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Summary 
 

In the first part of my Ph.D. project, I have studied the bacterial community shift in the 

oxic zone of a flooded, unplanted paddy soil oxygen gradient by using cultivation 

approach. The starting hypothesis was that the bacterial community succession 

corresponds to changes in the phylogenetic identity, growth response upon nutrient 

availability, and rRNA operon (rrn) copy number of culturable populations. This 

hypothesis was tested by comparing the bacterial fraction cultivable from the oxic zone of 

flooded, unplanted rice paddy soil microcosms after 1 day (early succession) and 70 days 

(late succession) incubation periods. The proportion of bacteria that were cultivable on 

solid media corresponded for early and late succession to 37-40% and 31-35% of total 

DAPI cell counts, which were 7.40(±0.36) × 108 and 5.54(±0.28) × 108 cells per gram of 

dry soil, respectively. Colony-forming curve analysis revealed a significant delay in the 

growth response of late successional bacteria compared to those from early succession. A 

total of 59 early and 66 late successional isolates were grouped into 19 and 30 species-

level clusters (SLC), respectively. Except Bacillus-like spp., isolates from early succession 

always belonged to different SLC than those from late succession. Beta- and 

Gammaproteobacteria were most prevalent in early succession, while Alphaproteobacteria 

and Actinobacteria dominated late succession. Except two alphaproteobacterial SLC, 

isolates of 16 early successional SLC formed visible colonies within 1 (11 SLC) or 2 days 

(3 SLC), and exhibited an average rrn copy number >5. By contrast, isolates of 25 late 

successional SLC formed visible colonies only after 2 days (4 SLC), but mostly after 3 to 

15 days (21 SLC) of incubation, and exhibited an average rrn copy number <2. Regardless 

of isolation from early (3 SLC) or late (5 SLC) succession, Bacillus-like isolates always 

showed a colony-forming time of 2 days and exhibited 9-11 rrn copies. Overall, 

phylogenetic identity, growth response time and rrn copy number were good indicators for 

successional changes in bacterial life strategy with the exception of Bacillus-like spp., 

presumably owing to their ability to form endospores.  

 

In the second part of my Ph.D. project, I have studied the bacterial community shift in the 

flooded, unplanted paddy soil oxygen gradient by mRNA profiling. Initially, a protocol for 

the extraction of mRNA from the soil was developed which was then used for the direct 
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retrieval of mRNA transcript pools in order to study spatial and temporal changes in 

bacterial community structure and function in a paddy soil oxygen gradient. Following RT-

PCR and generation of cDNA clone libraries, 417 clones were randomly selected for 

analysis. The vast majority of clones were derived from bacterial mRNA (88%). Taking 

into consideration only E-values more significant than e-10 in blastx analyses, early 

community development was dominated by transcripts of Gammaproteobacteria in the 

oxic zone, while activity of a phylogenetically highly diverse community was observed in 

the anoxic zone. Gene expression of mature communities was dominated by transcripts of 

Alphaproteobacteria in the oxic zone and Deltaproteobacteria in the anoxic zone. Overall, 

active genes were functionally assigned to metabolism (136 transcripts), information 

storage and processing (21), and cellular processes (43). A large number of transcripts 

were either conserved hypothetical (55) or predicted novel (114). Some of the transcripts 

could be linked to environmentally important processes such as denitrification (nosZ), 

propionate catabolism (prpD), and nitrate uptake (nirB). In conclusion, our random 

analysis of environmental transcripts provided a first insight into structural and functional 

changes during bacterial community succession in a paddy soil oxygen gradient. 
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1. Introduction 

 
Soil is a structured, diverse, and discontinuous system generally poor in nutrients and 

energy sources, with microorganisms living in discrete microhabitats (Stotzky, 1997). The 

chemical, physical, and biological characteristics of these microhabitats change with time, 

resulting in successional shifts in microbial community composition. Therefore, an 

accurate estimation of bacterial abundance, biomass, and community structure in these 

habitats helps in assessing the roles of bacteria in food webs and biogeochemical cycles, as 

well as in understanding their population dynamics in nature.  

 

Due to the progress in the molecular techniques, the study of microbial diversity and 

community structure in any environment is currently possible. The most common 

techniques that are used for examining microbial communities include direct counting 

(Bloem, 1995, Weinbauer et al., 1998), fluorescent in situ hybridization (FISH) 

(Christensen et al., 1999), 16S rRNA and 16S rRNA gene sequence analysis, construction 

and analysis of gene clone libraries, amplified rDNA restriction analysis (ARDRA) (Gich 

et al., 2000), terminal restriction fragment length polymorphism (T-RFLP) analysis (Horz 

et al., 2000), denaturing gradient gel electrophoresis (DGGE) (Heuer et al., 2001), and 

phospholipid fatty acid  (PLFA) analysis (Tunlid and White, 1992; Bossio and Scow, 1998; 

Zelles, 1999; Pankhurst et al., 2001). Although all of these techniques allow us to gain an 

insight into native microbial communities present in the environmental samples, they are 

unable to tell us about the functional status comprising the nutrient uptake, energy flow, 

degradation of pollutants, diseases of the microbial communities.  

 

One of the possibilities to overcome these problems is to use the traditional cultivation 

approach to study microbial communities. However, most of the bacteria are uncultivable 

because they have either selective nutritional requirements or are in a symbiotic 

relationship with their plant or animal host (Garland et al., 2001). Similarly, fast growing 

bacteria may exclude the slow growers on a solid media by depleting nutrients and by 

producing antibiotics (Balestra and Misaghi, 1997). There have been various attempts to 

increase the cultivation efficiency, including a careful use of growth substrate and choice 

of proper conditions to simulate the in situ condition (Sørheim et al., 1989; Johnsen and 

Nielsen, 1999). Another important point appears to be the use of low concentrations of 
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growth-supporting nutrients (Mitsui et al., 1997; Liesack et al., 1997). Janssen et al. (2002) 

and Davis et al. (2005) reported that a minor change in cultivation strategy (using a 

polymeric growth substrate, longer incubation times, and decreasing inoculum size) could 

result in higher cultivation recovery and isolation of globally distributed but previously 

uncultured phylogenetically novel soil bacteria. The use of a set of different media, as 

opposed to one or two media, increased the efficiency of plate counting method for 

estimating bacterial diversity (Balestra and Misaghi, 1997).  

 

The following part of the introduction is a detailed literature review on bacterial 

community structure present in soil and their phylogenetic classification and methods to 

study microbial community structure.  

 

1.1. Bacterial community structure in soil and their phylogenetic classification 

 

Soil has a complex nutritional availability and is the natural habitat for highly diverse 

microbial flora. Torsvik et al. (1990) found that about 4,000 differently sized microbial 

genomes are present per gram of soil, representing roughly 13,000 different species. 

Obviously, these different types of bacteria are not present in equal number; instead, they 

may range from 1 cell to perhaps 108 cells g-1 of soil (Liesack et al., 1997). The soil 

microbial community consists of members of all three major branches of life: a) Bacteria, 

b) Archaea, and c) Eucarya. Microbial biomass is large in a temperate grassland soil; the 

bacterial and fungal biomass amounted to 1-2 and 2-5 t ha-1, respectively (Killham, 1994). 

Bacteria and archaea are dominant in waterlogged soils while fungi are more prevalent in 

aerobic soils (Shields et al., 1973; Alexander, 1977).  

 

Benson et al. (2002) published a graphical representation of microbial diversity, which 

shows entries of 16S rRNA genes (obtained from both cultured isolates and environmental 

samples by cultivation-independent approaches) versus year of publication in GenBank 

(Fig. 1.1). The graph clearly shows that environmental gene clone sequences started to 

appear in large numbers in 1996, and by this time, the technology for recovering these 

sequences had become routine. Because seawater is easier to work with than soils, genes 

from marine systems dominated the entries in early years. However, by 2001 entries from 

soils are highest, probably because of their agricultural significance and because soils are 
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far more diverse (Rapp and Giovannoni, 2003). In 2002 alone, roughly 9500 

environmental 16S rRNA gene clone sequences were deposited in GenBank (Fig. 1.1). 

 

A 16S rRNA tree allows us to show the phylogenetic relationships within the domain 

Bacteria. The 12 original phyla, shown as black wedges (Fig. 1.2) were recognized in 

1987; note that some of the phylogenetic nomenclature has more recently been changed. 

For example, the gram-positive bacteria are now recognized as two separate phyla, the 

Firmicutes (low GC) and Actinobacteria (high GC). Similarly, the Proteobacteria have 

been elevated to the rank of phylum and the subclasses α to ε have been elevated to the 

rank of classes, corresponding to the names Alpha-, Beta-, Gamma-, Delta-, and Epsilon-

proteobacteria (Garrity, 2001). Proteobacteria are the classical gram-negative bacteria 

and, based on both cultivation and cultivation-independent approaches, are generally 

recognized as one of the predominant microbial groups on the planet (Zwart et al. 2002). 

In addition, the genera Cytophaga, Bacteroides, and Flavobacterium form a major lineage 

(Paster et al. 1985), now known as the Bacteroidetes phylum (Garrity, 2001).  

 

Moreover, 14 phyla with cultivated representatives, shown as white wedges (Fig. 1.2), 

have been identified since 1987 (Hugenholtz, 2002; Hugenholtz et al., 1998; Pace, 1997) 

(Fig. 1.2). These groups include several phyla of predominantly thermophilic 

microorganisms such as Aquificae, Thermodesulfobacteria, Dictyoglomi, 

Coprothermobacteria, Caldithrix, and Desulfurobacteria. The Verrucomicrobia has been 

recognized as a separate phylum since 1995 (Hedlund et al., 1997; Ward-Rainey et al., 

1995), but until now, only a few cultivated representatives have been taxonomically 

described such as Verrucomicrobium vinosum, Prosthecobacter fusiformis, P. debontii, P. 

vanneervenii, P. dejongeii, and Opitutus terrae. Ludwig et al. (1997) described the phylum 

Acidobacteria whose members are ubiquitously distributed and abundant in nature. Finally, 

26 candidate phyla that are defined only by environmental sequences are shown as gray 

wedges (Fig. 1.2). 
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Fig. 1.1. Graph depicting the number of 16S rRNA gene sequences published in Gene 

Bank since 1993 (Benson et al., 2002). Above: total number of published 16S RNA gene 

sequences from cultivated Bacteria and Archaea (n=14,434) versus sequences derived 

from cultivation-independent studies (n=29,505) as a function of year. Below: total number 

of published environmental gene clone sequences obtained from sediment (n=2435), soil 

(n=6037), freshwater (n=3951), and seawater (n=6104) habitats as a function of year. All 

sequences published before 1993 are grouped in the first (<1993) column, whereas the 

“2002” column includes sequences published through November 19, 2002 (Rapp and 

Giovannoni, 2003). 
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Fig. 1.2. Phylogenetic tree illustrating the major lineages (phyla) of the domain Bacteria. 

Wedges shown in black are the 12 original phyla, as described by Woese (1987); in white 

are the 14 phyla with cultivated representatives recognized since 1987; and in gray are the 

26 candidate phyla that are defined only by environmental sequences (Rapp and 

Giovannoni, 2003). 
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1.2. Analysis of bacterial community structure 
 

1.2.1. Cultivation-independent approach  

 

Cultivation-independent approaches for the bacterial community analysis have now 

become increasingly routine because of its simplicity, accuracy, and reliability. Since the 

mid 1980s, the use of 16S rRNA-based techniques such as different fingerprinting 

techniques and cloning and sequencing have promoted the molecular identification of a 

wide variety of yet uncultivated microorganisms and novel isolates from various 

environments. Care is needed in interpreting the composition of microbial communities by 

molecular techniques because the method of extraction can bias the results of all 

fingerprinting techniques. Usually, an efficient extracting solution also solubilizes humic 

molecules, which inhibits the PCR, resulting in the need of extensive purification steps 

(Krsek and Wellington, 1999; Martin-Laurent et al., 2001). Another problem while 

extracting DNA from soil is cell lysis. Many Gram-positive bacteria require harsh lysis 

conditions (Head et al., 1998). However, harsh lysis methods should be avoided because 

they degrade DNA molecules to fragments below 1 kb, and short DNA fragments may lead 

to the generation of chimeric 16S rRNA after amplification (Liesack et al., 1991). A 

summary of different fingerprinting methods that are applied to the microbial community 

analysis of environmental samples is listed below. 

 

Table 1.1. List of fingerprinting methods commonly used for the study of microbial 

community structure. 

 

SN Methods  Environment studied Reference 
1 FISH Soil, drinking water and lotic  

biofilms, oligotrophic lakes, 
marine systems, activated sludge 

Hahn et al., 1992; Kalmbach et al., 1997a, 
1997b; Manz et al., 1993, 1994, 1996, 
1998; Alfreider et al., 1996; Grossart and 
Simon, 1993; Ramsing et al.,1996; 
Ravenschlag et al., 2000 

2 ARDRA Marine systems Dang and Lovell, 2000 
3 PLFA Soil Tunlid and White, 1992; Bossio and Scow, 

1998; Zelles, 1999; Pankhurst et al., 2001 
4 TRFLP Soil Horz et al., 2000 
5 RADP Soil Yang et al., 2000 
6 DGGE/ 

TGGE 
Hydrothermal vents, hot springs, 
activated sludge, soil 

Heuer et al., 2001; Muyzer and Smalla, 
1998; Muyzer et al., 1993 

7 RISA Soil Martin-Laurent et al., 2001 
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1.2.2. Cultivation approach  
 

Microbial cell number can be quantified by counting techniques such as the plate count 

technique or the most probable number technique (Bakken, 1997; Johnsen et al., 2001). 

Plate counts estimate only 1-10% of the overall soil microflora (Olsen and Bakken, 1987; 

Zarda et al., 1997). The low cultivation efficiency is a consequence of the interdependency 

of different organisms on each other (for example, the endosymbiotic bacteria in specific 

worms and mollusks), and the inability to create the environmental conditions during 

cultivation that microorganisms face in the soil environment and require for growth 

(Bakken, 1997; Muyzer and Smalla, 1998; Heuer et al., 2001).  
 

One of the most important factors that affect the culturability is suitable detachment of 

bacterial cells from the soil particles. A clumping of cells consisting of two or more species 

may result in a colony dominated only by the fast-growing species, such that the presence 

of the other species remains unrecognized once a pure culture is obtained (Janssen et al., 

2002). Buesing and Gessner (2002) tested the effect of four detachment procedures 

(vortexing, ultrasonic cleaner, ultrasonic sonicator, and tissue homogenizer) on the release 

of bacteria associated with leaf litter, sediment, and epiphytic biofilms in a natural aquatic 

system. They noticed that ultrasonic cleaner, ultrasonic sonicator, and tissue homogenizer 

increased bacterial counts and biovolumes significantly compared to simple vortexing. In 

the cleaner and sonicator procedures, the longer dispersion time reflected the real size of 

bacterial number and was preferable for accurate estimation of mean bacterial biovolumes 

(Kuwae and Hosokawa, 1999). However, neither the detachment procedure nor the 

treatment time affected the composition of bacterial morphotypes (Buesing and Gessner, 

2002).  
 

The form of cell has also an effect in culturability; for example, small bacterial cells (dwarf 

cells or ultramicrobacteria) are difficult to culture as they rarely form colonies in agar 

plates (Nannipieri et al., 2003). By considering that larger cells are considered to account 

for about 80% of the total bacterial volume in soil, Bakken (1997) hypothesized that the 

culturable bacteria have a more important ecological significance in soil than would appear 

from their small numbers. Since the bulk (non-rhizospheric) soils seem to be an 

oligotrophic habitat, it is likely that a significant portion of the microbial community is 

viable but unculturable, as is found for sediment environments (Novitsky, 1987).  
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Researches have analyzed the changes in the number of specific taxonomic or functional 

groups by plating on agar media, and have precisely assessed the culturable diversity by 

isolating colonies from these media followed by identification using various methods such 

as 16S rRNA gene sequencing (Vandamme et al., 1996). Ishikuri and Hattori (1985) 

observed the gross diversity of culturable microorganisms by plotting the different colonies 

identified on the medium against the incubation time. Similarly, Chin et al. (1999) 

performed most probable number counts for polysaccharolytic and saccharolytic 

fermenting bacteria in the anoxic bulk soil of flooded rice paddy soil. They found up to 

2.5 × 108 cells per g of dry soil in a medium containing xylan, pectin, or a mixture of seven 

mono- and di- saccharides as the growth substrates. This is equivalent to about 50% or 

more of the total microscopic cell count (4.8 × 108 cells g-1). The cultured populations 

belonged to the Verrucomicrobia, Bacteroidetes, Actinobacteria, clostridial cluster XIVa, 

clostridial cluster IX, and Bacillus spp. In addition, Janssen et al. (2002) reported that the 

culturability of bacteria from Australian pasture soil is as high as 14% of the total cell 

counts and many of these isolates represent the first known isolates of globally distributed 

groups of soil bacteria belonging to novel lineages within the phyla Actinobacteria, 

Acidobacteria, Proteobacteria, and Verrucomicrobia.  

 

Chin et al. (1999) and Hengstmann et al. (1999) assessed the correspondence between 

culture methods and direct recovery of environmental 16S rRNA genes and observed that 

the isolates obtained are representative genotypes and phenotypes of predominant bacterial 

groups. These representatives accounted for 5 to 52% of total cells in the anoxic rice paddy 

soil studied. Thus, the authors concluded that a dual approach results in a more objective 

view of the structural and functional composition of a soil bacterial community than either 

cultivation or direct recovery of 16S rRNA gene sequences alone.  

