided 

by the local maximum for several sliding window sizes, for the motion compensated pixel-

based dissimilarities. 

• Histogram-based dissimilarities (3 feature): histograms are used for the YUV color space, the 

most significant 3 bits of each color channel are combined, yielding a histogram size of 512 

bins. Also, the feature representations fAB and fA1A are calculated for these frame dissimilarity 

measures. 

• Frame differences of mean and variance of Y-luminance channel (6 features): Both measures 

are computed for each frame, the difference of two consecutive frames is considered as the 

dissimilarity value. Also, the feature representations fAB and fA1A are calculated for the mean and 

variance measures. 
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• Edge histograms of Sobel-filtered (vertically and horizontally) DC-frames (6 features): A 

histogram is computed for each filtered image. Dissimilarity values are then computed in the 

same way as for the previously described features (2 features). The feature representations fAB 

and fA1A are calculated for these frame dissimilarity measures (4 features). The following Sobel 

masks are used to filter a DC-frame vertically or horizontally: 
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• Local histogram dissimilarity features (9 features): Each DC-frame is divided into nine non-

overlapping regions of equal size, histograms are computed locally for each region and 

dissimilarity of two frames is calculated for each region separately.  

Adaboost is utilized for feature selection where the best m≤n features are used to train a SVM on 

the same test set of 2004. Two frame distances (1 and 2) were investigated resulting in a total 

feature number of 84. Thus, finally there are three classifiers evaluating each frame (considering the 

unsupervised approach as a kind of classifier as well). A majority vote is implemented in our 

approach: a cut is detected if at least two “experts” vote that a frame belongs to a new shot. 

4.6.3 EXPERIMENTAL RESULTS 

The ensemble approach has been tested in conjunction with our TRECVID 2005 experiments. The 

frame distance for the second cut detection metric was set to 2. The frame distances for the gradual 

transition detection were set to: 6, 10, 20, 30, 40, 50. The MDC decoder has been used for MPEG 

decoding [94]. Feature selection using Adaboost was performed on the TRECVID [161] 2004 shot 

boundary test set. Eleven features were selected from the whole feature set to build an Adaboost 

classifier. The best 7 features were used to train a SVM (using the library “LibSVM” [23]) on eight 

of the twelve videos from the last year’s test set. Only a subset of features and videos was chosen, 

since SVM training is a very time-consuming task.  

The experimental settings and the results for the different runs are shown in Table 47. The 

parameters for the sliding window sizes had very little impact on cut detection, as discussed in the 

previous sections. Increasing the maximum sliding window size led to slightly better precision 

values whereas recall decreased very slightly. Using the classifier ensemble improved cut detection 

performance: Comparing the f1-measure for cut detection (see f1-measures for all submitted runs 

and all shot boundary tasks in Table 3), the f1-measures for the ensemble runs are between 90.3 

and 91.2 while the results of the unsupervised baseline approach are between 89.3 and 89.9. In all 
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cases, the ensemble approach led to better results in terms of both recall and precision. The 

contribution of the classifiers to the ensemble’s performance was analyzed as well. Table 48 shows 

the cut detection results (defining the maximum a cut “length” as equal 0 or smaller/equal than 5) 

for only the Adaboost classifier and the SVM classifier, respectively, on the TRECVID 2005 test 

set. The SVM achieves a very high precision for the cut “transition” with a length≤5, whereas the 

Adaboost classifier is superior in recall. The low precision of 57.7% for the Adaboost classifier is 

mainly caused by one video (“NASA-Connect-AO.mpg”), whereas the precision for the other 

videos is about 83%. 

 
Run Recall Prec. F1 Cuts: Max 

WinSize1 
Cuts: Max 
WinSize2 

Ensemble False Alarm Removal 

marburg0 0.928 0.880 0.903 15 5 Yes No 

marburg1 0.932 0.888 0.909 15 5 Yes Yes 

marburg2 0.936 0.864 0.899 15 5 No No 

marburg3 0.922 0.891 0.906 15 10 Yes Yes 

marburg4 0.920 0.867 0.893 15 10 No No 

marburg5 0.925 0.895 0.910 15 15 Yes No 

marburg8 0.924 0.900 0.909 15 15 Yes Yes 

marburg6 0.926 0.892 0.912 18 9 Yes Yes 

marburg7 0.924 0.868 0.895 18 9 No No 

Table 47: Recall and precision for different maximum sliding window 
sizes, using optionally an ensemble of classifiers or false alarm removal. 

Cut Detection Performance Recall Prec. F1 

SVM (cut transitions with length ≤5) 0.838 0.947 0.889 

SVM (cut transitions with length ≤0) 0.871 0.939 0.904 

Adaboost (cut transitions with length ≤5) 0.957 0.577 0.720 

Adaboost (cut transitions with length ≤0) 0.978 0.484 0.648 

Table 48: Experimental results for the classifiers used in the ensemble approach. 

4.6.4 SUMMARY 

In this section, it has been investigated whether an ensemble of classifiers can improve cut 

detection. Therefore, the unsupervised baseline approach was extended with two additional 

classifiers, a SVM classifier and an Adaboost classifier. Adaboost was further employed for feature 

selection. The classifiers were trained on the TRECVID 2004 shot boundary test set and the 

ensemble was evaluated at TRECVID 2005. Indeed, the ensemble of classifiers improved cut 

detection performance. For several parameter settings of the unsupervised baseline approach, the 

detection performance was above the detection performance of the single classifiers in either case, 
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in terms of f1-measure. At the shot boundary detection evaluation at TRECVID 2005, this 

ensemble approach was among the small number of top approaches which achieved an f1-measure 

of above 90.0 (91.2) for video cut detection.  
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4.7 SELF-SUPERVISED LEARNING FOR ROBUST SHOT BOUNDARY DETECTION 

4.7.1 INTRODUCTION 

The performance of video analysis and indexing algorithms strongly depends on the type, content 

and recording characteristics of the analyzed video. Current video indexing approaches often make 

use of thresholding techniques or supervised learning which requires labeling of possibly large 

training sets. Furthermore, the application of the same training model or parameters might lead to a 

sub-optimal indexing accuracy for a given video v. In this chapter, the task of shot boundary 

detection is considered as a transductive learning setting in order to overcome these drawbacks. For 

this purpose, the transductive learning ensemble framework as proposed in Chapter 3 is applied the 

task of cut detection. Experimental results on the TRECVID 2005 test set show that the proposed 

approach improves the results of a high quality state-of-the-art video cut detection approach. The 

work presented in this chapter has been partially published in [43]. 

4.7.2 RELATED WORK 

First, several state-of-the-art video indexing approaches (shot boundary detection, camera motion 

estimation and face detection) are reviewed with respect to their robustness. Then, some 

approaches using transductive learning, self-supervised learning or co-training are discussed.  

Smeaton and Over [140] show that shot detection results which were evaluated at TRECVID 2005 

vary in terms of recall and precision depending on the different video sources (“NASA” and 

“News”, see Figure 28). 

A closer look at successful video indexing approaches reveals that even top approaches are not 

designed to adapt to a particular video source. Typically, pre-defined thresholds or parameters are 

used, as exemplified by two of the best performing shot boundary detection approaches at 

TRECVID 2005 which have been discussed in chapter 4.2.2 (Yuan et al. [192], Tahaghoghi et al. 

[153]).  

Considering the best TRECVID results 2005 for the task of camera motion estimation yields a 

similar picture. Yuan et al. [192] estimate the motion parameters of a two-dimensional affine model 

and finally apply thresholding rules to decide about the presence of motion. They achieved the best 

results for pan and tilt detection. Ewerth et al. [39, 42] obtained best results for zoom detection by 

computing the parameters of a 3D-camera model and applying thresholds for decision making. 
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Figure 28: Distribution of recall/precision for shot detection at TRECVID 
2005 depending of the video sources [140]. 

Two of the most recent and successful face detection approaches employ machine learning and 

need a large training set. Schneiderman and Kanade [135] apply the wavelet transform and use 

wavelet features from various frequencies of different spatial resolutions to train a Naive Bayes 

classifier. Viola and Jones [167] train a cascade of Adaboost classifiers and mainly focus on real-

time processing of video frames. 

Up till now, there are only few applications of transductive learning, self-supervised learning or co-

training in the field of video content analysis. For example, Lieb et al. [95] propose a self-supervised 

approach for adaptive road following for driving vehicles to reduce the need that a road must be 

represented by unique identifying features. Wu and Huang [179] suggest self-supervised learning 

using labeled and unlabeled training data for object recognition in order to overcome the tedious 

and expensive task of labeling large training data sets. They extend a linear Discriminant-EM with a 

non-linear kernel. The experimental results show that their novel learning technique is competitive 

to SVMs and outperforms various approaches for hand-gesture recognition and fingertip tracking 

tasks. Oudot et al. [123] present a self-supervised method for writer adaptation in an online-text 

recognition system. In the self-supervised method, lexical results are compared with the 

classification hypothesis to find errors which are then used to re-estimate classifier parameters. Co-

training (e.g., [178]) is a semi-supervised and multi-view learning approach which can be used if no 

sufficient amount of training data is available. The idea is to incorporate unlabeled data into the 
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training and to make use of different feature sets (views) to train two classifiers. Wu et al. [178] 

suggest co-training for text detection in images. They train two SVMs on color and edge features 

and incorporate optical character recognition (OCR) into the training scheme. 

4.7.3 SELF-SUPERVISED LEARNING FOR ROBUST VIDEO CUT DETECTION 

For the task of video cut detection, the transductive learning ensemble is realized in a self-

supervised manner since the used baseline system relies on unsupervised learning. The key idea of 

the proposed approach is to use an initial result for a given video V using an initial set A of 

features. In this way, training data is generated automatically from the video itself. The 

unsupervised clustering approach (according to Chapter 4.5.2) is used as the baseline system to 

initially classify frames as cuts or non-cuts. Only two features are used (motion compensated pixel 

differences, and the ratio of the second largest dissimilarity value divided by the local maximum 

within a sliding window of size 2m+1) in this approach in which an appropriate sliding window size 

is estimated automatically. Then, this initial result, including the classification errors, is used to 

select the best features for this video from a possibly large set B of features (where A ⊆ B, |A| ≤ 

|B|). 42 features, as described in detail in section 4.6.2.1, have been defined for the feature set B 

for a certain frame distance describing frame dissimilarity with respect to: 

• motion compensated pixel differences, 

• histogram differences, 

• luminance mean and variance,  

• edge histograms of Sobel-filtered (vertically and horizontally) DC-frames,  

• local histogram differences, and  

• ratio of the second largest dissimilarity value divided by the local maximum for several sliding 

window sizes. 

Two frame distances (1 and 2) are investigated, resulting in a total number of 84 features. An 

Adaboost approach [167] is applied to obtain a ranking of the best features for the particular test 

video V. This set of best features for the video V is split afterwards according to odd and even 

ranks. The feature split is conducted to subsequently train different classifiers with a reasonable 

degree of independence on the video V using only the training data generated from the video itself. 

Kuncheva et al. [89] show that the independence of classifiers is advantageous to increase accuracy 
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of an ensemble of classifiers. According to the ranking order, thes selected features are split and 

passed to the self-supervised learning stage to train two different SVMs directly on the video V 

using the different feature sets. Together with the unsupervised system, they form an ensemble of 

three classifiers: a cut is detected if at least two of them vote that a frame is a cut. 

4.7.4 EXPERIMENTAL RESULTS 

The proposed self-supervised framework has been tested on the TRECVID [161] 2005 shot 

boundary test set. The “MDC” library [94] was used for MPEG decoding and the “libSVM” library 

[23] for SVM implementation. 

Several strategies of the proposed system have been implemented and compared with our 

unsupervised baseline approach on the TRECVID 2005 shot boundary test data. There are 3372 

abrupt transitions in the video test set. Systematic experiments have been conducted in order to 

find the best way to exploit the automatically labeled data and to improve an original detection 

result. First, the unsupervised baseline system was used to automatically label data for a given video 

and all these data are then used to train a classifier. All positive For this purpose, SVM (45 features 

selected via Adaboost) and Adaboost (11, 45 and 180 training rounds) have been chosen as 

classifiers. In the first experiment, all p positive labeled training samples are used, the factor of 

negative training samples was set to 9*p. The experimental results of this first experiment on the 

TRECVID 2005 video test set are presented in Table 50. The results of the classifiers which have 

been trained with data automatically labeled by the unsupervised baseline system achieve worse 

results in terms of F1-measure. Recall is increased for the classifiers, but precision is significantly 

decreased, too. Overall, simply using the first detection result to train a new classifier is not a 

possibility to improve detection performance for a given video. In a second experiment, only the 

best 90% of the positive labeled training data are used to train an additional classifier. A sample is 

considered as a “good” sample in case it is as near as possible to the feature vector of an “ideal” cut 

which would have the feature vector (1, 1) in the proposed unsupervised approach. The 

experimental results for this experiment are presented in Table 50. The results are clearly improved 

compared with the first experimental setup. It turns out that the selection of good training samples 

from the automatically labeled training data is an important step. 
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 K-means baseline 

system 
Adaboost (11) Adaboost (45) SVM (45) Adaboost (180) 

Recall [%] 86.6  93.2 93.6 92.5 93.8

Precision [%] 89.0 77.6 78.5 87.8 77.7

F1 87.8 84.7 85.4 90.1 85.0

Table 49: Experimental results on the TRECVID 2005 test set for the 
unsupervised baseline system, for a SVM classifier and for some Adaboost 
classifiers using a different number of features. Each of them was trained 
separately on each video based all automatically positive labeled training 
samples. The number of negative training samples depends on the number 
of positive samples. 

 K-means baseline 
system 

Adaboost (11) Adaboost (45) SVM (45) Adaboost (180) 

Recall [%] 86.6  91.7 92.9 91.7 92.7

Precision [%] 89.0 88.1 88.3 89.1 88.7

F1 87.8 89.9 90.5 90.4 90.7

Table 50: Experimental results on the TRECVID 2005 test set for the 
unsupervised baseline system, for a SVM classifier and for some Adaboost 
classifiers using a different number of features. Each of them was trained 
separately on each video based only on the “best” 90% positive training 
samples. The factor of negative training samples remained unchanged. 

The next experimental setup investigates whether it is useful to form an ensemble of classifiers that 

is built adaptively for a given video. Several strategies are possible. First, the unsupervised baseline 

system can be extended to an ensemble with the two classifiers (Adaboost and SVM) which were 

trained on the video. Furthermore, it is investigated whether it is beneficial to divide the selected 

feature into two disjoint feature sets where each of them is used to train a classifier. Here, two 

different strategies are considered. First, the feature set is split alternating depending on each 

feature’s rank during the Adaboost selection process. Second, the feature set is partitioned into two 

subsets using k-means clustering. The experimental results for these methods are presented in 

Table 51 and Table 52. In Table 52, the proposed approach is also compared with the approach of 

Bescos [11] which we have extended with a SVM classifier. The results demonstrate that all 

ensembles improve the detection performance of the original approach. The ensembles consisting 

of the baseline system and two SVMs with different feature sets achieved slightly better results than 

the ensemble with different classifiers which were trained on the same features. In practice, the 

simpler alternating split of the features should be preferred since it avoids the clustering process of 

the features. 
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 K-means  Ensemble with K-means, 

and 2 SVMs, clustered 
feature sets, 11features 
(improvement) 

Ensemble with K-means, 
and 2 SVMs, alternated 
features, 11 features 
(improvement) 

Recall [%] 86.6  86.8 (+0.2) 87.2 (+0.6) 

Precision [%] 89.0 90.5 (+1.5) 90.4 (+1.4) 

F1 87.8 88.6 (+0.8) 88.8 (+1.0) 

Table 51: Experimental results on the TRECVID 2005 test set for several 
classifier ensemble schemes. Supervised experts in these ensembles are 
trained only on the automatically labeled data for the given video. 

 K-means  Bescos’ 
approach [11] 
extended 
with SVM 

Ensemble with 
K-means, 
Adaboost and 
SVMs. 45 
features 
(improvement) 

Ensemble with 
K-means, and 2 
SVMs, clustered 
feature sets, 45 
features 
(improvement) 

Ensemble with 
K-means, and 2 
SVMs, alternated 
features, 45 
features 
(improvement) 

Recall [%] 86.6  87.4 91.9 (+5.3) 92.2 (+5.6) 92.6 (+6.0)

Precision [%] 89.0 93.7 91.0 (+2.0) 90.9 (+1.9) 91.5 (+2.5)

F1 87.8 90.4 91.4 (+3.6) 91.5 (+3.7) 92.0 (+4.2)

Table 52: Experimental results on the TRECVID 2005 test set for three 
different self-supervised variations.  

Furthermore, the self-supervised ensemble approach has been tested on the TRECVID test sets of 

2006 and 2007. The results are shown in Table 53 and Table 54 and demonstrate that the self-

supervised approach improves the baseline system on each test set. In particular, the results for the 

most difficult test set of 2006 are noticeably improved, recall is increased by 7.4% while precision 

remains at 88.2%. If the number of features is sufficiently large, the proposed approach 

outperforms Bescos’ approach [11], too. 

 
 K-means  Bescos’ approach [11] 

extended with SVM 
Ensemble with K-means, 
and 2 SVMs (alternated 45 
features) 

Recall [%] 79.1 71.9 86.5 (+7.4) 

Precision [%] 88.3 90.1 88.2 (-0.1) 

F1 83.4 80.0 87.3 (+3.9) 

Table 53: Experimental results on the TRECVID 2006 test set for the 
ensemble scheme with two SVMs using alternating features. Supervised 
experts in these ensembles are trained only on the automatically labeled 
data for the given video. 
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 K-means  Bescos’ approach [11] 

extended with SVM 
Ensemble with K-means, 
and 2 SVMs (alternated 
features) 

Recall [%] 95.3 89.9 95.3 (+0.0) 

Precision [%] 93.5 96.7 95.6 (+2.1) 

F1 94.4 92.9 95.4 (+1.0) 

Table 54: Experimental results on the TRECVID 2007 test set for the 
ensemble scheme with two SVMs using alternating features. Supervised 
experts in these ensembles are trained only on the automatically labeled 
data for the given video. 

Figure 29: Reduction of error rate for each video of the TRECVID 2005 
shot boundary test set. Error rate reduction approach when using the self-
supervised approach is given in relation to the original unsupervised 
approach. Error rate is given separately for each video from the 
TRECVID 2005 shot boundary test set. 

The results are presented in more detail in Figure 29. The self-supervised approach reduces the 

number of errors by more than 20% (and up to 56%) for eleven videos out of 12. The number of 

errors increases slightly for only one video. It is concluded that the self-supervised approach is able 

to learn and automatically improve a model for a given video by itself without any pre-labeled 

training data. 

4.7.5 SUMMARY 

In this chapter, the novel transductive learning ensemble has been applied to the first task of video 

indexing: cut detection. The ensemble is realized in a self-supervised manner. The approach is 

motivated by the analysis of video indexing approaches and issues related to the specifics and 
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uniqueness of video source and content. Based on an initial classification result for a given video, 

the suggested approach utilizes Adaboost to select an optimal subset of features for this video. 

Then, this feature set is split into two complementary feature sets in order to train two SVMs on 

the given video. Two strategies to split a feature set are presented where both achieved similar 

results. A prototype of the learning framework applied to video cut detection has been 

implemented and tested on the test sets of TRECVID 2005 and 2007. Experimental results indicate 

that the self-supervised system is indeed able to learn automatically by itself without any pre-labeled 

training data: The f1-measure is significantly higher than that of the baseline system and achieves 

similar detection results as an ensemble using supervised classifiers. Dividing the feature set and 

assigning the features to two separate classifiers yielded slightly better results than using two 

different classifiers (Adaboost and SVM) which were trained on the same feature set. The splitting 

of the feature set allowed us to increase the independence of the classifiers, which is exploited in 

the subsequent execution of an ensemble of classifiers using majority voting.  
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4.8 AUTOMATIC PERFORMANCE PREDICTION FOR VIDEO CUT DETECTION 

4.8.1 INTRODUCTION 

Performance prediction is a powerful method in order to achieve an optimal result for content 

analysis and retrieval tasks. Recently, some research efforts evolved in the field of information 

retrieval addressing the issue of performance prediction [29, 30, 72]. In this field, performance 

prediction is utilized to identify difficult queries which often lead to bad retrieval results. He and 

Ounis [72] state that reliable prediction of query performance is a way to determine the best 

retrieval strategy for a given query. In this chapter, it is shown how performance prediction can be 

utilized in the context of video analysis. Here, performance prediction helps to identify the number 

of errors and can thus aid post-processing. An approach to automatically predict the precision and 

recall of a video cut detection result is proposed. The prerequisite is the application of unsupervised 

clustering for video cut detection which enables evaluation of clustering quality using the silhouette 

coefficient. It is shown that this clustering validity measure is highly correlated with the precision of 

a video cut detection result. A formula to estimate the precision of a detection result is derived and 

validated experimentally.  

4.8.2 RELATED WORK 

Recently, some research efforts have been made in the field of information retrieval concerning 

performance prediction. Cronen-Townsend et al. [30] argue that the coherence of a returned 

ranked list is positively related to the number of relevant documents in the list. They introduce a 

statistical measure for list coherence: clarity score. They estimate the correlation between the 

precision and the average precision for a variety of TREC collections, where correlation is between 

0.49 and 0.62. Among others, it is suggested to use the clarity score to decide whether the user 

should be encouraged to reformulate his/her query. In contrast to the clarity score, which is based 

on a retrieval process and result, He and Ounis [72] study predictors that can be computed before a 

retrieval process takes place. For several predictors, statistically significant correlations with average 

precision are obtained, in the range of 0.21 up to 0.45. 

To the best of our knowledge, there are only very few approaches considering the issue of 

automatic performance characterization in the field of content-based image and video retrieval. 

Vogel and Schiele [168, 169] present a probabilistic framework for content-based image retrieval 

that enables automatic performance characterization and optimization. Images are divided into a 

number of patches, and the concept detector is assumed to decide independently on each patch. 

Furthermore, it is assumed that the detector’s probability for a correct decision and the concept 

distribution are known in advance. Based on these assumptions, closed-form expressions are 

derived for the probability of recall and precision of a retrieval result. These formulas are then 
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further used to adjust an internal parameter to optimize retrieval performance. The framework is 

extended [169] by Vogel and Schiele with an approach to improve the accuracy of the detectors as 

well.  

4.8.3 PERFORMANCE PREDICTION FOR UNSUPERVISED VIDEO CUT DETECTION 

In section 4.5, an unsupervised approach for video cut detection has been presented. Feature 

vectors describe a frame position with respect to the possibility that a cut occurred at this position. 

These feature vectors are clustered using the k-means algorithm to separate cut from non-cuts. 

Since k-means is utilized to solve a classification problem, the number of clusters is known in 

advance. Normally, the silhouette coefficient SC is used measure the clustering validity for different 

k to find the best suited k in case it is not known in advance. In our approach, SC is exploited to 

estimate another parameter automatically, the sliding window size m, by comparing the quality of 

the “cuts”-cluster (SC(Ccuts)) for several clustering results for different m. It can be observed that 

SC(Ccuts) is highly correlated with the precision, and little with recall, of a clustering result. Thus, it is 

proposed to estimate the interrelation between SC(Ccuts)) and precision and recall, respectively, via 

linear regression on a training set of videos. Therefore, the following linear approximations are 

used: 

qCSCpprecision cuts +⋅= )(  (62) 

sCSCrrecall cuts +⋅= )(   (63) 

The parameters p and q, and r and s, respectively, are estimated by linear regression on a training set 

for which ground truth data are available and thus the precision outcome is known.  

4.8.4 EXPERIMENTAL RESULTS 

The proposed estimation has been tested using two different test sets: the MPEG-7 video test set 

and the shot boundary test set of TRECVID 2005. The unsupervised video cut detection algorithm 

was run on the MPEG-7 test set and the precision for each video and the best Silhouette 

coefficient (for a number of sliding window sizes) were used to estimate the parameters p, q, r and s 

of Formulas (62) and (63) using linear regression. For the MPEG-7 video test set, the correlation 

between silhouette coefficient and precision is 0.63, the correlation between the silhouette 

coefficient and recall is 0.26. Using this test set, the parameters p, q, r and s are estimated as follows: 

p=0.620 and p=0.449; r = 0.186 and s=0.811. The video cut detection algorithm was then run on 

the TRECVID shot boundary test videos and precision and recall were computed for each video 

using Formula (62) and (63) with the previously estimated parameters. The experimental results are 
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presented in Table 55 where the estimated precision, real precision, estimated recall, real recall, and 

the corresponding differences are presented. Assuming, that the precision outcome for each video 

had been estimated with the average precision obtained for the MPEG-7 test set (95.3%), the 

average estimation error would have been about 6.4% (standard deviation 4.0). Using the proposed 

precision estimation yields an average (absolute) estimation error of only 3.2% (standard deviation 

of 2.91). This estimate is twice as precise as if the precision achieved for the MPEG-7 test set 

(95.3%) would be used to estimate precision. The recall estimate is not as precise as for precision, 

as expected due to the lower degree of correlation. It is slightly better (0.9% more precise) than an 

estimate which is based on the recall for the MPEG-7 test set (recall on MPEG-7 test set: 94.5%). 

Video ID Silhouette 
Coefficient 

Estimated 
Precision 
[%] 

Precision[%] Error 
Precision 
Estimation

Estimated 
Recall[%] 

Recall 
[%] 

Error 
Recall 
Estimation

1 0.564 87.38 80.37 7.01 0.916 0.719 19.7

2 0.677 92.46 90.94 1.52 0.937 0.868 6.9

3 0.635 90.57 87.23 3.34 0.929 0.865 6.4

4 0.723 94.52 88.49 6.03 0.945 0.961 -1.6

5 0.649 91.20 91.96 -0.76 0.931 0.888 4.3

6 0.634 90.52 88.55 1.97 0.929 0.939 -1.0

7 0.615 89.67 89.04 0.63 0.925 0.875 5.0

8 0.600 89.00 89.44 -0.44 0.922 0.794 12.8

9 0.673 92.28 83.11 9.17 0.936 0.914 2.2

10 0.774 96.81 96.60 0.21 0.955 0.893 6.2

11 0.717 94.25 89.84 4.41 0.944 0.833 11.1

12 0.834 99.51 96.72 2.79 0.966 0.980 -1.4

Average 
(of 
absolute 
values)  92.35 89.36

3.19 
(stdev.: 

2.91) 0.936 0.877 

6.53 
(stdev.: 

5.56)

Table 55: Results for the TRECVID 2005 shot boundary test set: The 
silhouette coefficient for each cuts cluster which was obtained after k-
means clustering, the estimated precision and the real precision, and the 
estimation error 
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Figure 30, top: The silhouette coefficient (SC, scaled by 100), precision and 
estimated precision based on SC (both in %) for 33 videos from the 
MPEG-7 test set. Bottom: The data for recall. 

4.8.5 SUMMARY 

In this section, an approach to automatically predict the performance of an unsupervised video cut 

detection task in terms of recall of precision has been presented. It is based on the observation that 

cluster validity, in our case measured with the silhouette coefficient, is strongly correlated with 

precision and with recall, though to a lower degree. Exploiting this fact, it is suggested to learn a 

linear interrelationship between the silhouette coefficient and precision and recall, respectively, hich 

is easily achieved by linear regression. In the experiments, the comprehensive MPEG-7 video test 

set was used to learn the interrelationship and the TRECVID 2005 shot boundary detection test set 
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was used to test the prediction performance. Experimental results demonstrated that the prediction 

yields an average error of only 3.2% for precision and 6.5% for recall. In both cases, the estimates 

are more precise than a prediction that would be only based on the overall performance on the 

training set. In case of precision, the prediction is even twice as precise than standard 

approximation.  
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Figure 31, top: The silhouette coefficient (SC, scaled by 100), precision and 
estimated precision based on SC (both in %) for 12 videos of the 
TRECVID 2005 test set. Bottom: The data for recall. 
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4.9 SUMMARY OF CHAPTER 4 

In this chapter, the problem of shot boundary detection in videos was studied extensively in order 

to introduce the principles suggested for robust and adaptive video content analysis. Several 

contributions have been presented in this context. First, recent research in this field was 

comprehensively surveyed and compared, including the related TRECVID evaluation as well as 

other approaches. Second, a systematic bias in frame dissimilarity measurements caused by MPEG 

frame types that may hinder cut detection performance in the compressed MPEG domain was 

identified for the first time. Two solutions to remove these artifacts were presented. Third, an 

unsupervised shot boundary detection approach was developed aimed at the reduction of user 

defined parameter settings. A measure for cluster validity, the silhouette coefficient, was employed 

to estimate an important parameter for cut detection, the size of the sliding window which is 

moved over the temporal frame dissimilarity measures. Furthermore, a self-supervised approach 

was suggested that exploits the transductive setting of the given task. An initial clustering result for 

a given video is used to estimate the best features for this video. These features are then divided 

into two disjoint sets which are used to train two classifiers, again only on the video under 

consideration. The unsupervised detector and the adaptively learned classifiers form an ensemble 

that analyzes the video and produces the final result using majority voting. Finally, it was observed 

that the silhouette coefficient is strongly correlated with precision and weakly correlated with recall. 

Formulas for precision and recall depending on a clustering were derived. Experimental results 

demonstrated that performance prediction can be improved this way, in particular for precision. All 

proposed approaches have demonstrated their effectiveness in experiments using the 

comprehensive MPEG-7 video test set and the TRECVID shot boundary test sets of 2005 and 

2007, all publicly available. 

 



 

C h a p t e r  F i v e  

5 ROBUST CAMERA MOTION ESTIMATION IN MPEG VIDEOS 

5.1 INTRODUCTION 

In movie production, the use of camera distance and camera motion are quite important to express 

a certain atmosphere or a meaning through the way a scene is captured and presented to the viewer. 

Arijon [6] considers the moving camera as a powerful stylistic device and, accordingly, there is 

strong interest of media researchers to investigate in which way the camera device was used by the 

producer.  

The estimation of camera motion is important for several video for scientific film analysis and for 

indexing and retrieval purposes and. From an aesthetical point of view, camera motion is often 

used as an expressive element in film production. Recently, some researchers propagated the term 

“computational media aesthetics” [2], which aims at bridging the semantic gap between the low-

level feature extraction algorithms and the high-level queries raised by users.  

There are different types of camera motion: rotation around one of the three axes and translation 

along the x- and y-axis. Furthermore, zoom in and out can be considered as equivalent to 

translation along the z-axis. The various types of camera motion are presented in Figure 32. Many 

algorithms have been proposed in the past to solve the problem of camera motion estimation, but 

in the overwhelming majority of approaches translation along the x-axis (y-axis) and rotation 

around the y-axis (x-axis) is considered as one type of motion.  