       

      1.2.3. Direct bacterial counting approach 

 

Direct counting by fluorescence microscopy can give 100-1000 times greater number than 

the numbers obtained by plate counting (Johnsen et al., 2001). Strauss et al. (1995) used 

two fluorescent dyes [(5-cyano-2,3-ditolyl tetrazolium chloride (CTC) for actively 

respiring bacterial count and 4’,6-diamidino-2-phenylindole (DAPI) for total bacterial 

counting)] and argued that both dyes can be used together for the same soil sample without 
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affecting counting results. Staining for 8 h with CTC and for 40 min with DAPI resulted in 

maximum numbers of stained cells. The optimal DAPI concentration for staining is 10 mg 

per liter and counts were significantly higher when sodium chloride was used (Strauss et 

al., 1995). Several other stains specific to proteins or nucleic acids have also been used, 

including fluorescein isothiocyanate, acridine orange, and differential fluorescent stain. 

Bloem (1995) improved the direct counting method with a video camera on an 

epifluorescence microscope. However, these procedures do not allow one to count 

microbial cells only as there is a possibility to stain soil particles and dead cells also, 

giving false positive counting. The most widely used dyes for enumerating the bacterial 

cell number; their advantages and drawbacks are listed in table 1.2. 

   

  Table 1.2. List of most widely used dyes for the enumeration of soil bacteria. 

 

S.N. Dye Molecules stained Advantage Disadvantage 

1. DAPI  
(Bloem, 1995) 
(Weinbauer et al.,1998) 
(Janssen et al., 2002) 

DNA Easy to stain Background staining 
is present 

2. Differential fluorescent 
stain  
(Bloem, 1995) 

DNA, RNA, cellulose,  
and polysaccharides 

Europium stains 
DNA and RNA 
(red) while FB 
stains cellulose 
and 
polysaccharides 
(blue) 

- 

3. Dichloro-triazinyl-
amino-fluorescein 
(Bloem, 1995) 

Binds covalently with 
neutral amino acid group 
proteins, especially on 
positively charged cell 
polymers 

Less background 
staining 

- 

4. Acridine orange 
(Scholefield et al., 
1985) 
 

Intercalates between the 
stacked bases of DNA 
and RNA but it also 
binds with other cellular 
constitutes, detritus and 
clay 

Simple staining Non specific binding,  
background staining 

5. Cybergreen II dye 
(Weinbauer et al.,1998) 

DNA Less back ground 
fluorescence 

- 

6. SYTO 9 dye + 
Propidium Iodide 
(Janssen et al., 2002) 
 

  Sample should be 
very clean. If some 
particles are present, 
then high background 
fluorescence is 
present. 
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1.3. Conceptual approaches for studying microbial community structure 

 

1.3.1. The species level concept vs. 16S rRNA gene sequencing 

 

The golden standard in defining new species among prokaryotes is a DNA-DNA 

reassociation value of 70% in hybridization test of the total genomic DNA of two 

organisms. Below this threshold, two strains will be classified as two discrete species 

(Wayne et al., 1987). Later, Stackebrandt and Goebel (1994) compared 16S rRNA 

sequencing and DNA-DNA hybridization to test, if 16S rRNA gene sequence similarity 

could be used to assign new species. They observed that 16S rRNA gene sequence 

similarity value below 97% resulted in less than 70% of DNA-DNA reassociation value 

and thereby different species (Fig. 1.3). Importantly, values above 97% or even 100% 16S 

rRNA sequence similarity may or may not have more than 70% of DNA-DNA 

reassociation value.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.3. Comparison of DNA–DNA reassociation value and percentage of 16S rRNA 

similarity (Roselló-Mora and Amann, 2001) 

 

Species definition is made quasi-official [(American Society of Microbiology) (Vandamme 

et al., 1996; Stackebrandt et al., 2002)] by combining genomic, phylogenetic, and 

phenotypic approaches into a pragmatic and ‘phylophenetic’ (or ‘polyphasic’) taxonomic 
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framework. The species is then defined as a monophyletic and genomically coherent 

cluster of individual organisms that show a high degree of overall similarity with respect to 

many independent characteristics, and is diagnosable by a discriminating phenotypic 

property’ (Roselló-Mora and Amann, 2001). In practice, however, species definition relies 

on the 16S rRNA gene phylogeny (Young, 2001; Dijkshoorn et al., 2000), based on 

different ranges of 16S rRNA gene sequence similarity to known species (Table 1.3). 

 

Table 1.3. List of 16S rRNA gene sequence similarity values that are commonly used for 

bacteria species definition. 

 

1.3.2. Microbial community succession, growth response time, and the r- / K- concept  

 

The use of bacterial populations to study primary succession has several advantages over 

the use of macroorganisms. Torsvik et al. (1990) suggested that the presence of a large 

bacterial diversity in soil might display different patterns of diversity and activity that are 

useful for characterizing successional processes. In addition, sampling is simple as many 

samples can be easily collected, transported, and processed in a relatively short period of 

time. Furthermore, many bacteria may be subjected to analysis from a single sample, 

which in combination with an adequate sampling strategy increases the confidence in 

achieving a representative sample of the real bacterial population (Garland et al., 2001).  

 

Characterizing an organism's metabolic status is an essential feature that assists in defining 

the different stages of primary succession (Pickett, 1976). Garland et al. (2001) showed 

that the ratio of opportunistic cells (those able to grow on a nonselective medium) to total 

cells (detected by microscopic cell counts) is higher in early than in late successional 

environments, indicating a propensity for cellular reproduction (r) over maintenance (K). 

SN Species Genus  Family References 
1 ≥97% - - Stakebrandt and Goebel, 1994 
2 ≥99% <99% and ≥95% <95% Bosshard et al., 2003 
3 ≥99% - - Hall et al., 2003; Kattar et al., 2001; Roth 

et al., 2003; Tortoli, 2003 
4 ≥98% - - Dighe et al., 2004; Turenne et al., 2001 
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This observation reflects the theory of Tilman (1985) who suggested that those organisms 

that are able to reproduce and grow faster would have a competitive advantage over 

slower-growing organisms. In addition to metabolic status, bacterial community is also 

affected by successional stages (Dang and Lovell, 2000; Felske et al., 2000; Pennanen et 

al., 2001). Jackson et al. (2001) studied succession in biofilms revealing that early 

successional habitats supported an unorganized community with low species evenness and 

richness. Conversely, late succession is defined by increased habitat variation and resource 

availability which consequently led to increased bacterial community evenness and 

richness, a pattern also often noted in forefields plant succession (Matthews, 1992).  

 

Alternative models of succession, including gradient-in-time (Pickett, 1976; Whittaker, 

1953) and competitive sorting (Margalef, 1968; Margalef, 1963) predict that early 

successional communities will be dominated by species with broad niche width, rapid 

growth, and high investment in reproduction (i.e., opportunistic organisms). By contrast, 

late successional communities will be dominated by species with narrow niche width, 

slower growth, and low investment in reproduction (i.e., equilibrium organisms).  

 

The terms r-strategist vs. K-strategist (MacAuthur and Wilson, 1967) have been used to 

distinguish opportunistic and equilibrium species (Gadgil and Solbrig, 1972), respectively, 

and have been applied to microbial ecology by Andrews and Harris (1986). K-strategists 

have a more efficient cell metabolism than r-strategists and are able to use recalcitrant 

substrates, such as lignin and cellulose. K-strategists are also thought to be less affected by 

toxins than r-strategists (De Leij et al., 1993). Based on these descriptions, one could 

predict that microbial communities in an early successional stage would contain a higher 

proportion of opportunists (r-strategists), owing to their ability to grow faster on 

nonselective medium (no specialized growth needs). Conversely, an increasing proportion 

of equilibrium (K-strategists) types may be associated with late successional stage, since 

these types direct most energy into maintenance (Sigler and Zeyer, 2002). The fastidious 

nature of the equilibrium type may be a result of specific growth factor requirements, 

specialized use of a narrow range of carbon sources, or susceptibility to high nutrient 

concentrations.  

 

Culturability and colony-forming time on solid media have been used to define 

successional stages of bacterial communities in various soil environments, including wheat 
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roots and soil (De Leij et al., 1993), deglaciated soils (Sigler and Zeyer, 2004), and spoil of 

brown coal colliery substrate (Kristufek et al., 2005). All of these results showed that early 

succession is predominated by fast-growing colonies (that form colonies within 48 h) 

whereas late succession is predominated by slow-growing colonies (that form colonies ≥72 

h) in response to growth substrate. It is generally assumed that multiple copies of rRNA 

operons (rrn) in prokaryotic organisms are needed to achieve high growth rates (Bremer 

and Dennis, 1987). Klappenbach et al. (2000) provided some evidence that a high number 

of rrn copies (in average >5 copies) is more beneficial for soil bacterial isolates to rapidly 

form colonies on a nutritionally complex medium than strains bearing a low number of rrn 

copies (in average <2 copies) (Fig. 1.4). The rrndb (ribosomal RNA operon copy number 

database) web site is directly accessible at http://rrndb.cme.msu.edu/, which contains the 

latest annotated information on rrn copy number among prokaryotes.  

 

1.4. Oxygen gradient system 

 

One of the most significant challenges in microbial ecology is to understand the spatial and 

temporal variation of microbial communities in the environment  (Torsvik et al., 2002). 

The early consumption of oxygen by aerobic bacteria leads to a separation of aerobic and 

anaerobic processes and, as a result, to a spatial shift in the microbial community 

composition (Brune et al., 2000; Liesack et al., 2000) in an aquatic habitat.  

 

The steepness of the oxygen gradient depends on the bioavailable organic matter in the 

surface layer and, as a result, on the biological oxygen demand (Reimers and Smith, 1986; 

Revsbech et al., 1989). Apart from the content of degradable organic matter in the surface 

layer (Reimers and Smith, 1986; Revsbech et al., 1989), the production of methane and its 

diffusion toward the oxic surface layer are known to cause an increase of the biological 

oxygen demand at the oxic-anoxic interface of such environments in which sulfate 

reduction is not a predominant process, e.g., flooded paddy soils, natural wetland soils, and 

freshwater sediments (Gilbert and Frenzel, 1995; Rothfuss et al., 1994; Sweerts et al., 

1991). Similarly, Zehnder and Stumm (1988) stated that due to the low solubility of 

molecular oxygen in water compared to the oxygen demand, all aquatic systems are 

characterized by oxic-anoxic interfaces. Such oxic-anoxic boundaries are defined by 

physical and chemical gradients that develop with time and have a significant impact on 

the growth and structure of the indigenous microbial community. 
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Fig. 1.4. Phylogenetic distribution of bacteria characterized for rrn copy number. Filled 

boxes indicate soil isolates that appeared early, while open boxes indicate isolates that 

appeared late. Isolates from conventional-tilled soils in Michigan (designated by prefix 

"KBS") and rice paddy soils in Japan (designated by prefix "HF" or "HS") are included. 

Values to the right of species' names indicate the number of rrn equivalents per 

chromosome. Major phyla are indicated on the far right with abbreviations as follows: 

C/F/B, Cytophaga/Flexibacter/Bacteroides (Bacteroidetes); CYN, cyanobacteria; SPR, 

spirochetes; TRM, thermopiles (Klappenbach et al., 2000).   
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Noll et al. (2005) studied the spatial and temporal variation in microbial communities in 

flooded, unplanted rice paddy soil microcosms. They observed that within 6 h of flooding, 

oxygen starts to reduce from 200 µM at the floodwater-soil boundary to undetectable 

amounts at a soil depth of approximately 2 mm and below. The oxygen depletion in the 

oxic zone and upper transition zone was less pronounced at 84 days than at 6 h after 

flooding. Although the microelectrode measurements had detected no oxygen at depths 

corresponding to the lower transition zone and anoxic zone, the T-RFLP profiles obtained 

from these two soil depths revealed clear differences. Based on this observation, 2.9 mm 

soil depth was considered as a lower transition zone (Fig. 1.5) (Noll et al., 2005).  

 

Noll et al. (2005) analyzed microbial communities within the paddy soil oxygen gradient 

using T-RFLP fingerprinting method and indicated that the Betaproteobacteria are the 

abundant populations in the oxic zone of early succession whereas members of clostridial 

cluster I are predominant in the anoxic zone. Similarly, Verrucomicrobia, Alphaproteobac- 

teria and Nitrospira (oxic zone), and the Myxococcales (anoxic zone) dominated late 

successional populations.  

 
 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.5. Oxygen depth profiles determined for 6-h-old and 84-d-old flooded microcosms 

(Noll et al., 2005). 
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      1.5. Aim of the project 

 

The main aim of this part of the Ph.D. project was to test the hypothesis that the bacterial 

community succession corresponds to a) changes in the phylogenetic identity, b) growth 

response time upon nutrient availability, and c) rrn copy number. This hypothesis was 

tested by comparing the bacterial fraction cultivable from the oxic zone of flooded, 

unplanted rice paddy soil microcosms incubated either for 1 day or 70 days. Following 

previous results (Noll et al., 2005), the oxic-anoxic interfaces of flooded, unplanted rice 

paddy soil microcosms are colonized by early successional communities after 1 day of 

flooding and proceed into stable late successional communities within 70 days. Colony-

forming curve (CFC) analyses on different solid media were used to monitor the growth 

response time of early and late successional isolates upon nutrient availability. The rrn 

copy number of early and late successional isolates was determined by the Southern blot 

hybridization analysis. 
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2. Methodology 
 

2.1. Materials 
 

2.1.1. Soil sample 

 

Soil was taken from drained paddy fields of the Italian Rice Research Institute in Vercelli, 

Italy. The soil was air-dried and stored at room temperature. The soil characteristics have 

been described previously (Holzapfel-Pschorn et al., 1985). 

 

2.1.2. Instruments  

 

Soil was taken from drained paddy fields of the Italian Rice Research Institute in Vercelli, 

Italy. The soil was air-dried and stored at room temperature. The soil characteristics have 

been described previously (Holzapfel-Pschorn et al., 1985). 

 

Items Manufacturer 

0.2 µm black poly-carbonated membrane filter 

0.45 µm cellulose nitrate membrane filter 

Autoclave HV-25  

Axiophot epifluorescence microscope  

Bead beater dismembrator-S  

Bio-analyzer  

DNA sequencer (ABI 310)  

DNA sequencer (ABI 373)   

Electronic balance 

Gel documentation  

Gel electrophoresis unit  

Heating block  

High speeds centrifuge  

Hot air oven  

Hybridization oven and hybridization bottle 

Incubator  

Whatman, UK 

Whatman, UK 

Hiraya Manufact. Corp. Japan 

Zeiss, Oberkochen, Germany 

Braun Biotech, Germany 

Agilent, England 

Applied Biosystems 

Applied Biosystems 

Mettler AT 261 

Intas 

Bio Rad 

Techna DB-20, England 

Eppendorf 5417R 

Heraeus, Instruments 

Thermo Electronic 

Heraeus, Instruments 
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Laminar air flow cabinet H3244B  

Magnetic stand  

Micro-oven  

Micropipette 

Microtom- Kryostat HM-500  

NanoDrop® ND-1000 UV-Vis spectrophotometer  

Refrigerator (-80 °C and -20 °C) 

Sonicator  

Thermal cycler (model 9600)  

Thermal cycler (model 9800)  

UV cabinet 

UV cross linker  

X-ray film cassette (8×10 cm)  

Heraeus, Instruments 

Ambion  

Sharp, Japan  

Bosch, Kirsch 

Germany 

NanoDrop Technologies, Inc. USA  

Gilson, France 

Transonic TS540, Germany 

Applied Biosystems  

Applied Biosystems  

Plas labs 

UV Stratalinker 1800 

Kodak, Japan 

 

2.1.3. Growth media, chemicals, and reagents  

 

All the growth media and reagents were prepared by using the standard protocol 

(Sambrook et al., 1989). Chemicals that were used to prepare reagents in the laboratory 

were purchased in the bulk from one of the following companies unless otherwise 

specified: BioRad, Munich; Biozym, Hess. Oldendorf; Boehringer Mannheim; New 

England Biolabs, Frankfurt; Fluka, Buchs, Switzerland; Gibco, Eggenstein; Merck, 

Darmstadt; MWG-Biotech, Ebersberg; Metabion, Martinsried; Perkin Elmer Applied 

Biosystems, Weiterstadt; Amersham Pharmacia, Freiburg; Biometra, Göttingen; Qiagen, 

Hilden; Stratagene, Heidelberg; Sigma, Germany. 

Items 

 

Manufacturer/Supplier 

1/4th Ringer solution 

4’6-diamidino-2-phenylindole dihydrochloride  

Benzyl chloride 

Blocking solution 

Chloroform-isoamyl alcohol [24:1 (v/v)] 

Deionized formamide  

Denaturation solution 

 

Sigma, Basel, Switzerland 

 

Roche, Germany 

 

Applera, Darmstadt, Germany 

 



Methodology 

 20  

DEPC-pretreated water 

Depurination solution 

Detection buffer 

EB buffer 

Ethanol  

Hybridization solution 

Maleic acid buffer (10 × stock) 

Neutralization solution 

Nutrient agar 

PB buffer 

PE buffer 

Phenol-based lysis buffer  

Phenol–chloroform–isoamyl alcohol [25:24:1 (v/v/v)] 

Phosphate buffer saline (PBS buffer) pH 7.2 

R2A agar medium  

Soybean casein digest agar 

Sterile water 

TE buffer  

TMC buffer  

TPM buffer 

Transfer solution (20 × SSC) 

Washing buffer I 

Washing buffer II 

Washing buffer III 

Water-saturated phenol 

 

 

 

 

 

 

 

 

BD Diagnostic Systems, USA 

 

Sigma, Germany 

 

Sigma, Germany 

Sigma, Germany 

BD Diagnostic Systems, USA 

BD Diagnostic Systems, USA  

 

Sigma, Germany 

Sigma, Germany 

Sigma, Germany 
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2.1.4. Enzymes and kits  

 

Items 

 

Manufacturers and suppliers 

Access RT- PCR ®system  

AutoSeq™G-50  

Big Dye™ Terminator V1.1/3.1 Cycle 

Sequencing kit  

DIG Wash and Block Buffer Set™ 

DIG-High Prime™ 

DNA Smart Ladder RNA™ 

GoTaq® Flexi DNA Polymerase  

Ladder Genescan-standard Rox-1000 

Lysozyme from chicken egg  

MICROB Express™ Bacterial mRNA 

Enrichment kit  

MspI, PstI, EcoRI, SmaI, PvuII  

Nylon membrane, positively charged  

OPA13  

OPA17  

PCR Clean-up Kit™  

Proteinase K 

QIAamp™ DNA mini kit  

QIAquick™ purification kit  

RNA later®  
RNase-free DNase  

RNAsin®  

RNeasy™ mini Kit  

rRNA standard from Escherichia coli,  

Shine Dalgarno specific primers (SD14)  

TOPO TA cloning® Kit  

Promega, Germany 

GE Health Care Life Science, Germany 

 

Applied Biosystems  

Roche Applied Science, Mannheim, Germany 

Roche Applied Science, Mannheim, Germany 

Perkin Elmer Applied Biosystems 

Promega, Germany 

Eurogentec, Searing, Belgium 

Promega, Germany 

 

Ambion 

Promega, Germany 

Roche Applied Science, Mannheim, Germany 

MWG 

MWG 

Promega, Germany 

Promega, Germany 

Qiagen, Hilden, Germany 

Sigma Aldrich, Deisenhofen, Germany 

Ambion  

Promega, Germany  

Promega, Germany  

Qiagen, Germany 

Roche, Indianapolis, USA 

MWG 
Invitrogen, Germany 

 

 

 



Methodology 

 22  

2.2.Methods 

 

2.2.1. Model system 

 

Immediately before use, the soil was passed through a 2 mm sieve, mixed with deionized 

water (DM) at a ratio of 2:1 (wt/vol) and then filled into microcosms with a diameter of 6.2 

cm and a depth of 10 cm. Three replicate microcosms each were incubated with a 1 cm 

floodwater layer either for 1 day or for 70 days in the dark at 30 °C with constant aeration 

(Fig. 2.1). After incubation, the microcosms were carefully removed from the container. 

The remaining floodwater was removed from the microcosms using a sterile micropipette. 

Soil samples were collected from the upper 2 mm oxic zone of the microcosms using a 

sterile scalpel and were analyzed immediately for moisture content determination, 

microscopic cell count, and viable cell count. 

 

Fig. 2.1. Model system (incubation of microcosms) 

 

2.2.2. Moisture content determination  

 

Approximately 1 g of soil was accurately weighed and then dried at 105 °C for 24 h 

(Janssen et al., 2002). The samples were reweighed after they were allowed to cool in a 

desiccator to room temperature. The drying and cooling procedure was repeated until 

constant mass (± 0.005 mg) was obtained.  

The moisture content was calculated using following formula: 

 

 

where Iw= wet weight of the soil and Fw= dry weight of the soil  

% moisture content = (Iw-Fw) × 100 
                                        Iw 
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2.2.3. pH determination 

 

1 g of soil sample was mixed in 10 ml of distilled water and pH was determined by a pH 

meter. 

 

2.2.4. Microscopic cell count 

 

An accurately weighed aliquot of soil (~1.5 g wet weight corresponding to ~1 g dry 

weight) was suspended in 10 ml of sterile one-quarter-strength Ringer solution (10-1 

dilution step), vortexed for 5 min and then sonicated (Transonic TS540, Germany) for 30 

sec (Janssen et al., 2002; Shayne et al., 2003). The suspension was then used to prepare a 

tenfold dilution series (10-2 to 10-9) in the same solution. Aliquots (0.5 ml) of the 10-1 - 10-3 

serial dilution steps were fixed at 4 °C for 24 h in filter-sterilized phosphate-buffered saline 

(PBS; 0.13 M NaCl, 7 mM Na2HPO4, 3 mM Na2HPO4; pH 7.2–7.4) containing 4% 

(wt/vol) paraformaldehyde. Cells were stained with 4',6-diamidino-2-phenylindole (DAPI; 

final concentration, 5mg/ml) (Sigma, Basel, Switzerland) for 15 min and then filtered 

through black polycarbonate Nuclepore membranes (pore size, 0.2 µm; diameter, 25 mm; 

Whatman, UK) at <10 kPa (Weinbauer et al., 1998). Cells were enumerated under UV, 

using an Axiophot epifluorescence microscope (Zeiss, Oberkochen, Germany). A total of ≥ 

400 cells per filter were counted from 20 fields, each covering an area of 0.01 mm2  

(Buesing and Gessner, 2002). The total bacterial counts were calculated on dry weight 

basis using following equation: 

 

Total number of bacteria = N/X × A/B × 1/S 

where,   

            N= total number of bacteria counted  

X= the number of viewed fields (grids counted) 

A= the area of the slides covered by the sample, which should be checked    

      microscopically 

B= the area of the viewed fields, to be measured with an object stage micrometer 

S= the amount of sample on the slide 
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2.2.5. Viable bacterial cell count (colony forming unit count) 

 

The numbers of colony-forming units (CFU) were determined by spreading 100-µl aliquots 

of the 10-4 to 10-9 serial dilution steps onto plates containing nutrient agar (NA), R2A agar 

and soybean casein digest agar (SCDA) in full-strength (1:1) and diluted strength (1:100). 

All media were prepared according to the manufacturer’s instructions (BD Diagnostic 

Systems, USA). The plates were incubated aerobically for up to 30 days at 30 °C. CFU 

were checked manually and counted when they became visible to the naked eye. Plates 

were randomly examined at low magnification (6×) for detection of microcolonies. Two 

sets of three microcosms incubated for either 1 or 70 days were analysed for viable cell 

numbers. For each microcosm of the two sets, serial tenfold dilution onto plates was 

carried out in triplicate for each of the six media compositions tested (NA, R2A, and 

SCDA in full-strength and diluted strength). In total, 576 agar plates were monitored for 

CFU analysis. 

 

The CFU counts were calculated using following formula [(Bacteriological Analytical 

Manual, Edition 8, and Revision A, 1998, AOAC Official Methods of Analysis, sec. 

966.23, with one procedural change (966.23C)]. 

 

N = ∑C / [(1× n1) + (0.1 × n2)] × (d)  

where, 

N = Number of colonies g-1 of sample 

∑C = Sum of all colonies on all plates counted 

n1 = Number of plates in first dilution counted, e.g. 3 

n2 = Number of plates in second dilution counted, e.g. 3 

d = Dilution from which the first counts were obtained 

 

2.2.6. Colony forming curve (CFC) analysis 

 
Each day, the newly visible colonies were color-marked and enumerated. As per Koch 

(1994), Nairn et al. (2002), and Kristufek et al. (2005) plates showing 30 to 300 colonies 

were selected for enumeration. Colony appearance was monitored during total incubation 

time of up to 30 days. The bacterial colonies were classified based on when they appeared 

on the plates into the following incubation periods: 1, 2, 3-5, 6-10, 11-15, and 16-30 days. 
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The total numbers of culturable bacteria were calculated using the CFU counts of those 

plates that exhibited 30 to 300 colonies after 30 days of incubation. Since one-way analysis 

of variance (P=0.05) did not show any statistically significant difference among the 

replicates used for each of the six different media compositions, the nine replicates of each 

media composition were used to calculate mean values and standard deviations. In a 

separate approach, plates showing 10 to 30 colonies were also used for enumeration, but 

only for late succession. Here, the overall data of all three different media (NA, R2, 

SCDA) were used to calculate separate single colony-forming curves, separately for full 

and diluted strength. 

 

2.2.7. Pure culture isolation  

 

Colonies grown on plates of the terminal positive dilution steps were picked and replated 

for purification onto the respective medium and their phenotypic characteristics such as 

color, consistency, and day of colony appearance, were recorded (data not shown). 

Replating was continued until pure cultures were obtained. Pure culture status was 

concluded from the uniform size and morphology of single colony, phase-contrast 

microscopy, and 16S rRNA gene sequencing.  

 

2.2.8. Extraction of genomic DNA for 16S rRNA gene sequencing  

 

In order to sequence pure isolates, genomic DNA was prepared by two methods: 

 

2.2.8.1. Rapid preparation of genomic DNA from bacterial cells  

 

A simple protocol was used when the bacterial cell lysis was easily obtained, particularly 

suitable for gram-negative bacteria. The protocol used in this study was based on the 

method published by Holmes and Quigley (1981) for the preparation of plasmid DNA. 

Individual colonies were picked from an agar plate, using a sterile toothpick, and 

resuspended in 20 µl TE buffer. The cell suspension was incubated for 10 min in a 97 °C 

heating block and resulting cell lysate was centrifuged for 5 min at 13,000 × g. An aliquot 

(1 µl) of the supernatant was used directly for PCR amplification, without any additional 

purification steps. 
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2.2.8.2. Bead beating lysis method 

 

Extraction of DNA, PCR amplification of the nearly complete 16S rRNA gene and 

sequencing were carried out using slightly modified standard protocol (Hengstmann et al., 

1999). Individual colonies were scrapped out and were mixed with 200 µl of a one-quarter-

strength Ringer solution and 100 µl of a 10% (wt/vol) solution of sodium dodecyl sulfate. 

Approximately 0.5 g of sterile glass beads (0.17- to 0.18-mm diameter) were added, and 

the suspension was shaken for 1 min at maximum speed in a bead beater (Dismembrator-S; 

B. Braun Biotech, Germany). Two freeze-thaw-cycles were performed by rapidly cooling 

in liquid nitrogen for 20 sec and then heating at 100 °C in heating block for 10 min. Cell 

debris was pelleted at 13,000 × g for 10 min at 4 °C, and the supernatant was treated with 

0.5 volume of ammonium acetate buffer pH 7.2. Centrifugation was carried out at 13,000 × 

g for 5 min at 4 °C. The aqueous phase was treated with 2.5 volumes of absolute ethanol 

and 1/10 volume of 3 M sodium acetate (pH 5.0), and then incubated at –80 °C for 60 min. 

DNA was then recovered by centrifuging at 13,000 × g for 30 min at 4 °C. DNA was 

washed once with 70% ethanol and dried in a vacuum dryer. Finally, the DNA was 

resuspended in 50 µl of TE buffer (10 mM Tris-HCl, 1 mM EDTA [pH 8.0]).  

 

2.2.9. Extraction of genomic DNA for Southern blot hybridization  

 

Isolates were inoculated into 30 ml of full-strength R2A broth (Reasoner and Geldreich, 

1985) and incubated at 30 °C with shaking (100 rpm) in a shaker until the cultures were 

turbid (OD600 of 0.1-0.5 for 10× diluted sample). The cells were then pelleted by 

centrifuging at 3,000 × g for 30 min at 4 °C. Finally, the high molecular weight genomic 

DNA was extracted by using one of the following three methods with a few modifications: 

 

2.2.9.1. Silica gel membrane-based procedure  

 

The procedure followed here was exactly as described in the protocol for QIAampTM DNA 

Mini Kit  (Qiagen, Germany). The detailed methodology can be found in 

http://www1.qiagen.com/literature/handbooks/PDF. 
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2.2.9.2. Phenol-chloroform extraction  (Wilson, 1999 with slight modifications) 

 

The cell pellets were washed by resuspending in 20 ml of TE buffer and centrifuging at 

3,000 × g for 30 min. The pellets were then treated with 5 ml of lysozyme buffer and 

incubated at 37 °C for 30 min. 1 ml of 10% SDS, 22 µl RNase and 30 µl of 20 mg/ml 

Proteinase K (Qiagen, Germany) were added, mixed, and incubated at 55 °C for 30 min 

with regular mixing at 10 min intervals. The entire solution was then treated with an equal 

volume of phenol/chloroform/isoamyl alcohol, mixed by inverting the tube, and 

centrifuged at 13,000 × g for 10 min at 4 °C. The upper aqueous layer was transferred to a 

fresh tube and was incubated on ice for 5 min. Then 0.1 volume of 3 M sodium acetate and 

0.6 volume of ice-cold iso-propanol were added and mixed gently until a stringy white 

DNA precipitate became clearly visible. The resulting pellets were transferred to a fresh 

tube containing 70% ethanol by hooking it onto the end of a pasture pipette that has been 

heat-sealed and bent in a Bunsen flame. If DNA precipitation was not clearly visible, the 

entire solution was incubated at –80 °C for 30 min. DNA was then precipitated by 

centrifuging at 13,000 × g for 30 min at 4 °C. DNA thus obtained was washed once with 

70% ethanol and dried in a vacuum dryer. Finally, the DNA was resuspended in 1 ml of 

TE buffer (10 mM Tris-HCl, 1 mM EDTA [pH 8.0]). 

 

2.2.9.3. Benzyl chloride extraction (Zhu et al., 1993 with slight modification) 

 

The cell pellets were washed by resuspending in 20 ml of TE buffer and centrifuging at 

3,000 × g for 30 min. The pellets were then treated with 5 ml of lysozyme buffer and 

incubated at 37 oC for 30 min. 5 ml of extraction buffer (100 mM Tris-HCl, pH 9.0, 40 

mM EDTA), 22 µl RNase, 30 µl of 20 mg/ml Proteinase K, 1 ml 10% SDS, and 3 ml 

benzyl chloride was added, and the tube was vortexed and incubated at 50 °C for 30 min 

with shaking or repeated vortexing at 5-min intervals to keep the two phases thoroughly 

mixed. Centrifugation was carried out at 3,000 × g for 30 min. The upper aqueous layer 

was transferred to a fresh tube and 3 ml of 3 M sodium acetate, pH 5.0 was added, and the 

tube was kept on ice for 15 min. After centrifugation at 3,000 × g for 15 min at 4 °C, the 

supernatant was collected, and 0.6 volume of precooled iso-propanol was added. The tube 

was shaken back and forth until a stringy white DNA precipitate became clearly visible. 

The pellets were transferred to a fresh tube containing 70% ethanol by hooking it onto the 
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end of a pasture pipette that was already been pre-heat-sealed and bent in a Bunsen flame. 

Finally, the DNA was resuspended in 1 ml of TE buffer (10 mM Tris-HCl, 1 mM EDTA 

[pH 8.0]). 

 

2.2.10. Determination of DNA concentration 

 

The concentration of extracted DNA in suspension was estimated by spectrophotometric 

measurement at A260. For double-stranded DNA suspensions, an OD value at a wavelength 

of 260 nm and using a cuvette with 1 cm path length is equal to a concentration of 50 

mg/ml. The quality of the DNA was evaluated by measurement of absorbance at 260, 280 

and 230 nm. Ideally, the ratio of the A260/A280 should be 1.8-2.0. A ratio less than 1.8 

indicates protein or phenol contamination, whereas the ratio grater than 2.0 indicates the 

presence of RNA. The ratio of the A230/A260 should be 0.3-0.9. Ratio greater than 0.9 

indicate the presence of salts or humic acids. 

 

2.2.11. Polymerase chain reaction (PCR) of bacterial 16S rRNA genes 

 

PCR was carried out using the oligonucleotides primers 9f and 1492r (Lane, 1991), which 

amplify 16S rRNA genes of a wide range of members of the domain Bacteria from 

positions 28 through 1491 (E. coli numbering [Brosius et al., 1978]). The reaction mixture 

contained 1 µl of template DNA, 10 µl of 5 × reaction buffer (Promega, Germany), 3 µl of 

25 mM MgCl2 (Promega, Germany), 5 µl of 10 mM dNTP mix (Promega, Germany), 0.5 

µl of 33 pmol (each) primer (MWG-Biotech, Ebensburg, Germany), and 2.5 U of Taq 

DNA polymerase (Promega, Germany). Finally, total volume was made to 50 µl with 

sterile water. Amplification was performed in 0.2 ml reaction tubes using a DNA thermal 

cycler (ABI 9600; PE Applied Biosystems). The thermal PCR profile was as follows: 

initial denaturation at 94 °C for 2 min; 30 cycles, consisting of denaturation at 94 °C for    

45 s, primer annealing at 48 °C for 60 s, and elongation at 72 °C for 120 s. The final 

elongation step was extended to 12 min. Aliquots of the 16S rRNA gene amplicons (10 ml) 

were analyzed by electrophoresis on a 1% agarose gel.  
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The PCR products thus amplified were purified by using QIAquickTM purification kit 

(Qiagen, Germany) following the manufacturer’s instructions. Purified PCR products were 

eluted from the purification columns by adding 50 µl 10 mM Tris-buffer (pH 8.0). 