In this chapter, a solution is presented for the problem of camera motion estimation in MPEG 

videos. The proposed approach is able to distinguish translation and rotation and works directly on 

motion data available from the compressed video stream. To the best of our knowledge, this is the 

first approach with these properties. Although the use of MPEG motion vectors improves runtime 

Figure 32: Various types of camera motion.
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performance, they often do not model real motion adequately. Such “unreliable” motion vectors 

are called outliers. To obtain a motion vector field that represents the real optical flow in the best 

way, an effective algorithm for outlier removal is incorporated into our approach. Furthermore, the 

minimum number of motion vectors that is sufficient to obtain reliable estimation results is 

investigated. Experimental results demonstrate the very good performance of the proposed 

approach. The work presented in this chapter has been partially published in [39] 

5.2 RELATED WORK 

The related work can be distinguished according to the camera model used, which in turn 

determines the motion types that are possibly detected. Furthermore, there are some approaches to 

camera motion estimation [86, 124, 154] for the MPEG domain of compressed videos. Most 

approaches [86, 124, 151, 154] estimate the model parameters that yield the best fit to the optical 

flow measured, and thus, a typical minimization problem must be solved. 

For example, Kim et al. [86] suggest to process motion vectors of MPEG videos. They assume a 

two-dimensional affine camera model and state to detect six types of motion: zoom, rotation, pan, 

tilt, object motion and stationary. Thus, results for translation along the x-axis (y-axis) and rotation 

around the y-axis (x-axis) are merged. Beforehand, motion vector outliers are filtered out by a 

simple smoothing filter. The parameter vector for the model is estimated by using the method of 

least squares.  

Tan et al. [154] assume that there is only rotation and zoom and use a corresponding 3D camera 

model. Appropriate motion parameters are found by solving the minimization problem for the 

given 3D model. Their approach is aimed at detecting camera motion and related events like close-

ups in MPEG sports videos. They use several heuristics to remove unreliable vectors from the 

motion vector field, for example if the shot is not stationary, then the zero vectors are removed. 

For certain thresholds, they achieve very good classification results for basketball videos.  

Park et al. [125] compare two least square methods applied to MPEG videos: the Iterated Extended 

Kalman Filter and the Levenberg-Marquardt method. They assume a camera system with rotation 

and zoom but without translation. Those motion vectors are removed as outliers from the motion 

vector field which show the worst fit to the estimated model parameters. They have checked 

empirically the effectiveness of the approaches by investigating a generated mosaic image. 

Srinivasan et al. [151] present an approach which can distinguish between camera rotation and 

translation. Their approach is based on an appropriate 3D camera model that includes rotation, 

translation (except along the z-axis) and zoom in and out. They compute an optical flow field for 
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two consecutive uncompressed frames and solve a minimization problem by using the Nelder-

Meade algorithm. To detect translation, the optical flow resulting from the estimated rotational 

camera parameters is set in relation to the original optical flow field. If the residual vectors are 

noticeably larger than zero and parallel, it is concluded that there is also translational motion. 

Another approach is followed by Ngo et al. [122]. They compute spatiotemporal slices considering 

(x,t)-space and (y,t)-space from a video sequence of 2D-frames with spatial dimension (x, y) at time 

points t. Tensor histograms are utilized to analyze the visual slice patterns which occur according to 

camera and object motion. Their approach can distinguish stationary, pan, tilt and zoom.  

Joly and Kim [83] choose a similar approach but apply the Hough transform to spatiotemporal 

images in order to estimate camera motion. Their approach is able to distinguish the camera actions 

stationary, pan, tilt and zoom. 

5.3 ESTIMATING CAMERA MOTION IN MPEG VIDEOS 

The approaches for the compressed domain presented in section 5.2 do not make the distinction 

between rotation and translation. An algorithm to solve this problem is proposed in this section. 

The algorithm consists of three steps. 

1.) Extraction of motion vectors; 

2.) Computation of a reliable motion vector field; 

3.) Estimation of camera motion parameters.  

The algorithmic steps are described in more detail below. 

1.) Extraction of motion vectors.  

The motion vectors are extracted directly from the compressed MPEG stream. In MPEG, the 

encoding of a P-frame is based on a previous reference frame, while the encoding of a B-frame can 

be based on two reference frames, a previous as well as a subsequent reference frame. Only the 

motion vectors from P-frames are processed in our approach, for two reasons. First, usually each 

third until fifth frame in a MPEG video is a P-frame, and thus, the temporal resolution is sufficient 

for most applications. Second, both the prediction direction and the temporal distance of motion 

vectors are not unique in B-frames, resulting in additional computational complexity. For each 

macroblock, a motion vector is estimated which points to a similar block in a reference frame. 

Motion estimation algorithms try to find the best block match in terms of compression efficiency. 
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This can lead to motion vectors that do not represent the camera motion or object motion at all, 

which for example is possibly the case for homogenous areas in images due to noise and low image 

quality.  

2.) Computation of a reliable motion vector field.  

To deal with these noisy motion vectors, an outlier removal algorithm is applied. In the proposed 

approach, no heuristics to remove noise in a motion vector field are used (e.g., applied by Tan et al. 

[154]) since such heuristics typically handle special cases of failures and not the general case. In 

other approaches, a smoothing filter is applied to the motion vector field (e.g., suggested by Kim et 

al. [86]) but the drawback is that the erroneous outliers remain in the field and affect their possibly 

correct neighbors. Consequently, the outlier removal algorithm which was suggested by Dante and 

Brooks [31] is employed in the proposed approach. There are two main steps in the algorithm. A 

motion vector MV is declared as an outlier if both of the following criteria are not met (see the 

examples shown in Figure 33): 

2.1) Smooth Change. MV is compared to each average of four pairs of opposite neighbors – if the 

number of averages that are close to the central MV is below a threshold, then the criteria of 

smoothness is not met. 

2.2) Neighborhood. A neighborhood motion vector supports the central MV if it lies within a 

tolerance circle. If the number of supporting vectors is below a threshold, then the criteria of 

neighborhood is not met. 

Additionally, the number of motion vectors can be reduced for example by considering only each 

second motion vector in both horizontal and vertical direction.  

3.) Estimation of camera motion parameters.  

To potentially distinguish translational camera movements and corresponding rotation, an 

appropriate 3D camera model (see Figure 34) has been chosen as described by Srinivasan et al. 

Figure 33: Two examples for outlier criteria showing a motion vector and 
its neighbors. Left: “smoothness”; Right: “neighborhood”. 
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[151]. Formulas (64) and (65) describe the translational components ux and uy in the image plane 

depending on the focal length f, the translational movement tx and ty along the x-axis and y-axis, the 

rotational components rx, ry and rz around all three axes, and the zoom factor rzoom. Consider an 

external point at (X, Y, Z) which is projected onto the image plane at point (x, y), where x=f*(X/Z) 

and y=f*(Y/Z). Motion estimation is done as follows.  
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Let vi be the difference vector between a motion vector at macroblock position (x, y) in the original 

and the estimated motion vector field, let V be the sum of all vi, and let θi be the absolute angle 

between a vector vi and V. As suggested by Srinivasan et al. [151], the parameter values rx, ry, rz and 

rzoom are estimated by minimizing the term P=Σvi
2*θi using the Nelder-Meade algorithm. This results 

in an estimated motion vector field VF where the difference vectors vi are mostly parallel. In 

contrast to the proposal of Srinivasan et al. [151], the mean vector of VF is directly considered as 

the translational camera motion parameters tx and ty in our approach, since it improved the 

experimental results described below. 

 

Figure 34: The 3D camera model that is used in the proposed approach. 
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5.4 EXPERIMENTAL RESULTS 

Our video test set consists of 32 MPEG-1 video sequences (352*288 pixels resolution) based on 

well textured Pov-Ray scenes including all kinds of camera motion and many combinations of 

motion types. The advantage is that the camera motion parameters can be entirely controlled which 

allows us to verify the estimation quality in a reliable way.  

The Nelder-Meade algorithm has been implemented to estimate the parameters of the camera 

model as described in the previous section. The MPEG decoding is realized using the MDC library 

[94]. Several combinations have been investigated in our experimental setting: 1) Baseline 

implementation; 2) Extension with outlier removal; 3) Reduction of motion vector amount; 4) 

Assuming an incorrect focal length. 

A camera motion is detected if the corresponding parameter is above a certain threshold. The 

experimental results can be summarized as follows: The extension of the baseline implementation 

with outlier removal led to a noticeable increase in recall and precision as shown in Table 56, where 

recall is the number of correctly detected motions divided by the number of motions present in the 

videos, and precision is the number of correct detections divided by the total number of detections. 

Furthermore, the required minimal number of motion vectors has been investigated in order to 

check the possibility to speed up algorithm runtime. The detection results remained quite stable, 

even if only 1/16 of the motion vectors (after outlier removal) was used (Table 57). Very good 

detection results were achieved if translation along the x-axis (y-axis) and rotation around the y-axis 

(x-axis) were considered as a single motion type (Table 58). Furthermore, the robustness of the 

approach was tested for different assumptions of the focal length f. In the Pov-Ray scenes, f was 

set to 2. Setting the focal length to an incorrect value of 1.5 or 2.5 did not significantly change the 

estimation performance. 

Recall/Precision [%] Baseline 
implementation 

Outlier Removal (Change 
to basis implementation) 

Rotation(x) 71 / 71 78 / 78 ( +7/ +7) 

Rotation(y) 77 / 43 75 / 41 ( -2/  -2) 

Rotation(z) 86 / 75 95 / 89 ( +9/+14) 

Translation(x) 68 / 48 74 /56 ( +6/ +8) 

Transaltion(y) 55 / 35 75 / 58 (+20/+23) 

Zoom 98 / 94 99 / 99 ( +1/ +5) 

Table 56: The detection results listed separately for each motion type for 
the baseline implementation and its extension with outlier removal. 
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Recall 
/Precis. [%] 

1/1 # 
MV 

1/4 # 
MV 

1/8 # 
MV 

1/16 # 
MV 

Rotat. (x) 78 / 78 70 / 74 77 / 77 70 / 74

Rotat. (y) 75 / 41 73 / 41 75 / 40 71 / 40

Rotat. (z) 95 /89 90 / 86 85 / 84 88 / 85

Transl. (x) 74 / 56 75 / 52 76 / 55 74 / 58

Transl. (y) 75 / 58 68 / 56 70 / 53 58 / 51

Zoom I/O 99 / 99 96 / 97 98 / 99 96 / 97

Table 57: The results for each motion type if the number of motion 
vectors used in the optimization algorithm is reduced after outlier removal. 

Recall /  

Precis. [%] 

Baseline 

Implem.

Outlier 

Removal

1/8 

# MV

R(x) and T(y) 89 / 88  96 / 93 96 / 93

R(y) and T(x) 92 / 76 100 / 79 99 / 79

R(z) 86 / 75  95 / 89 85 / 84

Zoom I/O 98 / 94  99 / 99 98 / 99

Table 58: The results if translation and the similar rotation type are 
considered as a single motion type. 

Furthermore, we have participated in the low-level feature task at TRECVID 2005. The task was to 

identify these three types of camera motion, pan, tilt, and zoom, in a very large video collection of 

140 videos. Hence, the distinction of camera translation and rotation was not necessary in this task, 

The system parameters were estimated using some videos from the TRECVID training set for 

which partially ground truth data exists. These ground truth data were created jointly by us, KDDI 

Labs and the Joanneum Research University of Graz [8]. The following parameters were estimated 

for our system using the available training data: rot_x =0.001, rot_y=0.0015, rot_zoom:=0.00075. 

Pan Tilt Zoom Total Average Submission 

Recall Prec. Recall Prec. Recall Prec. Recall Prec. 

UMarburg 76.1% 92.4% 72.4% 96.2% 89.4% 93.1% 79.3% 93.9%  

Table 59: Experimental results in terms of recall and precision for our 
submission for the TRECVID 2005 low-level feature task.  

Submission Pan (F1) Tilt (F1) Zoom (F1) Overall (F1) 

UMarburg 83.5 82.6 91.2 86.0 

Table 60: Experimental results in terms of F1- measure for our submission 
for the TRECVID 2005 low-level feature task.  



146 Chapter 5 -Robust Camera Motion Estimation in MPEG Videos 
 

 

These threshold parameters were used for our system. In addition to our above reported 

experiments, the motion vectors of frame border macroblocks were not considered to compute a 

motion vector field. The TRECVID organizers selected a number of shots from the very large 

video test set. Shots were considered for evaluation when they either showed clearly one of the 

motion types of interest or none of them. This procedure yielded an evaluation set of shots that 

consisted of 587 shots with pan, 210 shots with tilt, and 511 shots with zoom, 1159 shot with none 

of these motion types. Finally, 2226 shots were considered for evaluation in total. Each institute 

was allowed to submit up to seven experimental runs. The experimental results for the University 

of Marburg are presented in Table 59 and Table 60. As displayed there, precision is above 90% for 

all tasks, whereas recall is between 72% and 76% for pan and tilt detection. For tilt detection, only 

the submissions of Tsinghua University [124] achieved better results than our proposed approach 

in terms of the f1-measure. The detection quality for pan achieved an average performance 

compared to the submissions of other institutes. In terms of the f1-measure, the Marburg 

submission achieved the top performance among all participating groups for the zoom detection 

task. The experimental results demonstrate the very good performance of the proposed approach. 

In particular, they show that the use of MPEG motion vectors is well suited to compute camera 

motion parameters as long as noisy motion vectors are removed appropriately from the vector 

field. 

5.5 SUMMARY 

In this chapter, an approach for the estimation of camera motion was proposed for the MPEG 

domain. In contrast to other approaches for this domain, its main advantage is the fact that it 

potentially distinguishes between rotation around the y-axis (x-axis) and translation along the x-axis 

(y-axis). Furthermore, the incorporation of an outlier removal algorithm reduced the noise in the 

motion vector fields and increased the detection performance. Our comprehensive video test set 

includes all kinds of camera motion and allows to entirely control the camera motion parameters in 

these videos. However, most detection errors are due to the difficult distinction of translational and 

rotational camera movements. The proposed approach achieved the best result for zoom detection 

and the second best result for tilt detection at TRECVID 2005 in terms of f1-measure. 

 



 

C h a p t e r  S i x  

6 SELF-SUPERVISED LEARNING OF FACE APPEARANCES IN TV CASTS AND 

MOVIES 

6.1 INTRODUCTION 

The recognition of persons in videos and movies is an important task in order to understand the 

video content, since in most cases the plot is related to persons or actors. The following questions 

are sought to be answered: “In which shot Y and scene Z does person X appear, how often does 

person X appear in a video and, in which pose and size?”. 

While frontal face detection in images/videos and face recognition in constrained environments has 

reached a certain level of maturity, the recognition of persons in videos without any constraints and 

a priori knowledge (e.g., training of statistical models) remains a challenging and yet unsolved 

problem. This is due to the low quality and resolution of video recordings in contrast to high 

resolution photo imaging, and the high degree of freedom in face/person appearances in videos in 

terms of illumination and pose. Many approaches have been suggested for the tasks of face 

detection and face recognition in images and videos, but only a few proposals have been made for 

the task that is addressed in this chapter: Automatic person recognition/clustering in arbitrary 

videos without any a priori knowledge. In addition, some of the related approaches require a 

training stage to learn a model of the person which needs to be recognized. Many proposals for 

automatic cast/actor/person recognition in videos seem to simply ignore the state-of-the-art 

approaches in the field of face detection and recognition. Sometimes, particular face detection and 

face recognition procedures have become part of systems but neither their use has been rectified 

empirically nor their individual contribution to the overall system performance has been 

investigated.  

The contributions of this chapter are as follows. First, an automatic video annotation system with 

respect to a person’s occurrence is presented based on state-of-the-art building blocks for face 

detection, tracking and recognition. Second, it is demonstrated how the face detection results can 

be exploited to estimate the eye positions precisely to automatically cope with in-plane rotated 

faces. Third, the main contribution is to consider the task of indexing videos with person 

information as a transductive learning setting. To exploit this setting, the transductive learning 

ensemble framework, as presented in Chapter 3, is realized via a self-supervised learning approach. 

It is proposed to adaptively learn face appearances in a video by estimating relevant features for a 

person’s face. Therefore, it is investigated in which way an initial face clustering result can be 
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further improved by self-supervised learning, in particular with feature selection and appropriate re-

classification using only the training face samples present in the given video. Several possibilities to 

train Adaboost and Support Vector Machine (SVM) classifiers or to train an ensemble of these 

classifiers, respectively, on a video are discussed and compared. Finally, experiments that investigate 

the contribution of the main components are presented. The work presented in this chapter has 

been partially published in [44, 47]. 

6.2 RELATED WORK 

The work in the field of face detection has been comprehensively surveyed by Yang et al. [187], and 

in the field of face recognition by Zhao et al. [196]. There are more than hundreds of approaches 

suggested for each of the two tasks, but only relatively few approaches address the problem of 

automatic actor/person recognition in TV casts and movies.  

Eickeler et al. [34] apply a neural network for face detection and a pseudo 2-dimensional Hidden 

Markov Model (HMM) for face recognition. The recognition task is integrated into a k-means 

clustering procedure. Initally, a face is assigned to each cluster at random. A HMM is trained for 

each cluster and then the faces are assigned to the clusters according to the HMM classification 

result. This process is repeated until the clusters remain unchanged. The authors present 

experiments for a short news video where the faces of three news speakers and an interviewed 

person could be clustered correctly. Since k-means is used, the number of persons must be known 

in advance. 

Raytchev and Murase [129, 130, 131] present three different algorithms for clustering face 

sequences captured in constrained environments. The similarity between two face sequences is 

measured by the minimum distance of a face of the first sequence and a face of the second 

sequence. The videos are recorded under the assumption that a person moves towards a fixed 

camera, such that motion information can be utilized to detect the face. Raytchev and Murase 

compute a distance matrix that holds the dissimilarity values for face sequence pairs [129]. Based on 

this matrix, a clustering process is applied. In their second paper [130], a clustering process is 

applied based on measures of attraction and repulsion. The values of attraction and repulsion are a 

function of the distance of two face sequences. For each face sequence in a cluster, it can be 

measured whether the other face sequences of this cluster attract (i.e., they are similar) or repulse 

(they are dissimilar) the given face sequence. In their third paper, so called VQ-faces are presented 

[131]. In a first step, all faces are clustered in an agglomerative clustering process in order to cluster 

the faces according to their pose. In the next step, the face clusters are connected by exploiting 
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temporal interrelations. A recognition rate of 89.3 % is reported for 17 persons each having 

between 7 and 40 face sequences.  

Fitzgibbon and Zisserman [52] present a distance metric that is invariant with respect to affine 

transforms. An arbitrary affine transform can be described by six parameters. The authors 

formulate a distance measure that estimates the square error between an image and an aligned 

image that was computed using the affine transform estimate. The face detection approach of 

Schneiderman and Kanade [135] is used to detect frontal faces. K-medoid clustering is applied to 

the face images so that the number of face classes (clusters) must be known in advance. This 

system was extended to an automatic video indexing system for person information [53]. Face 

appearances in consecutive frames are used to track a face using the distance metric described 

above. Then, a subspace is computed for a face sequence using Principal Component Analysis 

(PCA). The distance between two subspaces is measured using the joint manifold distance. 

Agglomerative clustering is applied to these subspaces until the distance between two clusters 

exceeds a predefined threshold. The authors present a cast face list for a test video with many 

duplicates, but present no recognition measures in terms of recall or precision. 

There are several training-based approaches to person recognition in videos. For example, 

Everingham and Zisserman [50, 51] present a system for person identification in videos in which 

one training image is required for each person. An ellipsoid was chosen to represent a coarse 3D 

face model that is utilized to solve the problem of pose variation. The main idea is to compare only 

face appearances showing the same pose. Therefore, for each pose (described by a six-dimensional 

vector) of a person a view-dependent texture is saved. Very similar textures of the same pose are 

only saved if they possibly represent different facial expressions. For face detection, a color-based 

approach is applied that assigns a probability for each pixel to belong to a face region. Image 

pyramids are used to decide which regions have to be processed further. Then, the pose is 

estimated and the related views of the person are rendered with variations in facial expression. 

Edge-based features are now extracted from the detected face and the rendered views which are 

compared to find the best match to classify the face. If it is a new pose, the face model is extended 

accordingly. Experimental results are presented for three characters of a thirty minute sitcom: the 

ROC curves show recognition rates of 75-95% at a false alarm rate of about 10%. 

Satoh [134] presents a complete system for person recognition in a TV soap. A neural network 

approach is applied for face detection, and tracking of faces is realized using a skin color model. 

The recognition procedure requires a number of training face sequences which should cover most 

of the possible variations in pose and expression. Several holistic recognition technologies are 
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compared by Satoh, namely Eigenfaces, Fisherfaces, a subspace-based method and a kernel 

function subspace method. Experimental results are presented for an episode of a Japanese soap. 

Another episode of the same soap was used to train the recognition system. The best recognition 

results were achieved by the kernel function subspace method.  

Acosta et al. [1] present a face recognition system for video indexing that utilizes a skin color based 

face detector and self-eigenfaces (an extension of eigenfaces described by Torres et al. [160]) for 

recognition. In the self-eigenface approach, a subspace is created separately for each person using 

five training images. MPEG-7 test sequences were used in the experiments and a recognition rate 

of 90% is reported. However, no details are given about the kind and the number of frames, shots 

or sequences.  

6.3 SELF-SUPERVISED LEARNING OF FACE APPEARANCES IN TV CASTS AND MOVIES 

An automatic system for cast/actor/person recognition is presented in this section. Given the shot 

and optionally the scene segmentation for an arbitrary video, the system outputs the number of 

persons present in a video and assigns person IDs to the shots.  

The main assumption is that a person’s face is shown frontally at least for a few frames in a 

professionally produced video. This assumption typically holds for the large majority of produced 

videos like movies and TV casts where the intention is to show the actors and persons in a 

recognizable manner. By utilizing a tracking procedure, our system can basically cope with issues of 

discontinuity and occlusion. Once a frontal face is detected, it is tracked until the next shot 

boundary. For example, if a person faces the camera, then turns around, and then turns back again 

to the camera, the face sequence is not interrupted and one coherent face sequence is generated by 

the system.  

The system consists of the following main components (see also Figure 35): face detection, face 

sequence generation via feature detection and feature tracking, optional verification of skin color 

probability, selection of representatives for a face sequence, optional face sequence aggregation, a 

bunch graph matching procedure, in-plane rotation handling, and the face recognition module. The 

skin color verification module can be used for color videos in order to reduce the number of false 

alarms. It should be applied since any false alarm potentially degrades the clustering/recognition 

performance. The face sequence aggregation module should be used for all videos where the shots 

are structured and organized in scenes, which is the case for movies, feature films and soaps. In 

addition, to achieve robustness for a certain video, a self-supervised re-classification procedure is 

incorporated that utilizes Adaboost [55] for feature selection, and SVM, Adaboost and classifier 
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ensembles to improve the learned face models. The main components are explained in more detail 

below. 

6.3.1 FACE DETECTION 

The face detection approach of Viola and Jones [167] with Lienhart’s extensions [99] is used in our 

system. While at least two other approaches [135, 186] achieve slightly better results in an 

experimental comparison on standard test sets [187], the Adaboost-based approach of Viola and 

Jones was chosen since it is a very fast approach that nearly operates in real-time on today’s 

computers and thus can even be applied to every single frame of a sequence. Since this approach 

usually reports many detections of slightly different sizes and positions, an average rectangle is 

computed based on the reported detections, in case that the number of detections exceeds a 

threshold. The number of detection hits is later used to select the best faces within a face sequence 

with respect to frontal appearance. 

6.3.2 FACE SEQUENCE GENERATION 

A tracking procedure is used to assemble face appearances of the same person in subsequent 

frames. Once a face has been detected, the tracking procedure enables our system to conflate face 

appearances of a person which, for example, lowers and raises again the head or whose face is 

partly occluded for a short time. First, in the detected region of a frame, a feature detector is 

applied to find points of interest that are suitable for tracking. For this purpose, a feature detector 

has been selected that chooses the pixels with the highest eigenvalues. The estimated feature points 

are then tracked in the next frame using the optical flow computation of Bouquet [19]. This 

approach is an extension of the Lukas-Kanade [103] approach to compute the optical flow. The 

extension processes image pyramids to enable the estimation of fast movements as well. For this 

purpose, optical flow is estimated in the pyramid image with the lowest resolution. This first result 

is then refined in the iterations at higher resolutions.  

Only feature points in the inner area of the detected face region are selected in order to reduce the 

influence of the background (see Figure 36). A face is tracked successfully if the ratio of tracked 

feature points within the detected face region of a subsequent frame is above a predefined 

percentage value. The feature points of a detected face are tracked as long as either an associated 

face appearance is found, or the end of the shot is reached. If a face is tracked successfully, new 

feature points are calculated and the tracking procedure starts again. 
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1. Face detection 

 
 

2. Feature detection and 3. Feature tracking  4. Skin color test 

                          
 

5. Correct in-plane rotation 

             
6. Bunch graph refinement 

 
7. Bunch graph clustering 

 

 
 

 

8. After self-supervised learning 

 
Figure 35: The main processing steps of the self-supervised system are 
displayed here. Optionally, aggregation of face sequences appearing in 
dialogs can be applied. 
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6.3.3 VERIFICATION OF SKIN COLOR PROBABILITY 

To reduce the number of false alarms, a verification step with respect to skin color probability is 

used optionally. Terrilon et al. [158] have compared nine different color spaces in terms of their 

applicability for skin color modeling. They conclude that the TSL (tint, saturation, luminance) color 

space, which was developed explicitly for skin color modeling, is most suitable for this task. Since 

skin color differs mainly in the luminance values, the T and S channels can be utilized to detect skin 

regions in images. Based on a training set of more than 4000 skin color vectors, the probability that 

a color pixel vector c=(s, t) is a “skin color pixel” can be computed via: 
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where µS and the covariance matrix ΣS are the model parameters of en elliptical Gaussian 

distribution; c is a vector that consists of the T and S components, and T, S and L in this color 

space are computed by the following formulas: 
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where r’= r-1/3 and g’= g-1/3.  

Figure 36, left: Example for face detections at slightly different scales and 
position. positions. Right: Only features in the inner face area are used for 
tracking. 
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6.3.4 AGGREGATING FACE SEQUENCES IN DIALOGS 

In this part, another optional processing step for movies can be applied that aims at connecting 

face sequences of temporally neighbored shots. Therefore, production rules for dialogs in movies 

are exploited. Arijon [6] describes typical patterns of film and movie production. One of these 

patterns is related to the usually applied techniques to show a dialog. Typically, several cameras are 

used to capture the action within a scene (a scene consists of several shots that belong together 

semantically in terms of space and time). Assuming that a scene segmentation is available (e.g., 

computed by the approach suggested by Truong et al. [163]), this movie production pattern for 

dialogs can be exploited to merge subsequent face sequences of one person. To aggregate face 

sequences, it is necessary to recognize which shots have been taken by the same camera. Therefore, 

position and size of the detected face regions are considered, as well as the histograms of the 

corresponding frames. The distance (dissimilarity) of two frame histograms (HSV color space) Q 

and V is computed using the Chi-square metric:  
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Two face sequences A and B (A preceding B) are merged if the following conditions are met: 

• both face sequences belong to the same scene; 

• the color histogram of the last frame of sequence A must be similar to the first frame of 

sequence B; 

• the detected face region in the last frame of sequence A must significantly overlap the 

detected face region in the last frame of sequence B. 

Face sequences within a scene are merged until there are no face sequences left that meet these 

conditions. Face sequence aggregation makes sense if many dialogs take place in the corresponding 

video, for example in feature films, movies or soaps. 

. 
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Figure 37: Settings to capture a dialog of two persons with two and three 
cameras (taken from [6]). 

 

 

Figure 38: The principle of aggregating two face sequences A and B of two 
persons in a dialog scene (taken from [6]). 

6.3.5 BUNCH GRAPH MATCHING 

The face recognition procedure used in the proposed system is based on the Elastic Bunch Graph 

Matching approach suggested by Wiskott et al. [174]. This approach was selected due to the 

following reasons. The used wavelet coefficients are (to a certain degree) independent of 

illumination changes and also, the bunch graph approach tolerates slight derivations in pose. 

Otherwise, different bunch graphs can be created for very different poses (e.g., frontal and profile). 

However, the bunch graph matching procedure is more difficult in low-resolution video. Therefore, 

only graph positions in the inner area of the face recognition are used for the frontal face graph in 

our system (see Figure 1). Since the nodes are not placed at the face border, face background has 

nearly no impact on the extracted features. Furthermore, it could be observed that the eye positions 

are detected constantly by the face detector. This can be explained if one considers the two best 

features reported in the paper of Viola and Jones [167]: the best two features clearly cover the eye 

Face sequence 1 Face sequence 2 Face sequence 3 Face sequence 4

… 

Aggregation 1 Aggregation 2
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region and thus represent luminance changes there. This is exploited by the bunch graph matching 

procedure (explained below) which is started at the eye positions for this reason. 

  
Figure 39: The face graph structure as used in the proposed system. Left: 
Frontal face graph. Right: Profile face graph.  

The following procedure, derived from the localization procedure described by Bolme [17], is 

applied to find the bunch graph nodes. Node localization is divided into two steps: initial 

estimation and refinement. First, the previously estimated node positions are used to estimate the 

current node’s position using the following formula: 
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M is the number of previously localized nodes and its positions pi. vin is the translation vector 

between the i-th and the n-th node of the bunch graph. Each node provides an estimation of the 

current node’s position. To increase the impact of closer nodes, weights are used additionally for 

each node: 
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In the second step, the initial estimates are refined by a displacement estimation. The displacement 

estimation is based on the extracted wavelet features at each potential node position which are then 

compared with the wavelet features of the average bunch graph. The average bunch graph used in 

our system was created with 149 frontal faces of the FERET [127] database, normalized to a size of 

64*64 pixels. 

6.3.6 CORRECTION OF IN-PLANE ROTATION 

To estimate the in-plane rotation of the face, the rotation angle of the face is estimated using the 

eye positions which can be well localized based on the face detection results. In the optimal case, 

the eyes should be located on the same pixel row. Therefore, two iterations of the bunch graph 
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matching procedure as described above are executed, but only for the nodes representing the eyes 

(and not for all nodes of the face graph). The estimated eye positions are used to compute a 

rotation matrix for the rotation angle a:  
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In Figure 40, examples for successfully rotated images are presented. 

 

 
Figure 40: Examples of automatically corrected in-plane rotated faces. The 
original faces as extracted from the video are displayed in the top row. 
Below are the results after correcting in-plane rotation. 

6.3.7 GABOR WAVELET FEATURE EXTRACTION 

Once the node positions of the face graph are estimated, the Gabor wavelet features are extracted 

from these positions. The functions to compute the wavelet coefficients can be expressed as 

follows 
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A Gabor wavelet is controlled by five parameters: orientation θ, wave length λ, phase ϕ, radius σ of 

the Gaussian function, and the aspect ratio γ. The wavelet coefficients in the proposed system are 

computed according to the wavelet specification suggested by Bolme [17], as displayed in Table 61. 

Thus, at each node 40 wavelet coefficients are extracted, for five orientations and eight wave 

lengths. Such a set of wavelet coefficients is considered as a jet. A face bunch graph consists of all 

the jets for all nodes extracted from several frames, where the term bunch indicates that more than 

one jet (a bunch of jets) was assigned from two or more frames. 
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Wavelet Parameter Values (according to [17]) 
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Table 61: The Gabor wavelet specification as used in our system. 

6.3.8 FACE RECOGNTION/CLUSTERING 

In the addressed application scenario, no classical recognition task is incorporated since the 

identities are not known in advance. Thus, an unsupervised clustering approach is employed in the 

beginning that assigns similar face sequences to the same cluster. Since the number of characters in 

a movie is not known in advance as well, an agglomerative clustering method is applied. For this 

purpose, a distance metric that describes the (dis-)similarity of two face sequences is needed. Three 

different possibilities to compare face sequences are integrated: Single Linkage Clustering, 

Centroid-based Clustering, and an Identity Bunch Graph method. Distance metrics are needed to 

compare jets, face graphs and face bunch graphs. The similarity of two jets J and J’ is computed by 
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where aj is the amplitude of the wavelet coefficient with index j, its phase is ignored since it changes 

rapidly depending on the position (but this property can be utilized for displacement estimation). 

The similarity of two face graphs F1 and F2 is computed by: 
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where n is the number of feature positions (nodes and edge positions). This similarity function 

(interval: [-1, 1]) can be easily transformed to a dissimilarity function: 

  ( )),(15.0),( 2121 FFSFFd FF −⋅=  ( 78) 
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The dissimilarity of two clusters (of face sequences) X and Y with face graphs F and G according 

to Single Linkage clustering is then: 
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The dissimilarity of two clusters (of face sequences) X and Y according to centroid-based clustering 

requires the computation of a centroid face graph, which consists of average jet amplitudes: 
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where N is the number of face graphs in cluster X, m is the number of jets of a graph (i = 1, ..., m), 

n is the number of amplitude values of a jet (j=1, ..., n)., and FX is the centroid face graph. The 

dissimilarity of two clusters X and Y with centroid face graphs FX and FY, respectively, is then 

defined as: 

),(),( YXFC FFdYXd =   (81) 

Similarity measurement based on identity bunch graphs allows comparing unknown views of 

persons by combining a person’s jets of different face appearances. A face bunch graph holds the 

jets for several face appearances of a person, such that a node holds not only the jet of one face but 

a whole bunch of jets extracted from several faces. The similarity of a face graph F and an identity 

bunch graph is defined as: 
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,where JB
i,j is the j-th jet of the i-th bunch of the bunch graph. A jet from the face graph F is 

compared with all jets of the corresponding bunch and the most similar jet is selected. The 

similarity of two clusters X and Y is then: 

 ))),((max)),,((maxmax(),( XFtoBGYFYFtoBGXFIBG BFSBFSYXS
∈∈

=  (83)  

The related distance function is: 

 ),(),( YXFC FFdYXd =  (84)            
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With any of these three distance measures, the clustering works as follows. Initially, each face 

sequence represents one cluster, except when an aggregation process has taken place: Then, a 

cluster may contain several aggregated face sequences. After initialization, the cluster distances are 

computed pair-wise. If the minimum distance does not exceed a pre-defined threshold, the two 

most similar clusters are merged into one cluster and its distance to all other clusters must be re-

computed. This process is repeated until no pair of clusters is sufficiently similar, which is the case 

when all dissimilarity values exceed a threshold. 

6.3.9 SELF-SUPERVISED LEARNING FOR ROBUST FACE CLUSTERING 

The clustering process outputs a number of clustered face sequences as its result. However, in this 

clustering process all the wavelet features have contributed equally to the similarity measure of two 

faces. In this way, the characteristic features of a person (e.g., beard, eyes) might be covered by 

many other features which are not suitable to distinguish between two persons. Furthermore, it is 

observable that the clustering process often also results in a number of clusters with only one face 

sequence, often related to a less frequent pose or facial expression of a person. Here, the idea is to 

stop the clustering process conservatively (i.e., to use a low threshold to terminate the clustering 

process early) in order to prevent the merging of face sequences of different persons.  

Each cluster that has a minimum number of face sequences is further considered as a training set 

for an identity. The members of this cluster are the positive training samples for this identity, 

whereas the face sequences of the other clusters are considered as negative training samples (they 

should also exceed a minimum number of face sequences, in order to reduce the number of false 

training samples). At this point, the training sets may contain some face samples which have the 

wrong labels. The idea here is that as long as the correctly labeled samples dominate the training set 

for an identity, the classifier should generate a generalized model that mainly represents the “good” 

samples of the training data. In the training stage, not only the amplitudes of the Gabor wavelet 

features are used, but also the phase information. Adaboost [55, 167] is utilized to select the 

features that distinguish best between a considered cluster X and all the other clusters. These 

features are then used to train a classifier. Several possibilities have been investigated: First, since 

Adaboost is a meta-classifier itself, it can be used for subsequent classification. Second, the selected 

features can be used to train any other classifier: in our experiments, a SVM (support vector 

machine) is used. Another possibility is to build an ensemble of classifiers using majority voting. In 

this case, the classifiers forming an ensemble should have a certain level of independence, as it has 

been discussed in Chapter 2. In the self-supervised approach for cut detection proposed in Chapter 

4.7, the boosting procedure of Adaboost was successfully exploited and features were assigned in 
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an alternating fashion to two different classifiers according to their rank in the Adaboost feature 

selection process.  

The idea of the Adaboost approach is to combine a number of n “weak classifiers” to build a 

strong classifier within n rounds of training. For each weak classifier (based only on one feature in 

our case), a minimum classification error is estimated. This classification error is computed based 

on the weights of the training samples that are weighted equally in the beginning. Misclassified 

training samples are re-weighted such that they have more impact in the next training round for the 

next “weak classifier”. Thus, a selected feature has a higher probability to correctly classify those 

training samples that have been misclassified in preceding rounds. This property is the motivation 

to split the feature set depending on their rank for subsequent training. In case of n classifiers, the 

feature with rank k is assigned to classifier k modulo n. If Adaboost is chosen as the classifier, this 

procedure can be viewed as a reorganization of the ensemble. 

Then, each classifier is trained with its own feature set using the clustering result as training data. 

The n classifiers are combined to form an ensemble of classifiers using the number of votes for 

each person. Finally, each face sequence is classified with k classifiers (where k is the number of 

clusters from the clustering process with a minimum number of face sequences). A face is assigned 

to cluster i (with classifier i) if the number of votes of classifier i exceeds all other ensemble votings 

and is at least 1. The overall process is called self-supervised, because the system labels the training 

data all by itself.  

6.4 EXPERIMENTAL RESULTS 

In this section, experimental results for a TV news video (about 4 minutes duration, 4 persons), a 

talk show (about 8 minutes duration, 6 persons) and for a TV soap (about 38 minutes duration, 4 

characters) from the MPEG-7 [14] video test set are presented. Some system components are 

realized using Open Source Software, namely: Intel’s OpenCV library 

[www.intel.com/technology/computing/opencv] is used for face detection, feature detection and 

optical flow estimation (feature tracking), the libSVM library is used as the SVM implementation 

[http://www.csie.ntu.edu.tw/~cjlin/libsvm], the Elastic Bunch Graph Matching code for face 

recognition/comparison is provided at [www.cs.colostate.edu/evalfacerec/algorithms5.html]. 

The impact of several parameter settings on the overall recognition/clustering performance. has 

been tested systematically. Selecting faces according to the number of hits of the face detector 

ended up with better face clustering results than using the similarity to the trained face bunch 

graph. The impact of different parameter settings, in-plane rotation removal and self-supervised 
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training is investigated in our experiments as described below. In all reported experiments, Single 

Linkage clustering was applied. 

The experiments were evaluated as follows. The ground truth data were created on a per shot basis 

per frontal face appearance. Given a clustering result, a particular cluster should contain all the shot 

indices in which a certain person appears. A cluster C is assumed to represent the person who 

dominates the cluster. If two or more clusters are dominated by the same person, only the cluster 

Cx which contains the maximum number of face sequences for this person X is considered for the 

calculation of recall. Let cx be the number of shot indices that are correctly assigned to cluster Cx 

for a person X, and let Tx be total number of appearances of this person, then recall and precision 

for person X are defined as:  
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The overall recall and precision are defined as: 
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where |Cx|= cx + fx ; fx is the number of falsely assigned face sequences. The clusters Cy are those 

clusters which have not been assigned to a person X. Let cy be the number of shot indices of the 

person who dominates cluster CY. Recognition is measured on the basis of the detected face 

sequences; the F1-measure is computed by: 
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First, the baseline system, without removal of in-plane rotation and self-supervised training, was 

tested on the news and talk-show video. In the news video, the baseline system achieves a perfect 

recognition result without self-supervised learning. Several experiments for the more demanding 

talk show video have been conducted to investigate the sensitivity of the overall system 

performance with respect to different parameter settings. The second series of experiments 

investigates the contribution of in-plane rotation removal and self-supervised learning for the talk 

show sequence. Finally, experimental results are presented for a TV soap with a duration of 38 

minutes. 
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In the first series of experiments, the impact of the following parameters was investigated, the 

default values are given in brackets:  

• minimum number of detection hits to accept a face detection; (5) 

• minimum number of detected faces needed to form a face sequence; (11) 

• threshold for skin color probability to verify a face occurrence;  (0.1) 

• maximum number of best faces representing a face sequence;  (9) 

• threshold to terminate the clustering process;  (0.03) 

• number of selected features in the self-supervised learning process.  (30)  

 In the first experiment, the number of minimum detection hits was varied: 1, 3, 5, 7, 9. The 

experimental results are presented in Table 62. It is observable that precision degrades (due to an 

increasing number of false alarms) when only one detection hit is sufficient to verify face detection. 

Best results are achieved for a minimum of 5 or 7 detection hits. 

In our system, a minimum number of detected faces must be exceeded within a tracked sequence in 

order to consider it for the subsequent recognition process. The parameter defining this minimum 

number was tested with the following values: 5, 8, 11, 14, 17. The corresponding experimental 

results are displayed in Table 63. 

The threshold for skin color probability to verify a face detection is set very conservatively in our 

system to identical experimental results. 

A face sequence is represented in the clustering and in the self-supervised learning process, 

respectively, by the n “best” faces. The best faces were selected according to the number of 

reported detection hits by the face detector. Gabor wavelet features were extracted only from these 

faces (each face is scaled to size 64*64). The number of best faces representing a face sequence has 

been varied in the next experiment and the values 1, 3, 6, 9, 12 have been tested. Experimental 

results are presented in Table 64. The results are quite stable for all tested values, however, the best 

performance was achieved using a medium number of 6 or 9 representative best faces. 

The threshold for skin color probability to verify a face detection is set very conservatively in our 

system to prevent obvious false alarms. All experiments, using the probabilities 0.05, 0.1, 0.15, 0.2, 

and 0.25, yielded identical experimental results. 
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Finally, the impact of the clustering termination threshold was tested. The results are presented in 

Table 65. The results in this experiment are quite stable as well, except for the threshold of 0.036. 

In this case, too many clusters are merged and the performance degrades. 

Detected Faces 1 3 5 7 9 

Recall 72.0 73.3 70.7 62.7 60.0 

Precision 73.6 88.3 94.0 95.0 96.0 

F1-measure  72.8 80.1 81.0 76.0 73.8 

#Detected Persons 38 17 13 13 9 

Table 62: The experimental results for the talk show sequence when the 
number of detection hits is varied in the process of face sequence 
generation. 

Minimum Number 
of Faces per 
Sequence 

5 8 11 14 17 

Recall 70.7 70.7 70.7 70.7 69.3 

Precision 91.8 94.3 94.0 94.0 93.8 

F1-measure  79.9 80.8 80.7 80.7 79.8 

#Detected Persons 17 16 13 13 12 

Table 63: The experimental results for the talk show sequence when the 
minimum number of faces forming a face sequence is varied in the face 
sequence generation process. 

Maximum Number 
of Best Faces per 
Sequence 

1 3 6 9 12 

Recall 58.7 65.3 68.0 70.7 68.0 

Precision 97.0 95.5 97.0 94.0 82.1 

F1-measure  73.1 77.6 80.0 80.7 74.4 

#Detected Persons 25 20 18 13 9 

Table 64: The experimental results for the talk show sequence when the 
maximum number of best faces representing a face sequence is varied. 

Clustering Termination Threshold 0.024 0.027 0.03 0.033 0.036 

Recall 62.7 66.7 70.7 68.0 40.0 

Precision 97.0 97.0 94.0 82.1 51.6 

F1-measure  76.1 79.0 80.7 74.4 45.1 

#Detected Persons 20 18 13 8  4 

Table 65: The experimental results for the talk show sequence when the 
clustering termination threshold is varied. 
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Overall, although a number of parameters must be set in our system, the first series of experiments 

indicates that the system performance is not critically sensitive to certain parameter settings. 

In the second series of experiments, the impact of in-plane rotation and self-supervised learning 

was investigated. The following parameter settings were used based on the best results of the 

experiments described above. The minimum number of detection hits was set to 5. A face 

sequence was accepted if there were 11 faces correctly detected and tracked with a skin color 

probability of at least 0.1. The number of best faces that were extracted per face sequence was set 

to 9. For the talk show sequence, 67 out of 75 frontal face sequences were extracted correctly 

without any false alarms using the system’s face detection and face sequence generation. The 

experimental results are displayed in Table 66 for two different thresholds for clustering 

termination. Recall and precision are shown for the whole clustering result as well as for each 

person separately. The termination criterion t is displayed in the first row. Overall recall is about 66-

70% with a high precision of about 95%, hence, clusters that represent a person mainly hold faces 

of the same person. 

Threshold t 0.027  0.03  

 Rec. Prec. Rec. Prec. 

Person 1 87.0 100.0 100.0 100.0

Person 2 73.7 100.0 84.2 94.1

Person 3 72.7 100.0 72.7 80.0

Person 4 50.0 100.0 50.0 100.0

Person 5 33.0 100.0 - -

Person 6 30.0 100.0 30.0 100.0

Overall 66.7 97.0 70.7 94.0

Recognition  74.7 97.0 79.1 94.0

F1-measure  79.0  80.7  

#Detected Persons 18  13  

Table 66: The experimental results for the talk show sequence using the 
baseline system. Recognition is computed based on the detected face 
sequences only. 
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Threshold t 0.025  0.027  

 Rec. Prec. Rec. Prec. 

Person 1 100.0 100.0 100.0 100.0

Person 2 78.9 94.7 84.2 94.1

Person 3 72.7 80.0 72.7 80.0

Person 4 83.3 100.0 83.3 100.0

Person 5 - - - -

Person 6 60.0 100.0 60.0 100.0

Overall 76.0 94.0 77.3 94.0

Recognition 85.1 94.0 86.5 94.0

F1-measure 84.0  84.8  

#Persons 10  9  

Table 67: The experimental results for the talk show sequence when in-
plane rotation of faces was performed. Recognition is computed based on 
the detected face sequences only. 

Classifier Adaboost (30 
features), 1*30

 Rec. Prec.

Person 1 100.0 100.0

Person 2 94.7 94.7

Person 3 90.9 83.3

Person 4 83.3 100.0

Person 5 - -

Person 6 70.0 87.5

Overall 84.0 94.0

Recognition 94.0 94.0

F1-measure 88.7  

#Persons 5  

Table 68: The experimental results for the talk show sequence when 
inplane-rotation was performed and Adaboost was used to learn facial 
features of face clusters. Recognition is computed based on the detected 
face sequences only. 
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Classifier SVM (30 

features), 1*30
3-SVM Ensemble (30 

features), 3*10

 Rec. Prec. Rec. Prec.

Person 1 100.0 100.0 100.0 95.8

Person 2 94.7 94.7 94.7 94.7

Person 3 90.9 83.3 90.9 83.3

Person 4 83.3 100.0 83.3 83.3

Person 5 - - - -

Person 6 80.0 80.0 80.0 80.0

Overall 85.3 92.7 85.3 90.1

Recognition  95.5 92.7 95.5 92.7

F1-measure  88.8 87.6

#Persons 5 5

Table 69: The experimental results for the talk show sequence when 
inplane-rotation was performed and SVM or a 3-SVM ensemble, 
respectively, was used to learn facial features of face clusters. 

Number of Selected Features 5 15 30 45 90 

Recall 82.7 84.0 84.0 84.0 84.0 

Precision 92.5 94.0 94.0 94.0 94.0 

F1-measure  87.3 88.7 88.7 88.7 88.7 

#Detected Persons 5 5 5 5 5 

Table 70: The experimental results for the talk show sequence when the 
number of selected features is varied using the Adaboost classifier. 

The experimental results for the system that was enabled to deal with in-plane rotation are 

presented in Table 67 (again for two different thresholds for clustering termination); some 

examples for correcting in-plane rotation are presented in Figure 4, left. Using this technique, an 

overall recall of 76-77% could be achieved while precision could be preserved clearly above 90%. 

Along with that, the number of clusters was noticeably reduced and approximated nearly the 

correct number of persons in the best clustering. In the next experiment, it has been investigated 

whether it is possible to learn characteristic facial features and face models directly from the given 

video sequence, based on the initial clustering result (default settings + in-plane rotation handling, 

t=0.027). Only clusters with at least three different face sequences were considered for training. The 

following scenarios were tested: Training of an Adaboost classifier with 45 features, and training of 

a SVM or of 3 SVMs, respectively, in order to form an ensemble of SVMs using 30 features 

selected by Adaboost. The experimental results for the Adaboost classifier is presented in Table 7. 

In Table 8, results for a SVM and an ensemble of SVMs are shown. 
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The results in Table 68and Table 69 indicate that the system was indeed able to learn characteristic 

facial features of the different persons from the initial clustering result by itself. The best results 

were achieved with the single Adaboost classifier (30 features) yielding an overall recall of 84% 

while preserving a precision of 94%, and with the SVM classifier (30 features) resulting in an overall 

recall of 85.3% and a precision of 92.7%. The f1-measure was increased with self-supervised 

learning from 84.8 (baseline system + removal of in-plane rotation) up to 88.8. Finally, Adaboost-

based learning with different numbers of selected features has been tested for the talk show 

sequence. The results are presented in Table 70. Interestingly, a small number of five features is 

sufficient to achieve a very good result. 

 

Figure 41: Example for a shot-based person indexing result for the talk-
show sequence. 

Furthermore, the potential of self-supervised learning has been investigated for the video 

“camiloefilho” (duration: 38 minutes, 4 characters) from the MPEG-7 [14] video test set. Using a 

given scene segmentation, aggregation of face sequences in dialogs was applied. The parameters are 

slightly adjusted according to the longer duration of the video. The clustering termination threshold 

was set to 0.04. Only clusters with a minimum number of 10 face sequences were used to train a 

face model. This way, the recognition procedure could be boosted for three of four actors. In 

Figure 4, right, the selected best 5 features are shown for two characters from this test video. 

Unfortunately, character 4, who does not appear very often in this video, was lost since the number 

of face sequences related to him was quite small. Nevertheless, using the Adaboost classifier with 

45 features for each person, the overall recognition rate increased from 71.1% up to 81.7% while a 
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high precision could be preserved (89.1% after learning, 90.7% before). The same features were 

used to train a SVM for each person: here, a similar overall recognition rate of 81.2% and a 

precision of 88.5% was achieved. An example for an indexing result for the talk show sequence is 

presented in Figure 41, in Figure 42 these results are compared to the related ground-truth data. 

 

 

 

 

 

 

Figure 42: Example shot-based indexing results for the six persons of the 
talk-show sequence. Vertical lines represent the shot boundaries. For each 
person, the upper timeline represents the ground-truth data, and the 
bottom timeline represents the automatic indexing result. 

A comparison to earlier systems is difficult. In contrast to our approach, the systems proposed by 

Acosta et al. [1], by Everingham and Zisserman [50, 51], and by Satoh [134], respectively, require a 

training stage using labeled face data. Thus, the systems can only recognize persons which are 

known in advance. Comparable approaches are presented by Eickeler et al. [34], Fitzgibbon and 

Zisserman [53], and Raytchev and Murase [129, 131]. Eickeler et al. [34] used only a short news 

video in the experiments - the proposed baseline system achieved a perfect result for a similar video 

as well, even without self-supervised learning. Fitzgibbon and Zisserman [53] present only visually 

the cast face result list but no results are given in terms of recall/precision. Raytchev and Murase 

[129, 131] address a constrained environment in which people walk towards a fixed camera. 

Overall, the proposed system achieves in more demanding settings at least comparable results to 

[34, 53, 129, 131] and, in addition (in contrast to [1, 50, 134]), no labeled training data are required 

in our approach. 
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6.5 SUMMARY 

In this chapter, a novel automatic video annotation system with respect to a person’s occurrence 

was presented. It was demonstrated how face detection results can be exploited to estimate the eye 

positions precisely in order to automatically cope with in-plane rotated faces. Experimental results 

showed the effectiveness of the proposed in-plane rotation removal. Furthermore, it was 

investigated in which way an initial face clustering result can be further improved by self-supervised 

learning, in particular with feature selection and appropriate re-classification. For this purpose, the 

task was considered as a setting of transductive learning and only the face samples present in the 

given video were used. Several possibilities to train Adaboost classifiers, SVM classifiers, and to 

train an ensemble of these (transductive) classifiers on a video were presented and compared. 

Finally, experimental results demonstrated that it is sufficient to train a single classifier: the best 

performance measures were achieved by the Adaboost and a SVM classifier, respectively, each 

increasing the F1-measure from 84.8 up to 88.8.  

 



 

C h a p t e r  S e v e n  

7 SEMI-SUPERVISED LEARNING FOR SEMANTIC VIDEO RETRIEVAL 

7.1 INTRODUCTION 

The ambitious goal of research efforts in the domain of multimedia retrieval is the automatic 

understanding of audiovisual content. If it were feasible to automatically understand what is shown 

in a video shot or what is said in a news cast, then it would be much easier to answer user queries 

for multimedia databases. However, automatically recognizing objects and events in an image or in 

a video is a difficult problem, although there has been some success for particular object 

recognition tasks, such as face detection [187]. Naphade and Smith [117] state that first TRECVID 

[161] efforts showed that approaches such as query by content using low-level features are 

inadequate to successfully search a large video collection. This is the reason why current research in 

the field of video retrieval focuses on the detection of so-called high-level features (concepts or 

topics) in order to index video shots to finally support different kinds of queries. Recent 

approaches to high-level concept detection are typically based on automatically extracted low-level 

features which are used by supervised machine learning methods to infer about semantic scene 

content. Such low-level features are, for example, color histograms, texture and shape descriptors 

[106], motion information [81] for video content, and the zero crossing rate ratio, the short-time 

energy ratio or the spectrum flux [102] for audio content. The incompatibility of low-level features 

that can be extracted automatically for an audiovisual scene and the high-level meaning associated 

by humans is considered as the “semantic gap” (e.g., Dorai and Venkatesh [33], Gevers and 

Smeulders [59]).  

In an arbitrary video, the number of object classes, objects (or class instances), events and topics is 

very large, and it is not reasonable to use a specialized detector for each possible concept. 

Furthermore, even for partially solved object detection or object recognition problems like face 

recognition, the system performance heavily depends on pose and illumination of a face [127]. In 

addition, in an arbitrary video, the context of events and person occurrences determines the 

complexity of the recognition task as well, for example a person’s appearance depends on clothes 

and age. This does not only hold for person recognition but also for the overwhelming majority of 

semantically relevant objects and events. Often, the meaning or the appearance of a certain event or 

concept is strongly determined by contextual information. For example, the appearance of a high-

level concept, such as maps or news anchors in a certain news program, is strongly determined by 

the editing layout which is specific for a certain broadcasting station. 
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Since the appearance of certain concepts is related with a particular video source or program, the 

task of detecting these concepts can be considered as a transductive learning setting. In this chapter, 

two methods to adaptively learn the appearance of certain objects or events for a particular video 

with the aim of enhancing the retrieval quality are proposed to exploit this setting: 1.) a semi-

supervised learning ensemble approach based on our framework described in Chapter 3 and 2.) an 

approach using transducitve SVM. In the preceding Chapters 4 and 6, it has been shown that an 

initial object model obtained for a particular video via unsupervised learning can be improved 

adaptively for this video via our proposed framework. Therefore, the given video content analysis 

task has been considered as a transductive learning setting. The transductive learning ensemble (as 

proposed in Chapter 3) has been realized in a self-supervised learning manner because only 

unlabeled data have been used in these tasks. In Chapter 7.3, it is shown that a transductive learning 

approach can also improve the retrieval performance for detecting high-level concepts, although 

the performance of the available baseline classifiers (based on supervised learning) is relatively low. 

For this task, the transductive learning ensemble is realized in semi-supervised way since it relies on 

supervised baseline classifiers. To improve results for particular videos, the fact is exploited that 

there are concepts whose appearance is strongly related to a certain video source (e.g., maps in a 

news cast). The novel idea is to estimate the relevant features for a given concept in a particular test 

video v. It is assumed that an initial concept model is available which has been obtained via 

supervised learning using a set of appropriate training videos. Based on this initial model, shots are 

ranked separately for each test video v. Then, features are selected with respect to the concept’s 

appearance in this video v and new classifiers are trained using only the best and worst ranked shots 

as positive and negative training samples. The feature set is split in order to train additional 

classifiers with different views to assemble a robust ensemble of classifiers which is finally used to 

re-classify or to re-score the shots of this particular test video v. The second proposal (Chapter 7.4) 

considers the scenario as a transductive setting as well and transductive SVMs are applied to 

improve concept detection in particular videos. Experimental results for the MediaMill Challenge 

[18] part of the TRECVID 2005 video set demonstrate the feasibility of the proposed approaches 

for certain concepts. The work presented in this chapter has been partially published in [48, 49]. 

7.2 RELATED WORK 

First, state-of-the-art approaches to concept detection are presented, such as the IBM Video 

Retrieval System [5] and the MediaMill system [147]. A review about concept detection systems is 

given by Hauptmann and Christel [70]. These approaches have in common that a mapping is 

learned between low-level and high-level features using machine learning techniques. Furthermore, 

several classifiers are trained on different feature subsets and on the whole feature set, respectively. 
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Second, since unlabeled data are augmented in the proposed semi-supervised learning framework, 

related approaches that incorporate unlabeled data in the training process in order to reduce the 

labeling effort are discussed.  

Amir et al. [5] present a set of different machine learning techniques to map low-level features to 

high-level semantic concepts. The machine learning techniques are: Support Vector Machine, 

Gaussian Mixture Models, Maximum Entropy Methods, a modified Nearest-Neighbor classifier, 

and Multiple Instance Learning. Furthermore, different fusion methods are investigated. The 

authors have conducted extensive experiments on TRECVID video data (the 2003 and 2005 

development set) to select the best audiovisual and textual features for this task. A semantic model 

vector (according to Smith et al. [142]) is built consisting of confidence scores for 39 LSCOM-Lite 

concepts (LSCOM: Large Scale Concept Ontology for Multimedia, www.lscom.org). The idea of 

semantic model vectors is to train a binary classifier for each concept and combine the classifiers’ 

outputs or their confidence scores, respectively, in the so-called semantic model vector. Optionally, 

Principal Component Analysis can be applied to a model vector if dimensionality reduction is 

needed. Semantic model vectors represent the video shots and are finally used to compare different 

videos for retrieval purposes. Amir et al [5] conduct several experiments where several strategies to 

fuse features or classifiers are investigated. 

Snoek et al. [147] suggest the semantic pathfinder to extract semantic concepts from video shots. 

The idea is based on an authoring metaphor where videos are considered as edited entities which 

are produced with a certain intention and purpose. Videos are processed in the semantic pathfinder 

in several analysis steps: the “content analysis” step, the “style analysis” step and the “context 

analysis” step. In the content analysis step, the following modalities are considered: visual features 

and text which is obtained from transcribed speech. A multi-class SVM is trained for a number of 

pre-defined proto-concepts using only a few training samples. The feature vector representing the 

visual content consists of the percentage of pixels per proto-concept. For textual analysis, for each 

concept x a separate lexicon is created that contains the words (after stop word removal) that co-

occur with x in the training set shots. The textual feature vector per shot consists of a histogram for 

the words related to concept x. The visual feature vector v and textual feature vector t are fused and 

serve as input to train a visual model for each concept using SVM which represents the first step: 

“content analysis”. The second step, “style analysis”, considers: 1.) layout (shot length, overlaid text, 

silence, voice-over), 2.) content (faces, face position, cars, object motion, frequent speaker; length 

of overlaid text, video text named entity; voice named entity), 3.) capture (camera distance, camera 

motion, camera motion type) and 4.) context, which serves to enhance or reduce the correlation 

between semantic concepts. The last step, “context analysis”, uses the probabilities of style analysis 
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that a concept is present in a shot: these probabilities are fused in the context vector c. Finally, a 

held-out validation set is used to find for each concept individually the best path through those 

three analysis steps for content, style, and context. This best concept path is then used to retrieve 

shots.  

In a way, these approaches are representative for the concept detection part of the current 

generation of video retrieval systems. In recent years, first works have considered the incorporation 

of unlabeled data into the supervised learning process. Blum and Mitchell [13] suggest co-training in 

order to augment unlabeled data into the classification process. It is assumed that there are two 

different independent views of the classes or two different independent views of the data, 

respectively. The feature set is divided according to these views for each sample and each classifier. 

Each classifier tries to classifiy unlabeled data and passes the data with the highest confidence score 

to the other classifier as training data. This process is repeated several times. Yan and Naphade 

[184] extend the co-training approach for semantic concept detection in video shots. They divide 

the feature set for a video shot into the textual and the visual representation and thus meet the 

prerequisite for co-training. Since classifiers for semantic video concepts are not sufficiently 

accurate and the use of incorrectly labeled data might degrade performance, they integrate a human 

annotator in the processing loop who reviews and eventually corrects the automatically labeled 

samples. They report experiments with several co-training iterations for four semantic concepts 

from the TRECVID 2004 high-level feature detection task: airplane, basketball, Bill Clinton and 

people. Experiments show that the performance degrades with the number of iterations when the 

original co-training approach has been used, presumably due to the low accuracy of the baseline 

classifiers. In case when the automatically labeled data were corrected by a human reviewer, the 

classification accuracy increased with the number of iterations, at least for most of the iterations. 

Anyway, compared to the baseline performance, an improvement was achieved for any concept 

and any iteration number, which was not always the case for the standard co-training procedure.  

Yan and Naphade [185] present another extension called “semi-supervised cross feature learning” 

for co-training. First, initial classifiers are trained on the labeled part of the training set. Then, in 

each iteration, samples that are classified with highest and lowest confidence by one classifier form 

a training set for the other classifier which is then trained only on the automatically labeled training 

set (without the samples from the original, manually labeled training set). Third, the performance of 

the newly trained classifiers is tested on a validation set and a corresponding weight is computed for 

each classifier. This weight is possibly 0 in case the classifier would degrade the performance of the 

initial classifier. The authors show theoretically that the minimal risk (to make an error) is never 

higher for the ensemble created in this way. Finally, they extend the learning approach for multiple 
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views. Their experimental results for 11 concepts from the TRECVID 2003 data set show that the 

proposed semi-supervised approach slightly improves average precision of the baseline system 

from 21.6% up to 23.3% whereas co-training leads to a lower average precision of 17.7%. In case 

the whole labeled training set was used, an average precision of 24% was achieved. 