 

2.2.12. Cycle sequencing 

 
For cycle sequencing, the BigDyeTM Terminator v1.1 cycle sequencing kit (Applied 

Biosystem, Germany) was employed. The PCR reagent mix was prepared by combining 

the following reagents (on ice) in a 0.5 ml microcentrifuge tube: 2 µl ready reaction 

premix, 1 µl BigDye sequencing buffer, 3.2 pmol (f or r) primer, 60-80 ng (2 µl) of PCR 

product and distilled water was added to make the volume 10 µl. Tubes were placed in a 

thermal cycler (Applied Biosystems 9600) preheated to 104 oC. The program used was as 

follows: initial denaturation at 96 °C for 30 s; 25 cycles, consisting of denaturation at 94 

°C for 10 s, primer annealing at 50 °C for 5 s, and final elongation at 60 °C for 4 min. The 

product was then stored at 4 °C until ready to purify the extension products. The following 

primers were used for the complete 16S rRNA gene sequencing: 

 

Table 2.1. Primers used for the sequencing of 16S rRNA gene 

 

The cycle-sequenced product was purified by using AutoSeq™G-50 (GE Health Care Life 

Science, Germany) columns as described in the manufacturer’s protocol. Sequences were 

determined with an ABI-373 sequencer (Applied Biosystems, Germany) and analyzed with 

the sequence analysis software version 3.3 (Meixner sequencing service, Germany).  

Designation Sequence References 

9f GAG TTT GMT CCT GGC TCA G Lane, 1991 

315f CAG ACT CCT ACG GGA GGC AGC AGT AGG 

GAA TC 

Lane, 1991 

519b GTA TTA CCG CGG CTG CTGG Stubner, 2002 

907b CCG TCA ATT C(A/C)T TT(A/G) AGT TT Muyzer et al., 1993 

1100b AGG GTT GCG CTC GTT Lane, 1991 

1492b ACG GYT ACC TTG TTA GGA CTT Weisburg et al., 1991 
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Phylogenetic analysis 
 

Each of the 16S rRNA gene sequences had a length of at least 1300 nucleotides and was 

aligned to the ARB sequence database (Ludwig et al., 2004). The resulting alignments 

were used for analyses without making changes of possible errors in the public-domain 

16S rRNA gene sequences. Phylogenetic trees were constructed using Tree-Puzzle, a 

quartet maximum-likelihood method (Schmidt et al., 2002). The trees were constructed 

using a model of sequence evolution as suggested by Schoniger and von Haeseler (1994) 

and 10,000 puzzling steps.  

 

2.2.13. Southern blot hybridization analysis  

 

The copy number of rrn was determined by Southern blot hybridization analysis. First, 

genomic DNA from each isolate was digested by using three different restriction enzymes: 

EcoRI, PstI, PvuII (Promega, Germany). A survey of the ARB sequence database showed 

for the 16S rRNA genes of most isolates that these three enzymes did not have a 

recognition site within the probe-target region. However, if a recognition site was 

identified for one of the three enzymes, it was replaced with SmaI. For each restriction 

analysis, approximately 1 µg of genomic DNA was digested with the respective 

endonuclease using the manufacturer’s protocol. The restricted genomic DNA’s were 

separated on an agarose gel (0.8%) and transferred to a positively charged nylon membrane 

(Roche Applied Science, Germany) by capillary blotting (Sambrook et al., 1989). A PvuII 

digest of E. coli genomic DNA was included on each Southern blot as a positive control. A 

digoxigenin (DIG)-labeled 16S rRNA gene hybridization probe complementary to the 

positions 9 to 519 of E. coli 16S rRNA (IUB nomenclature) was generated by PCR 

according to the supplier’s instructions (Roche Applied Science, Germany). Southern blot 

hybridization and detection of DIG-labeled probes were carried out according to the 

protocol described in the DIG application manual for filter hybridization (Roche website: 

http://www.roche-applied-science.com). CDP-Star chemiluminescent substrate was used 

and signals were visualized on X-ray film (Kodak, Japan). 
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2.2.14. Nucleotide sequence accession numbers 

 

The 16S rRNA gene sequences of all isolates from early and late succession have been 

deposited in the EMBL, GenBank, and DDBJ nucleotide sequence databases under 

accession no. AM412116 to AM412174 and AM411905 to AM411970, respectively. 

 

2.2.16. ANOVA and t-test 

 

Significant differences in DAPI and CFU counts between early and late succession were 

tested by using t-test (P<0.05). One-way analysis of variance (P<0.05) was applied to test 

for significant differences between replicates of DAPI and CFU counts.  
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3. Results 

 

3.1. Moisture content and pH determination  

 

Moisture content of the soil from early and late succession was not significantly different 

(P>0.05), which was approximately 35% and 40% w/w respectively. This moisture content 

was of relevance for the total and cultivable bacterial count in dry weight basis. The pH of 

the soil sample was determined as approximately pH 6 for both early and late succession. 

Based on the pH of the soil, pH of the medium was adjusted to 6 with 1 M sodium 

hydroxide or 1 M hydrochloric acid.  

3.2. Total and culturable community size  

 

The DAPI counts were significantly different between early successional and late 

successional communities, while the total CFU counts did not differ significantly (Table 

3.1). The proportion of bacteria that was culturable from early succession corresponded to 

approximately 40% (undiluted media) and 37% (diluted media) of the respective DAPI 

counts. Similarly, the recovery rate was 31% (undiluted media) and 35% (diluted media) 

for late succession (Table 3.1). DAPI-stained sample and colony morphology of culturable 

bacteria for early succession and late succession are shown in Fig. 3.1. 

 

3.3. CFC analysis and successional stage  
 
 
The growth-response time on the different media (NA, R2A, and SCDA in full and diluted 

strength) showed a similar trend for either early or late succession, except on full-strength 

SCDA medium in late succession. Overall, CFC analysis revealed a significant shift in 

colony-forming time between early and late succession (Fig. 3.2). In early succession 

greater than 90% of colonies became visible within 1 day and no colonies appeared after 8 

days of incubation. In contrast, colony-forming time in late succession was between 2 and 

15 days with the majority of colonies appearing after 2 days or, in case of full-strength 

SCDA medium in late succession, after 3-5 days of incubation.  
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The progression of the colony-forming curves indicative of late succession changed if 

plates showing 10-30 colonies were used for CFU enumeration, rather than those 

exhibiting 30-300 colonies (Fig. 3.2). Obviously, the average number of CFU that became 

visible with extended incubation time increased, particularly on the diluted media. 

However, the statistical significance of this observation was difficult to assess due to low 

absolute numbers of CFU to be enumerated and strong variations in CFU numbers between 

replicate plates. Thus, the CFU counts of all the plates (NA, R2A, and SCDA full and 

diluted strength media) exhibiting 10-30 colonies were combined to calculate a single CFC 

to represent an approximate trend of colony-forming time. 

  

A total of 59 early successional and 66 late successional CFU were selected from the most 

terminal dilution plates for the isolation. The majority of early successional isolates were 

comprised of large and slimy colonies, while those from late succession were mostly small 

and non-slimy colonies and were difficult to disintegrate. 

Table 3.1. Total bacterial counts (DAPI counts), and total viable cell counts from the oxic 

layer of flooded, unplanted rice paddy soil microcosms. 

 

1For each microcosm, total DAPI and CFU counts are mean values of at least three replicates. 

2CFU counts are mean values of numbers obtained for early succession (M-1, M-2, M-3) and late succession 

(M-4, M-5, M-6) on NA, R2A, and SCDA. Using ANOVA (P<0.05), no significant differences in the CFU 

numbers were observed among the media. 
3CFU counts on undiluted (1:1) growth media. 
4CFU counts on diluted (1:100) growth media. 
5Mean values ± standard deviation (SD). 

 
Numbers of DAPI-stained cells and CFU (N × 108 g-1 of dry soil)1 

 
1-day-old microcosms2 

(early succession) 
70-day-old microcosms2 

(late succession) 

Microcosms 

DAPI  CFU3 
(1:1) 

CFU4  
(1:100) 

DAPI  CFU3 
(1:1) 

CFU4 
(1:100) 

M-1, M-4 
 

7.30 2.66 2.09 5.87 1.53 1.75 

M-2, M-5 
 

7.60 3.50 3.25  5.39 2.32 2.33 

M-3, M-6 
 

7.30 2.73 3.04 5.37 1.45 1.80 

Mean ± SD5 7.4 ± 0.6 2.9 ± 0.4 2.7 ± 0.6 5.5 ± 0.2 1.7 ± 0.4 1.9 ± 0.3 
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Fig. 3.1. Representative pictures showing DAPI-stained of total bacteria and colony 

morphology of culturable bacteria for early successional (a, c) and late successional (b, d) 

samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2. Colony-forming curve analysis showing the number of CFU in relation to their 

appearance on full (A) and diluted (B) strength media (red, NA; blue, SCDA; green, R2A). 

Dotted lines show CFU counts from early succession and solid lines indicate those from 

late succession. Colony-forming curves were calculated using the CFU counts of plates 
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showing 30-300 colonies. Error bars represent standard deviation (n = 9 [triplicate plating 

for each of three replicate microcosms incubated for either 1 or 70 days]). Gray line 

indicates colony-forming curves that were calculated using plates showing 10-30 colonies. 

These curves represent an approximate for the increase in CFU counts on full-strength 

(1:1) and diluted (1:100) media between 2 and 30 days of incubation in late succession. 

 

3.4. Phylogenetic classification and successional stage 

 

Comparative 16S rRNA gene sequence analyses showed that all isolates grouped with one 

of the following six bacterial lineages: Alphaproteobacteria, Betaproteobacteria, 

Gammaproteobacteria, Bacteroidetes, Actinobacteria, and Bacilli. The majority of early 

successional isolates belonged to the Beta- and Gammaproteobacteria (47 isolates), while 

the predominant groups among the late successional isolates were Alphaproteobacteria and 

Actinobacteria (49 isolates) (Figure 3.3). Isolates with an overall 16S rRNA gene sequence 

identity of ≥98% were considered to be highly related and to possibly form a single species 

(Stackebrandt and Goebel, 1994; Dighe et al., 2004). Thus, they were grouped into 

species-level clusters (SLC) (Table 3.2). The number of isolates within the same SLC 

varied from 1 to 18. Without any exception, day of colony appearance of all isolates that 

belonged to the same SLC was identical in CFC analysis. 

 

Fig. 3.3. Diagrams showing the phylogenetic distribution of species level clusters for A) 

early succession (total number of isolates = 59), and B) late succession (total number of 

isolates = 66). Phylogenetic assignment is based on nearly full-length 16S rRNA gene 

sequences (≥1300 nt). 

 

All the betaproteobacterial SLC belonged to only two families (Comamonadaceae and 

Oxalobacteriaceae) while the alphaproteobacterial SLC were phylogenetically more 

diverse and affiliated with seven families, including Beijerinckiaceae, Bradyrhizobiaceae, 

 Alphaproteobacteria,    Betaproteobacteria,    Gammaproteobacteria,   Bacteroidetes,  
 Actinobacteria, and   Bacilli   

A) B) 
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Caulobacteraceae, Hyphomicrobiaceae, Rhizobiaceae, Rhodospirillaceae, and 

Sphingomonadaceae (Fig. 3.5). Among Gammaproteobacteria, the four early successional 

SLC belonged to the Moraxellaceae and Pseudomonadaceae, while the two late 

successional SLC grouped with the Xanthomonadaceae (Fig. 3.5). Among Bacteroidetes, 

the single early successional SLC was assigned to the Flavobacteriaceae, while the two 

late successional SLC belonged to the Flexibacteraceae (Fig. 3.6a). The SLC that were 

assigned to Actinobacteria, grouped into the families Gordoniaceae, Nocardiaceae, 

Microbacteriaceae, Micrococcaceae, and Mycobacteriaceae (Fig. 3.6b) and the Bacilli-

like SLC belonged to the Bacillaceae and Paenibacillaceae (Fig. 3.6c). Out of 49 SLC 

analyzed in total, 38 SLC exhibited 16S rRNA gene sequence similarities of ≥98% with 

taxonomically described species. Members of six SLC showed 16S rRNA gene sequence 

similarities between 95% and 97% with taxonomically described species. 16S rRNA gene 

sequence similarities below 95% with taxonomically described species were identified for 

members of five SLC, including alphaproteobacterial LS_SLC_10, LS_SLC_11, and 

LS_SLC_16 (Fig. 3.5), and two LS_SLC (_24, _25) assigned to Bacteroidetes (Fig. 3.6a).  

3.5. Successional stage, growth response time, and rrn copy number 

 
The rrn copy numbers were determined for 16 early and 26 late successional isolates, 

comprising a single representative of almost each SLC (Fig. 3.5, 3.6 a, b; Table 3.2). The 

only exception was SLC assigned to the Bacilli, whose analysis was limited to two SLC in 

order to confirm high rrn copy numbers (Fig. 3.6c). The homogeneity of the rrn copy 

numbers among isolates of the same SLC was tested by random analysis of two 

representatives from each of three early successional SLC and three late successional SLC.  

The rrn copy numbers between the two test strains of each SLC were identical. All the 

early successional SLC belonging to Betaproteobacteria, Gammaproteobacteria, 

Bacteroidetes, and Actinobacteria showed a perfect correspondence between successional 

stages, growth response time upon nutrient availability, and rrn copy number (Table 3.2; 

Figs. 3.5, 3.6 a, b). Their members formed visible colonies within one (11 SLC) or two 

days (6 SLC) of incubation and all early successional isolates tested possessed more than 

four rrn copies. By contrast, the two early successional SLC assigned to 

Alphaproteobacteria exhibited a colony-forming time of 6-10 days (Table 3.2; Fig. 3.5). 

However, their growth-response time corresponded well to the single rrn copy detected by 

Southern blot hybridization analysis.  
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Table 3.2. Total number of isolates and species-level clusters (SLC) assigned to Alphaproteobacteria, Betaproteobacteria, 

Gammaproteobacteria, Bacteroidetes, Actinobacteria, and Bacilli.  

 
1 Total number of strains that were isolated from terminal positive dilution steps and phylogenetically analysed. 
2 Time (in days) needed for the isolates to form a visible colony on the solid agar medium. 
NA Isolates whose rrn copy number could not be determined owing to very low biomass yield. 

Early succession Late succession Taxon 
1Isolates Total no. 

of SLC 
2Time SLC 

analyzed 2 
rrn copies 1Isolates Total no. 

of SLC 
2Time SLC 

analyzed2 
rrn copies 

3-5 1 4 3-5 NA NA 
3-5 3 1 

6-10 4 1 
6-10 2 2 

Alphaproteobacteria 3 2 

6-10 1 1 

 
 

27 

 
 

12 

11-15 2 1 
5 5 3-5 1 2 Betaproteobacteria      23 7  1 
2 4 

6 3 
11-15 2 2 

1 3 7 Gammaproteobacteria 24 4 
2 1 5 

2  1 6-10 1 3 

2 3 2 1 4 
2 1 3 

3-5 2 2 

 Actinobacteria  
2 

 
2 

 
2 

1 4 

 
22 

 
7 

11-15 1 2 
11-15 1 1 Bacteroidetes 3 1 1 1 7 3  2 
6-10 NA NA 

2 1 11 Bacilli 
 

4 3 2 1 
 

11 6  5 
2 1 9 

Total 59 19  16  66 30   26  
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Fig. 3.4. Southern blot hybridization of genomic DNA from E. coli (lane S), P70-34 (lanes 

1, 2, and 3), P70-23 (lanes 4, 5, and 6), and P1-188 (lanes 7, 8, and 9) cut with EcoRI  (lane 

1, 4, and 7), PstI  (lane 2, 5, and 8), and PvuII  (S, 3, 6, and 9). Lane ‘M’ represents the 

DNA size marker. 

 

All the late successional SLC belonging to Alphaproteobacteria, Betaproteobacteria, 

Gammaproteobacteria, Bacteroidetes, and Actinobacteria also showed a strong 

correspondence between successional stages, growth response time, and rrn copy number 

(Table 3.2; Figs. 3.5, 3.6 a, b). Their members always exhibited a colony-forming time of 3 

to 15 days (20 SLC), except four actinobacterial SLC that required only two days of 

incubation to form visible colonies (Fig. 3.6 b). All late successional isolates tested 

possessed ≤2 rrn copies with three exceptions: LS_SLC_9 (four rrn copies), LS_SLC_16 

(three rrn copies) (Fig. 3.5), and LS_SLC_19 (three rrn copies) (Fig. 3.6 b). Among the 

five SLC assigned to the Bacilli, three SLC contained isolates from both early and late 

succession. Members of all Bacilli-like SLC showed a colony-forming time of 2 days and 

had more than eight rrn copies (Fig. 3.6 c). 
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Fig. 3.5. Maximum likelihood tree showing the phylogenetic relationship between species-

level clusters and representative members of the Alphaproteobacteria, Betaproteobacteria, 

and Gammaproteobacteria. The prefixes ES_SLC and LS_SLC denote species-level 
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clusters from early and late succession, respectively. Number of isolates assigned to the 

respective SLC and the 16S rRNA gene accession number of a single representative are 

given in parentheses. The numbers in the columns indicate the rrn copy number (rrn, left 

column) and the day of colony appearance (DA, right column). The numbers at the branch 

points are tree puzzle values. Only values greater than 60 are shown. The scale bar 

represents 5% sequence divergence. 