Wu et al. [180] state that the appearance of concepts changes over time and address the problem of 

concept drifting in videos. They use Gaussian Mixture Models (GMM) to model a concept and 

propose an incremental online learning framework to cope with concept drifting. For this purpose, 

videos are processed in a batch mode. The first batch of pre-labeled data is used to learn a global 

GMM for each concept. The next batch of data (five videos are considered as one batch in their 

experiments) is employed to learn a set of locally optimized GMMs for each concept from the first 

unlabeled portion of the new data, aiming at an optimal classification performance on the current 

test batch. At first, the local models are used to classify the test data. Then, they are used to update 

the global GMMs. This online process is repeated for each newly upcoming test batch. Their 

experiments show that locally optimized GMMs outperform the updated global GMMs. 

Yan and Hauptmann [183] argue that textual information is the most useful information source for 

video retrieval but claim that additional audiovisual features can improve a retrieval result. Based on 

this argumentation, they use textual information to achieve a first ranking and employ other 

features (audio, visual, motion) to re-rank and refine a retrieval result. However, learning based on a 

retrieval result must deal with noisy labels because the retrieval result is not perfect. The authors 

argue that the first k returned documents represent sufficiently positive training samples and 

consider the remaining set of documents as negative training samples. This training set is used to 

perform a boosting process that is augmented with audiovisual features, called co-retrieval. The 

authors report that the boosted re-ranking approach improves the precision compared with the 

baseline system which used only textual features. 

7.3 SEMI-SUPERVISED LEARNING FOR SEMANTIC VIDEO RETRIEVAL 

As discussed above, a common approach to detect semantic concepts in videos is based on a 

mapping between low-level features and the high-level features. It can be observed for some 

concepts that their visual appearance is strongly related to a particular video source. For example, 

weather news are typically related to the following concepts. A map usually presents the area of 

interest, and some symbols indicate rain, clouds, wind and sun. Furthermore, displayed text gives 

information about locations, temperatures, all together explained and moderated by a human 

expert. For a particular instance of weather news, those general elements take a concrete shape, for 

example the map color, the font type and size of text and the style of the symbols are identical for a 
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certain TV program. In addition, the spatial composition of the shot will be specific for this TV 

cast, for example the moderator’s position and the camera distance will be specific as well. 

The proposed approach is aimed at learning the specific appearance of a certain concept in a 

particular unlabeled test video v based on an initial model. To improve the retrieval performance 

for such concepts, the following concept detection and retrieval framework is suggested to exploit 

the specific appearance of a concept. Its main processing steps are as follows. First, a baseline 

system using supervised learning (the SVM data of the MediaMill Challenge system [148] are used 

in our prototype) is used to map low-level features to high-level concepts. Second, the learned 

model is used to achieve a first separate ranking for the shots of each test video v according to the 

SVM confidence scores. Third, the best features are selected for this test video v and optionally split 

into two disjoint feature sets. These feature sets are used to train new SVM classifiers using only the 

automatically labeled data from the current test video v under consideration. Then, the additional 

classifier(s) and the original classifier form an ensemble which is used to re-compute a total 

confidence score for each shot in the test video v. 

Finally, the confidence scores for all shots of all test videos v are used to rank them, and shots are 

returned to the user according to this ranking. The algorithmic steps are now explained in more 

detail (see also the pseudo code in Figure 43). To give a complete picture of the system, the 

employed low-level features which have been donated by Snoek et al. [148] are discussed also in 

section 7.3.1. 

7.3.1 LEARNING THE INITIAL CONCEPT MODEL  

In general, any classifier that produces a confidence score regarding a concept’s presence in a video 

shot can be used as the baseline classifier in our system. For ease of implementation, the visual 

features, SVM models and confidence scores of the MediaMill Challenge system [148] are used in 

our system, which have been kindly donated by Snoek et al. [148]. These features are aimed at 

describing a complex scene as a composition of 15 so-called proto-concepts, such as building, car, 

desert, maps, mountain, road, sky, snow, water etc. Based on a small training set per proto-concept 

(between 20 and 320 samples), the texture characteristics are captured for each proto-concept. 

Therefore, the color channels are decorrelated and then an invariant edge detector (equivalent to a 

Gaussian derivative filter) is applied to each of the newly obtained color channels. The distribution 

of edges in an image region is then represented by a Weibull distribution which is described by 

three parameters: µ describes the origin of distribution, β describes the width of the distribution, 

and γ stands for the peakness of the distribution of edge responses [165]. So far, only models of the 

proto-concepts are obtained. An image is now divided into a number of regions and each region is 
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described by a set of features that reflect the similarity to each of the pre-defined proto-concepts. A 

similarity measure C2 has been suggested by van Gemert et al. [165] to compare two Weibull 

distributions F and G reflecting the squared error between them: 
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Finally, two different histograms are created for each proto-concept to describe an image. The first 

one, Haccu adds the similarity values for all pairs of image regions and annotated training samples, 

whereas Hbest is the maximum of this set of similarity values. Hence, Haccu captures global 

information about the image and Hbest captures local image information. Since both features are  

Figure 43: Pseudo code for the semi-supervised retrieval scheme. 

Input:  Initial SVM model svmC for concept C; Set of test videos V in the     
        database; 
Output: List of ranked shots of all test videos; 
 
Algorithm: 
 
Semi-Supervised-Learning-for-Retrieval(svmC, V) 
  for each test video v ∈ V 

Rank shots(v) according to svmC confidence score in descending order; 
// generate training samples for this video 
nrPotentialPositiveSamples := |{shot s ∈ shots(v)}| with     
svm_confidenceC(s) >= min_Confidence}|; 
 
// if not enough training data exist 
if   nrPotentialPositiveSamples < minNrPosShots then  

Normalize svmC scores for all shots ∈ v to ensemble score and 
store them; 

 

 
P:= Select best max_percentage_Pos shots s with svm_confidenceC(s) >= 
min_Confidence as positive training samples; 
N:= Select worst max_percentage_Neg shots s with svm_confidenceC(s) < 
min_Confidence as negative training samples; 
 
// Get list of ranked features for concept C for this  
// particular video v using a modified Adaboost; 
F=AdaboostFeatureSelection(P,  N); 
 
Split F in two sets Fodd and Feven; 
 
Train newClassifier1 with features Fodd and training data P and N; 
Train newClassifier2 with features Feven and training data P and N; 
for each shot s ∈ shots(v) 

Obtain two confidence scores confidence1C(s) and confidence2C(s) 
using newClassifier1 and newClassifier2; 
total_score(s)= a1*svm_confidenceC(s)+ a2*confidence1C(s)+ 
a3*confidence2C(s); // ai are weights 

end for; 
  end for; 
 
  return ranking of all shots of all test videos according to total_score(s) in 
  descending order; 
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extracted for two different Gaussian smoothing filters and two different regions sizes, eight features 

are obtained for each of the proto-concepts, yielding a total number of 120 features. For further 

details, the reader is referred to [165].  

As mentioned above, these features, SVM models and related confidence scores for 101 concepts 

were provided by Snoek et al. [148] for the TRECVID 2005 training video set. SVM models are 

learned based on 70% of this training set, while the remaining 30% are used as the test set. 

Confidence scores are computed for the test set partition for each concept using the SVM models. 

7.3.2 ADAPTING A CONCEPT MODEL TO A VIDEO  

In this section, a semi-supervised learning scheme to learn a specific concept model for its 

appearance in a certain test video v and utilize it for the retrieval process is proposed.  

7.3.2.1 GENERATING TRAINING DATA FOR A VIDEO 

To adapt a model to its appearance in a particular test video v, the baseline SVM model is used to 

rank the shots in this video according to their probability containing the concept. Then, the p shots 

with the highest probability and the n shots with the lowest probability serve as positive and 

negative samples for the subsequent adaptive learning process. The positive samples must exceed a 

minimum SVM confidence score min_Confidence to be considered for the subsequent training 

process. In case that the number of positive samples is below another threshold minNrPosShots 

defining a minimum number of positive samples, the semi-supervised learning process is not 

applied for this test video v. In this case, the initial scores are normalized with respect to the final 

number of ensemble classifiers. In addition, two further thresholds define the maximum percentage 

of shots in a video which are used as positive and negative training samples, respectively. The 

reader is referred to the pseudo code for these algorithmic steps in Figure 43. 

7.3.2.2 SELECTING FEATURES 

Once the positive and negative training samples have been obtained automatically for a test video v, 

feature selection is conducted using a slightly modified version of the Adaboost procedure as 

described in Chapter 3.3.1. Adaboost is a meta-classifier that provides an ensemble decision rule 

that is a weighted sum of the n different classifiers. It was shown by Freund and Schapire [55] that 

Adaboost minimizes the error on the training data as the number of training rounds (and hence the 

number of classification models) increases. A very nice property of Adaboost is that this is 

guaranteed as long as each selected classification model achieves an error rate below 0.5, thus, 

Adaboost is able to build a classification model (a “strong classifier”) with an arbitrarily low error 

rate on the training data based on the estimated combination of possibly “weak classifiers”.  
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As stated above, Adaboost combines a number of n (possibly weak) classifiers to build a strong 

classifier within n rounds of training. Therefore, a classification error is estimated for each (weak) 

classifier by estimating the best threshold that separates positive and negative samples using the 

one-dimensional data of a single feature. The classification error is calculated based on the current 

sample weights of misclassified samples. The training samples are weighted equally in the 

beginning. Training samples which are misclassified by the current classification model are re-

weighted such that they have more impact in the next training round for the next “weak classifier”. 

Thus, a newly selected feature has a higher probability to correctly classify those training samples 

that have been misclassified in preceding rounds. 

7.3.2.3 BUILDING AN ENSEMBLE OF CLASSIFIERS 

After the selected features have been obtained, they can be used to train any other classifier for the 

test video v under consideration: in our system, a SVM is used [23]. Another possibility is to build 

an ensemble of classifiers using majority voting. In this case, the classifiers forming an ensemble 

should have a certain level of independence. There is evidence [89] that a reasonable degree of 

independence of ensemble classifiers improves accuracy and guarantees at least the accuracy of the 

weakest classifier in the ensemble if the classifiers’ accuracies exceed a certain value. There is no 

generally accepted measure for the diversity of classifier ensembles, and it has not been shown 

theoretically how to successfully build a classifier ensemble, as remarked by Brown et al. [20]. 

Nevertheless, as stated before, independence between the ensemble members is beneficial. In the 

proposed approach for self-supervised cut detection (Chapter 4.7), the boosting procedure of 

Adaboost has been successfully exploited to assign features alternating to two different classifiers 

according to their odd or even rank in the feature selection process. This approach is motivated by 

the fact that during the Adaboost process, the weights of the samples which have been 

misclassified by the preceding weak classifier are increased. Thus, the next selected classifier should 

be partially independent of its direct predecessor. This property is our motivation to split the 

feature set depending on the rank of features for subsequent training in order to increase the 

independence of the obtained feature sets. In case of n classifiers, the feature with rank k is assigned 

to classifier k modulo n. In our proposed system, the feature set is split into two disjoint feature sets 

where each of them is used in a separate subsequent SVM training process. In this SVM training, 

concept models are learned based only on the automatically labeled training examples taken from 

the current test video v, yielding two new SVM models. Finally, three SVM models are available for 

each video, the initial (global) model and two (local) models that are learned with training data that 

have been labeled automatically for this particular test video v using the initial model. 
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7.3.2.4 RE-RANKING ALL VIDEO SHOTS 

At this stage, the question is how to utilize the SVM models, in particular with respect to those 

models which were trained adaptively for a test video v, to achieve a retrieval result for all (test) 

videos in the database. After the video-specific learning of concept models, three different 

classifiers are available for each shot and the concept under consideration: the initial model learned 

on the whole training set and two SVM classifiers which have been learned specifically for a test 

video v. The two newly trained SVM models are now used to obtain additional confidence scores 

which indicate the probability that a shot exhibits a certain concept. Then, a final confidence score 

is computed for each shot using the three models (weighted sum of these three scores) which is 

finally used to rank the shots of all test videos. 

7.3.3 EXPERIMENTAL RESULTS 

In our experiments, the usefulness of the proposed learning framework has been investigated for 

several video concepts which were expected to have a specific appearance in a certain video or TV 

program, respectively. The TRECVID 2005 training set consisting of 137 videos was used for this 

purpose. As mentioned in the previous section, the MediaMill challenge [148] features, SVM 

models and related confidence scores are used as our baseline system. In the challenge scenario, the 

features are extracted from the TRECVID 2005 training video set and SVM models have been 

learned using 70% of this training set, whereas the remainder is used as the test set. Hence, the 

proposed system is tested on the remaining 30% as well. The minimum probability that must be 

assigned to a shot to serve as a positive training sample was set to 0.01, and at least one shot in a 

test video v must have fulfilled this condition. Otherwise, semi-supervised learning is not conducted 

for this test video v. The libSVM [23] is used in our implementation to learn SVM models and to 

obtain confidence scores. Average precision is used to measure the retrieval performance. 

The following high-level concepts were expected to have an appearance related to a specific video: 

anchor, charts, maps, and overlaid text. Several experiments were conducted for these high-level 

features. First, the performance of the proposed semi-supervised framework is compared with the 

MediaMill baseline system. In this scenario, 90 features are selected and this feature set is split to 

train two additional SVMs for each video. 

For this experiment, the results are presented for each concept separately in terms of average 

precision in Table 71 - Table 74 for several sizes of retrieved shots (documents). The semi-

supervised learning scheme improves the average precision for three of those four concepts, except 

for the concept “overlaid text”. The average precision with respect to 100 retrieved documents is 

more than 10% higher for the concepts ”maps” and “charts” compared with the baseline system. 



 Chapter 7 - Semi-Supervised Learning for Semantic Video Retrieval 181 
 

 

In case of the concept “anchor”, the top-100 and top-1000 average precision of the baseline is 

already rather high, so there is only a little improvement. However, average precision increased by 

about 3% with respect to the top-2000 result. Let us consider the results for the other concepts at 

the level of top-2000 average precision which is used in the TRECVID evaluation series: for the 

concept “maps”, average precision increased by about 4%, for the concept “anchor” average 

precision increased by about 3%, and by 4% and 6%, respectively, in case when all shots are 

considered as retrieved. For the concepts “maps” and “charts” the performance improvement is 

rather high for the top-100 and top-1000 average precision. This is a useful system property for a 

user who first wants to browse through these returned shots to access relevant shots more quickly. 

Further experiments have been conducted for those concepts for which the retrieval performance 

could be improved. Five additional learning strategies were investigated: 1.) Only one newly trained 

model and the related score is used (without the initial model) to finally rank all test video shots in 

the database. 2.) The initial baseline SVM model and one additional newly learned SVM model is 

employed, all features are used; 3.) The initial baseline SVM model and one additional newly 

learned SVM model is employed, 30 features are selected for each video; 4.) As 3.), but 90 features 

are used; 5.) The proposed semi-supervised learning with two additional SVM models and 90 

features. The experimental results are presented for each concept separately in terms of average 

precision in Table 75 - Table 77. First, it is observable that using only the newly trained model 

deteriorates average precision significantly. However, the results also show that the proposed semi-

supervised learning scheme using two additional SVM models is superior in nearly all cases in terms 

of the top-100 and top-1000 average precision, while the use of only one additional model 

sometimes achieves a slightly better result. Since the improvement is clearer for the former results, 

the semi-supervised framework that uses three classifiers in total seems to be superior for most 

scenarios. Overall, it has been shown that the proposed semi-supervised learning scheme can learn 

the specific appearance of certain concepts in a video and improve the retrieval performance. Some 

example retrieval results for the concepts “maps” and “anchor” are presented in Figure 44, Figure 

45, and Figure 46, respectively. 
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“Maps” 
Average 
Precision [%] 

Baseline 
system 

Semi-
Supervised 
Learning 

Improvement 

 Top-100 76.0 89.6 +13.6

Top-1000 58.2 69.0 +10.8

Top-2000 52.7 56.6 +3.9

All shots 47.6 51.8 +4.2

Table 71: Experimental results for the high-level feature „maps”: Average 
precision values for the MediaMill challenge baseline system and the 
proposed semi-supervised approach are presented.  

“Anchor” 
Average 
Precision [%] 

Baseline 
system 

Semi-
Supervised 
Learning 

Improvement

Top-100 97.1 98.0 +0.9

Top-1000 83.1 84.8 +1.7

Top-2000 75.3 78.2 +2.9

All shots 63.1 69.4 +6.3

Table 72: Experimental results for the high-level feature „anchor”: 
Average precision values for the MediaMill challenge baseline system and 
the proposed semi-supervised approach are presented. 

“Charts“ 
Average 
Precision [%] 

Baseline 
system 

Semi-
Supervised 
Learning 

Improvement

Top-100 60.6 73.4 +12.8

Top-1000 44.4 51.3 +6.9

Top-2000 40.5 42.6 +2.1

All shots 32.7 35.7 +3.0

Table 73: Experimental results for the high-level feature „charts”: Average 
precision values for the MediaMill challenge baseline system and the 
proposed semi-supervised approach are presented. 

“Overlaid Text” 
Average Precision 
[%] 

Baseline 
system 

Semi-
Supervised 
Learning 

Improvement 

Top-100 97.5 96.9 -0.6 

Top-1000 87.9 85.1 -2.8 

Top-2000 83.9 80.4 -3.5 

All shots 66.9 62.1 -4.8 

Table 74: Experimental results for the high-level feature „overlaid text”: 
Average precision values for the MediaMill challenge baseline system and 
the proposed semi-supervised approach are presented. 
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Figure 44: Example retrieval result (top-50) for the concept “anchor” 
when using the semi-supervised learning ensemble approach. 
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Figure 45: Example retrieval result (top-50) for the concept “maps” when 
using the Mediamill baseline system.  
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Figure 46: Example retrieval result (top-50) for the concept “maps” when 
using the semi-supoervised learning ensemble approach. The “non-maps” 
shots are shifted downwards when using the semi-supervised approach 
compared to the baseline system. 
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“Maps” 
Average 
Precision [%] 

Only new 
SVM 
model 
(30) 

Initial model 
& 1 new 

SVM model 
(all) 

Initial model 
& 1 new 

SVM model 
(30) 

Initial model 
& 1 new 

SVM model 
(90) 

Initial model 
& 2 new 

SVM models 
(90) 

Top-100 35.4 85.3 86.6 87.8 89.6 

Top-1000 18.7 64.0 67.3 68.5 69.0 

Top-2000 15.0 58.9 58.4 59.7 56.6 

All shots 13.4 52.5 52.0 52.5 51.8 

Table 75: Experimental results for the high-level feature „maps” for 
different learning strategies. The number in brackets indicates the number 
of selected features by Adaboost. 

“Anchor” 
Average 
Precision [%] 

Only new 
SVM 
model 
(30) 

Initial model 
& 1 new 

SVM model 
(all) 

Initial model 
& 1 new 

SVM model 
(30) 

Initial model 
& 1 new 

SVM model 
(90) 

Initial model 
& 2 new 

SVM models 
(90) 

Top-100 46.9 98.9 97.8 97.1 98.0 

Top-1000 50.5 83.8 83.7 84.5 84.8 

Top-2000 47.4 76.6 76.8 75.5 78.2 

All shots 42.8 68.3 68.1 66.8 69.4 

Table 76: Experimental results for the high-level feature „anchor” for 
different learning strategies. The number in brackets indicates the number 
of selected features by Adaboost. 

“Charts” 
Average 
Precision [%] 

Only new 
SVM 
model 
(30) 

Initial model 
& 1 new 

SVM model 
(all) 

Initial model 
& 1 new 

SVM model 
(30) 

Initial model 
& 1 new 

SVM model 
(90) 

Initial model 
& 2 new 

SVM models 
(90) 

Top-100 11.5 63.1 70.1 68.8 73.4 

Top-1000 8.3 48.1 50.5 49.7 51.3 

Top-2000 7.6 41.7 45.1 43.9 42.6 

All shots 6.4 34.9 36.5 36.7 35.7 

Table 77: Experimental results for the high-level feature „charts” for 
different learning strategies. The number in brackets indicates the number 
of selected features by Adaboost. 
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7.4 TRANSDUCTIVE SVM FOR SEMANTIC VIDEO RETRIEVAL 

Semi-supervised learning comprises the class of learning methods that do not only use labeled 

training data but in addition incorporate unlabeled data in the learning process in order to improve 

class models [136]. Transductive learning can be considered as a special case of semi-supervised 

learning: In this setting, the labels of all training samples are known, and the set of unlabeled data 

consists only of the test samples. So far, this is the usual setting of supervised learning. But in 

contrast to traditional supervised learning methods, a transductive learner incorporates the 

unlabeled test samples into the learning process to obtain a model that separates the test data 

appropriately into the corresponding classes. This yields another difference compared to inductive 

learners: An inductive learner produces a generalized model that aims to classify all possible class 

instances in an optimal way, whereas a transductive learner produces a model that is aimed at being 

optimal only for the test data. In a way, this is according to Vapnik’s principle [166] targeted at 

high-dimensional estimation problems: “When trying to solve some problem, one should not solve 

a more difficult problem as an intermediate step”. 

Why should transductive learning be advantageous for the task of high-level concept detection in 

videos? Often, the meaning or the appearance of a certain event or concept is strongly determined 

by contextual information. For example, the appearance of certain high-level concepts, such as 

maps or news anchors in a news program, is strongly related to the editing layout which might be 

specific for a broadcasting station. In the previous chapter, it has been shown that a semi-

supervised learning scheme can improve the retrieval performance for high-level concepts, 

although the performance of the available baseline classifiers (based on supervised learning) is 

relatively low.  

Up to now, transductive learning has not been applied for the task of high-level concept detection 

and video retrieval. In this chapter, a novel transductive concept detection system for the purpose 

of semantic video retrieval is proposed. The following scenario is assumed: A training set of videos 

is given whose shots are labeled with respect to the appearance of concept c, and a test set of videos 

is given whose shots are not labeled with respect to the appearance of concept c. First, a baseline 

model is learned using the complete training set via traditional supervised learning (inductive 

support vector machine). Then, for each video v in the test set, this model of concept c is adapted 

with respect to its appearance in video v via transductive learning. In our system, transductive 

support vector machines [82] are employed to achieve this model adaptation. In this way, 

prediction values are obtained based on the corresponding transductive model for all shots of a 

particular video in the test set. These values indicate whether the concept c is present in them or 

not. Finally, the predictions for all test video shots in the database are used to rank them according 
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to the probability that the concept c is present in them. Experimental results on TRECVID 2005 

video data demonstrate the feasibility of the proposed transductive learning system for several high-

level concepts. 

As discussed above, a common approach to detect semantic concepts in videos is based on a 

mapping between low-level features and the high-level features. It can be observed for some 

concepts that their visual appearance is strongly related to a particular video source, as explained in 

Chapter 7.1.  

Considering the related work of semi-supervised learning for semantic video retrieval, it is evidaent 

that the video-specific appearance of certain concepts has not been exploited before to improve the 

concept detection and retrieval performance (except our previous proposal). Furthermore, 

transductive learning has not been applied to concept detection and video retrieval. In this section, 

a novel approach to learn the specific appearance of a certain concept in a particular video using 

transductive support vector machines (TSVM) is described.  

The following scenario is assumed (see also flow diagram in Figure 47). A set of labeled training 

videos is available and a set of unlabeled test videos must be classified and indexed with respect to 

the occurrence of a semantic concept c. Each shot in a video is desribed by a number of visual 

features. The feature representation used in our system is described in Chapter 7.3.1. Furthermore, 

for each shot of a training video, the class label for concept c is known, whereas all shots of the test 

videos are not labeled. Now, a transductive setting can be defined which allows us to exploit the 

specific appearance of a concept in a particular test video v by adapting a class model of the 

semantic concept c to test video v. For this purpose, each test video v is considered separately, and 

the unlabeled feature vectors of v are incorporated in the learning process. This process is aimed at 

computing a model that separates the classes (a shot belongs to concept c or not) in an optimal way 

for this test video. As a result, a class model is computed for each test video v separately and, based 

on this model, prediction values are computed for each shot of this video which indicate whether 

the concept is present in a shot or not. Finally, the prediction values for all shots of all test videos v 

are used to rank the shots, and shots are returned to the user according to this ranking.  

7.4.1 APPLYING TRANSDUCTIVE SVMS FOR VIDEO INDEXING AND RETRIEVAL 

The main idea in this step is to employ transductive learning to adaptively refine the appearance 

model of a high-level concept with respect to a particular video. The following scenario is assumed: 

A set of m training video shots is given where all shots are labeled according to the appearance of 

concept c (training set). This complete training set is utilized to learn a base model via an inductive 
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SVM. Then, for all k unlabeled shots of a new test video v in the database (test data), a transductive 

SVM is used to adapt and refine the SVM base model for concept c with respect to its appearance 

in a particular test video v via transductive learning. Formally, the shots of the training videos are 

represented by the feature vectors xi with labels yi (i ∈ {1, ..., m}) according to concept c, while the k 

shots of a particular test video v yield the unlabeled test data for each transductive setting, 

represented by feature vectors *
jx and unknown labels *

jy  (j ∈ {1, ..., k}). Given t test videos in the 

database, the transductive SVM is applied to each test video v separately in order to refine the 

concept model for this video. In this way, based on the particular transductive model TSVM(c, v), a 

prediction value is obtained for each of the k shots in a test video v indicating whether the concept 

c is present in it or not. Finally, assuming a user query in a retrieval scenario, the predictions for all 

test shots in the database are used to rank them according to the probability that the concept c is 

present in them. 

 

Figure 47: Scheme for semantic video indexing and retrieval based on 
transductive SVM learning.  
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7.4.2 EXPERIMENTAL RESULTS 

In our experiments, the usefulness of the proposed transductive learning approach has been 

investigated for several video concepts which were expected to have a specific appearance in a 

certain video or TV program, respectively. The performance of the transductive SVM is compared 

with the previously proposed system in Chapter 7.3, which employs a semi-supervised ensemble of 

classifiers. The TRECVID 2005 video training set consisting of 137 videos was used for this 

purpose. As mentioned in the previous section, the MediaMill challenge [148] features are used in 

our baseline system. In the challenge scenario, the features are extracted from the TRECVID 2005 

training video set and SVM models have been learned using 70% of this training set, whereas the 

remainder is used as the test set. The proposed system is tested on the remaining 30% as well.  

The SVM implementation svmLight <http://svmlight.joachims.org> is used to compute 

transductive SVM models. Not only the SVM models provided by Snoek et al. are used as a 

baseline because it should be avoided that different performance measurements are caused only by 

different implementations or parameter settings of the SVMs. To achieve this, the inductive SVM 

of “svmLight” is also used to compute the prediction values of our baseline system. Thus, it is 

guaranteed that different performance measures are caused only by the transductive extension of 

the SVM but by a particular SVM implementation.  

The performance of our baseline SVM achieves at least the performance of the MediaMill challenge 

SVM models for the investigated concepts. It could be observed that performance of transductive 

SVM degrades noticeably when the percentage of positive samples is below 2%. The performance 

degradation could be avoided when the number of samples, which are labeled by the inductive 

baseline SVM as positive, is set to 0. In this way, no falsely assigned positive labels deteriorated the 

computation of the hyperplane, while the unlabeled negative samples still influenced the maximum 

margin hyperplane. In this way, best results could be achieved for such concepts. This had to be 

done for the concepts “charts” and “maps”. In all SVM experiments, a RBF kernel was used. 

Average precision is used to measure the retrieval performance. 

“Anchor” 
Average 
Precision [%] 

Baseline 
system 

Transductive SVM Improvement 

Top-100 98.9 93.8 -5.1 

Top-1000 78.0 81.6 +3.6 

Top-2000 71.8 76.9 +5.1 

All shots 61.8 66.6 +4.8 

Table 78: Experimental results for the high-level feature „anchor”: 
Average precision values for the baseline SVM system and the proposed 
transductive SVM approach are presented. 



 Chapter 7 - Semi-Supervised Learning for Semantic Video Retrieval 191 
 

 

 “Charts” Average 
Precision [%] 

Baseline 
system 

Transductive 
SVM 

Improvement 

Top-100 70.2 84.2 +14.0 

Top-1000 55.7 64.5 +8.8 

Top-2000 52.3 60.6 +8.3 

All shots 36.8 42.5 +5.7 

Table 79: Experimental results for the high-level feature „charts”: Average 
precision values for the baseline SVM system and the proposed 
transductive SVM approach are presented. 

 
“Entertainment” 
Average Precision [%] 

Baseline 
system 

Transductive 
SVM 

Improvement 

Top-100 45.5 73.3 +27.8 

Top-1000 46.8 63.4 +16.6 

Top-2000 42.2 54.9 +12.7 

All shots 29.0 32.7 +3.7 

Table 80: Experimental results for the high-level feature „entertainment”: 
Average precision values for the baseline SVM system and the proposed 
transductive SVM approach are presented. 

 “Maps” Average 
Precision [%] 

Baseline 
system 

Transductive 
SVM 

Improvement 

 Top-100 83.1 85.9 +2.8 

Top-1000 66.0 68.0 +2.0 

Top-2000 61.6 61.6 0.0 

All shots 51.9 51.5 -0.4 

Table 81: Experimental results for the high-level feature „maps”: Average 
precision values for the baseline SVM system and the proposed 
transductive SVM approach are presented. 

The following high-level concepts were expected to have an appearance related to a specific video 

and hence, they are investigated in our experiments: anchor, charts, entertainment, maps, overlaid 

text, and studio. Several experiments were conducted for these high-level features. First, the 

performance of the proposed transductive SVM approach framework is compared with the 

baseline SVM system for the six selected high-level concepts. For this experiment, the results are 

presented for each concept separately in terms of average precision in Table 78 - Table 83 for 

several sizes of retrieved shots (documents). 
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“Overlaid Text” 
Average Precision [%] 

Baseline 
system 

Transductive 
SVM 

Improvement 

Top-100 89.5 88.6 -0.9 

Top-1000 82.5 82.5 0.0 

Top-2000 79.8 80.0 +0.2 

All shots 65.7 65.8 +0.1 

Table 82: Experimental results for the high-level feature „overlaid text”: 
Average precision values for the baseline SVM system and the proposed 
transductive SVM approach are presented. 

“Studio” 
Average 
Precision [%] 

Baseline 
system 

Transductive 
SVM 

Improvement

Top-100 95.7 97.3 +1.6

Top-1000 87.3 90.2 +2.9

Top-2000 79.9 83.8 +3.9

All shots 61.8 65.8 +4.0

Table 83: Experimental results for the high-level feature „studio”: Average 
precision values for the baseline SVM system and the proposed 
transductive SVM approach are presented. 

“All Concepts” 
Average Precision 
[%] 

Baseline 
system 

Transductive 
SVM 

Improvement 

Top-100 80.5 87.2 +6.7 

Top-1000 69.4 75.0 +5.6 

Top-2000 64.6 69.6 +5.0 

All shots 51.2 54.2 +3.0 

Table 84: Experimental results for all six high-level features which were 
expected to benefit from transductive learning. The average of all average 
precision values is presented for the baseline SVM system and the 
proposed transductive SVM approach. 