 

 

Fig. 3.6. Maximum likelihood trees showing the phylogenetic relationship between 

species-level clusters and representative members of the a) Bacteroidetes b) 

Actinobacteria, and c) Bacilli. For further details, see the legend to Fig. 3.5. 
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4. Discussions 
 

4.1. Cultivation and CFC analyses 

 

Regardless of the successional stage and the media used for cultivation, total culturable cell 

counts were found to be higher than in most other cultivation studies from soil (Olsen and 

Bakken, 1987; Zarda et al., 1999; Janssen et al., 2002) and similar to the cultivation studies 

by Chin et al. (1999) and Davis et al. (2005). Like in the study by Davis et al. (2005) who 

also used solid media to isolate bacteria from soil, microbial cells were detached from soil 

particles by vortexing coupled with ultrasonic treatment. It has been proposed that this 

approach is more efficient than simple vortexing (Buesing and Gessner, 2002; Kuwae and 

Hosokawa, 1999; McDaniel and Capone, 1985; Mott et al., 1998).  

 

From all SLC tested, replating of isolates always resulted in the same colony-forming time, 

as originally observed in the isolation procedure. This finding provided evidence that the 

time required to form visible colonies was not related to the physiological state of the 

bacterial cells but, instead, was a stable characteristic of the isolates and thus of their life 

strategy. As a result, the CFC analysis enabled reliable classification of SLC into fast and 

slow growers, which corresponded well to successional stage (Table 3.2). A similar 

classification was also used by Sigler and Zeyer (2004) who studied bacterial community 

succession in deglaciated soil. Soils deglaciated for 10 years were colonized mainly by fast 

growers, whereas slow growers were prevalent in soils, which deglaciated for 100 or more 

years. In that study, fast growers formed visible colonies within 24 h, while slow growers 

were defined as those, which formed colonies after 36 h of incubation.  

 

In my study, differentiation between fast and slow growers was more pronounced. Most of 

the early successional SLC (and isolates) had a colony-forming time of 1 day and were 

defined as fast growers. However, most of the late successional SLC required 3 to 15 days 

of incubation to form visible colonies and were classified as slow growers. Regardless of 

whether isolated from early (2 SLC) or late (4 SLC) succession, members of six 

actinobacterial SLC showed a colony-forming time of 2 days and may thus be considered 

intermediate growers. These intermediate growers, however, could be differentiated by 

their rrn copy numbers (Table 3.2). Except two Bacillus-like SLC, isolates from early 
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succession always belonged to different SLC than those from late succession. All our 

Bacillus-like isolates showed a colony-forming time of 2 days, irrespective of whether 

isolated from early (3 SLC) or late (5 SLC) succession. This finding may be due to the fact 

that a major portion of the Bacilli was present in the rice paddy soil as spores rather than as 

vegetative cells.  

 

The species richness culturable from early succession was lower than that from late 

succession (19 vs. 30 SLC, Table 3.2). This trend towards increased species diversity in 

late succession agrees well with the theory that mature communities have a greater taxon 

richness and evenness than early communities (Andrews and Harris, 1986; Martiny et al., 

2003). Similarly to my study, Garland et al. (2001) reported increasing species diversity 

with successional age for a bacterial rhizosphere community incubated in a bioreactor.  

 

A good correspondence between number of SLC and CFC analysis was observed in early 

but not in late succession. In early succession, 11 SLC (60%) were detectable after 1 day of 

incubation, in correspondence to maximum numbers of CFU (Fig. 3.2). However, in late 

succession, only nine SLC (30%) were detectable after 2 days of incubation, although the 

maximum numbers of CFU were observed at this time point, for both NA and R2A media. 

Most of the late successional SLC showed a colony-forming time of 6-15 days (14 SLC, 

46%), while seven SLC (24%) became visible after 3-5 days of incubation. To obtain 

statistically significant results, agar plates were used for CFU counts that contained 

between 30 and 300 colonies (mostly 100-200 CFU). Thus, a possible explanation for the 

discrepancy between CFC analysis and number of SLC isolated in late succession from the 

different incubation periods is that the high density of colonies growing within 2 days led 

to substrate depletion in the media and to inhibitory or competitive effects on more slowly 

growing populations (Balestra and Misaghi, 1997; Davis et al., 2005). As a consequence, 

slow growers may not have been able to form visible colonies on these already densely 

colonized plates, thereby resulting in biases towards overestimation of faster growing 

populations. This view is supported by the approximate trend of increased CFU numbers 

during later incubation periods, if plates showing 10-30 colonies were used in CFC 

analysis. This trend seems to be more pronounced for the 1:100-diluted media than for the 

full-strength media, which is in good correspondence with the prediction that late 

succession is characterized by oligotrophic (K-selected) bacteria. Notably, members of all 
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five late successional SLC that exhibited 16S rRNA gene sequence similarities below 95% 

to taxonomically described species and thus are novel at the genus level which required 6-

15 days of incubation to form visible colonies. These findings corroborate the conclusion 

that isolation from terminal positive dilution steps and extended incubation times were the 

key factors for the increased species richness culturable from late succession.  

 

4.2. Phylogenetic identity and successional stage 

 

Overall, early succession in the oxic zone of the flooded rice paddy soil microcosms was 

characterized by fast-growing bacteria belonging to Betaproteobacteria and 

Gammaproteobacteria, whereas slow-growing bacteria of the Alphaproteobacteria and 

Actinobacteria were prevalent in late succession. Previous reports on successional changes 

in the phylogenetic composition of soil bacterial communities are rare, in particular on 

changes in the culturable fraction. Kristufek et al. (2005) used a cultivation approach to 

study the primary succession of heterotrophic bacterial populations in the surface and 

mineral layers of brown coal colliery spoil. The identification of isolates was achieved by 

phospholipid fatty acid (PLFA) analysis, having as a consequence some ambiguous 

taxonomic assignments. Despite these uncertainties in the phylogenetic identity of the 

strains isolated by Kristufek et al. (2005), the authors` overall findings agree to some 

extent with the results of my study. Fast-growing Gammaproteobacteria, in particular 

Pseudomonas spp., prevailed in early succession. In contrast, slow-growing Actinobacteria 

were typical of late succession, except Arthrobacter spp. that were isolated with high 

frequency from early succession, but also from late succession. Based on colony 

appearance within 1-2 days in CFC analysis from rice paddy soil, Mitsui et al. (1997) 

reported that Arthrobacter-related species are dominant fast growers. This observation 

corresponds well to the multiple rrn copies detected in members of the early successional 

SLC_14 and SLC_15 (Fig. 3.6.). Thus, in contrast to most other actinobacterial isolates, 

Arthrobacter spp. are typical representatives of early succession but may also be present in 

late succession, presumably owing to their ability to form dry-resistant cysts. The 

ubiquitous presence of Bacillus and Paenibacillus in all successional stages of soil 

bacterial communities seems to be a general phenomenon, as these organisms were also 

isolated by Kristufek et al. (2005) with high frequency from both early and late succession.  
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Remarkably, the overall microbial community pattern detected in ancient permafrost soils 

by a combination of cultivation and molecular techniques have some similarity to the 

composition of the late successional community in my model system. Permafrost soil can 

be considered as a K-selected environment in which the microbial community is 

characterized by adaptation to low-temperature life. Except spore formers, four major taxa 

were identified: Sphingomonas (Alphaproteobacteria), Lysobacter and Psychrobacter 

(Gammaproteobacteria), Microbacteriaceae (Actinobacteria), and Sphingobacterium 

(Bacteroidetes) (Vishnivetskaya et al., 2006). Lysobacter and Psychrobacter belong to the 

family Xanthomonadaceae (Fig. 3.5.). Members of this family are known to be slow 

growers possessing only 2 rrn copies; this in contrast to early successional 

Gammaproteobacteria. Similarly, Sphingomonas only harbors a single rrn copy and, 

accordingly, is well known as a slow grower (see below). In support with previous 

observations, the permafrost soil was also inhabited by Bacillus, Paenibacillus, and 

Arthrobacter.  

 

4.3. rrn copy number and successional stage 

 

In good agreement with previous reports that high numbers of rRNA genes enable fast 

growth response to resource availability (Klappenbach et al., 2000), the rrn copy number 

was almost perfectly correlated with the colony-forming time of isolates belonging to 

Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Bacteroidetes, and 

Actinobacteria and, as a consequence, also corresponded well to successional stage (Table 

3.2). 

 

It had previously been reported that the presence of multiple rrn copies supports high cell 

growth rates (Bremer et al., 1987; Tan et al., 2001). For example, Vibrio angustum and 

Escherichia coli show high growth rates in correspondence to their large set of multiple rrn 

copies. These two organisms possess 8-11 and 7 rrn copies, respectively (Wolfe and 

Haygood, 1993; Kiss et al., 1977). By contrast, slow-growing bacteria such as the marine 

Sphingomonas sp. strain RB2256 (Fegatella et al., 1998) and Mycobacterium spp. 

(Bercovier et al., 1986; Helguera-Repetto et al., 2004) have only one or two rrn copies.  

 

Thus, I anticipated that the rrn copy number would be a suitable marker to corroborate that 

different positions of bacterial species in the r/K-continuum are due to adaptive differences 
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that correspond to genotypic features. This assumption was largely confirmed by the 

results. In early succession, all members of those SLC that showed colony-forming time of 

1 day (11 SLC) possessed ≥4 rrn copies, whereas in late succession members of almost all 

20 SLC that required more than 2 days for colony appearance (20 out of 22 SLC) exhibited 

≤2 rrn copies. Most isolates characterized as intermediate growers belonged to the 

Actinobacteria. The Arthrobacter spp. isolated from early succession always showed 4 rrn 

copies (2 SLC), while the late successional isolates were related to Gordonia and Nocardia 

and possessed ≤3 rrn copies (4 SLC) (Table 3.2, Fig. 4.1).  

 

 

 

 

 

 

 

 

 

Fig. 4.1. Mean copy numbers of rrn determined for 15 early successional (black bars) and 

24 late successional (light bars) species-level clusters. Each bar and error bar represents the 

mean value (n=3-11) and corresponding standard deviation for species-level clusters whose 

colonies appeared in colony-forming curve analysis after 1, 2, 3-5, 6-10, or 11-15 days. 

SLC assigned to Bacilli were not considered for calculation of the mean numbers. 

 

The only exceptions are Bacillus-like species, which were isolated from both early and late 

succession with almost equal frequency. These organisms always contained ≥9 rrn copies. 

As already mentioned above, their isolation from both successional stages may be due to 

their ability to form spores. 

 

4.4. Final remarks 

 

I have addressed the issue of bacterial community succession in the oxic zone of flooded, 

unplanted rice paddy soil microcosms using cultivation techniques. The results revealed a 

clear shift in the bacterial composition cultivable from early and late succession. This 

finding was the starting point to demonstrate that phylogenetic identity, growth response 
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time and rrn copy number of heterotrophic isolates are useful markers for different stages 

in bacterial community succession. However, the degree of correlation among the three 

markers and to successional change varied. A high degree of correlation between growth 

response time and rrn copy number was given for almost all proteobacterial isolates, as 

exemplified by the alphaproteobacterial SLC ES_SLC_2. Despite the fact that the two 

strains of ES_SLC_2 were isolated from early succession, they possessed a single rrn copy 

and, accordingly, had a colony-forming time of 6-10 days. The only major exception were 

the two members of LS_SLC_9. These alphaproteobacterial isolates possessed 4 rrn 

copies, but required three days for colony appearance. The correlation between growth 

response time and rrn copy number was less pronounced for Actinobacteria, which 

corresponds to the fact that most intermediate growers belonged to this phylum.  

 

The phylogenetic identity itself was a good marker for successional stage, because the vast 

majority of beta- and gammaproteobacterial isolates were obtained from early succession 

and, vice versa, almost all Alphaproteobacteria and Actinobacteria were isolated from late 

succession. However, major exceptions of this trend were observed for all three 

proteobacterial classes and for Actinobacteria. Examples are ES_SLC_1 assigned to the 

alphaproteobacterial Brevundimonas vesicularis and LS_SLC_13 assigned to the 

betaproteobacterial "Variovorax koreesis". Interestingly, in the study by Kristufek et al. 

(2005), Brevundimonas vesicularis and Variovorax paradoxon were also isolated as slow 

growers from early and late succession, respectively. These examples demonstrate that 

ecological strategies are not fully consistent with major taxonomic groups. Rather, adaptive 

processes towards changes in life strategy occur at the genus or even species level and thus 

evolutionarily in relatively short periods of time.  

 

In principle, the growth strategy of pioneer organisms can be explained by the fact that 

these populations often possess increased tolerance to environmental extremes (Vitousek 

and White, 1981) despite the potentially high energetic cost of tolerating environmental 

stresses (Andersson and Levin, 1999). Such wasting of energy does not seem to have an 

effect on r-type organisms as it is regarded as a normal feature of early colonization 

strategy (Insam and Haselwandtner, 1989; Ohtonen et al., 1999). To further substantiate 

that, in my model system, early succession was defined by opportunistic type (r-strategist) 

whereas equilibrium type (K-strategist) prevailed in late succession, early and late 

successional isolates could be tested for their overall resistance to antibiotics. Previous 



Discussions 

 47

studies showed that opportunistic (r-selected) bacteria have a greater resistance to 

antibiotics than equilibrium (K-selected) bacteria (Andersson and Levin, 1999; Sigler and 

Zeyer, 2004).  
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Chapter II 
 

Bacterial community changes in a paddy soil oxygen gradient, assessed by mRNA 
expression profiling 
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5. Introduction 
 
 
It has been previously discussed in the first part of my Ph.D. work that the plate counts 

estimate only 1-10% of the overall soil microbial diversity (Olsen and Bakken, 1987; 

Zarda et al., 1999). However, recovery in my study was approximately 40% of the total 

count which was comparatively higher than most of the other studies. This does not mean 

that 40% of total bacterial diversity was cultured (for detail refer Chapter I). This showed 

that the majority of prokaryotic diversity is not represented in culture collections and hence 

remains unknown in terms of their phylogenetic and functional status. Although some 

preliminary information about the functional role of these uncharacterized groups can be 

revealed from in situ physiological studies such as MARFISH, this technique is 

cumbersome. Another possibility to study functional role includes study of gene expression 

(mRNA transcripts), thereby to identify genes and activities essential under varying 

conditions (Borneman and Triplett, 1997). Therefore, researchers are now focusing on the 

study of mRNA transcript pools, by which it should be possible to study the genes that are 

expressed by microbial communities, and to assign these genes both phylogenetically and 

functionally by comparing with the information available in the public-domain database. 

To monitor gene expression and to relate it to microbial activities that are observed in soil, 

it is necessary to extract purified RNA at a sufficient yield from environmental samples for 

subsequent analysis. Enzymatic inhibitors in soil such as humic acid can also impede post-

extraction analysis (Tsai and Olson, 1992; Mendum et al., 1998). A few studies (Pernthaler 

and Amann, 2004; Bürgmann et al., 2003) have recorded gene expression in soil 

environments; they demonstrated that extraction of mRNA and RT-PCR analysis of 

transcripts could be a useful tool for the detailed analysis of activity and functional roles of 

microbial communities present in the environment. In a report by Bürgmann et al. (2003), 

Azotobacter vinelandi, grown in sterile sandy loam soil, served to examine nifH expression 

by RT-PCR. The following part of the introduction gives a detailed literature review on 

environmental transcriptome analysis and the environmental factors affecting the 

expression of the mRNA transcript pools. 

 

5.1. Environmental transcriptome analysis 

 
Due to the increasing number of whole genome sequences of microbes in public-domain 

database, there is a good possibility of identifying the microbial genetic diversity and 



Introduction 

 50

potential functional activity in soil (Torsvik and Øvreas, 2002). Some of the methods to 

assess potential activity, such as metagenomics, use high-molecular-weight DNA 

extractions directly from soil to create large-insert libraries of environmental 

microorganisms (Rondon et al., 2000). Besides, the possibility to detect transcribed mRNA 

sequences directly in the environmental samples has permitted further insight into the 

functional activity. Several analytical procedures have been reported, most of them are 

restricted to isolating mRNA from a) pure cultures (Fleming et al., 1998), b) soil amended 

with pure cultures (Tsai et al., 1991), and c) soil for targeting specific transcripts by 

defined RT-PCR assays (Bürgmann et al., 2003; Mendum et al., 1998). Some of the most 

efficient methods currently available for the comparative analysis of mRNA transcript 

pools are differential display technique (Fislage et al., 1997; Liang and Pardee, 1992; 

McClelland and Welsh, 1994; Wong and McClelland, 1994), poly (A) tailing (Grant et al., 

2006), and subtractive hybridization (Poretsky et al., 2005). An alternative method for 

studying mRNA transcripts is to target the transcripts of specific metabolic activity in situ. 

For example, the in situ hybridization (ISH) of mRNA sequences has been used for 

studying gene expression in prokaryotic cells (Pernthaler and Amann, 2004) and 

eukaryotic cells and tissues (John et al., 1969; Gerfen, 1989; Farquharson et al., 1999; 

Morris et al., 1990; Singer and Ward, 1982). Some of the approaches to quantify microbial 

gene expression in soil are given in Fig. 5.3.  