The transductive SVM improves the average precision for four of six concepts (“anchor”, “charts”, 

“entertainment” and “studio”). The average precision with respect to 100 retrieved documents is 

more than 10% higher for the concepts “charts” and “entertainment” compared with the baseline 

system. Let us consider the results for the other concepts at the level of top-2000 average precision 

which is used in the TRECVID evaluation series: The average precision for the concepts “anchor”, 

“charts”, “entertainment” and “studio” is improved noticeably, between 3.9% and 12.7 %, in terms 

of average precision regarding top-2000 shots (and by 7.5% on the average). Considering all six 

concepts, the results are improved on the average by 5% for top-2000 average precision (see Table 

84). In case of the concept “anchor”, the top-100 average precision is below that of the baseline  
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approach but the results for the other shot sizes are improved noticeably, up to 5%. Some example 

retrieval results using the baseline SVM and the transductive SVM are presented in Figure 48 and 

Figure 50 for the concept “anchor”, whereas example retrieval results for the concept “charts” are 

presented in Figure 50 and Figure 51. 

“All concepts” 
Top-2000 Average 
Precision [%] 

Baseline 
Challenge 
[148] 

Semi-Sup. 
Approach 

Baseline 
svmLight 

TSVM 

Anchor 75.3 78.2 71.8 76.9 

Charts 40.5 42.6 52.3 60.6 

Entertainment 19.1 15.4 42.2 54.9 

Map 52.7 58.6 61.6 61.6 

Studio 85.3 81.0 79.9 83.8 

Average 54.6 55.2 61.6 67.6 

Table 85: Comparison of the MediaMill challenge baseline system [148], 
our baseline SVM (svmLight), the semi-supervised learning approach 
presented in Chapter 7.3, and the proposed transductive SVM approach. 
Only those concepts are considered for which either the semi-supervised 
approach or the transductive approach yielded an improvement. 

Furthermore, the performance of five high-level concepts of the transductive learning approach has 

been compared with our previously proposed semi-supervised learning approach. Only those 

concepts are considered for which at least one of both methods yielded better results. The results 

are displayed in Table 85. Transductive learning clearly outperforms our previous approach for four 

concepts and achieves a similar performance for the remaining one. Thus, it is concluded that the 

transductive learning is very well suited for the given task. 

7.5 SUMMARY 

In this chapter, two transductive learning methods for video content analysis with respect to high-

level feature (concept) detection have been proposed. The first proposal is realized by a semi-

supervised learning ensemble, whereas the second method employs transductive SVM. Both 

methods exploit the fact that there are concepts whose appearance or layout is strongly related to a 

certain video source or TV program (e.g., maps in a news cast). Experimental results on the 

TRECVID 2005 training set have demonstrated the feasibility of the proposed approaches for 

certain concepts which are strongly related to a video source or TV program. The approach using 

transductive SVM achieved the best results and worked for more concepts as the approach based 

on the semi-supervised learning ensemble. 
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Figure 48: Example retrieval result (top-50) for the concept “anchor” 
when using the baseline SVM.  
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Figure 49: Example retrieval result (top-50) for the concept “anchor” 
when using the transductive SVM. Interestingly, the retrieved top-50 shots 
using the transductive SVM are from several different programs. When 
using the baseline SVM, all retrieved shots are from the same program. 



196 Chapter 7 - Semi-Supervised Learning for Semantic Video Retrieval  
 

 

 

Figure 50: Example retrieval result (top-50) for the concept “charts” when 
using the SVM baseline system. 
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Figure 51: Example retrieval result (top-50) for the concept “charts” when 
using the transductive SVM. 
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C h a p t e r  E i g h t  

8 SEMANTIC VIDEO ANALYSIS FOR PSYCHOLOGICAL RESEARCH BY SEMI-

SUPERVISED LEARNING 

8.1 INTRODUCTION 

Computer games play a very important role in today’s entertainment media and belong to the most 

popular entertainment products. Unfortunately, the number of computer games containing serious 

violence increases. There is an extensive ongoing debate about the question whether playing violent 

games causes aggressive cognitions, aggressive affects or aggressive behavior, in particular with 

respect to teens and young adults. 

The neurophysiologic perspective of mass communication research concentrates on emotional 

responses to video game playing. Mathiak and Weber [110] developed neurophysiologically 

grounded measures for the “human experience of media enjoyment”. The study continues their 

prior work (Weber et al. [172]) on video game playing in which functional magnetic resonance 

imaging (fMRI) scans were taken during video game playing. Through this neurophysiologic 

perspective, they demonstrated that a specific neurological mechanism is activated when playing a 

first-person-shooter game. One central finding is that cognitive areas seem to suppress affective 

areas during the (virtually) violent interactions. This mechanism helps to better understand a 

potential link between playing certain types of violent video games and aggressive cognitions and 

affects.  

The experimental design presented by Weber et al. [172] is based on the definition of certain game 

states and captures a player’s brain activity via fMRI while he (only male players were investigated) 

is playing a violent computer game. Several semantic game events are distinguished: 1.) inactive; 2.) 

preparation; 3.) search and explore; 4.) danger; 5.) under attack, and 6.) fighting and killing. Once 

the game recordings are annotated with these semantic categories, the interrelationship of violent 

game events and the underlying neurophysiologic basis (brain activity) of the player can be 

investigated. Normally, human annotators are required to index such game content according to the 

current game state, but this is a very time-consuming task. In this context, computer-based 

automatic video content analysis of computer game recordings promises several advantages: 

Human annotation efforts can be reduced significantly, and the annotation process is speeded up 

and is based on reproducible and objective criteria only. At the same time, researchers are enabled 

to investigate a larger number of computer game videos to gather more experimental data. 
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In this chapter, an automatic semantic video analysis system is presented that supports the 

experimental design described above by automatically identifying the game states (i.e., categories). 

The system is aimed at minimizing the human annotation effort and thus requires only manual 

annotations for a single video. The task is also considered as a transductive learning setting and, 

according to the transductive learning ensemble framework presented in Chapter 3, a solution 

based on semi-supervised learning is investigated as well. Content analysis relies on audiovisual low-

level features as well as on mid-level features. The considered mid-level features are the results of 

shot boundary detection (as proposed in Chapter 4.5), camera motion estimation (as proposed in 

Chapter 5), audio segmentation, text detection [62] and face detection [77]. For each game category, 

a support vector machine (SVM) is trained using the low- and mid-level features. In our approach, 

only a single video sequence with a duration of 12 minutes is required to provide training data and 

hence, human annotation effort is kept at a minimum. Afterwards, new videos are automatically 

analyzed using these SVM models. To achieve a more robust result, an automatic semi-supervised 

correction step is employed separately for each video: Based on the initial classification result, the 

system automatically labels the frames in a new video and adapts its concept models to this video 

by employing feature selection and adaptively building a specialized classifier for a particular game 

video. Finally, the graphical user interface of our software system Videana allows a human expert to 

refine or to correct the annotation results, if needed. Experimental results demonstrate the very 

good performance of the proposed approach, which is thus indeed applicable to this 

interdisciplinary research field. The work presented in this chapter has been partially published in 

[116]. 

8.2 RELATED WORK 

To the best of our knowledge, neither video content analysis methods have been applied to 

computer game recordings nor automatic video content analysis has been suggested for the field of 

behavioral sciences. Nevertheless, there exist many semantic video analysis systems which are 

specialized for a certain genre, for example sports videos or news videos.  

There are many approaches addressing the analysis of news videos. This emphasis might have been 

enforced by the TRECVID evaluation series [http://www-nlpir.nist.gov/projects/t01v/] in which 

comprehensive news video test collections have been provided and used for evaluation purposes. A 

summary of semantic concept detection approaches regarding news videos is presented by 

Naphade and Smith [117]. The authors state that in most approaches, concept detection is 

considered as a supervised pattern recognition problem.  
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In a way, sports videos can be considered as somewhat related to the genre of computer games 

investigated in this paper: Since both genres are rule-driven, the amount of possibly appearing 

content is limited in both sports and computer games (“e-sports”). The automatic indexing of 

sports videos has been extensively studied in recent years. As noted by Sadlier and O’Connor [133], 

many specific approaches exist for several sports domains such as Formula-1, cricket, tennis, 

American football, and Gaelic football.  

Apart from specific approaches, frameworks have been proposed that cover more than only a 

single type of sports. For example, Xu and Chua [182] propose a framework for event detection in 

team sports videos that is based on audiovisual features, domain knowledge, and external 

information sources. 

Tong et al. [159] suggest a framework for semantic shot representation of sports videos. This 

framework is applicable to field sports, and shots are classified based on camera distance, displayed 

subject and edited video layout. 

Sadlier and O’Connor [133] present an event detection system for field sports as well. They argue 

that it is not feasible to build a generic supervised event detection system for any kind of sports and 

find the limitation to field sports reasonable. The following features are employed in a supervised 

learning process: image crowd detection, speech-band audio activity, on-screen graphics tracking, 

motion activity measure, field line orientation and some other features. 

8.3 SEMANTIC ANALYSIS OF COMPUTER GAMES BY SEMI-SUPERVISED LEARNING 

In this section, a system to support interdisciplinary research in media and behavioral sciences via 

automatic multimodal video content analysis is presented. First, in section 8.3.1 the semantic classes 

are described which must be recognized for the experiment conducted by Weber et al. [172]. Then, 

the proposed system is presented in sections 8.3.2 to 8.3.4. It utilizes automatically extracted 

audiovisual low-level and mid-level features to infer about the semantic game classes via supervised 

learning or semi-supervised learning, respectively. Two main targets have been pursued. First, the 

system is supposed to remain a generic video content indexing system and thus does not contain 

any specific content detectors (restricting its applicability to a certain computer game would offer a 

lot of tuning possibilities). Second, the annotation effort that is needed to apply a machine learning 

approach should be kept at minimum, that is only a single labeled video is used for training. The 

following parts of our system are discussed in more detail in sections 8.3.2 – 8.3.4: audiovisual 

feature extraction, feature selection, classification, and the semi-supervised classification approach. 
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8.3.1 SEMANTIC CLASSES FOR THE COMPUTER GAME EXPERIMENT 

Participants of the experiment conducted by Weber et al. [172] played the “mature” rated first-

person-shooter game “Tactical Ops: Assault on Terror” [http://www.tactical-ops.de/]. As 

mentioned above, the experiment was aimed at gaining insight into the interrelationship of playing 

violent computer games and changes in the consumer’s brain activities. Therefore, several game 

states were defined, and the dependence of the players’ brain activity is set in relation to these game 

states. Brain activity was measured via fMRI scans. In this section, a system that is able to classify 

the following semantic classes with an acceptably high accuracy is presented: 

1.) “inactive”: The player’s avatar (PA) is dead or the game has not started yet. 

2.) “preparation”: The PA is buying equipment in the beginning of a new round. 

3.) “search/explore/danger”: The PA explores the virtual world and searches for hostages, enemies 

and weapons. 

4.) “violence”: The PA is fighting and/or injured. 

Figure 52: The four boxes explain the different semantic game classes used 
in this study and how they relate to the categories used by Mathiak and 
Weber [110], which are displayed in the dashed nested boxes. The classes 
are ordered from bottom to top in terms of increasing violent content, 
where PA stands for “player’s avatar”. 
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In the original study, the semantic game categories were distinguished and annotated more 

sophistically (see Figure 52). Category 3 was further divided into “search” and “potential danger”, 

and for category “violence” it is distinguished whether the PA is injured/attacked or fighting 

actively. However, automatic distinction of these semantic classes would not be feasible without 

neglecting the target to have a generic video content analysis system. For example, consider the 

highly abstract semantics regarding the distinction of “search” and “danger”. When the PA 

currently is in the state “search” (no imminent danger) and spots another character, its state 

switches to (potential) “danger”. Now, according to whether this character is identified as an enemy 

or not, the state switches to “violence”, because the PA shoots at the enemy, or back to “search” 

when the appearing character is harmless. Normally, state “danger” endures only for a few seconds 

before the states evolve further in the mentioned manner. Furthermore, the appearance of new 

characters in the PA’s field of view often takes place near the horizon, where avatars are only a few 

pixels in size, and it is extremely difficult to perform the necessary friend-or-foe identification with 

a reasonable precision. Furthermore, our system does not distinguish between “active” and 

“passive” violence. In practice, “passive” violence is a very short segment before either “active” 

violence or “inactive” (player’s avatar is dead) take place. This is the reason for the definition of the 

four classes described above: In this way, an automatic and generic annotation system is feasible 

and the remaining manual revisions are minimized. Figure 53 shows example frames for each of the 

four semantic game categories. 

Violence    Search 

Preparat.   Inactive 
Figure 53: Example frames of the four different game classes. 

8.3.2 EXTRACTION OF AUDIO FEATURES 

The semantic content of computer games is present in all modalities of their recordings: fighting 

and killing, for example, is visible in the video domain by the presence of enemies, muzzle flash and 

blood; it is also audible in the accompanying soundtrack by means of shots or explosive sounds as 

well as moans. The automatic content analysis system extracts a number of general audio low-level 
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features which support the recognition of the semantic classes. The following features are extracted 

from non-overlapping 25ms frames [102] and are fed directly into the annotation system: 

1. Eighth-order Mel Frequency Cepstrum (MFC) Coefficients: Capturing the broad envelope of the 

spectrum; 

2. Zero Crossing Rate: A measure of oscillation and intra-frame variation; 

3. Short Time Energy: Corresponding with loudness; 

4. Sub-band Energy Distribution: Loudness ratio for four successive frequency bands; 

5. Brightness and Bandwidth: The spectrum’s frequency centroid and spread; 

6. Spectrum Flux: Inter-frame spectral variation; 

7. Band Periodicity: Periodicity of the four subbands; 

8. Noise Frame: Noisiness corresponding to lack of periodicity. 

Additionally, these features are fed into a content-based audio classification and segmentation 

system based on the approach of Lu et al. [102]. The system produces mid-level features on a per-

second (sub-clip) basis in the form of acoustic class labels and related probabilities for silence (SIL), 

pure-/non-pure speech (PSp/NpSp), music, background (BG) and action sounds (ACTN). The 

low-level features are therefore aggregated per second, normalized and then concatenated to form 

one feature vector per sub-clip, which is processed by a hierarchical tree of SVMs, if it was not 

previously classified as silence by a threshold based classifier. Figure 54 shows this classification 

tree. It is trained on more than 32 hours of audio – TIMIT [100] data for clean speech, NOIZEUS 

[75] and broadcast speech data for non-pure speech, pop and instrumental music, various movie 

sound samples from broadcast material, and free web resources for the different types of noise. 

Five-fold cross-validation on a subset of 15000 feature vectors has been used to find the best 

parameter settings for a one-class SVM with RBF (radial basis function) kernel via libSVM [23]. 

The final acoustic class labels and their corresponding probabilities are fed into the game state 

learning algorithm as mid-level features to further guide the discovery of semantic patterns. 
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Figure 54: Scheme of the hierarchical audio type classifier: A single feature 
vector per sub-clip serves as input; output is a single acoustic class label 
and its corresponding probability. 

8.3.3 EXTRACTION OF VISUAL FEATURES 

Several visual features are extracted for each video frame. In addition to low-level features as color 

moments and texture features, several mid-level features are extracted automatically by utilizing 

camera motion estimation (as proposed in Chapter 5 [39, 42]), face detection [77] and text detection 

[62]. In the following, the extracted features are briefly described: 

• Color moments: Color moments are extracted at two different granularities. The first three 

global color moments are computed for the whole image. Corresponding values are 

extracted for each region of a 3 x 3 grid in HSV (Hue, Saturation, Value) color space. The i-

th pixel of the j-th color channel of an image region is represented by cij. Then, the first 

three color moments are defined as: 
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• Texture features: The gray-scale image co-occurrence matrices mk are constructed at 8 

orientations. The following matrices are used to extract the following values representing 

the global texture: 
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where N is the number of gray values and mkij is the value of the co-occurrence matrix mk at 

position (i, j). 

•  Camera motion features: Videos are segmented into shots using the cut detection approach 

described in Chapter 4.5.2. Motion vectors embedded in MPEG videos are employed to 

compute camera motion at the granularity of P-frames, according to the approach 

presented in Chapter 5. The following camera motion types are distinguished: translation 

along the x-axis and y-axis, respectively, rotation around the x-axis, respectively y-axis and 

z-axis, and zoom.  

•  Text features: A robust text detection approach [62] is applied which can automatically 

detect horizontally aligned text with different sizes, fonts, colors and languages. First, a 

wavelet transformation is applied to the image and the distribution of high-frequency 

wavelet coefficients is considered to statistically characterize text and non-text areas. Then, 
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the k-means algorithm is used to classify text areas in the image. The detected text areas 

undergo a projection analysis in order to refine their localization. The detected text areas are 

used to derive the following features: number of text elements, distribution of text 

elements, and text frame coverage. 

•  Face features: Frontal faces are detected in each video frame using the face detector 

provided by Intel’s OpenCV library [www.intel.com/technology/computing/opencv]. The 

number of detected faces and the face frame coverage are considered as feature values. 

The camera motion features are useful to recognize the game state of searching and exploring, 

whereas text detection and texture features help recognizing the preparation state. A player steps 

into the preparation state with the intention to maintain his equipment. This screen contains several 

menus and is characterized by a high proportion of overlaid text. Thus, text features are assumed to 

be very good criteria to detect preparation states. However, text detection in the used game videos 

is a challenging task, because the text is printed on complex background and the frames include 

many MPEG artifacts. For the first-person-shooter game “Tactical Ops: Assault on Terror” color 

moment features seem to be useful to detect the state inactive because of the mostly appearing 

black areas at the top and bottom of the screen. 

8.3.4 SEMANTIC CLASSIFICATION 

The goal of the proposed system is to learn models for the high-level semantic states of video 

games described in section 8.3.1 based on the extracted audiovisual low-level and mid-level 

features. As stated above, the system does not focus on special properties of the computer game 

under consideration. Instead of using a specific and narrow approach that only works for a single 

video game, a generic video content analysis system is utilized that can be easily adapted to other 

games or video genres. The SVM as suggested by Platt [128] with improvements of Keerthi et al. 

[85] has been used to learn the mapping between the extracted audiovisual features and the 

semantic game classes. An early fusion scheme is used to employ multimodal analysis. The datasets 

consequently consist of concatenated audio and visual features. The training of the SVM is realized 

by Sequential Minimal Optimization [128]. This is a fast training method which scales somewhere 

between linear and quadratic in the training set size. Several strategies to classify the computer game 

videos have been investigated which are described below. 

8.3.4.1 CLASSIFICATION USING THE BASELINE SYSTEM 

Several SVMs (one for each game class) must be combined to solve our problem, since SVMs are 

binary classifiers. To make a decision about the game state of a certain frame, the SVM models are 
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employed to provide probability scores for a test instance (frame). These scores are compared and 

the class with the highest score is chosen.  

8.3.4.2 CLASSIFICATION USING TEMPORAL NEIGHBORHOOD 

It is observable that the appearance of a certain class is reflected also by the probability scores 

which are assigned to neighbored frames by an initial SVM classifier. This is the motivation for our 

second strategy to classify the computer game content. In addition to the audiovisual features, some 

time series information is utilized. The basic idea of this strategy is to obtain information about the 

temporal neighborhood of a frame using the probability scores of the initial SVM classifier. Based 

on the classification results, the relative frequency of each class in the temporal environment is 

computed for the current frame. The relative frequency of class c in the neighborhood of frame k is 

calculated according to the following formula: 
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with tc(instancei)=1, if frame i is classified as class c and 0 otherwise, and w defines the window size. 

For example, if the relative frequency of violence is 0.5 for a frame, it follows that 50% of the 

neighboring frames are classified as violence. Furthermore, a smoothing filter is applied to the class 

probabilities obtained by the initial classifier. In both cases, a sliding window size of 25 frames is 

applied. The probability scores of the initial classifier, the frequencies and the smoothed values (4 

features each) are used as new features and then re-train another classifier that makes the final 

decision. The processing steps are displayed in Figure 55. 
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Figure 55: Concatenation of classifiers in order to employ temporal 
information. 

8.3.4.3 REFINEMENT USING SEMI-SUPERVISED LEARNING 

In the setting of the addressed psychological experiment, the consumers always play the same game 

but at different levels and hence, they explore different virtual environments. Thus, it is possible 

that the SVM models learned from the training video are not suited well to distinguish between the 

different game classes in the test video. In the previous chapters (4, 6 and 7), it has been shown that 

an initial model obtained via unsupervised learning can be improved adaptively for a particular 

video. In order to achieve a more robust classification for a particular game video in our scenario, a 

similar idea is employed and a semi-supervised learning approach is proposed. 
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Figure 56: Main processing steps of the semi-supervised learning approach. 

Several strategies are investigated to improve the initial result.First, two variations of the proposed 

semi-supervised learning framework are employed. The main processing steps of the first variation 

are depicted in Figure 56 and are as follows. First, the training video is used to build a classifier 

consisting of the initial game category models. The initial classifier is used to classify the instances 

(frames) of a test game video as described in section 8.3.4.1. Then, the instances are ranked 

separately for each game category based on the probabilities of the detected classes. These rankings 

are then used to choose the instances with the highest confidence of each class. The top fifty 

percent of each class of the automatically labeled instances are chosen as positive training samples. 

Based on these automatically labeled most relevant instances of the test video, relevant features are 

selected using Adaboost [167]. The most relevant 77 features are chosen for subsequent use. An 
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additional classifier is built using the previously chosen instances and selected features. Finally, this 

semi-supervised classifier, consisting of four newly trained SVMs, is used to classify the test video.  

In the second realization of the proposed framework, the set of selected features is split into two 

parts, according to the odd and even ranks in the feature selection process, and two new SVM 

classifiers are trained directly on the test video. Finally, the initial video and the two new training 

videos form an ensemble. As a consequence, there are three classifiers for each of the four game 

classes. A frame is labeled as class X in case when the number of votes of the “X-classifiers” is 

higher than those of the other classes. In case there is a equal number of votes for two classes X 

and Y, the sum of the SVM scores is exploited to obtain a decision for a class label. 

Finally, a transductive learning approach has been applied for adaptive game categegory 

classification via transductive SVM [82]. 

8.4 EXPERIMENTAL RESULTS 

In this section, several experiments to test the system’s applicability for the psychological study are 

presented. The main goal is to significantly reduce the human annotation effort while achieving an 

accuracy that is comparable to a manual annotation. In the original experimental setting, the human 

annotators needed 120 hours to label the entire video collection [172]. In addition, the goal was to 

keep the video content analysis approach generic. 

Four computer game videos were used to evaluate the system performance. All computer game 

videos show a resolution of 352 x 288 pixels and a video frame rate of 25 frames per second. Table 

86 presents the distribution of the semantic game categories for each of the videos. The ground 

truth data were created by Weber et al. [172]. 

 
 Prepa-

ration 
Search Violence Inactive Total 

Game-vmj3_7 2390 11657 488 2155 16690 

Game-vmj6_3 1665 8574 525 5601 16365 

Game-vmj6_4 2364 6445 2630 5251 16690 

Game-vmj6_5 2157 10023 1211 2581 15972 

Table 86: Number of frames referring to semantic game categories for 
each of the used computer game videos 

A “leave k-1 videos out” cross validation scheme is used: Since the main goal is the reduction of 

human annotation effort, only one video is used as training data in each test while the remaining 

three videos are used as test videos. The SVM has been implemented using the WEKA library 
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[175]. A radial basis function kernel was used for the SVM. Adaboost has been implemented 

according to the description given by Viola and Jones [167]. 

The following system variations were tested: 1.) The first one is the baseline system as described in 

8.3.4.1. All features mentioned in section 8.3.2 and 8.3.3 are used to learn a SVM model for each 

semantic game class; 2.) After an initial SVM training, further features are generated that capture 

temporal characteristics of classes as described in section 8.3.4.2; 3.) The semi-supervised learning 

scheme as described in section 8.3.4.3: after an initial classification of a test video, the frames that 

are classified with highest confidence are used as training data. These training data are used to learn 

new SVM models, and finally the same video is classified using these models. The results for these 

experiments are presented in Table 87 - Table 89. The measure “total recall” is defined as the 

percentage of frames which are classified correctly with respect to all semantic game classes. 

 [%] Prepa-
ration 

Search Vio-
lence 

In-
active 

Total 
recall 

Recall 84.3 92.3 53.9 88.5 87.5

Precision 86.0 87.5 68.7 93.4  

F1 85.1 89.8 60.4 90.9

Table 87: “Baseline” system: Recall, precision and f1-measure for each of 
the four semantic classes as well as the total recall. 

 [%] Prepa-
ration 

Search Vio-
lence 

In-
active 

Total 
recall 

Recall 83.1 92.6 56.7 91.6 88.5

Precision 87.7 88.5 68.4 94.1  

F1 85.4 90.5 62.0 92.8  

Table 88: “Baseline + temporal features”: Recall, precision and f1-measure 
for each of the four semantic classes as well as the total recall. 

 [%] Prepa-
ration 

Search Vio-
lence 

In-
active 

Total 
recall 

Recall 92.6 93.7 55.2 92.1 90.4

Precision 96.6 90.1 57.5 98.0

F1 94.6 91.9 56.3 95.0

Table 89: “Baseline + Semi-Supervised Learning”: Recall, precision and f1-
measure for each of the four semantic classes as well as the total recall. 

Several observations can be made. At first, our automatic baseline system achieves a frame-based 

total recall of 87.5% on the average. This is a very good result if one considers that the inter-coder 

reliability in the original psychological experimental setting between the human annotators was 0.85 
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[172]. In nearly any experiment, preparation, search and inactive states were recognized well, 

whereas the recognition of violent states is rather difficult. In terms of total recall, the semi-

supervised approach outperforms the alternative approaches (see Table 92). The approach using 

temporal neighborhood information achieves the best performance for the most difficult concept 

“violence” and recognizes more than half of the violent actions correctly while keeping the 

precision at nearly 70% at the same time. The confusion matrix in Table 93 allows one to gain 

insights in the system failures of the best system (semi-supervised learning). The diagonal represents 

the number of correctly classified frames. For example, the most frequent error is that a violence 

frame is misclassified as search, and vice versa, whereas for example a violence frame was never 

classified as preparation. Overall, it can be concluded that the proposed system achieves a very 

satisfying performance. It demonstrates the ability to reduce human annotation efforts to a 

minimum because the system automatically determines relevant game events with high reliability. 

In addition, the ensemble variation of the semi-supervised framework was tested as described in the 

previous section as well as a transductive SVM based on Joachim’s implementation. For the 

transductive SVM, a polynomial kernel was used with exponent d=2. The results for the semi-

supervised ensemble are presented in Table 90 and for the TSVM approach in Table 91. The semi-

supervised ensemble approach is slightly better than the semi-supervised approach which used only 

the newly trained SVM for classification. The transductive SVM approach yields a significant 

degradation of annotation quality. Overall, it is observable that using the semi-supervised learning 

framework improves the results for the more frequent game categories (inactive, search, 

preparation) but not for the game category violence.  

[%] Prepa-
ration 

Search Vio-
lence 

In-
active 

Total 
recall 

Recall 92.0 94.8 52.0 92.1 90.6 

Precision 93.4 89.9 63.0 98.4  

F1 92.7 92.3 57.0 95.2  

Table 90: Results for the semi-supervised ensemble approach. Recall, 
precision and f1-measure for each of the four semantic classes as well as 
the total recall. 

[%] Prepa-
ration 

Search Vio-
lence 

In-
active 

Total 
recall 

Recall 88.6 85.8 40.1 78.5 81.1

Precision 92.6 84.9 41.5 77.7

F1 90.6 85.4 40.8 78.1  

Table 91: Results for the transductive SVM approach. Recall, precision and 
f1-measure for each of the four semantic classes as well as the total recall. 
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[%] Baseline Temporal Semi-Sup.-
Learning 

Semi-Sup.-
Learning 
Ensemble 

Transductive 
SVM 

Total 
recall 87.5 88.5 90.4 90.6

 
81.1 

Table 92: Total recall for each of the tested systems. 

 Prep. 
(GT) 

Search 
(GT) 

Violence 
(GT) 

Inactive 
(GT) 

Det. Prep. 23670 1202 328 133 

Det. Search  2012 104362 6659 3005 

Det. Violence 42 3851 7567 551 

Det. Inactive 4 682 8 43075 

Table 93: Confusion matrix for the experiment which used the semi-
supervised ensemble. For example, the most frequent error is that a 
violence frame is misclassified as search and vice versa. 

8.5 SUMMARY 

In this chapter, an automatic semi-supervised semantic video analysis system that supports 

psychological experiments on violence in computer games has been presented. In the addressed 

interdisciplinary study, annotations are required to find interrelationships between the consumer’s 

brain activity and game events during the recorded game sessions, in particular with respect to 

violent actions. Our proposed system automatically labels such videos and achieves a total recall of 

up to 91% in the best case using a semi-supervised learning approach based on the transductive 

learning framework presented in Chapter 3. This approach adaptively refines a model on a 

particular video: Based on the initial classification result, the approach automatically labels the 

frames in a new video and adapts its concept models to this video by employing feature selection to 

adaptively learn a classifier for a particular game video. 

Considering the fact that Weber et al. [172] observed an inter-coder reliability of 0.85 for human 

annotators, our automatic system demonstrates an excellent performance. In addition, since our 

semi-supervised approach needs labeled training data for a single video only, the required human 

supervision could be kept at a minimum in this interdisciplinary study. The graphical user interface 

of our software Videana enables a human expert to refine or to correct the annotation results: As a 

basic requirement, the annotations must be as accurate as possible to investigate the 

interrelationship with a player’s brain activity. However, such a correction step must also be applied 

when only human annotators label the videos. Overall, it is concluded that the experimental results 

demonstrate the applicability of the proposed system for the interdisciplinary studies in the field of 

media and behavioral sciences. 



 

C h a p t e r  N i n e  

9 CONCLUSIONS 

9.1 SUMMARY 

It is obvious that videos vary in many ways with respect to encoding, layout, genre, and of course 

with respect to content. As a consequence, it is difficult to build video indexing and retrieval 

approaches which work reliably for different video sources and content. In this thesis, the question 

has been investigated how the robustness of video analysis and indexing can be improved via 

transductive learning methods. A transductive learning ensemble framework has been proposed 

that exploits an initial classification model or clustering model which is adapted to a particular video 

in order to improve indexing or retrieval quality. Apart from this approach, it has been also 

analyzed how compressed data can be successfully exploited without reducing the indexing and 

retrieval quality.  

Up to now, the development of video specific classification models has not been considered in the 

field of video indexing and retrieval, except for the proposals made in this thesis. Some recent 

works in other fields such as handwriting recognition [123] and computer vision [54, 138] address 

this issue. In this respect, there is one of the main contributions of this thesis: To the best of our 

knowledge, the usefulness of transductive learning for video content analysis and indexing has been 

motivated and addressed explicitly in this thesis for the first time. The need for robust and adaptive 

video content analysis methods is identified and clearly motivated, in particular by an experimental 

evaluation of high-quality cut detection approaches on several test sets. It has been demonstrated 

even for the well known problem of cut detection, that the quality of the best approach of our 

comparison study varies in dependence of the analyzed video – it even completely fails on a 

particular video. Thus, it is obvious that there is also a need for robust and adaptive methods for 

other video indexing problems which are more difficult than cut detection. The goal of such robust 

video indexing methods is to automatically obtain reliable results for any particular video. It has 

been investigated how clustering or classification models can be adapted to and optimized for a 

particular video via transductive learning methods, which are realized either in a self-supervised or 

in a semi-supervised manner. To achieve the envisaged goal, the (unlabeled) data of the analyzed 

video itself have to be incorporated in the learning process. Several fundamental approaches have 

been pursued, including some approaches which are not based on the proposed framework, 

namely: 

1. Employing and extending of an unsupervised learning method (applied to cut detection); 
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2. Transductive learning (transductive SVM); 

3. A transductive learning ensemble framework based on feature selection and ensemble 

classification. 