 

5.1.1. Total RNA extraction 

 

The starting point for the environmental transcriptome analysis is always the isolation of 

the total RNA pool. If the extraction method is generalized, the RNA isolation procedure 

can be divided into four steps: cell lysis, inactivation of nucleases, extraction of RNA from 

the environmental matrix, and purification of the RNA sample. The key step in this process 

is the complete lysis of microorganisms for intracellular RNA to be released (Ogram et al., 

1995). However, this step is subjected to the most variation among RNA extraction 

protocols. The most widely used cell lysis techniques for RNA extraction from soil are as 

follows: bead beating lysis of cells using glass or zirconium beads, solubilization of cell 

membranes by detergent, boiling or enzymatic degradation of the cell wall and membranes 

coupled with osmotic shock, usually with repeated freeze-thaw cycles (Borneman and 

Triplett, 1997; Bürgmann et al., 2003; Hurt et al., 2001; Ogram et al., 1995). The method 

of choice for cell lysis can depend on the sample. The subsequent steps in RNA extractions 
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are standard between samples; inactivation of RNase activity to prevent losses of RNA, 

followed by the extraction of RNA, and purification of the RNA extract and removal of 

organic contaminants that co-extract with the nucleic acids (Ogram et al., 1995). Each of 

these steps in the RNA isolation protocol causes a drop in RNA yield. Factors such as 

duration of treatment with nucleases, temperature of bead beating or types of lysis-

denaturing solutions are varied to obtain maximum cell lysis, minimal RNA shearing, and 

optimal RNA yield and extraction efficiencies (Borneman and Triplett, 1997).  

Fig. 5.1. Approaches to quantify microbial gene expression in soil samples (Saleh-Lakha et 

al., 2005).  

Soil sample (variables such as nutrient content, pH, temperature, moisture, 
pollutants, aerobic, anaerobic rhizosphere, non-rhizosphere) 

In-situ approaches  Cultivation-based approaches 

Isolate indigenous soil 
microorganisms to use as 
indicator species 
 

Fuse gene of 
interest with 
fluorescent 
biomarker (i.e., 
lux or gfp) 
 

Re-introduce labelled 
microorganism in soil 
microcosms 

Track for activity by 

quantifying 

Extract and purify total RNA 
 

References for 
commonly used 
cell lysis buffers 

Burgmann et al., 2003, 
Borneman and Triplett, 1997, 
Hurt et al., 2001 
Mendum et al., 1998, 
Ogram et al., 1995 
 

RT-PCR (obtain 

cDNA) 

Probe with specific primers 
 

DNA Microarrays  
 

Real-time PCR Competitive PCR 
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5.1.2. Total mRNA isolation difficulties 
 

Difficulties in the extraction of total mRNA pools from microbial communities lies in the 

fact that prokaryotic mRNAs comprises less than 5% of total cellular RNA (Neidhardt and 

Umbarger, 1996). In addition, prokaryotic mRNA have very short (15-60 adenylate 

residue) unstable polyA tails  (Liang and Pardee, 1992) and, as a consequence, prokaryotic 

mRNA has very short half-lives (Alifano et al., 1994; Belasco, 1993). In Escherichia coli, 

for example, mRNA half-lives range from several seconds to nearly 1 h, with an average 

lifetime of about 2 to 4 min (Donovan and Kushner, 1986; Emory and Belasco, 1990; 

Pedersen et al., 1978). A key to explain these differences in decay rate is to identify the 

structural features of long or short-lived mRNA species that make them especially resistant 

or susceptible to degradation in vivo.  

 

Among the most stable E. coli mRNA species are the transcripts of the ompA gene, which 

encodes a major outer membrane protein (OmpA). In cells rapidly growing at 30 °C, the 

half-life of this mRNA species is about 17 min (Emory and Belasco 1990; von Gabain et 

al., 1983). Regulation of OmpA protein synthesis occurs mainly through modulation of the 

stability of ompA mRNA, whose half-life can fall by a factor of 4 in slowly growing cells 

(Emory and Belasco, 1990; Lundberg et al., 1988; Nilsson et al., 1984). The comparatively 

longer lifetime of the E. coli ompA transcript is not due to some unusual features of its 3'-

terminal stem-loop structure (Belasco et al., 1986), which, like the 3' hairpins of other 

bacterial mRNA species, is essential for protecting against 3'- exonuclease digestion in vivo 

(Chen et al., 1988; Mott et al., 1985; Newbury et al., 1987). Instead, multiple lines of 

evidence suggest that the extraordinary longevity of the ompA transcript is attributable to 

its long (133-nucleotide) 5' untranslated region (UTR). This RNA segment works in E. coli 

as a growth rate-regulated mRNA stabilizer (Belasco et al., 1986; Emory and Belasco, 

1990). Some of the advantages and limitations of various methods for studying microbial 

gene expression in soil are listed in Table 5.1. 
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Table 5.1. Advantages and limitations of various methods for studying microbial gene 

expression in soil (Saleh-Lakha et al., 2005). 

 
Gene monitoring 
system 

Advantages Limitations Genes and organisms 
studied (references) 

Microarrays –Specific, sensitive –High specificity may exclude 
sequence divergent species 

nirS (Cho and Tiedje, 
2002); nirS, nirK, pmoA 
(Wu et al., 2001). 

 –Low detection limit 
–Highly accurate 
–Wide applicability 
–Global gene expression 
analysis capability 
–Reproducible quantification of 
mRNAs or number of genes 
present in a sample 

–Humic and clay substances can 
interfere with hybridization 
–Low mRNA extraction 
efficiencies from environmental 
samples 

 

Competitive RT-
PCR 

–Highly precise and accurate 
–Control of amplification 
efficiencies ensures accurate 
quantification 

–Challenge to obtain highly 
pure, clean RNA with a 
sufficiently high yield to 
represent the soil microbial 
population 
–PCR inhibitors co-extracted 
interfere with the amplification 
and quantification process 

C. botulinum E VH toxin 
gene expression in 
Pseudomonas sp. 
 (McGrath et al., 2000). 
Legume-dependent 
rhizosphere effect on the 
diversity of nirK and 
nirS transcripts (Sharma 
et al., 2005). 

Real-time PCR –High sensitivity and precision 
–High-throughput 
–Specific and reproducible 
–Low detection limit (due to 
fluorescence technology) 
–Measures template abundance 
over six orders of magnitude 
–Allows for accurate quantifica- 
tion 

–Specificity of primers are 
usually unable to capture 
sequence divergent species in 
environmental samples 
–Low mRNA extraction 
efficiencies do not accurately 
represent a typical soil microbial 
population 
–PCR inhibitors co-extracted 
with RNA interferes with 
quantification process 
–Non-specific binding 

AtzABCDEF in 
Pseudomonas sp.  
(Devers et al., 2004); 
rpoH, groEL and tufA 
gene expression in 
Escherichia coli 
 (Sheridan et al., 1998). 

Stable isotope 
probing (DNA) 

–Allows in situ analysis of 
present and active microbial 
populations under the 
conditions tested 

–Time involved in assimilation 
of the substrate 

Genes expressed in 
ammonium fixation or 
methanogenesis in 
Methylobacterium 
extroquens (Radajewski 
et al., 2000). 

  –Cross-feeding 
–Requires actively replicating 
cells at the time tested 

 

Stable isotope 
probing (RNA) 

–RNA synthesis occurs more 
rapidly, shorter incubation 
periods 
–Amplification of the 16S 
rRNA for phylogenetic analysis 
–Does not require DNA 
synthesis or replication 

–Necessitates heavy labelling, at 
close to 100% 
–Labelled substrate must be used 
for growth to overcome diluted 
label issues 

Genes involved in 
syntrophic propionate 
oxidation in 
Syntrophobacter spp., 
Smithella spp. and 
Pelotomaculum spp. 
(Lueders et al., 2004). 

 

5.1.3. Shine-Dalgarno (SD) sequence 

 

It is well known that the process of prokaryotic translation initiation involves binding of 

the 16S rRNA and the initiator tRNA to the mRNA ribosomal binding site (RBS) on the 

mRNAs (Gold, 1988; Kozak, 1983). The RBS generally extends 20 nucleotides on either 
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side of the translation initiation codon (usually AUG) and contains, upstream from the 

AUG, a part or all of a polypurine sequence (UAAGGAGGU) known as the Shine-

Dalgarno (SD) sequence (Gold, L., 1988; Steitz, J. A., 1969; Shine and Dalgarno, 1974). 

The SD sequences are complementary to a pyridine tract (the anti-SD or ASD region) in 

the 3'-end of the 16S rRNA and its role in translation initiation is well documented. The 

spacing between the SD sequence and the initiation codon varies considerably in natural 

mRNA species, with the average being 7 nucleotides (Gold, L., 1988; Kozak, M., 1983). 

Excessively long or short spacing between the SD and the initiation codon may be 

detrimental to efficient translation initiation (Roberts et al., 1979). Ribosomal interaction 

with the mRNA occurs at two sites, the SD sequence, and the initiation codon. The former 

interaction is mediated by the ASD region, while the latter interaction involves fMet-tRNA 

in the ribosomal P-site (Gold, L. 1988). When both interactions occur, a minimal SD-AUG 

spacing is required, seemingly because the 16S rRNA and the fMet-tRNA must be kept a 

certain distance apart by configurational constraints (Fig. 5.4). Thus it is believed that SD-

AUG spacing plays a significant role in the process of translation initiation and provides 

evidence that aligned spacing is the most appropriate measure of spacing. An optimally 

aligned spacing of 5 nt probably suits to the preferred spacing between the ASD region of 

the 16S rRNA and the fMet-tRNA (Chen et al., 1994). 

 

 

 

 

 

 

 

 

Fig. 5.2. Shine-Dalgarno region of messenger RNA (Chen et al., 1994). 

 

5.2. Environmental factors affecting gene expression in soil 

 

Gene expression can be used to identify genes and activities essential for cellular role 

under varying conditions (Borneman and Triplett, 1997), but also to check in situ activities 

of genes coding for pollutant degradation (Fleming et al., 1993). Although carbon is 

essential for microbial growth and survival, relatively few studies have been published on 
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how carbon substrates affect the expression of microbial genes in a soil environment. Tao 

et al. (1999) used DNA array technology to examine gene expression in E. coli, which 

could be extended for the study of various gene expressions that might be present in the 

soil systems. Although only a few studies have been carried out to monitor gene expression 

in soil environments, their combined results shows that extraction of mRNA and PCR 

analysis, as well as bioreporters, can be the useful tools for evaluating bioremediation 

technologies.  

5.2.1. Oxygen status and pH effect   

 
Certain proteins are expressed at higher activity levels under anaerobic versus aerobic 

conditions (Lynch and Lin, 1996). As an example, oxygen is likely a limiting factor in 

degrading naphthalene, and a key factor affecting the expression of the naphthalene-

degrading pathway in Pseudomonas fluorescens HK44 (Ripp et al., 2000). Baumann et al. 

(1996) studied the expression of mRNA encoding nitrate, nitrite and nitrous oxide 

reductase genes (narH-like gene, nirS-like gene, and nosZ-like gene, respectively) by using 

dot-blot hybridization. Anaerobic conditions, combined with the presence of N-oxides, 

were necessary for gene expression driving denitrification process. Soto et al. (2004) 

described the effects of pH and calcium on nod gene expression in Sinorhizobium meliloti 

LPU63 and the acid tolerant Rhizobium sp. LPU83. In Rhizobium sp. LPU83, the nodC 

gene expression was similar at pH of 7 or 5.6 with calcium concentrations of 0.7 or 6 mM. 

However, the nodC expression in S. meliloti LPU63 was adversely affected at the lower pH 

and in the presence of low calcium concentrations. 
 
5.2.2. Soil moisture and temperature  

 
Due to seasonal fluctuations, the possibility of changes in water content in soil is high, 

thereby directly affecting water availability in microhabitat (Torsvik and Ovreas, 2002). 

Water availability is critical to all physiological functions of the cell; thus, affecting 

microbial gene expression in soil. Studies on gene expression in response to changes in 

water availability are limited, and have not been conducted in soil environments (Saleh-

Lakha et al., 2005). Studies of temperature effect on microbial gene expression performed 

on pure cultures, for example Listeria monocytogenes, a mammalian pathogen, reveal that 

there is an up-regulation of virulence genes when its surroundings have reached the host's 

temperature of 37 °C. Temperature changes lead to altered expression of prfA, a transcript- 
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ional activator that in turn regulates virulence gene production (Johansson et al., 2002). At 

low temperatures, the mRNA encoding this protein forms a secondary structure that 

prevents translation initiation, most likely by sequestering the ribosomal binding site. 

Mutations that disrupted structure and exposed the ribosomal binding site led to increased 

expression. At 37 °C, base pairing within the secondary structure is disrupted in a manner 

that enables improved translation initiation. Similar temperature-sensing RNAs have been 

proposed to regulate phage lambda genes, Escherichia coli heat shock sigma factor, rpoH, 

as well as other genes (Altuvia et al., 1989; Narberhaus, 2002). Given that RNA structures 

can be considerably affected by temperature and by ionic conditions under which they fold, 

it seems that many more examples of these genes might be awaiting discovery. 

 

5.3. Sequence annotation 

 

For the phylogenetic and functional assignment of new sequences, the availability of 

homologous reference sequences in public-domain databases is mandatory. Thus, the 

presence of whole-genome sequences in public-domain databases plays an essential role in 

the putative assignment of the sequences that are retrieved from pure cultures or from 

environmental samples. A list of most commonly used public-domain databases for the 

phylogenetic and functional assignment is given below.  

 

Table 5.2. Public-domain databases commonly used for the functional and phylogenetic 

assignment. 

 

The Basic Local Alignment Search Tool (BLAST) (Altschul et al., 1990) provided by 

NCBI (Table. 5.2) is one of the most commonly used tools for assigning nucleotide and 

amino acid sequences, both phylogenetically and functionally. 

 

 

Database Webpage 
GoldTM Genomes Online Database http://www.genomesonline.org/ 
The Institute for Genomic Research 
-Microbial Database (TIGR) 

http://www.tigr.org/ 

National Center for Biotechnology Information 
-Microbial genome (NCBI) 

http://www.ncbi.nlm.nih.gov/ 

The Wellcome Trust Sanger Institute 
- Microbial Genome 

http://www.sanger.ac.uk/ 
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Table 5.3. Some of the commonly used blast tolls provided by the NCBI for the 

phylogenetic and functional assignment of sequences. 

 

Tools Purpose Sequence format used Database comparison  

blastn compares a nucleotide query 

sequence 

FASTA, GenBank 

accession, or GI numbers 

NCBI nucleotide databases 

blastp compares an amino acid 

query sequence 

-do- NCBI protein databases 

blastx compares a nucleotide query 

sequence translated in all 

ORFs  

-do- NCBI protein databases 

 

During the putative phylogenetic or functional assignment of the sequences, E-value 

(Expect value) is considered as one of the most important parameters. It enables to make 

the decision whether assignment is statistically significant or not. The E-value is a 

parameter that describes the number of hits one can “expect” to see by chance when 

searching a database of a particular size. The lower the E-value or the closer it is to “0”, the 

higher is the “significance” of the match. However, it is important to note that searches 

with short sequences can be virtually identical and have relatively high E-values as shorter 

sequences have a high probability of occurring in the database purely by chance. E-value 

of e–10 is commonly used value as a cutoff point for the putative phylogenetic and 

functional assignment of mRNA transcripts by blastx analysis (Poretsky et al., 2005). 

 

5.4.  Aim of the project 

 
This part of the Ph.D. project was aimed to develop an efficient protocol for extracting 

prokaryotic mRNA transcript pools from soil. The newly developed protocol should be 

used to recover and analyze transcripts that were expressed in flooded, unplanted rice 

paddy soil microcosms in respect to oxic/anoxic zones and community successions. The 

methods involved were subtractive hybridization, reverse transcription PCR (RT-PCR), 

clone library generation, T-RFLP fingerprinting technique, and ultimately mRNA 

transcript annotation.  
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6. Methodology 
 
6.1. Methods 

 
6.1.1. Model system 
 
Model system used is described in detail in the Method section 2.2.1. of Chapter I. 

 

6.1.2. Sample preparation  

 

After 1 day and 70 days of flooding, the whole microcosms were shock-frozen by dipping 

into liquid nitrogen. Soil of a single slice (approx. 500 mg of wet weight) was cut using the 

Microtom-Kryostat HM-500 (Germany) and mixed immediately with RNAlater® 

(Ambion). After 24 h of incubation at 4 °C, samples were centrifuged at 5,000 × g, and 

then supernatant was removed. The precipitates were washed twice with one-quarter-

strength Ringer solution in order to remove the remaining RNAlater®. Then the extraction 

of total nucleic acids was performed. Before extraction of total nucleic acids from 

individual slices, all solutions and glassware were made RNase-free by treatment with 

diethyl pyrocarbonate (Noll et al., 2005) and working areas with 2% AbsolveTM (Perkin, 

USA). 