Several proposals have been presented for different video indexing problems which automatically 

cope with different video sources, compression artifacts and different appearances of objects and 

events in order to achieve robust indexing results. The particular contributions are briefly 

summarized below. 

9.1.1 TRANSDUCTIVE LEARNING METHODS FOR ROBUST VIDEO CONTENT ANALYSIS 

The proposed transductive learning ensembles, realized by a self-supervised or a semi-supervised 

learning scheme (Chapter 3), respectively, aim to recognize the specific appearance of objects or 

events in a video for robust analysis. The schemes are based on the assumption that an appropriate 

baseline system with sufficient classification accuracy exists. The scheme is called self-supervised in 

case when the baseline system relies on unsupervised learning. In case when the initial system 

consists of a supervised learning result, the learning scheme is called semi-supervised. The idea is to 

employ an initial clustering or classification result to obtain automatically labeled training data for 

this video – and to train additional transductive classifiers on and for this video using these training 

data. The best features to classify the objects of interest are selected using Adaboost based only on 

the automatically labeled training data. To achieve a robust final classification result, the newly 

created transductive classifiers and the initial classifier form an ensemble using majority voting. The 

newly trained classifiers are trained on different feature sets, the set of best features is split 

according to the odd and even ranks in the selection process. This transductive learning ensemble 

scheme has been successfully applied to the following tasks: 

• video cut detection,  

• face recognition in video,  

• video retrieval based on high-level concepts, and  

• semantic annotation of computer game sequences. 

The achieved results for these tasks are briefly summarized in Table 94 with respect to the applied 

initial baseline system, the number of features used by the baseline system, the percentage of 

automatically labeled training samples per video which were selected for subsequent re-training, the 
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number of selected features that was sufficient to achieve the best result for a task, ratio of test and 

training data per test video, as well as information about the fact which system performed best 

(single transductive classifer, transductive learning ensemble, or transductive SVM), and how it 

compared to the corresponding baseline system. The question is: What can we learn or conclude 

from Table 94 and all the experiments reported in this thesis about the transducitve learning 

framework? 

 Cut detection 
(Chapter 4) 

Face recognition 
(Chapter 6) 

Semantic video 
retrieval  (Chapter 
7) 

Semantic 
indexing of 
computer games 
(Chapter 8) 

Initial baseline classification/clustering K-means 
clustering

Agglom. 
clustering 

SVM classification  SVM 
classification

Baseline performance  F1: 87.8 F1: 84.8 63.1.% average 
precision (libSVM) 

87.5% 
(accuracy)

Percentage of selected (automatically 
labeled) positive training samples per 
video 

90%   
(better than  

100%)

100%   
(no selection)

Max. 10% 50%  
(better than 

10%, 20%, 33%)

Initial number of features 2 3600 120 178

Sufficient number of features 45 15 90 77

Ratio test data:training data per test 
video 

- - Ca. 1:100 Ca. 1:1

Transductive learning framework with 
only 1 new classifier is better than 
baseline 

Yes 
(baseline+2.9) 

Yes 
(baseline+4.0)

No   
(baseline-35.8%)  

Yes 
(baseline+2.9%)

Transductive learning ensemble is 
better than using only a single 
transductive classifier 

Yes 
(baseline+4.2)

No 
(baseline+2.8)

Yes 
(baseline+1.4%) 

 

Yes 
(baseline+3.1%)

Transductive learning ensemble is 
better than baseline system 

Yes 
(baseline+4.2)

Yes 
(baseline+2.8)

Yes 
(baseline+1.4%) 

Yes 
(baseline+3.1%)

Transductive SVM is better than 
transductive learning ensemble 
framework (baseline is SVM-lite) 

- - Yes 
(baseline+6.0%) 

 

No  
(baseline-7.4%)

Table 94: Summarization of the results of the proposed transductive 
learning framework for several tasks.  

First, it is obvious that the investigated tasks are very different. The feature sets vary with respect to 

size and used feature types. The baseline performance ranges from 63.1% average precision for 

semantic video retrieval up to an f1-measure of 87.8 for cut detection. In case of semantic video 

retrieval, there are videos which even do not contain the concept of interest (e.g., maps are not 

present in each news video). Of course, the most interesting question is which approach performs 

best. While the realization of the proposed framework using only a single re-trained classifier 

improves performance moderately for three of four tasks, its performance degrades dramatically for 
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the semantic video retrieval task (high-level feature retrieval). It is probably caused by the low 

number of positive training samples in some videos in this scenario: in some cases there are only 

few or even no positive training samples which leads to bad SVM models. With respect to a low 

number of positive samples in the test data, the transductive learning ensemble approach is 

advantageous since the initial classification model, possibly trained with a large number of samples, 

is not discarded but included in the final ensemble decision. The transductive SVM approach 

worked very well for semantic video retrieval task, however, its performance for the task of 

semantic computer game indexing was bad and the analysis of the reasons for that remains future 

work. A possible reason is that the ratio of training data and test data were of equal size, in contrast 

to the semantic video retrieval task. Overall, it has been demonstrated that adaptive and robust 

video analysis can be achieved via the proposed framework. The ensemble approach is always a 

good choice, it achieved the best performance for three of four tasks and its performance did never 

degrade compared to the baseline system. 

9.1.2 UN- /SELF-SUPERVISED LEARNING FOR ROBUST SHOT BOUNDARY DETECTION 

In this thesis, the field of shot boundary detection in videos has been studied extensively. Recent 

approaches have been surveyed including the approaches that achieved best results at the 

TRECVID 2005 evaluation. A comprehensive comparison study has been conducted that 

summarizes the current state-of-the-art of shot boundary detection techniques. The literature 

review has been supplemented by an experimental comparison study of recent approaches which 

had not been evaluated on publicly available test sets before. Interestingly, it has been shown that 

the best approach (based on metric selection and SVM) does not work reliably on arbitrary videos: 

it even failed completely for a video of the TRECVID 2007 test. 

This has illustrated the need for developing robust robust and adaptive approaches. In a first step, a 

robust unsupervised shot boundary detector has been presented. The unsupervised approach for 

cut detection works reliably without any pre-defined parameters and thresholds. For this purpose, 

the fact that the classification problem of shot boundary detection can be transformed into a 

clustering problem has been exploited. The important parameter of sliding window size could be 

estimated automatically using a clustering validity measure (silhouette coefficient). In addition, no 

training is required to learn a classification function or to estimate empirically thresholds, 

respectively. As a surplus, it has been observed that the silhouette coefficient is quite strongly 

related to the precision of a cut detection result, and formulas to estimate precision and recall have 

been derived and validated on the 2005 TRECVID test set. Furthermore, in case when training 

data are available it has been demonstrated that this unsupervised approach can be extended to an 

ensemble approach by adding supervised classifiers which yielded an improved detection 
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performance. Finally, the task of cut detection has been considered as a transductive learning 

setting and the unsupervised video cut detector has been extended with the functionality of self-

supervised learning, which improved detection performance.  

9.1.3 ESTIMATION OF ARBITRARY CAMERA MOTION IN MPEG VIDEOS 

An approach for camera motion estimation has been proposed for the MPEG domain. In contrast 

to other approaches for this domain, its main advantage is the fact that it potentially distinguishes 

between rotation around the y-axis (x-axis) and translation along the x-axis (y-axis). Furthermore, 

the incorporation of an outlier removal algorithm reduces the noise in motion vector fields. For the 

purpose of experimental validation, a comprehensive video test set that allows to entirely control 

the camera motion parameters in these videos has been created. It has been demonstrated that 

outlier removal increases the detection performance significantly. Most detection errors are due to 

the difficult distinction between the corresponding translational and rotational camera movements. 

In addition, we participated in TRECVID’s 2005 evaluation task for camera motion detection (low-

level feature task 2005: detection of pan, tilt, and zoom) and achieved very good results on a large 

real-world test set. In terms of the f1-measure the best result for zoom detection was achieved 

among 12 participants at TRECVID 2005, and the second best result for tilt detection.  

9.1.4 SELF-SUPERVISED LEARNING FOR PERSON RECOGNITION IN VIDEO 

A novel automatic video annotation system with respect to a person’s occurrence has been 

presented. It has been demonstrated how face detection results can be exploited to estimate the eye 

positions precisely in order to automatically cope with in-plane rotated faces. Furthermore, it has 

been investigated in which way an initial face clustering result can be further improved by self-

supervised learning, in particular with feature selection and appropriate re-classification. For this 

purpose, only the face samples present in the given video were used. Several possibilities to train 

Adaboost and SVM classifiers and to train an ensemble of these classifiers on a video have been 

presented and compared. The experimental results have shown that it is sufficient to train a single 

classifier. The experimental results have demonstrated the effectiveness of the proposed in-plane 

rotation removal. Finally, the best performance has been achieved by the Adaboost and a SVM 

classifier, respectively, each increasing the f1-measure from 84.8 up to 88.8.  

9.1.5 SEMI-SUPERVISED LEARNING FOR SEMANTIC VIDEO RETRIEVAL  

The semi-supervised learning framework has also been applied to the task of high-level concept 

detection in order to improve the precision of retrieval results. For this purpose, the observation 

that there are concepts whose appearance is strongly related to a certain video source has been 

exploited (e.g., anchor person in a news cast). The problem has been considered as a learning task 
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in a transductive setting. To this extent, it was investigated whether transductive learning 

approaches are also applicable to high-level concept detection. The average precision could be 

improved for some concepts using the proposed semi-supervised learning framework. A 

transductive SVM has been applied for this task as well and the experimental results demonstrated 

a further improvement in terms of average precision. Experimental results on the TRECVID 2005 

training set identified high-level concepts, for example “anchor”, “entertainment” and “maps”, 

which are strongly related to a video source.  

9.1.6 SEMI-SUPERVISED LEARNING FOR SEMANTIC ANNOTATION OF COMPUTER GAMES 

The transductive learning ensemble approach has also been used for the semantic annotation of 

computer game sequences. An automatic semi-supervised semantic video analysis system that 

supports psychological experiments with respect to violence in computer games has been 

presented. These annotations are required to find interrelationships between the consumer’s brain 

activity and game events during the recorded game sessions, in particular with respect to violent 

actions. The proposed system automatically labels such videos and achieves a total recall of up to 

91% in the best case using the semi-supervised learning approach.  

9.1.7 ROBUST VIDEO INDEXING IN THE MPEG COMPRESSED DOMAIN 

Information embedded in a compressed MPEG video stream is potentially useful for video content 

analysis. Furthermore, computational costs to fully decode video frames can be saved through its 

use. However, compression artifacts might lead to noisy representations of visual information and 

might degrade indexing quality. In this respect, a systematic bias in frame dissimilarity 

measurements in MPEG videos was identified which potentially hinders video cut detection 

performance. Two solutions were presented to deal with these artefacts: frame difference 

normalization (FDN) and GoP-oriented frame difference normalization (GFDN). 

Regarding the estimation of arbitrary camera motion, a solution that is based on motion vectors 

embedded in compressed MPEG videos has been presented. To deal with noisy motion vectors 

that do not represent “true” motion, an effective outlier removal algorithm has been applied. 

Experimental results have shown that the incorporated outlier removal algorithm improved the 

performance significantly.  
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9.1.8 SUMMARY OF CONTRIBUTIONS 

Overall, the contributions of this thesis can be summarized as follows: 

1. Identification and motivation of the need for robust and adaptive video content analysis 

approaches; in particular; it was motivated that video content analysis tasks should be 

considered in a transductive learning setting, which has not been done before in the field of 

video content analysis and indexing. 

2. Development of a novel transductive learning framework for robust video content analysis 

based on feature selection and ensemble classification; 

3. Identification of a systematic bias in frame dissimilarity measurements for MPEG videos, and 

presentation of two proposals to remove compression artefacts from frame dissimilarity 

measurements (FDN and GFDN) in order to improve video cut detection; 

4. Development of an unsupervised approach for robust shot boundary detection, including 

a. automatic estimation of the important parameter of the sliding window size; 

b. investigation of possible improvements by extending the unsupervised cut detection 

approach with additional supervised classifiers to form an ensemble; 

c. extension of the gradual transition detector with an effective approach to remove false 

alarms based on a high-quality camera motion estimation approach; 

5. Development of an approach for automatic performance prediction for video cut detection. To 

the best of our knowledge, this is the first proposal of this kind for the field of video indexing; 

6. Application of the transductive learning framework (self-supervised) to video cut detection; 

7. A comprehensive comparison study regarding recently suggested shot boundary detection 

approaches, including experiments for recent approaches which have not been evaluated before 

on common test sets (such as TRECVID test sets); 

8. Development of a camera motion estimation approach for MPEG videos that deals adequately 

with noisy motion vector fields and potentially distinguishes between rotational and 

translational movements; 
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9. Application of the transductive learning framework (self-supervised) to the problem of face 

recognition in video for the purpose of an automatic video indexing system with respect to 

person appearances; 

10. Application of the transductive learning framework (semi-supervised) to video shot retrieval 

based on high-level concepts; 

11. Application of transductive SVM to the task of high-level concept detection; 

12. Supporting interdisciplinary research by providing semantic annotation of computer game 

sessions, based also on the semi-supervised realization of transductive learning framework.  
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9.2 FUTURE WORK 

In this thesis, a transductive learning ensemble framework and a number of particular solutions for 

several video content analysis tasks were proposed. As a matter of fact, a lot of work remains to be 

done to build robust and adaptive methods in practice. The fields of shot boundary detection, 

camera motion estimation, face recognition in video, and high-level concept detection leave more 

or less room for future improvements. The possibilities for future work are now discussed in detail 

for several research fields.  

9.2.1 TRANSDUCTIVE LEARNING ENSEMBLE FOR ROBUST VIDEO CONTENT ANALYSIS  

It was shown experimentally that the proposed self-supervised and semi-supervised learning 

framework can be successfully applied for several video indexing and retrieval tasks but, of course, 

several questions remain. First, under which circumstances are the training data offered by a video 

sufficient to successfully learn classifiers for this video? Second, what must be the minimum 

accuracy for an initial baseline classifier? Third, how many positive and negative examples must be 

available for a certain concept, object or event to be learned? Finally, in which way do these aspects 

interact with one another? In practice, the concrete realization varied for the different video 

indexing and retrieval tasks, and there are many possibilities to modify components in the 

framework which are discussed now separately:  

9.2.1.1 INITIAL CLASSIFICATION STAGE 

Here, the first question regards the selection of features: In which cases is it recommendable to use 

the complete available feature set or only a subset of the features to obtain a first stable 

classification result that provides a good basis for subsequent learning. Furthermore, is it important 

to achieve the best possible classification result in the initial classification stage? 

9.2.1.2 SUBSEQUENT LEARNING STAGE 

The main question is how to train and to form an ensemble of classifiers which finally achieves a 

robust classification result that at least reaches the performance of the initial classifier. In this thesis, 

an ensemble approach was utilized in most cases but was not better than a single re-trained 

classifier in all scenarios. When several classifiers are trained for an ensemble, the following 

unsolved research question arises: how much diversity (and how should diversity be measured?) is 

needed between the different ensemble experts to achieve an optimal classification accuracy? 

9.2.1.3 SELECTION OF TRAINING SAMPLES FOR THE LEARNING STAGE 

Currently, all training samples that are classified with highest confidence are incorporated to train a 

classifier. Alternatively, subsets of these samples could be used in order to obtain different 

classifiers. 
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9.2.1.4 ITERATIVE LEARNING VERSUS NON-INTERATIVE LEARNING 

In the current framework, learning is conducted in a non-iterative way in order to save computation 

time. However, the potential to further improve accuracy by using an iterative learning scheme 

should be investigated. 

9.2.1.5 MISCELLANEOUS 

Furthermore, in the future, the impact of both classifier independence and baseline system accuracy 

should be investigated. The use of other feature selection methods and classifiers within the 

framework should be analyzed as well as the application to other video indexing or pattern 

recognition tasks. Finally, recent advances in the field of machine learning should be considered 

with respect to their applicability for robust and adaptive video indexing and retrieval. Although 

semi-supervised learning or transductive learning methods (as transductive SVM) were used for the 

identified issue, some recently published methods might be well suited for this task and thus should 

be investigated. For example, some recent work of Bickel et al. [12] addresses the issue of building 

classifiers for differing training and test distributions. 

9.2.2 SHOT BOUNDARY DETECTION IN VIDEOS 

The main issue that remains in the field of shot boundary detection is the reliable detection of 

gradual transitions. The top approaches for gradual transition detection achieve a performance of 

about 80% in terms of recall and precision. From our point of view, better results will come along 

only with better object recognition methods and a better understanding of scene content. If a 

system would better recognize objects and events in terms of content, gradual transitions between 

different shots could be detected much easier. 

9.2.3 ESTIMATION OF ARBITRARY CAMERA MOTION IN VIDEOS 

Most detection errors are still due to the difficult distinction between translational and rotational 

camera movements. This problem could be investigated in future work by considering context 

information about objects in a scene. The distinction between camera motion and object motion 

should be considered in more detail in the future. 

9.2.4 PERSON RECOGNITION IN VIDEO 

There are several areas for future work. The robustness of the face detector must be further 

improved. In particular, the Adaboost based profile face detector is currently not well suited to 

detect profile faces in a video reliably. This is the reason that currently only frontal faces are 

processed, although the system is already capable of clustering and recognizing profile faces. 

Furthermore, a reasonable automatic clustering termination criterion is needed. The self-supervised 
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learning procedure can be improved by the use of a larger feature set, possibly enriched with 

features from holistic or 3D face recognition approaches.  

9.2.5 DETECTION OF HIGH-LEVEL CONCEPTS 

The reliable generic detection of arbitrary high-level concepts is still a challenging research problem. 

For the application of semi-supervised and transductive learning, it should be investigated further 

whether the retrieval performance for other concepts can be improved using this learning scheme. 

In addition, the adaptation of learned models will become more and more important in the future. 

Recent research indicates [71] that a number of 1000 – 3000 concepts is necessary to reach the 

retrieval quality of today’s text search engines. State-of-the-art concept detectors are based on 

supervised learning, and a reasonable amount of positive training samples is required. The 

annotation of a large video set with respect to such a large number of concepts is a very time-

consuming task. Consequently, there is a problem if the models are, for example, learned on news 

videos, but the genre of the target video archive is completely different (movies, sports videos), or 

the type of video sources is completely different (e.g., youTube.com, or any other unedited videos, 

such as home user videos and rushes material). Hence, the issue of adapting existing models to new 

video collections will become a very important issue in practice.  

9.2.6 SEMANTIC INDEXING OF COMPUTER GAMES 

It became apparent that the automatic annotation of semantic concepts like “danger” is very 

difficult. This concept depends on the detection of person occurrences and particularly on a 

“friend-or-foe” distinction. However, these persons appear in very small sizes in the game, and it is 

even hard for a human annotator to make the decision whether the situation is actually 

“dangerous” or not. Finally, temporal state transitions promise to entail additional useful 

information, for example, the state “inactive” is always preceded by the state “violence”. Such 

temporal relationships should also be incorporated into the automatic annotation system. 



226 Chapter 9 - Conclusions  

 

 



 

ANNEX A. LIST OF FIGURES 

 

Figure 1: Typical model for statistical pattern recognition, (according to [78], slightly 

modified). ................................................................................................................................20 

Figure 2: Framework for multimodal video indexing (according to Snoek and Worring 

[143]). .......................................................................................................................................23 

Figure 3: Schema for content-based video retrieval. ..........................................................................26 

Figure 4: Scheme of the encoding process for I-frames according to the MPEG-1 

standard. This coding scheme is similar for JPEG image encoding. ...........................29 

Figure 5: A typical frame ordering for a group of pictures in an MPEG-1 video. Below 

the encoding and the display order are displayed. ...........................................................31 

Figure 6: Example for a movement of a macroblock. Right: The macroblock that must 

be encoded. Left: Its best block match in a previous reference frame........................32 

Figure 7: Example for a fade-in from a black monochrome frame. Three 

representative frames, taken from the MPEG-7 video riscos-sl.mpg. ........................33 

Figure 8: Example for a dissolve. Three representative frames, taken from the MPEG-

7 video jornaldanoite.mpg....................................................................................................33 

Figure 9: Examples for different shot sizes: from left to right and top to bottom: close-

up shot, close shot, medium shot, full shot and long shot. ...........................................34 

Figure 10: Example for a cut frequency diagram for a short music video clip, generated 

with Videana. ...........................................................................................................................36 

Figure 11: Pseudo code for k-means clustering...................................................................................40 

Figure 12: Pseudo code for EM clustering...........................................................................................41 

Figure 13: Pseudo code for agglomerative clustering.........................................................................43 

Figure 14: An example for a well class-separating hyperplane (left) and a non-optimal 

separating hyperplane (right). ..............................................................................................46 

Figure 15: Pseudo code for co-training according to [13]. ................................................................49 

Figure 16: Example how a transductive SVM might refine and improve a maximum 

margin hyperplane achieved by an inductive SVM. Class 1 is represented by 

black rectangles, class 2 is represented by white triangles. Unlabeled data are 

displayed as grey circles. The SVM hyperplane is shown as a dashed line, 

whereas the TSVM hyperplane is displayed by a solid line. ..........................................50 

Figure 17: Pseudo code for bagging model generation......................................................................53 

Figure 18: Pseudo code for classification using bagging....................................................................53 



228 Annex A. List of Figures  

 

Figure 19: Pseudo code for Adaboost model generation. .................................................................54 

Figure 20: Pseudo code for Adaboost classification...........................................................................54 

Figure 21: Pseudo code for the simplex algorithm of Nelder and Mead. ......................................58 

Figure 22: Framework for transductive learning ensembles for video content analysis. 

The process is applied to each video separately. Dashed lines indicate 

optional processing steps. ....................................................................................................61 

Figure 23: Pseudo code for feaure selection based on Adaboost. ...................................................62 

Figure 24, left: Average difference values for different GOP positions normalized in 

relation to the minimum difference for “riscos-sl.mpg”, using decoded full 

frames. Right: Average difference values for the same video, normalized in 

relation to the minimum difference as well, but approximated DC-frames 

were used.................................................................................................................................92 

Figure 25, left: Difference for approximated DC-frame and DC-frames that are 

reconstructed based on the fully decoded frame. Right: Example for a 

possible false alarm detection at frame 2882: there are nearly no changes 

between frame 2881 and 2882 but frame 2882 is an I-frame........................................93 

Figure 26: Pseudo code for GoP-oriented frame difference normalization. .................................97 

Figure 27: Pseudo code for the algorithm to estimate the sliding window size. .........................105 

Figure 28: Distribution of recall/precision for shot detection at TRECVID 2005 

depending of the video sources [137]. .............................................................................126 

Figure 29: Reduction of error rate for each video of the TRECVID 2005 shot 

boundary test set. Error rate reduction approach when using the self-

supervised approach is given in relation to the original unsupervised 

approach. Error rate is given separately for each video from the TRECVID 

2005 shot boundary test set. ..............................................................................................131 

Figure 30, top: The silhouette coefficient (SC, scaled by 100), precision and estimated 

precision based on SC (both in %) for 33 videos from the MPEG-7 test set. 

Bottom: The data for recall................................................................................................136 

Figure 31, top: The silhouette coefficient (SC, scaled by 100), precision and estimated 

precision based on SC (both in %) for 12 videos of the TRECVID 2005 

test set. Bottom: The data for recall. ................................................................................137 

Figure 32: Various types of camera motion. ......................................................................................139 

Figure 33: Two examples for outlier criteria showing a motion vector and its 

neighbors. Left: “smoothness”; Right: “neighborhood”. ............................................142 

Figure 34: The 3D camera model that is used in the proposed approach. ..................................143 



 Annex A. List of Figures 229 
 

 

Figure 35: The main processing steps of the self-supervised system are displayed here. 

Optionally, aggregation of face sequences appearing in dialogs can be 

applied....................................................................................................................................152 

Figure 36, left: Example for face detections at slightly different scales and position. 

positions. Right: Only features in the inner face area are used for tracking. ............153 

Figure 37: Settings to capture a dialog of two persons with two and three cameras 

(taken from [6]). ...................................................................................................................155 

Figure 38: The principle of aggregating two face sequences A and B of two persons in 

a dialog scene (taken from [6]). .........................................................................................155 

Figure 39: The face graph structure as used in the proposed system. Left: Frontal face 

graph. Right: Profile face graph. .......................................................................................156 

Figure 40: Examples of automatically corrected in-plane rotated faces. The original 

faces as extracted from the video are displayed in the top row. Below are 

the results after correcting in-plane rotation. .................................................................157 

Figure 41: Example for a shot-based person indexing result for the talk-show 

sequence. ...............................................................................................................................168 

Figure 42: Example shot-based indexing results for the six persons of the talk-show 

sequence. Vertical lines represent the shot boundaries. For each person, the 

upper timeline represents the ground-truth data, and the bottom timeline 

represents the automatic indexing result. ........................................................................169 

Figure 43: Pseudo code for the semi-supervised retrieval scheme. ...............................................177 

Figure 44: Example retrieval result (top-50) for the concept “anchor” when using the 

semi-supervised learning ensemble approach. ...............................................................183 

Figure 45: Example retrieval result (top-50) for the concept “maps” when using the 

Mediamill baseline system..................................................................................................184 

Figure 46: Example retrieval result (top-50) for the concept “maps” when using the 

semi-supoervised learning ensemble approach. The “non-maps” shots are 

shifted downwards when using the semi-supervised approach compared to 

the baseline system. .............................................................................................................185 

Figure 47: Scheme for semantic video indexing and retrieval based on transductive 

SVM learning........................................................................................................................189 

Figure 48: Example retrieval result (top-50) for the concept “anchor” when using the 

baseline SVM........................................................................................................................194 

Figure 49: Example retrieval result (top-50) for the concept “anchor” when using the 

transductive SVM. Interestingly, the retrieved top-50 shots using the 



230 Annex A. List of Figures  

 

transductive SVM are from several different programs. When using the 

baseline SVM, all retrieved shots are from the same program....................................195 

Figure 50: Example retrieval result (top-50) for the concept “charts” when using the 

SVM baseline system. .........................................................................................................196 

Figure 51: Example retrieval result (top-50) for the concept “charts” when using the 

transductive SVM. ...............................................................................................................197 

Figure 52: The four boxes explain the different semantic game classes used in this 

study and how they relate to the categories used by Mathiak and Weber 

[108], which are displayed in the dashed nested boxes. The classes are 

ordered from bottom to top in terms of increasing violent content, where 

PA stands for “player’s avatar”. ........................................................................................202 

Figure 53: Example frames of the four different game classes. .....................................................203 

Figure 54: Scheme of the hierarchical audio type classifier: A single feature vector per 

sub-clip serves as input; output is a single acoustic class label and its 

corresponding probability. .................................................................................................205 

Figure 55: Concatenation of classifiers in order to employ temporal information. ...................209 

Figure 56: Main processing steps of the semi-supervised learning approach..............................210 

 



 

ANNEX B. LIST OF TABLES 

 

Table 1: Composition of the test sets for the shot boundary detection task at TRECVID 

in the years from 2003-2007. ...............................................................................................65 

Table 2: Performance results in terms of F1-measure for selected approaches which 

have been evaluated on a TRECVID benchmark test set. Chua et al. report 

an increasement with respect to their baseline system of 10.0 in terms of f1-

measure [26]............................................................................................................................77 

Table 3: Performance results in terms of F1-measure for selected approaches which 

have been evaluated on parts of MPEG-7 video test set...............................................78 

Table 4: Experimental results for cut detection on the TRECVID 2005 test data for the 

different approaches using the parameter settings as described in the related 

papers. ......................................................................................................................................83 

Table 5: Experimental results for cut detection on the TRECVID 2005 test data for the 

different approaches using optimized parameter settings..............................................85 

Table 6: Experimental results for cut detection on the TRECVID 2006 test data for the 

different approaches using optimized parameter settings..............................................85 

Table 7: Experimental results for cut detection on the TRECVID 2007 test data for the 

different approaches using optimized parameter settings..............................................85 

Table 8: Experimental results for cut detection on the MPEG-7 video test set for the 

different approaches using optimized parameter settings..............................................85 

Table 9: Experimental results for cut detection on the MPEG-7 video test set for the 

different approaches using optimized parameter settings..............................................86 

Table 10: Experimental results for cut detection on the news video part of the 

TRECVID 2005 test data for the different approaches using optimized 

parameter settings. .................................................................................................................86 

Table 11: Experimental results for cut detection on the NASA video part of the 

TRECVID 2005 test data for the different approaches using optimized 

parameter settings. .................................................................................................................86 

Table 12: Experimental results on the TRECVID 2007 test data for the local 

thresholding approach depending on the used training set for learning.....................87 

Table 13: Experimental results on the TRECVID 2007 test data for the statistical 

approach depending on the used training set for learning.............................................88 



232 Annex B. List of Tables  

 

Table 14: Experimental results on the TRECVID 2007 test data for the approach of 

Bescos [11] depending on the used training set for learning.........................................88 

Table 15: Experimental results for gradual transition detection on the TRECVID 2005 

data, according to TRECVID evaluation..........................................................................88 

Table 16: Experimental results for gradual transition detection on the TRECVID 2007 

data, according to TRECVID evaluation..........................................................................88 

Table 17: Experimental results for gradual transition detection on the TRECVID 2005 

data. In addition, short gradual transitions (with at least one transitional 

frame involved) are considered, in contrast to the results in Table 15 and 

Table 16. ..................................................................................................................................89 

Table 18: Experimental results for gradual transition detection on the TRECVID 2005 

data. Also short gradual transitions (with at least one transitional frame 

involved) are considered, in contrast to the results in Table 15 and Table 16...........89 

Table 19: Results are presented for the MPEG-7 test set for both methods: FDN and 

GFDN. GFDN outperforms the baseline implementation and the FDN 

method.....................................................................................................................................99 

Table 20: Cut detection results for the SVM extension of Bescos’ approach [11] for 

different sliding window sizes on the TRECVID SBD test set 2005........................110 

Table 21: Cut detection results for Hanjalic’s approach [68] for different sliding window 

sizes on the TRECVID SBD test set 2005.....................................................................110 

Table 22: Cut detection results for the proposed approach for different sliding window 

sizes on the TRECVID SBD test set 2005.....................................................................110 

Table 23: Cut detection results for the proposed approach for different sliding window 

sizes on the TRECVID SBD test set 2006.....................................................................110 

Table 24: Results for different ranges for automatic sliding window size estimation on 

TRECVID 2005 test set.....................................................................................................111 

Table 25: Results for different ranges for automatic sliding window size estimation on 

TRECVID 2006 test set.....................................................................................................111 

Table 26: Cut detection results on TRECVID data 2005. Comparison of the proposed 

unsupervised approach with the approach of [11] extended with SVM...................111 

Table 27: Cut detection results on TRECVID data 2006. Comparison of the proposed 

unsupervised approach with the approach of [11] extended with SVM...................112 

Table 28: Cut detection results on TRECVID data 2007. Comparison of the proposed 

unsupervised approach with the approach of [11] extended with SVM...................112 



 Annex B. List of Tables 233 
 

 

Table 29: Cut detection results on MPEG-7 video data set. Comparison of the 

proposed unsupervised approach with the approach of [11] extended with 

SVM. ......................................................................................................................................112 

Table 30: Cut detection results with respect to all data sets. Comparison of the proposed 

unsupervised approach with the approach of [11] extended with SVM...................112 

Table 31: Results for a frame distance of 6 for different sliding window sizes...........................113 

Table 32: Results for a frame distance of 10 for different sliding window sizes.........................113 

Table 33: Results for a frame distance of 20 for different sliding window sizes.........................113 

Table 34: Results for a frame distance of 25 for different sliding window sizes.........................114 

Table 35: Results for a frame distance of 30 for different sliding window sizes.........................114 

Table 36: Results for a frame distance of 40 for different sliding window sizes.........................114 

Table 37: Results for a frame distance of 50 for different sliding window sizes.........................114 

Table 38: Results for thr combinations of different frame distances. Two clustering 

types are distinguished: using the feature vectors for different frame distances 

in one clustering process (“all), or in separate clustering processes 

(“separate”). ..........................................................................................................................115 

Table 39: Results for different strategies of false alarm removal. ..................................................115 

Table 40: Performance for gradual transition detection when only one feature is used. 