 

6.1.3. Total nucleic acid extraction 

 

Samples were mixed with 700 µl of pre-cooled TPM buffer [50mM Tris-HCl (pH 7.0), 

1.7% (wt/vol) polyvinylpyrrolidon, 20 mM MgCl2], and 0.5 g of glass beads (0.17- to 0.18 

mm diameter). The mixture was shaken for 60 s at maximum speed in a bead beater 

(Dismembrator-S; Braun Biotech, Melsungen, Germany). Glass beads, cell debris, and soil 

particles were pelleted by centrifugation (at 13,000 × g for 5 min at 4 °C), and the 

supernatant was transferred to a new reaction tube. The pellet was resuspended in 700 µl of 

a phenol-based lysis buffer [5 mM Tris-HCl (pH 7.0), 5 mM Na2EDTA; 0.1% (wt/vol) 

sodium dodecyl sulfate, 6% (v/v) water-saturated phenol], followed by a second round of 

bead beating. After centrifugation at 13,000 × g, the supernatants of the two bead-beating 

treatments were pooled and were extracted with 500 µl of water-saturated phenol, phenol-

chloroform-isoamyl alcohol [25:24:1 (v/v/v)], and then with chloroform-isoamyl alcohol 

[24:1 (v/v)]. All the extraction procedures involved centrifugation at 13,000 × g for 5 
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minutes. The total nucleic acids were precipitated from the aqueous phase with absolute 

ethanol (three volumes total sample solute) and 3 M sodium acetate, pH 5.7 (1/10 volume 

of total sample solute) and cooling at –80 °C for 1 h followed by centrifugation at 

13,000 × g for 1 h. Finally, total nucleic acid sample was washed twice with 70% ethanol, 

then air-dried, and was resuspended in 50 µl of TE buffer [10 mM Tris-HCl, 1 mM EDTA 

(pH 8.0)].   

 

6.1.4. Total RNA isolation 

 

For the removal of co-extracted DNA, total sample was treated with 5 U DNase (Promega, 

Germany), in combination with 10 U RNAsin (Promega, Germany) after adding 1× DNase 

buffer (Promega, Germany) and incubated at 37 °C for 30 min. Finally, total RNA was 

recovered by using RNeasy kitTM (Qiagen protocol). When the purified sample still 

contained humic substances, it was further purified by using column-containing Sephadex-

50. The integrity of the 16S rRNA and 23S rRNA fragments was checked by 

electrophoresis on a 1% agarose gel and comparison to a rRNA standard from Escherichia 

coli (Roche Diagnostics, Germany) after ethidium bromide staining. If these two molecules 

were found intact than possibility of mRNA recovery should also be high. 

6.1.5. Enrichment of mRNA 

To enrich the mRNA, rRNA was removed by subtractive hybridization with capture 

oligonucleotides hybridized to magnetic beads (MICROBExpressTM Bacterial mRNA 

Enrichment kit, Ambion) following the protocol of the manufacturer. The enrichment was 

repeated second time to ensure the removal of rRNA as quantitatively as possible. 

         

         6.1.6. Quantification of total RNA and mRNA  

 

Total RNA and enriched mRNA samples were quantified by measuring in Bio-analyzer 

2100 (Agilent, England) and NanoDrop® ND-1000 UV-Vis Spectrophotometer (NanoDrop 

Technologies, USA) following the protocols of the manufacturer.  
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6.1.7. RT-PCR 

RT-PCR was performed on 1 µl of mRNA sample using 10-mer random primers (OPA13, 

and OPA17; MWG) and SD14 primer (Table 6.1). SD14 was designed by Fleming et al. 

(1998), aimed to target the Shine-Dalgarno region of bacterial mRNAs. The reaction was 

performed in Applied Biosystems 9800 cycler using a one-step RT-PCR system (Access 

QuickTM, Promega, Germany). The reaction mixture contained 12.5 µl of 1 × RT buffer 

mix, 0.5 µl of 33 pmol of forward and reverse primers each, 1 U of reverse transcriptase 

(Promega, Germany), and finally total volume was made up to 25 µl with sterile water. 

Reverse transcription step was carried out at 45 °C for 45 min, followed by PCR step 

consisting of an initial denaturation at 94 °C for 2 min, 40 cycles of denaturation at 94 °C 

for 30 s, annealing at 45 °C for 45 s, and primer extension at 72 °C for 1 min. Final 

extension was carried out at 72 °C for 10 min. As negative control for DNA contaminants, 

reverse transcription reactions containing mRNA samples without reverse transcriptase 

enzyme were also included. RT-PCR products were checked by electrophoresis on a 1% 

agarose gel.  

 
Table 6.1. List of random primers used for RT-PCR. 
 
 
Designation Sequence References 

OPA13 CAGCACCCAC Poretsky et al., 2005 

OPA17 GACCGCTTGT Poretsky et al., 2005 

SD14 GGGGAACGACGATG Fleming et al., 1998; Poretsky et al., 2005 

 

6.1.8. cDNA clone library generation  

 

RT-PCR products were cloned into the pCR II TOPO vector using the TOPO TA cloning® 

kit (Invitrogen, Germany) following the protocol of the manufacturer. Positive clones 

(white clones) were randomly selected and transferred to fresh solid medium by using 

sterile toothpicks.  
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6.1.9. PCR of positive clones 

 

Each of the colonies was picked up by using a sterile toothpick and suspended into 25 µl of 

sterile TE buffer (pH 8). The suspension was boiled in a heating block for 10 min and 

subsequently centrifuged at 13,000 × g for 15 sec. PCR was carried out using the 

oligonucleotides primers T7f and M13r. The reaction mixture contained 1 µl of supernatant 

solution; 5 µl of 5× reaction buffer (Promega, Germany), 1.5 µl of 25 mM MgCl2 

(Promega, Germany), 2.5 µl of 10 mM dNTP mix (Promega, Germany), 0.25 µl of 50 

pmol (each) primer (MWG-Biotech, Germany), and 0.125 U of Taq DNA polymerase 

(Promega, Germany). Finally, total volume was made up to 25 µl with sterile water. The 

thermal PCR profile was as follows: initial denaturation at 94 °C for 3 min; 30 cycles 

consisting of denaturation at 94 °C for 30 s, primer annealing at 55 °C for 30 s, and 

elongation at 72 °C for 60 s. The final elongation step was extended to 5 min. Amplificati- 

on was performed in a total volume of 25 µl in fast reaction tubes (Applied Biosystems, 

Germany) and a DNA thermal cycler (model 9800 fast; Applied Biosystems, Germany). 

Aliquots of the amplified products (5 µl) were checked by electrophoresis on a 1% agarose 

gel. The PCR amplicons were purified by using the QIAquickTM purification kit (Qiagen, 

Germany) following the instructions of the manufacturer. Purified PCR products were 

eluted from the purification columns by adding 40 µl of 10mM Tris buffer (pH 8.0). 

 

6.1.10. Cycle sequencing 

 

For cycle sequencing, the BigDye® Terminator v3.1 Cycle Sequencing Kit (Applied 

Biosystems, Germany) was used. The PCR reagent mix was prepared by combining the 

following reagents (on ice) in a fast reaction tube: 2 µl ready reaction premix, 1 µl 

BigDye® sequencing buffer, 3.2 pmol (f or r) primer, 60-80 ng (2 µl) of PCR product and 

distilled water up to 10 µl. Tubes were placed in a thermal cycler preheated to 104 °C. The 

temperature program used was as follows: initial denaturation at 96 °C for 30 s; 25 cycles, 

consisting of denaturation at 94 °C for 10 s, primer annealing at 50 °C for 5 s, and final 

elongation at 60 °C for 4 min. The product was then stored at 4 °C until further processing. 

The cycle-sequenced product was purified by using AutoSeq™G-50 (GE Health Care Life 

Science, Germany) columns as described in the manufacturer's protocol. Sequences were 

generated with an ABI 310 sequencer (Applied Biosystems, Germany).  
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6.1.11. Sequence annotation 

 

Sequences were analyzed using blastn, blastx, ORF finder, and blastp tools 

(http://www.ncbi.nlm.nih.gov/BLAST/). Blastn analysis served to identify rRNA 

sequences; blastx analysis was used for phylogenetic assignment based on best matches (E-

value cutoff of e-10). Functional gene assignments were based on blastx and blastp. 

 

6.1.12. T-RFLP analysis of mRNA transcript pools 

 

A terminal restriction fragment length polymorphism (T-RFLP) analysis of mRNA 

transcripts was carried out by using the RT-PCR protocol as detailed in the section 6.1.7, 

except that 5’ FAM labelled SD14 primers (MWG Biotech, Ebersberg, Germany) was used 

during RT-PCR amplification of mRNA transcript pools. Purification of the RT-PCR 

product was done by using QIAquick® purification kit. Aliquots of the purified product (2 

µl) were mixed with 12 µl deionized formamide (Applera, Darmstadt, Germany) and 0.2 µl 

of an internal DNA fragment length standard (X-Rhodamine MapMarker® 30-1000 bp; 

BioVentures, USA). Terminal restriction fragments (T-RFs) were separated with an 

automated DNA sequencer. The length of fluorescently labelled T-RFs was determined by 

comparison with the internal standard using GeneScan 3.71 software (Applied Biosystems, 

Germany). 
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7. Results 

 

7.1. Optimization of mRNA extraction protocol 

 

When soils are analyzed ex situ, there will be a significant time delay between soil 

sampling and analysis, thus results may not represent the gene expression that was present 

at the time of sampling. Therefore, to prevent degradation of the total RNA, soil samples 

were rapidly shock-frozen in liquid nitrogen and then soil slices were cut and stored in 

RNAlater®. My personal experience revealed that reproducible results were obtained only 

when soils were mixed with RNAlater® before further processing, instead of analyzing 

them immediately (Fig. 7.1a). The exact composition of RNAlater® is not released by the 

manufacturer but it is expected to contain high salt concentration that prevents nuclease 

activity, thereby preserving total RNA.  

 

Total RNA isolated from all the samples contained predominantly rRNA with two major 

bands. These corresponded to the 16S rRNA and the 23S rRNA of E. coli standard (Fig. 

7.1b). mRNA separated from total RNA by using subtractive hybridization was found to be 

highly depleted in rRNAs as displayed by the Bioanalyzer and gel electrophoresis results 

(Fig.7.1d, e).  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.1. A) Gel electrophoresis of a) total nucleic acids obtained from early succession 

(lanes 1-4) and late succession (lanes 5-8), b) RNA standard from E. coli (lane 9) and total 

a) 
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RNA after DNA digestion (lanes 10-13), c) 16S rRNA and 23S rRNA after removing 5S 

rRNA (lane 15), d) enriched mRNA after subtractive hybridization (lanes 17, 18), and 

smart ladder (lanes 14, 16 and 19), and B) total RNA (lanes 21-24) from the sample and 

standard (lane 25), and enriched mRNA from the sample (lanes 26-29) and E. coli total 

RNA standard (lane 30) as detected by Bioanalyzer 2100. 

 

7.2. Development of the RT-PCR protocol 

 

RT-PCR was carried out by using one-step reaction method. In the one-tube method, all 

the reverse-transcribed RNA (cDNA) is available for amplification, whereas in the two-

tube method only a subsample is amplified (Sheridan et al., 1998). The absence of 

contaminating genomic DNA was checked by performing a parallel RT-PCR reaction of 

mRNA samples without reverse transcriptase enzymes (Fig. 7.2a). 

 
 

 

 

 

 

 

 

 

 

 

Fig. 7.2. RT-PCR products of mRNA transcripts obtained from different oxygen zones of 

early succession (a) and late succession (b). Lanes 1 (oxic zone), 3 (upper transition zone), 

5 (lower transition zone), 7 (anoxic zone) represents the RT-PCR products of early 

succession whereas lanes 9 (oxic zone), 11 (upper transition), 13 (lower transition zone), 

and 15 (anoxic zone) represent the RT-PCR products of late succession.  Lanes 2 (oxic 

zone), 4 (upper transition zone), 6 (lower transition zone), 8 (anoxic zone) and lanes 10 

(oxic zone), 12 (upper transition zone), 14 (lower transition zone), and 16 (anoxic zone) 

represent the RT- products from control (without RT step) from early and late succession, 

respectively. In panel (c), PCR products of randomly selected cDNA clones from RT-PCR 

product of oxic zone sample are shown. 

  

a)   b)  c)

9    9    10   11    11  12   13   13   14    15  15   

1.5 kb 
 
1.0 kb 
0.8 kb 
0.6 kb 
0.4 kb  
0.2 kb 

1.5 kb 
 
1.0 kb 
0.8 kb 
0.6 kb 
0.4 kb  
0.2 kb 



Results 

 65

7.3. Environmental transcript libraries 

 
Following RT-PCR and generation of cDNA clone libraries, 417 clones were randomly 

selected for analysis. Overall, 369 (88%) clones were derived from bacterial mRNA, 16 

(4.0%) were from rRNA, and 32 (8.0%) were derived from eukaryotic mRNA. Putative 

phylogenetic assignments were based on the taxon of the most similar sequence by blastx 

analysis. Using E-values more significant than e-10 in blastx analyses, gene transcripts were 

assigned to major phylogenetic groups in both early and late succession, which are listed in  

Table 7.1. Among all transcripts, those affiliated to Proteobacteria were most abundant, 

covering 35% of total transcripts, followed by those affiliated to phylum Acidobacteria 

(5%), Actinobacteria (4%), and to 10 minor phyla that were also detected, covered only 

14% of the total transcripts (Table 7.1). 

 

Table 7.1. Phylogenetic assignment of transcripts retrieved from different oxic and anoxic 

zones of early and late succession based on blastx best hits.   

 

1 no reliable assignment due to E-value >e-10 
 

No. of cDNA clones Total
Phylum / Class / Domain Early succession Late succession  

 Oxic 
Upper 

transition
Lower 

transition Anoxic Oxic
Upper 

transition 
Lower 

transition Anoxic  
Alphaproteobacteria 4 4 7 3 10 12 5 4 49 
Betaproteobacteria 2 2 7 1 7 7 4 1 31 
Gammaproteobacteria 15 3 4 0 3 2 6 3 36 
Deltaproteobacteria 2 2 3 3 3 5 4 7 29 
Bacilliaceae 2 2 0 0 0 1 0 0 5 
Clostrodiales 0 1 2 1 6 0 0 0 10 
Actinobacteria 2 3 9 0 0 0 1 2 17 
Bacteroidetes 2 0 1 0 6 1 0 0 10 
Acidobacteria 1 5 5 2 2 2 1 2 20 
Planctomycetes 1 1 0 0 0 0 2 1 5 
Chlorobi 0 0 2 0 0 0 0 0 2 
Chloroflexi 1 0 2 2 0 3 1 1 10 
Cyanobacteria 0 3 0 0 2 0 0 0 5 
Crenarchaeota 1 0 0 0 0 0 0 0 1 
Euryarchaeota 0 1 5 2 0 0 0 4 12 
Eukaryota 1 0 3 4 0 0 0 0 8 
Predicated novel1 9 26 13 31 9 16 24 23 151 
Total 43 53 63 49 48 49 48 48 401 
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ORF finder and blastp were used for the functional assignment of the transcripts. However, 

if transcripts could not be assigned to any conserved putative domains by using ORF finder 

and blastp but exhibited E-values more significant than e-10 in blastx, then they were also 

assigned to the role categories based on the blastx best hit. In this manner, altogether 250 

transcripts could be functionally assigned and these transcripts could be assigned to gene of 

metabolism (118 transcripts), information storage and processing (23 transcripts), cellular 

processes (31 transcripts), and conserved hypothetical (78 transcripts) (Table 7.3). The 

other 151 transcripts, which could not be assigned to any putative conserved domain in 

blastp and have E-value less significant than e-10 in blastx, were treated as predicted novel 

transcripts (hypothetical or unknown) (Table 7.3).  

 

Based on the functional assignment, in total 147 different types of functional assignments 

were identified, among which 28 (<20%) transcripts were found twice or more often 

(Table 7.2). Similarity between nucleotide sequences of transcripts that were assigned to 

the same function were compared by using ClustalW program (www.ebi.ac.uk/clustalw/) 

and grouped into separate clusters when sequence similarity was <98% (Table 7.2).  

 

Table 7.2. List of putative functional assignments that were detected in multiple numbers 

in oxic and anoxic zones of early and late succession. 

Note: Transcripts whose sequence similarities were checked are highlighted with gray color.  

Early succession Freq. Clusters Late succession 
 

Freq. Clusters 

Oxic zone   Oxic zone   
ClpA 2  DUF1080 5 2 
Cytochrome c family 2  FcbT1 2  
Putative IcmL-like 8 3 HemL 2  
Upper transition zone   LivK 4 1 
Predicted GTPase 4 1 MM_CoA_mutase 3  
Ubiquinol_Oxidase_I 2  SgbH 5 2 
Lower transition zone   Upper transition zone   
CbiM protein 2  Asd 2  
LysU 3  AsxRS_core 2  
Predicted GTPase 6 1 LivK 3 1 
QcrB 2  Transposase OrfB 2  
RibF 2  Lower transition zone   
Anoxic zone   HemG 2  
GNT-I 2  PyrF 2  
WW domain binding 
protein II 

3  Serine protease of the 
peptidase family S9A 

2  

Rho 2  Conserved protein 3  
   Anoxic zone   
   PrpD 12 2 



Results 

 67

Table 7.3. Functional assignment of transcripts retrieved from oxic, upper transition, lower transition, and anoxic zones. Transcripts were 

recovered from both early and late succession using blastx and blastp best hits. 