Tested in conjunction with different false alarm removal strategies..........................116 

Table 41: Performance for gradual transition detection when only one feature is used 

but two frame distances. Tested in conjunction with different false alarm 

removal strategies. ...............................................................................................................116 

Table 42: Performance for gradual transition detection when thrre frame distances are 

used. Tested in conjunction with different false alarm removal strategies and 

features...................................................................................................................................116 

Table 43: Results for six or seven different frame distances, combined with different 

parameter settings. ...............................................................................................................117 

Table 44: Results for six or seven different frame distances used in conjunction with the 

feature max only, combined with different false alarm removal strategies. ..............117 

Table 45: Results for six or seven different frame distances used in conjunction with 

sliding window size parameter 24, combined with different false alarm 

removal strategies ................................................................................................................117 

Table 46: Results for gradual transition detection on the TRECVID 2005 test set for the 

proposed approach and the local thresholding approach of Yeo and Liu 

[184]........................................................................................................................................118 



234 Annex B. List of Tables  

 

Table 47: Recall and precision for different maximum sliding window sizes, using 

optionally an ensemble of classifiers or false alarm removal.......................................122 

Table 48: Experimental results for the classifiers used in the ensemble approach.....................122 

Table 49: Experimental results on the TRECVID 2005 test set for the unsupervised 

baseline system, for a SVM classifier and for some Adaboost classifiers using 

a different number of features. Each of them was trained separately on each 

video based all automatically positive labeled training samples. The number 

of negative training samples depends on the number of positive samples. .............129 

Table 50: Experimental results on the TRECVID 2005 test set for the unsupervised 

baseline system, for a SVM classifier and for some Adaboost classifiers using 

a different number of features. Each of them was trained separately on each 

video based only on the “best” 90% positive training samples. The factor of 

negative training samples remained unchanged.............................................................129 

Table 51: Experimental results on the TRECVID 2005 test set for several classifier 

ensemble schemes. Supervised experts in these ensembles are trained only on 

the automatically labeled data for the given video. .......................................................130 

Table 52: Experimental results on the TRECVID 2005 test set for three different self-

supervised variations. ..........................................................................................................130 

Table 53: Experimental results on the TRECVID 2006 test set for the ensemble scheme 

with two SVMs using alternating features. Supervised experts in these 

ensembles are trained only on the automatically labeled data for the given 

video.......................................................................................................................................130 

Table 54: Experimental results on the TRECVID 2007 test set for the ensemble scheme 

with two SVMs using alternating features. Supervised experts in these 

ensembles are trained only on the automatically labeled data for the given 

video.......................................................................................................................................131 

Table 55: Results for the TRECVID 2005 shot boundary test set: The silhouette 

coefficient for each cuts cluster which was obtained after k-means clustering, 

the estimated precision and the real precision, and the estimation error..................135 

Table 56: The detection results listed separately for each motion type for the baseline 

implementation and its extension with outlier removal. ..............................................144 

Table 57: The results for each motion type if the number of motion vectors used in the 

optimization algorithm is reduced after outlier removal. .............................................145 

Table 58: The results if translation and the similar rotation type are considered as a 

single motion type. ..............................................................................................................145 



 Annex B. List of Tables 235 
 

 

Table 59: Experimental results in terms of recall and precision for our submission for 

the TRECVID 2005 low-level feature task. ...................................................................145 

Table 60: Experimental results in terms of F1- measure for our submission for the 

TRECVID 2005 low-level feature task. ..........................................................................145 

Table 61: The Gabor wavelet specification as used in our system. ...............................................158 

Table 62: The experimental results for the talk show sequence when the number of 

detection hits is varied in the process of face sequence generation. ..........................164 

Table 63: The experimental results for the talk show sequence when the minimum 

number of faces forming a face sequence is varied in the face sequence 

generation process. ..............................................................................................................164 

Table 64: The experimental results for the talk show sequence when the maximum 

number of best faces representing a face sequence is varied. .....................................164 

Table 65: The experimental results for the talk show sequence when the clustering 

termination threshold is varied..........................................................................................164 

Table 66: The experimental results for the talk show sequence using the baseline system. 

Recognition is computed based on the detected face sequences only. .....................165 

Table 67: The experimental results for the talk show sequence when in-plane rotation of 

faces was performed. Recognition is computed based on the detected face 

sequences only......................................................................................................................166 

Table 68: The experimental results for the talk show sequence when inplane-rotation 

was performed and Adaboost was used to learn facial features of face 

clusters. Recognition is computed based on the detected face sequences only.......166 

Table 69: The experimental results for the talk show sequence when inplane-rotation 

was performed and SVM or a 3-SVM ensemble, respectively, was used to 

learn facial features of face clusters. .................................................................................167 

Table 70: The experimental results for the talk show sequence when the number of 

selected features is varied using the Adaboost classifier. .............................................167 

Table 71: Experimental results for the high-level feature „maps”: Average precision 

values for the MediaMill challenge baseline system and the proposed semi-

supervised approach are presented. .................................................................................182 

Table 72: Experimental results for the high-level feature „anchor”: Average precision 

values for the MediaMill challenge baseline system and the proposed semi-

supervised approach are presented. .................................................................................182 



236 Annex B. List of Tables  

 

Table 73: Experimental results for the high-level feature „charts”: Average precision 

values for the MediaMill challenge baseline system and the proposed semi-

supervised approach are presented. .................................................................................182 

Table 74: Experimental results for the high-level feature „overlaid text”: Average 

precision values for the MediaMill challenge baseline system and the 

proposed semi-supervised approach are presented. .....................................................182 

Table 75: Experimental results for the high-level feature „maps” for different learning 

strategies. The number in brackets indicates the number of selected features 

by Adaboost..........................................................................................................................186 

Table 76: Experimental results for the high-level feature „anchor” for different learning 

strategies. The number in brackets indicates the number of selected features 

by Adaboost..........................................................................................................................186 

Table 77: Experimental results for the high-level feature „charts” for different learning 

strategies. The number in brackets indicates the number of selected features 

by Adaboost..........................................................................................................................186 

Table 78: Experimental results for the high-level feature „anchor”: Average precision 

values for the baseline SVM system and the proposed transductive SVM 

approach are presented.......................................................................................................190 

Table 79: Experimental results for the high-level feature „charts”: Average precision 

values for the baseline SVM system and the proposed transductive SVM 

approach are presented.......................................................................................................191 

Table 80: Experimental results for the high-level feature „entertainment”: Average 

precision values for the baseline SVM system and the proposed transductive 

SVM approach are presented. ...........................................................................................191 

Table 81: Experimental results for the high-level feature „maps”: Average precision 

values for the baseline SVM system and the proposed transductive SVM 

approach are presented.......................................................................................................191 

Table 82: Experimental results for the high-level feature „overlaid text”: Average 

precision values for the baseline SVM system and the proposed transductive 

SVM approach are presented. ...........................................................................................192 

Table 83: Experimental results for the high-level feature „studio”: Average precision 

values for the baseline SVM system and the proposed transductive SVM 

approach are presented.......................................................................................................192 

Table 84: Experimental results for all six high-level features which were expected to 

benefit from transductive learning. The average of all average precision 



 Annex B. List of Tables 237 
 

 

values is presented for the baseline SVM system and the proposed 

transductive SVM approach. .............................................................................................192 

Table 85: Comparison of the MediaMill challenge baseline system [143], our baseline 

SVM (svmLight), the semi-supervised learning approach presented in 

Chapter 7.3, and the proposed transductive SVM approach. Only those 

concepts are considered for which either the semi-supervised approach or 

the transductive approach yielded an improvement. ....................................................193 

Table 86: Number of frames referring to semantic game categories for each of the used 

computer game videos........................................................................................................211 

Table 87: “Baseline” system: Recall, precision and f1-measure for each of the four 

semantic classes as well as the total recall. ......................................................................212 

Table 88: “Baseline + temporal features”: Recall, precision and f1-measure for each of 

the four semantic classes as well as the total recall........................................................212 

Table 89: “Baseline + Semi-Supervised Learning”: Recall, precision and f1-measure for 

each of the four semantic classes as well as the total recall. ........................................212 

Table 90: Results for the semi-supervised ensemble approach. Recall, precision and f1-

measure for each of the four semantic classes as well as the total recall...................213 

Table 91: Results for the transductive SVM approach. Recall, precision and f1-measure 

for each of the four semantic classes as well as the total recall...................................213 

Table 92: Total recall for each of the tested systems........................................................................214 

Table 93: Confusion matrix for the experiment which used the semi-supervised 

ensemble. For example, the most frequent error is that a violence frame is 

misclassified as search and vice versa. .............................................................................214 

Table 94: Summarization of the results of the applications of the proposed learning 

framework for several tasks. ..............................................................................................217 

 



238 Annex B. List of Tables  

 



 

 

ANNEX C. REFERENCES 

 

1. Acosta, E., Torres, L., Albiol, A., and Delp, E. An Automatic Face Detection and Recognition 

System for Video Indexing Applications. In Proceedings of the 27th IEEE Conference on 

Acoustics, Speech and Signal Processing, Vol. 4, Orlando, Florida, USA, 2002, 3644-4647. 

2. Adams, B. Amir, A., Dorai, C. Ghosal, S., Iyengar, G., Jaimes, A., Lang, C., Lin, C.-Y., 

Natsev, A., Naphade, M., Neti, C., Nock, H., J., Permuter, H. H, Singh, R., Smith, J. R., 

Srinivasan, S., Tseng, B. L., Ashwin, T. V., and Zhang, D. IBM Research TREC-2002 Video 

Retrieval System. In NIST Special Publication 500-250: The Tenth Text REtrieval Conference 

(TREC 2002), http://trec.nist.gov//pubs/trec10/index_track.html#video, visited; August, 

24, 2006. 

3. Amir, A. Berg, M., Chang, S.-F., Hsu, W., Iyengar, G., Lin, C.-Y., Naphade, M., Natsev, A. 

P., Neti, C., Nock, H., Smith, J. R., Tseng, B., Wu, Y., and Zhang, D. IBM Research 

TRECVID-2003 Video Retrieval System. TREC Video Retrieval Online Proceedings, (2003), 

http://www-nlpir.nist.gov/projects/tvpubs/tv.pubs.org.html, visited: 24th of August, 2006 

4. Amir, A., Argillander, J., Berg, M., Chang, S.-F., Franz, M., Hsu, W., Iyengar, G., Kender, J. 

R., Kennedy, L., Lin, C.-Y., Naphade, M. R., Natsev, A., Smith, J.R., Tesic, J., Wu, G., Yan, 

R., and Zhang, D. IBM Research TRECVID-2004 Video Retrieval System. In: TREC Video 

Retrieval Online Proceedings, (2004), http://www-

nlpir.nist.gov/projects/tvpubs/tv.pubs.org.html, visited: 14th of June, 2006 

5. Amir, A., Argillander, J., Campbell, M., Haubold, A., Iyengar, G., Ebadollahi, S., Kang, F., 

Naphade, M. R., Natsev, A., Smith, J.R., Tesic, J., and Volkmer, T. IBM Research TRECVID-

2005 Video Retrieval System. In TREC Video Retrieval Online Proceedings, (2005), 

http://www-nlpir.nist.gov/projects/tvpubs/tv.pubs.org.html, visited: 14th of June, 2006. 

6. Arijon, D. Grammar of the Film Language. Silman-James Press, 1991. 

7. Aslandogan, Y. A. and Yu, C. T. Techniques and Systems for Image and Video Retrieval. In IEEE 

Transactions on Knowledge and Data Engineering, Vol. 11, No. 1, 1999, 56-63. 



240 Annex C. References  

 

8. Bailer, W., Schallauer, P., and Thallinger, G. Joanneum Research at TRECVID 2005 – Camera 

Motion Detection. In TREC Video Retrieval Online Proceedings, (2005), http://www-

nlpir.nist.gov/projects/tvpubs/tv.pubs.org.html, visited: 14th of June, 2006. 

9. Bashir, F. I., Khanvilkar, S., Schonfeld, D., and Khokhar, A. Multimedia Systems: Content-Based 

Indexing and Retrieval. Chapter 6 in “The Electrical Engineering Handbook”, ed. Wai Chen, 

Academic Press, 2004. 

10. Bescos, J., Cisneros, G., and Menendez, J.M. Multidimensional Comparison of Shot Detection 

Algorithms. In Proceedings of IEEE International Conference on Image Processing 2002, 

Volume II, IEEE Press, 2002, 401-404. 

11. Bescos, J. Real-Time Shot Change Detection Over Online MPEG-2 Video. In IEEE Transactions on 

Circuits and Systems for Systems and Video Technology, Volume 14, No. 4, 2004, IEEE 

Press, 2004, 475-484.  

12. Bickel, S., Brückner, M, and Scheffer, T. Discriminative Learning for Differing Training and Test 

Distributions. In Proc. of 24th International Conference on Machine Learning, Corvallis, OR, 

ACM Press, 2007, 81-88. 

13. Blum, A. and Mitchell, T. Combining Labeled and Unlabeled Data with Co-Training. In Proceedings 

of the 11th Conference on Computational Learning Theory, Madison, Wisconsin, USA, 1998, 

92-100. 

14. Bober, M. MPEG-7 Visual Shape Descriptors. In IEEE Transactions on Circuits and Systems 

for Video Technology, Vol. 11, No. 6, IEEE Press, 2001, 716-719.  

15. Boccignone, G., Chianese, A., Moscato, V., and Picariello, A. Foveated Shot Detection for Video 

Segmentation. In IEEE Transactions on Circuits and Systems for Video Technology, Vol. 15, 

No. 3, IEEE Press, 2005, 365-377.  

16. Böhm, C, Berchtold, S., and Keim D. A. Searching in High-Dimensional Spaces – Index Structures 

for Improving the Performance of Multimedia Databases. In ACM Computing Surveys, Vol. 33, No. 

3, ACM Press, 2001, 322-373. 

17. Bolme, D. S. Elastic Bunch Graph Matching. Master Thesis, Colorado State University, 2003. 



 Annex C. References 241 

 

18. Boreczky, J. S. and Rowe, L. A. Comparison of Video Shot Boundary Detection Techniques. In 

Proceedings of IS&T/SPIE Conf. Storage and Retrieval for Image and Video Databases IV, 

Vol. SPIE 2670 (1996), 170–179. 

19. Bouguet, J.-Y. Pyramidal Implementation of the Lucas Kanade Feature Tracker. In OpenCV 

Documentation, Intel Corporation, Microprocessor Research Labs, 1999. 

20. Brown, G. Wyatt, J., Harris, R., and Yao, X. Diversity Creation Methods: A Survey and 

Categorisation. In Information Fusion 6 (2005), Elsevier, 2005, 5-20. 

21. Burges, C. A Tutorial on Support Vector Machines for Pattern Recognition. In Data Mining and 

Knowledge Discovery 2, 2, Kluwer Academic Publishers, 1998, 121-167. 

22. Chandrashekhara, A., Feng, H. M. and Chua, T.-S. Temporal Multi-Resolution Framework for Shot 

Boundary Detection and Keyframe Extraction. In Proceedings of The Eleventh Text Retrieval 

Conference (TREC 2002), 492-496, 2002. Onlince proceedings also available at: 

http://trec.nist.gov//pubs/trec11/index.track.html#video. 

23. Chang, C.-C. and Lin, C.-J.  LIBSVM - A Library for Support Vector Machines. 2001. Software 

available at: www.csie.ntu.edu.tw/~cjlin/libsvm/, visited on 30th August, 2006. 

24. Chang, S.-F., Sikora, T., and Puri, A. Overview of the MPEG-7 Standard. In IEEE Transactions 

on Circuits and Systems for Video Technology, Vol. 11, No. 6, 2001, 688-695.  

25. Chapelle, O., Schölkopf, B., and Zien, A. (eds.) Semi-Supervised Learning. MIT Press, 

Cambridge, Massachusetts, 2006. 

26. Chua, T.-S., Kankanhalli, M., and Lin, Y. A General Framework for Video Segmentation Based on 

Temporal Multi-Resolution Analysis. In Proc. of International Workshop on Advanced Image 

Technology, Fujisawa, Japan 2000, 119-124. 

27. Chua, T.-S., Feng, H.M., and Anantharamu, C. An Unified Framework for Shot Boundary Detection 

via Active Learning. In Proceedings of IEEE International Conference on Acoustics, Speech 

and Signal Processing 2003, Hong Kong, Band II, IEEE Press, 2003, 845-848. 

28. Cortes, C. and Vapnik, V. Support Vector Networks. In Machine Learning, Vol. 20, No. 3, 1995, 

273-297. 



242 Annex C. References  

 

29. Cronen-Townsend, S., Zhou, Y., and Croft, W. B. Predicting Query Performance. In Proceedings 

of the 25th Annual International ACM SIGIR conference on Research and Development in 

Information Retrieval (SIGIR 2002), ACM Press, Tampere, Finland, 2002, 299-306. 

30. Cronen-Townsend, S., Zhou, Y., and Croft, W. B. Precision Prediction based on Ranked List 

Coherence. In Information Retrieval, Volume 9, Issue 6, Kluwer Academic Publishers, 

Hingham, MA, USA, 2006, 723-755. 

31. Dante, A. and Brookes, M. Precise Real-Time Outlier Removal from Motion Vector Fields For 3D 

Reconstruction. In Proc. of IEEE International Conference on Image Processing, Vol. 1, 

Barcelona, 2003, 393-396. 

32. Dempster, A. P., Laird, N. M., and Rubin, D. B. Maximum Likelyhood From Incomplete Data via 

the EM Algorithm. In Journal of the Royal Statistical Society, Series B, 39(1), 1977, 1-31. 

33. Dorai, C. and Venkatesh, S. MEDIA COMPUTING – Computational Media Aesthetics. Kluwer 

Academic Publishers, Boston, 2002.  

34. Eickeler, S., Wallhoff, F., Iurgel, U., and Rigoll, G. Content-Based Indexing of Images and Video 

Using Face Detection and Recognition Methods. In Proc. of IEEE International Conference on 

Acoustics, Speech, and Signal Processing (ICASSP), Vol. III, Salt Lake City, Utah, USA, 

2001, 1505-1508. 

35. Ester, M. and Sander, J. Knowledge Discovery in Databases. Springer Verlag, Berlin, 2000. 

36. Ewerth, R. and Freisleben, B. Frame difference normalization: An approach to reduce error rates of cut 

detection algorithms for MPEG videos. In Proc. of the IEEE International Conference on Image 

Processing, Vol. 2, Barcelona, IEEE Press, 2003, 1009-1012. 

37. Ewerth, R. and Freisleben, B. Improving Cut Detection in MPEG Videos by GoP-Oriented Frame 

Difference Normalization. In Proceedings of the 17th International Conference on Pattern 

Recognition, Cambridge (UK), Volume 2, IEEE Press, 2004, 807-810. 

38. Ewerth, R., Gllavata, J., Gollnick, M., Mansouri, F., Papalilo, E., Sennert, R., Wagner, J.,  

Freisleben, B., and Grauer, M. Methoden und Werkzeuge zur rechnergestützten medienwissenschaftlichen 

Analyse. In: Siegener Periodicum zur Internationalen Empirischen Literaturwissenschaft, 20, 

H. 2, 2003, 306-320. 



 Annex C. References 243 

 

39. Ewerth, R., Schwalb, M., Tessmann, P., and Freisleben, B. Estimation of Arbitrary Camera 

Motion in MPEG Videos. In Proceedings of the 17th International Conference on Pattern 

Recognition, Vol. I, Cambridge, UK, IEEE Press, 2004, 512-515. 

40. Ewerth, R. and Freisleben, B. Video Cut Detection without Thresholds. In Proceedings of the 11th 

International Workshop on Signals, Systems and Image Processing, Poznan, Poland, 2004, 

227-230. 

41. Ewerth, R., Friese, T., Grube, M., and Freisleben, B. Grid Services for Distributed Video Cut 

Detection. In Proceedings of the International Symposium on Multimedia Software 

Engineering, Miami (USA), 2004, 164-168. 

42. Ewerth, R., Beringer, C., Kopp, T., Niebergall, M., Stadelmann, T., and Freisleben, B. 

University of Marburg at TRECVID 2005: Shot Boundary Detection and Camera Motion Estimation 

Results. In Online Proceedings of TRECVID Conference Series 2005: http://www-

nlpir.nist.gov/projects/tvpubs/tv.pubs.org.html 

43. Ewerth, R. and Freisleben, B. Self-Supervised Learning for Robust Video Indexing. In Proceedings 

of the IEEE Conference on Multimedia & Expo 2006, Toronto, 2006, 1749-1752. 

44. Ewerth, R., Mühling, M., and Freisleben, B. Self-Supervised Learning of Face Appearances in TV 

Casts and Movies. In Proceedings of the IEEE Symposium on Multimedia, San Diego, CA, 

USA, 2006, 78-85. 

45. Ewerth, R., Mühling, M., Stadelmann, T., Agel, B., Seiler, D., and Freisleben, B. University of 

Marburg at TRECVID 2006: Shot Boundary Detection and Rushes Task Results. In Online 

Proceedings of TRECVID Conference Series 2006: http://www-

nlpir.nist.gov/projects/tvpubs/tv.pubs.org.html, 2006 

46. Ewerth, R. and Freisleben, B. Computerunterstützte Filmanalyse mit Videana. In: Augen-Blick: 

Hefte zur Medienwissenschaft, Heft 39, Schüren-Verlag, Marburg, 2007, 54-66. 

47. Ewerth, R., Mühling, M., and Freisleben, B. Self-Supervised Learning of Face Appearances in TV 

Casts and Movies. In International Journal on Semantic Computing, World Scientific, 2007, 

June, 185-204. 



244 Annex C. References  

 

48. Ewerth, R., and Freisleben, B. Semi-Supervised Learning for Semantic Video Retrieval. In 

Proceedings of ACM International Conference on Image and Video Retrieval, Amsterdam, 

ACM Press, 2007, 154-161. 

49. Ewerth, R. and Freisleben, B. Adapting Appearance Models of Semantic Concepts to a Particular 

Video via Transductive Learning. In Proceedings of 9th ACM SIGMM Int'l Workshop on 

Multimedia Information Retrieval, in conjunction with ACM Multimedia 2007, Augsburg, 

Germany, 2007, 187-196. 

50. Everingham, M. R. and Zisserman, A. Automated Visual Identification of Characters in Situation 

Comedies. In Proceedings of the 17th International Conference on Pattern Recognition 

(ICPR), Cambridge, UK, 2004, 983-986. 

51. Everingham, M. R. and Zisserman, A. Automated Person Identification in Video. In Proceedings 

of the 3rd International Conference on Image and Video Retrieval, (CIVR), Dublin, Ireland, 

2004, 289-298. 

52. Fitzgibbon, A. and Zisserman, A. On Affine Invariant Clustering and Automatic Cast Listing in 

Movies. In Proceedings of the 7th European Conference on Computer Vision, Vol. 3, 

Copenhagen, Denmark, Springer-Verlag, 2002, 304-320. 

53. Fitzgibbon, A. and Zisserman, A. Joint Manifold Distance: A New Approach to Appearance Based 

Clustering. In  Proceedings of the IEEE Conference on Computer Vision and Pattern 

Recognition, Vol. 1, Madison, WI, USA, 2003, 16-26. 

54. Fritz, M., Kruijff, G.-J. M., and Schiele, B. Cross-Modal Learning of Visual Categories using 

Different Levels of Supervision. In Proceedings of International Conference on Computer Vision 

Systems, Bielefeld, Germany, 2007. 

55. Freund, Y. and Schapire, R. E. A Decision-Theoretic Generalization of On-Line Learning and an 

Application to Boosting. In Journal of Computer and System Sciences, 55(1), 1997, 119-139. 

56. Gao, X., and Tang, X. Unsupervised Video-Shot Segmentation and Model-Free Anchorperson Detection 

for News Video Story Parsing. In IEEE Transactions on Circuits and Systems for Video 

Technology, Vol. 12, No. 9, 2002, 765-776. 



 Annex C. References 245 

 

57. Gargi, U., Kasturi, R., and Antani, S. Performance Characterization and Comparison of Video 

Indexing Algorithms. In Proc. of IEEE Conference on Computer Vision and Pattern 

Recognition, 1998, 559-565. 

58. Gargi, U., Kasturi, R., and Strayer, S. H. Performance Characterization of Video-Shot-Change 

Detection Methods. In IEEE Transaction on Circuits and Systems for Video Technology, Vol. 

10, No. 1, 2000, 1-13. 

59. Gevers, T. and Smeulders, A.W. M. Image Search Engines: An Overview. In G. Medioni and S. B. 

Kang (eds.), Emerging Topics in Computer Vision. Prentice Hall, 2004. 

60. Gllavata, J., Ewerth, R., and Freisleben, B. Finding Text in Images via Local Thresholding. In 

Proceedings of the IEEE International Symposium on Signal Processing and Information 

Technology (ISSPIT), Darmstadt, IEEE Press, 2003, 539-542. 

61. Gllavata, J., Ewerth, R., and Freisleben, B. A Robust Algorithm for Text Detection in Images. In: 

Proceedings of the 3rd International Symposium on Image and Signal Processing and 

Analysis, Rome, IEEE Press, 2003, 611-616. 

62. Gllavata, J., Ewerth, R., and Freisleben, B. Text Detection in Images Based on Unsupervised 

Classification of High-Frequency Wavelet Coefficients. In Proceedings of 17th International 

Conference on Pattern Recognition, Vol. 1, Cambridge (UK), IEEE Press, 2004, 425-428. 

63. Gllavata, J., Ewerth, R., and Freisleben, B. Tracking Text in MPEG Videos. In Proceedings of 

ACM Multimedia 2004, New York, ACM Press, 2004, 240-243. 

64. Gllavata, J., Ewerth, R., and Freisleben, B. A Text Detection, Localization and Segmentation System 

for OCR in Images. In Proceedings of the 6th IEEE International Symposium on Multimedia 

Software Engineering, Miami (USA), IEEE Press, 2004, 310-317. 

65. Gllavata, J. and Freisleben, B. Adaptive Fuzzy Text Segmentation in Images with Complex 

Backgrounds using Color and Texture. In Proceedings of the International Conference on 

Computer Analysis of Images and Patterns (CAIP ‘05), Springer Verlag, Paris, France, 2005, 

756-765. 

66. Gllavata, J., Qeli, E., and Freisleben, B. Detecting Text in Videos Using Fuzzy Clustering Ensembles. 

In Proceedings of the IEEE International Symposium on Multimedia (ISM ‘06), IEEE Press, 

San Diego, USA, 2006, 283-290. 



246 Annex C. References  

 

67. Gllavata, J., Ewerth, R., Stefi, T., and Freisleben, B. Unsupervised Text Segmentation Using Color 

and Wavelet Features. In Proceedings of the 3rd International Conference on Image and Video 

Retrieval 2004, Lecture Notes on Computer Science LNCS 3115, Dublin, Springer-Verlag, 

2004, 216-224. 

68. Günsel, B., Ferman, A. M., Tekalp, A. M. Temporal Video Segmentation Using an Unsupervised 

Clustering and Semantic Object Tracking. In SPIE Journal of Electronic Imaging 7 (3), 1998, 592-

604. 

69. Hanjalic, A. Shot Boundary Detection: Unraveled and Resolved?. In IEEE Transactions on Circuits 

and Systems for Video Technology, Vol. 12, 2002, 533-544. 

70. Hauptmann, A. G. and Christel, M. G. Successful Approaches in the TREC Video Retrieval 

Evaluations. In Proceedings of the ACM Conference on Multimedia 2004, New York, USA, 

ACM Press, 2004, 668-675. 

71. Hauptmann, A., Lin, W-H., and Yan, R. How Many High-level Concepts Will Fill the Semantic Gap 

in News Video Retrieval?. In Proceedings of ACM International Conference on Image and 

Video Retrieval, Amsterdam, ACM Press, 2007, 627-634. 

72. He, B. and Ounis, I. Inferring Query Performance Using Pre-Retrieval Predictors. In 11th Proceedings 

of International Conference String Processing and Information Retrieval (SPIRE 2004), 

Lecture Notes in Computer Science 3246, Padova, Italy, Springer-Verlag, 2004, 43-54. 

73. Hickethier, K. Film- und Fernsehanalyse. 3. Auflage, Verlag J. B. Metzler, Stuttgart/Weimar, 

2001. 

74. Ho, T. K. The random subspace method for constructing decision forests. In IEEE Transactions on 

Pattern Analysis and Machine Intelligence, Volume 20, Issue 8 (Aug. 1998), 832-844. 

75. Hu, Y. and Loizou, P. Subjective Comparison of Speech Enhancement Algorithms. In Proceedings of 

the International Conference on Acoustics, Speech, and Signal Processing, Vol. 1, Toulouse, 

France, 2006, 153-156. 

76. Huang, C. Ai, H., Li, Y., and Lao, S. Vector Boosting for Rotation Invariant Multi-View Face 

Detection. In Proceedings of the Tenth International Conference on Computer Vision, Vol. 1, 

Bejing, China, 2005, 446-453. 



 Annex C. References 247 

 

77. Intel Open Source Computer Vision Library, 

www.intel.com/technology/computing/opencv/index.htm 

78. Jacobs, A., Miene, A., Ioannidis, G. T., and Herzog, O. Automatic shot boundary detection 

combining color, edge, and motion features of adjacent frames. In Online Proceedings of TRECVID 

Conference Series 2004, Gaithersburg, Maryland, USA, http://www-

nlpir.nist.gov/projects/tvpubs/tv.pubs.org.html, 2004. 

79. Jain, A. K., Duin, R., and Mao, J. Statistical Pattern Recognition: A Review. In IEEE Transactions 

on Pattern Analysis and Machine Intelligence, Vol. 22, No. 1, 2000, 4-37. 