 

1ES = Early succession; 2 LS = Late succession

Oxic zone zone Upper transition zone Lower transition zone Anoxic zone SN Role catagories 
ES1 LS2 ES1 LS2 ES1 LS ES1 LS2 

1. Information storage and processing 1 0 3 3 6 4 2 4 
 Translation, ribosomomal structure and biogenesis 1 - - 2 4 2 - 4 
 Transcription - - 2 - - 1 2 - 
 DNA replication and repair - - 1 1 2 1 - - 
2. Cellular processes 4 2 2 3 6 3 6 3 
 Cell cycle protein - - 1 - - - - - 
 Regulatory protein - - - - 1 - 1 - 
 Intracellular trafficking and secretions - - - - 1 - - - 
 Signal transduction - 2 - 2 2 1 2 - 
 Defense mechanism - - 1 1 - -  1 
 Cell envelope biogenesis, outer membrane - - - - - 1 1 - 
 Cell motility secretion - - - - 1 1 - 1 
 Post translational modification 4 - - - - - - 1 
 Protein synthesis - - - - 1 - 2 - 
3. Metabolims 17 20 12 15 16 7 10 21 
 Energy production and conversion 1 - 4 2 3 2 2 3 
 Carbohydrate transport and metabolism 2 5 1 2 3  2 - 
 Amino acid transport and metabolism 4 5  4 4 2 3 1 
 Nucleoid transport - - 1 - - 1 - 1 
 Sugar transporter and metabolism - - - - - - - 1 
 Phosphate transporter - - - 1 - - - - 
 Inorganic ion transport and metabolism 2 1 2 1 - 1 - 1 
 Lipid metabolism - - 1 - - - - 1 
 Co-enzyme metabolism 1 2 1 1 1 1 -  
 Catalytic function 5 5 2 3 4 - 3 12 
 Periplasmic transporters 1 - - - - - - - 
 Secondary metabolites biosynthesis, transport and catabolism 1 2 - 1 1 - - 1 
4. Conserved hypothetical 12 17 10 12 18 10 - 3 
5. Predicated novel 9 9 26 16 19 24 31 17 
 Total no. of transcripts 43 48 53 49 63 48 49 48 
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7.4. T-RFLP of mRNA transcript pools 

 

Cloning results clearly showed that the use of subtractive hybridization alone did not 

remove all the 16S rRNA and 23S rRNA molecules. However, the cDNA clones generated 

from the RT-PCR products using SD14 primers coupled with subtractive hybridization 

resulted in a strong depletion of rRNAs. Therefore, it was decided to develop a protocol for 

T-RFLP fingerprinting of mRNA transcript pools by using SD14 primer. Firstly, 

reproducibility (tube-to-tube variation) was checked by generating triplicate T-RFLP 

fingerprints from a single mRNA extract. Although results showed reproducibility (±1 bp) 

among the triplicate samples in reference to presence and absence of major peaks detected 

there were strong variations when minor peaks were also considered (Fig.7.3). Besides, 

triplicate T-RFLP did not showed reproducibility in their relative abundance. This 

indicated that the method was still lacking reproducibility. Thus, the attempts to establish a 

reliable protocol for mRNA transcript pool fingerprinting by using T-RFLP was not 

continued. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Fig. 7.3. Checking of tube-to-tube RT-PCR variation (reproducibility checking). 
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8. Discussions 

 
The first section of this research was primarily focused on developing an efficient protocol 

for the extraction of total mRNA transcript pools from soil. The protocol was then used for 

extracting mRNA transcript pools from oxic and anoxic zones of flooded, unplanted rice 

paddy soil microcosms, incubated for either 1 or 70 days (early versus late succession). 

Subsequently, cDNA libraries were generated, in order to analyze mRNA transcript pools 

by phylogenetic and functional assignments of cloned cDNAs.  

 

There were significant methodological obstacles in the extraction and analysis of 

environmental transcript pools. The following part of the discussion details the problems 

and how they were solved, if possible. 

 
8.1. Subtractive hybridization  
 
Since the aim was to construct cDNA clone libraries mainly comprising mRNA transcripts, 

rRNA was eliminated prior to RT-PCR using subtractive hybridization. In this method, 

oligonucleotides attached to magnetic beads were used to capture 16S and 23S RNA 

molecules. The magnetic beads, with 16S and 23S rRNAs molecules attached were pulled 

to the side of the tube with a magnet. Thus, supernatant contained enriched mRNA. 

However, performance of this method was weak, as concluded from initial analysis of 

various cDNA clone libraries generated by using different primer combinations (OPA13, 

OPA17, and SD14) in RT-PCR. Most cDNA clones (>70%) were derived from 16S and 

23S rRNAs.  

 

This finding may be explained by the fact that MICROBExpressTM kit does not capture 

rRNAs of all the bacterial species; some of the examples are Chloroflexus aurantiacus, 

Dehalococcoides ethenogenes, Deinococcus radiodurans, and Propionibacterium 

freundenreichii. A list detailing the bacterial species, whose rRNAs are captured, partially 

captured or not captured at all by MICROBExpress is available at 

http://www.ambion.com/techlib/misc/microbe.html.  

 

In order to overcome the insufficient capture of rRNA molecules, the RT-PCR reaction 

was carried out only by using the SD14 primer. Notably, use of the SD14 primer in RT-
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PCR after subtractive hybridization resulted in cDNA clone libraries, in which more than 

95% of clones were derived from mRNA transcripts. Thus, all the cDNA clone libraries 

were generated using the SD14 primer in RT-PCR. This primer has also been used 

successfully in differential display analysis (Fleming et al., 1998) as well as in the reverse 

transcription PCR of mRNA transcripts retrieved from lake water samples (Poretsky et al., 

2005). The only methodological drawback of using SD14 primers is that RT-PCR appears 

to be biased towards the amplification of the 5' end of bacterial mRNA transcripts that 

possess a typical Escherichia coli like Shine-Dalgarno region (Ingraham et al., 1983). 

However, it has also been reported that SD14 primers, when used under low-stringent PCR 

conditions, do not necessarily target only the Shine-Dalgarno site (Poretsky et al., 2005). 

Since RT-PCR was carried out under low-stringent conditions, a bias towards retrieval of 

transcripts from bacteria related to E. coli (Gammaproteobacteria) is unlikely as indicated 

by the finding of low gammaproteobacterial transcript abundance in late succession, but 

cannot be fully excluded. 

8.2. Cloning bias 

 
In order to assess possible cloning bias, the size distribution of PCR-amplified cDNA 

inserts were examined by agarose gel electrophoresis. Average insert size ranged from 500 

to 700 bp (Fig. 7.2b). Larger cDNA inserts (>1000 nt) were not found, presumeably 

because mRNA fragments between 500 and 700 nt are preferentially amplified in RT-PCR 

and cloned into the vector. 

8.3. Short half-lives 

 
The vast majority of mRNA sequences appeared to be transcribed from housekeeping 

genes, including genes encoding components of cell envelope, transport systems, and 

energy metabolism (Table 7.3). Studies on E. coli transcriptome suggest that transcripts of 

these three gene categories have longer half-lives than those of other gene categories 

(Bernstein et al., 2002). This might be the reason why cDNA libraries constructed in this 

study contained a high proportion of mRNA transcripts derived from these three above-

mentioned gene categories. 
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8.4. Public-domain databases 

 
One of the major problems in both phylogenetic and functional assignment is that the 

number of reference sequences in public-domain databases is still limited. It has already 

been reported that the accuracy of assignment is negatively affected by possible events of 

lateral gene transfer and positively correlated with the taxonomic coverage of the database 

for any given gene (Poretsky et al., 2005). Until the end of 2006, altogether 470 (397 

bacterial, 44 eukaryal, and 29 archaeal) complete genome sequences and 62 metagenome 

sequences were available in GoldTM Genomes Online Database (http://www.genomesonline. 

org/gold.cgi). Currently, the analysis of additional 1678 genome sequences is in progress. 

Out of 470 microbial species whose genome sequences were fully sequenced, 54% belong 

to the phylum Proteobacteria, 22% to the Firmicutes, 7% to the Archaea, and 17% to other 

major groups. This predominance of proteobacterial genome sequences in public-domain 

databases may explain why almost 35% of all the transcripts retrieved from the rice paddy 

soil microcosms were assigned to Proteobacteria with high significance (E-values <e10). 

Also, those transcripts (37%) having either very high E-values (>e-10) or having no matches 

at all in blastx analyses are most likely derived from phylogenetic groups, which are 

(strongly) underrepresented in public-domain databases. The phylogenetic assignment was 

also complicated by the fact that sometimes a single transcript was assigned to 2-3 

different phylogenetic groups based on blastx best hit, which may be explained by events 

of lateral gene transfer as already outlined above (Table 8.1). 

 

8.4.1. Phylogenetic assignment 

 

Taking into account the above-mentioned findings, blastx searches resulting in E-values 

<e-10 were considered of sufficient significance for putative assignment of transcripts. The 

putative transcript assignments thus suggested that the early community development was 

dominated by the activity of Gammaproteobacteria in the oxic zone, while a 

phylogenetically highly diverse community appeared to be active in the anoxic zone. Gene 

expression of mature communities was dominated by transcripts of Alphaproteobacteria in 

the oxic zone and Deltaproteobacteria in the anoxic zone. These findings were in good 

agreement with the first part of my Ph.D. study where fast-growing communities (mainly 

Betaproteobacteria, Gammaproteobacteria) were dominant in early succession, while 
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slow-growing communities (mainly Alphaproteobacteria) were prevalent in late 

succession. Transcripts of Betaproteobacteria and Actinobacteria were recovered from 

early and late succession with similar frequency, suggesting that they were active in both 

successional stages. Other phylogenetic groups were represented in the cDNA libraries by 

only a very few transcripts (Table 7.1).  

Table 8.1. Phylogenetic and functional assignment of selected transcripts. 

 

Clone Description and closest match organism Acc. no. E-value 
T-1.10 mandelate racemase / muconate lactonizing enzyme [Sphingomonas 

p. SKA58] / Alphaproteobacteria 
gi|94497565| 2e-51 

 Galactokinase [Saccharophagus degradans 2-40]/ 
Gammaproteobacteria 

gi|90020711| 1e-50 

 mandelate racemase/muconate lactonizing enzyme [Polaromonas sp. 
JS666] / Gammaproteobacteria 

gi|91789818| 2e-50 

T-1.11 probable cytochrome C-type biogenesis protein [Bdellovibrio 
bacteriovorus HD100]/ Deltaproteobacteria 

gi|39575315| 2e-30 

 robable cytochrome C-type biogenesis protein [Bdellovibrio marina 
DSM 3645] / Planctomycetes 

gi|87309290| 1e-26 

 hypothetical protein [Parachlamydia sp. UWE25] / Chlamydiae gi|46400369| 1e-23 
T-1.23 threonine aldolase [Symbiobacterium thermophilum IAM 14863]/ 

Actinobacteria 
gi|51857230| 1e-85 

 Threonine aldolase [Syntrophobacter fumaroxidans MPOB] / 
Deltaproteobacteria 

gi|71546393| 1e-85 

 Threonine aldolase [Desulfotomaculum reducens MI-1] / Clostridia gi|88946895| 9e-76 
T-77 Succinyl-CoA synthetase, beta subunit [Solibacter usitatus 

Ellin6076] / Acidobacteria 
gi|67929956| 9e-35 

 succinyl-CoA synthetase large subunit [Hydrogenobacter 
thermophilus] / Aquificales 

gi|46849523| 6e-34 

 Succinyl-CoA synthetase, beta subunit [Magnetococcus sp. MC-1] / 
Proteobacteria 

gi|68245183| 3e-32 

T-186 Glycosyl transferase, group 1 [Solibacter usitatus Ellin6076] / 
Acidobacteria 

gi|67929436| 8e-23 

 WbnE [Escherichia coli] / Gammaproteobacteria gi|5739468| 6e-21 
 putative galactosyltransferase WbgM [Escherichia coli] Length=364 

/ Gammaproteobacteria 
gi|18266398| 2e-18 

T-188 Cytochrome-c oxidase [Solibacter usitatus Ellin6076] / 
Acidobacteria 

gi|67934493| 1e-18 

 Cytochrome c oxidase polypeptide I [Haloarcula marismortui ATCC 
43049]/ Euryarchaeota 

gi|55230797| 2e-18 

 Cytochrome-c oxidase [Shewanella sp. PV-4] / 
Gammaproteobacteria 

gi|78366753| 2e-18 

T-189 Cytochrome b/b6, N-terminal [Chlorobium phaeobacteroides BS1] / 
Chlorobi 

gi|67941709| 5e-37 

 Cytochrome b/b6, N-terminal [Solibacter usitatus Ellin6076] 
Acidobacteria 

gi|67929232| 8e-32 

 Cytochrome b/b6-like [Geobacter metallireducens GS-157] /  
Deltaproteobacteria 

gi|78194581| 7e-31 

T-1026 Methylmalonyl-CoA mutase, N-terminal [Thermoanaerobacter 
ethanolicus ATCC 33223] / Clostridia 

gi|76797288| 6e-53 

 Methylmalonyl-CoA mutase, N-terminal domain/subunit 
[T.tengcongensis MB4] / Clostridia 

gi|20516219| 7e-53 

 Methylmalonyl-CoA mutase subunit alpha [Azoarcus sp. EbN1] / 
Betaproteobacteria 

gi|56312619| 2e-52 
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8.4.2. Functional assignment 
 
The functional assignment was often more ambiguous than the phylogenetic assignment, 

reflected by the high proportion of transcripts that had to be classified as predicted novel. 

However, this high percentage of unassignable transcripts is still in the range of that 

proportion of predicted novel genes in completely sequenced bacterial genomes. For 

example, Pseudomonas aeruginosa strain PA01 possesses 5,570 predicted ORFs of which 

54.2% could be assigned to known functions. Of the other 45.8%, 13.2% were conserved 

hypothetical and 32% predicted novel, i.e. without any significant homology to reported 

sequences (Stover et al., 2000). 

 

In addition to the findings discussed above, there were other interesting results as follows: 

 

1. Acidobacterial mRNA transcripts were retrieved with high frequency from both early 

and late succession. Almost all of those were assigned to genes from Solibacter usitatus 

and Acidobacteria bacterium Ellin_345. These two organisms are the only representative 

isolates of the phylum Acidobacteria, whose full genome sequences are deposited in 

public-domain databases. This exemplarily shows how phylogenetic assignment might be 

skewed toward organisms for which a whole-genome sequence is available. 

 

2. The retrieval of transcripts affiliated to Myxococcus xanthus from the oxic zone in early 

succession corresponds well to the phenotype of these bacteria, as they exhibit a strictly 

aerobic organotrophic metabolism and a rapid growth response to substrate availability 

(Dawid, 2000).  

 

3. Similarly, the high frequency of transcripts of Anaeromyxobacter-like organisms in the 

lower transition and anoxic zone of late succession in comparison to early succession 

corresponds well to their facultative anaerobic metabolism.  

 

4. Detection of a nosZ gene transcript assigned to Anaeromyxobacter in the lower 

transition zone of early succession may be explained by its comparatively long half-life, 

which was around 13 minutes when a pure culture of Pseudomonas stutzeri was studied 

(Nogales et al., 2002). nosZ encodes the enzyme nitrous oxide reductase, which catalyzes 

the final step in denitrification. Baumann et al. (1996) have shown that anaerobic 
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conditions, combined with the presence of N-oxides, were necessary for gene expression 

driving denitrification. Anaeromyxobacter dehalogenans uses a diverse range of alternative 

electron acceptors for anaerobic growth, including nitrate, Fe (III), and fumarate (Sanford 

et al., 2002).  

 

5. Dissimilatory iron reduction is one of the predominant microbial processes within the 

oxygen gradients that develop in flooded rice paddy soils shortly after flooding (Yao et al., 

1999). The high frequency with which transcripts related to Geobacter and 

Anaeromyxobacter spp. were detected in the upper and lower transition zones, and anoxic 

zone during late succession may suggest the presence of dissimilatory Fe(III)-reducing 

consortia. Anaeromyxobacter dehalogenans strain FAc12 was isolated from Vercelli rice 

paddy soil as a dissimilatory iron reducer (Treude et al., 2003). Representatives of this 

subgroup seem to be adapted to low substrate concentrations and to have low growth rates.  

 

6. Assignment of transcripts to certain functions was observed, including putative IcmL-

like type IV secretion system, LivK, PrpD (2-Methylcitrate dehydratase), NirB and 

predicted GTPase proteins (Table 7.2). Multiple assignments to the same function may 

suggest either an overwhelming importance of this function in the habitat from which the 

transcripts were recovered or biased retrieval towards these transcripts. The latter 

assumption is supported by the fact that transcripts assigned to the same function/protein 

showed exactly the same lengths of cloned cDNA inserts. Poretsky et al. (2005) also 

reported selective amplification of transcripts by PCR primers thought to be (almost) 

universal. Examples are soxA transcript amplification with OPA13 and OPA17 primers, 

and aphA transcript amplification with SD14 primer. 

 

All the above findings indicate that successional changes in the phylogenetic composition 

of the rice paddy soil bacterial communities could be concluded with some level of 

confidence, but not significant changes in their functional state; the latter presumably due 

to the insufficient number of cDNA clones randomly sampled. However, in the future, 

high-throughput sequencing techniques and automated annotation tools should enable 

transcriptome of total microbial communities and their functional response to 

environmental changes. 
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