80. Jarre, F. and Stoer, J. Optimierung. Springer-Verlag Berlin. 2004. 

81. Jeannin, S. and Mory, B. Video Motion Representation for Improved Content Access. In IEEE 

Transactions on Consumer Electronics, Vol. 46, No. 3, 2000, 645-655. 

82. Joachims T. Transductive Inference for Text Classification using Support Vector Machines. In 

Proceedings of 16th International Conference on Machine Learning (ICML), Bled, Slovenia, 

1999, 200-209. 

83. Joly, P. and Kim, H.-K. Efficient Automatic Analysis of Camera Work and Microsegmentation of 

Video Using Spatiotemporal Images. In Signal Processing: Image Communication 8, Elsevier 

Science Ltd., 1996, 295-307. 

84. Kaufmann, L. and Rousseuw P. J. Finding Groups in Data: An Introduction to Cluster Analysis. 

John Wiley & Sons, 1990. 

85. Keerthi S., Shevade S., Bhattacharyya C., and Murthy K. Improvements to Platt's SMO Algorithm 

for SVM Classifier Design. In Neural Computation, Vol. 13, 2001, 637-649. 

86. Kim, J.-G., Chang, H. S., Kim, J., and Kim, H.-M. Efficient Camera Motion Characterization for 

MPEG Video Indexing. In Proceedings. of IEEE International Conference on Multimedia and 

Expo, New York, USA, Vol. 2, 2000, 1171 -1174. 

87. Koprinska, I. and Carrato, S. Temporal Video Segmentation: A Survey. In Signal Processing: 

Image Communication 16, Elsevier Sc. Ltd., 2001, 477-500. 

88. Korte, H. Einführung in die Systematische Filmanalyse. 2 Auflage, Erich Schmidt Verlag, 2004. 



248 Annex C. References  

 

89. Kreyß, J., Röper, M., Alshuth, P., Hermes, T., and Herzog, O. Video Retrieval by Still Image 

Analysis with ImageMiner. In Proceedings of IS&T/SPIE Symposium on Electronical Imaging 

Sciene & Technology (Storage and Retrieval for Images and Video Databases), San Jose, CA, 

USA, 1997, 236–247. 

90. Kuncheva, L. I., Whitaker, C. J., Shipp, C. A., and Duin, R. P. W. Limits on the Majority Vote 

Accuracy in Classifier Fusion. In Pattern Analysis and Applications, 6, 2003, Springer-Verlag, 22-

31. 

91. Kuo, T. C. T., and Chen, A. L.P. A Mask Matching Approach for Video Segmentation on Compressed 

Data. In Information Sciences 141, Elsevier Ltd., 2002, 169-191. 

92. Lefèvre, S., Hollera, J., and Vincent, N. A Review of Real-time Segmentation of Uncompressed Video 

Sequences for Content-Based Search and Retrieval. In Real-Time Imaging, Elsevier Sc. Ltd., Volume 

9, Issue 1, 2003, 73-98. 

93. Lelescu, D., and Schonfeld, D. Statistical Sequential Analysis for Real-Time Video Scene Change 

Detection on Compressed Multimedia Bitstream. In IEEE Transactions on Multimedia, Vol. 5, No. 

1, IEEE Press, 2003, 106-117. 

94. Li, D. and Sethi, I. MPEG Developing Classes. 

http://www.cs.wayne.edu/~dil/research/mdc/docs. 

95. Lieb, D. Lookingbill, A. and Thrun, S. Adaptive Road Following using Self-Supervised Learning and 

Reverse Optical Flow. In Online Proceedings of Robotics: Sciencs and Systems, Cambridge, 

USA, http://www.roboticsproceedings.org/index.html, 2005. 

96. Lienhart, R. Comparison of Automatic Shot Boundary Detection Algorithms. In Image and Video 

Processing VII 1999, SPIE Proc. Vol. 3656-29, 1999, 290-301. 

97. Lienhart, R. Reliable Transition Detection in Videos: A Survey and Practitioner's Guide. In 

International Journal of Image and Graphics, Vol. 3., 2001, 469-486. 

98. Lienhart, R. Reliable Dissolve Detection. In Storage and Retrieval for Media Databases 2001, 

Proceedings of SPIE 4315, 2001, 219-230. 



 Annex C. References 249 

 

99. Lienhart, R., Liang, L., and Kuranov, A. A Detector Tree of Boosted Classifiers for Real-time Object 

Detection and Tracking. In Proceedings of IEEE International Conference on Multimedia and 

Expo (ICME), 2003, Vol. 2, Baltimore, Maryland, USA, 2003, 277-280.  

100. Linguistic Data Consortium. The DARPA TIMIT Acoustic-Phonetic Continuous Speech Corpus. 

1990, available online (9th of February, 2007): 

http://www.ldc.upenn.edu/Catalog/readme_files/timit.readme.html 

101. Liu, Z., Gibbon, D., Zavesky, E., Shahraray, B., and Haffner, P. AT&T Research at 

TRECVID 2006. In TREC Video Retrieval Online Proceedings, available online (14th of 

August, 2007): http://www-nlpir.nist.gov/projects/tvpubs/tv.pubs.org.html, 2006. 

102. Lu, L., Zhang, H.-J., and Li, S. Z. Content-Based Audio Classification and Segmentation by Using 

Support Vector Machines. In Multimedia Systems 8, Springer-Verlag, 2003, 482–492. 

103. Lucas, B. and Kanade, T. An Iterative Image Registration Technique with an Application to Stereo 

Vision. In Proceedings of the 7th International Joint Conference on Artificial Intelligence, 

Vancouver, Canada, 1981, 674-679. 

104. Luttermann, H., Freisleben, B., Grauer, M., Kamphusmann, T., Kelter, U., Merten, U., 

Rößling, G., Unger, T., and Waldhans, J. Mediana: Eine Workbench zur rechnergestützten Analyse 

von Mediendaten. In Wirtschaftsinformatik, 44, Nr. 1, 2002, 41-51. 

105. MacQueen, J. B. Some Methods for classification and Analysis of Multivariate Observations. 

Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, 

University of California Press, 1967, 281-297. 

106. Manjunath, B. S., Ohm, J.-R., Vasudevan, V., and Yamada, A. Color and Texture Descriptors. In 

IEEE Transactions on Circuits and Systems for Video Technology, Vol. 11, No. 6, June 

2001, 703-715. 

107. Margineatu, D. D. and Dietterich, T. G. Pruning Adaptive Boosting. In Proceedings of the 

International Conference on Machine Learning 1997, Morgan Kaufmann, 1997, 211-218. 

108. Markkula, M. and Sormunen, E. Video Needs at the Different Stages of Television Program Making 

Process. In Proceedings of the 1st International Conference on Interaction of Context, 

Copenhagen, Denmark, ACM Press, 2006, 111-118. 



250 Annex C. References  

 

109. Martinez, J. M. MPEG–7 Overview. Technical Report N4980, ISO/IEC JTC1/SC29/WG11, 

Klagenfurt, AT, 2002. 

110. Mathiak, K. and Weber, R. Towards Brain Correlates of Natural Behavior: fMRI During Violent 

Video Games. Human Brain Mapping, Vol. 27, 2006, 957-962. 

111. MPEG-1: ISO/IEC Draft International Standard (DIS) 11172: Information technology - Coding of 

moving pictures and associated audio for digital storage media up to about 1,5 Mbit/s (MPEG). 

International Organization for Standardization, Geneva, 1992. 

112. MPEG-2: ISO/IEC 13818: Information technology - Generic coding of moving pictures and associated 

audio information. International Organization for Standardization, 1993. 

113. MPEG-4: ISO/IEC 14496: Information technology - Coding of audio-visual objects. International 

Organization for Standardization, 1999. 

114. MPEG-7: ISO/IEC 15938: Information Technology - Multimedia Content Description Interface Part 2: 

Description Definition Language. International Organization for Standardization, 2002. 

115. Mühling, M., Ewerth, R., M., Stadelmann, T., Sih, B., Zöfel, C., and Freisleben, B. University of 

Marburg at TRECVID 2007: Shot Boundary Detection and High-Level Feature Extraction. In Online 

Proceedings of TRECVID Conference Series 2007: http://www-

nlpir.nist.gov/projects/tvpubs/tv.pubs.org.html, 2007. 

116. Mühling, M., Ewerth, R., Stadelmann, T., Freisleben, B., Weber, R., Mathiak, K. Semantic 

Video Analysis for Psychological Research on Violence in Computer Games. In Proceedings of ACM 

International Conference on Image and Video Retrieval, Amsterdam, ACM Press, 2007, 611-

618.  

117. Naphade, M. R. and Smith, J. R. On the Detection of Semantic Concepts at TRECVID. In 

Proceedings of the ACM Conference on Multimedia, 2004, New York, ACM Press, 2004, 

660-667. 

118. Nelder, J.A. and Mead, R. A Simplex Method for Funtion Minimization. In Computer Journal, 7, 

1965, 308-313. 



 Annex C. References 251 

 

119. Niemann, H. Klassifikation von Mustern. Lehrstuhl für Mustererkennung, Universität Erlangen-

Nürnberg, 2nd edition, http://www5.informatik.uni-

erlangen.de/Personen/niemann/klassifikation-von-mustern/m00links.html, 2003. 

120. Nigam, K., Mccallum, A. K., Thrun, S. and Mitchell, T. Text Classification from Labeled and 

Unlabeled Documents Using EM. In Machine Learning, Springer Netherlands, Volume 39, No. 

2-3, 2000, 103-134. 

121. Nigam, K. and Ghani, R. Analyzing the Effectiveness and Applicability of Co-training. In 

Proceedings of the 9th International Conference on Information and Knowledge 

Management, McLean, Virgina, USA, 2000, 86-93. 

122. Ngo, C.-W., Pong, T.-C., and Zhang, H.-J. Motion Analysis and Segmentation Through Spatio-

Temporal Slices Processing. In IEEE Transactions on Image Processing, Vol. 12, No. 3, 2003, 

341-355. 

123. Oudot, L., Prevost, L. Moises, A., and Milgram, M. Self-Supervised Writer Adaption using 

Perceptive Concepts: Application to On-Line Text Recognition. In Proc. of the 17th International 

Conf. on Pattern Recognition, Vol. II, Cambridge, UK, 2004, 598-601. 

124. Over, P., Ianeva, T., Kraaijz, W., and Smeaton, Alan F. TRECVID 2005 - An Overview. In 

TREC Video Retrieval Online Proceedings (14th of June, 2006): http://www-

nlpir.nist.gov/projects/tvpubs/tv.pubs.org.html, 2005. 

125. Park, J.-I., Inoue, S., and Iwadate, Y. Estimating Camera Parameters from Motion Vectors of Digital 

Video. In Proc. of IEEE Second Workshop on Multimedia Signal Processing, Redondo 

Beach, USA, 1998, 105-110. 

126. Petersohn, C. Wipe Shot Boundary Determination. In Proceedings of IS&T/SPIE Electronic 

Imaging 2005, Storage and Retrieval Methods and Applications for Multimedia, San Jose, 

CA, USA, 2005, 337-346. 

127. Philips, P. J., Moon, H., Rizvi, S. A., and Rauss, P. J. The FERET Evaluation Methodology for 

Face-Recognition Algorithms. In IEEE Transactions on Pattern Analysis and Machine 

Intelligence, Vol. 22, No. 10, 2000, 1090-1104. 

128. Platt, J. Fast Training of Support Vector Machines using Sequential Minimal Optimization. Advances in 

Kernel Methods - Support Vector Learning, MIT Press, 1999, 185-208. 



252 Annex C. References  

 

129. Raytchev, B. and Murase, H. Unsupervised Face Recognition from Image Sequences. In Proc. of 

IEEE International Conference on Image Processing, Vol. 1, Thessaloniki, Greece, 2001, 

1042-1045. 

130. Raytchev, B. and Murase, H. Unsupervised Face Recognition from Image Sequences Based on Clustering 

with Attraction and Repulsion. In Proceedings of International Conference on Computer Vision 

and Pattern Recognition (CVPR) 2001, Volume II, Hawaii, USA, 2001, 25-30. 

131. Raytchev, B. and Murase, H. VQ-Faces-Unsupervised Face Recognition from Image Sequences. In 

Proc. of IEEE International Conference on Image Processing, Vol. 1, Rochester, New York, 

USA, Greece, 2002, 809-812. 

132. Rosenberg, C., Hebert, M., and Schneiderman, H. Semi-Supervised Self-Training of Object Detection 

Methods. In Proceedings of the 7th IEEE Workshop on Applications for Computer Vision, 

Vol. 1, Breckenridge, Co, USA, 29-36. 

133. Sadlier, D. and O’Connor, N. Event Detection in Field Sports Video using Audio-visual Features and 

a Support Vector Machine. In IEEE Transactions on Circuits and Systems for Video 

Technology, Vol. 15 (10), 2005, 1225-1233. 

134. Satoh, S. Towards Actor/Actress Identification in Drama Videos. In Proceedings of the Seventh 

ACM International Conference on Multimedia (ACM MM 1999), Orlando, Florida, USA, 

1999, 75 - 78. 

135. Schneiderman, H., and Kanade, T. Object Detection Using the Statistics of Parts. In International 

Journal of Computer Vision, Springer-Verlag, Volume 56 (3), February 2004, 151-177. 

136. Schober, J.-P., Hermes, T., and Herzog, O. Picturefinder: Description Logics for Semantic Image 

Retrieval. In Proceedings of IEEE International Conference on Multimedia and Expo, 2005. 

ICME 2005, Amsterdam, 2005, 1571–1574. 

137. Seeger, M. A Taxonomy for Semi-Supervised Learning Methods. In Chapelle, Olivier, Schölkopf, 

Benhard, and Zien, Alexander (eds.). Semi-Supervised Learning. MIT Press, 2006, 17-32. 

138. Seeman, E., Fritz, M., and Schiele, B. Towards Robust Pedestrian Detection in Crowded Image 

Sequences. In Proc. of International Conference on Computer Vision and Pattern Recognition, 

Minneapolis, 2007, 1-8.  



 Annex C. References 253 

 

139. Shen, K., and Delp, E. J. A Fast Algorithm for Video Parsing Using MPEG Compressed Sequences. 

In Proc. of IEEE International Conf. on Image Processing 1995, Washington, DC (1995) 

252-255. 

140. Smeaton, A. and Over, P. TRECVID 2005: Shot Boundary Detection Task Overview. In Online 

Proceedings of TRECVID Conference Series 2005 (14th of February, 2006): http://www-

nlpir.nist.gov/projects/tvpubs/tv.pubs.org.html, 2005. 

141. Smeaton, A. and Over, P. TRECVID 2006: Shot Boundary Detection Task Overview. In Online 

Proceedings of TRECVID Conference Series 2006 (19th of February, 2008): http://www-

nlpir.nist.gov/projects/tvpubs/tv.pubs.org.html, 2006. 

142. Smith, J. R., Naphade, M. R., and Natsev, A. Multimedia Semantic Indexing Using Model Vectors. 

In Proceedings of the IEEE International Conference on Multimedia & Expo 2003, Volume 

2, Baltimore, Maryland, USA, 2003, 445-448. 

143. Smith, J. R., Naphade, M. R., Natsev, A, and Tesic, J. Multimedia Research Challenges for Industry. 

In Proceedings of the International Conference on Image and Video Retrieval, Lecture 

Notes on Computer Science Vol. 3568, Springer-Verlag, Singapore, 2005, 28-37. 

144. Smith, J. R., Srinivasan, S., Amir, A., Basu, S., Iyengary, G., Lin, C.-Y., Naphade, M., 

Ponceleon, D., and Tseng, B. Integrating Features, Models, and Semantics for TREC Video Retrieval. 

In NIST Special Publication 500-250: The Tenth Text REtrieval Conference (TREC 2001),  

(24th of August, 2006): http://trec.nist.gov//pubs/trec10/index_track.html#video, 2006. 

145. Snoek, C. Camera Distance Classification: Indexing Video Shots based on Visual Features. Master of 

Science Thesis, University of Amsterdam, October 2000. 

146. Snoek, C. G. M. and Worring, M. Multimodal Video Indexing: A Review of the State-of-the-art. In 

Multimedia Tools and Applications, 25(1). Springer-Verlag, 2005, 5-35. 

147. Snoek, C. G. M., Worring, M., Geusebroek, J.-M., Koelma, D. C., Seinstra, F. J., and 

Smeulders, A. W. M. The Semantic Pathfinder: Using an Authoring Metaphor for Generic Multimedia 

Indexing. In IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 28 (10), 

2006, 1678-1689.  



254 Annex C. References  

 

148. Snoek, C. G. M., Worring, M., van Gemert, J. C., Geusebroek, J.-M., and Smeulders, A. W.M. 

The Challenge Problem for Automated Detection of 101 Semantic Concepts in Multimedia. In 

Proceedings of ACM Multimedia, Santa Barbara, USA, ACM Press, 2006, 421-430. 

149. Snoek, C. G. M., Worring, M., Koelma, D. C. and Smeulders, A. W. M. A Learned Lexicon-

Driven Paradigm for Interactive Video Retrieval. In IEEE Transactions on Multimedia, Vol. 9, 

Issue 2, Feb. 2007, 280-292. 

150. Sochman, J. and Malas, J. AdaBoost with Totally Corrective Updates for Fast Face Detection. In 

Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture 

Recognition, 2004, Seoul, Korea, 445-450. 

151. Srinivasan, M. V., Venkatesh, S., and Hosie, R. Qualitative Estimation of Camera Motion 

Parameters from Video Sequences. In Pattern Recognition, Vol. 30, No. 4, Elsevier Science Ltd., 

1997, 593-606. 

152. Stadelmann, T. and Freisleben, B. Fast and Robust Speaker Clustering Using the Earth Mover’s 

Distance and MIXMAX Models. In Proceedings of the 31st International Conference on 

Acoustics, Speech, and Signal Processing (ICASSP), Toulouse, France , Volume I, IEEE 

Press, 2006, 989-992. 

153. Tahaghoghi, S. M. M., Thom, J. A., Williams, H. E., and Volkmer, T. Video Cut Detection Using 

Frame Windows. In Proc. of the Twenty-Eighth Australasian Computer Science Conf., Vol. 38, 

Newcastle, Australia, 2005, 193-199. 

154. Tan, Y.-P. Saur, D. D. Kulkarni, S. R., and Ramadge, P. J. Rapid Estimation of Camera Motion 

from Compressed Video ith Application to Video annotation. In IEEE Transactions on Circuits and 

Systems for Video Technology, Vol. 10, No. 1, 2000, 133-146. 

155. Taskiran, C., Chen, J.-Y., Albiol, A., Bouman, C. A, and Delp, E. J. A Compressed Video 

Database Structured for Active Browsing and Search. In Proc. of IEEE International Conference on 

Image Processing, Vol. 3, Chicago, 1998, 133-137. 

156. Taskiran, C., Chen, J.-Y., Albiol, A., Torres, L., Bouman, C. A, and Delp, E. J. ViBE: A 

Compressed Video Database Structured for Active Browsing and Search. In IEEE Transactions on 

Multimedia, Vol. 6, Issue 1, Feb. 2004, 103-118. 



 Annex C. References 255 

 

157. Tekalp, A. M. What can Video Analysis Do for MPEG Standards? In Proc. of 8th Int’l Workshop 

of Visual Content Processing and Representation, LNCS 2849, Madrid, Spain, 2003, 3-5. 

158. Terrillon, J.-C., Shirazi, M. N., Fukamachi, H., and  Akamatsu, S. Comparative Performance of 

Different Skin Chrominance Models and Chrominance Spaces for the Automatic Detection of Human Faces 

in Color Images. In Proceedings of the International Conference on Face and Gesture 

Recognition, Grenoble, France, 2000, 54-61. 

159. Tong, X., Liu Q., Duan, L., Lu, H., Xu C., and Tian, Q. A Unified Framework for Semantic Shot 

Representation of Sports Video. In Proceedings of the 7th ACM SIGMM International 

Workshop on Multimedia Information Retrieval, Hilton, Singapore, 2005, 127-134. 

160. Torres, L., Lorente, L., and Vilà, J. Face Recognition Using Self-Eigenfaces. In Proceedings of the 

International Symposium on Image/Video Communications Over Fixed and Mobile 

Networks, Rabat, Marokko, 2000, 44-47. 

161. TRECVID: TREC Video Retrieval Evaluation. At (6th of September, 2007): http://www-

nlpir.nist.gov/projects/t01v. 

162. TRECVID: Evaluation software for shot boundary detection task. At (August 29th, 2006): 

http://www-nlpir.nist.gov/projects/trecvid/trecvid.tools/shot.boundary.evaluation/. 

163. Truong, B. T., Venkatesh S., and Chitra D. Scene Extraction in Motion Pictures. In IEEE 

Transactions on Circuits and Systems for Video Technology: Special issue on Multimedia 

Content Description. Vol. 15, No. 1, 2003, 5-15.  

164. Truong, B. T., Dorai, C., and Venkatesh, S. New Enhancements to Cut, Fade, and Dissolve Detection 

Processes in Video Segmentation. In Proceedings of ACM Multimedia 2000, 219-227. 

165. van Gemert, J., Geusebroek, J., Veenman, C., Snoek, C., and Smeulders, A. Robust Scene 

Categorization by Learning Image Statistics in Context. In Proceedings of Int'l Workshop on 

Semantic Learning Applications in Multimedia, in conjunction with CVPR'06, New York, 

USA, 2006, 105-112. 

166. Vapnik, V. Transductive Inference and Semi-Supervised Learning. In (Chapelle, O., Schölkopf, B., 

and Zien, A. (eds.)): Semi-Supervised Learning. MIT Press, 2006, 453-472. 



256 Annex C. References  

 

167. Viola, P. and Jones, M. Robust Real-Time Face Detection. In International Journal of Computer 

Vision, Volume 57 (2), (2004), Kluwer Academic Publishers, 2004, 137–154. 

168. Vogel, J. and Schiele, B. On Performance Characterization and Optimization for Image Retrieval. In 

Proceedings of European Conference on Computer Vision 2002, Vol. 4, Lecture Notes on 

Computer Science (LNCS) 2353, Springer-Verlag, Copenhagen, Denmark, 2002, 49-63. 

169. Vogel, J. and Schiele, B. Performance Evaluation and Optimization for Content-Based Image Retrieval. 

In Pattern Recognition 39 (2006), Elsevier Ltd., 2006, 897-909. 

170. Volkmer, T. and Tahaghoghi, S. M. M. RMIT University Video Shot Boundary Detection at 

TRECVID 2005. In TREC Video Retrieval Evaluation Online Proceedings, 2004, at (August 

29th, 2006): http://www-nlpir.nist.gov/projects/tvpubs/tv.pubs.org.html  

171. Watanabe, S. Pattern Recognition: Human and Mechanical. New York, Wiley, 1985. 

172. Weber, R., Ritterfeld, U., and Mathiak, K. Does Playing Violent Video Games Induce Aggression? 

Empirical Evidence of a Functional Magnetic Resonance Imaging Study. Media Psychology, Vol. 8, 

2006, 39-60. 

173. Westerman, U. and Klas, W. An Analysis of XML Database Solutions for the Management of 

MPEG-7 Media Descriptors. In ACM Computing Surveys, Vol. 35, No. 4, ACM Press, 2003, 

331-373. 

174. Wiskott, L., Fellous, J.-M., Krüger, N., and von der Malsburg, C. Face Recognition by Elastic 

Graph Bunch Matching. In IEEE Transactions on Pattern Analysis and Machine, Volume 19 ,  

Issue 7  (1997), IEEE Press, 1997, 775-779. 

175. Witten, Ian H. and Frank, Eibe. Data Mining - Practical Machine Learning Tools and Techniques. 

Morgan Kaufmann Publishers, Elsevier Inc., San Francisco, 2005. 

176. Wolpert, D.H. Stacked Generalization. Neural Networks, Pergamon Press Vol. 5, 1992, 241-

259. 

177. Wu, X. Incorporating Large Unlabeled Data to Enhance EM Classification. In Journal of Intelligent 

Information Systems, 26, Springer-Verlag, 2006, 211-226. 



 Annex C. References 257 

 

178. Wu, W. Chen, D. and Yang, J. Integrating Co-Training and Recognition for Text Detection. In Proc. 

of IEEE International Conf. on Multimedia and Expo 2005, Amsterdam, Netherlands, 2005, 

1166-1169. 

179. Wu, Y. and Huang, T. S. Self-Supervised Learning for Visual Tracking and Recognition of Human 

Hand. In Proc. of the 17th National Conference on Artificial Intelligence, Austin, USA, 2000, 

243-248. 

180. Wu, J., Ding, D., Hua, X.-S., and Zhang, B. Tracking Concept Drifting with an Online-Optimized 

Incremental Learning Framework. In Proc. of the 7th ACM Int'l Workshop on Multimedia 

Information Retrieval, Singapore, 2005, 33-40. 

181. Xiao, R., Li, M.-J., Zhang, H.-J. Robust Multipose Face Detection in Images. In IEEE Transactions 

on Circuits and Systems for Video Technology, Vol. 14, No. 1, (2004), IEEE Press, 2004, 31-

41. 

182. Xu, H. and Chua, T. Fusion of AV Features and External Information Sources for Event Detection in 

Team Sports Video. In ACM Transactions on Multimedia Computing, Communications, and 

Applications, Vol. 2 (1), 2006, 44-67. 

183. Yan, R. and Hauptmann, A. G. Co-Retrieval: A Boosted Reranking Approach for Video Retrieval. In 

Proc. of the Int’l Conf. on Image and Video Retrieval, Dublin, Ireland, 2004, 60-69. 

184. Yan, R. and Naphade, M. Co-Training Non-Robust Classifiers for Video Semantic Concept Detection. 

In Proceedings of the IEEE International Conference on Image Processing 2005, Vol. 1, 

Singapore, 1205-1208. 

185. Yan, R. and Naphade, M. Semi-Supervised Cross Feature Learning for Semantic Concept Detection in 

Videos. In Proceedings of the IEEE International Conference on Computer Vision and 

Pattern Recognition, 2005, Vol. 1, San Diego, CA, USA, 657-663. 

186. Yang, M-H., Roth, D., and Ahuja. A SNoW-based Face Detector. In Advances in Neural 

Information Processing Systems 12, 1999, 53, 855-861. 

187. Yang, M.-H., Kriegman, D. J., and Ahuja, N. Detecting Faces in Images: A Survey. In IEEE 

Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 1 (2002), ÍEEE 

Press, 2002, 34-58. 



258 Annex C. References  

 

188. Yeo, B. and Liu, B. On the extraction of DC sequence from MPEG compressed video. In Proceedings 

of the IEEE International Conference on Image Processing, Volume 2, Washington, DC, 

1995, 2260-2263. 

189. Yeo, B. L. and Liu, B. Rapid Scene Analysis on Compressed Video. In IEEE Transactions on 

Circuits and Systems for Video Technology, Vol. 5, No. 6, 1995, 533-544. 

190. Yoshitaka, A. and Ichikawa, T. A survey on content-based retrieval for multimedia databases. In IEEE 

Transactions on Knowledge and Data Engineering, Vol. 11, No. 1, 1999, 81-93. 

191. Yuan, J., Li, J., Lin, F., and Zhang, B. A. Unified Shot Detection Framework Based on Graph 

Partition Model. In Proceedings of the ACM Conference on Multimedia, Singapore, 2005, 539-

542. 

192. Yuan, J., Wang, H., Xiao, L., Ding, D., Zuo, Y., Tong, Z., Liu, X., Xu, S., Zheng, W., Li, X., 

Si, Z., Li, X., Lin, F., and Zhang, B. Tsinghua University at TRECVID 2005. In Online 

Proceedings of TRECVID Conference Series 2005: http://www-

nlpir.nist.gov/projects/tvpubs/tv.pubs.org.html 

193. Yuan, J., Zhang, B., and Lin, F. Graph Partition Model for Robust Temporal Data Segmentation. In 

Lecture Notes on Artificial Intelligence, Vol. 3518: Proc. of the Nineth Pacific-Asia 

Conference on Knowledge Discovery and Data Mining, Hanoi, Vietnam, Springer-Verlag, 

2005, 758-763. 

194. Yuan, J., Wang, H., Xiao, L., Zheng, W., Li, J., Lin, F., and Zhang, B. A Formal Study of Shot 

Boundary Detection. In IEEE Transaction on Circuits and Systems for Video Technology, Vol. 

17, No. 2, 2007, 168-186.  

195. Zhang, H., Kankanhalli, A., and Smoliar, S. W. Automatic partitioning of full motion video. In 

Multimedia Systems, Springer, 1993, 10-28. 

196. Zhao, W., Chellappa, R., Phillips, P. J., and Rosenfeld, A. Face Recognition: A literature survey. In 

ACM Computing Surveys, Volume 35, Issue 4 (2003), ACM Press, 2003, 399-458.  

197. Zheng, W., Yuan, J., Wang, H., Lin, F., and Zhang, B. A Novel Shot Boundary Detection 

Framework. In Proceedings of the SPIE Volume 5960 “Visual Communications and Image 

Processing”, 2005, 410-420. 



 

 

ANNEX D. LEBENSLAUF (CV) 

 

 

 

1 PERSÖNLICHE DATEN  

 

Name:       Ralph Ewerth 

Geburtsdatum:    29.07.1972 

Geburtsort:     Hanau 

Familienstand:    ledig 

Staatsangehörigkeit: Deutsch 

 

 

2 SCHULBILDUNG 

 

08/1979 - 07/1983  Grundschule Bruchköbel-Roßdorf 

08/1983 - 07/1989  Heinrich-Böll-Schule, Gesamtschule, Bruchköbel 

08/1989 - 07/1992  Georg-Christoph-Lichtenberg-Oberstufen-Gymnasium, Bruchköbel 

           Abschluss: Abitur 

 

 

3 STUDIUM 

 

10/1993 - 09/1998: Johann Wolfgang Goethe-Universität Frankfurt/Main 

Diplom-Informatik 

Nebenfach Psychologie, Schwerpunkt: Pädagogische Psychologie 

Vordiplom 

10/1998 - 03/2002: Philipps-Universität Marburg 

           Diplom-Informatik, Schwerpunkt: Software Engineering 

           Nebenfach Psychologie 

           Abschluss: Diplom-Informatiker („sehr gut“) 

 

 

 



260 Annex D. Lebenslauf  

 

 

4 BERUFSERFAHRUNGEN 

 

08/1992 - 12/1992  Pedro-Jung-Schule, Hanau 

           Sonderschule für Lernbehinderte, Abteilung für Körperbehinderte 

           Zivildienst 

12/1992 - 02/1993  Deutsche Post 

           Aushilfstätigkeit als Briefzusteller 

03/1993 - 09/2002  Firma Astech GmbH und Co. KG, Wöllstadt 

           Softwareentwickler 

10/2002 – 09/2005  Sonderforschungsbereich „Medienumbrüche“ 

Universität Siegen 

Wissenschaftlicher Mitarbeiter  

10/2005 -       SFB „Medienumbrüche“ 

Philipps-Universität Marburg 

Wissenschaftlicher Mitarbeiter 

 

 

  


